Science.gov

Sample records for removal efficiency correlates

  1. Do functional changes in humans correlate with the airway removal efficiency of ozone

    SciTech Connect

    Gerrity, T.R.; McDonnell, W.F.

    1988-08-01

    One of the more commonly observed responses to acute exposure to ambient levels of ozone during exercise is a decline in tidal volume and an increase in breathing frequency. It has been hypothesized that the response helps to limit the dose of ozone to the lower respiratory tract. To test the hypothesis, 20 healthy non-smoking male volunteers were exposed to 0.4 ppm ozone while undergoing continuous exercise. Tidal volume significantly fell by 25% (p<0.003) during exposure. At the same time the ozone uptake efficiency of the lower respiratory tract significantly fell by 9% (p<0.04). These declines were significantly correlated (p<0.004), suggesting that the tidal volume reduction experienced during ozone exposure with exercise helps to limit the amount of ozone delivered to lower respiratory tract tissue.

  2. Removing correlations in signals transmitted over a quantum memory channel

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Memarzadeh, Laleh; Mancini, Stefano

    2012-01-01

    We consider a model of a bosonic memory channel, which induces correlations among the transmitted signals. The application of suitable unitary transformations at the encoding and decoding stages allows the complete removal of correlations, thereby mapping the memory channel into a memoryless one. However, such transformations, being global over an arbitrarily large number of bosonic modes, are not realistically implementable. We then introduce a family of efficiently realizable transformations, which can be used to partially remove correlations among errors, and we quantify the reduction of the gap with memoryless channels.

  3. Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses.

    PubMed

    Ghaniyari-Benis, S; Martín, A; Borja, R; Martín, M A; Hedayat, N

    2012-03-01

    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was 0.28 h(-1), the Peclet dispersion number being 45, with a mean relative error of 2%. The model based on the Young equation predicted the behaviour of the reactor more accurately showing deviations lower than 10% between the theoretical and experimental values of the fractional conversion, the mean relative error being 0.9% in this case.

  4. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.

    PubMed

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun

    2016-06-01

    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly.

  5. Correlated activity supports efficient cortical processing

    PubMed Central

    Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.

    2015-01-01

    Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392

  6. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    PubMed

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  7. AN EFFICIENT TREATMENT STRATEGY FOR HISTOTRIPSY BY REMOVING CAVITATION MEMORY

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

    2012-01-01

    Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, Δt, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as Δt increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer Δts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for Δt ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions. PMID:22402025

  8. Correlations in intermediate energy two-proton removal reactions.

    PubMed

    Wimmer, K; Bazin, D; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Grinyer, G F; Hodges, R; Howard, M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Simpson, E C; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M

    2012-11-16

    We report final-state-exclusive measurements of the light charged fragments in coincidence with (26)Ne residual nuclei following the direct two-proton removal from a neutron-rich (28)Mg secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple-coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially correlated pair-removal mechanism. The fraction of such correlated events, 56(12)%, is consistent with the fraction of the calculated cross section, 64%, arising from spin S=0 two-proton configurations in the entrance-channel (shell-model) (28)Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.

  9. [Fluorine removal efficiency of organic-calcium during coal combustion].

    PubMed

    Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa

    2006-08-01

    Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.

  10. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.

    PubMed

    Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng

    2016-08-16

    Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.

  11. Condensing economizers: Thermal performance and particulate removal efficiencies

    SciTech Connect

    Butcher, T.A.; Litzke, Wai Lin; Park, N.

    1992-02-01

    Condensing economizers can be used to increase the thermal efficiency of boilers and furnaces. This project has involved a study of these specifically for application to coal-water mixture fuels although the results can be extended to other fuels. experimental studies to evaluate thermal performance and removal of particulates across indirect contract economizers have been performed. The test arrangement incorporates oil firing with the injection of flyash into the flue gas to simulate coal combustion products. Water sprays into the combustion products are used to achieve variable flue gas moisture content and a variable amount of condensation in the economizers. The economizers are tubular with flue gas on the outside of the tubes. Tube surfaces are plastic coated to prevent corrosion. The gas temperature and condensation profiles through the economizers have been predicted and overall predicted performance has been compared with test results. Mechanisms for particle removal are discussed and predicted removal efficiencies as a functions of particle diameter are presented. It is is shown that inertial impaction is the dominant mechanism and particle removal efficiencies up to 89% have been realized.

  12. Efficient Removal of Retained Intracardiac Air Utilizing Buoyancy.

    PubMed

    Orihashi, Kazumasa

    2016-12-01

    Retained intracardiac air has been an important issue in cardiac surgery. Although echo visualization has allowed detection of air and guided deairing procedures, adequate air removal is not always attained. Actually it has been attempted in each surgeon's manner without solid standard or evidence. Basically buoyancy is responsible for air retention as well as difficult deairing. This paper is aimed to present the author's current measures of deairing, which turn this property of air into efficient removal, as test bed for discussion on this long-standing but pending issue.

  13. Hydrocolloid-stabilized magnetite for efficient removal of radioactive phosphates.

    PubMed

    Vellora Thekkae Padil, Vinod; Rouha, Michael; Cerník, Miroslav

    2014-01-01

    Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus (32)P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  14. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    PubMed Central

    Vellora Thekkae Padil, Vinod; Rouha, Michael; Černík, Miroslav

    2014-01-01

    Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms. PMID:24696854

  15. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  16. Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters.

    PubMed

    Pang, Long; Yang, Peijie; Zhao, Jihong; Zhang, Hongzhong

    2016-10-01

    Organophosphate esters (OPs), widely used as flame retardants and plasticizers, are regarded as a class of emerging pollutants. The effluent of municipal wastewater treatment plants is generally considered to be the main contributor of OP pollution to the surface water. In this study, anoxic-oxic (AO) and University of Capetown (UCT) processes were selected to investigate the removal efficiency of OPs. The results indicated that the UCT process showed better removal efficiency than that of the AO process. For the chlorinated OPs, approximately 12.3% of tri(2-chloroethyl)phosphate and 11.8% of tri(chloropropyl)phosphate can be removed in the UCT process, which was 12% and 7.8% higher than that of the AO process. In contrast, non-chlorinated OPs, including tris(2-butoxyethyal)phosphate, triphenyl phosphate, and tributyl phosphate, were able to be removed in both processes, with the removal rate of 85.1%, 74.9%, and 29.1% in the AO process, and 88.4%, 63.6%, and 25.2% in the UCT process. Furthermore, linear correlation between the removal rate and logKow of OPs (r(2) = 0.539) was observed in the AO process, indicating that OPs with high Kow value (e.g. tri(dichloropropyl)phosphate and triphenyl phosphate) are prone to be removed by adsorption on the residual activated sludge.

  17. Correlations probed in direct two-nucleon removal reactions

    SciTech Connect

    Simpson, E. C.; Tostevin, J. A.

    2010-10-15

    Final-state-exclusive momentum distributions of fast, forward-traveling residual nuclei, following two-nucleon removal from fast secondary radioactive beams of projectile nuclei, can and have now been measured. Assuming that the most important reaction mechanism is the sudden direct removal of a pair of nucleons from a set of relatively simple, active shell-model orbital configurations, such distributions were predicted to depend strongly on the total angular momentum I carried by the two nucleons--the final-state spin for spin 0{sup +} projectiles. The sensitivity of these now-accessible observables to specific details of the (correlated) two-nucleon wave functions is of importance. We clarify that it is the total orbital angular momentum L of the two nucleons that is the primary factor in determining the shapes and widths of the calculated momentum distributions. It follows that, with accurate measurements, this dependence upon the L makeup of the two-nucleon wave functions could be used to assess the accuracy of (shell- or many-body-) model predictions of these two-nucleon configurations. By using several tailored examples, with specific combinations of active two-nucleon orbitals, we demonstrate that more-subtle structure aspects may be observed, allowing such reactions to probe and/or confirm the details of theoretical model wave functions.

  18. Efficiency of WWTP to remove emerging pollutants in wastewater

    NASA Astrophysics Data System (ADS)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Recently some compounds that are extensively used are considered emerging pollutants since are at low concentrations and have been little studied. Pharmaceuticals and personal care products are classified as this kind of pollutants and most of these are excreted through urine or feces and come to end up to treatment plants. Recent studies indicates that pharmaceuticals, personal care products or illicit drugs from Waste Water Treatment Plants (WWTP) are a considerable chemical pollution in surface [1, 2]. The purpose of this study is to determine the removal efficiency for two WWT of Pinedo I and II, Valencia (Spain). After obtaining the results of analysis by an Agilent 1260 HPLC in tandem with a 6410 MS/MS triple quad, a simple mathematical operation with the influents and effluents is performed. This operation consists in subtracted from the influent, the effluent, divided by the result of the influent and this multiply by 100. Results are expressed as a percentage with its 95 % confidence interval (CI). The influent and effluent of the samples were filtered with a 0.50 μm glass fiber filter of 90 mm by Advantec (Minato-ku, Tokyo, Japan). After filtration, 250ml of this water is extracted through a SPE. SPE was performed with Strata-X 33U Polymeric Reversed Phase (200 mg/6 mL) from Phenomenex. These cartridges were conditioned with 6 mL of methanol and 6 mL of distilled water. Extracts were eluted with 6mL of Methanol and evaporated with compressed air. The residue was reconstituted with 1 mL of methanol-water (30:70, v/v). The removal efficiencies depend on the type of the compound, these rates remain between 23% and 100%. In some cases, removal efficiency is negative since some compounds are accumulated in the sludge and these have more concentration. Tertiary treatment including UV disinfection could efficiently reduce most of the residual pharmaceuticals below their quantification limits. Acknowledgments This work has been supported by the Spanish Ministry

  19. Efficiency of butyl rubber sorbent to remove the PAH toxicity.

    PubMed

    Okay, O S; Özdemir, P; Yakan, S D

    2011-01-01

    Large amounts of polycyclic aromatic hydrocarbons (PAHs) have been released to the marine environment as a result of oil spills and from other sources including wastewaters, surface runoff, industrial processes, atmospheric deposition, biosynthesis, and natural events such as forest fires. PAHs have been known to affect a variety of biological processes and can be potent cell mutagens/carcinogens and toxic. In this study, PAH toxicity removal was investigated by using a novel macroporous butyl rubber (BR) sorbent. To find out the toxicity removal efficiency of the sorbents, the toxicity tests with Vibrio fisheri (luminescence bacteria) and Phaeodactylum tricornutum (marine algae) were applied to the acenaphthene (Ace) and phenanthrene (Phen) solutions in seawater (Ace: 500- 1000 μg/L; Phen; 100-1000 μg/L) before and after sorbent applications. Additionally, lysosomal stability and filtration rate biomarker techniques were applied to the mussels (Mytilus galloprovincialis) exposed to 1000 μg/L Phen solution and bioaccumulation was measured. The results showed that the toxicity of the PAH solutions decreased 50-100 percent depending on the concentration of the solutions and organisms. Phaeodactylum was found as the most sensitive organism to Phen and Ace. Since the application of BR sorbent removed the Phen from the solution, the bioaccumulated Phen amount in the mussels decreased accordingly.

  20. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  1. Effectiveness and efficiency of chemomechanical carious dentin removal.

    PubMed

    Magalhães, Cláudia Silami de; Moreira, Allyson Nogueira; Campos, Wagner Reis da Costa; Rossi, Fernanda Magalhães; Castilho, Guilherme Augusto Alcaraz; Ferreira, Raquel Conceição

    2006-01-01

    The aims of this in vitro study were both to determine the time necessary for removal of carious dentin (efficiency) and the Knoop Hardness Number (KHN) of the remaining dentin (effectiveness), using a chemomechanical method (Carisolv) or hand excavation. Thirty human molars were bisected through occlusal carious lesions into two equal halves. Each half was randomly excavated by hand in circular movements with a spoon excavator or using Carisolv gel according to the manufacturer's instructions. The duration of carious dentin removal was recorded. Tooth sections were resin-embedded, ground flat and polished. Dentin KHN was determined at distances of 100, 200, 300, 400 and 500 microm from the cavity floor. Data were analyzed by Wilcoxon's test (alpha= 0.01), ANOVA and Student's t test (alpha= 0.05). The median of the time necessary for chemomechanical excavation was significantly greater than for hand excavation. KHN means (+/- SD) at 100, 200, 300, 400, 500 microm for chemomechanical method were, respectively: 15.6 (+/- 4.96), 18.0 (+/- 6.22), 21.3 (+/- 9.30), 24.3 (+/- 9.25), 28.5 (+/- 11.80); and for hand excavation were: 21.2 (+/- 10.26), 23.4 (+/- 9.49), 28.2 (+/- 11.62), 31.0 (+/- 12.17), 34.3 (+/- 11.95). It may be concluded that hand excavation presented higher efficiency and effectiveness than chemomechanical excavation.

  2. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.

    PubMed

    Feng, Shasha; Zhong, Zhaoxiang; Zhang, Feng; Wang, Yong; Xing, Weihong

    2016-04-06

    Polytetrafluoroethylene (PTFE) membrane is an extensively used air filter, but its oleophilicity leads to severe fouling of the membrane surface due to organic aerosol deposition. Herein, we report the fabrication of a new amphiphobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDAE)-grafted ZnO@PTFE membrane with enhanced antifouling functionality and high removal efficiency. We use atomic-layer deposition (ALD) to uniformly coat a layer of nanosized ZnO particles onto porous PTFE matrix to increase surface area and then subsequently graft PFDAE with plasma. Consequently, the membrane surface showed both superhydrophobicity and oleophobicity with a water contact angle (WCA) and an oil contact angle (OCA) of 150° and 125°, respectively. The membrane air permeation rate of 513 (m(3) m(-2) h(-1) kPa(-1)) was lower than the pristine membrane rate of 550 (m(3) m(-2) h(-1) kPa(-1)), which indicates the surface modification slightly decreased the membrane air permeation. Significantly, the filtration resistance of this amphiphobic membrane to the oil aerosol system was much lower than the initial one. Moreover, the filter exhibited exceptional organic aerosol removal efficiencies that were greater than 99.5%. These results make the amphiphobic PTFE membranes very promising for organic aerosol-laden air-filtration applications.

  3. The efficiency of potassium removal during bicarbonate hemodialysis.

    PubMed

    Capdevila, M; Ruiz, I Martinez; Ferrer, C; Monllor, F; Ludjvick, C; García, N H; Juncos, L I

    2005-07-01

    Patients on chronic hemodialysis often portray high serum [K+]. Although dietary excesses are evident in many cases, in others, the cause of hyperkalemia cannot be identified. In such cases, hyperkalemia could result from decreased potassium removal during dialysis. This situation could occur if alkalinization of body fluids during dialysis would drive potassium into the cell, thus decreasing the potassium gradient across the dialysis membrane. In 35 chronic hemodialysis patients, we compared two dialysis sessions performed 7 days apart. Bicarbonate or acetate as dialysate buffers were randomly assigned for the first dialysis. The buffer was switched for the second dialysis. Serum [K+], [HCO3-], and pH were measured in samples drawn before dialysis; 60, 120, 180, and 240 min into dialysis; and 60 and 90 min after dialysis. The potassium removed was measured in the dialysate. During the first 2 hr, serum [K+] decreased equally with both types of dialysates but declined more during the last 2 hr with bicarbonate dialysis. After dialysis, the serum [K+] rebounded higher with bicarbonate bringing the serum [K+] up to par with acetate. The lower serum [K+] through the second half of bicarbonate dialysis did not impair potassium removal (295.9 +/- 9.6 mmol with bicarbonate and 299.0 +/- 14.4 mmol with acetate). The measured serum K+ concentrations correlated with serum [HCO3-] and blood pH during bicarbonate dialysis but not during acetate dialysis. Alkalinization induced by bicarbonate administration may cause redistribution of K during bicarbonate dialysis but this does not impair its removal. The more marked lowering of potassium during bicarbonate dialysis occurs late in dialysis, when exchange is negligible because of a low gradient.

  4. [Effect of KI modified clay on elemental mercury removal efficiency].

    PubMed

    Shen, Bo-Xiong; Chen, Jian-Hong; Cai, Ji; He, Chuan; Li, Zhuo

    2014-08-01

    Adsorption tests of elemental mercury were carried out by using KI modified clay (bentonite) in simulated flue gas under different conditions. Brunauer-Emett-Teller measurement (BET), Fourier Transform Infraredspectroscopy (FTIR) and Thermogravimetric Analysis (TGA) were used to analyze the physical and chemical properties of the materials. Compared with the original bentonite, Hg(0) removal efficiency and Hg(0) adsorption capacity were drastically improved by the KI treatment. The experiment results also indicated that temperature could enhance the property of Hg(0) adsorption. Chemical adsorption was the dominant part in the process of Hg(0) adsorption. O2 was a beneficial factor for Hg(0) adsorption. SO2 was found to have a slight promotional effect on Hg(0) adsorption. The existence of H2O exhibited a dramatic inhibitory effect on Hg(0) adsorption.

  5. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  6. Strategy for improvement of enteropeptidase efficiency in tag removal processes.

    PubMed

    Gasparian, Marine E; Bychkov, Maxim L; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2011-10-01

    Enteropeptidase (synonym: enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. It has also great biotechnological interest because of the unique substrate specificity of the serine protease domain. The high degree of specificity exhibited by enteropeptidase makes it a suitable reagent for cleaving recombinant proteins to remove affinity or other tags. However often unwanted cleavages elsewhere in the protein occurred during cleavage of fusions when high amount of enzyme is required. In this study we have improved the efficiency of fusion proteins cleavage by enteropeptidase by substitution of the Lys residue by Arg in specific cleavage sequence (Asp)(4)-Lys. We have demonstrated that 3-6-fold lower amounts of the catalytic subunit of human and bovine enteropeptidase is required for 95% cleavage of Trx/TRAIL and Trx/FGF-2 fusions with (Asp)(4)-Arg cleavage sequence in comparison to native sequence (Asp)(4)-Lys. As a result, reduced amount of non-specifically cleaved peptide fragments were observed during cleavage of (Asp)(4)-Lys/Arg mutated fusions. These findings overcome limitations of enteropeptidase in tag removal processes during recombinant proteins purification and extend its commercial benefit in the biopharmaceutical industry.

  7. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.

    PubMed

    Verlicchi, Paola; Zambello, Elena

    2014-02-01

    This review presents and discusses the data from 47 peer-reviewed journal articles on the occurrence of 137 pharmaceutical compounds in the effluent from various types of constructed wetlands treating urban wastewater. We analyse the observed removal efficiencies of the investigated compounds in order to identify the type of constructed wetland that best removes those most frequently detected. The literature reviewed details experimental investigations carried out on 136 treatment plants, including free water surface systems, as well as horizontal and vertical subsurface flow beds (pilot or full-scale) acting as primary, secondary or tertiary treatments. The occurrence of selected pharmaceuticals in sediments and gravel and their uptake by common macrophytes are also presented and discussed. We analyse the main removal mechanisms for the selected compounds and investigate the influence of the main design parameters, as well as operational and environmental conditions of the treatment systems on removal efficiency. We also report on previous attempts to correlate observed removal values with the chemical structure and chemical-physical properties (mainly pKa and LogKow) of pharmaceutical compounds. We then use the literature data to calculate the average pharmaceutical mass loadings in the effluent from constructed wetlands, comparing the ability of such systems to remove selected pharmaceuticals with the corresponding conventional secondary and tertiary treatments. Finally, the environmental risk posed by pharmaceutical residues in effluents from constructed wetlands acting as secondary and tertiary treatment steps is calculated in the form of the risk quotient ratio. This approach enabled us to provide a ranking of the most critical compounds for the two scenarios, to discuss the ramifications of the adoption of constructed wetlands for removing such persistent organic compounds, and to propose avenues of future research.

  8. Efficient arsenate removal by magnetite-modified water hyacinth biochar.

    PubMed

    Zhang, Feng; Wang, Xin; Xionghui, Ji; Ma, Lijuan

    2016-09-01

    Magnetic biochars (MW) prepared by chemical co-precipitation of Fe(2+)/Fe(3+) on water hyacinth biomass followed by pyrolysis exhibited important potential in aqueous As(V) elimination. In comparison, MW2501 outperformed other MWs and exhibited the highest As(V) sorption capacity which was estimated to be 7.4 mg g(-1) based on Langmuir-Freundlic model. With solution pH ranging from 3 to 10, As(V) removal efficiency by MW2501 kept stable and consistently higher than 90%. Besides, ∼100% removal of 0.5 mM As(V) can be obtained in the presence of P ≤ 0.1 mM or Cr/Sb ≤ 0.5 mM, indicating a wide applicability of MW2501 for treatment of As-containing water. The predominance of Fe3O4 on MW2501 surface was evidenced by XRD. Ligand exchange between As(V) anion and the hydroxylated surface of Fe3O4 as well as H bond was largely responsible for As(V) sorption as suggested by FTIR. XPS analysis further revealed the dominance of As(V) in the sorbed As on MW2501 surface with co-occurrence of a minor proportion of As(III) (11.45%). In parallel, oxidative transformation of Fe3O4 to Fe2O3 was also suggested by XPS. By a lab-scale column test, the potential and suitability of MW2501 in As-containing water treatment was further confirmed, which could also provide an alternative way to manage and utilize this highly problematic invasive species.

  9. Removal efficiency of particulate matters at different underlying surfaces in Beijing.

    PubMed

    Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.

  10. Polishing Material Removal Correlation on PMMA - FEM Simulation

    NASA Astrophysics Data System (ADS)

    Almeida, R.; Börret, R.; Rimkus, W.; Harrison, D. K.; DeSilva, A. K. M.

    2016-02-01

    The complexity of polishing is very high and experience in this field is required to achieve reproducible deterministic results concerning shape accuracy. The goal of this work is to predict the material removal of the polishing process on PMMA (Polymethylmethacrylate) using an industrial robot polisher. In order to predict the material removal, a FEM Model was created representing the polishing process. This model will help to predict the material removal when polishing parameters are changed. Experiments were carried out and compared to the results obtained from the different parameters tested in the simulation.

  11. Determination of dissolved organic matter removal efficiency in wastewater treatment works using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Carstea, Elfrida M.; Bridgeman, John

    2015-04-01

    Fluorescence spectroscopy was used to investigate the removal efficiency of dissolved organic matter (DOM) in several wastewater treatment works, at different processing stages. The correlation between fluorescence values and biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) has been examined. Fluorescence was measured for unfiltered and filtered (0.45 and 0.20 μm) samples of crude, settled and secondary treated wastewater (activated sludge), and final effluent. Moreover, the potential of using portable fluorimeters has been explored in a laboratory scale activated sludge process. Good correlations were observed for filtered and unfiltered wastewater samples between protein-like fluorescence intensity (excitation 280 nm, emission 350 nm) and BOD (r = 0.78), COD (r = 0.90) and TOC (r = 0.79). BOD displayed a higher correlation at the 0.20 μm filtered samples compared to COD and TOC. Slightly better relation was seen between fluorescence and conventional parameters at the portable fluorimeters compared to laboratory-based instruments. The results indicated that fluorescence spectroscopy, in particular protein-like fluorescence, could be used for continuous, real-time assessment of DOM removal efficiency in wastewater treatment works.

  12. Growth and efficiency of nutrient removal by Salix jiangsuensis J172 for phytoremediation of urban wastewater.

    PubMed

    Shi, Xiang; Sun, Haijing; Pan, Hongwei; Chen, Yitai; Jiang, Zeping; Liu, Jianfeng; Wang, Shufeng

    2016-02-01

    Willows are a group of versatile tree species that may have multiple environmental applications. In the present study, Salix jiangsuensis J172 plants were grown in the fixed mats as an economic plant-based treatment system to evaluate its potential for removing nutrients in wastewater. Plants grew normally in wastewater compared with those in Hoagland solution. However, wastewater containing a high concentration of chlorine ions was toxic to S. jiangsuensis J172 plants. The plants accumulated large amounts of nitrogen and phosphorus in aboveground tissues under conditions of abundant supply. The removal efficiency for raw wastewater was 82.18-87.78 % for nitrogen, 57.35-65.58 % for phosphorus, and 58.24-59.90 % for chemical oxygen demand. Nutrient removal efficiency was positively correlated with the initial nutrient supply. The results show that S. jiangsuensis J172 grown in the fixed mat economic plant-based treatment system with nutrient-rich, eutrophic water may be an effective, low-cost phytoremediation technology to treat water containing undesirable levels of wastewater.

  13. Efficient and selective removal of methoxy protecting groups in carbohydrates.

    PubMed

    Boto, Alicia; Hernández, Dácil; Hernández, Rosendo; Suárez, Ernesto

    2004-10-14

    [reaction: see text] The selective removal from carbohydrate substrates of methoxy protecting groups next to hydroxy groups is reported. On treatment with PhI(OAc)(2)-I(2), the methoxy group is transformed into an easily removable acetal. The mild conditions of this methodology are compatible with many functional groups, and good to excellent yields are usually achieved.

  14. Efficiency of removal of cadmium from aqueous solutions by plant leaves and the effects of interaction of combinations of leaves on their removal efficiency.

    PubMed

    Salim, R; Al-Subu, M; Dawod, E

    2008-05-01

    Removal of cadmium from aqueous solutions using 20 species of plant leaves and combinations of these leaves have been studied. Several factors affecting the removal efficiency have been studied. The most efficient types of plant leaves for the removal of cadmium are those of styrax, plum, pomegranate and walnut. The interaction effect of the combined leaf samples on the efficiency of removal of cadmium has been found to be additive in combinations involving styrax plant leaves but seems to be antagonistic in all other combinations. The optimum experimental conditions for removal of cadmium have been found to be at pH 4.1, using high concentrations of naturally dried plant leaves, using ground leaves and to remove cadmium from agitated aqueous solutions. The percentage of metal removed at an initial cadmium concentration of 10mg/l by the most efficient types of leaves have been found to be 85% for styrax leaves, 85% for plum leaves, 80% for pomegranate leaves, 78% for walnut leaves and 77% for meddler leaves. The presence of foreign ions or complexing agents has been found to reduce the efficiency of removal of cadmium by plant leaves. About 80-85% of the cadmium in charged plant leaves has been released under the influence of changing the pH of the solution, addition of competing ions and the addition of EDTA. The results of removal of cadmium by plant leaves have been found to follow the Freundlich adsorption isotherm, first-order reaction with respect to cadmium and to have intra-pore diffusion as the rate-limiting step.

  15. Efficient reconstruction of multiphase morphologies from correlation functions

    SciTech Connect

    Rozman, M. G.; Utz, Marcel

    2001-06-01

    A highly efficient algorithm for the reconstruction of microstructures of heterogeneous media from spatial correlation functions is presented. Since many experimental techniques yield two-point correlation functions, the restoration of heterogeneous structures, such as composites, porous materials, microemulsions, ceramics, or polymer blends, is an inverse problem of fundamental importance. Similar to previously proposed algorithms, the new method relies on Monte Carlo optimization, representing the microstructure on a discrete grid. An efficient way to update the correlation functions after local changes to the structure is introduced. In addition, the rate of convergence is substantially enhanced by selective Monte Carlo moves at interfaces. Speedups over prior methods of more than two orders of magnitude are thus achieved. Moreover, an improved minimization protocol leads to additional gains. The algorithm is ideally suited for implementation on parallel computers. The increase in efficiency brings new classes of problems within the realm of the tractable, notably those involving several different structural length scales and/or components.

  16. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    NASA Astrophysics Data System (ADS)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  17. Measuring capital market efficiency: Global and local correlations structure

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  18. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  19. Removal of correlated noise online for in situ measurements by using multichannel magnetic resonance sounding system

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Zhang, Siyuan; Zhang, Yang; Wan, Ling; Lin, Jun

    2017-01-01

    Compared with the other geophysical approaches, magnetic resonance sounding (MRS) technique is direct and nondestructive in subsurface water exploration. It provides water content distribution and estimates hydrogeological properties. The biggest challenge is that MRS measurement always suffers bad signal-to-noise ratio, and it can be carried out only far from sources of noise. To solve this problem, a series of de-noising methods are developed. However, most of them are post-processing, leading the data quality uncontrolled for in situ measurements. In the present study, a new approach that removal of correlated noise online is found to overcome the restriction. Based on LabVIEW, a method is provided to enable online data quality control by the way of realizing signal acquisition and noise filtering simultaneously. Using one or more reference coils, adaptive noise cancellation based on LabVIEW to eliminate the correlated noise is available for in situ measurements. The approach was examined through numerical simulation and field measurements. The correlated noise is mitigated effectively and the application of MRS measurements is feasible in high-level noise environment. The method shortens the measurement time and improves the measurement efficiency.

  20. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories.

  1. Excess nitrate loads to coastal waters reduces nitrate removal efficiency: mechanism and implications for coastal eutrophication.

    PubMed

    Lunau, Mirko; Voss, Maren; Erickson, Matthew; Dziallas, Claudia; Casciotti, Karen; Ducklow, Hugh

    2013-05-01

    Terrestrial ecosystems are becoming increasingly nitrogen-saturated due to anthropogenic activities, such as agricultural loading with artificial fertilizer. Thus, more and more reactive nitrogen is entering streams and rivers, primarily as nitrate, where it is eventually transported towards the coastal zone. The assimilation of nitrate by coastal phytoplankton and its conversion into organic matter is an important feature of the aquatic nitrogen cycle. Dissolved reactive nitrogen is converted into a particulate form, which eventually undergoes nitrogen removal via microbial denitrification. High and unbalanced nitrate loads to the coastal zone may alter planktonic nitrate assimilation efficiency, due to the narrow stochiometric requirements for nutrients typically shown by these organisms. This implies a cascade of changes for the cycling of other elements, such as carbon, with unknown consequences at the ecosystem level. Here, we report that the nitrate removal efficiency (NRE) of a natural phytoplankton community decreased under high, unbalanced nitrate loads, due to the enhanced recycling of organic nitrogen and subsequent production and microbial transformation of excess ammonium. NRE was inversely correlated with the amount of nitrate present, and mechanistically controlled by dissolved organic nitrogen (DON), and organic carbon (Corg) availability. These findings have important implications for the management of nutrient runoff to coastal zones.

  2. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  3. Normalization and extension of single-collector efficiency correlation equation

    NASA Astrophysics Data System (ADS)

    Messina, Francesca; Marchisio, Daniele; Sethi, Rajandrea

    2015-04-01

    The colloidal transport and deposition are important phenomena involved in many engineering problems. In the environmental engineering field the use of micro- and nano-scale zerovalent iron (M-NZVI) is one of the most promising technologies for groundwater remediation. Colloid deposition is normally studied from a micro scale point of view and the results are then implemented in macro scale models that are used to design field-scale applications. The single collector efficiency concept predicts particles deposition onto a single grain of a complex porous medium in terms of probability that an approaching particle would be retained on the solid grain. In literature, many different approaches and equations exist to predict it, but most of them fail under specific conditions (e.g. very small or very big particle size and very low fluid velocity) because they predict efficiency values exceeding unity. By analysing particle fluxes and deposition mechanisms and performing a mass balance on the entire domain, the traditional definition of efficiency was reformulated and a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. It has been formulated starting from a combination of Eulerian and Lagrangian numerical simulations, performed under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a control volume. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation provides efficiency values lower than one over a wide range of parameters and is valid both for point and finite-size particles. A reduced form is also proposed by elimination of the less relevant terms. References 1. Yao, K. M.; Habibian, M. M.; Omelia, C. R., Water and Waste Water Filtration - Concepts and

  4. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene

    SciTech Connect

    Bohr, V.A.; Okumoto, D.S.; Hanawalt, P.C.

    1986-06-01

    The survival of UV-irradiated mammalian cells is not necessarily correlated with their overall capacity to carry out DNA repair. Human cells typically remove 80% of the pyrimidine dimers produced by a UV dose of 5 J/m2 within 24 hr. In contrast, a Chinese hamster ovary (CHO) cell line survives UV irradiation equally well while removing only 15% of the dimers. Using a newly developed technique to measure dimer frequencies in single-copy specific sequences, we find that the CHO cells remove 70% of the dimers from the essential dihydrofolate reductase (DHFR) gene but only 20% from sequences located 30 kilobases or more upstream from the 5' end of the gene in a 24-hr period. Repair-deficient human cells from xeroderma pigmentosum complementation group C (XPC) are similar to the CHO cells in overall repair levels, but they are extremely sensitive to killing by UV irradiation. In the XPC cells, we find little or no repair in the DHFR gene; in contrast, in normal human fibroblasts and epidermal keratinocytes, greater than 80% of the dimers induced in the gene by 20 J/m2 are removed in 24 hr. Since the CHO and normal human cells exhibit similar UV resistance, much higher than that of XPC cells, our findings suggest a correlation between efficient repair of essential genes and resistance to DNA-damaging agents such as UV light.

  5. Energy Efficient Solid-State Cooling for Hot SPOT Removal

    NASA Astrophysics Data System (ADS)

    Yazawa, Kazuaki; Fedorov, Andrei; Joshi, Yogendra; Shakouri, Ali

    In this chapter, modeling and analysis of a hybrid scheme of a thermoelectric microcooler and a microchannel single-phase heat sink is discussed for a hotspot cooling. Following the introduction, the hybrid scheme concept is described. The Section 3 describes thermoelectric materials and fabrication of the solid-state microcoolers to give the necessary information for the thermal modeling, analysis, and the optimization of thermoelectric element in Section 4. Microchannel geometry and the pump power are discussed in Section 5 with an analytic model, and then the heat sink design itself is designed to optimum for lowest power used for the required cooling performance. Integrated cooling power for an integrated circuit (IC) with a hotspot as a function of heat flux is demonstrated. Section 6 summarizes the energy efficient cooling performance by the discussed hybrid scheme. To make technological challenges clear, concept of a new packaging approach for this integration is illustrated in Section 7 followed by the conclusions.

  6. Ice nucleation active particles are efficiently removed by precipitating clouds.

    PubMed

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-11-10

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.

  7. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  8. Pollutant Removal Efficiency of Residential Cooking Exhaust Hoods

    SciTech Connect

    Singer, Brett C.; Sherman, Alexander D.; Hotchi, Toshifumi; Sullivan, Douglas P.

    2011-07-01

    Capture efficiency (CE) of exhaust from a natural gas cooking range was quantified for three common designs of residential range hoods in laboratory experiments: (A) microwave exhaust combination; (B) short hood with grease-screen-covered air inlet at bottom; and (C) deep, open hood exhausting at top. Devices were evaluated at varying installation heights, at highest and lowest fan settings, and with the hood installed 15 cm away from back wall with intent to improve CE for front burners. Each configuration was evaluated for the oven and for three cooktop burner combinations (two back, two front, one front and one back). At highest fan settings and standard installation against the wall, Hoods A and C captured back cooktop burner exhaust at > 90 percent and Hood B at > 80 percent. In this configuration, CE for front burner exhaust was 73-78 percent for Hoods A and C but only 46-63 percent for Hood B. CEs followed similar patterns but were substantially lower on the lowest fan speed. Installing the hood away from the wall improved CE for oven and front burners on Hood A at low speed, but substantially reduced CE for back burners for all hoods at low and high speed.

  9. Efficiently finding regulatory elements using correlation with gene expression.

    PubMed

    Bannai, Hideo; Inenaga, Shunsuke; Shinohara, Ayumi; Takeda, Masayuki; Miyano, Satoru

    2004-06-01

    We present an efficient algorithm for detecting putative regulatory elements in the upstream DNA sequences of genes, using gene expression information obtained from microarray experiments. Based on a generalized suffix tree, our algorithm looks for motif patterns whose appearance in the upstream region is most correlated with the expression levels of the genes. We are able to find the optimal pattern, in time linear in the total length of the upstream sequences. We implement and apply our algorithm to publicly available microarray gene expression data, and show that our method is able to discover biologically significant motifs, including various motifs which have been reported previously using the same data set. We further discuss applications for which the efficiency of the method is essential, as well as possible extensions to our algorithm.

  10. Efficient set tests for the genetic analysis of correlated traits.

    PubMed

    Casale, Francesco Paolo; Rakitsch, Barbara; Lippert, Christoph; Stegle, Oliver

    2015-08-01

    Set tests are a powerful approach for genome-wide association testing between groups of genetic variants and quantitative traits. We describe mtSet (http://github.com/PMBio/limix), a mixed-model approach that enables joint analysis across multiple correlated traits while accounting for population structure and relatedness. mtSet effectively combines the benefits of set tests with multi-trait modeling and is computationally efficient, enabling genetic analysis of large cohorts (up to 500,000 individuals) and multiple traits.

  11. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive 137Cs

    PubMed Central

    Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2015-01-01

    In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium (137Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of 137Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of 137Cs from contaminated water around nuclear plants and/or after nuclear accidents. PMID:26670798

  12. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive (137)Cs.

    PubMed

    Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2015-12-16

    In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium ((137)Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of (137)Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of (137)Cs from contaminated water around nuclear plants and/or after nuclear accidents.

  13. Human observing: maintained by negative informative stimuli only if correlated with improvement in response efficiency.

    PubMed

    Case, D A; Fantino, E; Wixted, J

    1985-05-01

    Two experiments investigated the effect of observing responses that enabled college students to emit more efficient distributions of reinforced responses. In Experiment 1, the gains of response efficiency enabled by observing were minimized through use of identical low-effort response requirements in two alternating variable-interval schedules. These comprised a mixed schedule of reinforcement; they differed in the number of money-backed points per reinforcer. In each of three choices between two stimuli that varied in their correlation with the variable-interval schedules, the results showed that subjects preferred stimuli that were correlated with the larger average amount of reinforcement. This is consistent with a conditioned-reinforcement hypothesis. Negative informative stimuli--that is, stimuli correlated with the smaller of two rewards--did not maintain as much observing as stimuli that were uncorrelated with amount of reward. In Experiment 2, savings in effort made possible by producing S- were varied within subjects by alternately removing and reinstating the response-reinforcement contingency in a mixed variable-interval/extinction schedule of reinforcement. Preference for an uncorrelated stimulus compared to a negative informative stimulus (S-) decreased for each of six subjects, and usually reversed when observing permitted a more efficient temporal distribution of the responses required for reinforcement; in this case, the responses were pulls on a relatively high-effort plunger. When observing the S- could not improve response efficiency, subjects again chose the control stimulus. All of these results were inconsistent with the uncertainty-reduction hypothesis.

  14. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Wang, Hao-Yun; Song, Ni; Wang, Zhen-Yu

    2011-01-01

    In order to adjust the dissolved oxygen in the traditional subsurface flow constructed wetlands (SFCWs) and increase the purification efficiency of sewage water, the traditional SFCWs were divided into different sections with enhanced functions. Different kinds of aerobic/anaerobic SFCWs were designed to study the influence of ratio and location of aerobic/anaerobic, artificial aeration and other factors on the nitrogen in effluent. The purification efficiency of the water in this study was compared with that in traditional SFCWs. The results showed that the removal efficiencies of NH4(+)-N and TN in traditional SFCWs were 18.4% and 40.6% but 99.7% and 50.7% in aerobic/anaerobic/aerobic SFCWs with aeration (O-A-O SFCWs with aeration) treatment. Aeration in the front and in the rear, and anaerobic treatment in the middle was used in this treatment. Removal efficiency of NH4(+)-N in O-A-O SFCWs with aeration treatment was 100%, while that of O-A-O SFCWs without aeration was about 50%. The removal efficiencies of NH4(+) -N in new SFCWs with aeration in the front and in the rear were increased by 82.81% and 17.91% but 73.16% in the middle. It shows that aeration can significantly improve the removal efficiency of nitrogen, especially NH4(+)-N. Aeration in the front and back can greatly improve the removal efficiency NH4(+)-N and TN. But aeration resulting to oxygen-rich environment is not conducive to the denitrification, which will be an important factor of limiting the TN removal efficiency.

  15. Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan.

    PubMed

    Okuda, T; Kobayashi, Y; Nagao, R; Yamashita, N; Tanaka, H; Tanaka, S; Fujii, S; Konishi, C; Houwa, I

    2008-01-01

    Both biological treatment processes including conventional activated sludge (CAS) and biological nutrient removal (BNR) processes, and physico-chemical treatment processes including ozonation process and Title 22 process consisting of coagulation, sedimentation and filtration followed by UV or chlorination disinfection after the above biological processes, were compared from the viewpoint of removal efficiency. 66 pharmaceuticals including antibiotics, analgesics, psychoneurotic agents were measured with SPE-LC/MS/MS. 26 compounds out of 66 were detected in the influent ranging ng/L to microg/L order. Particularly, disopyramide, sulpiride, and dipyridamole that have been rarely detected before in the WWTP, occurred at concentration levels of more than 100 ng/L. The total concentration of the individual pharmaceuticals in the influent was efficiently removed by 80% during the biological treatment. But removal efficiencies of carbamazepine and crotamiton were less than 30%. The total concentration of the individual pharmaceuticals in the effluent from CAS process was 1.5 times higher than that from BNR process. Further, the total concentration of the individual pharmaceuticals in the discharge from WWTPs applying ozonation following activated sludge process was reduced to less than 20%. Physico-chemical treatment train called Title 22 treatment after CAS could not efficiently remove the pharmaceuticals. However, ozonation process followed by biological activated carbon process could efficiently reduce all the residual pharmaceuticals below their quantification limits.

  16. Demonstrate the removal efficiency and capacity of MOF materials for krypton recovery

    SciTech Connect

    Thallapally, Praveen K.; Liu, Jian; Strachan, Denis M.

    2013-08-23

    Metal organic framework materials (MOFs) were developed and tested in support of the U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of xenon (Xe) and krypton (Kr) from gaseous products of nuclear fuel reprocessing unit operations. Two metal organic framework structures were investigated in greater detail to demonstrate the removal efficiency and capacity of MOF materials for krypton recovery. Our two bed breakthrough measurements on NiDOBDC and FMOFCu indicate these materials can capture and separate parts per million levels of Xe and Kr from air. The removal efficiency and adsorption capacity for Kr on these two MOFs were further increased upon removal of Xe upfront.

  17. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.; Altshuler, G. B.; Yaroslavskii, I. V.

    2008-06-01

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%—40% and, therefore, to increase the the photothermolysis efficiency.

  18. A critical study on efficiency of different materials for fluoride removal from aqueous media

    PubMed Central

    2013-01-01

    Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and in human beings. Therefore, knowledge of its removal, using best technique with optimum efficiency is needed. The present survey highlights on efficacy of different materials for the removal of fluoride from water. The most important results of extensive studies on various key factors (pH, agitation time, initial fluoride concentration, temperature, particle size, surface area, presence and nature of counter ions and solvent dose) fluctuate fluoride removal capacity of materials are reviewed. PMID:23497619

  19. Effect of VOC loading on the ozone removal efficiency of activated carbon filters.

    PubMed

    Metts, T A; Batterman, S A

    2006-01-01

    Activated carbon (AC) filters are used widely in air cleaning to remove volatile organic compounds (VOCs) and ozone (O(3)). This paper investigates the O(3) removal efficiency of AC filters after previous exposure to VOCs. Filter performance was tested using coconut shell AC and two common indoor VOCs, toluene and d-limonene, representing low and high reactivities with O(3). AC dosed with low, medium and high loadings (28-100% of capacity) of VOCs were exposed to humidified and ozonated air. O(3) breakthrough curves were measured, from which O(3) removal capacity and parameters of the Elovich chemisorption equation were determined. VOC-loaded filters were less efficient at removing O(3) and had different breakthrough behavior than unloaded filters. After 80 h of exposure, VOC-loaded AC samples exhibited 75-95% of the O(3) removal capacity of unloaded samples. O(3) breakthrough and removal capacity were not strongly influenced by the VOC-loading rate. Toluene-loaded filters showed rapid O(3) breakthrough due to poisoning of the AC, while pseudo-poisoning (initially higher O(3) adsorption rates that rapidly decrease) is suggested for limonene-loaded filters. Overall, VOC loadings provide an overall reduction in chemisorption rates, a modest reduction in O(3) removal capacity, and sometimes dramatic changes in breakthrough behavior, important considerations in filter applications in environments where both O(3) and VOCs are present.

  20. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].

    PubMed

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang

    2008-12-01

    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs.

  1. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber.

    PubMed

    Kim, Sung Yeon; Kim, Misoon; Lee, Sunghee; Lee, JungEun; Ko, GwangPyo

    2012-09-01

    Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) SiO2, ZnO, and Al2O3, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of 25 degrees C and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

  2. Efficiency of an infiltration basin in removing contaminants from urban stormwater.

    PubMed

    Birch, G F; Fazeli, M S; Matthai, C

    2005-02-01

    The efficiency of a Stormwater Infiltration Basin (SIB) to remove contaminants from urban stormwater was assessed in the current investigation. The SIB, installed in an urban suburb in eastern Sydney (Australia), was monitored over seven rainfall events to assess the removal efficiency of the remedial device for total suspended solids (TSS), nutrients (TP, TKN, N(ox), TN), trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), organochlorine pesticides and faecal coliforms (FC) from stormwater. The weighted average concentration (WAC) of TSS in the stormwater effluent from the SIB was reduced by an average of 50%, whereas the WAC of Cu, Pb and Zn were also reduced by an average 68%, 93% and 52%, respectively. However, the WAC of Cr, Fe, Mn and Ni displays either similar concentrations as the stormwater influent (Cr and Mn), or substantially higher concentrations (Fe and Ni), due possibly to leaching of fine-grained zeolite clay particles in the filtration bed. The mean removal efficiency of the SIB for total phosphorus (TP) and total Kjeldahl nitrogen (TKN) was 51% and 65%, respectively. In contrast, the average WAC of oxidisable nitrogen (nitrate and nitrite nitrogen or N(ox) is about 2.5 times greater in the effluent (1.34 +/- 0.69 mg L(-1)) than in the incoming stormwater (0.62 +/- 0.25 mg L(-1)). The WAC of total nitrogen (TN) was similar for stormwater at the in-flow and out-flow points. The SIB was very efficient in removing FC from stormwater; and the WAC of almost 70000 cfu (100 mL)(-1) at inflow was reduced to <2000 cfu (100 Ml)(-1) at the outflow, representing a mean removal efficiency of 96%. Due to the low concentrations of Cd, organochlorine pesticides and PAHs in the stormwater, it was not possible to assess the efficiency of the SIB in removing these contaminants.

  3. Carbonated ferric green rust as a new material for efficient phosphate removal.

    PubMed

    Barthélémy, K; Naille, S; Despas, C; Ruby, C; Mallet, M

    2012-10-15

    Phosphate uptake from aqueous solutions by a recently discovered ferric oxyhydroxide is investigated. Carbonated ferric green rust {GR(CO(3)(2-))*} is prepared by varying two synthesis parameters, which are (1) the aging period after the ferrous-ferric green rust {GR(CO(3)(2-))} synthesis step and (2) the rate of the hydrogen peroxide addition to oxidize GR(CO(3)(2-)) into GR(CO(3)(2-))*. These two parameters permit the control of the size, morphology and cristallinity of the synthesized particles. As prepared GR* samples are then evaluated, in batch experiments, as possible low-cost efficient phosphate removal materials. Firstly, kinetic experiments reveal that a fast sorption step initially occurs and equilibrium is reached at ~500 min. The adsorption kinetics data at pH=7 can be adequately fitted to a pseudo-second order model. Secondly, the Freundlich model provides the best correlation and effectively describes phosphate sorption isotherms for all GR(CO(3)(2-))* samples synthesized. Finally, the phosphate adsorption capacity decreases when pH increases. The highest adsorption capacity is 64.8 mg g(-1) at pH=4 and corresponds to the GR(CO(3)(2-))* sample displaying the smallest and least crystallized particles thus reflecting the importance of the synthesis conditions. Overall, all sorption capacities are higher than the main iron oxide minerals, making GR(CO(3)(2-))* a potentially attractive phosphate adsorbent.

  4. Correlation based efficient face recognition and color change detection

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Alam, M. S.; Qasmi, S.

    2013-01-01

    Identifying the human face via correlation is a topic attracting widespread interest. At the heart of this technique lies the comparison of an unknown target image to a known reference database of images. However, the color information in the target image remains notoriously difficult to interpret. In this paper, we report a new technique which: (i) is robust against illumination change, (ii) offers discrimination ability to detect color change between faces having similar shape, and (iii) is specifically designed to detect red colored stains (i.e. facial bleeding). We adopt the Vanderlugt correlator (VLC) architecture with a segmented phase filter and we decompose the color target image using normalized red, green, and blue (RGB), and hue, saturation, and value (HSV) scales. We propose a new strategy to effectively utilize color information in signatures for further increasing the discrimination ability. The proposed algorithm has been found to be very efficient for discriminating face subjects with different skin colors, and those having color stains in different areas of the facial image.

  5. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  6. The Effects of Body Mass on Dung Removal Efficiency in Dung Beetles

    PubMed Central

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations. PMID:25229237

  7. The effects of body mass on dung removal efficiency in dung beetles.

    PubMed

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations.

  8. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell

    NASA Astrophysics Data System (ADS)

    Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad

    2016-11-01

    Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.

  9. Influence of SiO2 and graphene oxide nanoparticles on efficiency of biological removal process.

    PubMed

    Esmaeili-Faraj, Seyyed Hamid; Nasr Esfahany, Mohsen

    2017-01-19

    The effects of the presence of synthesized silica (SS) and exfoliated graphene oxide (EGO) on the removal of sulfide ion with activated sludge (AS) are experimentally investigated. The maximum removal efficiency of sulfide ion for AS without nanoparticles, and the samples with SS and EGO nanoparticles were 81%, 88% and 79%, respectively. Moreover, the maximum elimination capacity (ECmax) for the bioreactor with SS-nanoparticles is 7542 mg/L s, while the ECmax of AS and EGO samples were 7075 and 6625 mg/L s, respectively. Two filamentous microbial strains as Gram-negative and Gram-positive bacteria are discerned that removed sulfide ion in the presence of nanoparticles. The measurement of mixture liquor volatile suspended solid that indicates the biomass growth rate during the test shows that the bioreactor containing SS-nanoparticles has more biomass content than the other samples. Our findings indicate that SS-nanoparticles with 0.1% wt. concentration in the bioreactor have no negative effects on the efficiency of the biological removal of sulfide and the presence of SS-nanoparticles even enhances the performance of the bioreactor. On the other side, a bioreactor with EGO nanosheets, as highly antibacterial nanoparticles, with 0.02% wt. concentration significantly influences the microbial growth and reduces sulfide removal efficiency.

  10. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    PubMed

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    We examined the distribution and removal efficiencies of phenolic endocrine disruptors (EDs), namely nonylphenol diethoxylates (NP2EO), nonylphenol monoethoxylates (NP1EO), nonylphenol (NP), and octylphenol (OP), in wastewater treated by estuarine and freshwater constructed wetland systems in Dapeng Bay National Scenic Area (DBNSA) and along the Dahan River in Taiwan. Water samples were taken bimonthly at 30 sites in three estuarine constructed wetlands (Datan, Pengcun and Linbian right bank (A and B)) in DBNSA, for eight sampling campaigns. The average removal efficiencies were in the range of 3.13-97.3% for wetlands in DBNSA. The highest average removal occurred in the east inlet to the outlet of the Tatan wetland. The most frequently detected compound was OP (57.7%), whose concentration was up to 1458.7 ng/L in DBNSA. NP was seen in only 20.5% of the samples. The temporal variation of EDs showed a decrease across seasons, where summer>spring>winter>autumn in these constructed wetlands. The removal efficiencies of EDs by estuarine wetlands, in decreasing order, were Datan>Pengcun>Linbian right bank in DBNSA. Water samples collected at 18 sites in three freshwater constructed wetlands (Daniaopi, Hsin-Hai I, and Hsin-Hai II) along the riparian area of Dahan River. NP2EO was the most abundant compound, with a concentration of up to 11,200 ng/L. Removal efficiencies ranged from 55% to 91% for NP1EO, NP2EO, and NP in Hsin-Hai I. The average removal potential of EDs in freshwater constructed wetlands, in decreasing order, was Hsin-Hai II>Daniaopi>Hsin-Hai I constructed wetlands. The lowest concentrations of the selected compounds were observed in the winter. The highest removal efficiency of the selected phenolic endocrine disruptors was achieved by Hsin-Hai I wetland. The calculated risk quotients used to evaluate the ecological risk were up to 30 times higher in the freshwater wetlands along Dahan River than in the estuarine (DBNSA) constructed wetlands, indicating

  11. Removal efficiency of vapour/particulate phase PAHs by using alternative protective respirators in PAHs exposure workers.

    PubMed

    Chen, Hsiu-Ling; Yang, Chien-Hung; Lin, Ming-Hsiu

    2012-06-15

    Due to the high heat environment in foundry industries, it is difficult for foundry workers to wear masks during their workday. Thus, how to prevent inhaling vapour or the particulate phase of polycyclic aromatic hydrocarbons (PAHs) is important for occupational hazard management. The present study assesses the characteristics of PAHs emission in foundry and plastic industries to evaluate the removal efficiencies of PAHs while workers use alternative personal protective equipment. The highest 1-hydroxypyrene (1-OHP) level was found for workers who used a cotton-fabric face mask (1.19 μg/g creatinine) and activated-carbon face mask (1.16 μg/g creatinine), compared to a lower level in workers who wore a surgical face mask (0.27 μg/g creatinine) and a N95 respirator (0.51 μg/g creatinine). The urinary 1-OHP in end-of-shift samples correlated to the airborne vapour phase Bapeq, but not for the particulate phase Bapeq in the foundry industry. This is probably because workers wore personal protective equipment that only removed the particulate phase PAH. The current study suggests that future work focus on developing an appropriate and comfortable respirator with high removal efficiency for ultrafine particulates and vapour phase PAHs simultaneously in PAH work environments.

  12. Preserving correlations between trajectories for efficient path sampling

    SciTech Connect

    Gingrich, Todd R.; Geissler, Phillip L.

    2015-06-21

    Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective on Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.

  13. Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor

    PubMed Central

    Li, Liang; Yao, Ji; Fang, Xueyou; Huang, Yuanxing; Mu, Yan

    2017-01-01

    The ammonia removal as well as the current efficiency during electrolysis was investigated by using a vermiculite-packed electrochemical reactor under continuous mode. Experimental results showed that adsorption of ammonia by vermiculite and electrolytic desorption of ammonia simultaneously existed in the reactor, leading to 89% removal of initial 30 mg N/L ammonia and current efficiency of 25% under the condition of 2.0 A, 6.0 min hydraulic retention time with 300 mg Cl/L chloride as the catalyst. The ammonia removal capacity had a linear relationship with the products of hydraulic retention time, current and chloride concentration within experimental conditions. The treatment results of secondary effluent indicated that 29.9 mg N/L ammonia can be reduced to 4.6 mg N/L with 72% removal of total nitrogen and a current efficiency of 23%, which was 2% less than synthetic wastewater due to the reducing components in the real wastewater. PMID:28102340

  14. Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes.

    PubMed

    Lee, Jiho; Lee, Byoung C; Ra, Jin S; Cho, Jaeweon; Kim, In S; Chang, Nam I; Kim, Hyun K; Kim, Sang D

    2008-04-01

    The removal efficiency of endocrine disrupting compounds from effluents using pilot scale sewage treatment processes, including various treatment technologies, such as membrane bioreactors (MBR), nanofiltration (NF) and reverse osmosis (RO) for the purpose of water reuse, were estimated and compared. The calculated estrogenic activity, expressed in ng-EEQ/l, based on the concentration detected by GC/MS, and relative potencies for each target compound were compared to those measured using the E-screen assay. The removal efficiencies for nonylphenol, was within the range of 55-83% in effluents. High removal efficiencies of approximately >70% based on the detection limits were obtained for bisphenol A, E1, EE2 and genistein with each treatment processes, with the exception of E1 ( approximately 64%) using the MBR process. The measured EEQ values for the effluents from the MBR, NF and RO processes also indicated low estrogenic activities of 0.65, 0.23 and 0.05 ng-EEQ/l, respectively. These were markedly reduced values compared with the value of 1.2 ng-EEQ/l in influent. Consequently, the removals of EDCs in terms of the EEQ value from the biological and chemical determinations were sufficiently achieved by the treatment process applied in this study, especially in the cases of the NF and RO treatments.

  15. Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yao, Ji; Fang, Xueyou; Huang, Yuanxing; Mu, Yan

    2017-01-01

    The ammonia removal as well as the current efficiency during electrolysis was investigated by using a vermiculite-packed electrochemical reactor under continuous mode. Experimental results showed that adsorption of ammonia by vermiculite and electrolytic desorption of ammonia simultaneously existed in the reactor, leading to 89% removal of initial 30 mg N/L ammonia and current efficiency of 25% under the condition of 2.0 A, 6.0 min hydraulic retention time with 300 mg Cl/L chloride as the catalyst. The ammonia removal capacity had a linear relationship with the products of hydraulic retention time, current and chloride concentration within experimental conditions. The treatment results of secondary effluent indicated that 29.9 mg N/L ammonia can be reduced to 4.6 mg N/L with 72% removal of total nitrogen and a current efficiency of 23%, which was 2% less than synthetic wastewater due to the reducing components in the real wastewater.

  16. Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor.

    PubMed

    Li, Liang; Yao, Ji; Fang, Xueyou; Huang, Yuanxing; Mu, Yan

    2017-01-19

    The ammonia removal as well as the current efficiency during electrolysis was investigated by using a vermiculite-packed electrochemical reactor under continuous mode. Experimental results showed that adsorption of ammonia by vermiculite and electrolytic desorption of ammonia simultaneously existed in the reactor, leading to 89% removal of initial 30 mg N/L ammonia and current efficiency of 25% under the condition of 2.0 A, 6.0 min hydraulic retention time with 300 mg Cl/L chloride as the catalyst. The ammonia removal capacity had a linear relationship with the products of hydraulic retention time, current and chloride concentration within experimental conditions. The treatment results of secondary effluent indicated that 29.9 mg N/L ammonia can be reduced to 4.6 mg N/L with 72% removal of total nitrogen and a current efficiency of 23%, which was 2% less than synthetic wastewater due to the reducing components in the real wastewater.

  17. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    SciTech Connect

    Genina, E A; Bashkatov, A N; Tuchin, V V; Yaroslavskii, I V; Altshuler, G B

    2008-06-30

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%-40% and, therefore, to increase the the photothermolysis efficiency. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  18. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    PubMed

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  19. Efficient and accurate treatment of electron correlations with Correlation Matrix Renormalization theory

    PubMed Central

    Yao, Y. X.; Liu, J.; Liu, C.; Lu, W. C.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations. PMID:26315767

  20. Efficient and accurate treatment of electron correlations with Correlation Matrix Renormalization theory.

    PubMed

    Yao, Y X; Liu, J; Liu, C; Lu, W C; Wang, C Z; Ho, K M

    2015-08-28

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.

  1. Efficient and accurate treatment of electron correlations with correlation matrix renormalization theory

    DOE PAGES

    Yao, Y. X.; Liu, J.; Liu, C.; ...

    2015-08-28

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We alsomore » show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.« less

  2. Efficient and accurate treatment of electron correlations with correlation matrix renormalization theory

    SciTech Connect

    Yao, Y. X.; Liu, J.; Liu, C.; Lu, W. C.; Wang, C. Z.; Ho, K. M.

    2015-08-28

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.

  3. High SO{sub 2} removal efficiency testing: PSI Energy`s Gibson Station High SO{sub 2} Removal Efficiency Test Program

    SciTech Connect

    1996-05-20

    A program was conducted at PSI Energy`s Gibson Generating Station to evaluate options for achieving high sulfur dioxide (SO{sub 2}) removal efficiency with the Unit 5 wet limestone flue gas desulfurization (FGD) system. This program was one of six conducted by the U.S. Department of Energy to evaluate low-capital-cost upgrades to existing FGD systems as a means for utilities to comply with the requirements of the 1990 Clean Air Act Amendments (CAAA). The Gibson FGD system employs four absorber modules of the Kellogg/Weir horizontal gas flow design and uses limestone reagent with two additives. Dolomitic lime is added to introduce magnesium to increase liquid-phase alkalinity, and sulfur is added to inhibit sulfite oxidation. The high-efficiency options tested involved using sodium formate or dibasic acid (DBA) as a performance additive, increasing the absorber liquid-to-gas ratio (L/G), and/or increasing the limestone reagent stoichiometry. The unit changed coal sources during the test program. However, the Electric Power Research Institute`s (EPRI) FGD PRocess Integration and Simulation Model (FGDPRISM) was calibrated to the system and used to compare options on a consistent basis. An economic analysis was then done to determine the cost-effectiveness of each high-efficiency option. The results from this program are summarized below.

  4. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    EPA Science Inventory

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  5. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  6. Surfactant-modified alumina: an efficient adsorbent for malachite green removal from water environment.

    PubMed

    Das, Asit K; Saha, Sandip; Pal, Anjali; Maji, Sanjoy K

    2009-07-15

    Surface of alumina was modified with sodium dodecyl sulfate (SDS), an anionic surfactant. The surfactant-modified alumina (SMA) was characterized by FTIR and thermal analysis. The SMA was then used for the removal of malachite green (MG; Basic Green 4), a well-known toxic cationic dye from aqueous environment. The removal of MG takes place in the micellar structure formed on alumina surface, and the process is called adsolubilization. All the studies were carried out in batch mode. The kinetic studies showed that 1 h contact time was sufficient to attain equilibrium. SMA was very efficient to remove MG up to 99% under optimum conditions. The concentration range of MG was 20-100 mg/L. The isotherm studies showed that it follows Langmuir model better than the Freundlich model. The maximum adsorption capacity was 185 mg/g. The effects of various parameters such as pH, presence of interfering ions (Cl-, NO3-, H2PO4-, SO4(2-), Fe2+, Ca2+) and organics (pesticides such as 2,4-dichlorophenoxyacetic acid, atrazine, endosulfan, and humic acid) are evaluated. It was observed that H2PO4-, Fe2+, endosulfan, and humic acid have maximum interference. Desorption of MG from exhausted SMA using acetone, and its reuse was studied. The regenerated adsorbent shows approximately 80% efficiency on the removal of MG. The usability of SMA for the removal of MG from real wastewater was also examined. The kinetic equilibrium was attained within 1 h and the removal could be achieved up to approximately 95% at a dose of 20 g/L. The adsorption followed Freundlich isotherm model better than the Langmuir model.

  7. The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses

    PubMed Central

    Heynen, Miriam; Liu, Lina; Sheardown, Heather; Jones, Lyndon

    2010-01-01

    Purpose To investigate the efficiency of lysozyme and albumin removal from silicone hydrogel and conventional contact lenses, using a polyhexamethylene biguanide multipurpose solution (MPS) in a soaking or rubbing/soaking application and a hydrogen peroxide system (H2O2). Methods Etafilcon A, lotrafilcon B and balafilcon A materials were incubated in protein solutions for up to 14 days. Lenses were either placed in radiolabeled protein to quantify the amount deposited or in fluorescent-conjugated protein to identify its location, using confocal laser scanning microscopy (CLSM). Lenses were either rinsed with PBS or soaked overnight in H2O2 or MPS with and without lens rubbing. Results After 14 days lysozyme was highest on etafilcon A (2,200 μg) >balafilcon A (50 µg) >lotrafilcon B (9.7 µg) and albumin was highest on balafilcon A (1.9 µg) =lotrafilcon B (1.8 µg) >etafilcon A (0.2 µg). Lysozyme removal was greatest for balafilcon A >etafilcon A >lotrafilcon B, with etafilcon A showing the most change in protein distribution. Albumin removal was highest from etafilcon A >balafilcon A >lotrafilcon B. H2O2 exhibited greater lysozyme removal from etafilcon A compared to both MPS procedures (p<0.001) but performed similarly for lotrafilcon B and balafilcon A lenses (p>0.62). Albumin removal was solely material specific, while all care regimens performed to a similar degree (p>0.69). Conclusions Protein removal efficiency for the regimens evaluated depended on the lens material and protein type. Overall, lens rubbing with MPS before soaking did not reduce the protein content on the lenses compared to nonrubbed lenses (p=0.89). PMID:20098668

  8. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  9. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    NASA Astrophysics Data System (ADS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-12-01

    In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  10. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp.

    PubMed

    Zhao, Lingfeng; Yuan, Zhaoyang; Kapu, Nuwan Sella; Chang, Xue Feng; Beatson, Rodger; Trajano, Heather L; Martinez, D Mark

    2017-01-01

    To improve the efficiency of enzymatic hemicellulose removal from bamboo pre-hydrolysis kraft pulp, mechanical refining was conducted prior to enzyme treatment. Refining significantly improved the subsequent hemicellulose removal efficiency by xylanase treatment. Results showed that when PFI refining was followed by 3h xylanase treatment, the xylan content of the bamboo pre-hydrolysis kraft pulp (after first stage oxygen delignification) could be decreased to 2.72% (w/w). After bleaching of enzyme treated pulp, the alpha-cellulose content was 93.4% (w/w) while the xylan content was only 2.38%. The effect of refining on fibre properties was investigated in terms of freeness, water retention value, fibre length and fibrillation characteristics. The brightness, reactivity and viscosity were also determined to characterize the quality of final pulp. Results demonstrated the feasibility of combining refining and xylanase treatment to produce high quality bamboo dissolving pulp.

  11. Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Su, Shizhao; Pal, Uday B.; Powell, Adam C.

    2014-12-01

    Solid oxide membrane (SOM) electrolysis has been used for magnesium production directly from magnesium oxide. Magnesium dissolution in molten flux electrolyte is of particular concern in SOM electrolysis, because it imparts electronic conductivity to the flux and thereby decreases the faradaic current efficiency. In this work, a new approach for removing soluble magnesium in the flux is explored. Periodic shorting is performed between the anode and the cathode of SOM electrolysis cell. During shorting, soluble magnesium in the flux is oxidized to magnesium oxide. This significantly reduces the electronic current in the flux and therefore keeps the faradaic current efficiency high during SOM electrolysis. Electronic transference numbers in the flux are measured to assess the soluble magnesium concentration. Potentiodynamic scan results also confirm the feasibility of shorting the electrodes to remove soluble magnesium.

  12. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    NASA Astrophysics Data System (ADS)

    Wanna, Yongyuth; Chindaduang, Anon; Tumcharern, Gamolwan; Phromyothin, Darinee; Porntheerapat, Supanit; Nukeaw, Jiti; Hofmann, Heirich; Pratontep, Sirapat

    2016-09-01

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group.

  13. Removal Efficiency and Mechanism of Sulfamethoxazole in Aqueous Solution by Bioflocculant MFX

    PubMed Central

    Xing, Jie; Yang, Ji-Xian; Li, Ang; Ma, Fang; Liu, Ke-Xin; Wu, Dan; Wei, Wei

    2013-01-01

    Although the treatment technology of sulfamethoxazole has been investigated widely, there are various issues such as the high cost, inefficiency, and secondary pollution which restricted its application. Bioflocculant, as a novel method, is proposed to improve the removal efficiency of PPCPs, which has an advantage over other methods. Bioflocculant MFX, composed by high polymer polysaccharide and protein, is the metabolism product generated and secreted by Klebsiella sp. In this paper, MFX is added to 1 mg/L sulfanilamide aqueous solution substrate, and the removal ratio is evaluated. According to literatures review, for MFX absorption of sulfanilamide, flocculant dosage, coagulant-aid dosage, pH, reaction time, and temperature are considered as influence parameters. The result shows that the optimum condition is 5 mg/L bioflocculant MFX, 0.5 mg/L coagulant aid, initial pH 5, and 1 h reaction time, and the removal efficiency could reach 67.82%. In this condition, MFX could remove 53.27% sulfamethoxazole in domestic wastewater, and the process obeys Freundlich equation. R2 value equals 0.9641. It is inferred that hydrophobic partitioning is an important factor in determining the adsorption capacity of MFX for sulfamethoxazole solutes in water; meanwhile, some chemical reaction probably occurs. PMID:23476893

  14. Removal Efficiency and Mechanism of Sulfamethoxazole in Aqueous Solution by Bioflocculant MFX.

    PubMed

    Xing, Jie; Yang, Ji-Xian; Li, Ang; Ma, Fang; Liu, Ke-Xin; Wu, Dan; Wei, Wei

    2013-01-01

    Although the treatment technology of sulfamethoxazole has been investigated widely, there are various issues such as the high cost, inefficiency, and secondary pollution which restricted its application. Bioflocculant, as a novel method, is proposed to improve the removal efficiency of PPCPs, which has an advantage over other methods. Bioflocculant MFX, composed by high polymer polysaccharide and protein, is the metabolism product generated and secreted by Klebsiella sp. In this paper, MFX is added to 1 mg/L sulfanilamide aqueous solution substrate, and the removal ratio is evaluated. According to literatures review, for MFX absorption of sulfanilamide, flocculant dosage, coagulant-aid dosage, pH, reaction time, and temperature are considered as influence parameters. The result shows that the optimum condition is 5 mg/L bioflocculant MFX, 0.5 mg/L coagulant aid, initial pH 5, and 1 h reaction time, and the removal efficiency could reach 67.82%. In this condition, MFX could remove 53.27% sulfamethoxazole in domestic wastewater, and the process obeys Freundlich equation. R(2) value equals 0.9641. It is inferred that hydrophobic partitioning is an important factor in determining the adsorption capacity of MFX for sulfamethoxazole solutes in water; meanwhile, some chemical reaction probably occurs.

  15. [Simulation research on removal efficiency of P-pollutants by several substrates in stormwater].

    PubMed

    Shan, Bao-qing; Chen, Qing-feng; Yin, Cheng-qing; Hu, Cheng-xiao

    2007-10-01

    9 kinds of substrate materials (gravel, aluminite stone, sands, soil, zeolite, ceramic granule, limestone, steel slag and vermiculite) were selected to examine the phosphorus adsorption and removal capacities from runoff by adsorption, captive test and dynamic adsorption experiments. The results showed that these substrate materials had higher removal efficiency for PO4(3-) than those of other phosphorus forms. The adsorption characteristics of the substrates could be described by both Freundlich and Langmuir adsorption isotherms. The equilibrium adsorption capacity of these substrates was in the following order: zeolite, soil and vermiculite > ceramic granule, steel slag and limestone > gravel, sands and aluminite stone. The dynamic adsorption capacity was zeolite, soil, limeramic granule, limestone > steel slag, gravel and sands > ceramic granule and vermiculite. In the meanwhile, the releasing phenomena of phosphorus also could be observed in the captive and dynamic test, particularly for vermiculite, ceramic granule and steel slag. In the dynamic adsorption experiment, the removal efficiency of P-pollutants was ranged from 30% to 87% for the substrate materials except vermiculite, ceramic granule and steel slag. The results suggest that zeolite, limestone and soil are appropriate substrates for removing P-pollutants from stormwater.

  16. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.

    PubMed

    Carvalho, Pedro N; Pirra, António; Basto, M Clara P; Almeida, C Marisa R

    2013-12-01

    The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.

  17. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested.

  18. Efficiency of the activated carbon filtration in the natural organic matter removal.

    PubMed

    Matilainen, Anu; Vieno, Niina; Tuhkanen, Tuula

    2006-04-01

    The removal and transformation of natural organic matter were monitored in the different stages of the drinking water treatment train. Several methods to measure the quantity and quality of organic matter were used. The full-scale treatment sequence consisted of coagulation, flocculation, clarification by flotation, disinfection with chlorine dioxide, activated carbon filtration and post-chlorination. High-performance size-exclusion chromatography separation was used to determine the changes in the humic substances content during the purification process; in addition, a UV absorbance at wavelength 254 nm and total organic carbon amount were measured. A special aim was to study the performance and the capacity of the activated carbon filtration in the natural organic matter removal. Four of the activated carbon filters were monitored over the period of 1 year. Depending on the regeneration of the activated carbon filters, filtration was effective to a degree but did not significantly remove the smallest molar mass organic matter fraction. Activated carbon filtration was most effective in the removal of intermediate molar mass compounds (range 1,000-4,000 g/mol). Regeneration of the carbon improved the removal capacity considerably, but efficiency was returned to a normal level after few months.

  19. 40 CFR 63.4766 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Pollutants: Surface Coating of Wood Building Products Compliance Requirements for the Emission Rate with Add... removal efficiency? You must use the procedures and test methods in this section to determine the...

  20. How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal.

    PubMed

    Altmann, Johannes; Ruhl, Aki S; Sauter, Daniel; Pohl, Julia; Jekel, Martin

    2015-07-01

    Direct addition of powdered activated carbon (PAC) to the inlet of a deep bed filter represents an energy- and space-saving option to remove organic micropollutants (OMPs) during advanced wastewater treatment or drinking water purification. In this lab-scale study, continuous dosing, preconditioning a filter with PAC and combinations thereof were investigated as possible dosing modes with respect to OMP adsorption efficiency. Continuous dosing resulted in decreasing effluent concentrations with increasing filter runtime due to adsorption onto accumulating PAC in the filter bed. Approximately constant removal levels were achieved at longer filter runtimes, which were mainly determined by the dose of fresh PAC, rather than the total PAC amount embedded. The highest effluent concentrations were observed during the initial filtration stage. Meanwhile, preconditioning led to complete OMP adsorption at the beginning of filtration and subsequent gradual OMP breakthrough. PAC distribution in the pumice filter was determined by the loss on ignition of PAC and pumice and was shown to be relevant for adsorption efficiency. Preconditioning with turbulent upflow led to a homogenous PAC distribution and improved OMP adsorption significantly. Combining partial preconditioning and continuous dosing led to low initial effluent concentrations, but ultimately achieved concentrations similar to filter runs without preconditioning. Furthermore, a dosing stop prior to the end of filtration was suitable to increase PAC efficiency without affecting overall OMP removals.

  1. Ozone-removal efficiencies of activated carbon filters after more than three years of continuous service

    SciTech Connect

    Weschler, C.J.; Shields, H.C.; Naik, D.V.

    1994-12-31

    This paper evaluates the efficiency with which commercial charcoal filters remove ozone. Three different applications have been examined: a test plenum, an air handler providing outside air to a Class 100 clean room, and a plenum downstream of an air handler providing outside air to another Class 100 clean room. After 37 months, the charcoal in the test plenum has decreased in removal efficiency from 95% to 90%. After 37 months, the charcoal servicing the first clean room has decreased in efficiency from 85% to 60%. After 24 months, the charcoal servicing the second clean room is still removing 95% of the ozone in the airstream. The charcoal filters associated with the test plenum and the second clean room are better protected from submicron particles than those associated with the first clean room. The accumulation of fine particles on the charcoal appears to influence service life. This work is an extension of the preliminary results (20 months of service) that were reported for the filters associated with the test plenum and the first clean room (Weschler et al. 1993).

  2. Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation?

    NASA Astrophysics Data System (ADS)

    Lucas, William E.; Bonnell, Ian A.; Forgan, Duncan H.

    2017-01-01

    We investigate how star formation efficiency can be significantly decreased by the removal of a molecular cloud's envelope by feedback from an external source. Feedback from star formation has difficulties halting the process in dense gas but can easily remove the less dense and warmer envelopes where star formation does not occur. However, the envelopes can play an important role keeping their host clouds bound by deepening the gravitational potential and providing a constraining pressure boundary. We use numerical simulations to show that removal of the cloud envelopes results in all cases in a fall in the star formation efficiency (SFE). At 1.38 free-fall times our 4 pc cloud simulation experienced a drop in the SFE from 16 to six percent, while our 5 pc cloud fell from 27 to 16 per cent. At the same time, our 3 pc cloud (the least bound) fell from an SFE of 5.67 per cent to zero when the envelope was lost. The star formation efficiency per free-fall time varied from zero to ≈0.25 according to α, defined to be the ratio of the kinetic plus thermal to gravitational energy, and irrespective of the absolute star forming mass available. Furthermore the fall in SFE associated with the loss of the envelope is found to even occur at later times. We conclude that the SFE will always fall should a star forming cloud lose its envelope due to stellar feedback, with less bound clouds suffering the greatest decrease.

  3. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    NASA Astrophysics Data System (ADS)

    Rajabi, Hamid Reza; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-01

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe3O4 MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe3O4/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient.

  4. A novel model for testing the efficiency of removal of calcium hydroxide from complex root canal anatomies.

    PubMed

    Küçükkaya Eren, Selen; Aksel, Hacer; Parashos, Peter

    2017-04-01

    The purpose of this study was to evaluate the efficacy of several irrigation protocols in the removal of calcium hydroxide [Ca(OH)2 ] from simulated internal root resorption cavities in a complex root canal anatomy model. The 20° to 35° curved mesiobuccal roots of 94 maxillary molars were sectioned longitudinally; internal resorption cavities were prepared in the apical third of the canal walls. Calcium hydroxide was placed into the cavities and the root halves reassembled. Four teeth were used as controls, and 90 teeth were randomly divided into six experimental groups (n = 15), according to the irrigation protocols used: syringe irrigation; H2 O2 (HP); Navitip FX; Vibringe-syringe; Vibringe-NaviTip FX; ultrasonically activated irrigation (UAI) using an ultrasonic K-file. In the HP group, 2.5% NaOCl and 3% H2 O2 were used, while 2.5% NaOCl and 17% EDTA were used in the remaining groups. Stereomicroscope images and radiographs were used to measure the remaining Ca(OH)2 . The model proved to be suitable for simulating complex anatomy. Positive correlation was found between stereomicroscope and radiographic analyses (P < 0.05). UAI removed significantly more Ca(OH)2 than the other experimental groups (P < 0.05). The HP group was the least efficient protocol (P < 0.05). It would appear that a reliable model has been developed that simulates complex root canal anatomy. Irrigant activation protocols enhanced Ca(OH)2 removal.

  5. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    SciTech Connect

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typically highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the

  6. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.

    PubMed

    Lo, Sut-I; Chen, Po-Cheng; Huang, Chih-Ching; Chang, Huan-Tsung

    2012-03-06

    We report a new adsorbent for removal of mercury species. By mixing Au nanoparticles (NPs) 13 nm in diameter with aluminum oxide (Al(2)O(3)) particles 50-200 μm in diameter, Au NP-Al(2)O(3) adsorbents are easily prepared. Three adsorbents, Al(2)O(3), Au NPs, and Au NP-Al(2)O(3), were tested for removal of mercury species [Hg(2+), methylmercury (MeHg(+)), ethylmercury (EtHg(+)), and phenylmercury (PhHg(+))]. The Au NP adsorbent has a higher binding affinity (dissociation constant; K(d) = 0.3 nM) for Hg(2+) ions than the Al(2)O(3) adsorbent (K(d) = 52.9 nM). The Au NP-Al(2)O(3) adsorbent has a higher affinity for mercury species and other tested metal ions than the Al(2)O(3) and Au NP adsorbents. The Au NP-Al(2)O(3) adsorbent provides a synergic effect and, thus, is effective for removal of most tested metal ions and organic mercury species. After preconcentration of mercury ions by an Au NP-Al(2)O(3) adsorbent, analysis of mercury ions down to the subppq level in aqueous solution was performed by inductively coupled plasma mass spectrometry (ICP-MS). The Au NP-Al(2)O(3) adsorbent allows effective removal of mercury species spiked in lake water, groundwater, and seawater with efficiencies greater than 97%. We also used Al(2)O(3) and Au NP-Al(2)O(3) adsorbents sequentially for selectively removing Hg(2+) and MeHg(+) ions from water. The low-cost, effective, and stable Au NP-Al(2)O(3) adsorbent shows great potential for economical removal of various mercury species.

  7. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  8. Transmission Efficiency Measurements and Correlations with Physical Characteristics of the Lubricant

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Mitchell, A. M.; Hamrock, B. J.

    1984-01-01

    Data from helicopter transmission efficiency tests were compared to physical properties of the eleven lubricants used in those tests. The tests were conducted with the OH-58 helicopter main rotor transmission. Efficiencies ranged from 98.3 to 98.8 percent. The data was examined for correlation of physical properties with efficiency. There was a reasonable correlation of efficiency with absolute viscosity if the viscosity was first corrected for temperature and pressure in the lubricated contact. Between lubricants, efficiency did not correlate well with viscosity at atmospheric pressure. Between lubricants, efficiency did not correlate well with calculated lubricant film forming capacity. Bench type sliding friction and wear measurements could not be correlated to transmission efficiency and component wear.

  9. Correlation of rheological characteristics of lubricants with transmission efficiency measurements

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.; Hoeglund, E.

    1985-01-01

    The power efficiency of a helicopter transmission has been analyzed for 11 lubricants by looking at the Newtonian and non-Newtonian properties of the lubricants. A non-Newtonian property of the lubricants was the limiting shear strength proportionality constant. The tests were performed on a high-pressure, short-time shear strength analyzer. A power efficiency formula that was obtained by analyzing the Newtonian and non-Newtonian properties of the lubricants is presented in detail.

  10. COD removal efficiency and mechanism of HMBR in high volumetric loading for ship domestic sewage treatment.

    PubMed

    Zhu, Linan; He, Hailing; Wang, Chunli

    2016-10-01

    The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m(3)•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m(3)•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d(-1)) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.

  11. Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment.

    PubMed

    Yu, Hai-Rong; Hu, Jia-Qi; Liu, Zhuang; Ju, Xiao-Jie; Xie, Rui; Wang, Wei; Chu, Liang-Yin

    2017-02-05

    At present, selective and efficient removal of cesium ions (Cs(+)) from nuclear waste is of significant importance but still challenging. In this study, an easy-to-get and low-cost hydrogel adsorbent has been developed for effective adsorption and removal of Cs(+) from aqueous environment. The novel Cs(+)-recognizable poly(acrylic acid-co-benzo-18-crown-6-acrylamide) (poly(AAc-co-B18C6Am)) hydrogel is specifically designed with a synergistic effect, in which the AAc units are designed to attract Cs(+) via electrostatic attraction and the B18C6Am units are designed to capture the attracted Cs(+) by forming stable 2:1 "sandwich" complexes. The poly(AAc-co-B18C6Am) hydrogels are simply synthesized by thermally initiated free-radical copolymerization and display excellent Cs(+) adsorption from commonly coexisting metal ions. Important parameters affecting the adsorption are investigated comprehensively, and the adsorption kinetics and adsorption isotherms are also discussed systematically. The poly(AAc-co-B18C6Am) hydrogels exhibit rapid Cs(+) adsorption within 30min and the adsorption process is governed by the pseudo-second order model. Adsorption isotherm results demonstrate that the equilibrium data are well fitted by the Langmuir isotherm model, indicating that the Cs(+) adsorption is probably a monolayer adsorption process. Such Cs(+)-recognizable hydrogel materials based on the host-guest complexation are promising as efficient and feasible candidates for adsorption and removal of radioactive Cs(+) from nuclear contaminants.

  12. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    PubMed

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst.

  13. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe3O4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe3O4/PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe3O4/PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  14. High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites.

    PubMed

    Savina, Irina N; English, Christopher J; Whitby, Raymond L D; Zheng, Yishan; Leistner, Andre; Mikhalovsky, Sergey V; Cundy, Andrew B

    2011-09-15

    Novel nanocomposite materials where iron nanoparticles are embedded into the walls of a macroporous polymer were produced and their efficiency for the removal of As(III) from aqueous media was studied. Nanocomposite gels containing α-Fe(2)O(3) and Fe(3)O(4) nanoparticles were prepared by cryopolymerisation resulting in a monolithic structure with large interconnected pores up to 100 μm in diameter and possessing a high permeability (ca. 3 × 10(-3) ms(-1)). The nanocomposite devices showed excellent capability for the removal of trace concentrations of As(III) from solution, with a total capacity of up to 3mg As/g of nanoparticles. The leaching of iron was minimal and the device could operate in a pH range 3-9 without diminishing removal efficiency. The effect of competing ions such as SO(4)(2-) and PO(4)(3-) was negligible. The macroporous composites can be easily configured into a variety of shapes and structures and the polymer matrix can be selected from a variety of monomers, offering high potential as flexible metal cation remediation devices.

  15. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.

  16. Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment.

    PubMed

    Bieroza, Magdalena; Baker, Andy; Bridgeman, John

    2009-02-15

    Monthly raw and clarified water samples were obtained for 16 UK surface water treatment works. The fluorescence excitation-emission matrix (EEM) technique was used for the assessment of total organic carbon (TOC) removal and organic matter (OM) characterisation. The impact of algae presence in water on TOC removal, and its relationship with fluorescence, was analysed. Fluorescence peak C intensity was found to be a sensitive and reliable measure of OM content. Fluorescence peak C emission wavelength and peak T intensity (reflecting the degree of hydrophobicity and the microbial fraction, respectively) were found to characterize the OM; the impact of both on TOC removal efficiency was apparent. OM fluorescence properties were shown to predict TOC removal, and identify spatial and temporal variations. Previous work indicates that the trihalomethane (THM) concentration of treated water can be predicted from the raw water TOC concentration. The simplicity, sensitivity, speed of analysis and low cost, combined with potential for incorporation into on-line monitoring systems, mean that fluorescence spectroscopy offers a robust analytical technique to be used in conjunction with, or in place of, other approaches to OM characterisation and THM formation prediction.

  17. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  18. Efficient taste and odour removal by water treatment plants around the Han River water supply system.

    PubMed

    Ahn, H; Chae, S; Kim, S; Wang, C; Summers, R S

    2007-01-01

    Seven major water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation (KOWACO)'s management, take water from the Paldang Reservoir in the Han River System for drinking water supply. There are taste and odour (T&O) problems in the finished water because the conventional treatment processes do not efficiently remove the T&O compounds. This study evaluated T&O removal by ozonation, granular activated carbon (GAC) treatment, powder activated carbon (PAC) and an advanced oxidation process in a pilot-scale treatment plant and bench-scale laboratory experiments. During T&O episodes, PAC alone was not adequate, but as a pretreatment together with GAC it could be a useful option. The optimal range of ozone dose was 1 to 2 mg/L at a contact time of 10 min. However, with ozone alone it was difficult to meet the T&O target of 3 TON and 15 ng/L of MIB or geosmin. The GAC adsorption capacity for DOC in the three GAC systems (F/A, GAC and O3 + GAC) at an EBCT of 14 min is mostly exhausted after 9 months. However, substantial TON removal continued for more than 2 years (>90,000 bed volumes). GAC was found to be effective for T&O control and the main removal mechanisms were adsorption capacity and biodegradation.

  19. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water.

    PubMed

    Zhang, Kai; Dwivedi, Vineet; Chi, Chunyan; Wu, Jishan

    2010-10-15

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  20. An efficient CDMA decoder for correlated information sources

    NASA Astrophysics Data System (ADS)

    Efraim, Hadar; Yacov, Nadav; Shental, Ori; Kanter, Ido

    2009-07-01

    We consider the detection of correlated information sources in the ubiquitous code-division multiple-access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided, demonstrating a substantial improvement in bit error rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes.

  1. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide.

    PubMed

    Bagreev, A; Bashkova, S; Locke, D C; Bandosz, T J

    2001-04-01

    Sewage sludge-derived materials were used as adsorbents of hydrogen sulfide from moist air. The adsorbent obtained by carbonization at 950 degrees C has a capacity twice of that of coconut-shell-based activated carbon. The capacity of the sludge-derived materials increases with increasing carbonization temperature. It is likelythatduring carbonization at 950 degrees C a mineral-like phase is formed that consists of such catalytically active metals as iron, zinc, and copper. The results obtained demonstrate that the presence of iron oxide significantly increases the capacity of commercial carbon and activated alumina. The sludge-derived adsorbents are efficient for hydrogen sulfide removal until the pore entrances are blocked with sulfur as the product of oxidation reaction. For materials in which the catalytic effect is predominant, hydrogen sulfide is adsorbed until all pores are filled with sulfur. There is also indication that chemisorption plays a significant role in the removal of hydrogen sulfide from moist air.

  2. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    PubMed

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB.

  3. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  4. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.

    PubMed

    Regmi, Pusker; Bunce, Ryder; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-10-01

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P < 0.001) expanding opportunities for short-cut nitrogen removal. The pilot demonstrated a total inorganic nitrogen (TIN) removal rate of 95 ± 30 mgN/L/d at an influent chemical oxygen demand: ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT.

  5. Magnetic Nanocomposites as Efficient Sorption Materials for Removing Dyes from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Makarchuk, Oksana V.; Dontsova, Tetiana A.; Astrelin, Ihor M.

    2016-03-01

    Magnetic composite sorbents based on saponite clays with different content of magnetite (2-7 wt%.) were synthesized. The samples were analyzed by X-ray diffraction methods, and it was found that the Fe3O4 in composites is in the nanorange. It has been shown that the magnetic nanocomposites have more developed microporosity and mesoporosity compared to saponite clay. The sorption properties of magnetic nanocomposite sorbents were determined, and the results evidenced that their efficiency is significantly higher than the individual phases of the composite. It was shown that all waste composite magnetic sorbents are successfully removed from the water environment by magnetic separation.

  6. Current Physical and SDS Extraction Methods Do Not Efficiently Remove Exosporium Proteins from Bacillus anthracis spores

    PubMed Central

    Thompson, Brian M.; Binkley, Jana M.; Stewart, George C.

    2011-01-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium. PMID:21338631

  7. Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces

    PubMed Central

    Khodakaramian, Gholam; Lissenden, Sarah; Gust, Bertolt; Moir, Laura; Hoskisson, Paul A.; Chater, Keith F.; Smith, Margaret C. M.

    2006-01-01

    We report a system for the efficient removal of a marker flanked by two loxP sites in Streptomyces coelicolor, using a derivative of the temperate phage φC31 that expresses Cre recombinase during a transient infection. As the test case for this recombinant phage (called Cre-phage), we present the construction of an in-frame deletion of a gene, pglW, required for phage growth limitation or Pgl in S.coelicolor. Cre-phage was also used for marker deletion in other strains of S.coelicolor. PMID:16473843

  8. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    NASA Astrophysics Data System (ADS)

    Dosmukhamedov, Nurlan; Kaplan, Valery

    2017-02-01

    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  9. Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model.

    PubMed

    Çelekli, Abuzer; Birecikligil, Sevil Sungur; Geyik, Faruk; Bozkurt, Hüseyin

    2012-01-01

    An artificial neural network (ANN) model was used to predict removal efficiency of Lanaset Red (LR) G on walnut husk (WH). This adsorbent was characterized by FTIR-ATR. Effects of particle size, adsorbent dose, initial pH value, dye concentration, and contact time were investigated to optimize sorption process. Operating variables were used as the inputs to the constructed neural network to predict the dye uptake at any time as an output. Commonly used pseudo second-order model was fitted to the experimental data to compare with ANN model. According to error analyses and determination of coefficients, ANN was the more appropriate model to describe this sorption process. Results of ANN indicated that pH was the most efficient parameter (43%), followed by initial dye concentration (40%) for sorption of LR G on WH.

  10. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    NASA Astrophysics Data System (ADS)

    Dosmukhamedov, Nurlan; Kaplan, Valery

    2016-10-01

    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  11. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

    NASA Astrophysics Data System (ADS)

    Langbein, John

    2017-02-01

    Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/f^{α } with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi: 10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

  12. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Pashai Gatabi, Maliheh; Milani Moghaddam, Hossain; Ghorbani, Mohsen

    2016-07-01

    Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pHPZC determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber-Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir's adsorption capacity was found to be 78.81 mg g-1 at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.

  13. Efficiency of hepatitis A virus removal in six sewage treatment plants from central Tunisia.

    PubMed

    Ouardani, Imen; Manso, Carmen F; Aouni, Mahjoub; Romalde, Jesús L

    2015-12-01

    The efficiency of six Tunisian sewage treatment plants (STP) for the removal of hepatitis A virus (HAV) from wastewater was analysed in order to evaluate the potential risk for human health linked to reuse or discharge of treated wastewater into the environment. The STP utilize different biological wastewater treatments including primary treatment, which involves the physical removal of organic and inorganic solids, and secondary treatment that involves different processes, such as activated sludge or lagoon. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and conventional RT-PCR were used for the analysis of the 325 wastewater samples (163 raw and 162 treated) obtained. Results revealed highest contamination in west-central of Tunisia in raw wastewater with 62.96 % of samples positive for HAV and predominance during winter and autumn, whereas east-central region showed 50.62 % of positive samples with high prevalence from winter through summer. The quantitative analysis revealed a range between 4.29 × 10(1) and 1.24 × 10(5) RNA copies/mL in treated wastewater, showing clearly the inefficiency for total removal of HAV regardless of the treatment method used. The vast majority of HAV sequences belonged to the sub-genotype IA, except one that was assigned to sub-genotype IB.

  14. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g−1), excellent magnetic response (14.89 emu g−1), and large mesopore volume (0.09 cm3 g−1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π–π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g−1 at an initial MB concentration of 30 mg L−1, which increased to 245 mg g−1 when the initial MB concentration was 300 mg L−1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  15. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    PubMed

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment.

  16. Microalgae screening under CO2 stress: Growth and micro-nutrients removal efficiency.

    PubMed

    Hussain, Fida; Shah, Syed Zahir; Zhou, Wenguang; Iqbal, Munawar

    2017-03-30

    Algae are one of the promising agents for greenhouse gas reduction and biofuel production. Different technologies have been developed and introduced in last decades for algae growth. Algae plays a very imperative role in the aquatic ecosystem regarding CO2 reduction and micro-nutrient removal. In present investigation, eight locally isolated (microalgae) strains and two pure strains were studied. The selected microalgae were grown under variable CO2 concentration and CO2 biofixation efficiencies along with micro-nutrient removal were monitored. Among selected strains, three strains (UMN266, UMN268 and UTEX 2714 showed adaptability up to 20% CO2 concentration with high biomass production of 1.3, 1.4 and 1.21g/L, respectively, whereas UTEX 78 and UMN 230 growth was slow under high CO2 concentration (20% CO2). However, in step wise CO2 feeding, the growth of UTEX 78 and UMN 230 improved considerably and up to 0.9 and 0.97 (g/L) biomasses were recorded, respectively. All algae strains showed high growth rate at 2% CO2 feeding and nitrogen, phosphorus and ammonia removal from the simulated media were also significant. The fast-growing microalgae species tolerant up to 20% CO2 concentration and could be used for flue gas mitigation and valuable products production. These results can contribute to understand the nature of CO2 bio-fixation and microalgae could be a potential alternative for CO2 fixation.

  17. Design of high efficiency fibers for ion exchange and heavy metal removal

    NASA Astrophysics Data System (ADS)

    Dominguez, Lourdes

    Ion exchange materials coated on glass fiber substrates have a number of advantages over the conventional ion exchange beads. These include simplification of the overall synthesis including faster more efficient functionalization and elimination of toxic solvents. Other benefits include the ability to be fabricated in the form of felts, papers, or fabrics, improving media contact efficiency and enhancing both the rates of reaction and regeneration. In addition, physical and mechanical requirements of strength and dimensional stability are achieved by use of glass fiber substrates. Investigations were focused on design of: (1) polymeric cationic exchange fibers and their application for lead and mercury removal, (2) polymeric anionic exchange fibers and their application for arsenate removal, (3) enhancement of anionic fiber selectivity for monovalent ions over divalent ions through bulkier triaklylamine functional groups, and (4) polymeric mercaptyl fibers for the application of arsenite removal. The design and characterization of a cationic exchange fiber is described. Dynamic mode (breakthrough) experiments for calcium, lead, and mercury ion solutions are also presented. The second system consists of the preparation and characterization of anionic exchange fibers with equilibrium adsorption isotherms and dynamic mode kinetic experiments for arsenate removal. Modification of the resin with bulkier functional groups (trimethylamine, triethylamine, tripropylamine, tributylanmine), thereby effecting a change in the selectivity from divalent species to monovalent species, is considered in the separation of nitrates from sulfates. The ability of a thiol group to bind to the highly toxic arsenite ion (as is done in proteins and enzymes) provided the model used to chemically modify and characterize a polyvinyl alcohol mercaptyl fibrous system, coated on a fiberglass substrate, for the purpose of arsenite (As3+) removal from water. Physical/chemical aspects of naturally

  18. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  19. Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles.

    PubMed

    Tu, Yao-Jen; Chan, Ting-Shan; Tu, Hao-Wei; Wang, Shan-Li; You, Chen-Feng; Chang, Chien-Kuei

    2016-04-01

    An efficient method for removing and recovering molybdenum (Mo) from water was developed by using ZnFe2O4 nanoparticles. The Mo adsorption displayed a nonlinear isotherm that fitted well with the Langmuir isotherm, showing limited adsorption sites on the surface of ZnFe2O4. The adsorption of Mo(VI) was dependent on solution pH. With increasing pH, the build-up of negative charges of both adsorbent and adsorbate led to enhanced electric repulsion between them. The K-edge XANES spectra for the adsorbents collected after Mo adsorption revealed that Mo(VI) was the predominant oxidation state sorbed on ZnFe2O4, indicating that the reduction of Mo(VI) did not occur on ZnFe2O4. The different peak positions of k-space and R-space shown in K-edge EXAFS spectra demonstrated that the adsorbed Mo could be bound on the surface or be slipped in the vacancy position of the ZnFe2O4 crystal. Importantly, Mo could be efficiently adsorbed from photoelectric industrial wastewater and these adsorbed Mo anions were rapidly replaced by OH(-) ions, implying the potential for Mo removing and recovering in industrial wastewater.

  20. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution.

    PubMed

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-20

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury 'nano-trap' as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury 'nano-trap' exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g(-1), and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  1. A robot system for evaluating plaque removal efficiency of toothbrushes in vitro.

    PubMed

    Ernst, C P; Willershausen, B; Driesen, G; Warren, P R; Hilfinger, P

    1997-07-01

    A robot system simulating three-dimensional brushing motions as a function of time has been developed. In association with a typodont and either artificial plaque or chromogenic stain, the robot system can be used to assess the plaque removal efficiency or the cleaning effectiveness of toothbrushes. In particular, the influence of different brush head designs of powered toothbrushes was examined. The study compared the plaque removal efficiency of a cup-shaped brush head (Braun Oral-B EB 5) and a modified brush head (Braun Oral-B EB 9) that incorporates longer filaments on the outer ring, designed for additional interdental penetration. A specially designed artificial plaque was applied to the plastic teeth of typodonts. Artificial teeth were cleaned by the robot system for a 2-minute period with a wet brush head without a dentifrice. The remaining plaque was assessed visually by two independent examiners, with a modification of the global Plaque Index. In comparison to the EB 5, the new brush head significantly reduced artificial plaque overall. In vitro data demonstrated the ability of the robot system to reveal reproducible significant differences of the cleaning effectiveness of powered toothbrushes.

  2. A Theoretical Investigation of Oxidation Efficiency of a Volatile Removal Assembly Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Guo, Boyun

    2005-01-01

    Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.

  3. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Sauvé, Sébastien; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2013-05-15

    Accumulation and breakthrough of several potentially toxic cyanobacterial species within drinking water treatment plants (DWTP) have been reported recently. The objectives of this project were to test the efficiency of different treatment barriers in cyanobacterial removal. Upon observation of cyanobacterial blooms, intensive sampling was conducted inside a full scale DWTP at raw water, clarification, filtration and oxidation processes. Samples were taken for microscopic speciation/enumeration and microcystins analysis. Total cyanobacteria cell numbers exceeded World Health Organisation and local alert levels in raw water (6,90,000 cells/mL). Extensive accumulation of cyanobacteria species in sludge beds and filters, and interruption of treatment were observed. Aphanizomenon cells were poorly coagulated and they were not trapped efficiently in the sludge. It was also demonstrated that Aphanizomenon cells passed through and were not retained over the filter. However, Microcystis, Anabaena, and Pseudanabaena cells were adequately removed by clarification and filtration processes. The breakthrough of non toxic cyanobacterial cells into DWTPs could also result in severe treatment disruption leading to plant shutdown. Application of intervention threshold values restricted to raw water does not take into consideration the major long term accumulation of potentially toxic cells in the sludge and the risk of toxins release. Thus, a sampling regime inside the plant adapted to cyanobacterial occurrence and intensity is recommended.

  4. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study.

    PubMed

    Shah, Noor S; He, Xuexiang; Khan, Hasan M; Khan, Javed Ali; O'Shea, Kevin E; Boccelli, Dominic L; Dionysiou, Dionysios D

    2013-12-15

    This study explored the efficiency of UV-C-based advanced oxidation processes (AOPs), i.e., UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 for the degradation of endosulfan, an organochlorine insecticide and an emerging water pollutant. A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mJ/cm(2), was achieved by UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 processes, respectively, at a [peroxide]0/[endosulfan]0 molar ratio of 20. The efficiency of these processes was, however, inhibited in the presence of radical scavengers, such as alcohols (e.g., tertiary butyl alcohol and isopropyl alcohol) and natural organic matter (NOM). The inhibition was also influenced by common inorganic anions in the order of nitrite > bicarbonate > chloride > nitrate ≈ sulfate. The observed pseudo-first-order rate constant decreased while the degradation rate increased with increasing initial concentration of the target contaminant. The degradation mechanism of endosulfan by the AOPs was evaluated revealing the main by-product as endosulfan ether. Results of this study suggest that UV-C-based AOPs are potential methods for the removal of pesticides, such as endosulfan and its by-products, from contaminated water.

  5. 40 CFR 63.4766 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Coating of Wood Building Products Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.4766 How do I determine the add-on control device emission destruction or removal...

  6. Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid-liquid phase separation.

    PubMed

    Nakano, Koji; Fujie, Ryuhei; Shintani, Ryo; Nozaki, Kyoko

    2013-10-18

    A simple and efficient catalyst removal system has been developed in the cobalt-salen-catalyzed copolymerization of propylene oxide with carbon dioxide. The present system requires no prior modification of the catalyst, and the removal is achieved by simple addition of myristic acid, followed by organic liquid-liquid phase separation.

  7. Effect of automatic cluster removers on milking efficiency and teat condition of Manchega ewes.

    PubMed

    Bueso-Ródenas, J; Romero, G; Arias, R; Rodríguez, A M; Díaz, J R

    2015-06-01

    Milking operations represent more than 50% of the work on a dairy ewe farm. The implementation of automatic cluster removers (ACR) is gaining popularity, as it allows the operator to avoid manual cluster detachments, simplifying the milking routines. The aim of this study was to discover the effect on the milking of Manchega ewes over an entire lactation period by using this type of devices, set up with 2 different combinations of milk flow threshold (MF) and delay time (DT) and comparing them with the traditional method using manual cluster removal. During a 15-d pre-experimental period, the animals were milked without ACR and sampling was performed to select 108 ewes and distribute them into 3 groups of similar characteristics according to their parity, milk yield, milking duration, and mammary gland sanitary status. Later, each group was milked for a duration of 4 mo in 3 different conditions: 1 with manual cluster removal, the second setting the ACR at MF 150 g/min and DT 20 s, and the third setting the ACR at MF 200 g/min and DT 10 s. Samplings of milking fraction, milking duration, milk composition, mammary gland sanitary status, teat-end status, and vacuum level in the short milk tubes during milking were performed. The use of ACR limited the vacuum drops in the short milk tubes and the edema in the teat end after milking, although no reduction in the number of new cases of mastitis was observed and the milk composition did not change. Moreover, it was noted that the use of ACR set with MF 150 g/min and DT 20 s was more efficient than the manual cluster removal, as it obtained a similar amount of extracted milk but took less time. Conversely, the use of ACR set with MF 200 g/min and DT 10 s involved a higher reduction in individual milking duration and the milking duration of groups of animals but reduced milk extracted.

  8. Mapping sources of correlation in resting state FMRI, with artifact detection and removal.

    PubMed

    Jo, Hang Joon; Saad, Ziad S; Simmons, W Kyle; Milbury, Lydia A; Cox, Robert W

    2010-08-15

    Many components of resting-state (RS) FMRI show non-random structure that has little to do with neural connectivity but can covary over multiple brain structures. Some of these signals originate in physiology and others are hardware-related. One artifact discussed herein may be caused by defects in the receive coil array or the RF amplifiers powering it. During a scan, this artifact results in small image intensity shifts in parts of the brain imaged by the affected array components. These shifts introduce artifactual correlations in RS time series on the spatial scale of the coil's sensitivity profile, and can markedly bias RS connectivity results. We show that such a transient artifact can be substantially removed from RS time series by using locally formed regressors from white matter tissue. This is particularly important in arrays with larger numbers of coils, which may generate smaller artifact zones. In such a case, brain-wide average noise estimates would fail to capture the artifact. We also examine the anatomical structure of artifactual variance in RS FMRI time series, by identifying sources that contribute to these signals and where in the brain are they manifested. We consider current methods for reducing confounding sources (or noises) and their effects on connectivity maps, and offer an improved approach (ANATICOR) that can also reduce hardware artifacts. The methods described herein are currently available with AFNI, in addition to tools for rapid, interactive generation of seed-based correlation maps at single-subject and group levels.

  9. Diurnal temperature effect on nitrate removal and production efficiency in bedform-induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Cardenas, M. B.

    2014-12-01

    Rivers and aquifers are connected through the hyporheic zone (HZ). Pore water in the subsurface sediments is continuously exchanged with the overlying surface water. The exchange of water, mass and energy occurring along the surface-subsurface interface or within the HZ exerts a strong influence on the quality of both surface and subsurface waters, and fluvial ecology. Moreover, the HZ is rich in biologically active sediment, creating a favorable condition for microbially-facilitated reactions to occur, including organic carbon oxidation (aerobic respiration), nitrification, and denitrification. Inorganic N, especially NO3-, is of concern as a drinking water pollutant and as a cause for eutrophication that threatens ecosystems. The biogeochemical reactions in the HZ could produce or consume NO3- and thus the HZ could serve a nitrate source or sink role in the fluvial system. In addition, hyporheic exchange across the sediment-water interface (SWI) leads to penetration of diel temperature cycles from the river, leading to dynamic HZ temperature pattern. This in turn affects biogeochemical reactions in the HZ. The main objective of this study is to integrate all the processes that occur along the SWI to understand how diurnal temperature variations affect the biogeochemical function of the HZ. We conducted numerical simulations of coupled turbulent open-channel fluid flow, porous fluid flow, porous heat transport and reactive solute transport to study feedbacks and coupling between these processes. We assumed sinusoidally varying diurnal temperature variations. We studied the effects of different mean temperatures and different amplitudes of the diurnal temperature variations on nitrate removal or production efficiency in the HZ. The simulation results show that the average temperature effect on the HZ nitrate source-sink functionality and its associated efficiency has strong dependence on the [NO3-]/[NH4+ ] ratio in the river. However, the effects of the

  10. [Removal efficiency of C and N in micro-polluted river through a subsurface-horizontal flow constructed wetlands].

    PubMed

    Yang, Xin-ping; Zhou, Li-xiang; Dai, Yuan-yuan; Cui, Chun-hong

    2008-08-01

    A subsurface-horizontal flow constructed wetlands (CWs) planted with reed was used to treat micro-polluted river water in this study with an aim to investigate the long-term treatment efficiency of CWs especially for organic C and N. Average data obtained from two-year plant growth season showed that performance of the wetlands appeared to be affected by both establishment/maturation factors and year-to-year climatic variations. The results displayed that the removal of C and N in the influent depended, to a certain extend, on plant growth and seasonal variations, especially for total N removal. It was observed that C removal occurred mainly in the front of CWs in the first-year's operation period and then was translocated to the rear end of wetlands in the second-year's operation period. C/N ratio in the influent was 5 or more, indicating enough C source supply for denitrification. Organic C removal efficiencies varied from 6.10% to 37.83% throughout the trial. Average total N removal efficiency of 15.51% in the first-year operation period and then declined to 8.61% in the second year. The highest removal efficiency of total N was below 40% throughout the two-year trial. It was found that nitrification and denitrification reached dynamic equilibrium at the middle of the wetlands where the highest total N removal efficiency occurred. The greatest oxygen consumption was observed in the front and middle of CWs. It was noted that nitrification occurred even in deep layer located in the rear end of the wetlands in the second-year operation period. Nitrification and denitrification occurred concurrently with C and total N removal along the stream way. Low-molecular-weight organic acids released from reed rhizosphere seemed to have a significant inhibitory effect on chemoautrophic nitrifying bacteria, which involved in nitrogen removal efficiency of the wetlands, particularly during spring and autumn.

  11. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    PubMed

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  12. Effect of strong electron correlation on the efficiency of photosynthetic light harvesting

    SciTech Connect

    Mazziotti, David A.

    2012-08-21

    Research into the efficiency of photosynthetic light harvesting has focused on two factors: (1) entanglement of chromophores, and (2) environmental noise. While chromophores are conjugated {pi}-bonding molecules with strongly correlated electrons, previous models have treated this correlation implicitly without a mathematical variable to gauge correlation-enhanced efficiency. Here we generalize the single-electron/exciton models to a multi-electron/exciton model that explicitly shows the effects of enhanced electron correlation within chromophores on the efficiency of energy transfer. The model provides more detailed insight into the interplay of electron correlation within chromophores and electron entanglement between chromophores. Exploiting this interplay is assisting in the design of new energy-efficient materials, which are just beginning to emerge.

  13. Metal Removal Efficiency And Ecotoxicological Assessment Of Field-Scale Passive Treatment Biochemical Reactors

    EPA Science Inventory

    Anaerobic biochemical reactors (BCRs) are useful for removing metals from mining-impacted water at remote sites. Removal processes include sorption and precipitation of metal sulfides, carbonates, and hydroxides. A question of interest is whether BCRs remove aquatic toxicity. ...

  14. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions

    PubMed Central

    Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang

    2015-01-01

    The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523

  15. High-efficiency SO{sub 2} removal in utility FGD systems

    SciTech Connect

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-11-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO{sub 2}) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company`s Big Bend Station; cocurrent, packed absorbers at Hoosier Energy`s Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company`s Pirkey Station; horizontal spray absorbers at PSI Energy`s Gibson Station; venturi scrubbers at Duquesne Light`s Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations`s (NYSEG`s) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO{sub 2} removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO{sub 2} removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994.

  16. Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate.

    PubMed

    Feng, Mei-Ling; Sarma, Debajit; Qi, Xing-Hui; Du, Ke-Zhao; Huang, Xiao-Ying; Kanatzidis, Mercouri G

    2016-09-28

    Uranium is important in the nuclear fuel cycle both as an energy source and as radioactive waste. It is of vital importance to recover uranium from nuclear waste solutions for further treatment and disposal. Herein we present the first chalcogenide example, (Me2NH2)1.33(Me3NH)0.67Sn3S7·1.25H2O (FJSM-SnS), in which organic amine cations can be used for selective UO2(2+) ion-exchange. The UO2(2+)-exchange kinetics perfectly conforms to pseudo-second-order reaction, which is observed for the first time in a chalcogenide ion-exchanger. This reveals the chemical adsorption process and its ion-exchange mechanism. FJSM-SnS has excellent pH stability in both strongly acidic and basic environments (pH = 2.1-11), with a maximum uranium-exchange capacity of 338.43 mg/g. It can efficiently capture UO2(2+) ions in the presence of high concentrations of Na(+), Ca(2+), or HCO3(-) (the highest distribution coefficient Kd value reached 4.28 × 10(4) mL/g). The material is also very effective in removing of trace levels of U in the presence of excess Na(+) (the relative amounts of U removed are close to 100%). The UO2(2+)···S(2-) interactions are the basis for the high selectivity. Importantly, the uranyl ion in the exchanged products could be easily eluted with an environmentally friendly method, by treating the UO2(2+)-laden materials with a concentrated KCl solution. These advantages coupled with the very high loading capacity, low cost, environmentally friendly nature, and facile synthesis make FJSM-SnS a new promising remediation material for removal of radioactive U from nuclear waste solutions.

  17. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor.

    PubMed

    Omri, Ilhem; Bouallagui, Hassib; Aouidi, Fathia; Godon, Jean-Jacques; Hamdi, Moktar

    2011-11-01

    The objective of this study was to assess the feasibility of using a biofilter system to treat hydrogen sulfide (H2S) contaminated air and to characterize its microbial community. The biofilter system was packed with peat. During the experimental work, the peat was divided in three layers (down, middle, and up). Satisfactory removal efficiencies of H2S were proved and reached 99% for the majority of the run time at an empty bed retention time (EBRT) of 60 s. The polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method was used to uncover the changes in the microbial community between the different layers. Analysis of SSCP profiles demonstrated significant differences in community structure from a layer to another with a strong decrease in species diversity towards the up layer. It was found that the used support was suitable for microorganism growth, and may have a potential application in H2S biofiltration system.

  18. An efficient recyclable magnetic material for the selective removal of organic pollutants

    PubMed Central

    Monteil, Clément; Bar, Nathalie; Bee, Agnès

    2016-01-01

    Summary Wastewater cleaning strategies based on the adsorption of materials are being increasingly considered, but the wide variety of organic pollutants at low concentrations still makes their removal a challenge. The hybrid material proposed here consists of a zwitterionic polyethylenimine polymer coating a magnetic core. Polyethylenimine is phosphonated at different percentages by a one-step process and used to coat maghemite nanoparticles. It selectively extracts high amounts of cationic and anionic contaminants over a wide range of pH values, depending on the adjustable number of phosphonate groups introduced on the polymer. After recovering the nanoparticles with a magnet, pollutants are quantitatively released by repeated washing with low amounts of pH-adjusted water. The material can be reused many times without noticeable loss of efficiency and is designed to resist high temperatures, oxidation and harsh conditions. PMID:27826519

  19. Efficient endotoxin removal with a new sanitizable affinity column: Affi-Prep Polymyxin.

    PubMed

    Talmadge, K W; Siebert, C J

    1989-08-04

    A new affinity column packing for removal of endotoxins has been prepared by coupling USP drug-quality polymyxin B to Affi-Prep, a novel synthetic macroporous polymer. Affi-Prep Polymyxin binds endotoxins from a number of different strains of gram-negative bacteria. Endotoxin binding is not significantly affected by 10 mg/ml of bovine serum albumin or human immunoglobulin G, by 1 mg/ml sodium dodecyl sulphate, or by 1 mg/ml deoxycholate. Affi-Prep Polymyxin is stable to treatment with 1.0 M sodium hydroxide, an important property for sanitizing the resin. The resin shows a high ligand stability, since no leakage of polymyxin B from the packing could be detected. Affi-Prep Polymyxin exhibited the highest endotoxin binding efficiency when compared with several commercial agarose affinity packings.

  20. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents.

    PubMed

    Zhong, Wenjue; Wang, Donghong; Xu, Xiaowei

    2012-05-30

    Phenols pose a risk to the environment and to human health. Phenols found in rivers mainly originate from sewage treatment plants (STPs). In this paper, analytical procedures, based on deconvolution technology and retention time locking technology, were investigated to simultaneously identify and determine the concentrations of fifty different phenols in sewage water and effluents. Seventeen different phenols were found in sewage and five - including two regulated phenols (phenol and 2,4,6-trichlorophenol) and three un-regulated phenols (2-chlorophenol, 2,5-dichlorophenol and 2,4-dichloro-3-ethyl-6-nitrophenol) - were identified in effluents of five STPs. A number of processes undertaken in five STPs were also investigated. These processes can be used to remove phenols at efficiency levels of between 88.95% and 99.97%. Among the processes tested, a combination of anaerobic/anoxic/oxic (A(2)/O), continuous microfiltration (CMF), ozone oxidation (O(3)), and chlorination, appeared to be the best option for the removal of key phenols. Among the five phenols identified in effluents, 2,5-dichlorophenol (1.89 μg/L) and 2,4-dichloro-3-ethyl-6-nitrophenol (22.6 μg/L) pose the greatest ecological risk to receiving waters.

  1. Methanol removal efficiency and bacterial diversity of an activated carbon biofilter.

    PubMed

    Babbitt, Callie W; Pacheco, Adriana; Lindner, Angela S

    2009-12-01

    Motivated by the need to establish an economical and environmentally friendly methanol control technology for the pulp and paper industry, a bench-scale activated carbon biofiltration system was developed. This system was evaluated for its performance in removing methanol from an artificially contaminated air stream and characterized for its bacterial diversity over time, under varied methanol loading rates, and in different spatial regions of the filter. The biofilter system, composed of a novel packing mixture, provided an excellent support for growth and activity of methanol-degrading bacteria, resulting in approximately 100% methanol removal efficiency for loading rates of 1-17 g/m(3) packing/h, when operated both with and without inoculum containing enriched methanol-degrading bacteria. Although bacterial diversity and abundance varied over the length of the biofilter, the populations present rapidly formed a stable community that was maintained over the entire 138-day operation of the system and through variable operating conditions, as observed by PCR-DGGE methods that targeted all bacteria as well as specific methanol-oxidizing microorganisms. Phylogenetic analysis of bands excised and sequenced from DGGE gels indicated that the biofilter system supported a diverse community of methanol-degrading bacteria, with high similarity to species in the genera Methylophilus (beta-proteobacteria), Hyphomicrobium and Methylocella (both alpha-proteobacteria).

  2. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  3. An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Yang, Chien-Ting; Shou, Yu-Wen; Shen, Tzu-Kuei

    2010-12-01

    We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM) for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors) based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System)—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4% ~ 10% for our three tested videos in the experimental results of vehicle counting.

  4. Titania-functionalized graphene oxide for an efficient adsorptive removal of phosphate ions.

    PubMed

    Sakulpaisan, Samita; Vongsetskul, Thammasit; Reamouppaturm, Sakultip; Luangkachao, Jakkrawut; Tantirungrotechai, Jonggol; Tangboriboonrat, Pramuan

    2016-02-01

    Titania-functionalized graphene oxide (T-F GO), synthesized by a sol-gel process, was used as a highly efficient material to remove phosphate ions from the simulated wastewater. X-ray diffraction spectra, Fourier transform infrared spectra and scanning electron micrographs of T-F GO confirmed that titania particles were successfully grown on graphene oxide (GO) surface. The phosphate ion adsorption capacities of GO, titania and T-F GO as a function of the contact time and the pH were investigated by a UV-visible spectrophotometer. Results showed that T-F GO could absorb phosphate ions better than titania and GO could. This indicated the synergistic effect between titania and GO in the phosphate ion adsorption. The pH increment lowered the absorption capacities due to increasing the repulsion between phosphate anions and the charges on the T-F GO surface, whereas the addition of sodium ions increased the adsorption capacities. Also, phosphate ions were absorbed by specific sites of T-F GO and formed a monolayer on its surface. Finally, the maximum adsorption capacity of T-F GO was 33.11 mg/g at pH 6, much higher than those of GO and titania. Therefore, T-F GO could be a promising material to remove phosphate ions from wastewater in the future.

  5. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.

    PubMed

    Aziz, Abdellah; Elandaloussi, El Hadj; Belhalfaoui, Belkacem; Ouali, Mohand Said; De Ménorval, Louis Charles

    2009-10-15

    Chemical functionalization of olive stone wastes with succinate linkers can potentially improve the performance of wastewater treatment technologies via enhanced adsorption and high affinity of the covalently attached succinate groups for heavy metals. In this study, a novel reusable adsorbent material based on agricultural waste has been synthesized by esterifying the lignocellulosic matrix of olive stones with succinic anhydride in toluene under basic conditions. Characterization of the as-prepared material by FTIR and solid-state MAS (13)C NMR spectroscopies and TGA confirmed that the heterogeneous esterification has proceeded very efficiently to yield the succinylated-olive stone (S-OS). Subsequent alkaline treatment of S-OS with saturated NaHCO(3) aqueous solution led to the resulting sodic material (NaS-OS), which was subjected to batch experiments in order to evaluate its cadmium-removing efficiency from aqueous solutions at realistic concentrations of cadmium found in industrial effluents. The results obtained from the sorption characteristics have revealed that NaS-OS material is highly effective in removing cadmium from aqueous solutions, with a maximum uptake capacity of 200 mg g(-1) (1.78 mmol g(-1)). The Langmuir isotherm model was found to fit adequately the equilibrium isotherm data. Cadmium adsorption occurs rapidly and the adsorption mechanism is a chemical sorption via ionic exchange between the adsorbate and adsorbent. Thermodynamic parameters were also evaluated from the effect of temperature studies. Regenerability of NaS-OS material was ascertained by quantitative desorption of cadmium with 1M aqueous NaCl and the reusability of the matrix after five repeated cycles led to nearly no attenuation in its performance (less than 2% in the sorption capacity), indicating that repeated use of NaS-OS is quite feasible. Compared to other low-cost adsorbents utilized for the removal of Cd(II) from water/wastewater, NaS-OS shows higher sorption capacity

  6. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  7. Applied K fertilizer use efficiency in pineapples grown on a tropical peat soil under residues removal.

    PubMed

    Ahmed, Osumanu H; Ahmad, Husni M H; Musa, Hanafi M; Rahim, Anuar A; Rastan, Syed Omar S

    2005-01-21

    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.

  8. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    PubMed

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  9. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+).

  10. Cetylpyridinium chloride/magnetic alginate beads: an efficient system to remove p-nitrophenol from wastewater

    NASA Astrophysics Data System (ADS)

    Obeid, Layaly; Bee, Agnes; Talbot, Delphine; Abramson, Sebastien; Welschbillig, Mathias

    2014-05-01

    The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate, a polysaccharide extracted from brown seaweeds, is extensively used as inexpensive, non-toxic and efficient biosorbent. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet [1, 2]. In the present work, we have studied the adsorption affinity of magnetic alginate beads (called magsorbents)for p-nitrophenol (PNP), used as a hydrophobic pollutant, in presence of cetylpyridinium chloride (CPC), a cationic surfactant. First, the effect of different parameters (pH solution, contact time, surfactant initial concentration…) on the adsorption of CPC on the alginate beads was investigated. Adsorption of the surfactant occurs due to electrostatic attractions between its cationic head groups and negative carboxylate functions of the alginate beads. At larger surfactant concentrations, adsorption is also due to the interaction between the hydrocarbon chains of CPC forming aggregated structures capable of solubilizing hydrophobic solutes. In a second step, we showed that PNP can reach up to 95% of adsorption in the beads in presence of CPC, although the pollutant is poorly adsorbed by alginate in absence of the surfactant. At highest CPC concentrations, desorption occurs as micellar solubilization is preferred over coadsorption. Our magsorbents appear to efficiently remove both cationic surfactant and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. 1. A.Bee, D.Talbot, S.Abramson, V

  11. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE PAGES

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; ...

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  12. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    SciTech Connect

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S.; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory and we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.

  13. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong

    2013-05-01

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  14. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    SciTech Connect

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Kondo, Yoshikazu

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  15. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands.

    PubMed

    Zhong, Fei; Liang, Wei; Yu, Tao; Cheng, Shui P; He, Feng; Wu, Zhen B

    2011-01-01

    The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH(+)(4)-N), sum of nitrate & nitrite (NO(-)(X)-N), and total nitrogen (TN) by the CWs were 20-55%, 38-84 % and 39-57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture.

  16. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    PubMed

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m(2)/g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O(-) groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.

  17. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    PubMed

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  18. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study

    PubMed Central

    Manjula, M; Reddy, E Rajendra; Srilaxmi, N; Rani, Tabitha

    2014-01-01

    ABSTRACT Background: Many chemomechanical caries removal (CMCR) agents have been introduced and marketed since 1970s, with each new one being better and effective than the previously introduced. Papacarie and Carisolv are new systems in the field of CMCR techniques. These are reportedly minimally invasive methods of removing carious dentin while preserving sound dentin. Aim: To compare the Efficiency (time taken for caries removal) and effectiveness (Knoop hardness number of the remaining dentin) of caries removal by three minimally invasive methods, i.e. hand excavation and chemomechanical caries removal using Carisolv and Papacarie. Materials and methods: Thirty recently extracted human permanent molars with occlusal carious lesions were divided randomly in three equal groups and bisected through the middle of the lesion mesiodistally and excavated by two methods on each tooth. Results: Statistically significant difference was present among three methods with respect to time and knoop hardness values (KHN) of the remaining dentin. Conclusion: The Efficiency of Hand method is better compared to CMCR techniques and effectiveness of CMCR techniques is better than Hand method in terms of dentin preservation so the chances of maintaining vitality of the pulp will be enhanced. How to cite this article: Boob AR, Manjula M, Reddy ER, Srilaxmi N, Rani T. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):11-18. PMID:25206231

  19. Gold-Nanoparticle-Immobilized Desalting Columns for Highly Efficient and Specific Removal of Radioactive Iodine in Aqueous Media.

    PubMed

    Choi, Mi Hee; Shim, Ha-Eun; Yun, Seong-Jae; Park, Sang-Hyun; Choi, Dae Seong; Jang, Beom-Su; Choi, Yong Jun; Jeon, Jongho

    2016-11-02

    There has been worldwide attention on the efficient removal of radioactive iodine, because it is commonly released in nuclear plant accidents. Increasing concerns on environmental problems due to the radioactive iodine are leading us to develop stable and sustainable technology for remediation of radioelement contaminants. In this work, we report a highly efficient chromatographic method for specific and rapid capture of radioactive iodine. The gold nanoparticles immobilized dextran gel columns showed excellent removal capabilities of radioactive iodine in various conditions. These results suggested that our platform technology can be a promising method for the desalination of radioactive iodines in water.

  20. CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; McElroy, M. B.; Munger, J. W.; Xu, S.; Hao, J.; Ma, H.; Nielsen, C. P.

    2009-12-01

    China surpassed the United States as the world’s largest carbon emitter in 2006. However, in situ atmospheric CO2 measurements providing valuable constraints to carbon sources and sinks in China have been sparse. This paper analyzes continuous measurements of CO2 and its correlation with CO at Miyun, a rural site 100 km northeast of Beijing, for a period of 49 months (2004.12 - 2008.12). The CO2 record was first smoothed to remove short-term variability caused by nearby sources/sinks. The resulting seasonal amplitude of CO2 at Miyun is about 7 ppm and the average increasing rate during the four years is about 2.7 ppm per year. The increasing rate appears to have slowed down during 2007 and 2008 and this feature is further analyzed by examining the secular trend in wintertime CO2/CO correlation slopes observed at the site. Back trajectory analysis is employed to classify the observational data by source regions. For the group of air masses coming from North China boundary layer, the CO2/CO correlation slopes in winter increased at an average rate of 19% per year (p< 0.027) from 2004 to 2008. As the emission ratio of CO2 to CO varies with the efficiency of combustion, the observed increasing trend in the CO2/CO correlation slope suggests that the policies in China’s 11th Five-Year Plan (2006-2010) to improve the nation’s energy intensity have improved overall combustion efficiency over North China. We also found that the pollution reduction measures implemented during the 2008 Beijing Olympics Games had resulted in significant increases in the CO2/CO correlation slopes in September and subsequent months of 2008. A new method was proposed to improve the CO2/CO correlation analysis in summertime. The CO2 record at Miyun will provide valuable data for future modeling analysis of constraining Chinese carbon sources and sinks.

  1. Highly efficient co-removal of copper (II) and phthalic acid with self-synthesized polyamine resin.

    PubMed

    Ling, Chen; Liu, Fu-Qiang; Long, Chao; Wei, Meng-Meng; Li, Aimin

    2014-01-01

    A novel method was proposed for efficient co-removal of Cu (II) and phthalic acid (PA) using self-synthesized polyamine resin (R-NH(2)). The adsorption properties of R-NH(2) were thoroughly investigated by equilibrium, kinetic and dynamic tests in sole and binary systems at pH 5.0. The Freundlich model was a good fit for all the isotherm data, showing higher Kf values in the binary system than the sole system. The pseudo-second-order kinetic equation showed a better correlation to the experimental data in all cases and PA uptake was much faster than that of Cu (II). R-NH(2) showed highest adsorption capacities to both Cu (II) and PA among the five tested resins. Moreover, the presence of PA markedly enhanced the adsorption of Cu (II), being around 3.5 times of that of the sole system. The adsorption of PA was also slightly increased when Cu (II) was coexistent. Furthermore, using Fourier transform infrared spectrometry (FTIR) and species calculations, possible mechanisms were proposed that Cu (II) coordinated with -NH(2) and negative PA species interacted with -NH(3)(+) by electrostatic attraction. [Cu-PA] complex in the binary system possessed a much higher affinity than free Cu (II) to chelating with -NH(2), resulting in mutual enhancement.

  2. Effects of surface charge, micro-bubble size and particle size on removal efficiency of electro-flotation.

    PubMed

    Han, M Y; Kim, M K; Ahn, H J

    2006-01-01

    Flotation is a water treatment alternative to sedimentation, and uses small bubbles to remove low-density particles from potable water and wastewater. The effect of zeta potential, bubble size and particle size on removal efficiency of the electro-flotation process was investigated because previous model-simulations indicated that these attributes are critical for high collision efficiency between micro-bubbles and particles. Solutions containing Al3+ as the metal ion were subjected to various conditions. The zeta potentials of bubbles and particles were similar under identical conditions, and their charges were influenced by metal ion concentration and pH. Maximum removal efficiency was 98 and 12% in the presence and absence of flocculation, respectively. Removal efficiency was higher when particle size was similar to bubble size. These results agree with modelling simulations and indicate that collision efficiency is greater when the zeta potential of one is negative and that of the other is positive and when their sizes are similar.

  3. Whole-body efficiency is negatively correlated with minimum torque per duty cycle in trained cyclists.

    PubMed

    Edwards, Lindsay M; Jobson, Simon A; George, Simon R; Day, Stephen H; Nevill, Alan M

    2009-02-15

    The purpose of this study was to determine whether there is a causal relationship between pedalling "circularity" and cycling efficiency. Eleven trained cyclists were studied during submaximal cycling. Variables recorded included gross and delta efficiency and the ratio of minimum to peak torque during a duty cycle. Participants also completed a questionnaire about their training history. The most notable results were as follows: gross efficiency (r = -0.72, P < 0.05 at 250 W) was inversely correlated with the ratio of minimum to peak torque, particularly at higher work rates. There was a highly significant inverse correlation between delta efficiency and average minimum torque at 200 W (r = -0.76, P < 0.01). Cycling experience was positively correlated with delta efficiency and gross efficiency, although experience and the ratio of minimum to peak torque were not related. These results show that variations in pedalling technique may account for a large proportion of the variation in efficiency in trained cyclists. However, it is also possible that some underlying physiological factor influences both. Finally, it appears that experience positively influences efficiency, although the mechanism by which this occurs remains unclear.

  4. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.

    PubMed

    Bonvin, Florence; Jost, Livia; Randin, Lea; Bonvin, Emmanuel; Kohn, Tamar

    2016-03-01

    In an effort to mitigate the discharge of micropollutants to surface waters, adsorption of micropollutants onto powdered activated carbon (PAC) after conventional wastewater treatment has been identified as a promising technology for enhanced removal of pharmaceuticals and pesticides from wastewater. We investigated the effectiveness of super-fine powdered activated carbon, SPAC, (ca. 1 μm mean particle diameter) in comparison to regular-sized PAC (17-37 μm mean diameter) for the optimization of micropollutant removal from wastewater. Adsorption isotherms and batch kinetic experiments were performed for 10 representative micropollutants (bezafibrate, benzotriazole, carbamazepine, diclofenac, gabapentin, mecoprop, metoprolol, ofloxacin, sulfamethoxazole and trimethoprim) onto three commercial PACs and their super-fine variants in carbonate buffer and in wastewater effluent. SPAC showed substantially faster adsorption kinetics of all micropollutants than conventional PAC, regardless of the micropollutant adsorption affinity and the solution matrix. The total adsorptive capacities of SPAC were similar to those of PAC for two of the three tested carbon materials, in all tested waters. However, in effluent wastewater, the presence of effluent organic matter adversely affected micropollutant removal, resulting in lower removal efficiencies especially for micropollutants with low affinity for adsorbent particles in comparison to pure water. In comparison to PAC, SPAC application resulted in up to two-fold enhanced dissolved organic carbon (DOC) removal from effluent wastewater. The more efficient adsorption process using SPAC translates into a reduction of contact time and contact tank size as well as reduced carbon dosing for a targeted micropollutant removal. In the tested effluent wastewater (5 mg/L DOC), the necessary dose to achieve 80% average removal of indicator micropollutants (benzotriazole, diclofenac, carbamazepine, mecoprop and sulfamethoxazole) ranged

  5. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    PubMed

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process.

  6. High SO{sub 2} removal efficiency testing. Technical progress report, October--December 1995

    SciTech Connect

    Blythe, G.

    1995-10-18

    This project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO{sub 2} removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The ``base`` project involved testing at the Tampa Electric Company Big Bend station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy`s Merom Station (Option I), Southwestern Electric Power Company`s Pirkey Station (Option II), PSI Energy`s Gibson Station (Option III), Duquesne Light`s Elrama Station (Option IV), and New York State Electric and Gas Corporation`s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. Following the introduction, this report is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarter that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts anticipated for the first quarter of calendar year 1996. Section 5 contains a brief acknowledgment.

  7. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments.

    PubMed

    Pedersen, Kristine Bondo; Kirkelund, Gunvor M; Ottosen, Lisbeth M; Jensen, Pernille E; Lejon, Tore

    2015-01-01

    Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included.

  8. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism

    PubMed Central

    Dong, Shipeng; Xiao, Huifang; Huang, Qingguo; Zhang, Jian; Mao, Liang; Gao, Shixiang

    2016-01-01

    The widespread occurrence of the beta-blocker labetalol causes environmental health concern. Enzymatic reactions are highly efficient and specific offering biochemical transformation of trace contaminants with short reaction time and little to none energy consumption. Our experiments indicate that labetalol can be effectively transformed by laccase-catalyzed reaction using 2, 2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator, while no significant removal of labetalol can be achieved in the absence of ABTS. A total of three products were identified. It is interesting that the presence of graphene greatly increased the reaction rate while not changed the products. In the presence of 100 μg/L graphene, the pseudo-first-order reaction rate constant was increased ~50 times. We found that the enhancement of graphene is probably attributed to the formation and releasing of ABTS2+ which has a much greater reactivity towards labetalol when graphene is present. This study provides fundamental information for laccase-ABTS mediated labetalol reactions and the effect of graphene, which could eventually lead to development of novel methods to control beta-blocker contamination. PMID:26891761

  9. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Shipeng; Xiao, Huifang; Huang, Qingguo; Zhang, Jian; Mao, Liang; Gao, Shixiang

    2016-02-01

    The widespread occurrence of the beta-blocker labetalol causes environmental health concern. Enzymatic reactions are highly efficient and specific offering biochemical transformation of trace contaminants with short reaction time and little to none energy consumption. Our experiments indicate that labetalol can be effectively transformed by laccase-catalyzed reaction using 2, 2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator, while no significant removal of labetalol can be achieved in the absence of ABTS. A total of three products were identified. It is interesting that the presence of graphene greatly increased the reaction rate while not changed the products. In the presence of 100 μg/L graphene, the pseudo-first-order reaction rate constant was increased ~50 times. We found that the enhancement of graphene is probably attributed to the formation and releasing of ABTS2+ which has a much greater reactivity towards labetalol when graphene is present. This study provides fundamental information for laccase-ABTS mediated labetalol reactions and the effect of graphene, which could eventually lead to development of novel methods to control beta-blocker contamination.

  10. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    PubMed Central

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  11. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor.

    PubMed

    Xia, Siqing; Zhang, Zhiqiang; Zhong, Fohua; Zhang, Jiao

    2011-02-28

    A continuously stirred hydrogen-based membrane biofilm reactor (MBfR) with polyvinyl chloride (PVC) hollow fiber membrane was investigated for removing 2-chlorophenol (2-CP) from contaminated drinking water. The bioreactor startup was achieved by acclimating the microorganisms from a denitrifying and sulfate-reducing MBfR to the drinking water contaminated by 2-CP. The effects of some major factors, including 2-CP loading, H(2) pressure, nitrate loading, and sulfate loading, on the removal of 2-CP by the MBfR were systematically investigated. Although the effluent 2-CP concentration increased with its increasing influent loading, the removing efficiency of 2-CP by the MBfR could be up to 94.7% under a high influent loading (25.71 mg/L d). The removing efficiency of 2-CP by the MBfR could be improved by higher H(2) pressure, and lower influent nitrate concentration and sulfate concentration. A high H(2) pressure can assure enough available H(2) as the electron donor for 2-CP degradation. The competition in the electron donor made nitrate and sulfate inhibit the degradation of 2-CP in the MBfR. The electron flux analyses indicated that the degradation of 2-CP only accounted for a small part of electron flux, and the autohydrogenotrophic bacteria in the MBfR were highly efficient for the 2-CP removal.

  12. COD, nutrient removal and disinfection efficiency of a combined subsurface and surface flow constructed wetland: A case study.

    PubMed

    Sartori, Laura; Canobbio, Sergio; Fornaroli, Riccardo; Cabrini, Riccardo; Marazzi, Francesca; Mezzanotte, Valeria

    2016-01-01

    A constructed wetland system composed of a subsurface flow wetland, a surface flow wetland and a facultative pond was studied from July 2008 until May 2012. It was created to treat the domestic sewage produced by a hamlet of 150 inhabitants. Monthly physicochemical and microbiological analyses were carried out in order to evaluate the removal efficiency of each stage of the process and of the total treatment system. Pair-wise Student's t-tests showed that the mean removal of each considered parameter was significantly different (α = 0.05) between the various treatment phases. Two-way ANOVA and Tukey's HSD tests were used to find significant differences between wetland types and seasons in the removal efficiency of the considered water quality parameters. Significant differences in percent removal efficiency between the treatment phases were observed for total phosphorus, total nitrogen, ammonia nitrogen and organic load (expressed as Chemical Oxygen Demand). In general, the wastewater treatment was carried by the sub-superficial flow phase mainly, both in growing season and in quiescence season. Escherichia coli removal ranged from 98% in quiescence season to >99% in growing season (approximately 2-3 orders of magnitude). The inactivation of fecal bacteria was not influenced by the season, but only by the treatment phase.

  13. Position Paper on Practicable Performance Criteria for the Removal Efficiency of Volatile Radionuclides

    SciTech Connect

    R. T. Jubin; N. Soelberg; D. M. Strachan

    2012-03-01

    As a result of fuel reprocessing, volatile radionuclides may be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129I. The question we attempted to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examined the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012). These regulations apply to the total radionuclide release and to a particular organ - the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, we provided several cases. We first looked at the inventories for these radionuclides for three fuel types (PWR UOX, PWR MOX, and AHTGR), several burn-up values, and time out of reactor extending to 200 y. We calculated doses to the maximum exposed individual (MEI) with the EPA code CAP-88 (Rosnick 1992). Finally, we looked at two dose cases. Allocating all of the allowable dose to be used by the volatile radionuclides is one case, but, perhaps, unrealistic. In lieu of this, we arbitrarily selected a value of 10% of the allowable dose to be assigned to the volatile radionuclides. We calculated the required decontamination factors (DFs) for both of these cases, including the case for the thyroid dose for which 14C and 129I were the main contributors. With respect to 129I doses, we found that the highest dose was calculated with iodine as a fine particulate. The dose scaled as the fraction of the total 129I that was particulate. Therefore, we assumed for all of our calculations that 100% of the 129I was particulate and allow the user of the results given here to scale our calculated doses to their needs.

  14. Improvement in ammonium removal efficiency in wastewater treatment by mixed culture of Alcaligenes faecalis no. 4 and L1.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2007-01-01

    To improve ammonium removal efficiency in wastewater treatment, a mixed culture of Alcaligenes faecalis no. 4 and its mutant L1, both of which have heterotrophic nitrification and aerobic denitrification abilities, was performed. In a batch culture, no. 4 has a higher denitrification ability than L1, but its ammonium removal rate was lower. In a mixed continuous culture in the ammonium loading range of 750 to 3500 mg-N/l/d, the average ammonium removal rate and the average denitrification ratio were 61 mg-N/l/h and 31%, respectively. In the mixed culture, the ammonium removal rate was twofold higher than that in a single culture of no. 4, the rate was similar to that in a single culture of L1, and the denitrification ratio was very high compared with that in the single culture of L1.

  15. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I determine the add-on control... Emission Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on...

  16. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I determine the add-on control... Emission Rate with Add-on Controls Option § 63.3966 How do I determine the add-on control device emission... the add-on control device emission destruction or removal efficiency as part of the performance...

  17. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false How do I determine the add-on control... determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction...

  18. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control...

  19. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the add-on control... Emission Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on...

  20. 40 CFR 63.4566 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the add-on control... with Add-on Controls Option § 63.4566 How do I determine the add-on control device emission destruction... add-on control device emission destruction or removal efficiency as part of the performance...

  1. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I determine the add-on control... Requirements § 63.4362 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control...

  2. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... § 63.4362 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control...

  3. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false How do I determine the add-on control... determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction...

  4. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the add-on control... Emission Rate with Add-on Controls Option § 63.3966 How do I determine the add-on control device emission... the add-on control device emission destruction or removal efficiency as part of the performance...

  5. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the add-on control... Requirements § 63.4362 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control...

  6. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the add-on control... Emission Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on...

  7. 40 CFR 63.4566 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the add-on control... with Add-on Controls Option § 63.4566 How do I determine the add-on control device emission destruction... add-on control device emission destruction or removal efficiency as part of the performance...

  8. 40 CFR 63.4566 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I determine the add-on control... with Add-on Controls Option § 63.4566 How do I determine the add-on control device emission destruction... add-on control device emission destruction or removal efficiency as part of the performance...

  9. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the add-on control... Emission Rate with Add-on Controls Option § 63.3966 How do I determine the add-on control device emission... the add-on control device emission destruction or removal efficiency as part of the performance...

  10. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false How do I determine the add-on control... determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction...

  11. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... with Add-on Controls Option § 63.3966 How do I determine the add-on control device emission destruction... add-on control device emission destruction or removal efficiency as part of the performance...

  12. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the add-on control... Requirements § 63.4362 How do I determine the add-on control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control...

  13. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... Coating of Metal Cans Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.3545 How do I determine the add-on control device emission destruction or removal efficiency? You must...

  14. 40 CFR 63.4166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... Coating of Large Appliances Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.4166 How do I determine the add-on control device emission destruction or removal efficiency? (a)...

  15. 40 CFR 63.4965 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... Coating of Metal Furniture Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.4965 How do I determine the add-on control device emission destruction or removal efficiency? You...

  16. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants for Engine Test Cells/Stands Testing and Initial Compliance Requirements § 63.9323 How do I... and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.9310. You must conduct three test...

  17. Correlated activity of cortical neurons survives extensive removal of feedforward sensory input

    PubMed Central

    Shapcott, Katharine A.; Schmiedt, Joscha T.; Saunders, Richard C.; Maier, Alexander; Leopold, David A.; Schmid, Michael C.

    2016-01-01

    A fundamental property of brain function is that the spiking activity of cortical neurons is variable and that some of this variability is correlated between neurons. Correlated activity not due to the stimulus arises from shared input but the neuronal circuit mechanisms that result in these noise correlations are not fully understood. Here we tested in the visual system if correlated variability in mid-level area V4 of visual cortex is altered following extensive lesions of primary visual cortex (V1). To this end we recorded longitudinally the neuronal correlations in area V4 of two behaving macaque monkeys before and after a V1 lesion while the monkeys fixated a grey screen. We found that the correlations of neuronal activity survived the lesions in both monkeys. In one monkey, the correlation of multi-unit spiking signals was strongly increased in the first week post-lesion, while in the second monkey, correlated activity was slightly increased, but not greater than some week-by-week fluctuations observed. The typical drop-off of inter-neuronal correlations with cortical distance was preserved after the lesion. Therefore, as V4 noise correlations remain without feedforward input from V1, these results suggest instead that local and/or feedback input seem to be necessary for correlated activity. PMID:27721468

  18. High SO{sub 2} removal efficiency testing. Technical progress report

    SciTech Connect

    Blythe, G.

    1994-04-28

    The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO{sub 2} removal efficiency. The upgrades to be evaluated mostly involve using additives in the FGD systems. On the base program, testing was completed at the Tampa Electric Big Bend Station in November 1992. The upgrade option tested was DBA additive. For Option 1, at the Hoosier Energy Merom Station, three upgrade options have been tested: DBA additive, sodium formate additive, and high pH set point operation. Option 2 has involved testing at the Southwestern Electric Power Company Pirkey Station. Both sodium formate and DBA additives were tested as potential upgrade options at Pirkey. On Option 3, for testing at the PSI Energy Gibson Station, a DBA additive performance and consumption test was conducted in late February through mid-March 1994. Preliminary results from these tests are discussed in Section 3 of this progress report. Option 4 is for testing at the Duquesne Light Elrama Station. The FGD system employs magnesium-enhanced lime reagent and venturi absorber modules. An EPRI-funded model evaluation of potential upgrade options for this FGD system, along with a preliminary economic evaluation, determined that the most attractive upgrade options for this site were to increase thiosulfate ion concentrations in the FGD system liquor to lower oxidation percentages and increase liquid-phase sulfite alkalinity, and to increase the venturi absorber pressure drop to improve gas/liquid contacting. Parametric testing of these upgrade options was conducted in late March 1994. Preliminary results from these tests are also discussed in Section 3 of this progress report.

  19. Assessment of removal efficiency of perfluorocompounds (PFCs) in a semiconductor fabrication plant by gas chromatography.

    PubMed

    Ou Yang, Chang-Feng; Kam, Seak-Hong; Liu, Chia-Hung; Tzou, Jiren; Wang, Jia-Lin

    2009-08-01

    This study investigated a gas chromatographic (GC) method to assess the destruction or removal efficiency (DRE) of local scrubbers on five perfluorocompounds (PFCs), i.e., SF(6), NF(3), CF(4), C(2)F(6), and C(3)F(8), which are very potent greenhouse gases used in a semiconductor fabrication plant. Air samples taken at inlets and outlets of local scrubbers were analyzed by a self-constructed multi-column GC system equipped with thermal conductivity detection. Three packed columns were integrated into the heart-cut GC system to allow simultaneous analysis of the five target PFCs. The Porapak Q pre-column performs rough separation and cuts eluent groups to two analytical columns for optimal separation. The Molecular Sieve - 5A column separated NF(3), CF(4), and C(3)F(8) and the second Porapak Q separated SF(6) and C(2)F(6). Linearity was greater than 0.995 (R(2)) for the five PFCs, and the reproducibility was about 4% (relative standard deviation) for NF(3), and better than 0.5% for the other four PFCs. DRE for the combustion (CB) and electric-thermal types of local scrubbers was evaluated by taking into account the in-line dilution from air and fuel gases. Both flow and tracer methods were employed to deduce the dilution factors (DFs). For the tracer method, helium was employed as the tracer and injected upstream of the scrubbers and thus mixed with the exhaust gas. With this method, the DFs were determined to be in the range from 4.8 to 5.9 for the CB unit, significantly higher than the value of 3.3 based on the flow method. The DREs for the CB unit for C(3)F(8) were greater than 90% and between 40% and 50% for CF(4).

  20. Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal.

    PubMed

    Sun, Qi; Aguila, Briana; Perman, Jason; Earl, Lyndsey D; Abney, Carter W; Cheng, Yuchuan; Wei, Hao; Nguyen, Nicholas; Wojtas, Lukasz; Ma, Shengqian

    2017-02-22

    A key challenge in environmental remediation is the design of adsorbents bearing an abundance of accessible chelating sites with high affinity, to achieve both rapid uptake and high capacity for the contaminants. Herein, we demonstrate how two-dimensional covalent organic frameworks (COFs) with well-defined mesopore structures display the right combination of properties to serve as a scaffold for decorating coordination sites to create ideal adsorbents. The proof-of-concept design is illustrated by modifying sulfur derivatives on a newly designed vinyl-functionalized mesoporous COF (COF-V) via thiol-ene "click" reaction. Representatively, the material (COF-S-SH) synthesized by treating COF-V with 1,2-ethanedithiol exhibits high efficiency in removing mercury from aqueous solutions and the air, affording Hg(2+) and Hg(0) capacities of 1350 and 863 mg g(-1), respectively, surpassing all those of thiol and thioether functionalized materials reported thus far. More significantly, COF-S-SH demonstrates an ultrahigh distribution coefficient value (Kd) of 2.3 × 10(9) mL g(-1), which allows it to rapidly reduce the Hg(2+) concentration from 5 ppm to less than 0.1 ppb, well below the acceptable limit in drinking water (2 ppb). We attribute the impressive performance to the synergistic effects arising from densely populated chelating groups with a strong binding ability within ordered mesopores that allow rapid diffusion of mercury species throughout the material. X-ray absorption fine structure (XAFS) spectroscopic studies revealed that each Hg is bound exclusively by two S via intramolecular cooperativity in COF-S-SH, further interpreting its excellent affinity. The results presented here thus reveal the exceptional potential of COFs for high-performance environmental remediation.

  1. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland.

    PubMed

    Wiessner, A; Kappelmeyer, U; Kuschk, P; Kästner, M

    2005-01-01

    A laboratory reactor planted with Juncus effusus treating an artificial wastewater was used to investigate the short-term and long-term variations and interactions in the redox conditions as well as the removal efficiency of C and the N turnover. The permanent circulation of the process water enabled the micro-gradient processes to be evaluated for an operating period of 20 months. Steady-state conditions were achieved throughout the operating period with high mean removal efficiencies of 92.7% total organic carbon, 82.0% ammonia and 97.6% nitrate. Daily variations in the redox state of the rhizosphere of a few hundred mV were observed, ranging from about -200 to oxidized conditions of about +200 mV and driven by daylight. Variations in pH associated with changes in light and redox were linked to the dynamics of the fates of organic and inorganic carbon species. The ammonia removal processes were found to be firmly established, including for moderately reduced redox conditions with high efficiencies for E(h)>-50 mV. The enrichment of ammonia (up to 13 mg l(-1)) closely linked to the light, particularly during summertime, indicates the existence of hitherto unconsidered additional N turnover pathways in the rhizoplane involving N(2) produced by microbes or released by plants. C turnover was strongly related to the seasonal variation in illumination with minimum efficiencies during the dark season. In addition, it was characterized by oscillation with periods of approximately 1 month. The relationships found are dominant for biofilms on the rhizoplane and decisive for the removal efficiency of especially simple constructed and natural wetlands. The results highlight the importance of helophytes and their physiological specifics for removal processes.

  2. Filopodial morphology correlates to the capture efficiency of primary T-cells on nanohole arrays.

    PubMed

    Kim, Dong-Joo; Kim, Gil-Sung; Seol, Jin-Kyeong; Hyung, Jung-Hwan; Park, No-Won; Lee, Mi-Ri; Lee, Myung Kyu; Fan, Rong; Lee, Sang-Kwon

    2014-06-01

    Nanostructured surfaces emerge as a new class of material for capture and separation of cell populations including primary immune cells and disseminating rare tumor cells, but the underlying mechanism remains elusive. Although it has been speculated that nanoscale topological structures on cell surface are involved in the cell capture process, there are no studies that systematically analyze the relation between cell surface structures and the capture efficiency. Here we report on the first mechanistic study by quantifying the morphological parameters of cell surface nanoprotrusions, including filopodia, lamellipodia, and microvilli in the early stage of cell capture (< 20 min) in correlation to the efficiency of separating primary T lymphocytes. This was conducted by using a set of nanohole arrays (NHAs) with varying hole and pitch sizes. Our results showed that the formation of filopodia (e.g., width of filopodia and the average number of the filopodial filaments per cell) depends on the feature size of the nanostructures and the cell separation efficiency is strongly correlated to the number of filopodial fibers, suggesting a possible role of early stage mechanosensing and cell spreading in determining the efficiency of cell capture. In contrast, the length of filopodial filaments was less significantly correlated to the cell capture efficiency and the nanostructure dimensions of the NHAs. This is the first mechanistic study on nanostructure-based immune cell capture and provides new insights to not only the biology of cell-nanomaterial interaction but also the design of new rare cell capture technologies with improved efficiency and specificity.

  3. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.

    PubMed

    Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y

    2014-06-01

    In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination.

  4. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water

    PubMed Central

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A.

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery. PMID:26200355

  5. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water.

    PubMed

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.

  6. Kinetic and stoichiometric characterization for efficient enhanced biological phosphorus removal (EBPR) process at high temperatures.

    PubMed

    Liau, Kee Fui; Shoji, Tadashi; Ong, Ying Hui; Chua, Adeline Seak May; Yeoh, Hak Koon; Ho, Pei Yee

    2015-04-01

    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.

  7. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole.

    PubMed

    Parham, H; Zargar, B; Shiralipour, R

    2012-02-29

    Mercury in the lowest levels of concentrations is dangerous for human health due to its bioaccumulation in body and toxicity. This investigation shows the effective removal of mercury (II) ions from contaminated surface waters by modified magnetic iron oxide nanoparticles (M-MIONPs) with 2-mercaptobenzothiazole as an efficient adsorbent. The proposed method is fast, simple, cheap, effective and safe for treatment of mercury polluted waters. Preparation of adsorbent is easy and removal time is short. Non-modified magnetic iron oxide nanoparticles (MIONPs) can adsorb up to 43.47% of 50 ngmL(-1) of Hg (II) ions from polluted water, but modified magnetic ironoxide nanoparticles (M-MIONPs) improved the efficiency up to 98.6% for the same concentration. The required time for complete removal of mercury ions was 4 min. Variation of pH and high electrolyte concentration (NaCl) of the solution do not have considerable effect on the mercury removal efficiency. Loading capacity of adsorbent for Hg ions is obtained to be 590 μgg(-1).

  8. The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment.

    PubMed

    Ncube, Philani; Pidou, Marc; Stephenson, Tom; Jefferson, Bruce; Jarvis, Peter

    2016-12-15

    It is well known that filtration removal efficiency falls with an increase in flow rate; however, there is limited supporting experimental data on how removal efficiency changes for filters with multiple layers of media and for wastewater filtration, a practice that is becoming more common. Furthermore, information is not available on the characteristics of particles that are removed at different flow rates. Here, a quadruple media filter was operated at hydraulic loading rates (HLRs) between 5 and 60 mh(-1) with subsequent measurement of total suspended solids, turbidity and particle size distribution (PSD). Samples were collected from the filter influent, effluent and also from between media layers. Pressure changes across the filter layers were also measured. The solids removal efficiency of the filter varied inversely with the increase in filtration rate. However, the multiple media layers reduced the negative impact of increased HLR in comparison to a single media filter. High filtration rates were shown to transport solids, such that particle retention and headloss development was distributed across the entire depth of the multi-media filter. There was also a progressive decrease in the suspension particle size leaving each of the filter layers. The particle hydrodynamic force simulation was consistent with the changes in measured PSD through the filter layers.

  9. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    PubMed

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration.

  10. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    PubMed Central

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration. PMID:25721019

  11. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  12. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-27

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  13. Influence of earthworm Eisenia fetida on removal efficiency of N and P in vertical flow constructed wetland.

    PubMed

    Xu, Defu; Li, Yingxue; Howard, Alan

    2013-09-01

    This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p < 0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy.

  14. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.

    PubMed

    Khalaf, Samer; Al-Rimawi, Fuad; Khamis, Mustafa; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Mecca, Gennaro; Karaman, Rafik

    2013-01-01

    The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of a widely used non-steroid anti-inflammatory drug (NSAID) mefenamic acid was investigated. The sequential system included activated sludge, ultrafiltration by hollow fibre membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff, activated carbon and a reverse osmosis (RO) unit. The performance of the integrated plant showed complete removal of mefenamic acid from spiked wastewater samples. The activated carbon column was the most effective component in removing mefenamic acid with a removal efficiency of 97.2%. Stability study of mefenamic acid in pure water and Al-Quds activated sludge revealed that the anti-inflammatory drug was resistant to degradation in both environments. Batch adsorption of mefenamic acid by activated charcoal and a composite micelle (otadecyltrimethylammonium (ODTMA)-clay (montmorillonite) was determined at 25.0°C. Langmuir isotherm was found to fit the data with Qmax of 90.9 mg g(-1) and 100.0 mg g(-1) for activated carbon and micelle-clay complex, respectively. Filtration experiment by micelle-clay columns mixed with sand in the mg L(-1) range revealed complete removal of the drug with much larger capacity than activated carbon column. The combined results demonstrated that an integration of a micelle-clay column in the plant system has a good potential to improve the removal efficiency of the plant towards NSAID drugs such as mefenamic acid.

  15. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  16. Is the efficiency of stock market correlated with multifractality? An evidence from the Shanghai stock market

    NASA Astrophysics Data System (ADS)

    Gu, Rongbao; Shao, Yanmin; Wang, Qingnan

    2013-01-01

    In this paper, we propose an efficiency index and multifractality degree for financial markets, and investigate the dynamics of the relationship between the two indices for the Shanghai stock market employing the technique of rolling window. By using the DCCA cross-correlation coefficient, we find that, for the Shanghai stock market, the increase in the degree of market multifractality can lead to a lower degree of market efficiency before the equity division reforms, whereas it can result in a lower degree of market efficiency in the short-term and a higher degree of market efficiency in the long-term after the equity division reforms. This finding reflects the process of development of the Shanghai stock market and also provides strong evidence which supports Liu’s argument that the increase in the degree of market complexity can improve the market efficiency Liu (2009) [1].

  17. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size.

    PubMed

    Wu, Na; Wei, Huanhuan; Zhang, Lizhi

    2012-01-03

    We demonstrated that mesoporous titania beads of uniform size (about 450 μm) and high surface area could be synthesized via an alginate biopolymer template method. These mesoporous titania beads could efficiently remove Cr(VI), Cd(II), Cr(III), Cu(II), and Co(II) ions from simulated wastewater with a facile subsequent solid-liquid separation because of their large sizes. We chose Cr(VI) removal as the case study and found that each gram of these titania beads could remove 6.7 mg of Cr(VI) from simulated wastewater containing 8.0 mg·L(-1) of Cr(VI) at pH = 2.0. The Cr(VI) removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The Cr(VI) removal mechanism of titania beads might be attributed to the electrostatic adsorption of Cr(VI) ions in the form of negatively charged HCrO(4)(-) by positively charged TiO(2) beads, accompanying partial reduction of Cr(VI) to Cr(III) by the reductive surface hydroxyl groups on the titania beads. The used titania beads could be recovered with 0.1 mol·L(-1) of NaOH solution. This study provides a promising micro/nanostructured adsorbent with easy solid-liquid separation property for heavy metal ions removal.

  18. Africanized honey bees are efficient at detecting, uncapping and removing dead brood.

    PubMed

    Morais, M M; Francoy, T M; Pereira, R A; De Jong, D; Gonçalves, L S

    2009-01-01

    The hygienic behavior of honey bees is based on a two-step process, including uncapping and removing diseased, dead, damaged, or parasitized brood inside the cell. We evaluated during periods of 1 h the time that hygienic and non-hygienic colonies of Africanized honey bees spend to detect, uncap and remove pin-killed brood using comb inserts with transparent walls placed in observation hives. We observed that hygienic colonies are significantly faster in detecting, uncapping and removing dead brood in the cells (P < 0.001).

  19. Economic Efficiency and Equity in Dams Removal: Case studies in Northeastern Massachusetts Doina Oglavie, Ellen Douglas, David Terkla

    NASA Astrophysics Data System (ADS)

    Oglavie, D. R.; Douglas, E. M.; Terkla, D.

    2009-12-01

    According to American Rivers (www.americanrivers.org), Massachusetts has almost 3,000 dams under state regulation, 296 of which have been classified as high hazard, meaning they pose a serious threat to human life if they should fail. Most of these dams, however, are low head, “run-of-the-river” dams that no longer serve the purpose for which they were built. The presence of these dams has fragmented aquatic and riparian ecosystems, impeded fish passage and generally impacted the natural ecological and hydrological functioning of the streams in which they reside. Dam removal should be considered when a dam no longer serves its function. Although in many cases, the removal of a dam is environmentally beneficial (at least over the long term), sometimes the removal of a dam can incur environmental costs, such as release of contaminants that were sequestered behind the dam. Dam removal is a complex issue especially with respect to privately owned dams. In many cases, dam removal is less costly than dam maintenance or upgrade, hence dam removal decisions tend to be based on purely monetary considerations, and the environmental costs or benefits associated with the dam are not considered. Typically, the main objective for the dam owner is to incur the lowest possible cost (private cost), whether it be operating and maintenance or removal; external costs (environmental degradation) are rarely, if ever, considered, hence the true cost to society is not included in the economic analysis. If dam operation and removal decisions are to be economically efficient, then they have to include both the private costs as well as the external (environmental) costs. The purpose of this work is to 1) attempt to quantify the externalities associated with the maintenance and the removal of dams, 2) assess whether or not the current dam removal evaluation process maximizes social welfare (efficiency and equity) and 3) suggest ways in which this process can be improved by including the

  20. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    PubMed

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (p<0.05) affect As removal efficiency. The As concentration was reduced during filtration from 115.1 ± 3.4 μg L(-1) in the groundwater to 5.3 ± 0.7 μg L(-1) in the filtered water (95% removal). The first flush of water from the filter contained As concentrations below the drinking water limit and suggests that this water can be used without risk for human health. Colony forming units (CFUs) of coliform bacteria increased during filtration and storage from 5 ± 4 per 100mL in the groundwater to 5.1 ± 1.5 × 10(3) and 15 ± 1.4 × 10(3) per 100mL in the filtered water and in the water from the storage tank, respectively. After filter sand replacement, CFUs of Escherichia coli of <100 per 100mL were quantified. None of the samples contained CFUs of Enterococcus spp. No critical enrichment of fecal indicator bacteria belonging to E. coli or Enterococcus spp. was observed in the treated drinking water by qPCR targeting the 23S rRNA gene. The results demonstrate the efficient and reliable performance of household

  1. Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China

    NASA Astrophysics Data System (ADS)

    Ma, Pengcheng; Li, Daye; Li, Shuo

    2016-02-01

    Using one minute high-frequency data of the Shanghai Composite Index (SHCI) and the Shenzhen Composite Index (SZCI) (2007-2008), we employ the detrended fluctuation analysis (DFA) and the detrended cross correlation analysis (DCCA) with rolling window approach to observe the evolution of market efficiency and cross-correlation in pre-crisis and crisis period. Considering the fat-tail distribution of return time series, statistical test based on shuffling method is conducted to verify the null hypothesis of no long-term dependence. Our empirical research displays three main findings. First Shanghai equity market efficiency deteriorated while Shenzhen equity market efficiency improved with the advent of financial crisis. Second the highly positive dependence between SHCI and SZCI varies with time scale. Third financial crisis saw a significant increase of dependence between SHCI and SZCI at shorter time scales but a lack of significant change at longer time scales, providing evidence of contagion and absence of interdependence during crisis.

  2. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.

    PubMed

    Ouhadi, V R; Yong, R N; Shariatmadari, N; Saeidijam, S; Goodarzi, A R; Safari-Zanjani, M

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of "calcite or carbonate" (CaCO(3)) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  3. A new material for selective removal of nitrogen compounds from gasoils towards more efficient HDS processes.

    PubMed

    Macaud, Mathieu; Schulz, Emmanuelle; Vrinat, Michel; Lemaire, Marc

    2002-10-21

    A selective removal of nitrogen compounds from gasoils is proposed, using a recyclable sorbent capable of forming charge-transfer complexes; the selective elimination of nitrogen compounds strongly improves the hydrodesulfurization (HDS) of denitrogenated feed.

  4. Removal Efficiencies and Attachment Coefficients for Cryptosporidium in Sandy Alluvial Riverbank Sediment

    EPA Science Inventory

    Riverbank filtration has been shown to be effective at removing viable Cryptosporidium parvum oocysts and, therefore, drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering a...

  5. Genetic parameters of ascites-related traits in broilers: correlations with feed efficiency and carcase traits.

    PubMed

    Pakdel, A; van Arendonk, J A M; Vereijken, A L J; Bovenhuis, H

    2005-02-01

    (1) Pulmonary hypertension syndrome followed by ascites is a metabolic disorder in broilers that occurs more often in fast-growing birds and at cool temperatures. (2) Knowledge of the genetic relationships among ascites-related traits and performance traits like carcase traits or feed efficiency traits is required to design breeding programmes that aim to improve the degree of resistance to ascites syndrome as well as production traits. The objective of this study was to estimate these genetic correlations. (3) Three different experiments were set up to measure ascites-related traits (4202 birds), feed efficiency traits (2166 birds) and carcase traits (2036 birds). The birds in different experiments originated from the same group of parents, which enabled the estimation of genetic correlations among different traits. (4) The genetic correlation of body weight (BW) measured under normal conditions and in the carcase experiment with the ascites indicator trait of right ventricle to total ventricle ratio (RV:TV) measured under cold conditions was 0.30. The estimated genetic correlation indicated that single-trait selecting for BW leads to an increase in occurrence of the ascites syndrome but that there are realistic opportunities of multi-trait selection of birds for improved BW and resistance to ascites. (5) Weak but positive genetic relationships were found between feed efficiency and ascites-related traits suggesting that more efficient birds tend to be slightly more susceptible to ascites. (6) The relatively low genetic correlation between BW measured in the carcase or in the feed efficiency experiments and BW measured in the ascites experiment (0.49) showed considerable genotype by environment interaction. (7) These results indicate that birds with high genetic potential for growth rate under normal temperature conditions have lower growth rate under cold-stress conditions due to ascites.

  6. Xenobiotic removal efficiencies in wastewater treatment plants: residence time distributions as a guiding principle for sampling strategies.

    PubMed

    Majewsky, Marius; Gallé, Tom; Bayerle, Michael; Goel, Rajeev; Fischer, Klaus; Vanrolleghem, Peter A

    2011-11-15

    The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal

  7. Event-based quantification of emerging pollutant removal for an open stormwater retention basin - loads, efficiency and importance of uncertainties.

    PubMed

    Sébastian, C; Becouze-Lareure, C; Lipeme Kouyi, G; Barraud, S

    2015-04-01

    Up to now, emerging contaminants have not been further-studied in in-situ stormwater best management practices and especially in detention basins. In this article, the efficiency of a dry stormwater detention basin was investigated regarding the removal of 7 alkylphenols and alkylphenol ethoxylates, 9 polybrominated diphenyl ethers, 45 pesticides and bisphenol A. Concentrations of contaminants were obtained by chemical analysis on dissolved and particulate phase distinctly. The removal efficiency was assessed on total, dissolved and particulate phase accounting for the global chain of uncertainty with a 95% confidence interval. Results showed that pesticides (rather hydrophilic) are not trapped in the detention basin but are released contrarily to B209 which is mostly in particulate phase. Alkylphenols and alkylphenol ethoxylates are present in both phases and the efficiency is storm event-dependent. Uncertainty consideration in efficiency determination revealed efficiency data, usually presented by raw values are not relevant to conclude on the performance of a detention basin. In this case study, efficiency data with a 95% confidence interval indicate that only 35%, 50% and 41% of campaigns showed an impact (in trapping or releasing) of the detention basin on alkylphenols and ethoxylates, polybrominated diphenyl ethers and pesticides respectively.

  8. Comparison of nickel oxide and palladium nanoparticle loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm studies of removal process.

    PubMed

    Arabzadeh, S; Ghaedi, M; Ansari, A; Taghizadeh, F; Rajabi, M

    2015-02-01

    Palladium nanoparticles (Pd-NPs) and nickel oxide nanoparticles (NiO-NPs) were synthesized and loaded on activated carbon (AC). This novel material successfully used for the removal of methylene blue (MB) dye from aqueous medium. Full characterization of both material using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Brunauer-Emmet-Teller analyses for Pd-NP show their high surface area (>1340 m(2)/g) and low pore size (<20 Å) and average particle size lower than 45 Å and for NiO-NP show their high surface area (>1316.1554 m(2)/g) and low pore size (<20 Å) and average particle size lower than 46 Å in addition to high reactive atom and presence of various functional groups. These unique properties make them possible for efficient removal of MB. In batch experimental set-up, optimum conditions for maximum removal of MB by both adsorbents were attained following searching effect of variables such as central composite design. The Langmuir isotherm was found to be highly recommended for fitting the experimental equilibrium data. The kinetic of adsorption of MB on both adsorbents strongly can be fitted by a combination of pseudo-second order and intraparticle diffusion pathway. The experimental result achieved in this article shows the superiority of Pd-NP-AC for MB removal than NiO-NP-AC, so the maximum adsorption capacities of Pd-NP-AC and NiO-NP-AC were 555.5 mg/g and 588.2 mg/g, respectively.

  9. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    PubMed

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency.

  10. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-06-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal-organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  11. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent.

  12. The Coagulant Type Influence on Removal Efficiency of 5- and 6-Ring Pahs During Water Coagulation Process

    NASA Astrophysics Data System (ADS)

    Nowacka, Anna; Włodarczyk-Makuła, Maria

    2014-12-01

    The article presents results on investigation of the removal efficiency of selected 5- and 6-ring polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[j]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene) from water during coagulation and sedimentation process. Two pre-hydrolyzed aluminum coagulants: PAX XL 19H and FLOKOR 105V were chosen for research. Process was carried out at optimum process parameters: rapid-mixing - 3 min at the rotational speed of 200 rpm, slow mixing - 10 min at 30 rpm, sedimentation - 60 min. The removal effectiveness was dependant on coagulant type and its composition. Better results in the removal of 5-and 6-ring PAHs were obtained after application of FLOKOR 105V (lower aluminum content) than after using PAX XL 19H.

  13. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    PubMed Central

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-01-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process. PMID:26041691

  14. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Bertrand, Alexander

    2016-12-01

    Objective. Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. Approach. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. Main results. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Significance. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.

  15. Removal Efficiency of Radioactive Cesium and Iodine Ions by a Flow-Type Apparatus Designed for Electrochemically Reduced Water Production

    PubMed Central

    Hamasaki, Takeki; Nakamichi, Noboru; Teruya, Kiichiro; Shirahata, Sanetaka

    2014-01-01

    The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people’s attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio–cesium and –iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water. PMID:25029447

  16. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    PubMed

    Hamasaki, Takeki; Nakamichi, Noboru; Teruya, Kiichiro; Shirahata, Sanetaka

    2014-01-01

    The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  17. Removal and deposition efficiencies of the long-lived 222Rn daughters during etching of germanium surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wójcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2012-06-01

    Removal and deposition efficiencies of the long-lived 222Rn daughters during etching from and onto surfaces of standard and high purity germanium were investigated. The standard etching procedure of Canberra-France used during production of high purity n-type germanium diodes was applied to germanium discs, which have been exposed earlier to a strong radon source for deposition of its progenies. An uncontaminated sample was etched in a solution containing 210Pb, 210Bi and 210Po. All isotopes were measured before and after etching with appropriate detectors. In contrast to copper and stainless steel, they were removed from germanium very efficiently. However, the reverse process was also observed. Considerable amounts of radioactive lead, bismuth and polonium isotopes present initially in the artificially polluted etchant were transferred to the clean high purity surface during processing of the sample.

  18. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil.

    PubMed

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Li, Ting; Li, Yun; Deng, Ouping; Gong, Guoshu

    2014-12-01

    The Pb removal efficiencies from contaminated soils by low molecular weight organic acid (LMWOA) and nanoscale zero-valent iron (nZVI) were investigated through batch soil washing experiments. Results showed that significant promotion on Pb-removal with the mixed solutions of LMWOA and nZVI (p < 0.05). The Pb removal efficiencies reached 64% and 83% for mine and farmland soil by addition of 0.2 M citric acid and 2.0 g L−1 nZVI, respectively. They decreased with increasing pH from 3 to 9. The mixed solutions of LMWOA and nZVI induced Pb(II) releases processes including a rapid desorption within 4 h and a slow desorption in the following hours. The second-order model was the most appropriate for describing the kinetic processes of Pb(II) desorption. The main fractions of Pb removal were exchangeable and reducible. Compared with LMWOA, the loss rates of nitrogen, phosphorus and potassium decreased after washing with the mixed solutions. Our study suggests that combining of LMWOA and nZVI would be a promising alternative approach for remediation Pb-contaminated soils.

  19. An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads.

    PubMed

    Çınar, Seda; Kaynar, Ümit H; Aydemir, Tülin; Çam Kaynar, Sermin; Ayvacıklı, Mehmet

    2017-03-01

    In this study, the removal of Reactive Black 5 (RB-5) by nano-ZnO/Chitosan composite beads (nano-ZnO/CT-CB) from aqueous solution was investigated. ZnO nanoparticles were prepared by the via the microwave-assisted combustion technique. And then nano-ZnO/Chitosan composite beads were prepared by polymerization in the presence of nano-ZnO and chitosan. Characterization of composite beads were conducted using SEM, TEM, FTIR, TGA and XRD. Several important parameters influencing the removal of RB 5 such as contact time, pH and temperature were investigated systematically by batch experiments. At optimum conditions of pH 4 and adsorbent concentration of 0.2g, dye removal efficiency was found 76%. Langmuir, Freundlich and Temkin adsorption models were used to describe adsorption isotherms and constants. The maximum adsorption capacity (qm) by Langmuir isotherm has been found to be 189.44mg/g. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (32.7kJ/mol) indicated that the adsorption is an endothermic process. The obtained results showed that the tested adsorbents are efficient and alternate low-cost adsorbent for removal of dyes from aqueous media.

  20. Correlation Equation for Predicting the Single-Collector Contact Efficiency of Colloids in a Horizontal Flow.

    PubMed

    Li, Jing; Xie, Xiaohu; Ghoshal, Subhasis

    2015-07-07

    The single-collector contact efficiency (η0) for physicochemical colloid filtration under horizontal flow in saturated porous media was calculated using trajectory analysis in three dimensions. Past studies have developed correlation equations for colloids with densities close to that of water, such as bacteria and latex particles. A new correlation equation was developed for predicting η0 based on a large number of trajectory simulations to account for higher-density particles representative of metal colloids. The correlation equation was developed by assuming Brownian diffusion, interception, and gravitational sedimentation contributed to η0 in an additive manner. Numerical simulations for colloid trajectory analysis used for calculating η0 were based on horizontal flow around a collector under the action of van der Waals attractive forces, gravity, and hydrodynamic forces as well as Brownian motion. The derived correlation equation shows excellent agreement with existing correlation equations for particles with density close to that of water. However, the correlation equation presented in this study shows that η0 of high-density colloids, such as metal particles, transported under horizontal flow deviates from that predicted by existing correlations for colloids larger than 4 μm and under low approach velocities. Simulations of trajectory paths show that a significantly reduced contact of high-density colloids larger than 4 μm in size with a collector is due to gravity forces causing trajectory paths to deviate away from the underside of collectors. The new correlation equation is suitable for predicting the single collector efficiency of large particles (several hundred nanometers to several micrometers) and with a large amount of density transport in the horizontal flow mode but is unsuitable for particles with a quite small size (several to tens of nanometers) and for the particle with a large amount of density flow in the vertical flow mode. The

  1. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation.

  2. Field-flow fractionation: An efficient approach for matrix removal of soil extract for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Sangsawong, Supharart; Waiyawat, Weerawan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2011-06-01

    An on-line coupling between a continuous-flow sequential extraction (CFSE) unit and flow field-flow fractionation with cross flow matrix removal (FlFFF/CFM) with ICP-OES detection was developed for determination of metal leachability from soil. The use of high concentration of Mg(NO 3) 2 in exchangeable phase can cause undesirable matrix effects by shifting ionization equilibrium in the plasma, etc., resulting in a clear need for matrix removal. Therefore, the capability of FlFFF/CFM to remove Mg matrix ion from soil extract was evaluated. Poly(ethylene imine) (PEI) having molecular weight of 25,000 Da was added to form complexes with analyte elements (Cu, Mn, Pb, and Zn) but not the matrix element (Mg). The free Mg matrix ions were then removed by filtering off through the ultrafiltration membrane, having a 1000-Da molecular weight cut-off, inside the FlFFF channel. With the use of FlFFF/CFM, matrix removal efficiency was approximately 83.5%, which was equivalent to approximately 6-fold dilution of the matrix ion. The proposed hyphenated system of CFSE and FlFFF/CFM with ICP-OES detection was examined for its reliability by checking with SRM 2710 (a highly contaminated soil from Montana). The metal contents determined by the proposed method were not significantly different (at 95% confidence) from the certified values.

  3. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    NASA Astrophysics Data System (ADS)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  4. Efficient bounding schemes for the two-center hybrid flow shop scheduling problem with removal times.

    PubMed

    Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.

  5. NaOH-embedded three-dimensional porous boron nitride for efficient formaldehyde removal

    NASA Astrophysics Data System (ADS)

    Li, Jie; Jia, Huichao; Ding, Yushi; Luo, Han; Abbas, Saleem; Liu, Zhenya; Hu, Long; Tang, Chengchun

    2015-11-01

    Volatile organic compounds, especially formaldehyde (HCHO), are considered to be great sources of contaminants in indoor air. However, design and preparation of safe, cost-affordable, and reusable materials for HCHO removal at ambient conditions are still remarkably challenging. Here, we have developed a kind of novel NaOH-embedded three-dimensional porous boron nitride (NaOH-3D BN) with high and hierarchical porosities, which exhibit excellent removal performance for HCHO. The as-prepared 3D BN is used as an adsorbent and catalytic support, while the embedded NaOH is applied as a catalyst, giving rise to catalytic transformation from high-toxic HCHO to less-toxic formate and methoxy salts at room temperature. Furthermore, their effective reusability has been confirmed. Given the high removal and reusability performance as well as no use of precious materials, the NaOH-3D BN is envisaged to be valuable practically for indoor air purification.

  6. An extended and total flux normalized correlation equation for predicting single-collector efficiency.

    PubMed

    Messina, Francesca; Marchisio, Daniele Luca; Sethi, Rajandrea

    2015-05-15

    In this study a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. The correlation equation does not exploit the additivity approach introduced by Yao et al. (1971), but includes mixed terms that account for the mutual interaction of concomitant transport mechanisms (i.e., advection, gravity and Brownian motion) and of finite size of the particles (steric effect). The correlation equation is based on a combination of Eulerian and Lagrangian simulations performed, under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a cylindrical control volume. The normalization of the deposited flux is performed accounting for all of the particles entering into the control volume through all transport mechanisms (not just the upstream convective flux as conventionally done) to provide efficiency values lower than one over a wide range of parameters. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation, valid both for point and finite-size particles, is extended to include porosity dependency and it is compared with previous models. Reduced forms are proposed by elimination of the less relevant terms.

  7. Efficiency of different respiratory protective devices for removal of particulate and gaseous reactive oxygen species from welding fumes.

    PubMed

    Chen, Hsiu-Ling; Chung, Shih-Hsiang; Jhuo, Ming-Lin

    2013-01-01

    Ultraviolet (UV) light inherent to welding processes generates ozone (O(3)) with subsequent formation of reactive oxygen species (ROS) through photochemical reactions when UV light is present with O(3). This study aimed to determine the performance of filters used as respiratory protective devices by welding personnel to simultaneously mitigate particulate and gaseous inhalation hazards. Four respiratory protective devices were selected for this study, including a surgical facemask, a cotton-fabric facemask, an activated-carbon facemask, and an N95 respirator. The removal efficiencies for the particulates in welding fumes were all above 98%. For particulate-phase ROS, the removal efficiencies of the different respiratory protective devices ranged from 83.5% to 94.1%; however, the removal efficiencies for gaseous ROS were only 1.3% (active carbon facemask) to 21.1% (N95 respirator). The data indicated that the respiratory protective devices commercially available cannot block the passage of the gas-phase ROS found in welding fumes.

  8. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity

    PubMed Central

    Garcia-Miranda, Pablo; Becker, Jordan T.; Benner, Bayleigh E.; Blume, Alexander

    2016-01-01

    ABSTRACT Human immunodeficiency virus (HIV) replication is strongly dependent upon a programmed ribosomal frameshift. Here we investigate the relationships between the thermodynamic stability of the HIV type 1 (HIV-1) RNA frameshift site stem-loop, frameshift efficiency, and infectivity, using pseudotyped HIV-1 and HEK293T cells. The data reveal a strong correlation between frameshift efficiency and local, but not overall, RNA thermodynamic stability. Mutations that modestly increase the local stability of the frameshift site RNA stem-loop structure increase frameshift efficiency 2-fold to 3-fold in cells. Thus, frameshift efficiency is determined by the strength of the thermodynamic barrier encountered by the ribosome. These data agree with previous in vitro measurements, suggesting that there are no virus- or host-specific factors that modulate frameshifting. The data also indicate that there are no sequence-specific requirements for the frameshift site stem-loop. A linear correlation between Gag-polymerase (Gag-Pol) levels in cells and levels in virions supports the idea of a stochastic virion assembly mechanism. We further demonstrate that the surrounding genomic RNA secondary structure influences frameshift efficiency and that a mutation that commonly arises in response to protease inhibitor therapy creates a functional but inefficient secondary slippery site. Finally, HIV-1 mutants with enhanced frameshift efficiencies are significantly less infectious, suggesting that compounds that increase frameshift efficiency by as little as 2-fold may be effective at suppressing HIV-1 replication. IMPORTANCE HIV, like many retroviruses, utilizes a −1 programmed ribosomal frameshift to generate viral enzymes in the form of a Gag-Pol polyprotein precursor. Thus, frameshifting is essential for viral replication. Here, we utilized a panel of mutant HIV strains to demonstrate that in cells, frameshifting efficiency is correlated with the stability of the local

  9. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes.

    PubMed

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S; Wolterbeek, Hubert Th; van Loosdrecht, Mark C M; Hagen, Wilfred R

    2015-06-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes (32)P and (76)As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  10. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles.

    PubMed

    Shan, Chao; Ma, Zhiyao; Tong, Meiping

    2014-03-15

    Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10-30nm. With saturation magnetization of 27.0emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5min). At initial concentration of 110μg/L, Sb(III) was rapidly decreased to below 5μg/L by MNP@hematite in 10min. Sb(III) adsorption capacity of MNP@hematite was 36.7mg/g, which was almost twice that of commercial Fe3O4 nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10mM) and natural organic matters (humic acid and alginate, up to 8mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly.

  11. High-speed energy efficient selective removal of large area copper layer by laser induced delamination

    NASA Astrophysics Data System (ADS)

    Kmetec, Blaž; Kovačič, Drago; Možina, Janez; Podobnik, Boštjan

    2009-07-01

    An indirect laser-induced method for selective removal of large copper areas from a printed circuit board is theoretically and experimentally investigated. The results show that the threshold condition for the process involves phase transition of the epoxy-based substrate resin. Optimal parameters for maximizing process speed are found and discussed.

  12. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    USGS Publications Warehouse

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  13. Influence and efficiency of catalytic stripper in organic carbon removal from laboratory generated soot aerosols

    EPA Science Inventory

    A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...

  14. Manual lymph drainage efficiently reduces postoperative facial swelling and discomfort after removal of impacted third molars.

    PubMed

    Szolnoky, G; Szendi-Horváth, K; Seres, L; Boda, K; Kemény, L

    2007-09-01

    The removal of wisdom teeth is often associated with severe postoperative edema and pain, and operation on the third molar can cause local inflammation that impairs lymph transport. The objective of the study was to assess the efficacy of manual lymph drainage (MLD) in reducing swelling following bilateral wisdom tooth removal. Ten consecutive patients with bilateral impacted wisdom teeth that required surgical removal were enrolled in the study. Each patient was postoperatively treated with MLD (after Vodder's method) on one side of the neck region with the untreated contralateral side as a control. Swelling was evaluated using a tape-measure placed in contact with the skin. The six landmarks of measurement included tragus-lip junction, tragus-pogonion, mandibular angle-external corner of eye, mandibular angle-ala nasi, mandibular angle-lip junction, and mandibular angle-median point of chin. Subjective assessment of MLD was conducted with self-evaluation using a visual analogue bar scale (VAS, range 0-100 mm). Of the 6 linear measurements, 4 lines (2, 4, 5, 6) showed a significant reduction of swelling on the side of MLD compared to the untreated side. Mean score of VAS of pretreatment condition was 35.5 +/- 20.60 mm that decreased to 22 +/- 19.32 mm measured after MLD (p=0.0295). This initial study demonstrates that MLD may promote an improvement of lymph circulation and work in an adjunctive role for reduction of postoperative swelling and pain following removal of impacted third molars.

  15. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.

    PubMed

    Stackelberg, Paul E; Gibs, Jacob; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Lippincott, R Lee

    2007-05-15

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant.

  16. Shifts in Microbial Community and Its Correlation with Degradative Efficiency in a Wastewater Treatment Plant.

    PubMed

    Kapley, Atya; Liu, Ruyin; Jadeja, Niti B; Zhang, Yu; Yang, Min; Purohit, Hemant J

    2015-08-01

    A wastewater treatment plant controls the level of pollution reaching the environment. Yet, despite being the most common aerobic route for treatment of wastewater, the activated sludge process is not utilized to its full potential. This is mainly due to the lack of knowledge base correlating the microbial community in the activated sludge to its degradative performance. In this study, the activated biomass at the treatment site was monitored for five consecutive months. Even though operational parameters were kept constant, the microbial community was observed to change after 3 months. This shift was seen to correlate with 25 % loss of degradative efficiency. Target oxygenases were monitored at two time points, and results indicated that the dominating pathway operating in the common effluent treatment plant (CETP) is the degradation of chlorinated aromatics. This study demonstrates the change in degradative efficiency in a CETP with the change in microbial community and analyzes the parameters influencing the microbial community of activated sludge.

  17. A new type of environment-friendly material and its removal efficiency for nitrate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2014-12-01

    Recently, nitrate contaminated groundwater problem is a growing concern for scholars both at home and abroad. This study developed a new type of environment-friendly material which has the ability to remove nitrate from contaminated groundwater. The material has a certain degree of mechanical strength and uniform sphericity, with waste wood and straw as raw material, to achieve the purpose of using waste treat waste. In this study, the material and fine sand are mixed and filled in glass column, which is wrapped by black tape in order to avoid light, to test the removal ability toward nitrate nitrogen with influent nitrate nitrogen concentration of 50 mg N/L. The material surface is porous, which could facilitate the reaction between the active sites in the material and nitrate in polluted groundwater, and facilitate microbes implanting on the surface. After running for two months, the nitrate nitrogen removal rate is greater than 90%, and the nitrate nitrogen and nitrite nitrogen of effluent are lower than the EPA prescribed maximum limit concentration of nitrate in drinking water(N03--N<10mg N/L, NO2--N<1mg N/L), while the ammonia nitrogen in the effluent is less than 1 mg N/L, lower than the maximum limit concentration of ammonia nitrogen in drinking water made by WHO(NH4+-N<1.5mg N/L), indicating its effective removal rate for nitrate and the absence of serious nitrite and ammonia accumulation. The developed material will have a good prospect in removing nitrate from polluted groundwater.

  18. Inorganic particulates in removal of heavy metal toxic ions IX. Rapid and efficient removal of Hg(II) by hydrous manganese and tin oxides.

    PubMed

    Mishra, Shuddhodan P; Dubey, Som Shankar; Tiwari, Diwakar

    2004-11-01

    Batch studies have been carried out in the removal of Hg(II) from aqueous solutions by using well-synthesized and -characterized hydrous manganese oxide (HMO) and hydrous tin oxide (HTO) employing a radiotracer technique. Results obtained reveal that increased sorptive concentration (10(-8)-10(-2) mol dm(-3)), temperature (298-328 K), and pH (ca. 2.0-10.5) enhance the removal efficiency of these solids. First-order uptake of Hg(II) on HMO and HTO follows the Freundlich adsorption isotherm for entire concentration range. Positive values of DeltaH0 for the uptake process on both solids indicate endothermic uptake and desorption experiments point to irreversible uptake. Radiation stability of the adsorbents has also been assessed using a 300-mCi (Ra-Be) neutron source having an integral neutron flux of 3.85 x 10(6) N cm(-2) s(-1) and associated with a nominal gamma-dose of ca. 1.72 Gy/h.

  19. Creating a GIS-based model of marine debris "hot spots" to improve efficiency of a lobster trap debris removal program.

    PubMed

    Martens, Justin; Huntington, Brittany E

    2012-05-01

    Debris removal programs are combatting the accumulation of derelict fishing gear and other debris in marine habitats. We analyzed 5 years of lobster trap debris removal data in Biscayne National Park, Florida to assess removal efficiency and develop spatially-explicit mapping tools to guide future removals. We generated and validated debris "hot spots" maps that combined remotely-sensed data (i.e. benthic habitat type and bathymetry) with 862 locations of previous debris collection. Our hot spot models spatially depict regions of likely debris accumulation, reducing the search area by 95% (from 332 km(2) to 18 km(2)) and encompassing 100% of the validation sites. Our analyses indicate removal contractors using sub-surface towed divers enhanced debris recovery. Additionally, the quantity of debris removed did not decrease with increased efforts, suggesting that debris supply in situ exceeds removal efforts. We conclude with the importance of coupling analysis of ongoing debris removal programs with GIS technology to improve removal efforts.

  20. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays.

    PubMed

    Weissbrodt, David G; Maillard, Julien; Brovelli, Alessandro; Chabrelie, Alexandre; May, Jonathan; Holliger, Christof

    2014-12-01

    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC.

  1. UV-induced Oxygen Removal for Photostable High Efficiency PTB7-Th: PC71BM Photovoltaic Cells.

    PubMed

    Liu, Quan; Mantilla-Perez, Paola; Montes Bajo, Miguel; Romero-Gomez, Pablo; Martorell, Jordi

    2016-10-03

    Solution-processed ZnO sol-gel or nanoparticles are widely used as the electron transporting layer (ETL) in optoelectronic devices. However, chemisorbed oxygen on the ZnO layer surface has been shown to be detrimental for the device performance as well as stability. Herein, we demonstrate that a chemisorbed oxygen removal based on a UV illumination of the ZnO surface layer under a nitrogen atmosphere can, simultaneously, improve power conversion efficiency and photostability of PTB7-Th: PC71BM based inverted polymer solar cells. By a systematic study of such UV illumination procedure, we obtained optimal conditions where, both, the cell efficiency and stability were improved. We fabricated cells with a power conversion efficiency higher than 9.8%, and with a T80 lifetime larger than 500 hours, corresponding to about a 2.5-fold enhancement relative to non-UV treated ZnO reference devices.

  2. [Effect of removable partial denture(RDP) generated occlusal interference on masticatory efficiency-A preliminary study

    PubMed

    Ding, L; Yang, C Y; Xu, W J

    1999-06-01

    OBJECTIVE:This study was primarily aimed to observe the effect of RPD-generated occlusal interference on masticatory efficiency.METHODS:In this study,masticatory performances of thirty-six patients treated with removable partial dentures were assessed by peanut-light absorption test before and after occlusal adjustment was performed.Then comparing the differences of masticatory efficiency when occlusal interferences on dentures were present or eliminated.RESULTS:Patients who received occlusal adjustment made significant improvement in their masticatory efficiency (P<0.01). Occlusion appeared to do directly influence chewing ability.CONCLUSION:The results showed that occlusal factor is one of the major factors responsible for denture quality and health of stomatognathic system. Occlusal adjustment is important and necessary in dental prosthesis.

  3. Efficient nitrogen removal via simultaneous nitrification and denitrification in a penicillin wastewater biological treatment plant.

    PubMed

    Luo, Weiwei; Jin, Xibiao; Yu, Yonglian; Zhou, Sichen; Lu, Shuguang

    2014-01-01

    Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH₃‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.

  4. Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study

    NASA Astrophysics Data System (ADS)

    Jin, Zhen; Jia, Yong; Luo, Tao; Kong, Ling-Tao; Sun, Bai; Shen, Wei; Meng, Fan-Li; Liu, Jin-Huai

    2015-12-01

    Hierarchical MgO microspheres assembled by numerous porous nanoplates were successfully obtained by annealing the precursors of magnesium carbonate hydroxide hydrate synthesized through a facile and cost-effective hydrothermal process at low temperature. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The fluoride removal performance of the hierarchical MgO microspheres was investigated. The adsorption isotherm could be well fitted in Freundlich model, and the adsorption capacity was over 115.5 mg/g at pH 7. The absorbent also showed high fluoride removal ability in a wide pH range of 2-10, which is favorable for practical application. The effect of co-existing anions on fluoride removal was also investigated. The result indicated that the fluoride adsorption capacity was influenced when carbonate, bicarbonate and phosphate existed above the concentration of 50 mg/g. In addition, the adsorption mechanism was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A novel hydroxyl and carbonate co-exchange mechanism has been proposed for the first time. It can be found that fluoride ions could replace the surface carbonates which formed by the reaction of MgO and the adsorbed CO2 molecules, and then anchored on the MgO surface.

  5. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  6. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process.

    PubMed

    Fan, Chihhao; Horng, Ching-Yi; Li, Shih-Jian

    2013-09-01

    This study aimed to characterize the NOM structural variation during Fenton process, in which the methomyl and humic acid were selected as the investigated compounds. The preliminary degradation experiments were conducted at various H2O2 and Fe(2+) concentrations without the presence of NOM to determine the applied Fenton reagent dosages for subsequent NOM impact on Fenton degradation. The methomyl removal at 80% was observed at the Fenton reagent ratio ([H2O2]/[Fe(2+)]) of 1 while Fe(2+) concentration was no less than 2mM. In the presence of NOM, the methomyl removal by Fenton process was further enhanced apparently. The NOM used in this study was found to be a macromolecule with tryptophan-like and tyrosine-like functional groups through fluorescence spectrometry analysis. The addition of ferrous ions in the NOM solution initiated the reactions between Fe(2+)/Fe(3+) redox couples and NOM molecules, breaking the NOM into smaller organic fractions. These organic fractions were further oxidized into even smaller molecules by hydroxyl radicals after H2O2 addition. The NOM might compete with methomyl for hydroxyl radicals, and enhance the catalytical generation of hydroxyl radicals by reducing Fe(3+) to Fe(2+) at the same time. Apparently, the increase in OH generation was more than the OH consumption by NOM presence, resulting in the observed enhancement of methomyl removal.

  7. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  8. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    PubMed Central

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-01-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications. PMID:26220847

  9. Hydraulic behaviour and removal efficiencies of two H-SSF constructed wetlands for wastewater reuse with different operational life.

    PubMed

    Barbagallo, S; Cirelli, G L; Marzo, A; Milani, M; Toscano, A

    2011-01-01

    This work focuses on the performance evaluation of two full-scale horizontal suburface flow constructed wetlands (H-SSF CWs) working in parallel, which have an almost equal surface area (about 2,000 m2) but with different operational lives: 8 and 3 years. Both H-SSF CWs, located in Southern Italy (Sicily), are used for tertiary treatment of the effluent of a conventional wastewater treatment plant. This study evaluates and compares H-SSF CW efficiency both in terms of water quality improvement (removal percentage) and achievement of Italian wastewater discharge and irrigation reuse limits. The mean removal percentage, for the overall operational life, of TSS, COD and BOD (80%, 63%, 58% obtained for H-SSF1 and 67%, 38%, 41% for H-SSF2), confirm the high reliability of CWs for wastewater treatment. However, despite the satisfactory removal of microbial indicators (the mean E. coli removal was up to 2.5 log unit for both beds), CWs didn't achieve the Italian limits for wastewater reuse. Information on hydraulic properties of the CWs were extracted from breakthrough curves of a non-reactive tracer (NaCl). By comparing the nominal (tau(n)) and actual residence time (tau), hydraulic behaviour was revealed.

  10. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater.

    PubMed

    Mackuľak, Tomáš; Mosný, Michal; Grabic, Roman; Golovko, Oksana; Koba, Olga; Birošová, Lucia

    2015-03-01

    We analyzed 13 psychoactive pharmaceuticals, illicit drugs and their metabolites in wastewater treatment plant influent and effluent and the possibility of their degradation by biological and chemical processes. Tramadol (413-853 ng/L) and methamphetamine (460-682 ng/L) were the most concentrated compounds in the wastewater in winter and summer, respectively. A significant decrease in the concentration of tramadol in wastewater was measured during the summer. The lowest efficiency was observed for tramadol, venlafaxine, citalopram and oxazepam (∼ 10%) and the highest efficiency was observed for amphetamine and THC-COOH (∼ 80%). The efficiency of compound degradation via the Fenton reaction, a modified Fenton reaction and different degradation (by algae, wood-rotting fungi and enzymes at influent versus effluent) was determined. The Fenton reaction and its modification were efficient at eliminating these substances in comparison with the tested biological processes.

  11. A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.

    PubMed

    Pillow, Jonathan W; Shlens, Jonathon; Chichilnisky, E J; Simoncelli, Eero P

    2013-01-01

    We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call "binary pursuit". The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth.

  12. A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings

    PubMed Central

    Chichilnisky, E. J.; Simoncelli, Eero P.

    2013-01-01

    We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call “binary pursuit”. The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth. PMID:23671583

  13. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    PubMed

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL(-1)h(-1), ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL(-1)h(-1) respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater.

  14. A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-qiang; Li, Xiao-hui; Lü, Jie; Si, Chong-dian; Liu, Guang-jun; Gao, Hong-tao; Wang, Pi-bo

    2014-08-01

    Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO2 and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.

  15. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples.

  16. Analysis of mixing conditions and multistage irradiation impact on NOx removal efficiency in the electron beam flue gas treatment process.

    PubMed

    Pawelec, Andrzej; Dobrowolski, Andrzej

    2017-01-01

    In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NOx removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NOx removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.

  17. Evaluation of storage and evaporation in the removal efficiency of D-norgestrel and progesterone in human urine.

    PubMed

    Zanchetta, Priscilla Garozi; Heringer, Otávio; Scherer, Rodrigo; Pacheco, Henrique Poltronieri; Gonçalves, Ricardo; Pena, Angelina

    2015-10-01

    Pharmaceuticals are emerging contaminants and it must be noted that approximately 70 % of them are excreted via urine. Therefore, urine usage implies the risk of transfer of pharmaceutical residues to agricultural fields and environment contamination. Thus, this study aimed on the development and validation of a LC-MS/MS method for D-norgestrel (D-NOR) and progesterone (PRO) determination in human urine, as well as the evaluation of the removal efficiency of two methods (storage and evaporation), and the effects of acidification with sulfuric acid. The storage process was evaluated for 6 weeks, while the evaporation was assessed at three different temperatures (50, 75, and 100 °C). All experiments were done with normal urine (pH = 6.0) and acidified urine (pH = 2.0, with sulfuric acid). The results of validation showed good method efficiency. In the second week of storage, higher hormone degradation was observed. In the evaporation method, both D-NOR and PRO were almost completely degraded when the volume was reduced to the lowermost level. Results also indicate that acidification did not affect degradation. Overall, the results showed that combination of two methods can be employed for more efficient hormone removal in urine.

  18. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  19. Statistical and spatiotemporal correlation based low-complexity video coding for high-efficiency video coding

    NASA Astrophysics Data System (ADS)

    Shang, Xiwu; Wang, Guozhong; Fan, Tao; Li, Yan

    2015-03-01

    High-efficiency video coding (HEVC) is a new coding standard that adopts the quadtree splitting structure based on coding tree units instead of macroblocks, and can support more coding modes and more partitions. Although it can improve compression efficiency, the flexible quadtree block partition and mode selection result in high computational complexity in real-time applications. We propose a low-complexity video coding algorithm for HEVC by utilizing statistical correlation and spatiotemporal correlation, which consists of an early determination of SKIP mode (EDSM) method and an early termination of reference frame selection (ETRFS) method. Since there is a strong correlation for the rate distortion (RD) cost for the SKIP mode between adjacent frames, EDSM detects the SKIP mode according to the threshold derived from the former training frame. Meanwhile, ETRFS terminates the process of reference frame selection using the motion vector and reference frame information from neighboring blocks to skip unnecessary candidate frames. Experimental results demonstrate that the proposed method can achieve about 45.01% complexity reduction on average with a 1.11% BD-rate increase and 0.04 BD-PSNR decrease for random access. The complexity reduction, BD-rate increase, and BD-PSNR decrease for low delay are 46.16%, 0.99%, and 0.03, respectively.

  20. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  1. Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles.

    PubMed

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical ("closed loop") resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems.

  2. Comparison of two PAC/UF processes for the removal of micropollutants from wastewater treatment plant effluent: process performance and removal efficiency.

    PubMed

    Löwenberg, Jonas; Zenker, Armin; Baggenstos, Martin; Koch, Gerhard; Kazner, Christian; Wintgens, Thomas

    2014-06-01

    Two hybrid membrane processes combining powdered activated carbon (PAC) adsorption with ultrafiltration (UF) were investigated regarding operational performance and efficiency to remove organic micropollutants from municipal wastewater treatment plant effluent. A pressurized PAC/UF (pPAC/UF) and a submerged PAC/UF (sPAK/UF) system were operated continuously over a period of six months. Both UF membrane systems showed good compatibility with the application of PAC showing no abrasion or other negative impacts. The pPAC/UF system reached permeability values up to 290 L/(m² h bar) at high fluxes of 80 L/(m² h) compared to the sPAC/UF with a permeability of up to 200 L/(m² h bar) at fluxes of up to 23 L/(m² h). Surface analysis of both membranes with scanning electron microscopy revealed no membrane deterioration after the six-month period of operation. On the surface of the pressurized membrane the formation of a PAC layer was observed, which may have contributed to the high permeability by forming a protective coating. Five micropollutants, i.e. sulfamethoxazole, carbamazepine, mecoprop, diclofenac and benzotriazole in ambient effluent concentrations were investigated. Both PAC/UF systems removed 60-95% of the selected micropollutants at a dosage of 20 mg PAC/L and 4 mg Fe(3+)/L. However, extreme peak loads of sulfamethoxazole with concentrations of up to 30 μg/L caused a considerable performance decrease for more than a week.

  3. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    PubMed

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-03-06

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m(3), while a most efficient removal of 3 kWh/m(3) or lower was reached for the four other pesticides.

  4. Removal of Pb2+ from aqueous solutions by a high-efficiency resin

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Ren, Yongzheng; Sun, Xueliang; Xu, Yadi; Li, Xuemei; Zhang, Tiancheng; Kang, Jianxiong; Liu, Dongqi

    2013-10-01

    The removal of Pb2+ from aqueous solution by 732 cation-exchange resin in sodium type (732-CR) has been studied in batch experiments at varying pH (2.0-8.0), Pb2+ concentration (50-200 mg/L), contact time (5-300 min), temperature (288-308 K) and resin dose (0.125-0.75 g/L). The experimental data show that the ion-exchange process was dependent on pH and temperature, the optimal exchange capacity was found at pH 4.0, and higher temperature was beneficial to lead sorption. Kinetic data indicate that the ion-exchange process followed a pseudo-first order model. The equilibrium exchange capacity could be reached at approximately 4 h, and the maximum sorption capacity of Pb2+ at pH 4.0 was 396.8 mg/g resin. The equilibrium data were evaluated with Langmuir and Freundlich model, and were best fitted with Langmuir model. The thermodynamic parameters for removal of Pb2+ indicate that the reaction was spontaneous and endothermic. Additionally, column tests were conducted by using both synthetic solution and effluents from lead battery industry. The regeneration of resin was performed for two sorption-regeneration cycles by 1 M NaOH, and the results show that effective regeneration was achieved by this method.

  5. Functionalized Magnetic Fe3O4-β-Cyclodextran Nanoparticles for Efficient Removal of Bilirubin.

    PubMed

    Han, Lulu; Chu, Simin; Wei, Houliang; Ren, Jun; Xu, Li; Jia, Lingyun

    2016-06-01

    Bilirubin (BR), as a lipophilic toxin, can binds and deposits in various tissues, especially the brain tissue, leading to hepatic coma and even death. Magnetic nanoparticles adsorbent modified by β-cyclodextran (Fe3O4-β-CD) was developed to remove the BR from the plasma. Fe3O4-β-CD nanoparticles was prepared through Schiff base reaction between the polyethylenimine (PEI)-modified Fe3O4 and aldehyde-functionalized β-CD, and characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and dynamic light scattering (DLS). Under optimized conditions, the Fe3O4-β-CD adsorbent could adsorb 225.6 mg/g free BR in PBS and reach the adsorption equilibrium within 90 min mainly through hydrophobic interaction; Moreover, the adsorbent displayed better adsorption capability in a dialysis system for BSA-bound bilirubin, plasma bilirubin and total bile acid, and the removal rates of those were 66%, 31% and 41% respectively. Because of the advantages of fast separation and purification process, low preparation cost, good adsorption capability for plasma bilirubin, Fe3O4-β-CD may become an economical and promising absorbent of BR for clinical applications.

  6. Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2013-10-23

    An andic soil, akadama clay, was modified with nickel oxide and tested for its potential application in the removal of cesium from aqueous solution. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD) results revealed the nickel oxide was successfully grafted into akadama clay. N2 adsorption-desorption isotherms indicated the surface area decreased remarkably after modification while the portion of mesopores increased greatly. Thermogravimetric-differential thermal analysis (TG-DTA) showed the modified akadama clay had better thermostability than the pristine akadama clay. Decreases in cation exchange capacity (CEC) and ζ-potential were also detected after the modification. Adsorption kinetic and isotherm studies indicated the adsorption of Cs+ on the modified akadama clay was a monolayer adsorption process. Adsorption capacity was greatly enhanced for the modified akadama clay probably due to the increase in negative surface charge caused by the modification. The adsorption of Cs+ on the modified akadama clay was dominated by an electrostatic adsorption process. Results of this work are of great significance for the application of akadama clay as a promising adsorbent material for cesium removal from aqueous solutions.

  7. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal.

    PubMed

    Gao, Jie; Sun, Shi-Peng; Zhu, Wen-Ping; Chung, Tai-Shung

    2014-10-15

    High performance nanofiltration (NF) membranes for heavy metal removal have been molecularly designed by adsorption of chelating polymers containing negatively charged functional groups such as poly (acrylic acid-co-maleic acid) (PAM), poly (acrylic acid) (PAA) and poly (dimethylamine-co-epichlorohydrin-co-ethylenediamine) (PDMED) on the positively charged polyethyleneimine (PEI) cross-linked P84 hollow fiber substrates. Not only do these chelating polymers change the membrane surface charge and pore size, but also provide an extra mean to remove heavy metal ions through adsorption in addition to traditional steric effect and Donnan exclusion. The adsorbed membranes have comparable water permeability and superior rejections to heavy metals, for instance, Pb(NO3)2, CuSO4, NiCl2, CdCl2, ZnCl2, Na2Cr2O7 and Na2HAsO4, with rejections higher than 98%. The membranes also display excellent rejections to mixed ions with rejections more than 99%. The newly developed membranes show reasonably stability during 60-h tests as well as multiple washes.

  8. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.

    PubMed

    Niknam Shahrak, Mahdi; Ghahramaninezhad, Mahboube; Eydifarash, Mohsen

    2017-04-01

    Heavy metals are emerging toxic pollutants in which the development of advanced materials for their efficient adsorption and separation is thus of great significance in environmental sciences point of view. In this study, one of the zinc-based zeolitic imidazolate framework materials, known as ZIF-8, has been synthesized and used for chromium(VI) contaminant removal from water for the first time. The as-synthesized ZIF-8 adsorbent was characterized with different methodologies such as powder X-ray diffraction (XRD), thermo-gravimetric analysis, FT-IR, nuclear magnetic resonance spectroscopy, and UV-Vis spectra of solid state. Various factors affecting removal percentage (efficiency) are experimentally investigated including pH of solution, adsorbent dosage, contact time and initial concentration of Cr(VI) to achieve the optimal condition. The obtained results indicate that the ZIF-8 shows good performance for the Cr(VI) removal from aqueous solution so that 60 min mixing of 2 g of ZIF-8 adsorbent with the 2.5 ppm of Cr(VI) solution in a neutral environment will result in the highest separation efficiency around 70%. The time needed to reach the equilibrium (maximum separation efficiency) is only 60 min for a concentration of 5 mg L(-1). Structure stability in the presence of water is also carefully examined by XRD determination of ZIF-8 under different contact times in aqueous solution, which suggests that the structure is going to be destructed after 60 min immersed in solution. Electrostatic interaction of Cr(VI) anions by positively charged ZIF-8 is responsible for Cr(VI) adsorption and separation. Moreover, equilibrium adsorption study reveals that the Cr(VI) removal process using ZIF-8 nicely fits the Langmuir and Toth isotherm models which mean the adsorbent has low heterogeneous surface with different distributions of adsorption energies during Cr(VI) adsorption. Equilibrium adsorption capacity is observed around 0.25 for 20 mg L(-1) of initial Cr

  9. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid Removal Process

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to develop a new low-cost and energy efficient NGL recovery process - through a combination of theoretical, bench-scale, and pilot-scale testing - so that it can be offered to the natural gas industry for commercialization.

  10. Efficient removal of naphthalene-2-ol from aqueous solutions by solvent extraction.

    PubMed

    Shao, Jingjing; Cheng, Yan; Yang, Chunping; Zeng, Guangming; Liu, Wencan; Jiao, Panpan; He, Huijun

    2016-09-01

    Naphthalene-2-ol is a typical biologically recalcitrant pollutant in dye wastewater. Solvent extraction of naphthalene-2-ol from aqueous solutions using mixed solvents was investigated. Various extractants and diluents were evaluated, and the effects of volume ratio of extractant to diluent, initial pH, initial concentration of naphthalene-2-ol in aqueous solution, extraction time, temperature, volume ratio of organic phase to aqueous phase (O/A), stirring rate and extraction stages, on extraction efficiency were examined separately. Regeneration and reuse of the spent extractant were also investigated. Results showed that tributyl phosphate (TBP) achieved 98% extraction efficiency for naphthalene-2-ol in a single stage extraction, the highest among the 12 extractants evaluated. Extraction efficiency was optimized when cyclohexane and n-octane were used as diluents. The solvent combination of 20% TBP, 20% n-octanol and 60% cyclohexane (V/V) obtained the maximum extraction efficiency for naphthalene-2-ol, 99.3%, within 20min using three cross-current extraction stages under the following extraction conditions: O/A ratio of 1:1, initial pH of 3, 25°C and stirring rate of 150r/min. Recovery of mixed solvents was achieved by using 15% (W/W) NaOH solution at an O:A ratio of 1:1 and a contact time of 15min. The mixed solvents achieved an extraction capacity for naphthalene-2-ol stably higher than 90% during five cycles after regeneration.

  11. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  12. The neural correlates of cognitive effort in anxiety: effects on processing efficiency.

    PubMed

    Ansari, Tahereh L; Derakshan, Nazanin

    2011-03-01

    We investigated the neural correlates of cognitive effort/pre-target preparation (Contingent Negative Variation activity; CNV) in anxiety using a mixed antisaccade task that manipulated the interval between offset of instructional cue and onset of target (CTI). According to attentional control theory (Eysenck et al., 2007) we predicted that anxiety should result in increased levels of compensatory effort, as indicated by greater frontal CNV, to maintain comparable levels of performance under competing task demands. Our results showed that anxiety resulted in faster antisaccade latencies during medium compared with short and long CTIs. Accordingly, high-anxious individuals compared with low-anxious individuals showed greater levels of CNV activity at frontal sites during medium CTI suggesting that they exerted greater cognitive effort and invested more attentional resources in preparation for the task goal. Our results are the first to demonstrate the neural correlates of processing efficiency and compensatory effort in anxiety and are discussed within the framework of attentional control theory.

  13. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes

    NASA Astrophysics Data System (ADS)

    Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.

  14. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.

    PubMed

    Karamanis, D; Assimakopoulos, P A

    2007-05-01

    Aluminum-pillared-layered montmorillonites (PILMs) were tested for their potential application in the removal of copper or cesium from aqueous solutions. By varying the initial conditions, several PILMs were prepared and characterized by means of X-ray fluorescence (XRF), proton induced gamma-ray emission (PIGE), X-ray diffraction (XRD) and sorption isotherms. Uptake of metals was studied by means of XRF spectrometry for copper sorption or gamma-ray spectrometry for cesium, using 137Cs as radiotracer. The sorption kinetics and capacity of PILMs were determined in relation to the effects of factors such as the initial metal concentration, initial pH of the solution and the presence of competitive cations. Kinetic studies showed that an equilibrium time of few minutes was needed for the adsorption of metal ions on PILMs. A pseudo-first-order equation was used to describe the sorption process for either copper or cesium. The most effective pH range for the removal of copper and cesium was found to be 4.0-6.0 and 3.0-8.0, respectively. Cesium sorption isotherms were best represented by a two-site Langmuir model while copper isotherms followed the Freundlich or the two-site Langmuir model. Cesium sorption experiments with inorganic or organic competitive cations as blocking agents revealed that the high selective sites of PILMs for cesium sorption (1-2% of total) are surface and edge sites in addition to interlayer exchange sites. In copper sorption, the two sites were determined as interlayer sites of PILMs after restoring their cation exchange capacity and sites associated with the pillar oxides.

  15. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode.

    PubMed

    Sirés, Ignasi; Guivarch, Elodie; Oturan, Nihal; Oturan, Mehmet A

    2008-06-01

    Fenton's reagent (Fe2+ +H2O2) has been electrogenerated in situ in an undivided electrolytic cell from the effective reduction of Fe3+ and O2 at carbon-felt cathode for the treatment of aqueous solutions of four triphenylmethane dyes (TPMs), namely malachite green (MG), crystal violet (CV), methyl green (MeG) and fast green FCF (FCF), at pH 3.0 and room temperature. MG has been used as a model among them to study the influence of some experimental parameters on the decay kinetics, COD removal and current efficiency. The results in such electro-Fenton system are explained in terms of the many parasitic reactions involving .OH. Higher efficiency values are obtained with rising organic content and decreasing applied current. The first stage of the mineralization process, involving aromatic by-products, leads to fast decoloration as well as quick initial COD removal that fit well to a pseudo-first-order kinetics. At prolonged electrolysis time, the mineralization rate and efficiency decrease due to the formation of hardly oxidizable compounds and the enhancement of wasting reactions. Solutions of all four TPMs are quickly degraded following a pseudo-first-order decay kinetics. The absolute rate constant (kTPM) for their reaction with .OH increases in the order MeGefficiency near 100% at the beginning of the treatment. A general scheme for the mineralization of TPMs is proposed.

  16. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: Effect of clay support and efficiency optimization

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Mao, Xuhui; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2016-05-01

    In this study, natural clays were used as the support for nanoscale zero-valent iron (nZVI) to fulfill affordable and efficient decontamination materials. In comparison with the kaolinite (K) and montmorillonite (M) supported nZVI materials (K-nZVI and M-nZVI), Hangjin clay supported nZVI (HJ-nZVI) exhibited the best performance for nitrobenzene (NB) removal because of its favorable characteristics, such as higher specific surface area (SSA, 82.0 m2 g-1), larger pore volume (0.1198 cm3 g-1) and bigger average pore diameter (6.2 nm). The NB removal efficiency achieved by HJ-nZVI (93.2 ± 2.8%) was much higher than these achieved by HJ clay alone (38.2 ± 2.3%), nZVI alone (52.3 ± 2.5%) and by the combined use of nZVI and HJ clay (70.2 ± 1.3%). The superior performance of HJ-nZVI was associated with three aspects: the even distribution of nZVIs onto HJ clay, higher payload efficiency of nZVIs and the stronger adsorption capability of HJ clay support. Higher SSA, larger pore volume, favorable cation exchange capacity and structural negative charges all facilitated the payload of iron onto HJ clay. The adsorption process accelerated the reduction via increasing the local concentration of aqueous NB. The high efficiency of HJ-nZVI for decontamination warranted its promising prospect in remediation applications.

  17. Efficiency of a Photoreactor Packed with Immobilized Titanium Dioxide Nanoparticles in the Removal of Acid Orange 7.

    PubMed

    Sheidaei, Behnaz; Behnajady, Mohammad A

    2016-05-01

    In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process.

  18. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.

    PubMed

    Li, Zi-Jie; Wang, Lin; Yuan, Li-Yong; Xiao, Cheng-Liang; Mei, Lei; Zheng, Li-Rong; Zhang, Jing; Yang, Ju-Hua; Zhao, Yu-Liang; Zhu, Zhen-Tai; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-06-15

    Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO3, humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C0(U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C0(U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH4)2CO3 solution. Partially reductive precipitation of U(VI) as U3O7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe(2+) ions. The dissolution of Fe(0) cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment.

  19. Estonian waterworks treatment plants: clearance of residues, discharge of effluents and efficiency of removal of radium from drinking water.

    PubMed

    Trotti, F; Caldognetto, E; Forte, M; Nuccetelli, C; Risica, S; Rusconi, R

    2013-12-01

    Considerable levels of radium were detected in a certain fraction of the Estonian drinking water supply network. Some of these waterworks have treatment systems for the removal of (mainly) iron and manganese from drinking water. Three of these waterworks and another one equipped with a radium removal pilot plant were examined, and a specific study was conducted in order to assess the environmental compatibility of effluents and residues produced in the plants. (226)Ra and (228)Ra activity concentrations were analysed in both liquid (backwash water) and solid (sand filter and sediment) materials to evaluate their compliance, from the radiological point of view, with current Estonian legislation and international technical documents that propose reference levels for radium in effluents and residues. Also with regard to water treatment by-products, a preliminary analysis was done of possible consequences of the transposition of the European Basic Safety Standards Draft into Estonian law. Radium removal efficiency was also tested in the same plants. Iron and manganese treatment plants turned out to be scarcely effective, whilst the radium mitigation pilot plant showed a promising performance.

  20. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency.

    PubMed

    Limbach, Ludwig K; Bereiter, Robert; Müller, Elisabeth; Krebs, Rolf; Galli, René; Stark, Wendelin J

    2008-08-01

    The rapidly increasing production of engineered nanoparticles has created a demand for particle removal from industrial and communal wastewater streams. Efficient removal is particularly important in view of increasing long-term persistence and evidence for considerable ecotoxicity of specific nanoparticles. The present work investigates the use of a model wastewater treatment plant for removal of oxide nanoparticles. While a majority of the nanoparticles could be captured through adhesion to clearing sludge, a significant fraction of the engineered nanoparticles escaped the wastewater plant's clearing system, and up to 6 wt % of the model compound cerium oxide was found in the exit stream of the model plant. Our study demonstrates a significant influence of surface charge and the addition of dispersion stabilizing surfactants as routinely used in the preparation of nanoparticle derived products. A detailed investigation on the agglomeration of oxide nanoparticles in wastewater streams revealed a high stabilization of the particles against clearance (adsorption on the bacteria from the sludge). This unexpected finding suggests a need to investigate nanoparticle clearance in more detail and demonstrates the complex interactions between dissolved species and the nanoparticles within the continuously changing environment of the clearing sludge.

  1. Exploratory experiments to determine the effect of alternative operations on the efficiency of subsurface arsenic removal in rural Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Bakker, M.; Freitas, S. C. Borges; van Halem, D.; van Breukelen, B. M.; Ahmed, K. M.; Badruzzaman, A. B. M.

    2015-02-01

    The principle of subsurface arsenic (As) removal (SAR) is to extract anoxic groundwater, aerate it and re-inject it. Oxygen in the injected water reacts with iron in the resident groundwater to form hydrous ferric oxide (HFO). Dissolved As sorbs onto the HFO, which allows for the extraction of groundwater with lower As concentrations. SAR was applied at a rural location in Bangladesh (As in groundwater = 200 μg/L) to study the effect of different operational parameters on SAR performance, including repeated injection and extraction of an equal volume, lower pumping rate, and intermittent pumping. Larger injection volume, lower pumping rate, and intermittent pumping all had positive effects on As removal indicating that As adsorption is kinetically limited. Repeated injection-extraction of an equal volume improved As removal efficiency by providing more HFO for sorption. After injection of 1,000 L, a maximum of 3,000 L of `safe' water, as defined by the Bangladesh national standard for As (<50 μg/L), was extracted, of which 2,000 L can be used as drinking water and the remainder is used for re-injection. Under this setup, the estimated cost for 1,000 L of As-safe drinking water is US2.00, which means that SAR is a viable mitigation option for rural areas.

  2. One-pot synthesis of a ceria-graphene oxide composite for the efficient removal of arsenic species.

    PubMed

    Sakthivel, Tamil S; Das, Soumen; Pratt, Cameron J; Seal, Sudipta

    2017-03-09

    Arsenic contamination has posed a health risk to millions of people around the world. In this study, we describe a simple and facile one-step hydrothermal synthesis of a ceria-graphene oxide (ceria-GO) composite for the efficient removal of arsenic species. The prepared ceria-GO composite materials exhibited almost complete (over 99.99%) and quick removal of both arsenic species within 0.1 mg L(-1) of the initial concentration. The calculated adsorption capacities were 185 mg g(-1) for As(iii) and 212 mg g(-1) for As(v). It was found that Ce(3+) is an active site and continuously adsorbs arsenic species; there is a concomitant change from Ce(4+) to Ce(3+) due to the solution redox environment. This increase in the Ce(3+) concentration further facilitates the complete removal of arsenic species in solution. Thus our approach offers a promising potential for the treatment of arsenic-contaminated drinking water.

  3. The effect of microwave electromagnetic radiation on organic compounds removal efficiency in a reactor with a biofilm.

    PubMed

    Zielinski, M; Krzemieniewski, M

    2007-01-01

    This article shows the results of research on microwave radiation as a factor affecting organic compounds removal in a reactor with a biofilm. In the experiment a bioreactor was situated inside a microwave tube and there exposed to radiation. Municipal wastes were supplied to the bioreactor from a retention tank, to which they returned having passed through the reactor's packing. The whole system operated in a time cycle comprising a 24-hour detention of the wastewaters supply. The research was based on the specific properties of microwave heating, i.e. their ability to heat only the substances of appropriate dielectric properties. As the reactor was properly constructed and the microwave generator work was synchronised with that of the volumetric pump, microwave energy was directed mostly to the biofilm. It was observed that as a result of microwave radiation the process of organic compounds removal, defined as Chemical Oxygen Demand COD, increased its rate nearly by half. Simultaneously the process efficiency increased by 7.7% at the maximum. While analysing the changes the organic compounds underwent it was revealed that the load in-built in the biomass decreased by over half as a result of microwave radiation input at 2.5 W s(-1), which was optimal under the experimental conditions. Similarly the amount of pollutant remaining in the treated effluent decreased nearly by half, whereas the role of oxidation in removing organic pollutant increased in excess of 25% when compared to the control system.

  4. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  5. Removal of N-nitrosamines in a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation: Process efficiency and mechanisms.

    PubMed

    Chon, Kangmin; Kim, Sung Hyun; Cho, Jaeweon

    2015-08-01

    This study investigated the removal efficiency and mechanisms of water contaminants (mainly N-nitrosamines) during municipal wastewater reclamation by a membrane bioreactor (MBR) and nanofiltration (NF) hybrid system. The removal of bulk water contaminants was governed by the microbial activities in the MBR and molecular weight cut-off (MWCO) of the NF membranes. The removal of N-nitrosamines by the MBR was primarily attributed to biodegradation by aerobic bacteria, which can be determined by the reactivity of the amine functional groups with the catabolic enzymes (removal efficiency=45-84%). Adsorption and formation of membrane fouling can enhance the removal of N-nitrosamines by the NF membranes. However, size-exclusion is found to play a major role in the removal of N-nitrosamines by the NF membranes since the removal efficiencies of N-nitrosamines varied significantly depending on molecular weight of the N-nitrosamines and MWCO of the NF membranes (removal efficiency: NE90>NE70).

  6. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia.

    PubMed

    González, C; Marciniak, J; Villaverde, S; León, C; García, P A; Muñoz, R

    2008-01-01

    Concentrated animals feeding operations (CAFOs) often pose a negative environmental impact due to the uncontrolled spreading of manure into soils that ends up in the release of organic matter and nutrients into water bodies. Conventional aerobic methods treating CAFOs wastewater require intensive oxygenation, which significantly increases the operational costs. The alternative proposed in this research is the application of micro-algae based systems by taking advantage of the cost-effective in situ oxygenation via photosynthesis. A 4.9 L enclosed tubular biofilm photo-bioreactor was inoculated with an algal-bacterial consortium formed by the micro-algae Chlorella sorokiniana and a mixed bacterial culture from an activated sludge process. C. sorokiniana delivers the O(2) necessary to accomplish both organic matter and ammonium oxidation. The reactor was fed with diluted swine wastewater containing 180, 15 and 2,000 mg/L of NH(4) (+)-N, soluble P and total COD, respectively. The photo-bioreactor exhibited good and sustained nutrient removal efficiencies (up to 99% and 86% for NH(4) (+) and PO(4) (3-), respectively) while total COD was removed up to 75% when the biofilm was properly established. Liquid superficial velocities up to 0.4 m/s (achieved by culture broth recirculation) hindered the formation of a stable biofilm, while operation at velocities lower than 0.1 m/s supported stable process performance. The high shear stress imposed by the centrifugal recirculation pump disintegrated the large aggregates detached from the biofilm, which resulted in a poor settling performance and therefore poor COD removal efficiencies. Enclosed biofilm photo-bioreactors therefore offer a potentially more economical alternative to conventional tertiary treatments process.

  7. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.

  8. Efficient self-consistent treatment of electron correlation within the random phase approximation

    NASA Astrophysics Data System (ADS)

    Bleiziffer, Patrick; Heßelmann, Andreas; Görling, Andreas

    2013-08-01

    A self-consistent Kohn-Sham (KS) method is presented that treats correlation on the basis of the adiabatic-connection dissipation-fluctuation theorem employing the direct random phase approximation (dRPA), i.e., taking into account only the Coulomb kernel while neglecting the exchange-correlation kernel in the calculation of the Kohn-Sham correlation energy and potential. The method, denoted self-consistent dRPA method, furthermore treats exactly the exchange energy and the local multiplicative KS exchange potential. It uses Gaussian basis sets, is reasonably efficient, exhibiting a scaling of the computational effort with the forth power of the system size, and thus is generally applicable to molecules. The resulting dRPA correlation potentials in contrast to common approximate correlation potentials are in good agreement with exact reference potentials. The negatives of the eigenvalues of the highest occupied molecular orbitals are found to be in good agreement with experimental ionization potentials. Total energies from self-consistent dRPA calculations, as expected, are even poorer than non-self-consistent dRPA total energies and dRPA reaction and non-covalent binding energies do not significantly benefit from self-consistency. On the other hand, energies obtained with a recently introduced adiabatic-connection dissipation-fluctuation approach (EXXRPA+, exact-exchange random phase approximation) that takes into account, besides the Coulomb kernel, also the exact frequency-dependent exchange kernel are significantly improved if evaluated with orbitals obtained from a self-consistent dRPA calculation instead of an exact exchange-only calculation. Total energies, reaction energies, and noncovalent binding energies obtained in this way are of the same quality as those of high-level quantum chemistry methods, like the coupled cluster singles doubles method which is computationally more demanding.

  9. An efficient source of frequency anti-correlated entanglement at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Hou, Feiyan; Xiang, Xiao; Quan, Runai; Wang, Mengmeng; Zhai, Yiwei; Wang, Shaofeng; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-05-01

    We demonstrate an efficient generation of frequency anti-correlated entangled photon pairs at telecom wavelength. The fundamental laser is a continuous-wave high-power fiber laser at 1560 nm, through an extracavity frequency doubling system, a 780-nm pump with a power as high as 742 mW is realized. After single-passing through a periodically poled KTiOPO4 (PPKTP) crystal, degenerate down-converted photon pairs are generated. With an overall detection efficiency of 14.8 %, the count rates of the single photons and coincidence of the photon pairs are measured to be 370 kHz and 22 kHz, respectively. The spectra of the signal and idler photons are centered at 1560.23 and 1560.04 nm, while their 3-dB bandwidths being 3.22 nm both. The joint spectrum of the photon pair is observed to be frequency anti-correlated and have a spectral bandwidth of 0.52 nm. According to the ratio of the single-photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 6.19. Based on a Hong-Ou-Mandel interferometric coincidence measurement, a frequency indistinguishability of 95 % is demonstrated. The good agreements with the theoretical estimations show that the inherent extra intensity noise in fiber lasers has little influence on frequency entanglement of the generated photon pairs.

  10. Recombinant Klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads

    SciTech Connect

    Pinar, G.; Ramos, J.L.

    1998-12-01

    Klebsiella oxytoca CECT 4460 removes high nitrate loads from industrial wastewaters without accumulation of nitrite under optimal culture conditions; however, under nonoptimal conditions nitrite accumulates. This situation reflects an in vivo-limited functioning of nitrite reductase in this strain. As a way to overcome this limitation, an increase in the nitrite reductase gene dose in K. oxytoca CECT 4460 was considered. To achieve this, the authors cloned and transferred into this strain the Klebsiella pneumoniae nasB gene, which encodes assimilatory nitrite reductase. The delivery vector was either the wide-host-range plasmid pUPE2, in which the nasB gene is expressed from the Escherichia coli P{sub lac} promoter, or a mini-Tn5-Km vector, which upon random insertion in the host chromosome allowed expression of the nasB gene from an unidentified chromosomal host promoter. The effect of the increase in the dose of the nasB gene in K. oxytoca CECT 4460 on the accumulation of nitrite in the culture medium was tested in two recombinant strains. The results obtained showed that K. oxytoca CECT 4460 bearing pUPE2 accumulated 88% less nitrite than the wild-type strain, while the recombinant strain bearing the K. pneumoniae nasB gene in the host chromosome showed a 25% lower level of nitrite accumulation in the culture medium than that of the wild type.

  11. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.

    PubMed

    Zheng, Guanyu; Zhou, Lixiang

    2011-10-15

    Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids.

  12. Removal efficiency of Cr6+ by indigenous Pichia sp. isolated from textile factory effluent.

    PubMed

    Fernández, Pablo M; Martorell, María M; Fariña, Julia I; Figueroa, Lucia I C

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr(6+) concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL(-1). Growth and reduction of Cr(6+) were dependent on incubation temperature, agitation, Cr(6+) concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30 °C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr(6+) reduction.

  13. Removal Efficiency of Cr6+ by Indigenous Pichia sp. Isolated from Textile Factory Effluent

    PubMed Central

    Fernández, Pablo M.; Martorell, María M.; Fariña, Julia I.; Figueroa, Lucia I. C.

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr6+ concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL−1. Growth and reduction of Cr6+ were dependent on incubation temperature, agitation, Cr6+ concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30°C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr6+ reduction. PMID:22629188

  14. Odour emission ability (OEA) and its application in assessing odour removal efficiency.

    PubMed

    Wang, Xinguang; Parcsi, Gavin; Sivret, Eric; Le, Hung; Wang, Bei; Stuetz, Richard M

    2012-01-01

    Odourous emissions from sewer networks and wastewater treatment plants (WWTPs) can significantly impact a local population. Sampling techniques such as wind tunnels and flux hood chambers are traditionally used to collect area source samples for subsequent quantification of odour emission rates using dilution olfactometry, however these methods are unsuitable for assessing liquid samples from point sources due to the large liquid volumes required. To overcome this limitation, a gas phase sample preparation method was developed for assessing the total Odour Emission Ability (OEA) from a liquid sample. The method was validated using two volatile organic sulphur compounds (VOSCs), dimethyl-trisulphide (DMTS) and bismethylthiomethane (BMTM) that are frequently detected from sewers and WWTPs and are relatively stable compared with common VOSCs like mercaptan or methyl mercaptan. The recovery rates of DMTS and BMTM were quantified by injecting a known volume of a standard liquid sample into Tedlar bags using a static injection and a dynamic injection methodology. It was confirmed that both dynamic and static injection methods at ambient condition achieved high recovery rates with no need to consider increasing evaporation by elevating the temperature. This method can also be used to assess odour removal effectiveness of liquids by comparing the OEA before and after the treatment tests. Two application examples were presented.

  15. Efficiency of bioaugmentation in the removal of organic matter in aquaculture systems.

    PubMed

    Lopes, R B; Olinda, R A; Souza, B A I; Cyrino, J E P; Dias, C T S; Queiroz, J F; Tavares, L H S

    2011-05-01

    Several techniques are currently used to treat effluents. Bioaugmentation is a new bioremediation strategy and has been employed to improve effluent quality by treating the water during the production process. This technology consists basically of the addition of microorganisms able to degrade or remove polluting compounds, especially organic matter and nutrients. The objective of this study was to assess the effects of bioaugmentation on some parameters of organic matter and on the performance of juvenile tilapias in an intensive aquaculture production system. The combination of two bacterial consortiums in a complete randomized design was employed in a factorial analysis with two factors. Statistical differences between treatments were analyzed by the analysis of variance (ANOVA) and Tukey test at the 5% level. One of the treatments, heterotrophic bacterial supplementation, was able to reduce biochemical oxygen demand (BOD) by 23%, dissolved organic carbon (DOC) by 83.7% and phytoplanktonic biomass by 43%. On the other hand, no damage was done to either the physical-chemical indicators of water quality or to the growth performance of juvenile tilapias assessed in this study.

  16. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  17. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan Janardhana; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results ( R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  18. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results (R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  19. A novel total flux normalized correlation equation for predicting single-collector efficiency

    NASA Astrophysics Data System (ADS)

    Sethi, R.; Messina, F.; Marchisio, D.

    2015-12-01

    In this study a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. The correlation equation does not exploit the additivity approach introduced by Yao et al. (1971), but includes mixed terms that account for the mutual interaction of concomitant transport mechanisms (i.e., advection, gravity and Brownian motion) and of finite size of the particles (steric effect). The correlation equation is based on a combination of Eulerian and Lagrangian simulations performed, under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a cylindrical control volume. The normalization of the deposited flux is performed accounting for all of the particles entering into the control volume through all transport mechanisms (not just the upstream convective flux as conventionally done) to provide efficiency values lower than one over a wide range of parameters. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation, valid both for point and finite-size particles, is extended to include porosity dependency and it is compared with previous models. Reduced forms are proposed by elimination of the less relevant terms.References:F Messina, DL Marchisio, R Sethi . Journal of colloid and interface science 446, (2015) 185-193 T Tosco, DL Marchisio, F Lince, R Sethi, Transport in porous media 96 (1), (2013) 1-20 A Tiraferri, T Tosco, R Sethi Environmental Earth Sciences 63 (4), (2011) 847-859 K.E. Nelson, T.R. Ginn, T. Kemai, Environ Sci Technol 47 (2013) 8078. G. Boccardo, D.L. Marchisio, R. Sethi, J Colloid Interface Sci 417 (2014) 227. H. Ma, J. Pedel, P. Fife, W.P. Johnson, (2009). N. Tufenkji, M. Elimelech, Environ Sci Technol 38 (2004) 529.K.M. Yao, M.M. Habibian, C.R. O'Melia, Environ

  20. Intercomparison of a correlated-photon-based method to measure detector quantum efficiency.

    PubMed

    Migdall, Alan; Castelletto, Stefania; Degiovanni, Ivo Pietro; Rastello, Maria Luisa

    2002-05-20

    We report on the absolute calibration of photodetector quantum efficiency by using correlated photon sources, performed independently at two laboratories, the National Institute of Standards and Technology and the Istituto Elettrotecnico Nazionale (IEN). The goal is to use an interlaboratory comparison to demonstrate the inherent absoluteness of the photon correlation technique by showing its independence from the particular experimental setup. We find that detector nonuniformity limited this comparison rather than uncertainty inherent in the method itself. The ultimate goal of these investigations is development of a robust measurement protocol that allows the uncertainties of individual measurements to be determined experimentally and verified operationally. Furthermore, to demonstrate the generality of the procedure, the IEN measurement setup was also used to calibrate a fiber-coupled avalanche photodiode module. Uncertainties are evaluated for the detector both with and without fiber coupling and differences are discussed. The current IEN setup using a thinner and higher transmittance nonlinear crystal for the generation of correlated photons shows a significant improvement in overall accuracy with respect to previously reported results from IEN [Metrologia 32, 501-503 (1996)].

  1. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.

    PubMed

    Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita

    2011-07-15

    The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged.

  2. Structural correlates for lexical efficiency and number of languages in non-native speakers of English.

    PubMed

    Grogan, A; Parker Jones, O; Ali, N; Crinion, J; Orabona, S; Mechias, M L; Ramsden, S; Green, D W; Price, C J

    2012-06-01

    We used structural magnetic resonance imaging (MRI) and voxel based morphometry (VBM) to investigate whether the efficiency of word processing in the non-native language (lexical efficiency) and the number of non-native languages spoken (2+ versus 1) were related to local differences in the brain structure of bilingual and multilingual speakers. We dissociate two different correlates for non-native language processing. Firstly, multilinguals who spoke 2 or more non-native languages had higher grey matter density in the right posterior supramarginal gyrus compared to bilinguals who only spoke one non-native language. This is interpreted in relation to previous studies that have shown that grey matter density in this region is related to the number of words learnt in bilinguals relative to monolinguals and in monolingual adolescents with high versus low vocabulary. Our second result was that, in bilinguals, grey matter density in the left pars opercularis was positively related to lexical efficiency in second language use, as measured by the speed and accuracy of lexical decisions and the number of words produced in a timed verbal fluency task. Grey matter in the same region was also negatively related to the age at which the second language was acquired. This is interpreted in terms of previous findings that associated the left pars opercularis with phonetic expertise in the native language.

  3. Highly Efficient Arsenic Removal Using a Composite of Ultrafine Magnetite Nanoparticles Interlinked by Silane Coupling Agents

    PubMed Central

    Chang, Shu-Chi; Yu, Yu-Han; Li, Cheng-Hao; Wu, Chin-Ching; Lei, Hao-Yun

    2012-01-01

    Arsenic (As) contamination in groundwater is a great environmental health concern and is often the result of contact between groundwater and arsenic-containing rocks or sediments and from variation of pH and redox potentials in the subsurface. In the past decade, magnetite nanoparticles (MNPs) have been shown to have high adsorption activity towards As. Alerted by the reported cytotoxicity of 5–12 nm MNP, we studied the adsorption behavior of 1.15 nm MNP and a MNP composite (MNPC), MNPs interlinked by silane coupling agents. With an initial concentration of As at 25 mg L−1, MNPs exhibited high adsorption capacity for As(V) and As (III), 206.9 mg·g−1 and 168.6 mg·g−1 under anaerobic conditions, respectively, and 109.9 mg·g−1 and 108.6 mg·g−1 under aerobic conditions, respectively. Under aerobic conditions, MNPC achieved even higher adsorption capacity than MNP, 165.1 mg·g−1 on As(V) and 157.9 mg·g−1 on As(III). For As(V) at 50 mg L−1, MNPC achieved an adsorption capacity as high as 341.8 mg·g−1, the highest in the literature. A kinetic study indicated that this adsorption reaction can reach equilibrium within 15 min and the rate constant of As(V) is about 1.9 times higher than that of As(III). These results suggested that MNPC can serve as a highly effective adsorbent for fast removal of As. PMID:23202769

  4. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    PubMed

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  5. Efficient resist edgebead removal for thick I-line resist coating application on TEL Mark 7 track sytem

    NASA Astrophysics Data System (ADS)

    Tran, Quang

    2000-08-01

    Photoresist coating process for IC device manufacturing requires correct target thickness, good uniformity and low defect density. For thick resist films used for Ion Implant, Top Metal layer and/or Pad masks, resist beads built up around the side edges and on top of wafer within 0-3 mm approximately from edges will need to be removed to eliminate defects during ion implantation and etch operations. The conventional method o f using solvent dispenses and optical exposure for edgebead removal does not necessarily solve this problem for resist thickness greater than 1.5 micron. For solvent EBR application, most resist track systems have both top and bottom dispenses nozzles for wafer edge cleaning. However, due to the high risk of unwanted EBR solvent splashes with top EBR nozzle onto wafer surface, which will destroy resist pattern resulting in yield loss, opt EBR solvent application is usually not used. Optical exposure system for wafer edges on the track equipment does not have enough power to completely expose thick photoresist film within a reasonable time for throughput requirement. Hence, the use of optical and backside EBRs only will result in incomplete resist edgebead removal. In this paper, we will describe a new top rinse nozzle design and a combined process of top and bottom EBRs to provide adequate and efficient resist removal around wafer edges for thick photoresist films. A low cost and easy modification to the existing standard to rinse nozzle fora TEL Mark 7 track system was done to provide efficient to solvent EBR application and to avoid solvent splash defects. The low angle to top rinse nozzle below 20 degrees was found to be important in reducing solvent droplet defects. The low angle of top rinse nozzle below 20 degrees was found to be important in reducing solvent droplet defects. Finally, a defect comparison study using KLS2132 will show a lower defect level for the modified top rinse nozzle than the standard one. Qualitative images of wafer

  6. The Use of Haz-Flote to Efficiently Remove Mercury from Contaminated Materials

    SciTech Connect

    Terry Brown

    2009-03-03

    There are thousands of known contaminated sites in the United Stated, including Superfund sites (1500 to 2100 sites), RCRA corrective action sites (1500 to 3500 sites), underground storage tanks (295,000 sites), U.S. Department of Defense sites (7300 sites), U.S. Department of Energy sites (4,000 sites), mining refuse piles, and numerous other hazardous metals and organic contamination sites. Only a small percentage of these sites has been cleaned up. The development of innovative technologies to handle the various clean-up problems on a national and international scale is commonplace. Many innovative technologies have been developed that can be used to effectively remediate contaminated materials. Unfortunately, many of these technologies are only effective for materials coarser than approximately 200 mesh. In addition, these technologies usually require considerable investment in equipment, and the clean-up costs of soil material are relatively high - in excess of $100 to $500 per yd{sup 3}. These costs result from the elaborate nature of the processes, the costs for power, and the chemical cost. The fine materials are disposed of or treated at considerable costs. As a result, the costs often associated with amelioration of contaminated sites are high. Western Research institute is in the process of developing an innovative soil washing technology that addresses the removal of contaminants from the fine size-fraction materials located at many of the contaminated sites. This technology has numerous advantages over the other ex-situ soil washing techniques. It requires a low capital investment, low operating costs and results in high levels of re-emplacement of the cleaned material on site. The process has the capability to clean the fine fraction (<200 mesh) of the soil resulting in a replacement of 95+% of the material back on-side, reducing the costs of disposal. The Haz-Flote{trademark} technology would expand the application of soil washing technology to heavy

  7. Evaluation of pollutants removal efficiency to achieve successful urban river restoration.

    PubMed

    Cha, Sung Min; Ham, Young Sik; Ki, Seo Jin; Lee, Seung Won; Cho, Kyung Hwa; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    Greater efforts to provide alternative scenarios are key to successful urban stream restoration planning. In this study, we discuss two different aspects of water quality management schemes, biodegradation and human health, which are incorporated in the restoration project of original, pristine condition of urban stream at the Gwangju (GJ) Stream, Korea. For this study, monthly monitoring of biochemical oxygen demand (BOD(5)) and fecal indicator bacteria (FIB) data were obtained from 2003 to 2008 and for 2008, respectively, and these were evaluated to explore pollutant magnitude and variation with respect to space and time window. Ideal scenarios to reduce target pollutants were determined based on their seasonal characteristics and correlations between the concentrations at a water intake and discharge point, where we suggested an increase of environmental flow and wetland as pollutants reduction drawing for BOD(5) and FIB, respectively. The scenarios were separately examined by the Qual2E model and hypothetically (but planned) constructed wetland, respectively. The results revealed that while controlling of the water quality at the intake point guaranteed the lower pollution level of BOD(5) in the GJ Stream, a wetland constructed at the discharge point may be a promising strategy to mitigate mass loads of FIB. Overall, this study suggests that a combination of the two can be plausible scenarios not only to support sustainable urban water resources management, but to enhance a quality of urban stream restoration assignment.

  8. Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water

    NASA Astrophysics Data System (ADS)

    Zhong, Yunlei; Qiu, Xun; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-08-01

    Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium.

  9. Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water

    PubMed Central

    Zhong, Yunlei; Qiu, Xun; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-01-01

    Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium. PMID:27502074

  10. Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor.

    PubMed

    Cerrone, F; Barghini, P; Pesciaroli, C; Fenice, M

    2011-06-01

    The white-rot fungi Panus tigrinus, Funalia trogii and Trametes versicolor have been tested in shake flasks for the reduction of olive washing wastewater (OWW) pollutants and production of oxidases on OWW-based media. P. tigrinus was rejected for its scarce performance. F. trogii showed best production of laccase (27 000 Ug(-1)), while T. versicolor appeared a good pollutant degrader reducing colour, COD and phenols by 60, 72 and 87%, respectively. Only T. versicolor grew well in bubble-column bioreactor: its OWW depollution, in continuous process, led to colour, COD and phenols reduction by 65%, 73% and 89%, respectively. Optimal dilution rate was 0.225d(-1) (0.225 m(3) of effluent treated daily per m(3) of bioreactor). Thus, a small bioreactor (10 m(3)) could treat daily the amount of OWW produced by a standard olive washing machine (2m(3)d(-1)). For these reasons, this process could be proposed as a simple, efficient and low-cost OWW treatment.

  11. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.

    PubMed

    Usherwood, James R; Lehmann, Fritz-Olaf

    2008-11-06

    Dragonflies are dramatic, successful aerial predators, notable for their flight agility and endurance. Further, they are highly capable of low-speed, hovering and even backwards flight. While insects have repeatedly modified or reduced one pair of wings, or mechanically coupled their fore and hind wings, dragonflies and damselflies have maintained their distinctive, independently controllable, four-winged form for over 300Myr. Despite efforts at understanding the implications of flapping flight with two pairs of wings, previous studies have generally painted a rather disappointing picture: interaction between fore and hind wings reduces the lift compared with two pairs of wings operating in isolation. Here, we demonstrate with a mechanical model dragonfly that, despite presenting no advantage in terms of lift, flying with two pairs of wings can be highly effective at improving aerodynamic efficiency. This is achieved by recovering energy from the wake wasted as swirl in a manner analogous to coaxial contra-rotating helicopter rotors. With the appropriate fore-hind wing phasing, aerodynamic power requirements can be reduced up to 22 per cent compared with a single pair of wings, indicating one advantage of four-winged flying that may apply to both dragonflies and, in the future, biomimetic micro air vehicles.

  12. Efficient removal rhodamine B over hydrothermally synthesized fishbone like BiVO{sub 4}

    SciTech Connect

    Lin, Xue; Li, Hongji; Yu, Lili; Zhao, Han; Yan, Yongsheng; Liu, Chunbo; Zhai, Hongjv

    2013-10-15

    Graphical abstract: - Highlights: • Fishbone like BiVO{sub 4} product was synthesized through hydrothermal method. • BiVO{sub 4} sample was characterized by various characterization technologies. • Fishbone like BiVO{sub 4} presented outstanding photocatalytic performance. - Abstract: Fishbone like BiVO{sub 4} product has been successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value was found to play an important role in the formation of this morphology. The band gap of the as-prepared fishbone like BiVO{sub 4} sample was estimated to be about 2.36 eV from the onset of UV–vis diffuse reflectance spectrum (UV–vis DRS) of the photocatalyst. The as-prepared fishbone like BiVO{sub 4} sample exhibited excellent visible-light-driven photocatalytic efficiency. Over this catalyst, the 100% degradation of rhodamine B (Rh B) (0.005 mmol L{sup −1}) was obtained after visible light irradiation (λ > 420 nm) for 180 min. This is much higher than that of bulk BiVO{sub 4} sample prepared by solid-state reaction. The reason for the differences in the photocatalytic activities of fishbone like BiVO{sub 4} sample and bulk BiVO{sub 4} sample was further investigated.

  13. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    PubMed

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  14. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.

    PubMed

    Zhang, Changyong; Werth, Charles J; Webb, Andrew G

    2008-09-10

    Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.

  15. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Li; Li, Pei; Pan, Cong; Liao, Rujia; Cheng, Yuxuan; Hu, Weiwei; Chen, Zhong; Ding, Zhihua; Li, Peng

    2016-02-01

    The complex-based OCT angiography (Angio-OCT) offers high motion contrast by combining both the intensity and phase information. However, due to involuntary bulk tissue motions, complex-valued OCT raw data are processed sequentially with different algorithms for correcting bulk image shifts (BISs), compensating global phase fluctuations (GPFs) and extracting flow signals. Such a complicated procedure results in massive computational load. To mitigate such a problem, in this work, we present an inter-frame complex-correlation (CC) algorithm. The CC algorithm is suitable for parallel processing of both flow signal extraction and BIS correction, and it does not need GPF compensation. This method provides high processing efficiency and shows superiority in motion contrast. The feasibility and performance of the proposed CC algorithm is demonstrated using both flow phantom and live animal experiments.

  16. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.

  17. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach.

    PubMed

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-09

    In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm(2), and at operating cost of 0.455 US $/m(3). Additionally, it was found that FCER emits H2 gas enough to generate a power of 1.36 kW/m(3). Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R(2) of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides.

  18. Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structure-Property Correlation of Thiophene Oligomers.

    PubMed

    Ghosh, Tanwistha; Gopal, Anesh; Nagasawa, Shinji; Mohan, Nila; Saeki, Akinori; Nair, Vijayakumar C

    2016-09-28

    Semiconducting conjugated oligomers having same end group (N-ethylrhodanine) but different central core (thiophene: OT-T, bithiophene: OT-BT, thienothiophene: OT-TT) connected through thiophene pi-linker (alkylated terthiophene) were synthesized for solution processable bulk-heterojunction solar cells. The effect of the incorporation of an extra thiophene to the central thiophene unit either through C-C bond linkage to form bithiophene or by fusing two thiophenes together to form thienothiophene on the optoelectronic properties and photovoltaic performances of the oligomers were studied in detail. Flash photolysis time-resolved microwave conductivity (FP-TRMC) technique shows OT-TT has significantly higher photoconductivity than OT-T and OT-BT implying that the former can outperform the latter two derivatives by a wide margin under identical conditions in a bulk-heterojunction solar cell device. However, the initial photovoltaic devices fabricated from all three oligomers (with PC71BM as the acceptor) gave power conversion efficiencies (PCEs) of about 0.7%, which was counterintuitive to the TRMC observation. By using TRMC results as a guiding tool, solution engineering was carried out; no remarkable changes were seen in the PCE of OT-T and OT-BT. On the other hand, 5-fold enhancement in the device efficiency was achieved in OT-TT (PCE: 3.52%, VOC: 0.80 V, JSC: 8.74 mA cm(-2), FF: 0.50), which was in correlation with the TRMC results. The structure-property correlation and the fundamental reasons for the improvement in device performance upon solvent engineering were deduced through UV-vis absorption, atomic force microscopy, bright-field transmission electron microscopy, photoluminescence quenching analysis and two-dimensional grazing incidence X-ray diffraction studies.

  19. Evaluation of the efficiency of DTPA and other new chelating agents for removing neptunium from target organs.

    PubMed

    Paquet, F; Metivier, H; Poncy, J L; Burgada, R; Bailly, T

    1997-05-01

    Diethylenetriamine pentaacetic acid (DTPA) has been tested with 8 other new chelators for neptunium decorporation after systemic contamination in the rat. The ligands were injected intravenously at a dosage of 30 mumol kg-1 and the animals killed 24 h later. The results show that none of the chelators tested was efficient in removing significant amounts of the radionuclide from the body. In order to understand why these chelators were ineffective, in vitro approaches have since been developed in which high concentrations of DTPA were added to Np-bearing ligands in the blood, liver and skeleton. The main conclusions were that under our experimental conditions neptunium was not chelatable after its organ deposition.

  20. Resistance and resilience of removal efficiency and bacterial community structure of gas biofilters exposed to repeated shock loads.

    PubMed

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Roux, Xavier Le; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2012-11-01

    Since full-scale biofilters are often operated under fluctuating conditions, it is critical to understand their response to transient states. Four pilot-scale biofilters treating a composting gas mixture and undergoing repeated substrate pulses of increasing intensity were studied. A systematic approach was proposed to quantify the resistance and resilience capacity of their removal efficiency, which enabled to distinguish between recalcitrant (ammonia, DMDS, ketones) and easily degradable (esters and aldehyde) compounds. The threshold of disturbing shock intensity and the influence of disturbance history depended on the contaminant considered. The spatial and temporal distribution of the bacterial community structure in response to the perturbation regime was analysed by Denaturing Gradient Gel Electrophoresis (DGGE). Even if the substrate-pulses acted as a driving force for some community characteristics (community stratification), the structure-function relationships were trickier to evidence: the distributions of resistance and composition were only partially coupled, with contradictory results depending on the contaminant considered.

  1. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

    PubMed Central

    Rückriem, Kai; Grotheer, Sarah; Vieker, Henning; Penner, Paul; Beyer, André; Gölzhäuser, Armin

    2016-01-01

    Summary Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor. PMID:27547602

  2. High-efficient mercury removal from environmental water samples using di-thio grafted on magnetic mesoporous silica nanoparticles.

    PubMed

    Mehdinia, Ali; Akbari, Maryam; Baradaran Kayyal, Tohid; Azad, Mohammad

    2015-02-01

    In this work, magnetic di-thio functionalized mesoporous silica nanoparticles (DT-MCM-41) were prepared by grafting dithiocarbamate groups within the channels of magnetic mesoporous silica nanocomposites. The functionalized nanoparticles exhibited proper magnetic behavior. They were easily separated from the aqueous solution by applying an external magnetic field. The results indicated that the functionalized nanoparticles had a potential for high-efficient removal of Hg(2+) in environmental samples. The maximum adsorption capacity of the sorbent was 538.9 mg g(-1), and it took about 10 min to achieve the equilibrium adsorption. The resulted adsorption capacity was higher than similar works for adsorption of mercury. It can be due to the presence of di-thio and amine active groups in the structure of sorbent. The special properties of MCM-41 like large surface area and high porosity also provided a facile accessibility of the mercury ions into the ligand sites. The complete removal of mercury ions was attained with dithiocarbamate groups in a wide range of mercury concentrations. The recovery studies were also applied for the river water, seawater, and wastewater samples, and the values were over of 97 %.

  3. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms.

  4. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Zhang, Feng; Wang, Xin; Yin, Daixia; Peng, Bo; Tan, Changyin; Liu, Yunguo; Tan, Xiaofei; Wu, Shixue

    2015-04-15

    This study investigated the efficiency and mechanisms of Cd removal by biochar pyrolyzed from water hyacinth (BC) at 250-550 °C. BC450 out-performed the other BCs at varying Cd concentrations and can remove nearly 100% Cd from aqueous solution within 1 h at initial Cd ≤ 50 mg l(-1). The process of Cd sorption by BC450 followed the pseudo-second order kinetics with the equilibrium being achieved after 24 h with initial Cd ranging from 100 to 500 mg l(-1). The maximum Cd sorption capacity of BC450 was estimated to be 70.3 mg g(-1) based on Langmuir model, which is prominent among a range of low-cost sorbents. Based on the balance analysis between cations released and Cd sorbed onto BC450 in combination with SEM-EDX and XPS data, ion-exchange followed by surface complexation is proposed as the dominant mechanism responsible for Cd immobilization by BC450. In parallel, XRD analysis also suggested the formation of insoluble Cd minerals (CdCO3, Cd3P2, Cd3(PO4)2 and K4CdCl6) from either (co)-precipitation or ion exchange. Results from this study highlighted that the conversion of water hyacinth into biochar is a promising method to achieve effective Cd immobilization and improved management of this highly problematic invasive species.

  5. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    PubMed Central

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-01-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g−1 and 65 mg g−1, which were much more than those on the gelatin sponge (9.75 mg g−1 and 9.35 mg g−1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg−1 and 5.69 mg kg−1, respectively, which were much lower than those (15.78 mg kg−1 and 27.98 mg kg−1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals. PMID:27633732

  6. Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed.

    PubMed

    Passeport, Elodie; Tournebize, Julien; Chaumont, Cédric; Guenne, Angeline; Coquet, Yves

    2013-05-01

    Pesticide pollution is a major threat to aquatic ecosystems that can be mitigated through complementary actions including buffer zones (BZs). This paper discusses the results of 3 yr of field-scale monitoring of the concentration and load transfer of 16 pesticides out of a tile-drained catchment (Bray, France) and their reduction through two BZ: an artificial wetland (AW) and a forest buffer (FB). Typically, the highest concentrations were measured in the first flows following pesticide applications or resuming after periods of low or no flow. An open/close water management strategy was implemented to operate the parallel BZ based on pesticide applications by the farmer. The strategy was efficient in intercepting molecules whose highest concentrations occurred during the first flows following application. Inlet vs. outlet pesticide load reductions ranged from 45% to 96% (AW) and from -32% to 100% (FB) depending on the pesticide molecule and the hydrological year. Partly reversible adsorption was a dominant process explaining pesticide removal; whereas, degradation occurred for sufficiently long water retention time. Apart from the least sorbing molecules (e.g., isoproturon), BZ can partially remove pesticide pollution.

  7. Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge

    NASA Astrophysics Data System (ADS)

    Li, Bingbing; Zhou, Feng; Huang, Kai; Wang, Yipei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2016-09-01

    Wastewater irrigation is a very important resource for heavy metal pollution in soil and then accumulation in vegetable crops. In this study, a polyethylenimine (PEI)-grafted gelatin sponge was prepared to effectively adsorb heavy metals during wastewater irrigation. Based on the strong water adsorption ability, wastewater remained in the PEI-grafted gelatin sponge for a sufficient time for the heavy metals to interact with the sorbents. The binding capacities of Pb(II) ions and Cd(II) ions on the PEI-grafted gelatin sponge were 66 mg g‑1 and 65 mg g‑1, which were much more than those on the gelatin sponge (9.75 mg g‑1 and 9.35 mg g‑1). Subsequently, the PEI-grafted gelatin sponge was spread on the surface of soil planted with garlic and then sprayed with synthetic wastewater. The concentrations of cadmium and lead in the garlic leaves were 1.59 mg kg‑1 and 5.69 mg kg‑1, respectively, which were much lower than those (15.78 mg kg‑1 and 27.98 mg kg‑1) without the gelatin sponge, and the removal efficiencies were 89.9% and 79.7%. The PEI-grafting gelatin sponge could effectively remove heavy metals during wastewater irrigation, which improved the soil environment and reduced human exposure to heavy metals.

  8. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling.

    PubMed

    Li, Sheng; Lee, Shang-Tse; Sinha, Shahnawaz; Leiknes, TorOve; Amy, Gary L; Ghaffour, Noreddine

    2016-10-01

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1-0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency.

  9. Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal.

    PubMed

    Chowdhury, Muhammed Alamgir Zaman; Jahan, Iffat; Karim, Nurul; Alam, Mohammad Khorshed; Abdur Rahman, Mohammad; Moniruzzaman, Mohammed; Gan, Siew Hua; Fakhruddin, Abu Naieum Muhammad

    2014-01-01

    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.

  10. Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions.

    PubMed

    Lohani, Minaxi B; Singh, Amarika; Rupainwar, D C; Dhar, D N

    2008-11-30

    Biosorption of Hg (II) was investigated in this study by using guava bark powder (GBP). In the batch system, effects of various parameters like contact time, initial concentration, pH and temperature were investigated. Removal of Hg (II) was pH dependent and was found maximum at pH 9.0. Based on this study, the thermodynamic parameters like change in standard Gibb's free energy (DeltaG(0)), standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) were evaluated. The rate kinetic study was found to follow second-order. The applicability of Freundlich adsorption isotherm model was tested. The value of regression coefficient was greater than 0.99. This indicated that the isotherm model adequately described the experimental data of the biosorption of Hg (II). Maximum adsorption of 3.364 mgg(-1) was reached at 80 min. The results of the study showed that guava bark powder can be efficiently used as a low-cost alternative for the removal of divalent mercury from aqueous solutions.

  11. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    PubMed

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  12. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    SciTech Connect

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori

    2008-11-15

    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

  13. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zheng, Lizhi; Cardenas, M. Bayani; Wang, Lichun

    2016-04-01

    Hyporheic flow in aquatic sediment controls solute and heat transport thereby mediating the fate of nutrients and contaminants, dissolved oxygen, and temperature in the hyporheic zone (HZ). We conducted a series of numerical simulations of hyporheic processes within a dune with different uniform temperatures, coupling turbulent open channel fluid flow, porous fluid flow, and reactive solute transport to study the temperature dependence of nitrogen source/sink functionality and its efficiency. Two cases were considered: a polluted stream and a pristine stream. Sensitivity analysis was performed to investigate the influence of stream water [NO3-]/[NH4+]. The simulations showed that in both cases warmer temperatures resulted in shallower denitrification zones and oxic-anoxic zone boundaries, but the trend of net denitrification rate and nitrate removal or production efficiency of the HZ for these two cases differed. For both cases, at high [NO3-]/[NH4+], the HZ functioned as a NO3- sink with the nitrate removal efficiency increasing with temperature. But at low [NO3-]/[NH4+] for the polluted stream, the HZ is a NO3- sink at low temperature but then switches to a NO3- source at warmer temperatures. For the pristine stream case, the HZ was always a NO3- source, with the NO3- production efficiency increasing monotonically with temperature. In addition, although the interfacial fluid flux expectedly increased with increasing temperature due to decreasing fluid viscosity, the total nitrate flux into the HZ did not follow this trend. This is because when HZ nitrification is high, uniformly elevated [NO3-] lowers dispersive fluxes into the HZ. We found that there are numerous confounding and interacting factors that combined to lead to the final temperature dependence of N transformation reaction rates. Although the temperature effect on the rate constant can be considered as the dominant factor, simply using the Arrhenius equation to predict the reaction rate would lead to

  14. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems.

    PubMed

    Murg, V; Verstraete, F; Schneider, R; Nagy, P R; Legeza, Ö

    2015-03-10

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.

  15. Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaoyang; Wei, Yu; Ma, Feng

    2015-07-01

    In this paper, the multifractality and efficiency degrees of ten important Chinese sectoral indices are evaluated using the methods of MF-DFA and generalized Hurst exponents. The study also scrutinizes the dynamics of the efficiency of Chinese sectoral stock market by the rolling window approach. The overall empirical findings revealed that all the sectoral indices of Chinese stock market exist different degrees of multifractality. The results of different efficiency measures have agreed on that the 300 Materials index is the least efficient index. However, they have a slight diffidence on the most efficient one. The 300 Information Technology, 300 Telecommunication Services and 300 Health Care indices are comparatively efficient. We also investigate the cross-correlations between the ten sectoral indices and WTI crude oil price based on Multifractal Detrended Cross-correlation Analysis. At last, some relevant discussions and implications of the empirical results are presented.

  16. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  17. Ability to Remove Na+ and Retain K+ Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings

    PubMed Central

    Gao, Yong; Lu, Yi; Wu, Meiqin; Liang, Enxing; Li, Yan; Zhang, Dongping; Yin, Zhitong; Ren, Xiaoyun; Dai, Yi; Deng, Dexiang; Chen, Jianmin

    2016-01-01

    Maize is moderately sensitive to salt stress; therefore, soil salinity is a serious threat to its production worldwide. Here, excellent salt-tolerant maize inbred line TL1317 and extremely salt-sensitive maize inbred line SL1303 were screened to understand the maize response to salt stress and its tolerance mechanisms. Relative water content, membrane stability index, stomatal conductance, chlorophyll content, maximum photochemical efficiency, photochemical efficiency, shoot and root fresh/dry weight, and proline and water soluble sugar content analyses were used to identify that the physiological effects of osmotic stress of salt stress were obvious and manifested at about 3 days after salt stress in maize. Moreover, the ion concentration of two maize inbred lines revealed that the salt-tolerant maize inbred line could maintain low Na+ concentration by accumulating Na+ in old leaves and gradually shedding them to exclude excessive Na+. Furthermore, the K+ uptake and retention abilities of roots were important in maintaining K+ homeostasis for salt tolerance in maize. RNA-seq and qPCR results revealed some Na+/H+ antiporter genes and Ca2+ transport genes were up-regulated faster and higher in TL1317 than those in SL1303. Some K+ transport genes were down-regulated in SL1303 but up-regulated in TL1317. RNA-seq results, along with the phenotype and physiological results, suggested that the salt-tolerant maize inbred line TL1317 possesses more rapidly and effectively responses to remove toxic Na+ ions and maintain K+ under salt stress than the salt-sensitive maize inbred line SL1303. This response should facilitate cell homoeostasis under salt stress and result in salt tolerance in TL1317. PMID:27899930

  18. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    PubMed

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose.

  19. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study.

    PubMed

    Shanehsaz, Maryam; Seidi, Shahram; Ghorbani, Yousefali; Shoja, Seyed Mohammad Reza; Rouhani, Shohre

    2015-01-01

    The present work deals with the first attempt to study the removal of synthetic textile dye, reactive blue 19 (RB19), using the magnetic Fe3O4 nanoparticles modified by pyrrole (PPy@Fe3O4 MNPs) as an efficient adsorbent. The nanoadsorbent was synthesized using chemical co-precipitation. Scanning electron microscopy and FT-IR were used to characterize nanoparticles. Factors affecting the dye adsorption including the pH of the dye solution, amount of adsorbent and contact time were also further investigated. Sorption of the RB19 on PPy@Fe3O4 MNPs reached to equilibrium at contact time less than 10 min and fitted well to the Langmuir adsorption model with a maximum adsorption capacity of 112.36 mg g(-1). Experiments for adsorption kinetic were carried out and the data fitted well according to a pseudo-second-order kinetic model. Moreover, the MNPs were recovered with over than 90% efficiency using methanol as elution agent.

  20. Radiative efficiency of hot accretion flow and the radio/X-ray correlation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo

    2016-02-01

    Significant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.

  1. [Coating modification of anthracite substrates in vertical-flow constructed wetlands by LDHs synthesized from different metal compounds and the nitrogen removal efficiencies].

    PubMed

    Zhang, Xiang-Ling; Guo, Lu; Chen, Jun-Jie; Liu, Xiao-Ting; Xu, Lu; Chen, Qiao-Zhen; Wang, Xiao-Xiao

    2014-08-01

    As one kind of vertical-flow constructed wetlands substrates, anthracite was selected in this experiment. LDHs (layered double hydroxides) were synthesized in alkaline conditions by co-precipitation of different kinds of metal compounds, such as CaCl2, ZnCl2, MgCl2, FeCl3, AlCl3, CoCl3. The synthesized LDHs were in-situ coated onto the surface of anthracite substrate to achieve the aim of modification. Simulated test columns were constructed to study the nitrogen removal efficiency of the urban sewage using the original anthracite substrates and 9 kinds of modified anthracite substrates. The results showed that: LDHs synthesized by all the 9 different kinds of methods could effectively modify the anthracite substrate by in-situ coating. With Mg2+ involved in the synthesis of modified substrates, good TN and ammonia nitrogen removal efficiencies were observed. The modified anthracite substrates coated with MgCo-LDHs had the optimal performance with average TN and ammonia nitrogen removal efficiencies of higher than 80% and 85%, respectively. The ammonia nitrogen removal efficiencies by the modified anthracite substrates coated by LDHs reacted with Mg2+ and Fe3+ were also high. The ammonia nitrogen removal efficiencies by modified anthracite substrates coated with CaFe-LDHs and MgFe-LDHs were higher than 85%.

  2. Regulation of Norovirus Virulence by the VP1 Protruding Domain Correlates with B Cell Infection Efficiency

    PubMed Central

    Zhu, Shu; Watanabe, Makiko; Kirkpatrick, Ericka; Murray, Akilah B.; Sok, Ryneth

    2015-01-01

    ABSTRACT Human noroviruses are a leading cause of gastroenteritis across the globe, but the pathogenic mechanisms responsible for disease are not well established. The availability of a murine norovirus model system provides the opportunity to elucidate viral and host determinants of virulence in a natural host. For example, previous studies have revealed that the protruding domain of the murine norovirus capsid protein VP1, specifically residue 296 of VP1, regulates virulent infection. We identified a panel of nonsynonymous mutations in the open reading frame 2 (ORF2) gene encoding VP1 that arose in persistently infected mice and tested whether these mutations conferred phenotypic changes to viral replication and virulence. Consistent with previous studies, we demonstrate that a glutamic acid at position 296 results in attenuation. For the first time, we also demonstrate that a lysine at this position is sufficient to confer virulence on an otherwise attenuated murine norovirus strain. Moreover, our studies reveal a direct correlation between the efficiency of viral replication in B cells and virulence. These data are especially striking because mutations causing reduced B cell replication and attenuation had minimal effects on the ability of the virus to replicate in macrophages. Thus, norovirus infection of B cells may directly contribute to disease outcome. IMPORTANCE Human noroviruses are a major global cause of disease, yet we know very little about their pathogenic mechanisms. The availability of a murine norovirus model system facilitates investigation of noroviruses in a natural host organism and the identification of viral and host determinants of pathogenesis. We have identified a panel of mutations arising in the viral capsid protein VP1 during persistent infection of mice. Our data reveal that the protruding domain of VP1 regulates the ability of the virus to replicate in B cells, and this directly correlates with virulence. Importantly, mutations

  3. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-01-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_{A}^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (EPIC), we present the first software demonstration of a generalized direct imaging algorithm, namely, the Modular Optimal Frequency Fourier (MOFF) imager. Not only does it bring down the cost for dense layouts to O(N_{A} log _2N_{A}) but can also image from irregular layouts and heterogeneous arrays of antennas. EPIC is highly modular, parallelizable, implemented in object-oriented Python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that EPIC robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of EPIC. The algorithm is a strong candidate for instruments targeting transient searches of Fast Radio Bursts (FRB) as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  4. The correlation between photosensitizers' membrane localization, membrane-residing targets, and photosensitization efficiency

    NASA Astrophysics Data System (ADS)

    Ytzhak, Shany; Bernstein, Shoshana; Loew, Leslie M.; Ehrenberg, Benjamin

    2009-06-01

    Various tetrapyrroles act as photosensitizers by efficiently generating singlet oxygen. Hydrophobic or amphiphilic photosensitizers are taken up by cells and are usually located in various cellular lipid membranes. Passive uptake by a membrane depends on biophysical properties of the membrane, such as its composition, temperature, phase, fluidity, electric potential etc., as well as on the external solution's properties. Although the intrinsic lifetime of singlet oxygen in the membrane phase is 10-30 μs, depending on lipid composition, it escapes much faster out of the membrane into the external or internal aqueous medium, where its lifetime is <3 μs. Any damage that singlet oxygen might inflict to membrane constituents, i.e. proteins or lipids, must thus occur while it is diffusing in the membrane. As a result, photosensitization efficiency depends, among others, on the location of the sensitizer in the membrane. Singlet oxygen can cause oxidative damage to two classes of targets in the membrane: lipids and proteins. Depolarization of the Nernst electric potential on cells' membranes was observed, but it is not clear whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells' membranes and to their death. We present a study of the effect of membrane lipid composition and the dissipation of the electric potential that is generated across the membrane. We find a clear correlation between the structure and unsaturation of lipids and the leakage of the membrane, which can be caused by their photosensitized oxidization. We demonstrate here that when liposomes are composed of mixtures similar to natural membranes, and photosensitization is being carried out under usual PDT conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which could be a mechanism that leads to cell death.

  5. A new definition of a correlation equation for single collector efficiency

    NASA Astrophysics Data System (ADS)

    Messina, Francesca; Sethi, Rajandrea

    2014-05-01

    The transport and deposition of colloidal particles in porous media are important phenomena involved in many environmental and engineering problems as, for instance, the use of micro- and nanoscale zerovalent iron, a promising reagent in the field of groundwater remediation [1]. Particle transport and deposition in the proximity of injection or pumping wells and in porous media in general may also be relevant in other fields of chemical and petroleum engineering. Mathematical models able to predict particles transport and deposition in porous media are often needed in order to design field applications. The basic concept of these models is the single collector efficiency η, which predicts particles deposition onto a single grain of a complex porous medium in terms of probability that an approaching particle would be retained on a solid grain. Many different approaches and equations exist in the literature, however most of them are valid only under specific conditions (eg. specific range of flow rate, particle size, etc.), and predict, for certain parametric conditions, efficiency values exceeding unity, which is, for an efficiency concept, a contradiction [2][3]. The objectives of this study are to analyze the causes of the failure of the existing models in predicting the deposition rate in certain conditions and to modify the definition of collector efficiency in order to have a more general equation. The definition of collector efficiency, first proposed by Yao at al. [4], is based on the particles deposition onto a spherical grain (the collector) in an infinite domain. It is defined as the ration between the flux of particles that deposit on the grain and the total amount of particles that could reach the collector by advective flux from an area equal to the projection of the spherical grain itself. In the present work Yao's model has been implemented by COMSOL Multiphysics and solved with an Eulerian approach; particles deposition simulations were run. From

  6. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea.

    PubMed

    He, Peimin; Xu, Shannan; Zhang, Hanye; Wen, Shanshan; Dai, Yongjing; Lin, Senjie; Yarish, Charles

    2008-02-01

    The bioremediation capability and efficiency of large-scale Porphyra cultivation in the removal of inorganic nitrogen and phosphorus from open sea area were studied. The study took place in 2002-2004, in a 300 ha nori farm along the Lusi coast, Qidong County, Jiangsu Province, China, where the valuable rhodophyte seaweed Porphyra yezoensis has been extensively cultivated. Nutrient concentrations were significantly reduced by the seaweed cultivation. During the non-cultivation period of P. yezoensis, the concentrations of NH4-N, NO2-N, NO3-N and PO4-P were 43-61, 1-3, 33-44 and 1-3 micromol L(-1), respectively. Within the Porphyra cultivation area, the average nutrient concentrations during the Porphyra cultivation season were 20.5, 1.1, 27.9 and 0.96 micromol L(-1) for NH4-N, NO2-N, NO3-N and PO4-P, respectively, significantly lower than in the non-cultivation season (p<0.05). Compared with the control area, Porphyra farming resulted in the reduction of NH4-N, NO2-N, NO3-N and PO4-P by 50-94%, 42-91%, 21-38% and 42-67%, respectively. Nitrogen and phosphorus contents in dry Porphyra thalli harvested from the Lusi coast averaged 6.3% and 1.0%, respectively. There were significant monthly variations in tissue nitrogen content (p<0.05) but not in tissue phosphorus content (p>0.05). The highest tissue nitrogen content, 7.65% in dry wt, was found in December and the lowest value, 4.85%, in dry wt, in April. The annual biomass production of P. yezoensis was about 800 kg dry wt ha(-1) at the Lusi Coast in 2003-2004. An average of 14708.5 kg of tissue nitrogen and 2373.5 kg of tissue phosphorus in P. yezoensis biomass were harvested annually from 300 ha of cultivation from Lusi coastal water. These results indicated that Porphyra efficiently removed excess nutrient from nearshore eutrophic coastal areas. Therefore, large-scale cultivation of P. yezoensis could alleviate eutrophication in coastal waters economically.

  7. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-05-20

    Ag-CoFe2O4-graphene oxide (Ag-CoFe2O4-GO) nanocomposite was synthesized by doping silver and CoFe2O4 nanoparticles on the surface of GO, which was used to purify both bacteria and Pb(II) contaminated water. The Ag-CoFe2O4-GO nanomaterial was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), cyclic voltammetry (CV), and magnetic property tests. It can be found that Ag-CoFe2O4-GO nanocomposite exhibited excellent antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus compared with CoFe2O4, Ag-CoFe2O4, and CoFe2O4-GO composite. This superior disinfecting effect was possibly attributed to the combination of GO nanosheets and Ag nanoparticles. Several antibacterial factors including temperature, time, and pH were also investigated. It was obvious that E. coli was more susceptible than S. aureus toward all the four types of nanomaterials. The structural difference of bacterial membranes should be responsible for the resistant discrepancy. We also found that Ag-CoFe2O4-GO inactivated both bacteria in an irreversibly stronger manner than Ag-CoFe2O4 and CoFe2O4-GO. The Pb(II) removal efficiency with all the nanomaterials showed significant dependence on the surface area and zeta potential of the materials. In this work, not only did we demonstrate the simultaneous superior removal efficiency of bacteria and Pb(II) by Ag-CoFe2O4-GO but also the antibacterial mechanism was discussed to have a better understanding of the interaction between Ag-CoFe2O4-GO and bacteria. In a word, taking into consideration the easy magnetic separation, bulk availability, and irreversibly high antibacterial activity of Ag-CoFe2O4-GO, it is the very promising candidate material for advanced antimicrobial or Pb(II) contaminated water treatment.

  8. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  9. Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants.

    PubMed

    Hou, Xiaojing; Huang, Xiaopeng; Ai, Zhihui; Zhao, Jincai; Zhang, Lizhi

    2016-06-05

    In this study, we demonstrate that the combination of ascorbic acid and Fe@Fe2O3 core-shell nanowires (AA/Fe@Fe2O3) offers a highly efficient Fenton reagent. This combined Fenton reagent exhibited extremely high activity on the decomposition of H2O2 to produce OH for the degradation of various organic contaminants, including rhodamine B, methylene blue, alachlor, atrazine, siduron, lincomycin, and chloroamphenicol. The contaminant degradation constants in the AA/Fe@Fe2O3/H2O2 Fenton systems were 38-53 times higher than those in the conventional homogeneous Fenton system (Fe(II)/H2O2) at pH 3.8. Moreover, the OH generation rate constant in the AA/Fe@Fe2O3/H2O2 Fenton system was 1-3 orders of magnitudes greater than those of heterogeneous Fenton systems developed with other iron-containing materials (α-FeOOH, α-Fe2O3, FeOCl, and so on). The high activity of AA/Fe@Fe2O3 was attributed to the effective Fe(III)/Fe(II) cycle and the iron-ascorbate complex formation to stabilize ferrous ions with desirable and steady concentrations. During the AA/Fe@Fe2O3/H2O2 Fenton process, ascorbic acid served as a reducing and complexing reagent, enabling the reuse of Fe@Fe2O3 nanowires. We systematically investigated the alachlor and ascorbic acid degradation and found that they could be effectively degraded in the AA/Fe@Fe2O3/H2O2 system, accompanying with 100% of dechlorination and 92% of denitrification. This study sheds light on the importance of Fe(III)/Fe(II) cycle for the design of high efficient Fenton system and provides an alternative pathway for the organic contaminants removal.

  10. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst.

    PubMed

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-05-15

    Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101mgg(-1) at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80μM) at 298K and pH 4.5 in the presence of H(2)O(2) (6.0mM) and FeR (0.4gL(-1)) was evaluated to be 0.0413min(-1) under visible light and 0.122min(-1) under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H(2)O(2) into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  11. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    PubMed Central

    2012-01-01

    Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w). Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities. PMID:23369665

  12. Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation.

    PubMed

    Zhu, Lizhong; Ruan, Xiuxiu; Chen, Baoliang; Zhu, Runliang

    2008-02-01

    A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA(+)) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg(-1). Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l(-1). To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA(+) (tetramethylammonium), BTMA(+), HTMA(+) (heptyltrimethylammonium) and CTMA(+) (cetyltrimethylammonium) with two bentonites (CEC=108 and 65 cmol kg(-1)). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.

  13. Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Yongtao; Zhang, Yanwei; Ding, Lei; Zheng, Jing; Xu, Jingli

    2016-07-01

    The controllable synthesis of materials with the desired structure and dimensionality is of great significance in material science. In this work, the hierarchical CNTs/Fe3O4@copper silicate (CNTs/Fe3O4@CuSilicate) composites were synthesized via a simple chemical conversion route by using CNTs/Fe3O4@SiO2 nanocables as template. Firstly, magnetic CNTs composites (CNTs/Fe3O4) were synthesized by the high temperature decomposition process using the iron acetylacetonate as raw materials. Then a layer of SiO2 can be easily coated on the magnetic CNTs by the stöber method, which were then converted into CNTs/Fe3O4@CuSilicate composites by hydrothermal reaction between the silica shell and copper ions in alkaline solution. The resulting CNTs/Fe3O4@CuSilicate composites hold merits such as magnetic responsivity, good dispersibility, and large specific surface area. Moreover, the CNTs/Fe3O4@copper silicate composites have strong affinity toward bovine hemoglobin (BHb), which were successfully applied to convenient, efficient, and fast removal of abundant proteins (HHb and HSA) in human blood.

  14. Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb(2+) from water.

    PubMed

    di Bitonto, Luigi; Volpe, Angela; Pagano, Michele; Bagnuolo, Giuseppe; Mascolo, Giuseppe; La Parola, Valeria; Di Leo, Paola; Pastore, Carlo

    2017-02-15

    Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb(2+) from water. The use of sodium borohydride (NaBH4) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb(2+) adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb(2+) was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb(2+) and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385mg/g. The effect of solution pH and common ions (i.e. Na(+), Ca(2+) and Mg(2+)) onto Pb(2+) sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb(2+) (50ppb).

  15. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal.

    PubMed

    Xu, Jiaxing; Sun, Honglin; He, Xuejun; Bai, Zhongzhong; He, Bingfang

    2013-02-01

    An efficient enzymatic synthesis of endomorphin-2 (EM-2) was achieved using organic solvent stable proteases in nonaqeous media, based on thermodynamic control and an in situ product removal methodology. The high stability of biocatalysts in organic solvents enabled the aleatoric modulation of the nonaqueous reaction media to shift thermodynamic equilibrium toward synthesis. Peptide Boc-Phe-Phe-NH2 was synthesized with a high yield of 96% by the solvent stable protease WQ9-2 in monophase medium with an economical molar ratio of the substrate of 1:1. The tetrapeptide Boc-Tyr-Pro-Phe-Phe-NH2 was synthesized with a yield of 88% by another organic solvent tolerant protease PT121 from Boc-Tyr-Pro-OH and Phe-Phe-NH2 in an organic-aqueous biphasic system. The reaction-separation coupling in both enzymatic processes provides "driving forces" for the synthetic reactions and gives a high yield and high productivity without purification of the intermediate, thereby making the synthesis more amenable to scale-up.

  16. Baffled membrane bioreactor (BMBR) for advanced wastewater treatment: easy modification of existing MBRs for efficient nutrient removal.

    PubMed

    Kimura, K; Watanabe, Y

    2005-01-01

    In this study, a novel membrane bioreactor (MBR) in which nitrification and denitrification simultaneously proceed in a single reaction chamber is proposed for advanced municipal wastewater treatment. Anoxic/aerobic environments are alternatively created in the proposed MBR by inserting baffles inside the membrane chamber. The performance of the proposed baffled membrane bioreactor (BMBR) was examined at an existing municipal wastewater treatment facility based on long-term operation. Although the procedure was simple, insertion of the baffles actually created the alternative anoxic/aerobic environments in the chamber at a constant interval and showed a great improvement in the nutrient removal. The insertion did not cause any adverse effect on membrane permeability. In this study, almost complete elimination of NH4+-N was observed while around 8 mg/L of NO(3-)-N was detected in the treated water. The modification proposed in this study can immediately be applied to most existing MBRs and is highly recommended for more efficient wastewater treatment.

  17. Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers.

    PubMed

    Zhang, Zulei; Zhang, Xingdi; Niu, Dechao; Li, Yongsheng; Shi, Jianlin

    2017-04-15

    A novel type of adsorbent for the selective recognition and adsorption of trace Pb(2+) from aqueous solutions has been successfully constructed simply by grafting molecularly imprinted polymers (MIPs) onto hollow mesoporous silica (HMS). Attractively, the HMS loaded with MIPs (H-MIPs) exhibits a fast adsorption kinetics, marked adsorption capacity of 40.52mg/g and extremely high selectivity toward Pb(2+) over Cu(2+), Zn(2+), Co(2+), Mn(2+) and Ni(2+), and the selectivity coefficients have been determined to be as high as 50. Moreover, such high adsorptive capability and selectivity were retained for at least 6 runs, indicating the stability and reusability of H-MIPs. Lead ion contaminants in real water samples were successfully concentrated and approximately 100% recovered using H-MIPs. Theoretical analysis shows that the adsorption process of H-MIPs follows the pseudo-second-order kinetic and Langmuir isotherm models. These demonstrate that H-MIPs are greatly potential for the rapid and highly efficient removal of trace Pb(2+) ions in complicated matrices.

  18. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-arg proteins and stapled peptides.

    PubMed

    LaRochelle, Jonathan R; Cobb, Garrett B; Steinauer, Angela; Rhoades, Elizabeth; Schepartz, Alanna

    2015-02-25

    We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of "cell-penetrating peptides" traffic to the cytosol of mammalian cells. We find that certain molecules containing a "penta-arg" motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells.

  19. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  20. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis.

    PubMed

    Liang, Zhijie; Liu, Yan; Ge, Fei; Xu, Yin; Tao, Nengguo; Peng, Fang; Wong, Minghung

    2013-08-01

    To achieve better removal of NH4(+) and TP in wastewater, a new algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis was investigated in a 6-d experiment. The results showed that 78% of NH4(+) could be removed in the combined system, while 29% in single algae system and only 1% in single bacteria system. Approximately 92% of TP was removed in the combined system, compared with 55% and 78% in single algae and bacteria system, respectively. B. licheniformis was proven to be a growth-promoting bacterium for C. vulgaris by comparing Chl a concentrations in the single and combined systems. In the removal process, pH of the combined system was observed to reduce significantly from 7.0 to 3.5. Whereas with pH regulated to 7.0, higher removal efficiencies of NH4(+) (86%) and TP (93%) were achieved along with the recovery of algal cells and the increase of Chl a. These results suggest that nutrients in wastewater can be removed efficiently by the algae-bacteria combined system and pH control is crucial in the process.

  1. The effect of weathering on charcoal filter performance. 2; The effect of contaminants on the CH sub 3 I removal efficiency of TEDA charcoal

    SciTech Connect

    Wren, J.C.; Moore, C.J. )

    1991-05-01

    The effect of various contaminants, namely NO{sub 2} SO{sub 2}, 2-butanone (methyl-ethyl-ketone (MEK)), and NH{sub 3}, on the radioiodine removal efficiency of triethylenediamine (TEDA)-impregnated charcoal filters has been studied, and an attempt was made to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The effects of the contaminants on the CH{sub 3}I removal efficiency of TEDA charcoal under dry and humid conditions are described. Based on our results, the efficiency of TEDA charcoal is degraded most by NO{sub 2} and SO{sub 2}, NH{sub 3} has a negligible effect, and MEK produces a mild degradation. The degree of degradation parallels the contaminant's ability to be chemisorbed on the TEDA impregnant. The combined effect of water vapor and a contaminant of the charcoal efficiency is different for each contaminant. Nitrogen dioxide absorbed under dry conditions is more effective in degrading the CH{sub 2}I removal efficiency of the charcoal that when absorbed under humid conditions. On the other hand, a completely opposite result is observed for SO{sub 2}. The MEK contaminant behaves similarly to SO{sub 2} but the effect of humidity was less significant than for SO{sub 2}. Ammonia has no effect on the efficiency of the charcoal regardless of humidity.

  2. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water.

  3. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water.

    PubMed

    Yu, Li; Zou, Rujia; Zhang, Zhenyu; Song, Guosheng; Chen, Zhigang; Yang, Jianmao; Hu, Junqing

    2011-10-14

    Zn(2)GeO(4)-ethylenediamine (ZGO-EDA) hybrid nanoribbons have been synthesized on a large-scale and directly assembled to membranes, which exhibit an excellent recyclability, high selectivity, and good thermal stability for highly efficient removal of heavy metal ions, i.e., Pb(2+), Cd(2+), Co(2+), and Cu(2+), from contaminated water.

  4. A novel fermentation strategy for removing the key inhibitor acetic acid and efficiently utilizing the mixed sugars from lignocellulosic hydrolysates

    SciTech Connect

    Mark A. Eiteman PHD; Elliot Altman Phd

    2009-02-11

    As part of preliminary research efforts, we have completed several experiments which demonstrate 'proof of concept.' These experiments addressed the following three questions: (1) Can a synthetic mixed sugar solution of glucose and xylose be efficiently consumed using the multi-organism approach? (2) Can this approach be used to accumulate a model product? (3) Can this approach be applied to the removal of an inhibitor, acetate, selectively from mixtures of xylose and glucose? To answer the question of whether this multi-organism approach can effectively consume synthetic mixed sugar solutions, we first tested substrate-selective uptake using two strains, one unable to consume glucose and one unable to consume xylose. The xylose-selective strain ALS998 has mutations in the three genes involved in glucose uptake, rendering it unable to consume glucose: ptsG codes for the Enzyme IICB{sup Glc} of the phosphotransferase system (PTS) for carbohydrate transport (Postma et al., 1993), manZ codes for the IID{sup Man} domain of the mannose PTS permease (Huber, 1996), glk codes for glucokinase (Curtis and Epstein 1975) We also constructed strain ALS1008 which has a knockout in the xylA gene encoding for xylose isomerase, rendering ALS1008 unable to consume xylose. Two batch experiments and one continuous bioprocess were completed. In the first experiment, each strain was grown separately in a defined medium of 8 g/L xylose and 15 g/L glucose which represented xylose and glucose concentrations that can be generated by actual biomass. In the second experiment, the two strains were grown together in batch in the same defined, mixed-sugar medium. In a third experiment, we grew the strains continuously in a 'chemostat', except that we shifted the concentrations of glucose and xylose periodically to observe how the system would respond. (For example, we shifted the glucose concentration suddenly from 15 g/L to 30 g/L in the feed).

  5. Organic compound destruction and removal efficiency (DRE) for plasma incinerator off-gases using an electrically heated secondary combustion chamber

    SciTech Connect

    Whitworth, C.G.; Babko-Malyi, S.; Battleson, D.M.; Olstad, S.J.

    1998-12-31

    The US Department of Energy (DOE) sponsored a series pilot-scale plasma incineration tests of simulated mixed wastes at the MSE Technology Applications, Inc. technology development test facility in Butte, MT. One of the objectives of the test series was to assess the ability of an electrically heated afterburner to destroy organic compounds that may be present in the off-gases resulting from plasma incineration of mixed wastes. The anticipated benefit of an electrically heated afterburner was to decrease total off-gas volume by 50% or more, relative to fossil fuel-fired afterburners. For the present test series, feeds of interest to the DOE Mixed Waste Focus Area (MWFA) were processed in a plasma centrifugal furnace while metering selected organic compounds upstream of the electrically heated afterburner. The plasma furnace was equipped with a transferred-mode torch and was operated under oxidizing conditions. Feeds consisted of various mixtures of soil, plastics, portland cement, silicate fines, diesel fuel, and scrap metals. Benzene, chloroform, and 1,1,1-trichloroethane were selected for injection as simulates of organics likely to be present in DOE mixed wastes, and because of their relative rankings on the US Environmental Protection Agency (EPA) thermal stability index. The organic compounds were injected into the off-gas system at a nominal concentration of 2,000 ppmv. The afterburner outlet gas stream was periodically sampled, and analyzed by gas chromatography/mass spectrometry. For the electrically heated afterburner, at operating temperatures of 1,800--1,980 F (982--1,082 C), organic compound destruction and removal efficiencies (DREs) for benzene, chloroform, and 1,1,1-trichloroethane were found to be > 99.99%.

  6. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    SciTech Connect

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P.; Jaschke, Naomi M.

    2014-02-03

    The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly

  7. New efficient calixarene amide ionophores for the selective removal of strontium ion from nuclear waste: synthesis, complexation, and extraction properties.

    PubMed

    Casnati, A; Barboso, S; Rouquette, H; Schwing-Weill, M J; Arnaud-Neu, F; Dozol, J F; Ungaro, R

    2001-12-12

    Three novel lower rim hexamide derivatives 5(6), 7(6), and 9(6) of p-hydroxycalix[6]arene and four octamides 5(8), 7(8)-9(8) derived from the corresponding p-hydroxycalix[8]arene were synthesized, and their potential as extractants in radioactive waste treatment was evaluated, in comparison with upper rim analogues 12(6) and 12(8) and other existing selective neutral ionophores currently used in radioactive waste treatment. Extraction of alkali and alkaline earth metal picrates from water to dichloromethane, and of the corresponding nitrates from acidic water solution simulating radioactive waste, to 2-nitrophenyl hexyl ether (NPHE), showed that the lower rim amides extract divalent cations much better than monovalent ones. The upper rim hexa-12(6) and octamide 12(8) are very inefficient ligands, hardly extracting any cation. In all cases, p-alkoxy octamides are more efficient and selective extractants than the corresponding hexamides. In the case of simulated waste solutions, the distribution coefficients for strontium removal by octamides (6.5 < D(Sr) < 30) are much higher than the corresponding value (D(Sr)) found for dicyclohexyl-18-crown-6 (DC18C6), and the same applies for the strontium/sodium selectivity, which is 6500 < D(Sr)/D(Na) < 30 000 for octamides and 47 for DC18C6. ESI-MS, UV-vis, and X-ray crystal structure studies give consistent results and indicate the formation of 2:1 (cation/ligand) strontium complexes for all octamides tested. Stability constants were determined in homogeneous methanol solution for alkali metal (log beta(11) < or = 2), calcium (4.3 < or = log beta(11) < or = 6.0; 9.4 < or = log beta(21) < or = 12.0), and strontium (5.6 < or = log beta(11) < or = 12.3) ions using a UV-vis competition method with 1-(2-pyridylazo)-2-naphthol (PAN). They confirm the high efficiency and high divalent/monovalent selectivity found in metal ion extraction experiments for the new octamide ligands. Evidence for a positive cooperative effect between the

  8. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    PubMed Central

    Huang, Zhujian; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  9. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  10. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2017-03-15

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m(2). The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  11. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and burrows pond rearing system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...

  12. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH.

  13. Comparison of nickel doped Zinc Sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo Red dye

    NASA Astrophysics Data System (ADS)

    Ahmadi, K.; Ghaedi, M.; Ansari, A.

    2015-02-01

    In this study, the efficiency of nickel doped Zinc Sulfide nanoparticle loaded on activated carbon (Ni-ZnS-NP-AC) and palladium nanoparticles loaded on activated carbon (Pd-NP-AC) for the removal of Congo Red (CR) from aqueous solution was investigated. These materials were fully identified and characterized in term of structure, surface area and pore volume with different techniques such XRD, FE-SEM and TEM analysis. The dependency of CR removal percentage to variables such as pH, contact time, amount of adsorbents, CR concentration was examined and optimum values were set as: 0.03 g Ni-ZnS-NP-AC and 0.04 g of Pd-NP-AC at pH of 3 and 2 after mixing for 22 and 26 min for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Subsequently, it was revealed that isotherm data efficiency can be correlated Langmuir with maximum monolayer adsorption capacities of 286 and 126.6 mg g-1 at room temperature for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Investigation of correlation between time and rate of adsorption reveal that the CR adsorption onto both adsorbents followed pseudo second order and interparticle diffusion simultaneously.

  14. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  15. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs.

    PubMed

    Sakamoto, Ryota L; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  16. Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe3O4 impregnated onto walnut shell

    NASA Astrophysics Data System (ADS)

    Ashrafi, Motahare; Arab Chamjangali, Mansour; Bagherian, Ghadamali; Goudarzi, Nasser

    2017-01-01

    The performance of the Nano-magnetite Fe3O4 impregnated onto walnut shell (Fe3O4-WNS), which possessed the adsorption features of walnut shell and the magnetic property of Fe3O4, was investigated for the elimination of the methyl violet and Rhodamine 6G from contaminated aqueous solutions. The effects of different experimental variables on the removal efficiency of the cited dyes were examined. Then these variables were used as the inputs to generate linear and non-linear models such as the multiple linear regression, random forest, and artificial neural network to predict the removal efficiency of these dye species at different experimental conditions. The validation studies of these models were performed using the test set, which was not present in the modeling procedure. It was found that ANN had a higher ability to predict the adsorption process under different experimental conditions, and could be applied for the development of an automated dye wastewater removal plant. Also the maximum adsorption capacity (qmax) indicated that the qmax value for Fe3O4-WNS for removal of cationic dyes was comparable or better than that for some reported adsorbents. Also it should be cited that exhausted Fe3O4-WNS was regenerated using dishwashing liquid, and reused for removal of the cited dye species from aqueous solutions.

  17. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control.

  18. Application of linear and non-linear methods for modeling removal efficiency of textile dyes from aqueous solutions using magnetic Fe3O4 impregnated onto walnut shell.

    PubMed

    Ashrafi, Motahare; Arab Chamjangali, Mansour; Bagherian, Ghadamali; Goudarzi, Nasser

    2017-01-15

    The performance of the Nano-magnetite Fe3O4 impregnated onto walnut shell (Fe3O4-WNS), which possessed the adsorption features of walnut shell and the magnetic property of Fe3O4, was investigated for the elimination of the methyl violet and Rhodamine 6G from contaminated aqueous solutions. The effects of different experimental variables on the removal efficiency of the cited dyes were examined. Then these variables were used as the inputs to generate linear and non-linear models such as the multiple linear regression, random forest, and artificial neural network to predict the removal efficiency of these dye species at different experimental conditions. The validation studies of these models were performed using the test set, which was not present in the modeling procedure. It was found that ANN had a higher ability to predict the adsorption process under different experimental conditions, and could be applied for the development of an automated dye wastewater removal plant. Also the maximum adsorption capacity (qmax) indicated that the qmax value for Fe3O4-WNS for removal of cationic dyes was comparable or better than that for some reported adsorbents. Also it should be cited that exhausted Fe3O4-WNS was regenerated using dishwashing liquid, and reused for removal of the cited dye species from aqueous solutions.

  19. Structural Correlates for Lexical Efficiency and Number of Languages in Non-Native Speakers of English

    ERIC Educational Resources Information Center

    Grogan, A.; Parker Jones, O.; Ali, N.; Crinion, J.; Orabona, S.; Mechias, M. L.; Ramsden, S.; Green, D. W.; Price, C. J.

    2012-01-01

    We used structural magnetic resonance imaging (MRI) and voxel based morphometry (VBM) to investigate whether the efficiency of word processing in the non-native language (lexical efficiency) and the number of non-native languages spoken (2+ versus 1) were related to local differences in the brain structure of bilingual and multilingual speakers.…

  20. Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters.

    PubMed

    Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G

    2010-11-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.

  1. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles.

    PubMed

    Xiong, Chunmei; Wang, Wei; Tan, Fatang; Luo, Fan; Chen, Jianguo; Qiao, Xueliao

    2015-12-15

    In this study, the removal of Cd(II) and Pb(II) from aqueous solutions using MgO nanoparticles prepared by a simple sol-gel method was investigated. The efficiency of Cd(II) and Pb(II) removal was examined through batch adsorption experiments. For the single adsorption of Cd(II) and Pb(II), The adsorption kinetics and isotherm data obeyed well Pseudo-second-order and Langmuir models, indicating the monolayer chemisorption of heavy metal ions. The maximum adsorption capacities calculated by Langmuir equation were 2294 mg/g for Cd(II) and 2614 mg/g for Pb(II), respectively. The adsorption process was controlled simultaneously by external mass transfer and intraparticle diffusion. In the binary system, a competitive adsorption was observed, showing preference of adsorption followed Pb(II) >Cd(II). Significantly, the elution experiments confirmed that neither Cd(II) nor Pb(II) could be greatly desorbed after water washing even for five times. XRD and XPS measurements revealed the mechanism of Cd(II) and Pb(II) removal by MgO nanoparticles was mainly involved in precipitation and adsorption on the surface of MgO, resulting from the interaction between active sites of MgO and heavy metal ions. Easy preparation, remarkable removal efficiency and firmly adsorptive ability make the MgO nanoparticles to be an efficient material in the treatment of heavy metal-contaminated water.

  2. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.

    PubMed

    Modirshahla, N; Behnajady, M A; Mohammadi-Aghdam, S

    2008-06-15

    This study investigates the influence of variables on the removal efficiency of solution containing 4-NP (4-nitrophenol) by D. C. electrocoagulation (EC). The efficiency of different electrode connections and materials (steel 310, Fe, Al, graphite and steel 304) for 4-NP removal is compared. Current density, time of electrolysis, interelectrode distance, supporting electrolyte concentration and stirring rate of the solution were the variables that mostly influenced the 4-NP removal. Initially, a simple electrochemical cell was prepared with an anode and a cathode. Then the effect of each variable was studied separately using aqueous 4-NP in a batch mode. For a solution of 20 mg/L 4-NP+300 mg/L NaCl with chemical oxygen demand (COD) of approximately 40 mg O2/L, almost up to 99% 4-NP and 65% COD were removed, when the pH was about 9, time of electrolysis was approximately 10 min, current density was 100 A m(-2), interelctrode distance was 15 mm and stirring rate was 400 rpm. In the second series of experiments, the efficiency of EC cells with monopolar electrodes in series and parallel connections and an EC cell with bipolar electrodes was compared with that of a simple electrochemical cell. The best results obtained when steel 310 and Fe are used as anodes and employing Al and graphite as anodes would not be satisfactory. Also findings show that the types of sacrificial electrodes are not very significant in the removal of 4-NP. In the real wastewater obtained from Tabriz petrochemical plant 52% removal could be achieved after 10 min with using steel 310 as anode and steel 304 as cathode.

  3. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability.

  4. Using Wet-FGD systems for mercury removal.

    PubMed

    Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G

    2005-09-01

    A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.

  5. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    PubMed

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies.IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  6. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.

    PubMed

    Zulewska, J; Newbold, M; Barbano, D M

    2009-04-01

    Raw milk (2,710 kg) was separated at 4 degrees C, the skim milk was pasteurized (72 degrees C, 16 s), split into 3 batches, and microfiltered using pilot-scale ceramic uniform transmembrane pressure (UTP; Membralox model EP1940GL0.1microA, 0.1 microm alumina, Pall Corp., East Hills, NY), ceramic graded permeability (GP; Membralox model EP1940GL0.1microAGP1020, 0.1 microm alumina, Pall Corp.), and polymeric spiral-wound (SW; model FG7838-OS0x-S, 0.3 microm polyvinylidene fluoride, Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) membranes. There were differences in flux among ceramic UTP, ceramic GP, and polymeric SW microfiltration membranes (54.08, 71.79, and 16.21 kg/m2 per hour, respectively) when processing skim milk at 50 degrees C in a continuous bleed-and-feed 3x process. These differences in flux among the membranes would influence the amount of membrane surface area required to process a given volume of milk in a given time. Further work is needed to determine if these differences in flux are maintained over longer processing times. The true protein contents of the microfiltration permeates from UTP and GP membranes were higher than from SW membranes (0.57, 0.56, and 0.38%, respectively). Sodium-dodecyl-sulfate-PAGE gels for permeates revealed a higher casein proportion in GP and SW permeate than in UTP permeate, with the highest passage of casein through the GP membrane under the operational conditions used in this study. The slight cloudiness of the permeates produced using the GP and SW systems may have been due to the presence of a small amount of casein, which may present an obstacle in their use in applications when clarity is an important functional characteristic. More beta-lactoglobulin passed through the ceramic membranes than through the polymeric membrane. The efficiency of removal of serum proteins in a continuous bleed-and-feed 3x process at 50 degrees C was 64.40% for UTP, 61.04% for GP, and 38.62% for SW microfiltration

  7. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhang, Shasha; Liu, Lanlan; Zhou, Lixiang; Fan, Wenhua

    2015-01-01

    Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O solution at different supply rates. Specific surface area and arsenic (III) removal capacity of schwertmannite have also been studied. Results showed that pH decreased from ~3.48 to ~1.96, ~2.06, ~2.12, ~2.14, or ~2.17 after 60 h reaction when the ferrous ions solution received the following corresponding amounts of H2O2: 1.80 mL at 2 h (treatment 1); 0.90 mL at 2 h and 14 h (treatment 2); 0.60 mL at 2, 14, and 26 h (treatment 3); 0.45 mL at 2, 14, 26, and 38 h (treatment 4), or 0.36 mL at 2, 14, 26, 38, and 50 h (treatment 5). Slow H2O2 supply significantly inhibited the total iron precipitation efficiency but improved the specific surface area or arsenic (III) removal capacity of schwertmannite. For the initial 50.0 μg/L arsenic (III)-contaminated water under pH ~7.0 and using 0.25 g/L schwertmannite as an adsorbent, the total iron precipitation efficiency, specific surface area of the harvested schwertmannite, and schwertmannite arsenic(III) removal efficiency were 29.3%, 2.06 m2/g, and 81.1%, respectively, in treatment 1. However, the above parameters correspondingly changed to 17.3%, 16.30 m2/g, and 96.5%, respectively, in treatment 5.

  8. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  9. Analysis of the efficiency of hair removal by different optical methods: comparison of Trichoscan, reflectance confocal microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kuck, Monika; Schanzer, Sabine; Ulrich, Martina; Bartels, Natalie Garcia; Meinke, Martina C.; Fluhr, Joachim; Krah, Martin; Blume-Peytavi, Ulrike; Stockfleth, Eggert; Lademann, Jürgen

    2012-10-01

    Noninvasive diagnostic tools, such as Trichoscan, reflectance confocal microscopy (RCM), and optical coherence tomography (OCT), are efficient methods of hair shaft and growth evaluation. The aim of this study was to carry out a comparative assessment of these three medical procedures by measuring the hair shaft and hair growth after hair removal for a defined period of five days. The application of these techniques was demonstrated by measuring hair growth on the lower leg of six female volunteers. After removal of the hair shaft with a shaving system, the hair follicle infundibula and the length of the growing hairs were measured with the Trichoscan, RCM, and OCT method. All three methods are reliable hair measuring tools after hair removal. Trichoscan is best suited in the implementation of hair growth measurement and RCM in the analysis of hair follicles, whereas the OCT system can be consulted as an additional measurement for the evaluation of the hair follicle and length.

  10. Efficient Resonance Assignment of Proteins in MAS NMR by Simultaneous Intra- and Inter-residue 3D Correlation Spectroscopy

    PubMed Central

    Daviso, Eugenio; Eddy, Matthew T.; Andreas, Loren B.; Griffin, Robert G.; Herzfeld, Judith

    2013-01-01

    Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP 15N-13C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR 15N-13C transfers provide simultaneous NCO and NCa transfers with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D TEDOR-CC experiment provides heteronuclear sidechains correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles. PMID:23334347

  11. Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Zhong, J. S.; Wang, Q. Y.; Zhou, J.; Chen, D. Q.; Ji, Z. G.

    2016-03-01

    TiO2 nanotube arrays sensitized by copper nanoparticles (TiO2 NTs/Cu) exhibited highly efficient photoelectrocatalytic removal of RhB and Cr(VI). Vertically grown anatase TiO2 NTs on Ti substrates were prepared by electrochemical anodization followed by calcinations. Subsequently, Cu nanoparticles with uniform spherical structures and size distributions were deposited on TiO2 nanotubes by a modified hydrothermal reaction. By exploiting TiO2 NTs/Cu as both photoelectrodes and photocatalysts, high photocurrent density and photoelectrocatalytic removal efficiencies of RhB and Cr(VI) were achieved under solar light irradiation. The enhancement on the photoelectrochemical performance was explained by the optoelectronic coupling between Cu nanoparticles and TiO2 NTs, which accelerated the transfer rate of electrons, and subsequently decreased the electron/hole pair recombination.

  12. Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2013-11-01

    The potential presence of pharmaceuticals, hormones and personal care products in drinking water supplies has raised concerned over the efficiency with which these substances are removed by water treatment processes. In this work, we analyzed samples of raw, unprocessed water collected in different periods and found them to contain higher levels of these contaminants in the colder periods (viz. 12-314 ng L(-1) in autumn and winter as compared to 8-127 ng L(-1) in spring and summer) as a result of their biodegradation being favoured by high temperatures and solar irradiance. We also assessed the efficiency with which these contaminants are removed from drinking water by a water treatment plant operating in south-eastern Spain. Preoxidation with potassium permanganate and chloramination with sodium hypochlorite in the presence of highly concentrated ammonia were found to be the treatment steps most markedly contributing to the removal of pharmaceuticals, hormones and personal care products from drinking water (especially in the warmer periods, where these contaminants were completely removed from the water). By contrast, water treated in the colder periods (autumn and winter) still contained small amounts of ibuprofen and carbamazepine (0.09-0.5 ng L(-1)) which, however, accounted for less than 0.2% of their original concentrations in the water prior to treatment.

  13. The X-ray spectral evolution and radio-X-ray correlation in radiatively efficient black-hole sources

    NASA Astrophysics Data System (ADS)

    Dong, Ai-Jun; Wu, Qingwen; Cao, Xiao-Feng

    2016-02-01

    We explore X-ray spectral evolution and radio-X-ray correlation simultaneously for four X-ray binaries (XRBs). We find that hard X-ray photon indices, Γ, are anti- and positively correlated to X-ray fluxes when the X-ray flux, F 3-9keV, is below and above a critical flux, F X,crit, which may be regulated by ADAF and disk-corona respectively. We find that the data points with anti-correlation of Γ-F 3-9keV follow the universal radio-X-ray correlation of F R ~ F X b (b ~ 0.5-0.7), while the data points with positive X-ray spectral evolution follow a steeper radio-X-ray correlation (b ~ 1.4, the so-called `outliers track'). The bright active galactic nuclei (AGNs) share similar X-ray spectral evolution and radio-X-ray correlation as XRBs in `outliers' track, and we present a new fundamental plane of log L R=1.59+0.28 -0.22 log L X-0.22+0.19 -0.20 log M BH-28.97+0.45 -0.45 for these radiatively efficient BH sources.

  14. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    NASA Astrophysics Data System (ADS)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2016-09-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  15. Effect of earthworm loads on organic matter and nutrient removal efficiencies in synthetic domestic wastewater, and on bacterial community structure and diversity in vermifiltration.

    PubMed

    Wang, L M; Luo, X Z; Zhang, Y M; Lian, J J; Gao, Y X; Zheng, Z

    2013-01-01

    In this paper, we studied the effect of earthworm loads on the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen, and total phosphorus from synthetic domestic sewage and on the bacterial community structure and diversity of substrates in earthworm packing beds. The different vermifiltrations (VFs), including the control, are successful in removing both organic matter (OM) and nutrients. The removal rate of NH3-N at 12.5 g of earthworm/L of soil VF is higher compared with that at 0 and 4.5 earthworm load VFs. The highest Shannon index, in the earthworm packing bed, occurred at 16.5 earthworm load VF. Furthermore, the COD removal rate is significantly correlated with the Shannon index, which reveals that OM removal for synthetic domestic sewage treatment at VF might be more dependent on bacterial diversity at the earthworm packing bed. The band distributions and diversities of the bacterial community for samples from different earthworm loads in VFs suggest that the bacterial community structure was only affected within the earthworm packing bed when the earthworm load reached a certain level. The present study adds to the current understanding of OM and nutrient degradation processes in VF domestic wastewater treatment.

  16. Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides

    EPA Science Inventory

    The removal efficiency of heavy metal ions (cadmium(II) – Cd(II), cobalt(II) – Co(II), nickel(II) – Ni(II), and copper(II) – Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)), was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective r...

  17. Effective and Efficient Correlation Analysis with Application to Market Basket Analysis and Network Community Detection

    ERIC Educational Resources Information Center

    Duan, Lian

    2012-01-01

    Finding the most interesting correlations among items is essential for problems in many commercial, medical, and scientific domains. For example, what kinds of items should be recommended with regard to what has been purchased by a customer? How to arrange the store shelf in order to increase sales? How to partition the whole social network into…

  18. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    SciTech Connect

    Hedegård, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  19. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm(-3) could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm(-3)d(-1), and stable electricity production over 13.7Wm(-3) could be produced in a NB loading range of 1.2-14.7molm(-3)d(-1). The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm(-3)d(-1). The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy.

  20. The efficiency of removal of lead and other elements from domestic drinking waters using a bench-top water filter system.

    PubMed

    Gulson, B L; Sheehan, A; Giblin, A M; Chiaradia, M; Conradt, B

    1997-04-01

    The efficiency of removal of lead (Pb) and other elements from natural drinking waters using a bench-top water filter system was evaluated in three recently-built houses in Sydney, Australia, and two from rural centres. In addition, one filter system was tested for copper (Cu), Pb and cadmium (Cd) under rigorously-controlled laboratory conditions using Sydney water. For two Sydney houses, the efficiency was evaluated using special filter cartridges concomitant with the ordinary filters. Waters after passing through the filter, was sampled when the filter had been exposed to '0', 50, 100, 150, 200, and 250 l respectively and were analysed for lead isotopes and lead concentrations by high precision isotope dilution mass spectrometry. Samples that passed through the filter after '0', 50, 150 and 250 l collections were analysed for four anions and 39 cations by various methods. Sydney water was fairly uniform in its anion and cation composition, whereas water from the two rural areas contained higher concentrations of Ca, Mg and HCO3. Effects of the filter on the water compositions can be summarised into three groups: (1) elements removed during filtration--Ca, Mg, Sr, Ba, Cu, Pb, Zn and Ni. With 'age' of the filter, the efficiency of removal for Pb was maintained in the two houses with Pb concentrations greater than 10 micrograms/l in the first flush water and was maintained for Cu through all concentrations. Ca, Mg, Sr and Ba were largely removed in the first 50 1 of usage. (2) Elements added during filtration--K, Rb, Ag and P. Except for Ag, which was present throughout the testing period, these elements were added only in the first filtration. (3) Elements unaffected by filtration--Al, Si, Na, Fe, Cl and F. Efficiency of Pb removal from tap water by this system depends generally on the initial Pb content in the water. However, it also seems to depend, to some extent, on Pb speciation and water composition, as found in earlier studies of natural waters. The control

  1. Students' Metacognitive Awareness and Physics Learning Efficiency and Correlation between Them

    ERIC Educational Resources Information Center

    Bogdanovic, Ivana; Obadovic, Dušanka Ž.; Cvjeticanin, Stanko; Segedinac, Mirjana; Budic, Spomenka

    2015-01-01

    This paper presents a research directed to examine the relation between students' metacognitive awareness and physics learning efficiency. Questionnaire of metacognitive awareness and physics knowledge test were applied on the sample of 746 subjects of both sexes, first graders of Grammar Schools in Novi Sad, Republic of Serbia. Obtained results…

  2. Correlation between shift in recombination zone and efficiency roll-off in phosphorescent organic light emitting devices (PHOLEDs)

    NASA Astrophysics Data System (ADS)

    Zamani Siboni, Hossein; Aziz, Hany

    2013-09-01

    We study the correlation between the shift in recombination zone and the efficiency roll-off in typical PHOLEDs. To probe the shift in recombination zone, electroluminescence spectra of devices with various architectures at different current densities are studied. Results show that high efficiency at low current density mostly originates from the interfacial emission at the EML/ETL interface due to the formation of host excitons followed by the subsequent energy transfer to the guests. Furthermore, increase in the current density shifts the recombination zone from the EML/ETL interface towards the HTL/EML interface where the device emission is the result of direct charge trapping on the guest sites. The results suggest that the shift in recombination zone and subsequent change in emission mechanism play a main role on the efficiency roll-off.

  3. The effect of pretreating resorbable blast media titanium discs with an ultrasonic scaler or toothbrush on the bacterial removal efficiency of brushing

    PubMed Central

    Koh, Minchul; Park, Jun-Beom; Jang, Yun-Ji

    2013-01-01

    Purpose This in vitro study was performed to assess the adherence of Porphyromonas gingivalis to a resorbable blast media (RBM) titanium surface pretreated with an ultrasonic scaler or toothbrush and to evaluate the effects of the treatment of the RBM titanium discs on the bacterial removal efficiency of brushing by crystal violet assay and scanning electron microscopy. Methods RBM titanium discs were pretreated with one of several ultrasonic scaler tips or cleaned with a toothbrush. Then the titanium discs were incubated with P. gingivalis and the quantity of adherent bacteria was compared. The disc surfaces incubated with bacteria were brushed with a toothbrush with dentifrice. Bacteria remaining on the disc surfaces were quantified. Results A change in morphology of the surface of the RBM titanium discs after different treatments was noted. There were no significant differences in the adherence of bacteria on the pretreated discs according to the treatment modality. Pretreatment with various instruments did not produce significant differences in the bacterial removal efficiency of brushing with dentifrice. Conclusions Within the limits of this study, various types of mechanical instrumentation were shown to cause mechanical changes on the RBM titanium surface but did not show a significant influence on the adherence of bacteria and removal efficiency of brushing. PMID:24455443

  4. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  5. A pilot plant study using conventional and advanced water treatment processes: Evaluating removal efficiency of indicator compounds representative of pharmaceuticals and personal care products.

    PubMed

    Zhang, Shuangyi; Gitungo, Stephen; Axe, Lisa; Dyksen, John E; Raczko, Robert F

    2016-11-15

    With widespread occurrence of pharmaceuticals and personal care products (PPCPs) in the water cycle, their presence in source water has led to the need to better understand their treatability and removal efficiency in treatment processes. Fifteen indicator compounds were identified to represent the large number of PPCPs reported worldwide. Criteria applied to determine the indicator compounds included PPCPs widely used, observed at great frequency in aqueous systems, resistant to treatment, persistent in the environment, and representative of classes of organics. Through a pilot plant investigation to understand the optimal combination of unit process for treating PPCPs, 12 treatment trains with their additive and synergistic contributions were investigated; processes included dissolved air flotation (DAF), pre- and intermediate-ozonation with and without H2O2, intermediate chlorination, dual media filtration, granular activated carbon (GAC), and UV/H2O2. Treatment trains that achieved the greatest removals involved 1. DAF followed by intermediate ozonation, dual media filtration, and virgin GAC; 2. pre-ozonation followed by DAF, dual media filtration, and virgin GAC; and, 3. DAF (with either pre- or intermediate oxidation) followed by dual media filtration and UV/H2O2. Results revealed significant removal efficiencies for virgin GAC (preceded by DAF and intermediate ozonation) and UV/H2O2 with an intensity of 700 mJ/cm(2), where more than 12 of the compounds were removed by greater than 90%. Reduced PPCP removals were observed with virgin GAC preceded by pre-ozonation and DAF. Intermediate ozonation was more effective than using pre-ozonation, demonstrating the importance of this process targeting PPCPs after treatment of natural organic matter. Removal efficiencies of indicator compounds through ozonation were found to be a function of the O3 rate constants (kO3). For compounds with low O3 rate constants (kO3 < 10 M(-1)s(-1)), H2O2 addition in the O3 reactor

  6. Correlated image set compression system based on new fast efficient algorithm of Karhunen-Loeve transform

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-10-01

    The paper presents improved version of our new method for compression of correlated image sets Optimal Image Coding using Karhunen-Loeve transform (OICKL). It is known that Karhunen-Loeve (KL) transform is most optimal representation for such a purpose. The approach is based on fact that every KL basis function gives maximum possible average contribution in every image and this contribution decreases most quickly among all possible bases. So, we lossy compress every KL basis function by Embedded Zerotree Wavelet (EZW) coding with essentially different loss that depends on the functions' contribution in the images. The paper presents new fast low memory consuming algorithm of KL basis construction for compression of correlated image ensembles that enable our OICKL system to work on common hardware. We also present procedure for determining of optimal losses of KL basic functions caused by compression. It uses modified EZW coder which produce whole PSNR (bitrate) curve during the only compression pass.

  7. Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory

    SciTech Connect

    Richardson, Jeremy O. Thoss, Michael

    2014-08-21

    There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.

  8. Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory.

    PubMed

    Richardson, Jeremy O; Thoss, Michael

    2014-08-21

    There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.

  9. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  10. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I determine the add-on control... Pollutants: Surface Coating of Metal Cans Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.3545 How do I determine the add-on control device emission destruction or removal...

  11. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I determine the add-on control... Pollutants: Surface Coating of Metal Cans Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.3545 How do I determine the add-on control device emission destruction or removal...

  12. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I determine the add-on control... Pollutants: Surface Coating of Metal Cans Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.3545 How do I determine the add-on control device emission destruction or removal...

  13. 40 CFR 63.4766 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I determine the add-on control... Coating of Wood Building Products Compliance Requirements for the Emission Rate with Add-on Controls Option § 63.4766 How do I determine the add-on control device emission destruction or removal...

  14. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water.

    PubMed

    Chen, Haifeng; Cao, Yu; Wei, Enze; Gong, Tingting; Xian, Qiming

    2016-03-01

    Halonitromethanes (HNMs), as an emerging class of disinfection by-products containing nitrogen (N-DBPs) in drinking water, have possessed public health concerns. Two most studied materials, graphene and nanometer-sized zero-valent iron, have been successfully combined into binary nanocomposites (G-nZVI) via facile carbonization and calcinations of glucose and ferric chloride, which was used in the removal of HNMs from drinking water in this study. When the Fe/C mass ratio was 1:5, the as-prepared G-nZVI hybrids comprised numerous dispersed Fe(0) nanoparticles with a range of 5-10 nm in diameter. Batch experimental results indicated that the as-prepared G-nZVI could effectively remove trichloronitromethane (TCNM), a dominant in the group of HNMs from drinking water. About 99% of initial TCNM could be adsorbed and degraded under 60 mg/L G-nZVI dosage within 120 min. Kinetic studies indicated that the removal of TCNM by G-nZVI followed a pseudo first order rate (R(2) > 0.9). The degradation pathways of TCNM by G-nZVI nanocomposites might include dechlorination and denitration of TCNM. The Fe was in the form of iron oxides in the graphene material shape which was then restored to Fe(0) again via calcinations. These results indicated that the synthesized G-nZVI nanocomposites could be a powerful material to remove HNMs from drinking water.

  15. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  16. Simulation of a Martian Solar Thermal Power Plant - Diurnal Operation and Power-Efficiency Correlations

    NASA Astrophysics Data System (ADS)

    Badescu, V.; Popescu, G.; Feidt, M.

    A solar thermal power plant operating on Mars surface is analyzed in this work. During analysis meteorological data measured at Viking Landers (VL) sites were used. Our results show that during autumn at VL1 site, properly designed thermal power plant based on flat - plate solar collectors are comparable in performance with PV- based power systems. During a winter dust-storm day the maximum output power is much smaller than during autumn. High efficiency thermal engines is recommended to be used in combination with solar collectors kept perpendicular on Sun's rays. When a horizontal solar collector is considered, the dependence of the maximum output power on optimum solar efficiency seems to be quadratic at both VL1 and VL2 sites. When a collector perpendicular on Sun's rays is considered, this dependence is more complicate, but keeps the quadratic feature. A certain optimum solar efficiency threshold (around 5%) must be exceeded in order the system provide useful power. No obvious difference exists between power plant performance in the two years of VL2 operation.

  17. Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok

    2015-09-01

    Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.

  18. Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water.

    PubMed

    Rajakumar, Sundaram; Ayyasamy, Pudukadu Munusamy; Shanthi, Kuppusamy; Thavamani, Palanisami; Velmurugan, Palanivel; Song, Young Chae; Lakshmanaperumalsamy, Perumalsamy

    2008-09-15

    The efficiency of bacterial isolates to reduce nitrate from synthetic nitrate-rich water was tested using a batch scale process. Two efficient nitrate reducing bacterial species were isolated from water samples collected from Kodaikanal and Yercaud lakes. Bacterial analysis of the samples revealed the presence of nitrate reducing bacteria belonging to the genera Pseudomonas, Bacillus, Micrococcus and Alcaligenes. Among the isolates, the consortium of Pseudomonas sp. KW1 and Bacillus sp. YW4 was found to be efficient in nitrate reduction. Influences of various carbon sources, incubation temperature and pH on nitrate reduction from synthetic wastewater were also studied. The results showed a rapid and efficient process of nitrate removal (99.4%) from synthetic wastewater supplemented with starch (1%), inoculated by bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) at incubation temperature of 30 degrees C at pH 7. This observation has led to the conclusion that the bacterial consortium was responsible for nitrate removal from synthetic nitrate-rich wastewater.

  19. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight

    PubMed Central

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  20. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight.

    PubMed

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely Dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  1. Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    PubMed Central

    Xiao, Min; Ge, Haitao; Khundrakpam, Budhachandra S.; Xu, Junhai; Bezgin, Gleb; Leng, Yuan; Zhao, Lu; Tang, Yuchun; Ge, Xinting; Jeon, Seun; Xu, Wenjian; Evans, Alan C.; Liu, Shuwei

    2016-01-01

    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior. PMID:27777556

  2. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial-temporal correlations

    NASA Astrophysics Data System (ADS)

    Wu, Jianlan; Liu, Fan; Shen, Young; Cao, Jianshu; Silbey, Robert J.

    2010-10-01

    Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken-Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. To avoid the infinite temperature assumption in the Haken-Strobl model and the failure of the Redfield equation in predicting the Forster rate behavior, we use the generalized Bloch-Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics, and we find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy and spatial-temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.

  3. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Berthier, Ludovic; Charbonneau, Patrick; Yaida, Sho

    2016-01-01

    Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study a broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.

  4. Scalable, efficient ASICS for the square kilometre array: From A/D conversion to central correlation

    NASA Astrophysics Data System (ADS)

    Schmatz, M. L.; Jongerius, R.; Dittmann, G.; Anghel, A.; Engbersen, T.; van Lunteren, J.; Buchmann, P.

    2014-05-01

    The Square Kilometre Array (SKA) is a future radio telescope, currently being designed by the worldwide radio-astronomy community. During the first of two construction phases, more than 250,000 antennas will be deployed, clustered in aperture-array stations. The antennas will generate 2.5 Pb/s of data, which needs to be processed in real time. For the processing stages from A/D conversion to central correlation, we propose an ASIC solution using only three chip architectures. The architecture is scalable - additional chips support additional antennas or beams - and versatile - it can relocate its receiver band within a range of a few MHz up to 4GHz. This flexibility makes it applicable to both SKA phases 1 and 2. The proposed chips implement an antenna and station processor for 289 antennas with a power consumption on the order of 600W and a correlator, including corner turn, for 911 stations on the order of 90 kW.

  5. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids

    SciTech Connect

    Berthier, Ludovic; Charbonneau, Patrick; Yaida, Sho

    2016-01-14

    Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study a broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.

  6. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    PubMed

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  7. Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle.

    PubMed

    Grion, A L; Mercadante, M E Z; Cyrillo, J N S G; Bonilha, S F M; Magnani, E; Branco, R H

    2014-03-01

    The objectives of this study were to estimate genetic parameters for indicator traits of feed efficiency and to recommend traits that would result in better responses to selection for increased weaning weight (weaning weight adjusted to 210 d of age [W210]), ADG, and metabolic BW (BW(0.75)) and lower DMI. Records of W210 from 8,004 Nellore animals born between 1978 and 2011 and postweaning performance test records from 678 males and females born between 2004 and 2011 were used. The following feed efficiency traits were evaluated: G:F, partial efficiency of growth (PEG), relative growth rate (RGR), Kleiber's ratio (KR), residual feed intake (RFI), residual weight gain (RWG), and residual intake and gain (RIG). Covariance and variance components were estimated by the restricted maximum likelihood method using multitrait analysis under an animal model. Estimates of genetic gain and correlated responses were obtained considering single-stage and 2-stage selection. Heritability estimates were 0.22 ± 0.03 (W210), 0.60 ± 0.08 (DMI), 0.42 ± 0.08 (ADG), 0.56 ± 0.06 (BW(0.75)), 0.19 ± 0.07 (G:F), 0.25 ± 0.09 (PEG), 0.19 ± 0.07 (RGR), 0.22 ± 0.07 (KR), 0.33 ± 0.10 (RFI), 0.13 ± 0.07 (RWG), and 0.19 ± 0.08 (RIG). The genetic correlations of DMI with W210 (0.64 ± 0.10), ADG (0.87 ± 0.06), and BW(0.75) (0.84 ± 0.05) were high. The only efficiency traits showing favorable responses to selection for lower DMI were G:F, PEG, RFI, and RIG. However, the use of G:F, PEG, or RFI as a selection criterion results in unfavorable correlated responses in some growth traits. The linear combination of RFI and RWG through RIG is the best selection criterion to obtain favorable responses in postweaning growth and feed intake of Nellore cattle in single-stage selection. Genetic gains in feed efficiency are expected even after preselection for W210 and subsequent feed efficiency testing of the preselected animals.

  8. The efficiency of Amberjet 4200 resin in removing nitrate in the presence of competitive anions from Shiraz drinking water.

    PubMed

    Dehghani, M; Haghighi, A Binaee; Zamanian, Z

    2010-06-01

    The aim of this research is to study the feasibility of removing nitrates from water by means of anion exchange. In the purposed work an attempt was made to utilize strong basic anion resin to remove nitrate in the presence of competitive anion. Amberjet Cl- 4200 ion exchange resin was used in a batch scale. The fixation rate of nitrate without the presences of any competitive anion was almost constant (94.60-96.43) when the nitrate concentrations are in the range of 100-150 mg L(-1). The fixation rate of nitrate in the presences of two competitive anions (sulphate and chloride) was reduced to 82% when the concentration of nitrate was 100 mg L(-1).

  9. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values.

  10. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-08-01

    The interaction between swimming and flying animals and their fluid environments generates downstream wake structures such as vortices. In most studies, the upstream flow in front of the animal is neglected. In this study, we demonstrate the existence of upstream fluid structures even though the upstream flow is quiescent or possesses a uniform incoming velocity. Using a computational model, the flow generated by a swimmer (an oscillating flexible plate) is simulated and a new fluid mechanical analysis is applied to the flow to identify the upstream fluid structures. These upstream structures show the exact portion of fluid that is going to interact with the swimmer. A mass flow rate is then defined based on the upstream structures, and a metric for propulsive efficiency is established using the mass flow rate and the kinematics of the swimmer. We propose that the unsteady mass flow rate defined by the upstream fluid structures can be used as a metric to measure and objectively compare the efficiency of locomotion in water and air.

  11. Linear response theory for the density matrix renormalization group: efficient algorithms for strongly correlated excited states.

    PubMed

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-14

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  12. Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-01

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  13. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology.

    PubMed

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P

    2011-02-09

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 °C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  14. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics. Correlating Efficiency and Morphology

    SciTech Connect

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P.

    2010-12-21

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 °C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  15. Efficient genomewide selection of PCA-correlated tSNPs for genotype imputation.

    PubMed

    Javed, Asif; Drineas, Petros; Mahoney, Michael W; Paschou, Peristera

    2011-11-01

    The linkage disequilibrium structure of the human genome allows identification of small sets of single nucleotide polymorphisms (SNPs) (tSNPs) that efficiently represent dense sets of markers. This structure can be translated into linear algebraic terms as evidenced by the well documented principal components analysis (PCA)-based methods. Here we apply, for the first time, PCA-based methodology for efficient genomewide tSNP selection; and explore the linear algebraic structure of the human genome. Our algorithm divides the genome into contiguous nonoverlapping windows of high linear structure. Coupling this novel window definition with a PCA-based tSNP selection method, we analyze 2.5 million SNPs from the HapMap phase 2 dataset. We show that 10-25% of these SNPs suffice to predict the remaining genotypes with over 95% accuracy. A comparison with other popular methods in the ENCODE regions indicates significant genotyping savings. We evaluate the portability of genome-wide tSNPs across a diverse set of populations (HapMap phase 3 dataset). Interestingly, African populations are good reference populations for the rest of the world. Finally, we demonstrate the applicability of our approach in a real genome-wide disease association study. The chosen tSNP panels can be used toward genotype imputation using either a simple regression-based algorithm or more sophisticated genotype imputation methods.

  16. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek

    2015-02-17

    The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.

  17. Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency.

    PubMed

    Löser, Christian; Zehnsdorf, Andreas; Hoffmann, Petra; Seidel, Heinz

    2007-01-01

    Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.

  18. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    PubMed

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  19. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis

    PubMed Central

    Vyas, N.; Sammons, R. L.; Addison, O.; Dehghani, H.; Walmsley, A. D.

    2016-01-01

    Biofilm accumulation on biomaterial surfaces is a major health concern and significant research efforts are directed towards producing biofilm resistant surfaces and developing biofilm removal techniques. To accurately evaluate biofilm growth and disruption on surfaces, accurate methods which give quantitative information on biofilm area are needed, as current methods are indirect and inaccurate. We demonstrate the use of machine learning algorithms to segment biofilm from scanning electron microscopy images. A case study showing disruption of biofilm from rough dental implant surfaces using cavitation bubbles from an ultrasonic scaler is used to validate the imaging and analysis protocol developed. Streptococcus mutans biofilm was disrupted from sandblasted, acid etched (SLA) Ti discs and polished Ti discs. Significant biofilm removal occurred due to cavitation from ultrasonic scaling (p < 0.001). The mean sensitivity and specificity values for segmentation of the SLA surface images were 0.80 ± 0.18 and 0.62 ± 0.20 respectively and 0.74 ± 0.13 and 0.86 ± 0.09 respectively for polished surfaces. Cavitation has potential to be used as a novel way to clean dental implants. This imaging and analysis method will be of value to other researchers and manufacturers wishing to study biofilm growth and removal. PMID:27601281

  20. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis

    NASA Astrophysics Data System (ADS)

    Vyas, N.; Sammons, R. L.; Addison, O.; Dehghani, H.; Walmsley, A. D.

    2016-09-01

    Biofilm accumulation on biomaterial surfaces is a major health concern and significant research efforts are directed towards producing biofilm resistant surfaces and developing biofilm removal techniques. To accurately evaluate biofilm growth and disruption on surfaces, accurate methods which give quantitative information on biofilm area are needed, as current methods are indirect and inaccurate. We demonstrate the use of machine learning algorithms to segment biofilm from scanning electron microscopy images. A case study showing disruption of biofilm from rough dental implant surfaces using cavitation bubbles from an ultrasonic scaler is used to validate the imaging and analysis protocol developed. Streptococcus mutans biofilm was disrupted from sandblasted, acid etched (SLA) Ti discs and polished Ti discs. Significant biofilm removal occurred due to cavitation from ultrasonic scaling (p < 0.001). The mean sensitivity and specificity values for segmentation of the SLA surface images were 0.80 ± 0.18 and 0.62 ± 0.20 respectively and 0.74 ± 0.13 and 0.86 ± 0.09 respectively for polished surfaces. Cavitation has potential to be used as a novel way to clean dental implants. This imaging and analysis method will be of value to other researchers and manufacturers wishing to study biofilm growth and removal.