Kim, S O; Kim, K W
2001-08-17
This research focused on the monitoring of the electrokinetic removal of heavy metals from tailing-soils, and emphasizes the dependency of removal efficiencies upon their physico-chemical states, as demonstrated by the different extraction methods adopted, which included aqua regia and sequential extraction. The tailing-soils examined contained high concentrations of target metal contaminants (Cd=179mgkg(-1), Cu=207mgkg(-1), Pb=5175mgkg(-1), and Zn=7600mgkg(-1)). The removal efficiencies of the different metals were significantly influenced by their speciations, mobilities and affinities (adsorption capacities) in the soil matrix. The removal efficiencies of mobile and weakly bound fractions, such as the exchangeable fraction were more than 90% by electrokinetic treatment, but strongly bound fractions, such as the organically bound species and residual fraction were not significantly removed (less than 30% removal efficiencies). In accordance with the general sequence of mobilities of heavy metals in soils, the removal efficiencies of more mobile heavy metals (Cd, Cu, and Zn) were higher than that of less mobile heavy metal (Pb).
Fluorescent characteristics of estrogenic compounds in landfill leachate.
Zhanga, Hua; Changb, Cheng-Hsuan; Lü, Fan; Su, Ay; Lee, Duu-Jong; He, Pin-Jing; Shao, Li-Ming
2009-08-01
Estrogens in landfill leachate could probably contaminate receiving water sources if not properly polished before discharge. This work measured, using an estrogen receptor-alpha competitor screening assay, the estrogenic potentials of leachate samples collected at a local sanitary landfill in Shanghai, China and their compounds fractionated by molecular weights. The chemical structures of the constituent compounds were characterized using fluorescence excitation and emission matrix (EEM). The organic matters of molecular weight <600 Da and of 3000-14,000 Da contributed most of the estrogenic potentials of the raw leachates. The former were considered as the typical endocrine disrupting compounds in dissolved state; while the latter the fulvic acids with high aromaticity that were readily adsorbed with estrogens (bound state). Statistical analysis on EEM peaks revealed that the chemical structures of noted estrogens in dissolved state and in bound state were not identical. Aerobic treatment effectively removed dissolved estrogens, but rarely removed those bound estrogens.
Method of waste stabilization with dewatered chemically bonded phosphate ceramics
Wagh, Arun; Maloney, Martin D.
2010-06-29
A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.
Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren
2017-09-01
Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rubisco Activase Activity Assays
USDA-ARS?s Scientific Manuscript database
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase functions as a mechano-chemical motor protein using the energy from ATP hydrolysis to contort the structure of its target protein, Rubisco. This action modulates the activation state of Rubisco by removing tightly-bound inhibitory s...
Isolation, purification and chemical composition of insoluble collagen from Guerin epithelioma.
Bańkowski, E; Galasiński, W; Gindzieẃski, A; Rzeczycki, W
1975-01-01
1. The insoluble collagen from Guerin epithelioma was isolated and its chemical composition was determined. The unusually high histidine content is accompanied in tumour collagen by a relatively small amount of lysine and arginine. 2. The isolated protein was strongly bound to glycoprotein, which could not be removed by EDTA treatment unless this procedure was preceded by digestion of the complex with trypsin.
A new approach for remediation of As-contaminated soil: ball mill-based technique.
Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae
2016-02-01
In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load.
Chromium fate in constructed wetlands treating tannery wastewaters.
Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel
2009-06-01
Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Binding of Dissolved Strontium by Micrococcus luteus
Faison, Brendlyn D.; Cancel, Carmen A.; Lewis, Susan N.; Adler, Howard I.
1990-01-01
Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity. PMID:16348370
Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections
Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio
2015-01-01
Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185
Selected heavy metals speciation in chemically stabilised sewage sludge
NASA Astrophysics Data System (ADS)
Wiśniowska, Ewa; Włodarczyk-Makuła, Marła
2017-11-01
Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.
Technological and economic aspects of coal biodesulfurisation.
Klein, J
1998-01-01
The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.
Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi
2013-09-01
This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.
Evolution of clog formation with time in columns permeated with synthetic landfill leachate
NASA Astrophysics Data System (ADS)
VanGulck, Jamie F.; Rowe, R. Kerry
2004-11-01
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO 3(s)) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO 3(s) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.
Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota
2015-12-15
Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.
Petrie, Bruce; McAdam, Ewan J; Lester, John N; Cartmell, Elise
2014-10-01
It is proposed that wastewater treatment facilities meet legislated discharge limits for a range of micropollutants. However, the heterogeneity of these micropollutants in wastewaters make removal difficult to predict since their chemistry is so diverse. In this study, a range of organic and inorganic micropollutants known to be preferentially removed via different mechanisms were selected to challenge the activated sludge process (ASP) and determine its potential to achieve simultaneous micropollutant removal. At a fixed hydraulic retention time (HRT) of 8 h, the influence of an increase in solids retention time (SRT) on removal was evaluated. Maximum achievable micropollutant removal was recorded for all chemicals (estrogens, nonylphenolics and metals) at the highest SRT studied (27 days). Also, optimisation of HRT by extension to 24 h further augmented organic biodegradation. Most notable was the enhancement in removal of the considerably recalcitrant synthetic estrogen 17α-ethinylestradiol which increased to 65 ± 19%. Regression analysis indicates that this enhanced micropollutant behaviour is ostensibly related to the concomitant reduction in food: microorganism ratio. Interestingly, extended HRT also initiated nonylphenol biodegradation which has not been consistently observed previously in real wastewaters. However, extending HRT increased the solubilisation of particulate bound metals, increasing effluent aqueous metals concentrations (i.e., 0.45 μm filtered) by >100%. This is significant as only the aqueous metal phase is to be considered for environmental compliance. Consequently, identification of an optimum process condition for generic micropollutant removal is expected to favour a more integrated approach where upstream process unit optimisation (i.e., primary sedimentation) is demanded to reduce loading of the particle bound metal phase onto the ASP, thereby enabling longer HRT in the ASP to be considered for optimum removal of organic micropollutants. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.
Murphy, V; Hughes, H; McLoughlin, P
2009-07-15
Various chemical treatments have been applied to six brown, red and green seaweed species with a view to enhancing their metal removal for Cu(II), Cr(III) and Cr(VI). Treatment with acetone resulted in the greatest enhancement for both cationic and anionic species with relatively low mass losses (15-35%), indicating its low risk to biomass operational stability. Cation binding was increased by 69%, while the total Cr removal was augmented by 15%. Cr(VI) binding was shown to be an adsorption-coupled reduction, whereby Cr(VI) was bound to the biomass surface at pH 2 and subsequently reduced to Cr(III). Acetone treatment also resulted in biomasses that were capable of converting up to 83% of Cr(VI) in solution to Cr(III). Blocking of carboxyl and amino functionalities had significant negative effects both on total Cr removal as well as percentage conversion of Cr(VI) to Cr(III). Results therefore indicated the significant role played by these moieties in metal binding to these seaweeds. Potentiometric titrations displayed agreement between the degree of esterification and the decrease in Cu(II) removal for Ulva spp. and Polysiphonia lanosa. FTIR analysis identified changes in biomass functionality and availability after chemical modification, the results of which were in agreement with metal removal studies. In conclusion, these biosorbents represent suitable candidates to replace conventional removal technologies for metal bearing wastewaters, in particular for the detoxification of hazardous Cr(VI) waste streams.
Park, Jin-Soo; Kim, Soon-Oh; Kim, Kyoung-Woong; Kim, Byung Ro; Moon, Seung-Hyeon
2003-04-04
A numerical analysis was undertaken for enhanced electrokinetic soil processing. To perform chemical conditioning of the electrode reservoirs, the electrokinetic soil process employed a membrane as a barrier between the electrode reservoirs and the contaminated soil. An alkaline solution was purged in the anode reservoir that was bounded by the membrane. A mathematical model was used for demonstration of pH change and phenol removal from a kaolinite soil bed, the prediction of pH variations in both electrode reservoirs, and the determination of an optimized injection time of the anode-purging solution. The time-dependent dispersion coefficient was employed in consideration of the averaging effect of the velocity profile on a one-dimensional transport. The estimation of pH and phenol profiles in the soil bed reasonably agreed with the experimental data. The simulation revealed that the removal efficiency of phenol from the kaolinite soil could be improved by maintaining pH of the anode solution.
Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen
2018-02-01
The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.
Taylor, Iain E. P.; Wallace, Julia C.; MacKay, Alex L.; Volke, Frank
1990-01-01
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure. PMID:16667683
Ding, Lili; Wang, Xiaorong; Zhu, Yixin; Edwards, Marc; Glindemann, Dietmar; Ren, Hongqiang
2005-03-01
The effect of pH on phosphine formation during anaerobic cultivation of granular sludge was investigated. The sludge was taken from full-scale anaerobic reactors treating brewery wastewater. Acetate and phosphate were used as the carbon source and phosphorus source respectively. After 10 days cultivation in the dark, results showed that acidic conditions were more favorable for free phosphine production. At pH 5, the optimum concentration 86.42 ng PH3 m-3 of free phosphine was obtained. The level at pH 7 was reduced to 18.53 ng PH3 m-3, about 1/5 of the maximum. The maximum concentration of matrix-bound phosphine of 3.30 ng PH3 kg-1 wet sludge was achieved at pH 6. More than 83% of the total phosphine was matrix-bound phosphine, which accounted for 0.003-0.009 per thousand of the phosphate removal, while free phosphine comprised 0.00002-0.001 per thousand of the phosphate removal. Most of the phosphorus removal from solution was turned into chemical precipitation or was adsorbed by sludge. The mechanism of the phosphate reduction-step in the formation of phosphine production is still unknown. The promotion of phosphine formation by low pH is compatible with an acidic bio-corrosion mechanism of metal particles in the sludge or of metal phosphides which form phosphine at low pH.
Silicene catalyzed reduction of nitrobenzene to aniline: A mechanistic study
NASA Astrophysics Data System (ADS)
Morrissey, Christopher; He, Haiying
2018-03-01
The reduction of nitrobenzene to aniline has broad applications in chemical and pharmaceutical industries. The high reaction temperatures and pressures and unavoidable hazardous chemicals of current metal catalysts call for more environmentally friendly non-metal catalysts. In this study, the plausibility of silicene as a potential catalyst for nitrobenzene reduction is investigated with a focus on the distinct reaction mechanism based on the density functional theory. The direct reaction pathway was shown to be distinctly different from the Haber mechanism following PhNO2∗ → PhNO∗ → PhNHO∗ → PhNH2O∗ → PhNH2∗. The hydroxyl groups remain bound to silicene after aniline is formed and acquire a high activation barrier to remove.
High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures
NASA Astrophysics Data System (ADS)
Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor
2015-04-01
Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.
ERIC Educational Resources Information Center
McPeake, John D.; And Others
1991-01-01
Describes adolescent chemical dependency treatment model developed at Beech Hill Hospital (New Hampshire) which integrated Twelve Step-oriented alcohol and drug rehabilitation program with experiential education school, Hurricane Island Outward Bound School. Describes Beech Hill Hurricane Island Outward Bound School Adolescent Chemical Dependency…
Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.
2014-01-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059
Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A
2014-10-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.
Borris, Matthias; Österlund, Heléne; Marsalek, Jiri; Viklander, Maria
2016-12-15
Laboratory leaching experiments were performed to study the potential of coarse street sediments (i.e. >250μm) to release dissolved and particulate-bound heavy metals (i.e. Cd, Cr, Cu, Ni, Pb and Zn) during rainfall/runoff. Towards this end, street sediments were sampled by vacuuming at seven sites in five Swedish cities and the collected sediments were characterized with respect to their physical and chemical properties. In the laboratory, the sediments were combined with synthetic rainwater and subject to agitation by a shaker mimicking particle motion during transport by runoff from street surfaces. As a result of such action, coarse street sediments were found to release significant amounts of heavy metals, which were predominantly (up to 99%) in the particulate bound phase. Thus, in dry weather, coarse street sediments functioned as collectors of fine particles with attached heavy metals, but in wet weather, metal burdens were released by rainfall/runoff processes. The magnitude of such releases depended on the site characteristics (i.e. street cleaning and traffic intensity), particle properties (i.e. organic matter content), and runoff characteristics (pH, and the duration of, and energy input into, sediment/water agitation). The study findings suggest that street cleaning, which preferentially removes coarser sediments, may produce additional environmental benefits by also removing fine contaminated particles attached to coarser materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macaskie, L.E.; Yong, P.; Doyle, T.C.
1997-01-05
A biotechnological process for the removal of heavy metals from aqueous solution utilizes enzymatically liberated phosphate ligand which precipitates with heavy metals (M) as cell-bound MHPO{sub 4}. The enzyme, a phosphatase, obeys Michaelis-Menten kinetics in resting and immobilized cells; an integrated form of the Michaelis-Menten equation was used to calculate the apparent K{sub m} (K{sub m app}) as operating in immobilized cells in flow-through columns by a ratio method based on the use of two enzyme loadings (E{sub o1}, E{sub o2}) or two input substrate concentrations (S{sub o1}, S{sub o2}). The calculated K{sub m app} (4.08 mM) was substituted intomore » an equation to describe the removal of metals by immobilized cells. In operation the activity of the bioreactor was in accordance with that predicted mathematically, within 10%. The initial tests were done at neutral pH, whereas the pH of industrial wastewaters is often low; an increase in the K{sub m app} at low pH was found in previous studies. Immobilized cells were challenged with acidic mine drainage wastewaters, where the limiting factors were chemical and not biochemical. Bioreactors initially lost activity in this water, but recovered to remove uranyl ion with more than 70% efficiency under steady-state conditions in the presence of competing cations and anions. Possible reasons for the bioreactor recovery are chemical crystallization factors.« less
Musatov, Andrej; Varhač, Rastislav; Hosler, Jonathan P.; Sedlák, Erik
2016-01-01
Delipidation of detergent-solubilized cytochrome c oxidase isolated from Rhodobacter sphaeroides (Rbs-CcO) has no apparent structural and/or functional effect on the protein, however affects its resistance against thermal or chemical denaturation. Phospholipase A2 (PLA2) hydrolysis of phospholipids that are co-purified with the enzyme removes all but two tightly bound phosphatidylethanolamines. Replacement of the removed phospholipids with nonionic detergent decreases both thermal stability of the enzyme and its resilience against the effect of chemical denaturants such as urea. In contrast to nondelipidated Rbs-CcO, the enzymatic activity of PLA2-treated Rbs-CcO is substantially diminished after exposure to high (>4M) urea concentration at room temperature without an alteration of its secondary structure. Absorbance spectroscopy and sedimentation velocity experiments revealed a strong correlation between intact tertiary structure of heme regions and quaternary structure, respectively, and the enzymatic activity of the protein. We concluded that phospholipid environment of Rbs-CcO has the protective role for stability of its tertiary and quaternary structures. PMID:26923069
Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don
This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.
A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data.
Zhang, Shuqin; Wang, Honghui; Zhou, Xiaobo; Hoehn, Gerard T; DeGraba, Thomas J; Gonzales, Denise A; Suffredini, Anthony F; Ching, Wai-Ki; Ng, Michael K; Wong, Stephen T C
2009-08-01
Peak detection is a pivotal first step in biomarker discovery from MS data and can significantly influence the results of downstream data analysis steps. We developed a novel automatic peak detection method for prOTOF MS data, which does not require a priori knowledge of protein masses. Random noise is removed by an undecimated wavelet transform and chemical noise is attenuated by an adaptive short-time discrete Fourier transform. Isotopic peaks corresponding to a single protein are combined by extracting an envelope over them. Depending on the S/N, the desired peaks in each individual spectrum are detected and those with the highest intensity among their peak clusters are recorded. The common peaks among all the spectra are identified by choosing an appropriate cut-off threshold in the complete linkage hierarchical clustering. To remove the 1 Da shifting of the peaks, the peak corresponding to the same protein is determined as the detected peak with the largest number among its neighborhood. We validated this method using a data set of serial peptide and protein calibration standards. Compared with MoverZ program, our new method detects more peaks and significantly enhances S/N of the peak after the chemical noise removal. We then successfully applied this method to a data set from prOTOF MS spectra of albumin and albumin-bound proteins from serum samples of 59 patients with carotid artery disease compared to vascular disease-free patients to detect peaks with S/N> or =2. Our method is easily implemented and is highly effective to define peaks that will be used for disease classification or to highlight potential biomarkers.
UPPER BOUND RISK ESTIMATES FOR MIXTURES OF CARCINOGENS
The excess cancer risk that might result from exposure to a mixture of chemical carcinogens usually is estimated with data from experiments conducted on individual chemicals. An upper bound on the total excess risk is estimated commonly by summing individual upper bound risk esti...
Search for Chemically Bound Water in the Surface Layer of Mars Based on HEND/Mars Odyssey Data
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.
2003-01-01
This study is emphasized on search for signatures of chemically bound water in surface layer of Mars based on data acquired by High Energy Neutron Detector (HEND) which is part of the Mars Odyssey Gamma Ray Spectrometer (GRS). Fluxes of epithermal (probe the upper 1-2 m) and fast (the upper 20-30 cm) neutrons, considered in this work, were measured since mid February till mid June 2002. First analysis of this data set with emphasis of chemically bound water was made. Early publications of the GRS results reported low neutron flux at high latitudes, interpreted as signature of ground water ice, and in two low latitude areas: Arabia and SW of Olympus Mons (SWOM), interpreted as 'geographic variations in the amount of chemically and/or physically bound H2O and or OH...'. It is clear that surface materials of Mars do contain chemically bound water, but its amounts are poorly known and its geographic distribution was not analyzed.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-09-01
Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.
Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele
2015-02-01
A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biological removal of NOx from flue gas.
Kumaraswamy, R; Muyzer, G; Kuenen, J G; Loosdrecht, M C M
2004-01-01
BioDeNOx is a novel integrated physico-chemical and biological process for the removal of nitrogen oxides (NOx) from flue gas. Due to the high temperature of flue gas the process is performed at a temperature between 50-55 degrees C. Flue gas containing CO2, O2, SO2 and NOx, is purged through Fe(II)EDTA2- containing liquid. The Fe(II)EDTA2- complex effectively binds the NOx; the bound NOx is converted into N2 in a complex reaction sequence. In this paper an overview of the potential microbial reactions in the BioDeNOx process is discussed. It is evident that though the process looks simple, due to the large number of parallel potential reactions and serial microbial conversions, it is much more complex. There is a need for a detailed investigation in order to properly understand and optimise the process.
Lifetime of a Chemically Bound Helium Compound
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.
Solution structural ensembles of substrate-free cytochrome P450(cam).
Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C
2012-04-24
Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Jalil, Md. Abdul; Ali, M. Ashraf
2014-10-01
With increasing use of arsenic (As) removal units for treatment of As-contaminated groundwater in rural Bangladesh, concerns have been raised regarding safe disposal of the As-rich wastes from such units and possible contamination of the environment. In the absence of any clear guideline for safe disposal of wastes generated from As removal units, the wastes are usually disposed of in the open environment, often on cow dung beds in the backyard. Short term (up to 6 weeks) batch experiments performed in this study suggest that bio-chemical (e.g., bio-methylation) processes in the presence of only fresh cow dung may lead to a significant removal of As, both from aqueous solution and As-rich treatment wastes. Arsenic removal appears to increase with decreasing As to cow dung weight ratio. This study also suggests that arsenate transforms to arsenite before removal from aqueous As solution in the presence of cow dung. In most cases majority of As removal takes place during first few days. Removal of As under cap-open (to facilitate aerobic condition) and cap-closed conditions (to facilitate aerobic condition) were found to be similar. No significant variation was observed in the removal As from aqueous solution and from treatment wastes (As bound to iron solids). This study concludes that disposal of As-rich treatment wastes to cow dung pits could be an effective option of As sludge disposal and management in rural areas of Bangladesh.
Transformation and Removal Pathways of Four Common PPCP/EDCs in Soil
Dodgen, LK; Li, J; Wu, X; Lu, Z; Gan, JJ
2014-01-01
Pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) enter the soil environment via irrigation with treated wastewater, groundwater recharge, and land application of biosolids. The transformation and fate of PPCP/EDCs in soil affects their potential for plant uptake and groundwater pollution. This study examined four PPCP/EDCs (bisphenol A, diclofenac, naproxen, and 4-nonylphenol) in soil by using 14C-labeling and analyzing mineralization, extractable residue, bound residue, and formation of transformation products. At the end of 112 d of incubation, the majority of 14C-naproxen and 14C-diclofenac was mineralized to 14CO2, while a majority of 14C-bisphenol A and 14C-nonylphenol was converted to bound residue. After 112 d, the estimated half-lives of the parent compounds were only 1.4 – 5.4 d. However a variety of transformation products were found and several for bisphenol A and diclofenac were identified, suggesting the need to consider degradation intermediates in soils impacted by PPCP/EDCs. PMID:24997388
Strandberg, Gerald W.; Shumate, Starling E.; Parrott, John R.
1981-01-01
Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent. Images PMID:16345691
Khan, Sher Jamal; Ahmad, Aman; Nawaz, Muhammad Saqib; Hankins, Nicholas P
2014-01-01
In this study, three laboratory scale submerged membrane bioreactors (MBRs) comprising a conventional MBR (C-MBR), moving bed MBR (MB-MBR) and anoxic-oxic MBR (A/O-MBR) were continuously operated with synthesized domestic wastewater (chemical oxygen demand, COD = 500 mg/L) for 150 days under similar operational and environmental conditions. Kaldnes(®) plastic media with 20% dry volume was used as a biofilm carrier in the MB-MBR and A/O-MBR. The treatment performance and fouling propensity of the MBRs were evaluated. The effect of cake layer formation in all three MBRs was almost the same. However, pore blocking caused a major difference in the resultant water flux. The A/O-MBR showed the highest total nitrogen and phosphorus (PO4-P) removal efficiencies of 83.2 and 69.7%, respectively. Due to the high removal of nitrogen, fewer protein contents were found in the soluble and bound extracellular polymeric substances (EPS) of the A/O-MBR. Fouling trends of the MBRs showed 12, 14 and 20 days filtration cycles for C-MBR, MB-MBR and A/O-MBR, respectively. A 25% reduction of the soluble EPS and a 37% reduction of the bound EPS concentrations in A/O-MBR compared with C-MBR was a major contributing factor for fouling retardation and the enhanced filtration capacity of the A/O-MBR.
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.
Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios
2013-10-01
In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V
2005-01-01
Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned above is necessary to identify the functional groups entered in the metals elimination processes.
NASA Technical Reports Server (NTRS)
Wu, Jun-ru (Inventor); Hitt, Darren (Inventor); Vachon, Nicholas M. (Inventor); Chen, Di (Inventor); Marshall, Jeffrey S. (Inventor)
2016-01-01
The invention disclosed herein provides for high particle removal rate and/or heat transfer from surfaces. The device removes particulate matter from a surface using a bounded vortex generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.
He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.
2011-01-01
Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and a R122L/S124A mutant in which electrostatic interactions viewed as essential to fatty acid binding were removed. For wild-type LFABP the results compared favorably with previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, 1H/15N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-01-01
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed. PMID:26878770
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil.
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-02-16
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil
NASA Astrophysics Data System (ADS)
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-02-01
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.
Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G
2016-01-01
Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.
Selectively increasing the clearance of protein-bound uremic solutes
Luo, Frank J.-G.; Plummer, Natalie S.; Hostetter, Thomas H.; Meyer, Timothy W.
2012-01-01
Background. The toxicity of bound solutes could be better evaluated if we could adjust the clearance of such solutes independent of unbound solutes. This study assessed whether bound solute clearances can be increased while maintaining urea clearance constant during the extended hours of nocturnal dialysis. Methods. Nine patients on thrice-weekly nocturnal dialysis underwent two experimental dialysis treatments 1 week apart. The experimental treatments were designed to provide the same urea clearance while providing widely different bound solute clearance. One treatment employed a large dialyzer and high dialyzate flow rate (Qd) of 800 mL/min while blood flow (Qb) was 270 mL/min. The other treatment employed a smaller dialyzer and Qd of 300 mL/min while Qb was 350 mL/min. Results. Treatment with the large dialyzer and higher Qd greatly increased the clearances of the bound solutes p-cresol sulfate (PCS: 27 ± 9 versus 14 ± 6 mL/min) and indoxyl sulfate (IS: 26 ± 8 versus 14 ± 5 mL/min) without altering the clearance of urea (204 ± 20 versus 193 ± 16 mL/min). Increasing PCS and IS clearances increased the removal of these solutes (PCS: 375 ± 200 versus 207 ± 86 mg/session; IS: 201 ± 137 versus 153 ± 74 mg/session), while urea removal was not different. Conclusions. The removal of bound solutes can thus be increased by raising the dialyzate flow and dialyzer size above the low levels sufficient to achieve target Kt/Vurea during extended treatment. Selectively increasing the clearance of bound solutes provides a potential means to test their toxicity. PMID:22231033
Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.
Demir, Aynur; Arisoy, Münevver
2007-08-17
The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.
Zheng, Dong; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Wang, Sen; Wang, Xuejiao
2016-11-01
The effects of chlortetracycline (CTC) on the performance, microbial activity, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater. Low CTC concentration (less than 6 mg/L) had no obvious effect on the SBBR performance, whereas high CTC concentration could inhibit the chemical oxygen demand (COD) and nitrogen removal of the SBBR. The microbial activity of the biofilm in the SBBR decreased with the increase of CTC concentration from 0 to 35 mg/L. The protein (PN) contents were always higher than the PS contents in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) at different CTC concentrations. The chemical compositions of LB-EPS and TB-EPS had obvious variations with the increase of CTC concentration from 0 to 35 mg/L. The high-throughput sequencing revealed the effects of CTC on the microbial communities of the biofilm at phylum, class and genus level. The relative abundances of some genera displayed a decreasing tendency with the increase of CTC concentration from 0 to 35 mg/L, such as Nitrospira, Paracoccus, Hyphomicrobium, Azospirillum. However, the relative abundances of the genera Flavobacterium, Aequorivita, Buchnera, Azonexus and Thioalbus increased with the increase of CTC concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Steinlin, Christine; Bogdal, Christian; Pavlova, Pavlina A; Schwikowski, Margit; Lüthi, Martin P; Scheringer, Martin; Schmid, Peter; Hungerbühler, Konrad
2015-12-15
We present results from a chemical fate model quantifying incorporation of polychlorinated biphenyls (PCBs) into the Silvretta glacier, a temperate Alpine glacier located in Switzerland. Temperate glaciers, in contrast to cold glaciers, are glaciers where melt processes are prevalent. Incorporation of PCBs into cold glaciers has been quantified in previous studies. However, the fate of PCBs in temperate glaciers has never been investigated. In the model, we include melt processes, inducing elution of water-soluble substances and, conversely, enrichment of particles and particle-bound chemicals. The model is validated by comparing modeled and measured PCB concentrations in an ice core collected in the Silvretta accumulation area. We quantify PCB incorporation between 1900 and 2010, and discuss the fate of six PCB congeners. PCB concentrations in the ice core peak in the period of high PCB emissions, as well as in years with strong melt. While for lower-chlorinated PCB congeners revolatilization is important, for higher-chlorinated congeners, the main processes are storage in glacier ice and removal by particle runoff. This study gives insight into PCB fate and dynamics and reveals the effect of snow accumulation and melt processes on the fate of semivolatile organic chemicals in a temperate Alpine glacier.
Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction
NASA Astrophysics Data System (ADS)
Abd El-Azim, H.; El-Moselhy, Kh. M.
2005-06-01
The application of sequential extraction technique was used to determine the chemical association of heavy metals in five different chemical phases (exchangeable F1, bound to carbonate F2, bound to Fe-Mn oxides F3, bound to organic matter F4 and residual F5) for sediment samples collected from the Suez Canal. From the obtained data, it can be seen that the surplus of metal contaminants introduced into the sediment from sources usually exists in relatively unstable chemical forms. A high proportion of the studied metals remained in the residual fraction. Most of remaining portion of metals was bound to ferromanganese oxides fraction. The low concentrations of metals in the exchangeable fraction indicated that the sediments of Suez Canal were relatively unpolluted.
Removal of cadmium from fish sauce using chelate resin.
Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki
2015-04-15
Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.
Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911
Kofinas, Peter; Kioussis, Dimitri R
2003-01-15
This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.
Bounds on stochastic chemical kinetic systems at steady state
NASA Astrophysics Data System (ADS)
Dowdy, Garrett R.; Barton, Paul I.
2018-02-01
The method of moments has been proposed as a potential means to reduce the dimensionality of the chemical master equation (CME) appearing in stochastic chemical kinetics. However, attempts to apply the method of moments to the CME usually result in the so-called closure problem. Several authors have proposed moment closure schemes, which allow them to obtain approximations of quantities of interest, such as the mean molecular count for each species. However, these approximations have the dissatisfying feature that they come with no error bounds. This paper presents a fundamentally different approach to the closure problem in stochastic chemical kinetics. Instead of making an approximation to compute a single number for the quantity of interest, we calculate mathematically rigorous bounds on this quantity by solving semidefinite programs. These bounds provide a check on the validity of the moment closure approximations and are in some cases so tight that they effectively provide the desired quantity. In this paper, the bounded quantities of interest are the mean molecular count for each species, the variance in this count, and the probability that the count lies in an arbitrary interval. At present, we consider only steady-state probability distributions, intending to discuss the dynamic problem in a future publication.
Zhang, Longlong; Yue, Qinyan; Yang, Kunlun; Zhao, Pin; Gao, Baoyu
2018-02-01
Extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis and up-flow biological aerated filter (UBAF) process for the treatment of high-level ciprofloxacin (CIP) were analyzed. The research demonstrated a great potential of Fe-C micro-electrolysis-UBAF for the elimination of high-level CIP. Above 90% of CIP removal was achieved through the combined process at 100 mg L -1 of CIP loading. In UBAF, the pollutants were mainly removed at 0-70 cm heights. Three-dimensional fluorescence spectrum (3D-EEM) was used to characterize the chemical structural of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) extracted from biofilm sample in UBAF. The results showed that the protein-like substances in LB-EPS and TB-EPS had no clear change in the study. Nevertheless, an obvious release of polysaccharides in EPSs was observed during long-term exposure to CIP, which was considered as a protective response of microbial to CIP toxic. The high-throughput sequencing results revealed that the biodiversity of bacteria community became increasingly rich with gradual ciprofloxacin biodegradation in UBAF. The ciprofloxacin-degrading microbial community was mainly dominated by Proteobacteria and Bacteroidetes. Microorganisms from genera Dechloromonas, Brevundimonas, Flavobacterium, Sphingopyxis and Bosea might take a major role in ciprofloxacin degradation. This study provides deep theoretical guidance for real CIP wastewater treatment. Copyright © 2017. Published by Elsevier Ltd.
Preparation of the Nuclear Matrix for Parallel Microscopy and Biochemical Analyses.
Wilson, Rosemary H C; Hesketh, Emma L; Coverley, Dawn
2016-01-04
Immobilized proteins within the nucleus are usually identified by treating cells with detergent. The detergent-resistant fraction is often assumed to be chromatin and is described as such in many studies. However, this fraction consists of both chromatin-bound and nuclear-matrix-bound proteins. To investigate nuclear-matrix-bound proteins alone, further separation of these fractions is required; the DNA must be removed so that the remaining proteins can be compared with those from untreated cells. This protocol uses a nonionic detergent (Triton X-100) to remove membranes and soluble proteins from cells under physiologically relevant salt concentrations, followed by extraction with 0.5 m NaCl, digestion with DNase I, and removal of fragmented DNA. It uses a specialized buffer (cytoskeletal buffer) to stabilize the cytoskeleton and nuclear matrix in relatively gentle conditions. Nuclear matrix proteins can then be assessed by either immunofluorescence (IF) and immunoblotting (IB). IB has the advantage of resolving different forms of a protein of interest, and the soluble fractions can be analyzed. The major advantage of IF analysis is that individual cells (rather than homogenized populations) can be monitored, and the spatial arrangement of proteins bound to residual nuclear structures can be revealed. © 2016 Cold Spring Harbor Laboratory Press.
Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng
2017-05-01
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption and Reduction of Hexavalent Chromium on the Surface of Vivianite at Acidic Environment
NASA Astrophysics Data System (ADS)
HA, S.; Hyun, S. P.; Lee, W.
2016-12-01
Due to the rapid increase of chemical use in industrial activities, acid spills have frequently occurred in Korea. The acid spill causes soil and water acidification and additional problems such as heavy metal leaching from the soil. Hexavalent chromium (Cr(VI)) is relatively mobile in the environment and toxic and mutagenic. Monoclinic octa-hydrated ferrous phosphate, vivianite, is one of commonly found iron-bearing soil minerals occurring in phosphorous-enriched reducing environments. We have investigated reductive sorption of Cr(VI) on the vivianite surfaces using batch experimental tests under diverse groundwater conditions. Cr(VI) (5 mg/L) was added in 6.5 g/L vivianite suspension buffered at pH 5, 7, and 9, using 0.05 M HEPES or tris buffer solution, to check the effect of pH on the reductive sorption of Cr(VI) on the vivianite surface. The aqueous Cr(VI) removal was fastest at pH 5, followed by pH 7, and pH 9. The effect of ionic strength on the removal kinetics of Cr(VI) was negligible. It could be subsequently removed via sorption and reduction on the surface of vivianite of which reactive chemical species could be aqueous Fe(II), iron oxides, and metavivianite. Adsorption test was conducted using the same amount of Cr(III) to check the selectivity of chromium species on the vivianite surface for the reductive adsorption. Through Cr extraction test, amount of strong-bound Cr to vivianite is similar for Cr(III) and Cr(VI) injection but amount of weak-bound Cr is bigger for Cr(VI) injection. Reaction mechanism for the sorption and reductive transformation of Cr(VI) to Cr(III) species at reactive sites of vivianite surface are discussed based on surface complexation modeling and K-edge Fe X-ray absorption near edge structure (XANES) results. Since vivianite is reacted with Cr(VI), two smooth peaks of absorption edge changed to one sharp peak. Pre-edge that contains 1s-3d transition information tends to show high peak when reaction time is increased and pH is low. This fact indicated that the Fe(II) is oxidized to Fe(III) at the surface of viviante and this phenomena is optimized at pH 5 and longer elapsed time.
Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos
2009-07-01
A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control technologies, the particle bound organics-to-OC ratios (microg/g) decreased considerably for PAHs, while the reduction was insignificant for hopanes and steranes, implying that fuel and lubricating oil have substantially different contributions to the total OC emitted by vehicles operating with after-treatment control devices compared to the baseline vehicle since these control technologies had a much larger impact on PAH OC than hopanes and steranes OC.
The CampWater system uses ozonation followed by cartridge filtration to remove arsenic via co-precipitation. The system utilizes ozone to oxidize iron and arsenic (III) to arsenic (V). The arsenic bound to the iron precipitates is then removed by cartridge filtration. No additi...
NASA Astrophysics Data System (ADS)
Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios
2016-10-01
Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).
Universal bound on the efficiency of molecular motors
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo
2016-12-01
The thermodynamic uncertainty relation provides an inequality relating any mean current, the associated dispersion and the entropy production rate for arbitrary non-equilibrium steady states. Applying it here to a general model of a molecular motor running against an external force or torque, we show that the thermodynamic efficiency of such motors is universally bounded by an expression involving only experimentally accessible quantities. For motors pulling cargo through a viscous fluid, a universal bound for the corresponding Stokes efficiency follows as a variant. A similar result holds if mechanical force is used to synthesize molecules of high chemical potential. Crucially, no knowledge of the detailed underlying mechano-chemical mechanism is required for applying these bounds.
Sankararamakrishnan, Nalini; Sharma, Ajit Kumar; Sanghi, Rashmi
2007-09-05
Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01 N H(2)SO(4). The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.
A simple and rapid method for the reversible removal of lipids from a membrane-bound enzyme.
Goodman, S L; Isern de Caldentey, M; Wheeler, K P
1978-01-01
A simple, rapid and reproducible method for the reversible removal of lipids from a membrane-bound enzyme is described. Essentially, a membrane preparation containing (Na+ + K+)-dependent adenosine triphosphatase was extracted with the non-ionic detergent Lubrol WX in the presence of glycerol, and partial separation of protein from lipid was achieved with the use of only two centrifugations. About 74% of the endogenous phospholipid and 79% of the cholesterol were removed, concomitant with a virtually complete loss of ouabain-sensitive adenosine triphosphatase activity, but with retention of 60-100% of the K+-dependent phosphatase activity. The addition of pure phosphatidylserine re-activated the enzyme to more than 80% of the initial activity, and up to 30% of the protein was recovered. Excess of phosphatidylserine could be washed off the enzyme to give a stable 'reconstituted' preparation. The effects of variation in the experimental conditions were examined, and the results are discussed with respect to the possibility of adapting the method to the study of other lipid-dependent enzymes bound to membranes. PMID:147078
Bioavailability of sediment-bound contaminants to marine organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.; Neff, J.
1993-09-01
The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.
Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model
NASA Astrophysics Data System (ADS)
Alvarez, P. D.; Canfora, F.; Dimakis, N.; Paliathanasis, A.
2017-10-01
Using a remarkable mapping from the original (3 + 1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions-anti-Skyrmions bound states within a finite box in 3 + 1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions-anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.
ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Fink, S.
2011-03-07
The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.« less
Khan, Shahid N; Persons, John D; Paulsen, Janet L; Guerrero, Michel; Schiffer, Celia A; Kurt-Yilmaz, Nese; Ishima, Rieko
2018-03-13
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata
2014-11-18
Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.
40 CFR 62.101 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Reichhold Chemical Company in Tuscaloosa, (2) Stauffer Chemical Company in Mobile, and (3) Estech Chemical... bound sulfur feedstock plants. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.101 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Reichhold Chemical Company in Tuscaloosa, (2) Stauffer Chemical Company in Mobile, and (3) Estech Chemical... bound sulfur feedstock plants. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.101 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Reichhold Chemical Company in Tuscaloosa, (2) Stauffer Chemical Company in Mobile, and (3) Estech Chemical... bound sulfur feedstock plants. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.101 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Reichhold Chemical Company in Tuscaloosa, (2) Stauffer Chemical Company in Mobile, and (3) Estech Chemical... bound sulfur feedstock plants. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.101 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Reichhold Chemical Company in Tuscaloosa, (2) Stauffer Chemical Company in Mobile, and (3) Estech Chemical... bound sulfur feedstock plants. Fluoride Emissions From Phosphate Fertilizer Plants ...
NASA Astrophysics Data System (ADS)
Ke, Haohao; Ondov, John M.; Rogge, Wolfgang F.
2013-12-01
Composite chemical profiles of motor vehicle emissions were extracted from ambient measurements at a near-road site in Baltimore during a windless traffic episode in November, 2002, using four independent approaches, i.e., simple peak analysis, windless model-based linear regression, PMF, and UNMIX. Although the profiles are in general agreement, the windless-model-based profile treatment more effectively removes interference from non-traffic sources and is deemed to be more accurate for many species. In addition to abundances of routine pollutants (e.g., NOx, CO, PM2.5, EC, OC, sulfate, and nitrate), 11 particle-bound metals and 51 individual traffic-related organic compounds (including n-alkanes, PAHs, oxy-PAHs, hopanes, alkylcyclohexanes, and others) were included in the modeling.
Injectable nanocarriers for biodetoxification
NASA Astrophysics Data System (ADS)
Leroux, Jean-Christophe
2007-11-01
Hospitals routinely treat patients suffering from overdoses of drugs or other toxic chemicals as a result of illicit drug consumption, suicide attempts or accidental exposures. However, for many life-threatening situations, specific antidotes are not available and treatment is largely based on emptying the stomach, administering activated charcoal or other general measures of intoxication support. A promising strategy for managing such overdoses is to inject nanocarriers that can extract toxic agents from intoxicated tissues. To be effective, the nanocarriers must remain in the blood long enough to sequester the toxic components and/or their metabolites, and the toxin bound complex must also remain stable until it is removed from the bloodstream. Here, we discuss the principles that govern the use of injectable nanocarriers in biodetoxification and review the pharmacological performance of a number of different approaches.
29 CFR 1915.33 - Chemical paint and preservative removers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...
29 CFR 1915.33 - Chemical paint and preservative removers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...
29 CFR 1915.33 - Chemical paint and preservative removers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...
29 CFR 1915.33 - Chemical paint and preservative removers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...
29 CFR 1915.33 - Chemical paint and preservative removers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...
Kim, Soon-Oh; Moon, Seung-Hyeon; Kim, Kyoung-Woong; Yun, Seong-Taek
2002-11-01
In order to remove toxic heavy metals from municipal wastewater sludges, the ex situ electrokinetic technique was studied at pilot scale. This study focused on the feasibility of the electrokinetic removal of heavy metals from sludge and the effectiveness of this technique on the variations of abiotic (physicochemical) and biotic (intracellular and extracellular) speciations of heavy metals using several analytical methods. Even though the sludge used was taken from a municipal wastewater treatment plant, the sludge contained relatively high concentrations of target metal contaminants (Cd = 6.8 mg/kg, Cr = 115.6 mg/kg, Cu = 338.7 mg/kg, and Pb = 62.8 mg/kg). The removal efficiencies of heavy metals were significantly dependent on their speciations in the sludge matrices. The electrokinetic removal efficiencies of abiotic heavy metals exceeded 70% for the mobile and weakly bound fractions, such as, the exchangeable and carbonate fractions and were lower than 35% for the strongly bound fractions, such as, the organic/sulfide and residual fractions. In the case of the biotic heavy metals, the removal efficiencies of the extracellular fractions were slightly higher than those of the intracellular fractions.
Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D
2016-06-01
Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.
Su, Yiming; Jassby, David; Song, Shikun; Zhou, Xuefei; Zhao, Hongying; Filip, Jan; Petala, Eleni; Zhang, Yalei
2018-06-05
Sulfidation of nanoscale zerovalent iron (nZVI) has shown some fundamental improvements on reactivity and selectivity toward pollutants in dissolved-oxygen (DO)-stimulated Fenton-like reaction systems (DO/S-nZVI system). However, the pristine microstructure of sulfide-modified nanoscale zerovalent iron (S-nZVI) remains uncovered. In addition, the relationship between pollutant removal and the oxidation of the S-nZVI is largely unknown. The present study confirms that sulfidation not only imparts sulfide and sulfate groups onto the surface of the nanoparticle (both on the oxide shell and on flake-like structures) but also introduces sulfur into the Fe(0) core region. Sulfidation greatly inhibits the four-electron transfer pathway between Fe(0) and oxygen but facilitates the electron transfer from Fe(0) to surface-bound Fe(III) and consecutive single-electron transfer for the generation of H 2 O 2 and hydroxyl radical. In the DO/S-nZVI system, slight sulfidation (S/Fe molar ratio = 0.1) is able to nearly double the oxidative removal efficacy of diclofenac (DCF) (from 17.8 to 34.2%), whereas moderate degree of sulfidation (S/Fe molar ratio = 0.3) significantly enhances both oxidation and adsorption of DCF. Furthermore, on the basis of the oxidation model of S-nZVI, the DCF removal process can be divided into two steps, which are well modeled by parabolic and logarithmic law separately. This study bridges the knowledge gap between pollutant removal and the oxidation process of chemically modified iron-based nanomaterials.
Vivianite as an important iron phosphate precipitate in sewage treatment plants.
Wilfert, P; Mandalidis, A; Dugulan, A I; Goubitz, K; Korving, L; Temmink, H; Witkamp, G J; Van Loosdrecht, M C M
2016-11-01
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Systematics of intermediate-energy single-nucleon removal cross sections
NASA Astrophysics Data System (ADS)
Tostevin, J. A.; Gade, A.
2014-11-01
There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.
Kim, Eun-Ah; Luthy, Richard G
2011-11-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg-DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, Eun-Ah
2011-01-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray – photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg- DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. PMID:21872900
Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S
2015-01-01
Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.
Wang, Zhenjun; Huang, Jiehao
2018-04-01
The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo
2016-09-01
The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge.
Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.
Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof
2018-03-01
Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak
2017-11-01
A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution of pyrethroid insecticides in secondary wastewater effluent
Parry, Emily; Young, Thomas M.
2014-01-01
Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine if sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (Kid) and dissolved organic carbon (Kidoc) at environmentally relevant pyrethroid concentrations. Resulting Kid values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6%of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863
Tao, Xia; Thijssen, Stephan; Kotanko, Peter; Ho, Chih-Hu; Henrie, Michael; Stroup, Eric; Handelman, Garry
2016-01-01
Protein-bound uraemic toxins (PBUTs) cause various deleterious effects in end-stage kidney disease patients, because their removal by conventional haemodialysis (HD) is severely limited by their low free fraction in plasma. Here we provide an experimental validation of the concept that the HD dialytic removal of PBUTs can be significantly increased by extracorporeal infusion of PBUT binding competitors. The binding properties of indoxyl sulfate (IS), indole-3-acetic acid (IAA) and hippuric acid (HIPA) and their binding competitors, ibuprofen (IBU), furosemide (FUR) and tryptophan (TRP) were studied in uraemic plasma. The effect of binding competitor infusion on fractional removal of PBUT was then quantified in an ex vivo single-pass HD model using uraemic human whole blood. The infusion of a combination of IBU and FUR increased the fractional removal of IS from 6.4 ± 0.1 to 18.3 ± 0.4%. IAA removal rose from 16.8 ± 0.3 to 34.5 ± 0.7%. TRP infusion increased the removal of IS and IAA to 10.5 ± 0.1% and 27.1 ± 0.3%, respectively. Moderate effects were observed on HIPA removal. Pre-dialyzer infusion of PBUT binding competitors into the blood stream can increase the HD removal of PBUTs. This approach can potentially be applied in current HD settings. PMID:27001248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
2016-08-21
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less
The earthworm gastrointestinal effect on the release of organic bound residues in soils
NASA Astrophysics Data System (ADS)
Du, J. H.
2018-03-01
Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.
Continuous-flow centrifugation to collect suspended sediment for chemical analysis
Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.
2016-12-22
Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.
Localization of holes near charged defects in orbitally degenerate, doped Mott insulators
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter
2018-05-01
We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.
Programmed folding of DNA origami structures through single-molecule force control.
Bae, Wooli; Kim, Kipom; Min, Duyoung; Ryu, Je-Kyung; Hyeon, Changbong; Yoon, Tae-Young
2014-12-03
Despite the recent development in the design of DNA origami, its folding yet relies on thermal or chemical annealing methods. We here demonstrate mechanical folding of the DNA origami structure via a pathway that has not been accessible to thermal annealing. Using magnetic tweezers, we stretch a single scaffold DNA with mechanical tension to remove its secondary structures, followed by base pairing of the stretched DNA with staple strands. When the force is subsequently quenched, folding of the DNA nanostructure is completed through displacement between the bound staple strands. Each process in the mechanical folding is well defined and free from kinetic traps, enabling us to complete folding within 10 min. We also demonstrate parallel folding of DNA nanostructures through multiplexed manipulation of the scaffold DNAs. Our results suggest a path towards programmability of the folding pathway of DNA nanostructures.
Removal of trace organic chemical contaminants by a membrane bioreactor.
Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J
2012-01-01
Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.
A Reduced Basis Method with Exact-Solution Certificates for Symmetric Coercive Equations
2013-11-06
the energy associated with the infinite - dimensional weak solution of parametrized symmetric coercive partial differential equations with piecewise...builds bounds with respect to the infinite - dimensional weak solution, aims to entirely remove the issue of the “truth” within the certified reduced basis...framework. We in particular introduce a reduced basis method that provides rigorous upper and lower bounds
Nucleotide binding properties of bovine brain uncoating ATPase.
Gao, B; Emoto, Y; Greene, L; Eisenberg, E
1993-04-25
Many functions of the 70-kDa heat-shock proteins (hsp70s) appear to be regulated by bound nucleotide. In this study we examined the nucleotide binding properties of purified bovine brain uncoating ATPase, one of the constitutively expressed members of the hsp70 family. We found that uncoating ATPase purified by ATP-agarose column chromatography retained one ADP molecule bound per enzyme molecule which could not be removed by extensive dialysis. Since this bound ADP exchanged rapidly with free ADP or ATP, the inability to remove the bound nucleotide was not due to slow dissociation but rather to strong binding of the nucleotide to the uncoating ATPase. In confirmation of this view, equilibrium dialysis experiments suggested that the dissociation constants for both ADP and ATP were less than 0.1 microM. Schmid et al. (Schmid, S. L., Braell, W. A., and Rothman, J. E. (1985) J. Biol. Chem 260, 10057-10062) suggested that the uncoating ATPase had two sites for bound nucleotide, one specific for ATP and one binding both ATP and ATP analogues but not ADP. In contrast, we found that enzyme with bound ADP did not bind further adenosine 5'-(beta,gamma-imino)triphosphate or dATP, nor did more than one ATP molecule bind per enzyme even in 200 microM free ATP. These results strongly suggest that the enzyme has only one binding site for nucleotide. During steady-state ATP hydrolysis, 85% of the bound nucleotide at this site was determined to be ATP and 15% ADP; this is consistent with the rate of ADP release determined in the exchange experiments noted above, where ADP release was found to be six times faster than the overall rate of ATP hydrolysis.
Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water
2016-10-01
contamination, runoff, variable terrain requirements, reactive filter barrier. Unclassified Unclassified UU UL 47 Dr. Steve Larson 601-634-3431 Page...Figure 1. Illustration of a Sediment Control Filter Sock ............................................................... 1 Figure 2. Conceptual...Design of the Flexible Reactive Filter Barriers to Remove Soluble and Sediment Bound Metal(loids) in Stormwater Runoff
Considerations, constraints and strategies for drilling on Mars
NASA Astrophysics Data System (ADS)
Zacny, K.; Cooper, G.
2006-04-01
The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.
Choice of modality with the use of high-performance membrane and evaluation for clinical effects.
Masakane, Ikuto
2011-01-01
The golden target for dialysis therapy should be to guarantee longer survival and to give a higher quality of life without dialysis-related complications. In order to achieve this target, the choice of dialysis modality and membrane is essential but we have not yet established what the best choice for a dialysis modality and membrane are. Generally, we choose a dialysis modality for better solute removal and better biocompatibility. In this issue we would like to propose that the patients' preference for dialysis therapy is a useful parameter in prescribing the dialysis modality. In our recent experience, chronic dialysis patients have had preferences on a dialysis modality and membrane, those being PMMA, EVAL, AN-69 and pre-dilution online HDF. These modalities could relieve them of uncomfortable dialysis-related symptoms such as insomnia, itchiness, irritability, and so on. Other characteristics of these modalities are of a nutritional advantage, a broad removal pattern of uremic toxins including low-molecular-weight protein and protein-bound uremic toxins, and good biocompatibility free from chemical components of dialysis membrane. In conclusion, patients' symptoms could be a useful parameter to choose a dialysis modality and membrane. Copyright © 2011 S. Karger AG, Basel.
The anti-MMP activity of benzalkonium chloride
Tezvergil-Mutluay, Arzu; Mutluay, M. Murat; Gu, Li-sha; Zhang, Kai; Agee, Kelli A.; Carvalho, Ricardo M.; Manso, Adriana; Carrilho, Marcela; Tay, Franklin R.; Breschi, Lorenzo; Suh, Byoung-In; Pashley, David H.
2013-01-01
SUMMARY Objective This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAC to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2, -8 and -9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAC and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAC for 30 d. After 30 d, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolyzates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results Demineralized dentine powder took up 10-times more BAC than did mineralized powder. Water rinsing removed about 50% of the bound BAC, while rinsing with 0.5 M NaCl removed more than 90% of the bound BAC. BAC concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2, -8 or -9, and inhibited matrix-bound MMPs between 55-66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins. PMID:20951183
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...
2017-01-24
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
ERIC Educational Resources Information Center
Noel-Levitz, Inc, 2010
2010-01-01
Early in 2010, the E-Expectations research group surveyed more than 1,000 college-bound high school students, polling them on their online behaviors and expectations, as well as other key enrollment-related topics. Highlights of the study include: (1) 1 in 4 students reported removing a school from their prospective list because of a bad…
Influence of carbon source on cell surface topology of Thermomonospora curvata.
Hostalka, F; Moultrie, A; Stutzenberger, F
1992-01-01
The appearance of cell surface protuberances in Thermomonospora curvata correlated with cell-bound exoenzymes which could be removed by brief sonication. Mycelia grown on cellulose or xylan had numerous protuberances and retained 20 to 25% of endoglucanase and endoxylanase at cell surfaces, while those grown on pectin or starch had few protuberances and negligible bound pectinase or amylase. Images PMID:1400256
Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian
2013-07-01
In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters <2 μm. The endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Covalent bonding of polycations to small polymeric particles
NASA Technical Reports Server (NTRS)
Rembaum, A.
1975-01-01
Process produces small spherical polymeric particles which have polycations bound to them. In emulsion form, particles present large positively charged surface which is available to absorb polyanions. This properly can be used in removing heparin from blood or bile acids from the digestive tract. Other anions, such as DNA and RNA, can also be removed from aqueous solutions.
NASA Technical Reports Server (NTRS)
Marshall, Jeffrey S. (Inventor); Chen, Di (Inventor); Vachon, Nicholas Mario (Inventor); Hitt, Darren (Inventor); Wu, Junru (Inventor)
2014-01-01
The aero-acoustic duster invention disclosed herein provides for high particle removal rate from surfaces with low energy expenditure relative to competing vacuum-based devices. The device removes particulate matter from a surface using a two-step process: 1. Acoustic radiation is used to break the adhesive bonds between dust and the surface, forcing particles into a mode where they continuously bounce up and down on the surface; and, 2. A bounded vortex is generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.
System and process for polarity swing assisted regeneration of gas selective capture liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David J.; Tegrotenhuis, Ward E.; Freeman, Charles J.
A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.
Particle-bound metal transport after removal of a small dam in ...
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa
Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J
2016-09-01
We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.
Karademir, Aykan; Korucu, M Kemal
2013-07-01
A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3-4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter. This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2-3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.
Meunier, Nathalie; Drogui, Patrick; Montané, Camille; Hausler, Robert; Mercier, Guy; Blais, Jean-François
2006-09-01
This paper provides a quantitative comparison between electrocoagulation and chemical precipitation based on heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) removal from acidic soil leachate (ASL) at the laboratory pilot scale. Chemical precipitation was evaluated using either calcium hydroxide or sodium hydroxide, whereas electrocoagulation was evaluated via an electrolytic cell using mild steel electrodes. Chemical precipitation was as effective as electrocoagulation in removing metals from ASL having low contamination levels (30 mg Pbl(-1) and 18 mg Znl(-1)). For ASL enriched with different metals (each concentration of metals was initially adjusted to 100 mg l(-1)), the residual Cr, Cu, Pb and Zn concentrations at the end of the experiments were below the acceptable level recommended for discharge in sewage urban works (more than 99.8% of metal was removed) using either electrocoagulation or chemical precipitation. Cd was more effectively removed by electrochemical treatment, whereas Ni was easily removed by chemical treatment. The cost for energy, chemicals and disposal of metallic residue of electrocoagulation process ranged from USD 8.83 to 13.95 tds(-1), which was up to five times lower than that recorded using chemical precipitation. Highly effective electrocoagulation was observed as the ASL was specifically enriched with high concentration of Pb (250-2000 mg Pbl(-1)). More than 99.5% of Pb was removed regardless of the initial Pb concentration imposed in ASL and, in all cases, the residual Pb concentrations (0.0-1.44 mg l(-1)) were below the limiting value (2.0 mg l(-1)) for effluent discharge in sewage works.
30 CFR 7.508 - Harmful gas removal components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical used for removal of harmful gas shall be— (1) Contained such that when stored or used it cannot... for disposal of used chemical. (c) Each harmful gas removal component shall be tested to determine its... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Harmful gas removal components. 7.508 Section 7...
30 CFR 7.508 - Harmful gas removal components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemical used for removal of harmful gas shall be— (1) Contained such that when stored or used it cannot... for disposal of used chemical. (c) Each harmful gas removal component shall be tested to determine its... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Harmful gas removal components. 7.508 Section 7...
30 CFR 7.508 - Harmful gas removal components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemical used for removal of harmful gas shall be— (1) Contained such that when stored or used it cannot... for disposal of used chemical. (c) Each harmful gas removal component shall be tested to determine its... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Harmful gas removal components. 7.508 Section 7...
Magnetic process for removing heavy metals from water employing magnetites
Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.
2003-07-22
A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.
Magnetic process for removing heavy metals from water employing magnetites
Prenger, F. Coyne; Hill, Dallas D.
2006-12-26
A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.
Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.
Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta
2018-01-01
The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )
NASA Astrophysics Data System (ADS)
Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli
2017-09-01
In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).
Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli
2017-09-28
In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.
Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.
Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu
2014-01-01
The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Edge connectivity and the spectral gap of combinatorial and quantum graphs
NASA Astrophysics Data System (ADS)
Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio
2017-09-01
We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.
Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S
2016-04-01
In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated mobility as well as bioavailability is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, C.E.
The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less
Wu, Boran; Dai, Xiaohu; Chai, Xiaoli
2017-07-01
The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.
Resin-Bound Crypto-Thioester for Native Chemical Ligation.
Naruse, Naoto; Ohkawachi, Kento; Inokuma, Tsubasa; Shigenaga, Akira; Otaka, Akira
2018-04-20
The resin-bound N-sulfanylethylanilide (SEAlide) peptide was found to function as a crypto-thioester peptide. Exposure of the peptide resin to an aqueous solution under neutral conditions in the presence of thiols affords thioesters without accompanying racemization of C-terminal amino acids. Furthermore, the resin-bound SEAlide peptides react with N-terminal cysteinyl peptides in the absence of phosphate salts to afford ligated products, whereas soluble SEAlide peptides do not. This unexpected difference in reactivity of the SEAlide peptides allows for a one-pot/three-fragment ligation using resin-bound and unbound peptides.
Guo, Xinxin; Wang, Yili; Wang, Dongsheng
2017-11-01
A novel activated sludge (AS) conditioning method through permanganate/bisulfate (PM/BS) process was proposed. The method involved a new conditioner of reactive Mn(III) intermediate. Moreover, a Mn(III) conditioning-horizontal electro-dewatering (Mn(III) C-HED) process was established to improve AS dewatering performance. Underlying mechanisms were unraveled by investigating changes in physicochemical characteristics, scanning electron microscope (SEM) morphology, and transformation of water and organic matters. The optimum dewatering conditions for Mn(III) C-HED process with the final water content of 86.94% were determined as the combination of KMnO 4 0.01 mol/L AS and NaHSO 3 0.05 mol/L AS at 20 V for 120 min. Results showed that Mn(III) C-HED process effectively reduced free water and bound water with the corresponding removal ratios of 51.68% and 87.62% at the anode-side as well as 36.55% and 85.08% at the cathode-side, respectively. During the PM/BS process, the produced Mn(III), Mn 2+ , and MnO 2 exerted chemical and physical effects on AS conditioning and dewatering. Mn(III) disintegrated extracellular polymeric substances (EPS) fractions and cells in AS, as well as induced partial bound water release. Additionally, flocculation effect induced by Mn 2+ and MnO 2 skeleton building also benefited AS dewatering. AS cells were further disrupted under the effect of a horizontal electric field. Accordingly, EPS within the AS matrix was solubilized, tightly bound (TB)-EPS or loosely bound (LB)-EPS was converted to their corresponding outer EPS fractions, and AS dewaterability improved. Additionally, changes in pH and temperature at HED stage damaged the AS cells and changed the floc properties, thereby leading to easy separation of liquid and AS particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A
2013-05-21
Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda
The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystalsmore » as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.« less
Selective Injection of Magnetization by Slow Chemical Exchange in NMR
NASA Astrophysics Data System (ADS)
Boulat, Benoit; Epstein, David M.; Rance, Mark
1999-06-01
In a system in slow dynamic equilibrium two NMR methods are shown to be suitable for injecting magnetization from one resonance to another by means of slow chemical exchange. The combined outputs of the methods may be employed to measure the value of the off-rate constant κoff in the complex. The methods are implemented experimentally using the complex of molecules composed of the enzyme Esherichia coli dihydrofolate reductase (DHFR) and the ligand folate. In an equilibrium solution with DHFR, folate is known to undergo chemical exchange between a free state and a bound state. The modified synchronous nutation method is applied to a spin of the folate molecule in the free and bound states; magnetization transfer occurs between the two sites due to the underlying exchange process. As a preliminary step for the application of the synchronous nutation method, a new one-dimensional 1H NMR technique is proposed which facilitates the assignment of the resonance of a spin in the bound state, provided the resonance of its exchange partner in the free state is known. This experiment is also used to obtain quantitative estimates of the transverse relaxation rate constant of the bound resonance. The numerical procedure necessary to analyze the experimental results of the synchronous nutation experiment is presented.
Phytoavailability and mechanism of bound PAH residues in filed contaminated soils.
Gao, Yanzheng; Hu, Xiaojie; Zhou, Ziyuan; Zhang, Wei; Wang, Yize; Sun, Bingqing
2017-03-01
Understanding the phytoavailability of bound residues of polycyclic aromatic hydrocarbons (PAHs) in soils is essential to assessing their environmental fate and risks. This study investigated the release and plant uptake of bound PAH residues (reference to parent compounds) in field contaminated soils after the removal of extractable PAH fractions. Plant pot experiments were performed in a greenhouse using ryegrass (Lolium multiflorum Lam.) to examine the phytoavailablility of bound PAH residues, and microcosm incubation experiments with and without the addition of artificial root exudates (AREs) or oxalic acid were conducted to examine the effect of root exudates on the release of bound PAH residues. PAH accumulation in the ryegrass after a 50-day growth period indicated that bound PAH residues were significantly phytoavailable. The extractable fractions, including the desorbing and non-desorbing fractions, dominated the total PAH concentrations in vegetated soils after 50 days, indicating the transfer of bound PAH residues to the extractable fractions. This transfer was facilitated by root exudates. The addition of AREs and oxalic acid to test soils enhanced the release of bound PAH residues into their extractable fractions, resulting in enhanced phytoavailability of bound PAH residues in soils. This study provided important information regarding environmental fate and risks of bound PAH residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Michaelis, Vladimir K; Keeler, Eric G; Ong, Ta-Chung; Craigen, Kimberley N; Penzel, Susanne; Wren, John E C; Kroeker, Scott; Griffin, Robert G
2015-06-25
We demonstrate here that the (17)O NMR properties of bound water in a series of amino acids and dipeptides can be determined with a combination of nonspinning and magic-angle spinning experiments using a range of magnetic field strengths from 9.4 to 21.1 T. Furthermore, we propose a (17)O chemical shift fingerprint region for bound water molecules in biological solids that is well outside the previously determined ranges for carbonyl, carboxylic, and hydroxyl oxygens, thereby offering the ability to resolve multiple (17)O environments using rapid one-dimensional NMR techniques. Finally, we compare our experimental data against quantum chemical calculations using GIPAW and hybrid-DFT, finding intriguing discrepancies between the electric field gradients calculated from structures determined by X-ray and neutron diffraction.
NASA Astrophysics Data System (ADS)
Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro
2015-03-01
Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.
NASA Astrophysics Data System (ADS)
Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro
2014-11-01
Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.
Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo
2016-10-20
Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L
2012-01-01
Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.
Laser removal of loose uranium compound contamination from metal surfaces
NASA Astrophysics Data System (ADS)
Roberts, D. E.; Modise, T. S.
2007-04-01
Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.
Hazardous Waste Cleanup: Chevron Chemical Company in South Plainfield, New Jersey
The Chevron Chemical Co. occupies approximately 19 acres in an industrial area of South Plainfield, New Jersey. The facility is bordered on the east by Conrail Property (railroad) and the Hummel Chemical Co.; on the south by a tributary of Bound Brook and
Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing
... general, contact exposure to a chemical in its liquid or solid form may require you to remove your clothing and then thoroughly wash your exposed skin. Exposure to a chemical in its vapor (gas) form generally requires you only to remove your ...
Radioassay kit for method of determining methotrexate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charm, S.E.; Blair, H.E.
1978-07-25
A radioassay system for the determination of methotrexate in biological fluids based on the competitive binding of labeled and unlabeled methotrexate to the enzyme dihydrofolate reductase. Samples of unknown methotrexate level are mixed with I/sup 125/ labeled methotrexate. A portion of the total methotrexate present is bound by the addition of enzyme, and the unbound methotrexate is removed with charcoal. The level of bound I/sup 125/ labeled methotrexate is measured in a gamma counter. To calculate the methotrexate level of the unknown samples, the displacement of bound labeled methotrexate caused by the unknowns is compared to the displacement caused bymore » known methotrexate standards.« less
NASA Astrophysics Data System (ADS)
Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.
2013-10-01
The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.
2000-03-01
from coconut husks bound within a woven mesh rope either made from polyethylene or coir rope. The CGR incorporates wetland plants (usually as rooted...Process 6-1 Nonrestoration Alternative Considerations 6-3 Stormwater ponds 6-4 Infiltration (exfiltration) devices 6-6 Oil and grease trap devices 6-8... Oil and Grease Trap Pollutant Removal 6-9 Table 6.4. Sand Filter Pollutant Removal 6-11 Table 6.5. Selection of Appropriate Structural Solutions
Chemical activation of gasification carbon residue for phosphate removal
NASA Astrophysics Data System (ADS)
Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo
2012-05-01
Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.J.
The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the pre-combustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During the current quarter, chemical comminution and combined chemical treatment/explosivemore » comminution experiments have been performed to generate coal samples with increased surface area and porosity. Ammonia vapor was found to be the most effective chemical comminution agent and the optimum conditions for combined chemical treatment/explosive comminution have not yet been determined.« less
Nitrogen evolution and present day distribution on Mars
NASA Astrophysics Data System (ADS)
Banin, A.; Mancinelli, R. L.
2003-04-01
Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e., NH_3, NH_4^+, NO_3^-, NO_2^- and N chemically bound to either inorganic or organic molecules and is releasable by hydrolysis to NH_3 or NH_4^+) is the form of nitrogen useful to living organisms. Nitrogen on present-day Mars has been analyzed only in the atmosphere. The inventory is a small fraction of the nitrogen complement presumed to have been received by the planet during its accretion. Where is the missing N? Answering this question is crucial for understanding of the probability of life evolution on Mars and for future exobiological exploration of this intriguing planet. Two main processes could have removed N from the atmosphere: 1) escape to space; 2) burial within the regolith. Non thermal escape to space due to atmospheric erosion has been suggested but its extent has not been constrained yet. No traces of organic compounds were detected in Mars soil by the Viking Landers. However, direct in situ analysis of mineral N concentration in Martian soils and rocks has not been performed yet. Due to the lack of neither biological (denitrification) nor geological (plate tectonics) recycling of N on the surface of Mars, nitrogen may have been stored in the Martian regolith as soluble inorganic salts of NO_3^- and NH_4^+, and as mineral-bound NH_4^+. Nitrates will be stable in the highly oxidized surface soil of Mars, and will tend to accumulate there. Such accumulations are observed in cold and extremely arid environments on Earth (e.g. Antarctica, the Atacama Desert). NH_4^+-N may be bound and stabilized in the soil replacing K as a structural cation in silicate minerals. In this paper we constrain the possible total N content in the Mars crust/regolith using information obtained from Mars (SNC) meteorites analyses. Further, we briefly discuss chemical, physical and, possibly, biological processes that may have affected the patterns of N distribution in the top horizons of Mars lithosphere. We hypothesize that Mars soil and regolith, as typical of extremely dry and cold desert environments on Earth, may contain at least some of the "missing" planetary N as nitrate salts and mineral-bound ammonium. The search for NO_3^- and NH_4^+ should continue during future missions to Mars. Quantifying nitrogen content in the regolith is important for closing the nitrogen balance of Mars and the assessment of the potential for past evolution and future support of life on this planet.
40 CFR 350.13 - Sufficiency of assertions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... disclosure of the specific chemical identity and will continue to take such measures. (ii) The submitter has not disclosed the specific chemical identity to any person who is not bound by an agreement to refrain from disclosing the information. (iii) The submitter has not previously disclosed the specific chemical...
40 CFR 350.13 - Sufficiency of assertions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... disclosure of the specific chemical identity and will continue to take such measures. (ii) The submitter has not disclosed the specific chemical identity to any person who is not bound by an agreement to refrain from disclosing the information. (iii) The submitter has not previously disclosed the specific chemical...
40 CFR 350.13 - Sufficiency of assertions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... disclosure of the specific chemical identity and will continue to take such measures. (ii) The submitter has not disclosed the specific chemical identity to any person who is not bound by an agreement to refrain from disclosing the information. (iii) The submitter has not previously disclosed the specific chemical...
40 CFR 350.13 - Sufficiency of assertions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disclosure of the specific chemical identity and will continue to take such measures. (ii) The submitter has not disclosed the specific chemical identity to any person who is not bound by an agreement to refrain from disclosing the information. (iii) The submitter has not previously disclosed the specific chemical...
40 CFR 350.13 - Sufficiency of assertions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... disclosure of the specific chemical identity and will continue to take such measures. (ii) The submitter has not disclosed the specific chemical identity to any person who is not bound by an agreement to refrain from disclosing the information. (iii) The submitter has not previously disclosed the specific chemical...
Alternate binding modes for a ubiquitin-SH3 domain interaction studied by NMR spectroscopy.
Korzhnev, Dmitry M; Bezsonova, Irina; Lee, Soyoung; Chalikian, Tigran V; Kay, Lewis E
2009-02-20
Surfaces of many binding domains are plastic, enabling them to interact with multiple targets. An understanding of how they bind and recognize their partners is therefore predicated on characterizing such dynamic interfaces. Yet, these interfaces are difficult to study by standard biophysical techniques that often 'freeze' out conformations or that produce data averaged over an ensemble of conformers. In this study, we used NMR spectroscopy to study the interaction between the C-terminal SH3 domain of CIN85 and ubiquitin that involves the 'classical' binding sites of these proteins. Notably, chemical shift titration data of one target with another and relaxation dispersion data that report on millisecond time scale exchange processes are both well fit to a simple binding model in which free protein is in equilibrium with a single bound conformation. However, dissociation constants and chemical shift differences between free and bound states measured from both classes of experiment are in disagreement. It is shown that the data can be reconciled by considering three-state binding models involving two distinct bound conformations. By combining titration and dispersion data, kinetic and thermodynamic parameters of the three-state binding reaction are obtained along with chemical shifts for each state. A picture emerges in which one bound conformer has increased entropy and enthalpy relative to the second and chemical shifts similar to that of the free state, suggesting a less packed interface. This study provides an example of the interplay between entropy and enthalpy to fine-tune molecular interactions involving the same binding surfaces.
Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu
Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; Wozniak, Nick; Loveless, Shaun; Essenmacher, Scott; Sobotka, Lee G.; Morrissey, David J.; Lapi, Suzanne E.
2014-01-01
The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragment beam dump is a feasible method for obtaining radiochemically pure isotopes. PMID:25330839
An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.
Johnson, D K; Carliell-Marquet, C M; Forster, C F
2003-08-01
Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.
Douziech, Mélanie; Conesa, Irene Rosique; Benítez-López, Ana; Franco, Antonio; Huijbregts, Mark; van Zelm, Rosalie
2018-01-24
Large variations in removal efficiencies (REs) of chemicals have been reported for monitoring studies of activated sludge wastewater treatment plants (WWTPs). In this work, we conducted a meta-analysis on REs (1539 data points) for a set of 209 chemicals consisting of fragrances, surfactants, and pharmaceuticals in order to assess the drivers of the variability relating to inherent properties of the chemicals and operational parameters of activated sludge WWTPs. For a reduced dataset (n = 542), we developed a mixed-effect model (meta-regression) to explore the observed variability in REs for the chemicals using three chemical specific factors and four WWTP-related parameters. The overall removal efficiency of the set of chemicals was 82.1% (95% CI 75.2-87.1%, N = 1539). Our model accounted for 17% of the total variability in REs, while the process-based model SimpleTreat did not perform better than the average of the measured REs. We identified that, after accounting for other factors potentially influencing RE, readily biodegradable compounds were better removed than non-readily biodegradable ones. Further, we showed that REs increased with increasing sludge retention times (SRTs), especially for non-readily biodegradable compounds. Finally, our model highlighted a decrease in RE with increasing K OC . The counterintuitive relationship to K OC stresses the need for a better understanding of electrochemical interactions influencing the RE of ionisable chemicals. In addition, we highlighted the need to improve the modelling of chemicals that undergo deconjugation when predicting RE. Our meta-analysis represents a first step in better explaining the observed variability in measured REs of chemicals. It can be of particular help to prioritize the improvements required in existing process-based models to predict removal efficiencies of chemicals in WWTPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.
1999-07-01
Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic mattermore » and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.« less
A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...
Stacy Pease; Peter F. Ffolliott; Leonard F. DeBano; Gerald J. Gottfried
2003-01-01
Determining the effects of mesquite (Prosopis velutina) overstory removal, posttreatment control of sprouting, and mulching treatments on herbage production (standing biomass) and selected soil chemical properties on the Santa Rita Experimental Range were the objectives of this study. Mesquite control consisted of complete overstory removals with and without the...
Goldstein, Bernard D; Brooks, Bryan W; Cohen, Steven D; Gates, Alexander E; Honeycutt, Michael E; Morris, John B; Orme-Zavaleta, Jennifer; Penning, Trevor M; Snawder, John
2014-06-01
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives.
Goldstein, Bernard D.; Brooks, Bryan W.; Cohen, Steven D.; Gates, Alexander E.; Honeycutt, Michael E.; Morris, John B.; Orme-Zavaleta, Jennifer; Penning, Trevor M.; Snawder, John
2014-01-01
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives. PMID:24706166
Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.
Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil
2014-01-01
The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.
Wu, Boran; Zhou, Meng; Dai, Xiaohu; Chai, Xiaoli
2018-06-05
This study visually tracked the micro-spatial water distribution in bio-flocs of waste activated sludge through in situ synchrotron X-ray computed microtomography. Primarily, the two fractions of bound water, the vicinal water adhering to the surface of organic compositions and the interstitial water mechanically trapped in the net-like structure of bio-flocs, were proposed based on the cross-section imaging results. Furthermore, the determinants on bound water occurrences were explored in terms of viscoelastic acoustic responses of extracellular polymeric substances (EPS). The joint roles of hydrophilic substance removal, EPS aggregation compaction and colloidal instability of sludge flocs in bound water reduction were confirmed by the strong correlations (Pearson correlation coefficient, R p > 0.95, p-value<0.04) among protein levels of EPS, EPS viscosity and bound water contents. Accordingly, providing adhering sites for vicinal water and forming bio-flocs with high viscosity for trapping interstitial water were proposed to be the contributions of EPS on bound water occurrences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
NASA Astrophysics Data System (ADS)
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
IMPACT OF A RINSE STEP ON PROTEIN REMOVAL FROM SILICONE HYDROGEL CONTACT LENSES
Pucker, Andrew D.; Nichols, Jason J.
2010-01-01
PURPOSE To determine the impact of the rinse step in “no rub” contact lens care systems relative to its ability to assist in removing loosely associated and bound tear film proteins from a worn silicone hydrogel lens. METHODS After informed consent, subjects were fitted with lotrafilcon B contact lenses (CIBA Vision, Inc). If the fit was acceptable, subjects were asked to wear the lenses on a daily wear basis for 5 (+2, −0) days for an outcome visit. Subjects were instructed to use AQuify Multi-Purpose Disinfecting Solution (CIBA Vision, Inc) following the manufacturer's “no rub” instructions. At the outcome visit, contact lenses were then collected by a gloved examiner, with a sterile metal forceps, who rinsed the right lens but did not rinse the left lens upon removal from the eyes. Protein was extracted with a 50:50 0.2% trifluoroacetic acid-acetonitrile solution and quantified using a Bradford analyses. RESULTS Twenty contact lens wearers were enrolled in this study. For the non-rinsed lenses, the first extraction yielded 13.4 ± 9.2 µg/lens of protein, while the second extraction yielded 5.8 ± 2.8 µg/lens of protein. For the rinsed lenses, first extraction yielded an average of 3.0 ± 1.9 µg/lens of protein, while the second extraction yielded an average of 4.0 ± 2.3 µg/lens. Repeated measures ANOVA showed a significant interaction (F-statistic = 18.9, p< 0.0001) between the rinse of a lens and extraction number. CONCLUSIONS Rinsing a contact lens following removal from the eye removes well over one-half of the protein associated with it. Further, in order to biochemically recover all protein from a silicone hydrogel lens, it may be important to perform more than one chemical extraction from it. PMID:19609231
A review on pesticide removal through different processes.
Marican, Adolfo; Durán-Lara, Esteban F
2018-01-01
The main organic pollutants worldwide are pesticides, persistent chemicals that are of concern owing to their prevalence in various ecosystems. In nature, pesticide remainders are subjected to the chemical, physical, and biochemical degradation process, but because of its elevated stability and some cases water solubility, the pesticide residues persist in the ecosystem. The removal of pesticides has been performed through several techniques classified under biological, chemical, physical, and physicochemical process of remediation from different types of matrices, such as water and soil. This review provides a description of older and newer techniques and materials developed to remove specific pesticides according to previous classification, which range from bioremediation with microorganisms, clay, activated carbon, and polymer materials to chemical treatment based on oxidation processes. Some types of pesticides that have been removed successfully to large and small scale include, organophosphorus, carbamates, organochlorines, chlorophenols, and synthetic pyrethroids, among others. The most important characteristics, advantages, and disadvantages of techniques and materials for removing pesticides are described in this work.
Koubová, Eva; Mrázková, Martina; Sumczynski, Daniela; Orsavová, Jana
2018-06-01
Total phenolic content, phenolic profile and antioxidant activity were determined in free and bound phenolic fractions of thermally treated brown and white teff grains. Phenolic content in raw brown and white teff (1540 and 992 mg gallic acid equivalent kg -1 ) as well as antioxidant activity (6.3 and 5.5 mmol trolox equivalent kg -1 ) were higher in free phenolic fractions. The most significant decrease in total phenolics was observed after application of the sous-vide method (35% for brown teff and 11% for white teff). Main free phenolics of heat-treated teff were ferulic, protocatechuic, p-coumaric and ellagic acids, rutin and epigallocatechin. Main bound phenolics were ferulic, gallic, sinapic and ellagic acids, catechin and epigallocatechin. The detrimental effect on free and bound quercetin and bound cinnamic acid concentrations was also examined during heat treatment. Thermally treated brown teff showed a high level of in vitro organic matter digestibility if water cooking and rice cooker (both 99.5%) and sous-vide (96.5%) methods were applied. The sous-vide method may be recommended as the most suitable hydrothermal treatment for grains of teff when compared with water cooking and rice cooker methods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal
NASA Astrophysics Data System (ADS)
Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.
2017-06-01
Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.
Some results of chemical debarking on sitka spruce, western hemlock, and red alder.
Carl M. Berntsen
1954-01-01
Chemical treatment of standing trees to facilitate bark removal has received a great deal of attention in Eastern United States and Canada during the past decade. The potential advantages of removing bark or extending easy peeling throughout we year have stimulated tests of many chemicals and methods of application.
Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu
Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; ...
2014-10-21
The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragmentmore » beam dump is a feasible method for obtaining radiochemically pure isotopes.« less
Thermal Destruction Of CB Contaminants Bound On Building ...
Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.
Static and kinetic studies of calmodulin and melittin complex.
Itakura, M; Iio, T
1992-08-01
Ca2+ binding to calmodulin triggers conformational change of the protein which induces exposure of hydrophobic surfaces. Melittin has been believed to bind to Ca(2+)-bound calmodulin through the exposed hydrophobic surfaces. However, tryptophan fluorescence measurements and gel chromatography experiments with the melittin-calmodulin system revealed that melittin bound to calmodulin at zero salt concentration even in the absence of Ca2+; addition of salt removed melittin from Ca(2+)-free calmodulin. This means not only the hydrophobic interaction but also the electrostatic interaction contributes to the melittin-calmodulin binding. The fluorescence stopped-flow studies of the dissociation reaction of melittin-calmodulin complex revealed that Ca2+ removal from the complex induced a conformational change of calmodulin, resulting in reduction of the hydrophobic interaction between melittin and calmodulin, but the electrostatic interaction kept melittin still bound to calmodulin for a subsecond lag period, after which melittin dissociated from calmodulin. The fluorescence stopped-flow experiments on the dissociation reaction of complex of melittin and tryptic fragment(s) of calmodulin revealed that the lag period of the melittin dissociation reaction was attributable to the interaction between the C-terminal half of calmodulin and the C-terminal region of melittin.
Assessing Chemical Retention Process Controls in Ponds
NASA Astrophysics Data System (ADS)
Torgersen, T.; Branco, B.; John, B.
2002-05-01
Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.
Feasibility of removing surface deposits on stone using biological and chemical remediation methods.
Polo, A; Cappitelli, F; Brusetti, L; Principi, P; Villa, F; Giacomucci, L; Ranalli, G; Sorlini, C
2010-07-01
The study was conducted on alterations found on stone artwork and integrates microbial control and a biotechnological method for the removal of undesirable chemical substances. The Demetra and Cronos sculptures are two of 12 stone statues decorating the courtyard of the Buonconsiglio Castle in Trento (Italy). An initial inspection of the statues revealed putative black crusts and highlighted the microbial contamination causing discoloration. In 2006, the Cultural Heritage Superintendence of Trento commissioned us to study and remove these chemical and biological stains. Stereomicroscopy characterised the stone of the sculptures as oolitic limestone, and infrared analyses confirmed the presence of black crusts. To remove the black crusts, we applied a remediation treatment of sulphate-reducing bacteria, which removes the chemical alteration but preserves the original stone and the patina noble. Using traditional and biomolecular methods, we studied the putative microbial contamination and confirmed the presence of biodeteriogens and chose biocide Biotin N for the removal of the agents causing the discolouration. Denaturing gradient gel electrophoresis fluorescent in situ hybridisation established that Cyanobacteria and green algae genera were responsible for the green staining whereas the black microbial contamination was due to dematiaceous fungi. After the biocide Biotin N treatment, we applied molecular methods and demonstrated that the Cyanobacteria, and most of the green algae and dematiaceous fungi, had been efficiently removed. The reported case study reveals that conservators can benefit from an integrated biotechnological approach aimed at the biocleaning of chemical alterations and the abatement of biodeteriogens.
Numerical Simulation of Chemical Weapon Detonations
1996-08-01
Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions. To support the...U.S. Army Corps of Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions...Length 6" As part of the development of a chemical agent confinement structure for use by the Huntsville Corps of Engineers , SwRI performed arena tests on
Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea
NASA Astrophysics Data System (ADS)
Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish
2016-03-01
The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
WATERSHED EARLY WARNING SYSTEMS
Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On-line Toxicity Monitors (OTM) integrate all dissolved and bound chemicals found in water. This is important because of the limitations of chemical specific monitoring; yo...
Oil on Paper: A Collaborative Conservation Challenge
Herro, Holly; Nolley, Scott; Cowan, Wendy; Wright, Kristi
2018-01-01
The application of oil-based leather dressing, while once considered a best practice in libraries, led to undesirable long-term consequences for bound materials. At the National Institutes of Health (NIH) in the National Library of Medicine (NLM), many leather-bound volumes had multiple applications of a mixture of neatsfoot oil and lanolin dressings liberally applied. The oils not only absorbed into the leather bindings but also migrated onto the pastedowns, end sheets, gutters, and text blocks. The oiling process at NLM was documented by call number, year(s), number of applications, and dressing formula. While investigating treatment options, the NLM senior conservator consulted a paintings and objects conservator for insight on viable options for the removal of oil from artifacts. An art-on-paper conservator joined the collaborative effort to develop a treatment protocol for NLM’s oil saturated collections. Together, they investigated the issue and devised an effective method for removal of this oil from the NIH collection materials. The protocol involves washing with an alkaline solution followed by alternating applications of petroleum ether and acetone applied either over suction or by immersion. Oil components are solubilized by the alternating polarities of the solvents and then removed from the paper using suction or immersion. After the oil is removed, the paper is washed again with alkaline water to remove any remaining water soluble discoloration. This article will explore further details of the treatment protocol, its development and applications, and the benefits of cross-disciplinary collaboration. PMID:29630074
Zeng, Xiangfeng; Twardowska, Irena; Wei, Shuhe; Sun, Lina; Wang, Jun; Zhu, Jianyu; Cai, Jianchao
2015-05-15
Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H₂O₂ dose in Fenton-like process (5 days and 2g H₂O₂/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H₂O₂, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...
2017-08-13
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
NASA Astrophysics Data System (ADS)
Xu, Lei; Wu, Jinhua
2018-06-01
This paper focus on the removal of PFCAs (C4-C10) in aquatic solution by electrocoagulation using Zn as anode. The effects of carbon chain length on the removal efficiencies of PFCAs were studied, in which the removal priorities of PFCA with different carbon chain length as well as the change of concentration during the electrocoagulation process were evaluated in the mixed solution of PFCAs (C4-C10). The addition of chemical flocculants was carried out to improve the electrocoagulation performances of PFCAs. The results shows that PFCAs with longer carbon chain length (C8-C10) have better removal efficiencies (almost 100%), and the longer one has the removal priorities in the mixed solution containing PFCAs (C4-C10). The addition of gelatin, APAM, and CPAM have different effects on the removal performances of PFCAs (C4-C7), in which C4 and C5 have no improve removal with any chemical flocculant due to their small molecular weight. APAM can improve the removal of C6 and C7 obviously, because of the larger floc generated by the electrostatic attraction between of APAM and Zn(OH)2 floc.
Pegasus International, Inc. coating removal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
The Pegasus Coating Removal System (PCRS) was demonstrated at Florida International University (FIU) where it was being evaluated for efficiency and cost. In conjunction with the FIU testing demonstration, a human factors assessment was conducted to assess the hazards and associated safety and health issues of concern for workers utilizing this technology. The PCRS is a chemical paste that is applied to the surface using a brush, roller, or airless sprayer. After the type of PCRS, thickness, and dwell time have been determined, a laminated backed material is placed on top of the chemical paste to slow down the dryingmore » process and to provide a mechanism to strip-off the chemical. After the dwell time is reached, the chemical substrate can be removed. Scrapers may be used to break-loose the layers as necessary or to break-loose the layers that are not removed when the laminated paper is picked up. Residue may also be cleaned off of the surface with a damp sponge with an agitating motion, absorbent sponges, or a vacuum, as needed. The paint and removal agent is then placed in drums for disposal at a later time. During the assessment sampling was conducted for organic vapors and general observational techniques were conducted for ergonomics. Recommendations for improved worker safety and health during application and removal of the PCRS include: (1) work practices that reflect avoidance of exposure or reducing the risk of exposure; (2) assuring all PPE and equipment are compatible with the chemicals being used; (3) work practices that reduce the worker`s need to walk on the slippery surface caused by the chemical or the use of special anti-slip soles; (4) careful control of overspray (if a spray application is used); and (5) the use of ergonomically designed long-handled tools to apply and remove the chemical (to alleviate some of the ergonomic concerns).« less
Comparison of various techniques for calibration of AIS data
NASA Technical Reports Server (NTRS)
Roberts, D. A.; Yamaguchi, Y.; Lyon, R. J. P.
1986-01-01
The Airborne Imaging Spectrometer (AIS) samples a region which is strongly influenced by decreasing solar irradiance at longer wavelengths and strong atmospheric absorptions. Four techniques, the Log Residual, the Least Upper Bound Residual, the Flat Field Correction and calibration using field reflectance measurements were investigated as a means for removing these two features. Of the four techniques field reflectance calibration proved to be superior in terms of noise and normalization. Of the other three techniques, the Log Residual was superior when applied to areas which did not contain one dominant cover type. In heavily vegetated areas, the Log Residual proved to be ineffective. After removing anomalously bright data values, the Least Upper Bound Residual proved to be almost as effective as the Log Residual in sparsely vegetated areas and much more effective in heavily vegetated areas. Of all the techniques, the Flat Field Correction was the noisest.
Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli
2011-08-08
Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.
Foliage Plants for Improving Indoor Air Quality
NASA Technical Reports Server (NTRS)
Wolverton, B. C.
1988-01-01
NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.
Li, DeQuan; Swanson, Basil I.
1995-01-01
An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.
Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R
2016-02-01
Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Goldring, J P Dean
2015-01-01
Proteins bind to nitrocellulose membranes when applied directly or after electrophoretic transfer from polyacrylamide electrophoresis gels. Proteins can be stained for visualization with organic dyes Ponceau S, amido black, Coomassie Blue, and colloidal silver/gold and the intensity of the stain is directly proportional to the amount of protein present. Chemicals that interfere with dye/protein interactions in solution can be removed by washing the nitrocellulose after protein application. A method is described whereby protein-dye complexes attached to the nitrocellulose can be solubilized, dissolving the nitrocellulose and releasing dye into solution for detection by a spectrophotometer. The concentration of the dyes Ponceau S, amido black, and colloidal silver is proportional to the concentration of protein. Proteins transferred electrophoretically from SDS-PAGE, isoelectric focusing, or 2D gels to nitrocellulose can be stained with amido black, protein bands excised, and the bound dye detected in a spectrophotometer to quantify proteins in the individual protein bands.
The ecological impact of land restoration and cleanup. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-08-01
The report is concerned with the ecological impacts of specific cleanup treatment on the land where they were carried out. The cleanup procedures given apply equally to chemical or radioactive materials. Guidance is provided for cleanup procedures likely to be suggested by government, industry, or environmental groups. The basic types of cleanup procedures for removing or deactiving spilled contamination involve moving people and animals from the affected area, scraping and grading the contaminated soil into windrows, plowing the contamination under, or digging up the contamination and hauling it away. The report describes and evaluates the various land-type cleanup effects inmore » terms of impact of the techniques on the environment. Part I defines several natural ecosystems and some of their natural derivations. Part II presents managed ecosystems which are imposed on natural ecosystems and are no longer bound by the initial native ecosystem balances. Part III deals with avion and mammilian wild life displaced by cleanup.« less
CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
Seipp, Charles A.; Univ. of Texas, Austin, TX; Williams, Neil J.; ...
2016-12-21
Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO 2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO 2 concentration is to remove the CO 2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO 2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp=1.0(4)×10 -8), which facilitates its separation from solution by filtration. The bound CO 2 canmore » be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO 2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.« less
The role of viscosity in TATB hot spot ignition
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Ink remover is a chemical used to get out ink stains. Ink remover poisoning occurs when someone swallows this substance. ... These ingredients can be found in: Ink removers Liquid bleaches Note: This list may not include all sources of ink removers.
Nyman, Jeffry S.; Gorochow, Lacey E.; Horch, R. Adam; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D.
2012-01-01
With an ability to quantify matrix-bound and pore water in bone, 1H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21 to 60 years of age (young) and 74 to 99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ~3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62 °C and then 103 °C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62 °C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. PMID:23631897
Nyman, Jeffry S; Gorochow, Lacey E; Adam Horch, R; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D
2013-06-01
With an ability to quantify matrix-bound and pore water in bone, (1)H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21-60 years of age (young) and 74-99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ∼3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62°C and then 103°C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62°C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. Published by Elsevier Ltd.
Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process
Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein
2012-01-01
Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233
Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.
Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein
2012-01-01
Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.
Polyoxometalates in oxidative delignification of chemical pulps: effect on lignin
Biljana Bujanovic; Sally Ralph; Richard Reiner; Kolby Hirth; Rajai Atalla
2010-01-01
Chemical pulps are produced by chemical delignification of lignocelluloses such as wood or annual non-woody plants. After pulping (e.g., kraft pulping), the remaining lignin is removed by bleaching to produce a high quality, bright paper. The goal of bleaching is to remove lignin from the pulp without a negative effect on the cellulose; for this reason, delignification...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... facilities by removing the designation of the Monsanto Chemical Company in Dayton, Ohio, and the United Lead... facilities by removing the designation of the Monsanto Chemical Company in Dayton, Ohio, and the United Lead... Company was the operator. A second facility operated by the Monsanto Chemical Company in Dayton, Ohio, was...
Watershed restoration: planning and implementing small dam removals to maximize ecosystem services
NASA Astrophysics Data System (ADS)
Tonitto, C.; Riha, S. J.
2016-12-01
River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.
Kruck, Theo P; Cui, Jian-Guo; Percy, Maire E; Lukiw, Walter J
2004-06-01
1. Abundant data suggest that aluminum (Al(III)) exposure may be an environmental risk factor contributing to the development, progression and/or neuropathology of several human neurodegenerative disorders, including Alzheimer's disease (AD). 2. Nuclei appear to be one directed target for Al(III) binding, accumulation, and Al(III)-mediated dysfunction due in part to their high content of polyphosphorylated nucleic acids, nucleotides, and nucleoproteins. 3. The design of chelation therapies dealing with the removal of Al(III) from these genetic compartments therefore represents an attractive strategy to alleviate the development and/or progression of central nervous system dysfunction that may arise from excessive Al(III) exposure. 4. In this study we have investigated the potential application of 10 natural and synthetic Al(III) chelators, including ascorbate (AS), desferrioxamine (DF), and Feralex-G (FG), used either alone or in combination, to remove Al(III) preincubated with intact human brain cell nuclei. 5. Although nuclear bound Al(III) was found to be highly refractory to removal, the combination of AS+FG was found to be particularly effective in removing Al(III) from the nuclear matrix. 6. Our data suggest that chelators carrying cis-hydroxy ketone groups, such as FG, are particularly suited to the removal of Al(III) from complex biological systems. 7. We further suggest a mechanism whereby small chelating molecules may penetrate the nucleus, bind Al(III), diffuse to regions accessible by the larger DF or FG molecules and transfer their Al(III) to DF or FG. 8. The proposed mechanism, called molecular shuttle chelation may provide a useful pharmacotherapy in the potential treatment of Al(III) overload disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, M.; Allison, W.S.
1986-05-05
Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with (/sup 3/H)ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. (/sup 3/H)ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with (/sup 3/H)ADP in 30more » min with a Kd of 30 microM. (/sup 3/H)ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of (/sup 3/H)ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. (/sup 3/H)ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits.« less
Removing cosmic spikes using a hyperspectral upper-bound spectrum method
Anthony, Stephen Michael; Timlin, Jerilyn A.
2016-11-04
Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less
Removing cosmic spikes using a hyperspectral upper-bound spectrum method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, Stephen Michael; Timlin, Jerilyn A.
Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less
Removing Cosmic Spikes Using a Hyperspectral Upper-Bound Spectrum Method.
Anthony, Stephen M; Timlin, Jerilyn A
2017-03-01
Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.
Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia
2007-09-01
This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate.
Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia
2007-01-01
This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate. PMID:17601804
Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen
2011-01-01
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not the proteins without iron-sulfur clusters, are modified forming protein-bound DINCs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of “chelatable iron pool” in the wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of “chelatable iron pool” in cells. PMID:21420489
DESIGN MANUAL: PHOSPHORUS REMOVAL
This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...
De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C
2008-01-01
Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was measured after incubation in the free FA fraction and a -2.58 Deltadelta15N in the bound FA. These changes, which occurred during soil incubation in the absence of C inputs, indicate that free FA fractions were utilised by soil microorganisms, and bound FA were decomposed and replaced, in part, by newly synthesized FA. The 13CPMAS-TOSS NMR spectra of free HA extracted before and after 215 days of incubation were mostly unchanged. In contrast, changes were evident in bound HA and showed an increase in aromatic C after incubation.
X-ray structures of LeuT in substrate-free outward-open and apo inward-open states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, Harini; Gouaux, Eric
2012-08-09
Neurotransmitter sodium symporters are integral membrane proteins that remove chemical transmitters from the synapse and terminate neurotransmission mediated by serotonin, dopamine, noradrenaline, glycine and GABA ({gamma}-aminobutyric acid). Crystal structures of the bacterial homologue, LeuT, in substrate-bound outward-occluded and competitive inhibitor-bound outward-facing states have advanced our mechanistic understanding of neurotransmitter sodium symporters but have left fundamental questions unanswered. Here we report crystal structures of LeuT mutants in complexes with conformation-specific antibody fragments in the outward-open and inward-open states. In the absence of substrate but in the presence of sodium the transporter is outward-open, illustrating how the binding of substrate closes themore » extracellular gate through local conformational changes: hinge-bending movements of the extracellular halves of transmembrane domains 1, 2 and 6, together with translation of extracellular loop 4. The inward-open conformation, by contrast, involves large-scale conformational changes, including a reorientation of transmembrane domains 1, 2, 5, 6 and 7, a marked hinge bending of transmembrane domain 1a and occlusion of the extracellular vestibule by extracellular loop 4. These changes close the extracellular gate, open an intracellular vestibule, and largely disrupt the two sodium sites, thus providing a mechanism by which ions and substrate are released to the cytoplasm. The new structures establish a structural framework for the mechanism of neurotransmitter sodium symporters and their modulation by therapeutic and illicit substances.« less
NASA Technical Reports Server (NTRS)
2004-01-01
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Informing the Human Plasma Protein Binding of ...
The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18 Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0
The cleaning of burned and contaminated archaeological maize prior to 87Sr/86Sr analysis
Benson, Larry V.; Taylor, Howard E.; Plowman, Terry I.; Roth, David A.; Antweiler, Ronald C.
2010-01-01
Accurate trace-metal and strontium-isotope analyses of archaeological corn cobs require that metal contaminants be removed prior to chemical analysis. Archaeological cobs are often coated with construction debris, dust, or soil which contains mineral particles. In addition, most archaeological cobs are partially or completely burned and the burned parts incorporate mineral debris in their hardened residual structures. Unburned cobs are weak ion exchangers and most metals within a cob are not firmly bound to cob organic matter; therefore, immersing cobs in acids and rinsing them in deionized water to remove mineral contaminants may result in the undesirable loss of metals, including strontium, from the cob.In this paper we show that some cob metal-pair ratios are not substantially changed when the cob is “cleaned” with deionized water, if the water-cob contact time does not exceed five minutes. Additionally, we introduce a method for eliminating mineral contaminants in both burned and unburned cobs, thus rendering them acceptable for strontium-isotope analysis. However, the decontamination procedure results in the rapid non-stoichiometric leaching of trace metals from the unburned cobs and it is possible that most metals will be extracted from the cobs during the lengthy decontamination process. Trace metals, in particular Al and Ca, should be analyzed in order to determine the presence and level of mineral contamination after cleaning.
Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon.
Kim, Eun-Ah; Seyfferth, Angelia L; Fendorf, Scott; Luthy, Richard G
2011-01-01
An effective mercury removal method using polymer-coated activated carbon was studied for possible use in water treatment. In order to increase the affinity of activated carbon for mercury, a sulfur-rich compound, polysulfide-rubber (PSR) polymer, was effectively coated onto the activated carbon. The polymer was synthesized by condensation polymerization between sodium tetrasulfide and 1,2-dichloroethane in water. PSR-mercury interactions and Hg-S bonding were elucidated from x-ray photoelectron spectroscopy, and Fourier transform infra-red spectroscopy analyses. The sulfur loading levels were controlled by the polymer dose during the coating process and the total surface area of the activated carbon was maintained for the sulfur loading less than 2 wt%. Sorption kinetic studies showed that PSR-coated activated carbon facilitates fast reaction by providing a greater reactive surface area than PSR alone. High sulfur loading on activated carbon enhanced mercury adsorption contributing to a three orders of magnitude reduction in mercury concentration. μ-X-ray absorption near edge spectroscopic analyses of the mercury bound to activated carbon and to PSR on activated carbon suggests the chemical bond with mercury on the surface is a combination of Hg-Cl and Hg-S interaction. The pH effect on mercury removal and adsorption isotherm results indicate competition between protons and mercury for binding to sulfur at low pH. Copyright © 2010. Published by Elsevier Ltd.
Universal bounds on current fluctuations.
Pietzonka, Patrick; Barato, Andre C; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
Kinetics of removal of intravenous testosterone pulses in normal men.
Veldhuis, Johannes D; Keenan, Daniel M; Liu, Peter Y; Takahashi, Paul Y
2010-04-01
Testosterone is secreted into the bloodstream episodically, putatively distributing into total, bioavailable (bio) nonsex hormone-binding globulin (nonSHBG-bound), and free testosterone moieties. The kinetics of total, bio, and free testosterone pulses are unknown. Design Adrenal and gonadal steroidogenesis was blocked pharmacologically, glucocorticoid was replaced, and testosterone was infused in pulses in four distinct doses in 14 healthy men under two different paradigms (a total of 220 testosterone pulses). Testosterone kinetics were assessed by deconvolution analysis of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone concentration-time profiles. Independently of testosterone dose or paradigm, rapid-phase half-lives (min) of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone were comparable at 1.4+/-0.22 min (grand mean+/-S.E.M. of geometric means). Slow-phase testosterone half-lives were highest for SHBG-bound testosterone (32 min) and total testosterone (27 min) with the former exceeding that of free testosterone (18 min), bioavailable testosterone (14 min), and albumin-bound testosterone (18 min; P<0.001). Collective outcomes indicate that i) the rapid phase of testosterone disappearance from point sampling in the circulation is not explained by testosterone dose; ii) SHBG-bound testosterone and total testosterone kinetics are prolonged; and iii) the half-lives of bioavailable, albumin-bound, and free testosterone are short. A frequent-sampling strategy comprising an experimental hormone clamp, estimation of hormone concentrations as bound and free moieties, mimicry of physiological pulses, and deconvolution analysis may have utility in estimating the in vivo kinetics of other hormones, substrates, and metabolites.
Biosurfactant technology for remediation of cadmium and lead contaminated soils.
Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar
2007-08-01
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.
Biorecognition by DNA oligonucleotides after Exposure to Photoresists and Resist Removers
Dean, Stacey L.; Morrow, Thomas J.; Patrick, Sue; Li, Mingwei; Clawson, Gary; Mayer, Theresa S.; Keating, Christine D.
2013-01-01
Combining biological molecules with integrated circuit technology is of considerable interest for next generation sensors and biomedical devices. Current lithographic microfabrication methods, however, were developed for compatibility with silicon technology rather than bioorganic molecules and consequently it cannot be assumed that biomolecules will remain attached and intact during on-chip processing. Here, we evaluate the effects of three common photoresists (Microposit S1800 series, PMGI SF6, and Megaposit SPR 3012) and two photoresist removers (acetone and 1165 remover) on the ability of surface-immobilized DNA oligonucleotides to selectively recognize their reverse-complementary sequence. Two common DNA immobilization methods were compared: adsorption of 5′-thiolated sequences directly to gold nanowires and covalent attachment of 5′-thiolated sequences to surface amines on silica coated nanowires. We found that acetone had deleterious effects on selective hybridization as compared to 1165 remover, presumably due to incomplete resist removal. Use of the PMGI photoresist, which involves a high temperature bake step, was detrimental to the later performance of nanowire-bound DNA in hybridization assays, especially for DNA attached via thiol adsorption. The other three photoresists did not substantially degrade DNA binding capacity or selectivity for complementary DNA sequences. To determine if the lithographic steps caused more subtle damage, we also tested oligonucleotides containing a single base mismatch. Finally, a two-step photolithographic process was developed and used in combination with dielectrophoretic nanowire assembly to produce an array of doubly-contacted, electrically isolated individual nanowire components on a chip. Post-fabrication fluorescence imaging indicated that nanowire-bound DNA was present and able to selectively bind complementary strands. PMID:23952639
Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.
Wang, P M; Lai-Fook, S J
2000-01-01
We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.
Zhimiao, Zhao; Xinshan, Song; Yanping, Xiao; Yufeng, Zhao; Zhijie, Gong; Fanda, Lin; Yi, Ding; Wei, Wang; Tianling, Qin
2016-12-15
Nitrogen (N) and phosphorous (P) are main contaminants and P removal was restrained by several factors: season, N/P, and chemical compounds (CCs) in water ecosystems. In this paper, two algal ponds combined with constructed wetlands were built to increase the removal performance. Different hydraulic retention time (HRT), different N/P and chemical compounds were chosen to investigate the influences of the above factors on the contaminant removal performance. The optimum phosphorus removal rate was 69.74% under the nitrogen removal of 92.85% in influent containing PO 4 3- after 3-day HRT in algal pond combined with constructed wetlands. The investigation results indicated that these factors improved the nutrient removal efficiencies. Seasonal influence on the removal performance can be avoided by choosing the optimal HRT length of 3days. The higher N/P at 60 can improve the phosphorus removal and the lower N/P at 15 showed the stronger synergistic effect between phosphorus and nitrogen removals. Compared with PO 3 - and P 2 O 7 4- in influent, PO 4 3- affected phosphorus removal more significantly. The better linear fitting between organic phosphorus removal and nitrogen removal in influent contained P 2 O 7 4- was found. Algae can absorb nutrients for growth, and oxygen release, microbial activity intensification and microbial carbon replenishment induced by algae will improve the performance. The study suggested that the control of HRTs, N/Ps, CCs, and algae might be an effective way to improve wastewater treatment performance. Copyright © 2016 Elsevier B.V. All rights reserved.
The Role of Viscosity in TATB Hot Spot Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E; Zepeda-Ruis, L; Howard, W M
2011-08-02
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less
Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.
Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente
2016-01-27
Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.
Pratt, C; Shilton, A
2010-01-01
Active filtration, where effluent is passed through a reactive substrate such as steel slag, offers a simple and cost-effective option for removing phosphorus (P) from effluent. This work summarises a series of studies that focused on the world's only full-scale active slag filter operated through to exhaustion. The filter achieved 75% P-removal during its first 5 years, reaching a retention capacity of 1.23 g P/kg slag but then its performance sharply declined. Scanning electron microscopy, X-ray diffraction, X-ray fluorescence, and chemical extractions revealed that P sequestration was primarily achieved via adsorption onto iron (Fe) oxyhydroxides on the slag's surface. It was concluded that batch equilibrium tests, whose use has been repeatedly proposed in the literature, cannot be used as an accurate predictor of filter adsorption capacity because Fe oxyhydroxides form via chemical weathering in the field, and laboratory tests don't account for this. Research into how chemical conditions affect slag's P retention capacity demonstrated that near-neutral pH and high redox are optimal for Fe oxyhydroxide stability and overall filter performance. However, as Fe oxyhydroxide sites fill up, removal capacity becomes exhausted. Attempts to regenerate P removal efficiency using physical techniques proved ineffective contrary to dogma in the literature. Based on the newly-developed understanding of the mechanisms of P removal, chemical regeneration techniques were investigated and were shown to strip large quantities of P from filter adsorption sites leading to a regenerated P removal efficiency. This raises the prospect of developing a breakthrough technology that can repeatedly remove and recover P from effluent.
The number of chemicals with limited toxicological information for chemical safety decision-making has accelerated alternative model development, which often are evaluated via referencing animal toxicology studies. In vivo studies are generally considered the standard for hazard ...
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
2004-04-15
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Acute Resuscitation and Transfer Management of Burned and Electrically Injured Patients,
1994-01-01
patient. When all visible chemical the hospital and is usually provided by is removed , copious irrigation with water local fire or emergency medical... remove the victim chemicals, especially alkaline agents, may from the fire environment to a safe area. continue to irritate for hours, irrigation Once...veins and then sutured in place. vical spine if injury is suspected), and Cannulas traversing burned skin are ac- Exposure ( removal of all clothing and
Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria
2013-03-13
We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au-O-TiO(x) sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this "excess" gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.
Majorana bound states in the finite-length chain
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2015-08-01
Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.
Thomson scattering in the average-atom approximation.
Johnson, W R; Nilsen, J; Cheng, K T
2012-09-01
The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.
Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan
2016-01-01
A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930
Overview of paint removal methods
NASA Astrophysics Data System (ADS)
Foster, Terry
1995-04-01
With the introduction of strict environmental regulations governing the use and disposal of methylene chloride and phenols, major components of chemical paint strippers, there have been many new environmentally safe and effective methods of paint removal developed. The new methods developed for removing coatings from aircraft and aircraft components include: mechanical methods using abrasive media such as plastic, wheat starch, walnut shells, ice and dry ice, environmentally safe chemical strippers and paint softeners, and optical methods such as lasers and flash lamps. Each method has its advantages and disadvantages, and some have unique applications. For example, mechanical and abrasive methods can damage sensitive surfaces such as composite materials and strict control of blast parameters and conditions are required. Optical methods can be slow, leaving paint residues, and chemical methods may not remove all of the coating or require special coating formulations to be effective. As an introduction to environmentally safe and effective methods of paint removal, this paper is an overview of the various methods available. The purpose of this overview is to introduce the various paint removal methods available.
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Sau, Jay D.; Das Sarma, S.
2018-06-01
Trivial Andreev bound states arising from chemical-potential variations could lead to zero-bias tunneling conductance peaks at finite magnetic field in class-D nanowires, precisely mimicking the predicted zero-bias conductance peaks arising from the topological Majorana bound states. This finding raises a serious question on the efficacy of using zero-bias tunneling conductance peaks, by themselves, as evidence supporting the existence of topological Majorana bound states in nanowires. In the current work, we provide specific experimental protocols for tunneling spectroscopy measurements to distinguish between Andreev and Majorana bound states without invoking more demanding nonlocal measurements which have not yet been successfully performed in nanowire systems. In particular, we discuss three distinct experimental schemes involving the response of the zero-bias peak to local perturbations of the tunnel barrier, the overlap of bound states from the wire ends, and, most compellingly, introducing a sharp localized potential in the wire itself to perturb the zero-bias tunneling peaks. We provide extensive numerical simulations clarifying and supporting our theoretical predictions.
Raghu, S; Ahmed Basha, C
2007-10-22
This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-08-14
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-01-01
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222
Entropy bounds in terms of the w parameter
NASA Astrophysics Data System (ADS)
Abreu, Gabriel; Barceló, Carlos; Visser, Matt
2011-12-01
In a pair of recent articles [PRL 105 (2010) 041302; JHEP 1103 (2011) 056] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, [InlineMediaObject not available: see fulltext.], was that the proportionality constant, 1/2 , was weaker than that expected from black hole thermodynamics, 1/4 . In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged < w> parameter to be ≤ 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubregsen, J.
1999-03-01
In the process of optical polishing, a new method has been developed called Magnetorheological Finishing, or MRF. This process utilizes both mechanical and chemical effects to remove material during polishing. To more fully understand the fundamental mechanisms of MR polishing the authors have successfully separated mechanical scratching from chemical softening in glass polishing with MRF by removing the water from the MR fluid. The addition of water initiates the chemical effects by hydrating the glass surface and changing the amplitude of the scratches. In addition, this study has found that the mechanical removal by scratching is related to the hardnessmore » of the magnetic carbonyl iron particles, and the hardness and type of the glass being polished.« less
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul
2015-12-01
Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.
Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E
2015-12-01
Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sikora, Bartek; Chen, Yingfeng; Lichti, Cheryl F; Harrison, Melody K; Jennings, Thomas A; Tang, Yong; Tackett, Alan J; Jordan, John B; Sakon, Joshua; Cameron, Craig E; Raney, Kevin D
2008-04-25
HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.
Tazrart, A; Bolzinger, M A; Lamart, S; Coudert, S; Angulo, J F; Jandard, V; Briançon, S; Griffiths, N M
2018-07-01
Skin contamination by alpha-emitting actinides is a risk to workers during nuclear fuel production and reactor decommissioning. Also, the list of items for potential use in radiological dispersal devices includes plutonium and americium. The actinide chemical form is important and solvents such as tributyl phosphate, used to extract plutonium, can influence plutonium behavior. This study investigated skin fixation and efficacy of decontamination products for these actinide forms using viable pig skin in the Franz cell diffusion system. Commonly used or recommended decontamination products such as water, cleansing gel, diethylenetriamine pentaacetic acid, or octadentate hydroxypyridinone compound 3,4,3-LI(1,2-HOPO), as well as diethylenetriamine pentaacetic acid hydrogel formulations, were tested after a 2-h contact time with the contaminant. Analysis of skin samples demonstrated that more plutonium nitrate is bound to skin as compared to plutonium-tributyl phosphate, and fixation of americium to skin was also significant. The data show that for plutonium-tributyl phosphate all the products are effective ranging from 80 to 90% removal of this contaminant. This may be associated with damage to the skin by this complex and suggests a mechanical/wash-out action rather than chelation. For removal of americium and plutonium, both Trait Rouge cleansing gel and diethylenetriamine pentaacetic acid are better than water, and diethylenetriamine pentaacetic acid hydrogel is better than Osmogel. The different treatments, however, did not significantly affect the activity in deeper skin layers, which suggests a need for further improvement of decontamination procedures. The new diethylenetriamine pentaacetic acid hydrogel preparation was effective in removing americium, plutonium, and plutonium-tributyl phosphate from skin; such a formulation offers advantages and thus merits further assessment.
This document is the Environmental Technology Verification (ETV) Technology Specific Test Plan (TSTP) for evaluation of drinking water treatment equipment utilizing adsorptive media for synthetic organic chemical (SOC) removal. This TSTP is to be used within the structure provid...
40 CFR 425.02 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... not limited to, the following wet processes: retan, bleach, color, and fatliquor. (d) “Hair pulp” means the removal of hair by chemical dissolution. (e) “Hair save” means the physical or mechanical removal of hair which has not been chemically dissolved, and either selling the hair as a by-product or...
40 CFR 425.02 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... not limited to, the following wet processes: retan, bleach, color, and fatliquor. (d) “Hair pulp” means the removal of hair by chemical dissolution. (e) “Hair save” means the physical or mechanical removal of hair which has not been chemically dissolved, and either selling the hair as a by-product or...
40 CFR 425.02 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... not limited to, the following wet processes: retan, bleach, color, and fatliquor. (d) “Hair pulp” means the removal of hair by chemical dissolution. (e) “Hair save” means the physical or mechanical removal of hair which has not been chemically dissolved, and either selling the hair as a by-product or...
Valence tautomerism in synthetic models of cytochrome P450
Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai
2016-01-01
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948
Monomeric α-Synuclein Binds Congo Red Micelles in a Disordered Manner
2011-01-01
The histological dye Congo Red (CR) previously has been shown to inhibit α-synuclein (aS) fibrillation, but the mode of this inhibition remained unclear. Because of favorable exchange kinetics, interaction between CR and aS lends itself to a detailed nuclear magnetic resonance study, and relaxation dispersion measurements yield the bound fraction and time scales for the interaction of aS with CR. We find that at pH 6, CR exists as a micelle, and at a CR:aS molar ratio of ∼1, only a small fraction of aS (∼2%) is bound to these micelles. Rapid exchange (kex ∼ 3000 s–1) between the free and CR-bound states broadens and strongly attenuates resonances of aS by two processes: a magnetic field-dependent contribution, caused by the chemical shift difference between the two states, and a nearly field-independent contribution caused by slower tumbling of aS bound to the CR micelle. The salt dependence of the interaction suggests a predominantly electrostatic mechanism for the 60 N-terminal residues, while the weaker interaction between residues 61–100 and CR is mostly hydrophobic. Chemical shift and transferred NOE data indicate that aS becomes slightly more helical but remains largely disordered when bound to CR. Results indicate that inhibition of fibril formation does not result from binding of CR to free aS and, therefore, must result from interaction of aS fibrils or protofibrils with CR micelles. PMID:22242826
Rodnight, R.
1970-01-01
1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238
Monomeric α-synuclein binds Congo Red micelles in a disordered manner.
Maltsev, Alexander S; Grishaev, Alexander; Bax, Ad
2012-01-17
The histological dye Congo Red (CR) previously has been shown to inhibit α-synuclein (aS) fibrillation, but the mode of this inhibition remained unclear. Because of favorable exchange kinetics, interaction between CR and aS lends itself to a detailed nuclear magnetic resonance study, and relaxation dispersion measurements yield the bound fraction and time scales for the interaction of aS with CR. We find that at pH 6, CR exists as a micelle, and at a CR:aS molar ratio of ~1, only a small fraction of aS (~2%) is bound to these micelles. Rapid exchange (k(ex) ~ 3000 s(-1)) between the free and CR-bound states broadens and strongly attenuates resonances of aS by two processes: a magnetic field-dependent contribution, caused by the chemical shift difference between the two states, and a nearly field-independent contribution caused by slower tumbling of aS bound to the CR micelle. The salt dependence of the interaction suggests a predominantly electrostatic mechanism for the 60 N-terminal residues, while the weaker interaction between residues 61-100 and CR is mostly hydrophobic. Chemical shift and transferred NOE data indicate that aS becomes slightly more helical but remains largely disordered when bound to CR. Results indicate that inhibition of fibril formation does not result from binding of CR to free aS and, therefore, must result from interaction of aS fibrils or protofibrils with CR micelles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltsev, Alexander S.; Grishaev, Alexander; Bax, Ad
The histological dye Congo Red (CR) previously has been shown to inhibit {alpha}-synuclein (aS) fibrillation, but the mode of this inhibition remained unclear. Because of favorable exchange kinetics, interaction between CR and aS lends itself to a detailed nuclear magnetic resonance study, and relaxation dispersion measurements yield the bound fraction and time scales for the interaction of aS with CR. We find that at pH 6, CR exists as a micelle, and at a CR:aS molar ratio of {approx}1, only a small fraction of aS ({approx}2%) is bound to these micelles. Rapid exchange (k{sub ex} {approx} 3000 s{sup -1}) betweenmore » the free and CR-bound states broadens and strongly attenuates resonances of aS by two processes: a magnetic field-dependent contribution, caused by the chemical shift difference between the two states, and a nearly field-independent contribution caused by slower tumbling of aS bound to the CR micelle. The salt dependence of the interaction suggests a predominantly electrostatic mechanism for the 60 N-terminal residues, while the weaker interaction between residues 61-100 and CR is mostly hydrophobic. Chemical shift and transferred NOE data indicate that aS becomes slightly more helical but remains largely disordered when bound to CR. Results indicate that inhibition of fibril formation does not result from binding of CR to free aS and, therefore, must result from interaction of aS fibrils or protofibrils with CR micelles.« less
Validating the Inactivation Effectiveness of Chemicals on Ebola Virus.
Haddock, Elaine; Feldmann, Friederike
2017-01-01
While viruses such as Ebola virus must be handled in high-containment laboratories, there remains the need to process virus-infected samples for downstream research testing. This processing often includes removal to lower containment areas and therefore requires assurance of complete viral inactivation within the sample before removal from high-containment. Here we describe methods for the removal of chemical reagents used in inactivation procedures, allowing for validation of the effectiveness of various inactivation protocols.
Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.
Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien
2007-12-01
Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.
A Study of Interior Landscape Plants for Indoor Air Pollution Abatement
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Douglas, Willard L.; Bounds, Keith
1989-01-01
Previously, preliminary data on the ability of a group of common indoor plants to remove organic chemical from indoor air was presented. The group of plants chosen for this study was determined by joint agreement between NASA and the Associated Landscape Contractors of America. The chemicals chosen for study were benzene, trichloroethylene, and formaldehyde. The results show that plants can play a major role in removal of organic chemicals from indoor air.
2006-04-28
for this work included: (1) Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those...Polyhedral oligomeric silsesquioxane chemicals (POSS macromers) of three types: those with no polymerizable group, those with one reactive function and...atoms and ions. Polyhedral Oligomeric Silsesquioxane/Organic Matrix Nanocomposites Major reviews of POSS polymer and copolymer chemistry. The first
Solution of two-body relativistic bound state equations with confining plus Coulomb interactions
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Kahana, David E.; Norbury, John W.
1992-01-01
Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.
Improved Optical Fiber Chemical Sensors
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.
Mechanism of uranium (VI) removal by two anaerobic bacterial communities.
Martins, Mónica; Faleiro, Maria Leonor; da Costa, Ana M Rosa; Chaves, Sandra; Tenreiro, Rogério; Matos, António Pedro; Costa, Maria Clara
2010-12-15
The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family. Copyright © 2010 Elsevier B.V. All rights reserved.
Allantoin as a solid phase adsorbent for removing endotoxins.
Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete
2013-10-04
In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. Copyright © 2013 Elsevier B.V. All rights reserved.
Efficiencies of multilayer infiltration systems for the removal of urban runoff pollutants.
Hou, Lizhu; Liu, Fang; Feng, Chuanping; Wan, Li
2013-01-01
Current rates of urban development will result in water runoff becoming a major complication of urban water pollution. To address the worsening situation regarding water resource shortage and pollution, novel multilayer infiltration systems were designed and their effectiveness for removing pollutants in urban runoff tested experimentally. The multilayer infiltration systems effectively removed most pollutants, including organic matter (chemical oxygen demand (CODCr)), total nitrogen (TN), ammonia-nitrogen (NH4(+)-N) and total phosphorus (TP). CODCr, TN, NH4(+)-N, and TP were reduced by 68.67, 23.98, 82.66 and 92.11%, respectively. The main mechanism for nitrogen removal was biological nitrogen removal through nitrification and denitrification. Phosphorus in the urban runoff was removed mainly by fixation processes in the soil, such as adsorption and chemical precipitation. The results indicate that the proposed novel system has potential for removal of pollutants from urban runoff and subsequent reuse of the treated water.
Co-conditioning and dewatering of chemical sludge and waste activated sludge.
Chang, G R; Liu, J C; Lee, D J
2001-03-01
The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.
Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.
1998-01-01
Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may partly result from reaction with ammonium-containing pore waters.
Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza
2003-04-01
A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.
Henriques, Bruno; Rocha, Luciana S; Lopes, Cláudia B; Figueira, Paula; Duarte, A C; Vale, Carlos; Pardal, M A; Pereira, E
2017-04-15
Metal uptake from contaminated waters by living Ulva lactuca was studied during 6 days, under different relevant contamination scenarios. In mono-metallic solutions, with concentrations ranging from 10 to 100 μg L -1 for Hg, 10-200 μg L -1 for Cd, and 50-1000 μg L -1 for Pb, macroalgae (500 mg L -1 , d.w.) were able to remove, in most cases 93-99% of metal, allowing to achieve water quality criteria regarding both surface and drinking waters. In multi-metallic solutions, comprising simultaneously the three metals, living macroalgae still performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence of Cd and Pb, even when those metals were in higher concentrations. Removal efficiencies for Cd and Pb varied between 57 and 96%, and 34-97%, respectively, revealing an affinity of U. lactuca toward metals: Hg > Cd > Pb. Chemical quantification in macroalgae, after bioaccumulation assays demonstrated that all Cd and Hg removed from solution was really bound in macroalgae biomass, while only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 209 μg g -1 of Hg, up to 347 μg g -1 of Cd and up to 1641 μg g -1 of Pb, which correspond to bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. Pseudo-first order, pseudo-second order and Elovich models showed a good performance in describing the kinetics of bioaccumulation, in the whole period of time. In the range of experimental conditions used, no mortality was observed and U. lactuca relative growth rate was not significantly affected by the presence of metals. Results represent an important contribution for developing a macroalgae-based biotechnology, applied for contaminated saline water remediation, more "green" and cost-effective than conventional treatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi
2012-01-01
In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485
Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng
2011-08-01
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content to<20 mg kg(-1). The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550°C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Blayney, Michelle J; Whitney, Spencer M; Beck, Jennifer L
2011-09-01
Ribulose bisphosphate carboxylase/oxygenase (Rubisco) is the protein that is responsible for the fixation of carbon dioxide in photosynthesis. Inhibitory sugar phosphate molecules, which can include its substrate ribulose-1,5-bisphosphate (RuBP), can bind to Rubisco catalytic sites and inhibit catalysis. These are removed by interaction with Rubisco activase (RA) via an ATP hydrolytic reaction. Here we show the first nanoESI mass spectra of the hexadecameric Rubisco and of RA from a higher plant (tobacco). The spectra of recombinant, purified RA revealed polydispersity in its oligomeric forms (up to hexamer) and that ADP was bound. ADP was removed by dialysis against a high ionic strength solution and nucleotide binding experiments showed that ADP bound more tightly to RA than AMP-PNP (a non-hydrolysable ATP analog). There was evidence that there may be two nucleotide binding sites per RA monomer. The oligomerization capacity of mutant and wild-type tobacco RA up to hexamers is analogous to the subunit stoichiometry for other AAA+ enzymes. This suggests assembly of RA into hexamers is likely the most active conformation for removing inhibitory sugar phosphate molecules from Rubisco to enable its catalytic competency. Stoichiometric binding of RuBP or carboxyarabinitol bisphosphate (CABP) to each of the eight catalytic sites of Rubisco was observed.
Ruggero, M A; Argento, A C; Heavner, M S; Topal, J E
2013-04-01
The objective of this study was to illustrate the pharmacokinetic removal of piperacillin/tazobactam in an anuric patient on Molecular Adsorbent Recirculating System (MARS(®)). The patient was a 32-year-old woman who presented to a medical intensive care unit with acute liver failure secondary to an acetaminophen overdose. While awaiting transplant, she was started on MARS therapy as a bridge to liver transplant and empirically started on piperacillin/tazobactam therapy. MARS is an extracorporeal hemofiltration device, which incorporates a continuous venovenous hemofiltration (CVVHD) machine linked to an albumin-enriched dialysate filter to normalize excess electrolytes, metabolic waste, and protein-bound toxins. In addition to protein-bound waste, MARS removes water-soluble, low molecular-weight molecules. The patient received piperacillin/tazobactam 4.5 g infused intravenously over 3 h. A steep decline in serum levels occurred between hours 4 and 6 while MARS continued and no antibiotic was infused. The elimination rate constant (k(e)) for the removal of piperacillin in this patent was 0.453 h(-1) and the half-life (λ) was 1.53 h. The k(e) was 2.9-fold higher than with CVVHD alone and the λ was 3.7-fold shorter. Low levels of piperacillin are achieved during MARS therapy, but in the treatment of more resistant organisms, such as Pseudomonas aeruginosa, these low levels may not be adequate to achieve bactericidal activity. Drug levels following a standard infusion of 30 min would likely be even lower. Formalized pharmacokinetic studies of piperacillin/tazobactam removal in patients on MARS therapy are necessary to make clear dosing recommendations. © 2012 John Wiley & Sons A/S.
Greenstein, Katherine E; Lew, Julia; Dickenson, Eric R V; Wert, Eric C
2018-06-01
The evolving demands of drinking water treatment necessitate processes capable of removing a diverse suite of contaminants. Biofiltration can employ biotransformation and sorption to remove various classes of chemicals from water. Here, pilot-scale virgin anthracite-sand and previously used biological activated carbon (BAC)-sand dual media filters were operated for ∼250 days to assess removals of 0.4 mg/L ammonia as nitrogen, 50-140 μg/L manganese, and ∼100 ng/L each of trace organic compounds (TOrCs) spiked into pre-ozonated Colorado River water. Anthracite achieved complete nitrification within 200 days and started removing ibuprofen at 85 days. Limited manganese (10%) removal occurred. In contrast, BAC completely nitrified ammonia within 113 days, removed all manganese at 43 days, and exhibited steady state removal of most TOrCs by 140 days. However, during the first 140 days, removal of caffeine, DEET, gemfibrozil, naproxen, and trimethoprim decreased, suggesting a shift from sorption to biotransformation. Acetaminophen and sulfamethoxazole were removed at consistent levels, with complete removal of acetaminophen achieved throughout the study; ibuprofen removal increased with time. When subjected to elevated (1 μg/L) concentrations of TOrCs, BAC removed larger masses of chemicals; with a subsequent decrease and ultimate cease in the TOrCs spike, caffeine, DEET, gemfibrozil, and trimethoprim notably desorbed. By the end of operation, anthracite and BAC exhibited equivalent quantities of biomass measured as adenosine triphosphate, but BAC harbored greater microbial diversity (examined with 16S rRNA sequencing). Improved insight was gained regarding concurrent biotransformation, sorption, and desorption of multiple organic and inorganic contaminants in pilot-scale drinking water biofilters. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wu, Ruiqin; Wu, Haobo; Jiang, Xinbai; Shen, Jinyou; Faheem, Muhammad; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong
2017-04-01
The secondary effluent from biological treatment process in chemical industrial plant often contains refractory organic matter, which deserves to be further treated in order to meet the increasingly stringent environmental regulations. In this study, the key role of biogenic manganese oxides (BioMnOx) in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater was investigated. BioMnOx production by acclimated manganese-oxidizing bacterium (MOB) consortium was confirmed through scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Pseudomonas and Bacillus were found to be the most predominant species in acclimated MOB consortium. Mn 2+ could be oxidized optimally at neutral pH and initial Mn 2+ concentration below 33 mg L -1 . However, 1,2,4-triazole removal by BioMnOx produced occurred optimally at slightly acidic pH. High dosage of both Mn 2+ and 1,2,4-triazole resulted in decreased 1,2,4-triazole removal. In a biological aerated filter (BAF) coupled with manganese oxidation, 1,2,4-triazole and total organic carbon removal could be significantly enhanced compared to the control system without the participation of manganese oxidation, confirming the key role of BioMnOx in the removal of highly recalcitrant 1,2,4-triazole. This study demonstrated that the biosystem coupled with manganese oxidation had a potential for the removal of various recalcitrant contaminants from bio-treated chemical industrial wastewater.
Laera, G; Cassano, D; Lopez, A; Pinto, A; Pollice, A; Ricco, G; Mascolo, G
2012-01-17
The treatment of a pharmaceutical wastewater resulting from the production of an antibacterial drug (nalidixic acid) was investigated employing a membrane bioreactor (MBR) integrated with either ozonation or UV/H(2)O(2) process. This was achieved by placing chemical oxidation in the recirculation stream of the MBR. A conventional configuration with chemical oxidation as polishing for the MBR effluent was also tested as a reference. The synergistic effect of MBR when integrated with chemical oxidation was assessed by monitoring (i) the main wastewater characteristics, (ii) the concentration of nalidixic acid, (iii) the 48 organics identified in the raw wastewater and (iv) the 55 degradation products identified during wastewater treatment. Results showed that MBR integration with ozonation or UV/H(2)O(2) did not cause relevant drawbacks to both biological and filtration processes, with COD removal rates in the range 85-95%. Nalidixic acid passed undegraded through the MBR and was completely removed in the chemical oxidation step. Although the polishing configuration appeared to give better performances than the integrated system in removing 15 out of 48 secondary organics while similar removals were obtained for 19 other compounds. The benefit of the integrated system was however evident for the removal of the degradation products. Indeed, the integrated system allowed higher removals for 34 out of 55 degradation products while for only 4 compounds the polishing configuration gave better performance. Overall, results showed the effectiveness of the integrated treatment with both ozone and UV/H(2)O(2).
40 CFR 425.02 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following wet processes: retan, bleach, color, and fatliquor. (d) “Hair pulp” means the removal of hair by chemical dissolution. (e) “Hair save” means the physical or mechanical removal of hair which has not been chemically dissolved, and either selling the hair as a by-product or disposing of it as a solid waste. (f...
Phan, Hop V; Hai, Faisal I; McDonald, James A; Khan, Stuart J; van de Merwe, Jason P; Leusch, Frederic D L; Zhang, Ren; Price, William E; Broeckmann, Andreas; Nghiem, Long D
2015-09-01
The impacts of four simulated hazardous events, namely, aeration failure, power loss, and chemical shocks (ammonia or bleach) on the performance of an anoxic-aerobic membrane bioreactor (MBR) receiving real wastewater were investigated. Hazardous events could alter pH and/or oxidation reduction potential of the mixed liquor and inhibit biomass growth, thus affecting the removal of bulk organics, nutrients and trace organic contaminants (TrOC). Chemical shocks generally exerted greater impact on MBR performance than aeration/power failure events, with ammonia shock exerting the greatest impact. Compared to total organic carbon, nutrient removal was more severely affected. Removal of the hydrophilic TrOCs that are resistant and/or occur at high concentrations in wastewater was notably affected. The MBR effectively reduced estrogenicity and toxicity from wastewater, but chemical shocks could temporarily increase the endocrine activity of the effluent. Depending on the chemical shock-dose and the membrane flux, hazardous events can exacerbate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Musich, M.A.
A fixed-bed reactor system with continuous Hg{sup 0} analysis capabilities was used to evaluate commercial carbon sorbents for the removal of elemental mercury from simulated flue gas. The objectives of the program were to compare the sorbent effectiveness under identical test conditions and to identify the effects of various flue gas components on elemental mercury sorption. Sorbents tested included steam-activated lignite, chemically activated hardwood, chemically activated bituminous coal, iodated steam-activated coconut shell, and sulfur-impregnated steam-activated bituminous coal. The iodated carbon was the most effective sorbent, showing over 99% mercury removal according to U.S. Environmental Protection Agency (EPA) Method 101A. Datamore » indicate that adding O{sub 2} at 4 vol% reduced the effectiveness of the steam-activated lignite, chemically activated hardwood, and sulfur- impregnated steam-activated bituminous coal. Adding SO{sub 2} at 500 ppm improved the mercury removal of the sulfur-impregnated carbon. Further, the presence of HCl gas (at 50 ppm) produced an order of magnitude increase in mercury removal with the chemically activated and sulfur-impregnated bituminous coal-based carbons.« less
Prediction Metrics for Chemical Detection in Long-Wave Infrared Hyperspectral Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, Marie C.; Walsh, Stephen J.; Daly, Don S.
2009-01-29
A natural or anthropogenic process often generates a signature gas plume whose chemical constituents may be identified using hyperspectral imagery. A hyperspectral image is a pixel-indexed set of spectra where each spectrum reflects the chemical constituents of the plume, the atmosphere, the bounding background surface, and instrument noise. This study explored the relationship between gas absorbance and background emissivity across the long-wave infrared (LWIR) spectrum and how they affect relative gas detection sensitivity. The physics-based model for the observed radiance shows that high gas absorbance coupled with low background emissivity at a single wavenumber results in a stronger recorded radiance.more » Two sensitivity measures were developed to predict relative probability of detection using chemical absorbance and background emissivity: one focused on a single wavenumber while another accounted for the entire spectrum. The predictive abilities of these measures were compared to synthetic image analysis. This study simulated images with 499 distinct gases at each of 6 concentrations over 6 different background surfaces with the atmosphere and level of instrument noise held constant. The Whitened Matched Filter was used to define gas detection from an image spectrum. The estimate of a chemical’s probability of detection at a given concentration over a specific background was the proportion of detections in 500 trials. Of the 499 chemicals used in the images, 276 had estimated probabilities of detection below 0.2 across all backgrounds and concentrations; these chemicals were removed from the study. For 92.8 percent of the remaining chemicals, the single channel measure correctly predicted the background over which the chemical had the largest relative probability of detection. Further, the measure which accounted for information across all wavenumbers predicted the background over which the chemical had the largest relative probability of detection for 93.3 percent of the chemicals. These results suggest that the wavenumber with largest gas absorbance has the most influence over gas detection for this data. By furthering the in-silico experimentation with higher concentrations of gases not detectable in this experiment or by standardizing the gas absorbance spectra to unit vectors, these conclusions may be confirmed and generalized to more gases. This will help simplify image acquisition planning and the identification of unknowns in field collected images.« less
Purification of Rubisco Activase from Leaves or after Expression in Escherichia coli.
USDA-ARS?s Scientific Manuscript database
Rubisco activase is a molecular chaperone that modulates the activation state of Rubisco by catalyzing the ATP-dependent removal of tightly-bound inhibitory sugar-phosphates from Rubisco’s catalytic sites. This chapter reports methods developed for the purification of native and recombinant Rubisco...
Code of Federal Regulations, 2011 CFR
2011-01-01
... white paper. (ii) On paper not larger than 81/2 by 11 inches. (iii) In black ink. (iv) Text double... 1 inch on each side. (vii) The original not bound or hole-punched, only held together with removable...
Code of Federal Regulations, 2010 CFR
2010-01-01
... white paper. (ii) On paper not larger than 81/2 by 11 inches. (iii) In black ink. (iv) Text double... 1 inch on each side. (vii) The original not bound or hole-punched, only held together with removable...
Reinforcement of latex rubber by the incorporation of amphiphilic particles
USDA-ARS?s Scientific Manuscript database
Latex rubbers are fabricated from latex suspensions. During the fabrication process, latex particles are bound together while water is removed from the suspension. This report shows that the mechanical properties of latex rubbers can be improved by incorporating a small amount of amphiphilic submicr...
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.
1999-01-01
Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997
Removal of trace organic micropollutants by drinking water biological filters.
Zearley, Thomas L; Summers, R Scott
2012-09-04
The long-term removal of 34 trace organic micropollutants (<1 μg L(-1)) was evaluated and modeled in drinking water biological filters with sand media from a full-scale plant. The micropollutants included pesticides, pharmaceuticals, and personal care products, some of which are endocrine disrupting chemicals, and represent a wide range of uses, chemical structures, adsorbabilities, and biodegradabilities. Micropollutant removal ranged from no measurable removal (<15%) for 13 compounds to removal below the detection limit and followed one of four trends over the one year study period: steady state removal throughout, increasing removal to steady state (acclimation), decreasing removal, or no removal (recalcitrant). Removals for all 19 nonrecalcitrant compounds followed first-order kinetics when at steady state with increased removal at longer empty bed contact times (EBCT). Rate constants were calculated, 0.02-0.37 min(-1), and used in a pseudo-first-order rate model with the EBCT to predict removals in laboratory biofilters at a different EBCT and influent conditions. Drinking water biofiltration has the potential to be an effective process for the control of many trace organic contaminants and a pseudo-first-order model can serve as an appropriate method for approximating performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitkamp, M.A.; Adams, W.J.; Camel, V.
Immobilized bacteria technology (IBT) utilizes inert biocarriers to support high concentrations of chemical-degrading bacteria in reactors designed to provide optimal conditions for microbial activity. This study evaluated IBT performance inpacked bed reactors (PBRs) using a porous inorganic biocarrier (diatomaceous earth), nonporous biocarriers (glass beads), and organic biocarriers having carbon adsorption properties (granular activated carbon) with different porosity. Each reactor was challenged with high chemical loading, acid, dryness, and heat shock conditions. Benchtop PBSs inoculated with a p-nitrophenol (PNP)-degrading Pseudomonas sp. and fed a synthetic waste containing 100 to 1,300 mg/L of PNP showed removal of PNP from effluents within 24more » h of start-up. Chemical loading studies showed maximum PNP removal rates of 6.45 to 7.35 kg/m[sup 3]/d for bacteria in PBRs containing diatomaceous earth beads, glass beads, and activated coconut carbon. A lower PNP removal rate of 1.47 kg/m[sup 3]/d was determined for the activated anthracite carbon, and this PBR responded more slowly to increases in chemical loading. The PBR containing bacteria immobilized on activated coconut carbon showed exceptional tolerance to acid shocking, drying, and heat shocking by maintaining PNP removal rates > 85% throughout the entire study. The other biocarriers showed nearly complete loss of PNP degradation during the perturbations, but all recovered high rates of PNP degradation (> 98% removal) within 48 h after an acid shock at pH2, within 8 d after an acid shock at pH 1.0, within 24 h after drying for 72 h, and within 48 h of heat shocking. The resiliency and high chemical removal efficiency demonstrated by immobilized bacteria in this study support the concept of using IBT for the biotreatment of industrial wastes..« less
Collison, Robert S; Grismer, Mark E
2014-04-01
The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.
Vuong, A.-T.; Rauch, A. D.
2017-01-01
We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection–diffusion–reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics. PMID:28413347
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
Metal-assisted etch combined with regularizing etch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Joanne; Miller, Jeff; Jura, Michael
In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less
Robinson, P A; Anderton, B H; Loviny, T L
1988-04-06
We present a simple, efficient and rapid method for affinity-purifying antibodies from a relatively crude antiserum in quantities large enough to screen a DNA expression library. The method presents a very convenient way to remove crossreacting or contaminating antibody specificities. The affinity matrix, antigen non-covalently bound to nitrocellulose, is prepared by the electrophoretic separation of antigen by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, followed by the transfer of antigen to nitrocellulose. The matrix can be used repeatedly. A brief wash with 6 M guanidine hydrochloride is included between steps to remove residual antibodies which bind with high affinity to nitrocellulose-bound antigen. Various buffer solutions were assessed as antibody/antigen-dissociating agents. Glycine/HCl buffer, pH 2.5, appeared to be the most efficient in our hands, although a number of other less efficient dissociating reagents, including 4.5 M magnesium chloride, pH 7.5, 6 M urea, pH 7, and 0.05 M diethylamine, pH 11.5, also could be used; these may be the elution conditions of choice for other antibody/antigen combinations. The use of affinity-purified antibody solutions instead of the corresponding antisera gave increased signal-to-noise ratios with the detection systems that are commonly used to identify positive signals in screening expression libraries. Protein A- and goat anti-rabbit-alkaline phosphatase conjugates gave the most sensitive signals.
Semerjian, Lucy; Damaj, Ahmad; Salam, Darine
2015-11-01
The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.
Glycosylases utilize ``stop and go'' motion to locate DNA damage
NASA Astrophysics Data System (ADS)
Nelson, Shane
2015-03-01
Oxidative damage to DNA results in alterations that are mutagenic or even cytotoxic. Base excision repair is a mechanism that functions to identify and correct these lesions, and is present in organisms ranging from bacteria to humans. DNA glycosylases are the first enzymes in this pathway and function to locate and remove oxidatively damaged bases, and do so utilizing only thermal energy. However, the question remains of how these enzymes locate and recognize a damaged base among millions of undamaged bases. Utilizing fluorescence video microscopy with high spatial and temporal resolution, we have observed a number of different fluorescently labeled glycosylases (including bacterial FPG, NEI, and NTH as well as mammalian MutyH and OGG). These enzymes diffuse along DNA tightropes at approximately 0.01 +/- 0.005 μm2/s with binding lifetimes ranging from one second to several minutes. Chemically induced damage to the DNA substrate causes a ~ 50% reduction in diffusion coefficients and a ~ 400% increase in binding lifetimes, while mutation of the key ``wedge residue'' - which has been shown to be responsible for damage detection - results in a 200% increase in the diffusion coefficient. Utilizing a sliding window approach to measure diffusion coefficients within individual trajectories, we observe that distributions of diffusion coefficients are bimodal, consistent with periods of diffusive motion interspersed with immobile periods. Utilizing a unique chemo-mechanical simulation approach, we demonstrate that the motion of these glycosylases can be explained as free diffusion along the helical pitch of the DNA, punctuated with two different types of pauses: 1) rapid, short-lived pauses as the enzyme rapidly probes DNA bases to interrogate for damage and, 2) less frequent, longer lived pauses that reflect the enzyme bound to and catalytically removing a damaged base. These simulations also indicate that the wedge residue is critical for interrogation and recognition of damage, and thus enzymes missing this residue diffuse faster. Similarly, chemically induced damage increases the frequency with which the enzymes encounter damaged bases, resulting in slower diffusion.
Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I
2016-04-01
Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.
Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna
2015-11-15
The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-01-01
Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177
Plant Growth and Phosphorus Uptake of Three Riparian Grass Species
USDA-ARS?s Scientific Manuscript database
Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...
Recent theoretical chemical dynamics at Rochester in the paths of Joseph O. Hirschfelder
NASA Technical Reports Server (NTRS)
George, T. F.; Lam, K.-S.; Bhattacharyya, D. K.; Hutchinson, M.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.
1982-01-01
A review of recent theoretical studies of gas-phase molecular rate processes, including various effects of laser radiation, is presented in the context of the extensive and influential work of Joseph O. Hirschfelder during the past half-century. The topics addressed are energy transfer, chemical reactions, unimolecular dissociation, transition states, and bound-continuum interactions.
Mass size distribution of particle-bound water
NASA Astrophysics Data System (ADS)
Canepari, S.; Simonetti, G.; Perrino, C.
2017-09-01
The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).
The Watts Premier M-2400 POE RO Drinking Water Treatment System was tested at the NSF Drinking Water Treatment Systems Laboratory for removal of the viruses fr and MS2, the bacteria Brevundimonas diminuta, and chemicals aldicarb, benzene, cadmium, carbofuran, cesium, chl...
Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei
2009-03-20
We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.
Where is the nitrogen on Mars?
NASA Astrophysics Data System (ADS)
Mancinelli, Rocco L.; Banin, Amos
2003-07-01
Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e. NH3, NH4+, NOx or N that is chemically bound to either inorganic or organic molecules and can be released by hydrolysis to form NH3 or NH4+) is useful to living organisms. Nitrogen on present-day Mars has been analysed only in the atmosphere. The inventory is a small fraction of the amount of nitrogen presumed to have been received by the planet during its accretion. Where is the missing nitrogen? Answering this question is crucial for understanding the probability of the origin and evolution of life on Mars, and for its future astrobiological exploration. The two main processes that could have removed nitrogen from the atmosphere include: (1) non-thermal escape of N atoms to space and (2) burial within the regolith as nitrates and ammonium salts. Nitrate would probably be stable in the highly oxidized surface soil of Mars and could have served as an NO3[minus sign] sink. Such accumulations are observed in certain desert environments on Earth. Some NH4+ nitrogen may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K+. Analysis of the Martian soil for traces of NO3[minus sign] and NH4+ during future missions will provide important information regarding the nitrogen abundance on Mars. We hypothesize that Mars soil, as typical of extremely dry desert soils on Earth, is likely to contain at least some of the missing nitrogen as nitrate salts and some fixed ammonium bound to aluminosilicate minerals.
Oleic acid coated magnetic nano-particles: Synthesis and characterizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.
2015-06-24
Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less
Quenching of I(2P 1/2) by O 3 and O( 3P)
NASA Astrophysics Data System (ADS)
Azyazov, V. N.; Antonov, I. O.; Ruffner, S.; Heaven, M. C.
2006-02-01
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P 1/2) by O atoms and O 3 may impact the efficiency of discharge driven iodine lasers. In the present study we have measured the rate constants for quenching of I(2P 1/2) by O( 3P) atoms and O 3 using pulsed laser photolysis techniques. The rate constant for quenching by O 3, 1.8x10 -12 cm 3 s -1, was found to be a factor of five smaller than the literature value. The rate constant for quenching by O( 3P) was 1.2x10 -11 cm 3 s -1. This was six times larger than a previously reported upper bound, but consistent with estimates obtained by modeling the kinetics of discharge-driven laser systems.
Nucleophilic substitution rates and solubilities for methyl halides in seawater
NASA Astrophysics Data System (ADS)
Elliott, Scott; Rowland, F. Sherwood
1993-06-01
Ozone depletion potentials indicate that methyl bromide is among halogen containing gases which may be scheduled for international level regulation. The oceanic component of its global budget is currently unquantifiable because of a lack of surface seawater measurements. Given values for internal removal and for solubility, marine mixed layer modelling can set bounds for air-sea transfer. Rate constants have been measured in seawater, 0.5m NaCl and distilled water for attack on methyl bromide by the chief oceanic nucleophiles chloride ion and H2O, over much of the oceanographic temperature range (0°C to 22°C). Henry's Law constants have been determined for the same conditions. All results are consistent with classical aqueous phase research adjusted for ionic strength effects. The lifetime of methyl bromide with respect to chemical decay in seawater is three weeks at average surface temperatures, and a factor of ten larger and smaller at the extremes. Its dimensionless solubility ranges from 0.1 to 0.3. Analogous experiments are reported for the other natural methyl halides, CH3Cl and CH3I.
Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo; ...
2018-03-05
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less
Cadmium chemical speciation and absorption in plant in a polluted soil
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Massaccesi, Luisa
2013-04-01
Cadmium is a very toxic heavy metal presents in nature in small amounts, with an average content of 0.2 mg kg-1 in the geosphere. Nonetheless, anthropogenic activities such as industrial processes, large use of phosphate fertilizers and sewage sludge disposals may determine a massive accumulation of Cd in soil. Cd is considered a particularly interesting heavy metal as it can be accumulated by plants to levels that can be toxic to humans and animals, when consumed even in minor amounts. The aim of the present work was to study in a soil polluted with Cd for a long time i) the distribution of Cd in different chemical fractions by means of a sequential extraction procedure; ii) the adsorption of Cd by plants grown in this polluted soil; iii) the change in the distribution of Cd in the soil fractions possibly due to root exudates after plant growing. The chemical fractionation procedure used involved the following forms: a) exchangeable, b) bound to carbonates, c) bound to Fe-Mn oxides and hydroxides, d) bound to organic matter, e) residual part. The following reagents and extraction times were applied: a) 1 M CH3COONa (1:10, w/v; pH 8.2) for 16 h at room temperature; b) 0,1 M CH3COOH for 16 h at room temperature; c) 0,1 M NH2OH•HCl (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; d) 30% H2O2 (adjusted to pH 2.0 with HNO3) at 85 °C, followed by extraction with 1 M CH3COONH4 (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; e) acid digestion with concentrated HNO3 and 30% H2O2 for residue fraction. Festuca seeds were germinated in the contaminated soil in plastic flats and non-contaminated soil. After two days the seedling were submitted to day/night conditions. The seedlings were collected 6 weeks after seeding and divided in roots and shoots and analysed for Cd concentration. The polluted soil has average Cd content of 200 mg kg-1, instead, the Cd content in the same unpolluted soil was about 0.44 mg kg-1. The speciation results showed that a significant amount of Cd (45%), before plant seeding, was associated with the metal oxide fraction (typically Fe-Mn oxides and hydroxides) followed to Cd bound to soil organic matter (39%), despite the content of organic matter in the soil was very low. Instead the amount of Cd bound to carbonates (13%), exchangeable phase (1%) and residue fraction (2.5%) were negligible. After six weeks of plant seeding the Cd fractionation was slightly different, with a decrease of metal bound to oxide and hydroxide from 45% to 29% and an increase of fraction bound to carbonate from 13% to 19% and exchangeable fraction from 1% to 8%. The roots system of Festuca had colonized all pot and the fractionation of metal was disturbed by plants growth. Roots may induce changes in the biochemical, chemical and physical properties of the rhizosphere increasing potentially toxic elements diffusion through the production of roots exudates. The soil environment immediately adjacent to the root can be strongly influenced by root exudates, so that chemical process of dissolution, chelation and precipitation outside the root also occur. Cd was absorbed by plant root in a great concentration, but not translocation to leafs was noticed.
7 CFR 3201.55 - Ink removers and cleaners.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Ink removers and cleaners. 3201.55 Section 3201.55... Designated Items § 3201.55 Ink removers and cleaners. (a) Definition. Chemical products designed to remove ink, haze, glaze, and other residual ink contaminants from the surfaces of equipment, such as rollers...
7 CFR 3201.55 - Ink removers and cleaners.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Ink removers and cleaners. 3201.55 Section 3201.55... Designated Items § 3201.55 Ink removers and cleaners. (a) Definition. Chemical products designed to remove ink, haze, glaze, and other residual ink contaminants from the surfaces of equipment, such as rollers...
7 CFR 3201.55 - Ink removers and cleaners.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Ink removers and cleaners. 3201.55 Section 3201.55... Designated Items § 3201.55 Ink removers and cleaners. (a) Definition. Chemical products designed to remove ink, haze, glaze, and other residual ink contaminants from the surfaces of equipment, such as rollers...
7 CFR 2902.55 - Ink removers and cleaners.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Ink removers and cleaners. 2902.55 Section 2902.55... Items § 2902.55 Ink removers and cleaners. (a) Definition. Chemical products designed to remove ink, haze, glaze, and other residual ink contaminants from the surfaces of equipment, such as rollers, used...
Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng
2014-09-01
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.
Gomes, I B; Lemos, M; Mathieu, L; Simões, M; Simões, L C
2018-08-01
The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175mg·l -1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses. Copyright © 2018 Elsevier B.V. All rights reserved.
27 CFR 19.309 - Disposition of chemicals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Disposition of chemicals... Chemical Byproducts § 19.309 Disposition of chemicals. Chemicals that meet the requirements in § 19.308 may... proprietor must determine the quantities of chemicals removed from bonded premises and keep records of...
27 CFR 19.308 - Spirits content of chemicals produced.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chemicals produced. 19.308 Section 19.308 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Spirits Rules for Chemical Byproducts § 19.308 Spirits content of chemicals produced. All chemicals and chemical byproducts produced must be substantially free of spirits before being removed from bonded...
27 CFR 19.309 - Disposition of chemicals.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Disposition of chemicals... Chemical Byproducts § 19.309 Disposition of chemicals. Chemicals that meet the requirements in § 19.308 may... proprietor must determine the quantities of chemicals removed from bonded premises and keep records of...
27 CFR 19.309 - Disposition of chemicals.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Disposition of chemicals... Chemical Byproducts § 19.309 Disposition of chemicals. Chemicals that meet the requirements in § 19.308 may... proprietor must determine the quantities of chemicals removed from bonded premises and keep records of...
27 CFR 19.309 - Disposition of chemicals.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Disposition of chemicals... Chemical Byproducts § 19.309 Disposition of chemicals. Chemicals that meet the requirements in § 19.308 may... proprietor must determine the quantities of chemicals removed from bonded premises and keep records of...
27 CFR 19.308 - Spirits content of chemicals produced.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chemicals produced. 19.308 Section 19.308 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Spirits Rules for Chemical Byproducts § 19.308 Spirits content of chemicals produced. All chemicals and chemical byproducts produced must be substantially free of spirits before being removed from bonded...
27 CFR 19.308 - Spirits content of chemicals produced.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chemicals produced. 19.308 Section 19.308 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Spirits Rules for Chemical Byproducts § 19.308 Spirits content of chemicals produced. All chemicals and chemical byproducts produced must be substantially free of spirits before being removed from bonded...
27 CFR 19.308 - Spirits content of chemicals produced.
Code of Federal Regulations, 2014 CFR
2014-04-01
... chemicals produced. 19.308 Section 19.308 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Spirits Rules for Chemical Byproducts § 19.308 Spirits content of chemicals produced. All chemicals and chemical byproducts produced must be substantially free of spirits before being removed from bonded...
NASA Astrophysics Data System (ADS)
Jianxiu, Su; Xiqu, Chen; Jiaxi, Du; Renke, Kang
2010-05-01
Distribution forms of abrasives in the chemical mechanical polishing (CMP) process are analyzed based on experimental results. Then the relationships between the wafer, the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics. According to the track length of abrasives on the wafer surface, the relationships between the material removal rate and the polishing velocity are obtained. The analysis results are in accord with the experimental results. The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP.
Biodegradation of organic chemicals in soil/water microcosms system: Model development
Liu, L.; Tindall, J.A.; Friedel, M.J.; Zhang, W.
2007-01-01
The chemical interactions of hydrophobic organic contaminants with soils and sediments may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. In order to illustrate the recalcitrance of chemical to degradation on sites, a sorption mechanism of intraparticle sequestration was postulated to operate on chemical remediation sites. Pseudo-first order sequestration kinetics is used in the study with the hypothesis that sequestration is an irreversibly surface-mediated process. A mathematical model based on mass balance equations was developed to describe the fate of chemical degradation in soil/water microcosm systems. In the model, diffusion was represented by Fick's second law, local sorption-desorption by a linear isotherm, irreversible sequestration by a pseudo-first order kinetics and biodegradation by Monod kinetics. Solutions were obtained to provide estimates of chemical concentrations. The mathematical model was applied to a benzene biodegradation batch test and simulated model responses correlated well compared to measurements of biodegradation of benzene in the batch soil/water microcosm system. A sensitivity analysis was performed to assess the effects of several parameters on model behavior. Overall chemical removal rate decreased and sequestration increased quickly with an increase in the sorption partition coefficient. When soil particle radius, a, was greater than 1 mm, an increase in radius produced a significant decrease in overall chemical removal rate as well as an increase in sequestration. However, when soil particle radius was less than 0.1 mm, an increase in radius resulted in small changes in the removal rate and sequestration. As pseudo-first order sequestration rate increased, both chemical removal rate and sequestration increased slightly. Model simulation results showed that desorption resistance played an important role in the bioavailability of organic chemicals in porous media. Complete biostabilization of chemicals on remediation sites can be achieved when the concentration of the reversibly sorbed chemical reduces to zero (i.e., undetectable), with a certain amount of irreversibly sequestrated chemical left inside the soil particle solid phase. ?? 2006 Springer Science + Business Media B.V.
Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.
Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang
2014-10-20
Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies
NASA Astrophysics Data System (ADS)
Starkov, Konstantin E.
2018-02-01
In this paper ultimate dynamics of the five-dimensional cancer tumor growth model at the angiogenesis phase is studied. This model elaborated by Pinho et al. in 2014 describes interactions between normal/cancer/endothelial cells under chemotherapy/anti-angiogenic agents in tumor growth process. The author derives ultimate upper bounds for normal/tumor/endothelial cells concentrations and ultimate upper and lower bounds for chemical/anti-angiogenic concentrations. Global asymptotic tumor clearance conditions are obtained for two versions: the use of only chemotherapy and the combined application of chemotherapy and anti-angiogenic therapy. These conditions are established as the attraction conditions to the maximum invariant set in the tumor free plane, and furthermore, the case is examined when this set consists only of tumor free equilibrium points.
Ligand Depot: a data warehouse for ligands bound to macromolecules.
Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John
2004-09-01
Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.
Rescic, Jan; Mikulic-Petkovsek, Maja; Rusjan, Denis
2016-11-01
The interest in producing wines preferred by consumers increases the need for improving practices to modify grape and wine composition. The aim of this study was to assess the impacts of three different canopy management measures, (1) early leaf removal in the cluster zone, (2) removal of young leaves above the second pair of wires and (3) Double Maturation Raisonnée, on the yield and chemical composition of 'Istrian Malvasia' grape and wine. Double Maturation Raisonnée had a significantly greater impact on phenolic compounds, while the highest soluble solids (24.3 and 23.5 °Brix) and titratable acidity (7.0 and 7.1 g L -1 ) were measured at early leaf removal. Leaf removal at véraison caused an unexpected augmentation of flavonols in the berry skin. Early leaf removal resulted in significantly lower extracts of wine. Nevertheless, they reached the highest mark (16.5 out of 20.0 points) in sensory evaluation compared with leaf removal at véraison and Double Maturation Raisonnée (15.0 points) and control (16.0 points). Leaf removal at véraison and Double Maturation Raisonnée improved the phenolic composition of wine, producing a full-bodied wine. On the other hand, early leaf removal significantly augmented the yield and titratable acidity, hydroxycinnamic acids and flavanols of wine, which might have led to a fresher but less-bodied wine. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John
2014-01-01
The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures. © 2013.
Paint removal activities in the US Navy
NASA Astrophysics Data System (ADS)
Kozol, Joseph
1993-03-01
Use of methylene chloride and phenol based chemical strippers for aircraft paint removal generates large quantities of hazardous waste and creates health and safety problems for operating personnel. This paper presents an overview of the U.S. Navy's activities in the investigation and implementation of alternate paint stripping methods which will minimize or eliminate hazardous waste and provide a safe operating environment. Alternate paint removal methods under investigation by the Navy at the present time include use of non-hazardous chemical paint removers, xenon flashlamp/CO2 pellets, lasers and plastic media. Plastic media blasting represents a mature technology in current usage for aircraft paint stripping and is being investigated for determination of its effects on Navy composite aircraft configurations.
Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J
2017-06-01
Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.
Zhu, Zhengqiu; Chen, Bin; Qiu, Sihang; Wang, Rongxiao; Chen, Feiran; Wang, Yiping; Qiu, Xiaogang
2018-03-27
Chemical production activities in industrial districts pose great threats to the surrounding atmospheric environment and human health. Therefore, developing appropriate and intelligent pollution controlling strategies for the management team to monitor chemical production processes is significantly essential in a chemical industrial district. The literature shows that playing a chemical plant environmental protection (CPEP) game can force the chemical plants to be more compliant with environmental protection authorities and reduce the potential risks of hazardous gas dispersion accidents. However, results of the current literature strictly rely on several perfect assumptions which rarely hold in real-world domains, especially when dealing with human adversaries. To address bounded rationality and limited observability in human cognition, the CPEP game is extended to generate robust schedules of inspection resources for inspection agencies. The present paper is innovative on the following contributions: (i) The CPEP model is extended by taking observation frequency and observation cost of adversaries into account, and thus better reflects the industrial reality; (ii) Uncertainties such as attackers with bounded rationality, attackers with limited observation and incomplete information (i.e., the attacker's parameters) are integrated into the extended CPEP model; (iii) Learning curve theory is employed to determine the attacker's observability in the game solver. Results in the case study imply that this work improves the decision-making process for environmental protection authorities in practical fields by bringing more rewards to the inspection agencies and by acquiring more compliance from chemical plants.
Wang, Rongxiao; Chen, Feiran; Wang, Yiping; Qiu, Xiaogang
2018-01-01
Chemical production activities in industrial districts pose great threats to the surrounding atmospheric environment and human health. Therefore, developing appropriate and intelligent pollution controlling strategies for the management team to monitor chemical production processes is significantly essential in a chemical industrial district. The literature shows that playing a chemical plant environmental protection (CPEP) game can force the chemical plants to be more compliant with environmental protection authorities and reduce the potential risks of hazardous gas dispersion accidents. However, results of the current literature strictly rely on several perfect assumptions which rarely hold in real-world domains, especially when dealing with human adversaries. To address bounded rationality and limited observability in human cognition, the CPEP game is extended to generate robust schedules of inspection resources for inspection agencies. The present paper is innovative on the following contributions: (i) The CPEP model is extended by taking observation frequency and observation cost of adversaries into account, and thus better reflects the industrial reality; (ii) Uncertainties such as attackers with bounded rationality, attackers with limited observation and incomplete information (i.e., the attacker’s parameters) are integrated into the extended CPEP model; (iii) Learning curve theory is employed to determine the attacker’s observability in the game solver. Results in the case study imply that this work improves the decision-making process for environmental protection authorities in practical fields by bringing more rewards to the inspection agencies and by acquiring more compliance from chemical plants. PMID:29584679
NASA Astrophysics Data System (ADS)
Liolios, K.; Tsihrintzis, V.; Angelidis, P.; Georgiev, K.; Georgiev, I.
2016-10-01
Current developments on modeling of groundwater flow and contaminant transport and removal in the porous media of Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) are first reviewed in a short way. The two usual environmental engineering approaches, the black-box and the process-based one, are briefly presented. Next, recent research results obtained by using these two approaches are briefly discussed as application examples, where emphasis is given to the evaluation of the optimal design and operation parameters concerning HSF CWs. For the black-box approach, the use of Artificial Neural Networks is discussed for the formulation of models, which predict the removal performance of HSF CWs. A novel mathematical prove is presented, which concerns the dependence of the first-order removal coefficient on the Temperature and the Hydraulic Residence Time. For the process-based approach, an application example is first discussed which concerns procedures to evaluate the optimal range of values for the removal coefficient, dependent on either the Temperature or the Hydraulic Residence Time. This evaluation is based on simulating available experimental results of pilot-scale units operated in Democritus University of Thrace, Xanthi, Greece. Further, in a second example, a novel enlargement of the system of Partial Differential Equations is presented, in order to include geothermal effects. Finally, in a third example, the case of parameters uncertainty concerning biodegradation procedures is considered and the use of upper and a novel approach is presented, which concerns the upper and the lower solution bound for the practical draft design of HSF CWs.
Removal of trivalent and hexavalent chromium by seaweed biosorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratochvil, D.; Volesky, B.; Pimentel, P.
1998-09-15
Protonated or Ca-form Sargassum seaweed biomass bound up to 40 mg/g of Cr(III) by ion exchange at pH 4. An ion-exchange model assuming that the only species taken up by the biomass was Cr(OH){sup 2+} successfully fitted the experimental biosorption data for Cr(III). The maximum uptake of Cr(VI) by protonated Sargassum biomass at pH 2 was explained by simultaneous anion exchange and Cr(VI) to Cr(III) reduction. At pH <2.0, the reduction of Cr(VI) to Cr(III) dominated the equilibrium behavior of the batch systems, which was explained by the dependence of the reduction potential of HCrO{sub 4}{sup {minus}} ions on themore » pH. At pH >2.0, the removal of Cr(VI) was linked to the depletion of protons in equilibrium batch systems via an anion-exchange reaction. The optimum pH for Cr(VI) removal by sorption lies in the region where the two mechanisms overlap, which for Sargassum biomass is in the vicinity of pH 2. The existence of the optimum pH for the removal of Cr(VI) may be explained by taking into account (a) the desorption of Cr(III) from biomass at low pH and (b) the effect of pH on the reduction potential of Cr(VI) in aqueous solutions. Seventy percent of Cr(VI) bound to the seaweed at pH 2 can be desorbed with 0.2 M H{sub 2}SO{sub 4} via reduction to Cr(III).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanley, Simon W. M.; Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk
Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin tomore » cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities and their refined occupancies, with the fourth bound atom being a Cl atom (in the cisplatin case) or a portion of the CBDC moiety (in the carboplatin case)« less
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Camarillo, Mary Kay; Domen, Jeremy K; Stringfellow, William T
2016-12-01
Produced water is a significant waste stream that can be treated and reused; however, the removal of production chemicals-such as those added in hydraulic fracturing-must be addressed. One motivation for treating and reusing produced water is that current disposal methods-typically consisting of deep well injection and percolation in infiltration pits-are being limited. Furthermore, oil and gas production often occurs in arid regions where there is demand for new water sources. In this paper, hydraulic fracturing chemical additive data from California are used as a case study where physical-chemical and biodegradation data are summarized and used to screen for appropriate produced water treatment technologies. The data indicate that hydraulic fracturing chemicals are largely treatable; however, data are missing for 24 of the 193 chemical additives identified. More than one-third of organic chemicals have data indicating biodegradability, suggesting biological treatment would be effective. Adsorption-based methods and partitioning of chemicals into oil for subsequent separation is expected to be effective for approximately one-third of chemicals. Volatilization-based treatment methods (e.g. air stripping) will only be effective for approximately 10% of chemicals. Reverse osmosis is a good catch-all with over 70% of organic chemicals expected to be removed efficiently. Other technologies such as electrocoagulation and advanced oxidation are promising but lack demonstration. Chemicals of most concern due to prevalence, toxicity, and lack of data include propargyl alcohol, 2-mercaptoethyl alcohol, tetrakis hydroxymethyl-phosphonium sulfate, thioglycolic acid, 2-bromo-3-nitrilopropionamide, formaldehyde polymers, polymers of acrylic acid, quaternary ammonium compounds, and surfactants (e.g. ethoxylated alcohols). Future studies should examine the fate of hydraulic fracturing chemicals in produced water treatment trains to demonstrate removal and clarify interactions between upstream and downstream processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performances of multiprocessor multidisk architectures for continuous media storage
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Messerli, Vincent; Hersch, Roger D.
1996-03-01
Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of data with strict synchronicity and isochronicity requirements. In order to fulfill these requirements, we consider a parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation and simulation the behavior of two multi-processor multi-disk architectures: a point-to-point architecture and a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two architectures on the basis of two multimedia algorithms: the compute-bound frame resizing by resampling and the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local memories located closely to their respective processors could partially remove this bottleneck. The point- to-point architecture is scalable and able to sustain high throughputs for simultaneous compute- bound and data-bound operations.
Singularity in the positive Hall coeffcient near pre-onset temperatures in high-Tc superconductors
NASA Astrophysics Data System (ADS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.; Moon, B. M.; Safari, A.; Burke, T.; Stanley, W.
1990-10-01
Hall measurements using continuous extremely slow cooling and reheating rates as well as employing eqiulibrium point-by-point conventional techniques reveals a clear anomally in RH at pre-onset temperatures near Tc in polycrystalline samples Y1Ba2Cu3O7 and Bi2Sr2Ca2Cu3O10. The anomaly has the appearance of a singularity of Dirac-delta function which parallels earlier work on La1-xSrxCuO4. Recent single crystal work on the Bi-containing high-Tc superconductor is in accord with a clearcut anomaly. The singularity is tentatively interpreted to be associated (upon cooling) with initially the removal of positive holes from the hopping conduction system of the normal state such as from the increased concentration of bound virtual excitons due to increased exciton and hole lifetimes at low temperature. Subsequently the formation of Cooper pairs by mediation from these centers (bound-holes) and/or bound excitons) may cause an ionization of these bound virtual excitons thereby re-introducing holes and electrons into the conduction system at Tc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-25
... April 27, 2012 (77 FR 25236) (FRL-9343-4). If you have questions regarding the applicability of this... (77 FR 25236). If you have questions, consult the technical person listed under FOR FURTHER... 2070-AB27 Significant New Use Rules on a Certain Chemical Substance; Removal of Significant New Use...
Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J
2013-11-13
A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trace contaminant control simulation computer program, version 8.1
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.
Ultrasonically assisted extraction of calcium and ash from char
NASA Astrophysics Data System (ADS)
Mathumba, E. E.; Mbaya, R. K. K.; Kolesnikov, A.
2018-03-01
This study characterized and removed calcium and ash content from char to improve the chemical quality of char as reductant for titanium smelting application. Calcium in char can be classified in two parts: mineral matter and cationic metals associated with organic matrix. Virgin and chemically treated char was characterized by using ISO 1171, wet chemistry methods, ISO 19579, XRF, and B.E.T. methods. In this present work, demineralization of char with mild chemical leachants such as acetic acid, citric acid, gluconic acid and Ethylene Diamine Tetra Acetic acid with three different ultrasonic power input (150 W, 270 W and 300 W) and semi-dual frequency of 40 kHz tank was investigated. Actual power dissipated into the system was calculated from the calorimetric measurement. An optimum set of process parameters are identified and validated. The ultrasound technology was compared with soaking technology to determine the efficiency of ultrasound system for the removal of calcium. The removal of calcium was exponentially higher with ultrasonic treatment than without it. Results revealed that mild chemical reagents do not harm the carbon content of char. It is evident from the results that amongst the leachants used; acetic and citric acid has caused significant removal of mineral phases.
Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R
2015-05-01
Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nilsen, Elena B.; Alvarez, David A.
2011-01-01
Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post-removal sampling compared to the pre-removal sampling. * Several PAHs were detected at relatively high concentrations in core samples, likely indicating historical sources. * Most commonly detected PAHs in sediments were 2,6-dimethylnaphthalene, fluoranthene, perylene, and pyrene. * Most commonly detected AWIs in sediments were 3-methyl-1h-indole (skatol), acetophenone, indole, phenol, and paracresol. * Sedimentary concentrations of perylene exceeded available sediment quality guidelines. Perylene is widespread in the environment and has large potential natural sources in addition to its anthropogenic sources. * Concentrations of metals did not exceed sediment quality guidelines. * Multiple organochlorine pesticides, both banned and currently used, were detected at each site using passive samplers. * Commonly detected pesticides included hexachlorobenzene, pentachloroanisole (a degradation product of pentachlorophenol), diazinon, cis-chlordane, endosulfan, DDD, and endosulfan sulfate. * PBDE concentrations detected in passive sampler extracts were less than the method detection limit at all sites with the exception of PBDE-99, detected at a concentration less than the reporting limit. * The fragrance galaxolide was detected at a concentration greater than the method detection limit. * Common PAHs, such as phenanthrene, fluoranthene, and pyrene, were detected in every passive sampler. * Dissolved oxygen concentration was slightly higher at site CCS1 compared to site CCS2 in both years. * Overall, there was no systematic increase in chemicals of concern at the restoration site during post-removal monitoring compared to conditions during pre-removal monitoring. Any immediate, short-duration effects of piling removal on water quality could not be determined because monitoring was not conducted during the removal.
Elevated levels of antibodies against xenobiotics in a subgroup of healthy subjects
Vojdani, Aristo; Kharrazian, Datis; Mukherjee, Partha Sarathi
2015-01-01
In spite of numerous research efforts, the exact etiology of autoimmune diseases remains largely unknown. Genetics and environmental factors, including xenobiotics, are believed to be involved in the induction of autoimmune disease. Some environmental chemicals, acting as haptens, can bind to a high-molecular-weight carrier protein such as human serum albumin (HSA), causing the immune system to misidentify self-tissue as an invader and launch an immune response against it, leading to autoimmunity. This study aimed to examine the percentage of blood samples from healthy donors in which chemical agents mounted immune challenges and produced antibodies against HSA-bound chemicals. The levels of specific antibodies against 12 different chemicals bound to HSA were measured by ELISA in serum from 400 blood donors. We found that 10% (IgG) and 17% (IgM) of tested individuals showed significant antibody elevation against aflatoxin-HSA adduct. The percentage of elevation against the other 11 chemicals ranged from 8% to 22% (IgG) and 13% to 18% (IgM). Performance of serial dilution and inhibition of the chemical–antibody reaction by specific antigens but not by non-specific antigens were indicative of the specificity of these antibodies. Although we lack information about chemical exposure in the tested individuals, detection of antibodies against various protein adducts may indicate chronic exposure to these chemical haptens in about 20% of the tested individuals. Currently the pathological significance of these antibodies in human blood is still unclear, and this protein adduct formation could be one of the mechanisms by which environmental chemicals induce autoimmune reactivity in a significant percentage of the population. PMID:25042713
Method for removing elemental sulfur in sour gas wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sample, T.E. Jr.
1975-09-30
A process is described for removing sulfur deposits from sour gas wells. The formation, well, and surface equipment are contacted with a chemical composition whose aqueous solution will solubilize the sulfur by primary chemical reaction and contains a wetting agent to facilitate and accelerate the sulfur dissolution and removal. The wetting agent or surfactant may be any of a wide variety of surface-active substances such as soaps, sodium or ammonium salts of alkyl or alkyl-aryl sulfates and sulfonates. Nonionic surfactants are preferred, such as ethoxylated substituted phenols. The aqueous solvents are capable of chemically reacting with sulfur to form water-solublemore » sulfur derivatives and include aqueous solutions of alkalies, bases (both inorganic and organic), ammonia, sulfites, bisulfites, etc. (6 claims)« less
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu
2014-02-01
Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.
ERIC Educational Resources Information Center
Zimmerbauer, Kaj; Paasi, Anssi
2013-01-01
Regions as well as their identities and borders are social and discursive constructs that are produced and removed in contested, historically contingent and context-bound processes of institutionalization and deinstitutionalization. This article studies the deinstitutionalization of regions in the context of municipality amalgamations and the…
Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...
USDA-ARS?s Scientific Manuscript database
Current federal and state soil and water conservation programs consist primarily of cost-sharing or compensating farmers for implementing a set of pre-defined best management practices which do not consider specific environmental outcomes or cost-effectiveness of the program at the farm or watershed...
The fate and transport of metallic pollutants through a watershed are related to the characteristics of undissolved solid particles to which they are bound. Removal of these particles and their associated pollutants via engineered structures such as settling ponds i one goal of s...
Leadership in Context: Observations from Two Island Communities
ERIC Educational Resources Information Center
Billot, Jennie
2005-01-01
This article refers to just one example of specificity of context, the small island community. Islands can be viewed as well-bounded communities, often with an identity that seeks to be one step removed from being the politically dependent neighbour. Two islands serve to exemplify the significance of context: The Island of Jersey (Channel…
Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.
2004-05-18
A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.
Wei, Dong; Zhang, Keyi; Ngo, Huu Hao; Guo, Wenshan; Wang, Siyu; Li, Jibin; Han, Fei; Du, Bin; Wei, Qin
2017-04-01
In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH 4 + -N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO 2 had a much higher value than that of N 2 O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae
2015-10-01
The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ.
Beneficial reuse and sustainability: the fate of organic compounds in land-applied waste.
Overcash, Michael; Sims, Ronald C; Sims, Judith L; Nieman, J Karl C
2005-01-01
Land application systems, also referred to as beneficial reuse systems, are engineered systems that have defined and permitted application areas based on site and waste characteristics to determine the land area size requirement. These terrestrial systems have orders of magnitude greater microbial capability and residence time to achieve decomposition and assimilation compared with aquatic systems. In this paper we focus on current information and information needs related to terrestrial fate pathways in land treatment systems. Attention is given to conventional organic chemicals as well as new estrogenic and pharmaceutical chemicals of commerce. Specific terrestrial fate pathways addressed include: decomposition, bound residue formation, leaching, runoff, and crop uptake. Molecular decomposition and formation of bound residues provide the basis for the design and regulation of land treatment systems. These mechanisms allow for assimilation of wastes and nondegradation of the environment and accomplish the goal of sustainable land use. Bound residues that are biologically produced are relatively immobile, degrade at rates similar to natural soil materials, and should present a significantly reduced risk to the environment as opposed to parent contaminants. With regard to leaching and runoff pathways, no comprehensive summary or mathematical model of organic chemical migration from land treatment systems has been developed. For the crop uptake pathway, a critical need exists to develop information for nonagricultural chemicals and to address full-scale performance and monitoring at more land application sites. The limited technology choices for treatment of biosolids, liquids, and other wastes implies that acceptance of some risks and occurrence of some benefits will continue to characterize land application practices that contribute directly to the goal of beneficial reuse and sustainability.
"Cleaning" the Surface of Hydroxyapatite Nanorods by a Reaction-Dissolution Approach.
Cao, Binrui; Yang, Mingying; Wang, Lin; Xu, Hong; Zhu, Ye; Mao, Chuanbin
2015-10-21
Synthetic nanoparticles are always terminated with coating molecules, which are often cytotoxic and not desired in biomedicine. Here we propose a novel reaction-dissolution approach to remove the cytotoxic coating molecules. A two-component solution is added to the nanoparticle solution; one component reacts with the coating molecules to form a salt whereas another is a solvent for dissolving and thus removing the salt. As a proof of concept, this work uses a NaOH-ethanol solution to remove the cytotoxic linoleic acid molecules coated on the hydroxyapatite nanorods (HAP-NRs). The removal of the coating molecules not only significantly improves the biocompatibility of HAP-NRs but also enables their oriented attachment into tightly-bound superstructures, which mimic the organized HAP crystals in bone and enamel and can promote the osteogenic differentiation of mesenchymal stem cells. Our reaction-dissolution approach can be extended to the surface "cleaning" of other nanomaterials.
NASA Astrophysics Data System (ADS)
Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.
2017-12-01
Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.
NASA Astrophysics Data System (ADS)
Mowbray, Andrew James
We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.
Thermodynamics of Computational Copying in Biochemical Systems
NASA Astrophysics Data System (ADS)
Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein
2017-04-01
Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.
Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek
2018-08-15
Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke
2015-06-01
Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water
Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei
2017-01-01
An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939
Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.
Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei
2017-07-19
An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .
Cheng, Hsin-Han; Hsieh, Chu-Chin
2010-10-15
There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K(L)a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K(L)a, liquid/gas ratio, pH and C(NaOCl). 2010 Elsevier B.V. All rights reserved.
Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Winter 2000
2001-04-01
Burning/Open Detonation of Energetic Materials ➨Emission factors from a draft EPA report are incorporated into the guidance Site Restoration ➨Method...Aqueous Cleaner Recycle System Microfiltration Removes oil/grease & TSS from alkaline and acid cleaning baths Commodore Separation Technologies, Inc... Microfiltration Removes all heavy metals from wastewater and recycles water Infinity Chemicals Group Infinity Prep-L Deoxidizing Chemical
Figure and caption for LDRD annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T.
2017-10-16
Material removal rate of various optical material workpieces polished using various colloidal slurries as a function of partial charge difference. Partial charge difference is a parameter calculated from a new chemical model proposed to link the condensation reaction rate with polishing material removal rate. This chemical model can serve as a global platform to predict & design polishing processes for a wide variety of workpiece materials and slurry compositions.
Ozone Depleting Chemical (ODC) Replacement - Alternative Cleaning Solvents and Lubricants.
1995-02-01
surface. This phenomenon helps to explain why some aqueous based cleaners (such as Daraclean®) can effectively remove fluorinated greases (such as...structurally similar to hydrocarbon oils, waxes, and greases it removes. In some fluorinated greases such as Krytox®, only solvents identically similar to...the contaminant (such as Tribolube®, a fluorinated solvent) effectively dissolves them. Hexane and methanol, being members of different chemical
Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.
Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A
2014-04-15
Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping
2013-01-01
Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.
NASA Astrophysics Data System (ADS)
Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu
2012-05-01
In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.
NASA Astrophysics Data System (ADS)
Bonaccorso, Angela
2015-02-01
Among exotic nuclei those at the drip line which are unstable against neutron emission are particularly interesting because they convey information on the nuclear force in the most extreme situations. Strictly speaking they are not ''nuclei" but they exist thanks to long living resonances between a neutron and a bound ''core" nucleus. Adding one more neutron they become bound and are called "borromean". Being particularly exotic they have attracted much attention in past years, see for example Refs.[1, 2, 3]. One very challenging example is 13Be whose level ordering has been discussed in a large number of papers in which it has been studied by transfer [4] and fragmentation experiments [5]-[11], or it has been discussed theoretically[12]-[19]. Although projectile fragmentation spectra show evident similarities, the interpretations of data all differ from each other. In this paper we argue that a way trough the problem could be to try to establish first, or at the same time, the quite elusive "nature" of the second s-state in the Beryllium isotopes with A=9-14. On the other hand there are other recent neutron removal experiments leading to nuclei unstable by one or more proton emissions [20], and thus somewhat mirror to borromean nuclei, performed with nuclei close to the proton drip line. It has been shown that by taking in coincidence all (charged) particles but the removed neutron, reconstructing the invariant mass and gating on the ground state peak, it is possible to obtain the longitudinal momentum distribution of the unbound "core". One can link it to the original wave function of the bound orbital and thus determine the initial neutron angular momentum from the shape of the distribution and the initial occupation probability from the absolute removal cross section. Then it is clear that modern experiments and theories are able to study unstable nuclei with the same degree of accuracy as stable nuclei. Such a line of research offers a great potential for numerous further studies beyond the drip line.
Grey fuzzy optimization model for water quality management of a river system
NASA Astrophysics Data System (ADS)
Karmakar, Subhankar; Mujumdar, P. P.
2006-07-01
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.
Holroyde, M J; Chesher, J M; Trayer, I P; Walker, D G
1976-01-01
The synthesis of N-(6-aminohexanoyl)-2-amino-2-deoxy-D-glucose is described and it was shown to be a competitive inhibitor (Ki, 0.75 mM) with respect to glucose of rat hepatic glucokinase (EC 2.7.1.2). After attachment to CNBr-activated Sepharose 4B, this derivative was able to remove glucokinase quantitatively from crude liver extracts and release it when the columns were developed with glucose, glucosamine, N-acetyl-glucosamine or KC1. Repeated exposure of the columns to liver extracts led to rapid loss in their effectiveness as affinity matrices because proteins other than glucokinase are bound to the columns. The nature of such protein binding and methods for the rejuvenation of "used" columns are discussed along with the effect of the mode of preparation of the Sepharose-ligand conjugate and the concentration of bound ligand on the purification of glucokinase. Glucose 6-phosphate dehydrogenase is cited as an example of both non-specific protein binding to the affinity column and of the importance of the control of ligand concentration in removing such non-specifically bound proteins. Some guidelines emerged that should be generally applicable to other systems, particularly those which involve affinity chromatography of enzymes that are present in tissue extracts in very low amounts and possess only a relatively low association constant for the immobilized ligand. PMID:1275893
Persons, John D; Khan, Shahid N; Ishima, Rieko
2018-04-12
This manuscript presents an NMR strategy to investigate conformational differences in protein-inhibitor complexes, when the inhibitors tightly bind to a protein at sub-nanomolar dissociation constants and are highly analogous to each other. Using HIV-1 protease (PR), we previously evaluated amide chemical shift differences, ΔCSPs, of PR bound to darunavir (DRV) compared to PR bound to several DRV analogue inhibitors, to investigate subtle but significant long-distance conformation changes caused by the inhibitor's chemical moiety variation [Khan, S. N., Persons, J. D. Paulsen, J. L., Guerrero, M., Schiffer, C. A., Kurt-Yilmaz, N., and Ishima, R., Biochemistry, (2018), 57, 1652-1662]. However, ΔCSPs are not ideal for investigating subtle PR-inhibitor interface differences because intrinsic differences in the electron shielding of the inhibitors affect protein ΔCSPs. NMR relaxation is also not suitable as it is not sensitive enough to detect small conformational differences in rigid regions among similar PR-inhibitor complexes. Thus, to gain insight into conformational differences at the inhibitor-protein interface, we recorded 15 N-half filtered NOESY spectra of PR bound to two highly analogous inhibitors and assessed NOEs between PR amide protons and inhibitor protons, between PR amide protons and hydroxyl side chains, and between PR amide protons and water protons. We also verified the PR amide-water NOEs using 2D water-NOE/ROE experiments. Differences in water-amide proton NOE peaks, possibly due to amide-protein hydrogen bonds, were observed between subunit A and subunit B, and between the DRV-bound form and an analogous inhibitor-bound form, which may contribute to remote conformational changes. Copyright © 2018 Elsevier Inc. All rights reserved.
Ion Exchange Technology Development in Support of the Urine Processor Assembly
NASA Technical Reports Server (NTRS)
Mitchell, Julie; Broyan, James; Pickering, Karen
2013-01-01
The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.
40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for... when the PMN substance is bound or embedded into a plastic, resin matrix, or pellet. (iii) Industrial...
40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for... when the PMN substance is bound or embedded into a plastic, resin matrix, or pellet. (iii) Industrial...
NASA Astrophysics Data System (ADS)
Ogura, Kenji; Okamura, Hideyasu
2013-10-01
Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.
Real-time biochemical assay telemetering system
NASA Technical Reports Server (NTRS)
Kern, Roger G. (Inventor); Mintz, Frederick W. (Inventor); Richards, Gil F. (Inventor); Kidwell, David A. (Inventor)
1999-01-01
The present invention is an apparatus and a method of detecting a chemical released by perspiration, typically through sweat and broadcasting the detection to a receiver. The chemical may be a drug of abuse. The device which is attached to the skin of a subject contains labeled antibodies or label containing microspheres attached to antibodies. The labeled antibodies are bound to solid phase drug via antigen-antibody interaction. These labeled antibodies are displaced from the solid phase support to which they are bound by free drug molecules in the perspiration. These labeled antibodies then migrate through a spacer layer and are trapped by a layer containing a suitable selective binding material. The label is illuminated or excited by a light source and detected by a photodetector. The signal can be recorded, or transmitted to a remote radio monitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.
Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that themore » mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.« less
Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy
Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.
2008-01-01
Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719
Zhang, Jie; Xu, Lu-Lu; Gan, Dan; Zhang, Xingping
2018-06-01
The increase in the prevalence of drug-resistant Acinetobacter baumannii is a serious public health concern, which is closely linked to the formation of biofilm. It is reported that the bacteriophage and its endolysin have a good ability to degrade biofilms. The goals of this study were to compare the ability of A. baumannii bacteriophage AB3, its endolysin AB3, and three antibiotics to degrade A. baumannii biofilm and biofilm-bound A. baumannii and to understand the antibacterial mechanism of LysAB3. The 558-bp sequence of the LysAB3 gene was amplified by polymerase chain reaction (PCR); the fragment was cloned into pET28a (+) to construct the recombinant plasmid pET28a-LysAB3, which was then expressed in E. coli BL21 (DE3) to obtain the LysAB3. Differences in A. baumannii biofilm and biofilm-bound A. baumannii after treatment with bacteriophage AB3, LysAB3 or three antibiotics were examined using the crystal violet staining method and an MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) assay. Changes in biofilm morphology and thickness in each treatment group were observed by laser scanning confocal microscopy. In addition, a LysAB3 construct with the amphiphilic peptide structural region removed (LysAB3-D) was assessed for its antibacterial activity. After 24-hour treatment with either bacteriophage AB3 and its LysAB3, A. baumannii biofilms were significantly degraded, and the number of viable biofilm-bound A. baumannii were also significantly decreased. After removing the amphiphilic peptide structure motif from LysAB3, the antibacterial activity decreased from 95.8% to 33.3%. Thus, LysAB3 can effectively degrade A. baumannii biofilm and biofilm-bound A. baumannii in vitro. The antibacterial mechanism of LysAB3 may be associated with the ability of the amphiphilic peptide structural region to enhance the permeability of cytoplasmic membrane of A. baumannii by degradation of bacterial wall peptidoglycan.
Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser
NASA Astrophysics Data System (ADS)
Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-05-01
The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.
Kalmykova, Yuliya; Moona, Nashita; Strömvall, Ann-Margret; Björklund, Karin
2014-06-01
Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partin, J.K.; Ward, T.E.; Grey, A.E.
1990-12-31
This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
Fiber optic detector for immuno-testing
Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.
1992-01-01
A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
NASA Astrophysics Data System (ADS)
Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.
1990-04-01
This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D
2011-05-01
This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (<0.1). General indices such as the BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fibrous Filter to Protect Building Environments from Polluting Agents: A Review
NASA Astrophysics Data System (ADS)
Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu
2016-04-01
This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.
Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N
2017-09-01
In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.
Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong
2018-02-15
In this study, alginate and polyvinyl alcohol (PVA)-alginate entrapped nanoscale zero-valent iron (nZVI) was tested for structural evolution, chemical transformation, and metals/metalloids removal (Cu(II), Cr(VI), Zn(II), and As(V)) after 1-2month passivation in model saline wastewaters from hydraulic fracturing. X-ray diffraction analysis confirmed successful prevention of Fe 0 corrosion by polymeric entrapment. Increasing ionic strength (I) from 0 to 4.10M (deionized water to Day-90 fracturing wastewater (FWW)) with prolonged aging time induced chemical instability of alginate due to dissociation of carboxyl groups and competition for hydrogen bonding with nZVI, which caused high Na (7.17%) and total organic carbon (24.6%) dissolution from PVA-alginate entrapped nZVI after 2-month immersion in Day-90 FWW. Compared to freshly-made beads, 2-month aging of PVA-alginate entrapped nZVI in Day-90 FWW promoted Cu(II) and Cr(VI) uptake in terms of the highest removal efficiency (84.2% and 70.8%), pseudo-second-order surface area-normalized rate coefficient k sa (2.09×10 -1 Lm -2 h -1 and 1.84×10 -1 Lm -2 h -1 ), and Fe dissolution after 8-h reaction (13.9% and 8.45%). However, the same conditions inhibited Zn(II) and As(V) sequestration in terms of the lowest removal efficiency (31.2% and 39.8%) by PVA-alginate nZVI and k sa (4.74×10 -2 Lm -2 h -1 and 6.15×10 -2 Lm -2 h -1 ) by alginate nZVI. The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in metals/metalloids removal by entrapped nZVI after aging was attributed to distinctive removal mechanisms: (i) enhanced Cu(II) and Cr(VI) removal by nZVI reduction with accelerated electron transfer after pronounced dissolution of non-conductive polymeric immobilization matrix; (ii) suppressed Zn(II) and As(V) removal by nZVI adsorption due to restrained mass transfer after blockage of surface-active micropores. Entrapped nZVI was chemically fragile and should be properly stored and regularly replaced for good performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Biomachining - A new approach for micromachining of metals
NASA Astrophysics Data System (ADS)
Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.
2018-04-01
Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.
Ruminal degradation of cell wall associated nitrogenous compounds of several (15) N-labelled feeds.
Vanegas, Jorge L; Arroyo, José M; González, Javier
2016-09-01
Ruminal in situ effective degradability (ED) of dry matter (DM), neutral (NDF) and acid (ADF) detergent fibres, total-N and NDF (NDIN) and ADF (ADIN) bound-N in sunflower seed (SS), wheat grain (WG) and wheat straw (WS) were measured in three ruminally cannulated sheep, correcting microbial N-contamination using the (15) N dilution technique modified to consider the (15) N supply to adherent bacteria. The lack of correction for N-contamination under-evaluated ED estimates in 1.52% (total-N), 28.0% (NDIN) and 33.3% (ADIN) in SS and in 1.02% (total-N) and 4.43% (NDIN) in WG. In the remaining cases, this contamination prevented establishing apparent degradation kinetics and, therefore, errors were not measured. Microbial corrected ED estimates in SS were higher in total-N (0.917) than in NDIN (0.559) and ADIN (0.520), which showed similar values. This behaviour was also shown in WS (0.670, 0.386 and 0.426, respectively), whereas decreasing values were shown from total-N (0.917) to NDIN (0.830) and ADIN (0.482) in WG. Results confirm that NDF and ADF procedures failed to remove large fractions of particle adherent microorganisms, under-evaluating the ED of NDIN and ADIN. Degradation of NDIN represented a significant part of the degraded N, whereas ADIN contribution was only negligible in WG. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Chen, Lei; Wen, Jialin; Zhang, Peng; Yu, Bingjun; Chen, Cheng; Ma, Tianbao; Lu, Xinchun; Kim, Seong H; Qian, Linmao
2018-04-18
Topographic nanomanufacturing with a depth precision down to atomic dimension is of importance for advancement of nanoelectronics with new functionalities. Here we demonstrate a mask-less and chemical-free nanolithography process for regio-specific removal of atomic layers on a single crystalline silicon surface via shear-induced mechanochemical reactions. Since chemical reactions involve only the topmost atomic layer exposed at the interface, the removal of a single atomic layer is possible and the crystalline lattice beneath the processed area remains intact without subsurface structural damages. Molecular dynamics simulations depict the atom-by-atom removal process, where the first atomic layer is removed preferentially through the formation and dissociation of interfacial bridge bonds. Based on the parametric thresholds needed for single atomic layer removal, the critical energy barrier for water-assisted mechanochemical dissociation of Si-Si bonds was determined. The mechanochemical nanolithography method demonstrated here could be extended to nanofabrication of other crystalline materials.
Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.
Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki
2008-05-01
Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.
Removal rate model for magnetorheological finishing of glass.
Degroote, Jessica E; Marino, Anne E; Wilson, John P; Bishop, Amy L; Lambropoulos, John C; Jacobs, Stephen D
2007-11-10
Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magnetorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.
Removal of mercury from an alumina refinery aqueous stream.
Mullett, Mark; Tardio, James; Bhargava, Suresh; Dobbs, Charles
2007-06-01
Digestion condensate is formed as a by-product of the alumina refinery digestion process. The solution exhibits a high pH and is chemically reducing, containing many volatile species such as water, volatile organics, ammonia, and mercury. Because digestion condensate is chemically unique, an innovative approach was required to investigate mercury removal. The mercury capacity and adsorption kinetics were investigated using a number of materials including gold, silver and sulphur impregnated silica and a silver impregnated carbon. The results were compared to commercial sorbents, including extruded and powdered virgin activated carbons and a sulphur impregnated mineral. Nano-gold supported on silica (88% removal under batch conditions and 95% removal under flow conditions) and powdered activated carbon (91% under batch conditions and 98% removal under flow conditions) were the most effective materials investigated. The silver and sulphur impregnated materials were unstable in digestion condensate under the test conditions used.
Solving the chemical master equation using sliding windows
2010-01-01
Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904
NASA Astrophysics Data System (ADS)
Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu
2014-07-01
Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
Biobjective planning of an active debris removal mission
NASA Astrophysics Data System (ADS)
Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel
2013-03-01
The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.
Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.
Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang
2017-08-01
The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.
Hasan, S. W.; Ahmed, I.; Housani, A. A.; Giwa, A.
2016-01-01
The chemical basis for improved removal rates of toxic heavy metals such as Zn and Cu from wastewater secondary sludge has been demonstrated in this study. Instead of using excess corrosive chemicals as the source of free nitrous acid (FNA) for improved solubility of heavy metals in the sludge (in order to enhance electrokinetics), an optimized use of aqua regia has been proposed as an alternative. Fragments of nitrocyl group originated from aqua regia are responsible for the disruption of biogenic mixed liquor volatile suspended solids (MLVSS) and this disruption resulted in enhanced removal of exposed and oxidized metal ions. A diversity of nitric oxide (NO), peroxy nitrous acid, and peroxy nitroso group are expected to be introduced in the mixed liquor by the aqua regia for enhanced electrochemical treatment. The effects of pectin as a post treatment on the Zn removal from sludge were also presented for the first time. Results revealed 63.6% Cu and 93.7% Zn removal efficiencies, as compared to 49% Cu and 74% Zn removal efficiencies reported in a recent study. Also, 93.3% reduction of time-to-filter (TTF), and 95 mL/g of sludge volume index (SVI) were reported. The total operating cost obtained was USD 1.972/wet ton. PMID:27550724
Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; ...
2016-02-01
Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.
Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less
Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?
Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P
2014-01-01
Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.
Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities
NASA Technical Reports Server (NTRS)
Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)
1989-01-01
Chemical differences were noted between two Antarctic cryptoendolithic (hidden within rock) microenvironments colonized by different microbial communities. Microenvironments dominated by cyanobacteria (BPC) had a higher pH (pH 7-8) than those dominated by lichen (LTL) (pH 4.5-5.5). In order to understand the interactions between the microbiota and the inorganic environment, the inorganic environment was characterized. Water-soluble, carbonate-bound, metal-oxide, organically bound, and residual inorganic species were sequentially extracted from rock samples by chemical means. Each fraction was then quantified using inductively coupled plasma atomic emission spectrometry. BPC contained much more water-soluble and carbonate-bound Ca and Mg than LTL. Metal-oxide species of Al, Fe, and Mn were more abundant in LTL than BPC. Metal oxides appeared to be mobilized (in the order Mn > Fe > Al) from the LTL lichen zone but remained immobile in BPC sandstone. The distribution of K and P bound to metal oxide reflected the distribution of iron oxide in LTL, an indication of the importance of iron in controlling the availability of nutrients in this ecosystem. Metal oxides in turn were likely controlled or influenced by organic matter associated with the lichen community. Despite overall depletion of Fe, Al, and K in the lichen zone, SEM X-ray analysis showed that they were enriched in fungal hyphae. Water-soluble P was present despite the presence of metal oxides, which sequester phosphate. This has biological relevance since P is an essential nutrient.
Basanta, María F; de Escalada Plá, Marina F; Stortz, Carlos A; Rojas, Ana M
2013-01-30
The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. Copyright © 2012 Elsevier Ltd. All rights reserved.
The fundamental nature of life as a chemical system: the part played by inorganic elements.
Williams, Robert J P
2002-02-01
In this article we show why inorganic metal elements from the environment were an essential part of the origin of living aqueous systems of chemicals in flow. Unavoidably such systems have many closely fixed parameters, related to thermodynamic binding constants, for the interaction of the essential exchangeable inorganic metal elements with both inorganic and organic non-metal materials. The binding constants give rise to fixed free metal ion concentration profiles for different metal ions and ligands in the cytoplasm of all cells closely related to the Irving-Williams series. The amounts of bound elements depend on the organic molecules present as well as these free ion concentrations. This system must have predated coding which is probably only essential for reproductive life. Later evolution in changing chemical environments became based on the development of extra cytoplasmic compartments containing quite different energised free (and bound) element contents but in feed-back communication with the central primitive cytoplasm which changed little. Hence species multiplied late in evolution in large part due to the coupling with the altered inorganic environment.
40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...
40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...
40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...
40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...
Molecular evidence for biodegradation of geomacromolecules
NASA Astrophysics Data System (ADS)
Jenisch-Anton, A.; Adam, P.; Michaelis, W.; Connan, J.; Herrmann, D.; Rohmer, M.; Albrecht, P.
2000-10-01
The biodegradability of macromolecular organic structures of geological origin was investigated by performing in vitro studies. Cultures of the common Nocardioides simplex were grown, first, on a high molecular weight, asymmetric thioether (1-(phytanylsulfanyl)-octadecane 1) and then on macromolecular fractions isolated from a sulfur-rich oil. Gross data indicate that bacteria convert macromolecular substances to material of higher polarity by oxidizing the abundant thioethers to sulfones and sulfoxides and by introducing new functionalities, such as carboxylic acid, keto or hydroxyl groups. Furthermore, bacteria remineralize the macromolecular structures. Bacterially induced alterations were also studied on a molecular level after chemical desulfurization of the macromolecular structure. Thus, it could be established that the amounts of linear hydrocarbons in the macromolecular structure are decreased relative to branched and cyclic structures due to a preferential bacterial attack of the linear moieties bound to the macromolecules. This is further supported by the detection of S-bound fatty acids resulting from the bacterial oxidation of S-bound n-alkanes. Moreover, N. simplex also degraded sulfur-bound steranes by oxidation of the steroid side-chain leading to S-bound steroid acids.
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
Control of Dogfennel (Eupaforium Capillifolium (Lam.) Small) Does Not Increase Loblolly Pine Yields
James D. Haywood
1980-01-01
Control of dogfennel alone did not increase height or cubic-foot volume of newly planted loblolly pines. Of five treatments - check, removal of dogfennel in the 1st year only, removal of all dogfennel yearly, removal of all competing vegetation biannually, and yearly spraying of all competing vegetation with chemicals-only biannual removal of all competing vegetation...
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun
2010-03-01
Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.
Production of activated carbons from waste tyres for low temperature NOx control.
Al-Rahbi, Amal S; Williams, Paul T
2016-03-01
Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Escher, Beate I; Lawrence, Michael; Macova, Miroslava; Mueller, Jochen F; Poussade, Yvan; Robillot, Cedric; Roux, Annalie; Gernjak, Wolfgang
2011-06-15
Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be explained by the quantified EDCs after reverse osmosis. In comparison, >50% of the estrogenic effect can typically be explained in sewage. Herbicidal activity could be fully explained by chemical analysis as the sampling period coincided with an illegal discharge and two herbicides dominated the mixture effect. The mass balance of the reverse osmosis process matched theoretical expectations for both chemical analysis and bioanalytical tools. Overall the investigated treatment train removed >97% estrogenicity, >99% herbicidal activity, and >96% baseline toxicity, confirming the suitability of the treatment train for polishing water for indirect potable reuse. The product water was indistinguishable from local tap water in all three bioassays. This study demonstrates the suitability and robustness of passive sampling linked with bioanalytical tools for semicontinuous monitoring of advanced water treatment with respect to micropollutant removal.
Chemical synthesis of membrane proteins by the removable backbone modification method.
Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei
2017-12-01
Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.
Faille, C; Bénézech, T; Blel, W; Ronse, A; Ronse, G; Clarisse, M; Slomianny, C
2013-04-01
This study was designed to evaluate the respective roles of mechanical and chemical effects on the removal of Bacillus spores during cleaning-in-place. This analysis was performed on 12 strains belonging to the Bacillus cereus group (B. cereus, Bacillus anthracis, Bacillus thuringiensis) or to less related Bacillus species (Bacillus pumilus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus subtilis). Adherent spores were subjected to rinsing-in-place (mechanical action) and cleaning-in-place (mechanical and chemical actions) procedures, the latter involving NaOH 0.5% at 60°C. Results revealed that mechanical action alone only removed between 53 and 89% of the attached spores at a shear stress of 500 Pa. This resistance to shear was not related to spore surface properties. Conversely, in the presence of NaOH at a shear stress of 4 Pa, spores were readily detached, with between 80 and 99% of the adherent spores detached during CIP and the chemical action greatly depended on the strain. This finding suggests that chemical action plays the major role during CIP, whose efficacy is significantly governed by the spore surface chemistry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)
Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.
2017-01-01
The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158
Hijnen, W A M; Castillo, C; Brouwer-Hanzens, A H; Harmsen, D J H; Cornelissen, E R; van der Kooij, D
2012-12-01
Cleaning of high pressure RO/NF membranes is an important operational tool to control biofouling. Quantitative information on the efficacy of cleaning agents and protocols to remove biomass is scarce. Therefore, a laboratory cleaning test to assess the efficiency of cleaning procedures to remove attached biomass was developed. The major components of the test are (i) production of uniform biofilm samples, (ii) the quantification of the biomass concentrations with robust parameters and (iii) a simple test procedure with optimal exposure of the biofilm samples to the chemicals. The results showed that PVC-P is a suitable substratum for the production of uniform biofilm samples. ATP and carbohydrates (CH) as major components of the biofilm matrix for nucleotides (living bacterial cells) and extracellular polymeric substances EPS, respectively, were selected as robust biomass parameters. The removal of ATP and CH with the NaOH/Sodium Dodecyl Sulfate (SDS) mixture, selected as a standard treatment at pH 12.0, was reproducible. The resistance of the EPS matrix against chemical cleaning was demonstrated by a low CH removal (32.8 ± 6.0%) compared to the ATP removal (70.5 ± 15.1%). The inverse relationship of biomass removal with the CH to ATP ratio (μg/ng) of the biofilms demonstrated the influence of the biomass characteristics on cleaning. None of the 27 chemicals tested (analytical-grade and commercial brands) in single step or in double-step treatments were significantly more effective than NaOH/SDS. Oxidizing agents NaOCl and H(2)O(2), the latter in combination with SDS, both tested as common agents in biofilm control, showed a significantly higher efficiency (70%) to remove biofilms. In the test, simultaneously, the efficiency of agents to remove precipitated minerals such as Fe can be assessed. Validation tests with Cleaning in Place (CIP) in 8 and 2.5-inch RO membrane pilot plant experiments showed similar ranking of the cleaning efficiency of cleaning protocols as determined in the laboratory tests. Further studies with the laboratory test are required to study the effect of cleaning conditions such as duration, temperature, shear forces as well as chemical conditions (concentrations, alternative agents or mixtures and sequence of application) on the efficiency to remove attached biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.
Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
Istenič, Darja; Arias, Carlos A; Vollertsen, Jes; Nielsen, Asbjørn H; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild; Brix, Hans
2012-01-01
Dissolved and colloidal bound pollutants are generally poorly removed from stormwater in wet detention ponds. These fractions are, however, the most bio-available, and therefore three wet detention ponds were amended with planted sand filters, sorption filters and addition of precipitation chemicals to enhance the removal of dissolved pollutants and pollutants associated with fine particles and colloids. The three systems treated runoff from industrial, residential and combined (residential and highway) catchments and had permanent volumes of 1,990, 6,900 and 2,680 m(3), respectively. The treatment performance of the ponds for elimination of total suspended solids (TSS), total nitrogen (Tot-N), total phosphorous (Tot-P), PO(4)-P, Pb, Zn, Cd, Ni, Cr, Cu, Hg were within the range typically reported for wet detention ponds, but the concentrations of most of the pollutants were efficiently reduced by the planted sand filters at the outlets. The sorption filters contributed to further decrease the concentration of PO(4)-P from 0.04 ± 0.05 to 0.01 ± 0.01 mg L(-1) and were also efficient in removing heavy metals. Dosing of iron sulphate to enrich the bottom sediment with iron and dosing of aluminium salts to the inlet water resulted in less growth of phytoplankton, but treatment performance was not significantly affected. Heavy metals (Pb, Zn, Cd, Ni, Cr and Cu) accumulated in the sediment of the ponds. The concentrations of Zn, Ni, Cu and Pb in the roots of the wetland plants were generally correlated to the concentrations in the sediments. Among 13 plant species investigated, Rumex hydrolapathum accumulated the highest concentrations of heavy metals in the roots (Concentration Factor (CF) of 4.5 and 5.9 for Zn and Ni, respectively) and Iris pseudacorus the lowest (CF < 1). The translocation of heavy metals from roots to the aboveground tissues of plants was low. Therefore the potential transfer of heavy metals from the metal-enriched sediment to the surrounding ecosystem via plant uptake and translocation is negligible.
NASA Astrophysics Data System (ADS)
Barbosa, Rui Pedro Fernandes
The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.
Ingle, Brandall L; Veber, Brandon C; Nichols, John W; Tornero-Velez, Rogelio
2016-11-28
The free fraction of a xenobiotic in plasma (F ub ) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data are scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict F ub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18F ub . The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0.11-0.14), and acids (MAE 0.14-0.17). A consensus model had the highest accuracy across both pharmaceuticals (MAE 0.151-0.155) and environmentally relevant chemicals (MAE 0.110-0.131). The inclusion of the majority of the ToxCast test sets within the AD of the consensus model, coupled with high prediction accuracy for these chemicals, indicates the model provides a QSAR for F ub that is broadly applicable to both pharmaceuticals and environmentally relevant chemicals.
A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies
Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.
2016-11-09
In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less
A common origin for globular clusters and ultra-faint dwarfs in simulations of the first galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricotti, Massimo; Parry, Owen H.; Gnedin, Nickolay Y.
In this study, the first in a series on galaxy formation before reionization, we focus on understanding what determines the size and morphology of stellar objects in the first low-mass galaxies, using parsec-scale cosmological simulations performed with an adaptive mesh hydrodynamics code. Although the dense gas in which stars are formed tends to have a disk structure, stars are found in spheroids with little rotation. Halos with masses betweenmore » $${10}^{6}\\,{M}_{\\odot }$$ and $$5\\times {10}^{8}\\,{M}_{\\odot }$$ form stars stochastically, with stellar masses in the range $${10}^{4}\\,{M}_{\\odot }$$ to $$2\\times {10}^{6}\\,{M}_{\\odot }$$. We observe, nearly independent of stellar mass, a large range of half-light radii for the stars, from a few parsecs to a few hundred parsecs and surface brightnesses and mass-to-light ratios ranging from those typical of globular clusters to ultra-faint dwarfs. In our simulations, stars form in dense stellar clusters with high gas-to-star conversion efficiencies and rather uniform metallicities. A fraction of these clusters remain bound after the gas is removed by feedback, but others are destroyed, and their stars, which typically have velocity dispersions of 20–40 km s –1, expand until they become bound by the dark matter halo. We thus speculate that the stars in ultra-faint dwarf galaxies may show kinematic and chemical signatures consistent with their origin in a few distinct stellar clusters. On the other hand, some globular clusters may form at the center of primordial dwarf galaxies and may contain dark matter, perhaps detectable in the outer parts.« less
Evaluation of commercial ultrafiltration systems for treating automotive oily wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, B.R.; Kalis, E.M.; Florkey, D.L.
1998-11-01
Currently at Ford Motor Company, oily wastewater is batch treated by chemical demulsification whose performance depends on determining optimum chemical dosages and is occasionally inconsistent because of influent fluctuations. Therefore, a pilot study was conducted at the Ford Romeo Engine Plant, Romeo, Michigan, to study treatment of raw oily wastewater and skim oil (from chemical deemulsification) using commercially available ultrafiltration (UF) systems as an alternative to chemical deemulsification. The study found that most UF membranes performed consistently and reliably, producing average permeate oil and grease (O and G) concentrations of less than 100 mg/L, a typical discharge limit for anmore » automotive plant. In addition, tubular membranes typically outperformed spiral-wound membranes in permeate flux and washing frequency. While all UF systems performed consistently well for removing O and G, the treated effluent still had a chemical oxygen demand (COD) of 100 to 2,000 mg/L, which is comparable to that found in typical chemically treated wastewater. This indicates that many dissolved organics are not removed by either chemical or UF treatment. Metals (such as copper and zinc) were found to be effectively removed by UF when the pH was greater than 8. Most membranes used as a second stage produced retentate with O and G of more than 40%. All attempts at UF skim oil treatment were unsuccessful because of high oil viscosity, which made pumping it through a membrane system almost impossible. Chemical reactions during the chemical deemulsification process might have been responsible for the high viscosity.« less
Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon
NASA Astrophysics Data System (ADS)
Zhou, Junbo; Hao, Shan; Gao, Liping
2014-04-01
The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.
Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail
2017-01-01
Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L -1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.
Code of Federal Regulations, 2012 CFR
2012-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2014 CFR
2014-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2013 CFR
2013-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
REMOVAL OF ENDOCRINE DISRUPTOR CHEMICALS DURING DRINKING WATER TREATMENT
A group of chemicals, known as endocrine disruptor chemicals (EDCs) have been identified as having the potential to cause adverse health effects in humans and wildlife. Among this group DDT, PCBs, endosulfan, methoxychlor, diethylphthalate, diethylhexylphthalate, and bisphenol A ...
77 FR 38000 - Airworthiness Directives; Various Transport Category Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... generators in the lavatories until the generator oxygen supply is expended, or removing the oxygen generator(s); and, for each chemical oxygen generator, after the generator is expended (or removed), removing... AD was prompted by reports that the current design of the oxygen generators presents a hazard that...
Ejhed, H; Fång, J; Hansen, K; Graae, L; Rahmberg, M; Magnér, J; Dorgeloh, E; Plaza, G
2018-03-15
Micropollutants such as pharmaceuticals, hormones and phenolic utility chemicals in sewage water are considered to be an emerging problem because of increased use and observed adverse effects in the environment. The study provides knowledge on the removal efficiency of micropollutants with a range of physical and chemical properties in three commercially available onsite wastewater treatment facilities (OWTFs), tested on influent wastewater collected from 2500 person equivalents in Bildchen, Germany. A longer hydraulic retention time would in theory be expected to have a positive effect, and this study presents results for three different OWTFs in full-scale comparable tests under natural conditions. A range of 24 different pharmaceuticals, five phenols and three hormones were analyzed. Flow-proportional consecutive sampling was performed in order to determine the removal efficiency. Twenty-eight substances were detected in the effluent wastewater out of 32 substances included. Average effluent concentrations of Simvastatin, Estrone, Estradiol and Ethinylestradiol were above the indicative critical-effect concentration of pharmacological effect on fish in all facilities. Average effluent concentrations of both Diclofenac and Estradiol were higher than the Environmental Quality Standards applied in Sweden (190-240 times and 9-35 times respectively). The removal efficiency of micropollutants was high for substances with high logK ow , which enhance the adsorption and removal with sludge. Low removal was observed for substances with low logK ow and acidic characteristics, and for substances with stabilizing elements of the chemical structure. Facilities that use activated sludge processes removed hormones more efficiently than facilities using trickling filter treatment technique. Moreover, longer hydraulic retention time increased the removal of pharmaceuticals, hormones, turbidity and total nitrogen. Removal of Caffeine, Ibuprofen, Estrone, Naproxen and Estradiol, was strongly correlated to the sludge and particles removal. Thus, the efficiency of the tested OWTFs could be improved by adjusting the technical methods and increasing the hydraulic retention time. Copyright © 2017 Elsevier B.V. All rights reserved.
Replacement solvents for use in chemical synthesis
Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.
2001-05-15
Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.
Innovative technologies for asbestos removal, treatment and recycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Kasper, K.M.
This paper will provide an overview of the Office of Science and Technology`s Decontamination and Decommissioning (D & D) Focus Area`s investment in development and demonstration of innovative technologies for asbestos treatment, removal and recycle. The paper will cover the market opportunities for asbestos abatement, major regulations covering asbestos abatement, baseline technologies used by DOE for removal of asbestos, asbestos-related technology needs submitted by DOE`s Site Technology Coordinating Groups, and asbestos development and demonstration projects supported by the D & D Focus Area and other organizations. Based on the Environmental Management Integrated Database, there are about five million cubic feetmore » of asbestos within the DOE Weapons Complex that will be abated by 2030. DOE has three main forms of asbestos: transite used in building construction, thermal pipe insulation, and floor tile. The D & D Focus Area has or is supporting three projects in asbestos removal, and three projects on destruction of asbestos fibers by chemical and thermal treatment. In asbestos removal, the D & D Focus Area is investigating a robot which removes asbestos insulation from pipes; a laser cutting technology which melts asbestos fibers while cutting insulated pipes; and a vacuum system which removes thermal insulation sandwiched between panels of transite. For destruction of asbestos fibers, the D & D Focus Area is supporting development and demonstration of a trailer-mounted process which destroys asbestos fibers by a combination of thermal and chemical treatment; a three-step process which removes organic and radioactive contaminants from the asbestos prior to decomposing the asbestos fibers by acid attack; and an in situ chemical treatment process to convert asbestos fibers into a non-regulated material.« less
Wong, E A; Shin, G-A
2015-03-01
There has been a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water due to its ubiquitous presence in natural waters and remarkable resistance to both chemical and physical disinfectants in drinking water treatment processes. However, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Therefore, we determined the removal of MAH by alum coagulation, flocculation and sedimentation processes in optimized drinking water treatment conditions using standard jar test equipment. Contrary to the prevailing hypothesis, the results of this study show that removal of MAH by coagulation, flocculation and sedimentation processes was only moderate (approx. 0.65 log10) under low turbidity treatment conditions and the removal of MAH was actually lower than that of Escherichia coli (reference bacterium) in all the waters tested. Overall, the results of this study suggested that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for removing MAH, and more efforts to find an effective control measures against MAH should be made to reduce the risk of MAH infection from drinking water. Despite a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water and its remarkable resistance to water disinfectants, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Contrary to the prevailing hypothesis, the results of this study suggest that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for MAH removal. As these processes have been the last remaining conventional drinking water treatment processes that might be effective against MAH, more efforts should be urgently made to find an effective control measures against this important waterborne pathogen. © 2014 The Society for Applied Microbiology.
Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim
2015-06-21
The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.
NASA Astrophysics Data System (ADS)
Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.
2017-05-01
In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.
Prieto, Gonzalo
2017-03-22
Under specific scenarios, the catalytic hydrogenation of CO 2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO 2 into C 1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C 2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C 1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO 2 to C 2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamics of natural selection III: Landauer's principle in computation and chemistry.
Smith, Eric
2008-05-21
This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.
NASA Astrophysics Data System (ADS)
Rice, Charles V.; Wickham, Jason R.; Eastman, Margaret A.; Harrison, William; Pereira, Mark P.; Brown, Eric D.
2008-08-01
Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, although, with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as high salt concentration (brine veins) and adhesion to particulates or ice crystal defects. Teichoic acid is a phosphodiester polymer ubiquitous in Gram positive bacteria, composing 50% of the mass of the bacterial cell wall and excreted into the extracellular space of biofilm communities. We have found that when bound to the peptidoglycan cell wall (wall teichoic acid) or as a free molecule (lipoteichoic acid), teichoic acid is surrounded by liquid water at temperatures significantly below freezing. Using solid-state NMR, we are unable to collect 31P CPMAS spectra for frozen solutions of lipoteichoic acid at temperatures above -60 °C. For wall teichoic acid in D2O, signals are not seen above -30 °C. These results can be explained by the presence of liquid water, which permits rapid molecular motion to remove 1H/31P dipolar coupling. 2H quadrupole echo NMR spectroscopy reveals that both liquid and solid water are present. We suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.
Inactivation of viruses using novel protein A wash buffers.
Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J
2015-01-01
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.
Morrison, Stan J; Metzler, Donald R; Dwyer, Brian P
2002-05-01
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.
Humphry, R C; Davies, E G; Jacob, T J; Thompson, G M
1988-01-01
The addition of edetic acid (EDTA) or trypsin to the infusion during a simulated extracapsular cataract extraction on cadaver eyes facilitates the removal of lens epithelial cells from the anterior capsule. Modification of the chemical composition of infusions used during extracapsular surgery may maximise lens epithelial cell removal and hence reduce the incidence of opacification of the posterior capsule after cataract extraction. Images PMID:3134044
Study on treatment technology of wastewater from hydrolysis of acid oil
NASA Astrophysics Data System (ADS)
Li, Yuejin; Lin, Zhiyong; Han, Yali
2017-06-01
In this paper, the degumming of ferric chloride, calcium hydroxide after the removal of acid acidification hydrolysis of waste oil as raw material, through the treatment process to purify the wastewater. Choose different chemical additives, investigation of different temperature, pH value and other factors, find the best extraction condition. Through the orthogonal test of sodium carbonate, sodium oxalate, barium carbonate, compared with three kinds of chemical additives. The best chemical assistant is sodium carbonate, the best treatment temperature is 80 degrees Celsius, pH value is 8.0. After the reaction, the content of calcium and iron ions were determined by suitable methods. The removal rate of calcium ion is 98%, the removal rate of iron ion is 99%, and the effect of calcium and iron ion precipitation on the subsequent evaporation operation is reduced. Finally, the comparison is made to clarify the Dilute Glycerol water solution.
Tao, Qinqin; Zhou, Shaoqi
2014-12-01
The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523 ± 2 to 553 ± 2 mV, ∼93 to ∼96 %, and ∼80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ∼50 to ∼43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds.
NASA Astrophysics Data System (ADS)
Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.
2013-09-01
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Weldon Spring Quarry is one of two noncontiguous areas that constitute the US Department of Energy`s (DOE) Weldon Spring site. The main area of the site is the chemical plant. Both areas are located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The US Environmental Protection Agency (EPA) listed the quarry on the National Priorities List (NPL) in 1987, and the chemical plant area was added to the list in 1989. The quarry is about 6.4 km (4 mi) south-southwest of the chemical plant area; it is accessible from State Route 94 andmore » is currently fenced and closed to the public. The quarry is approximately 300 m (1,000 ft) long by 140 m (450 ft) wide and covers an area of approximately 3.6 ha (9 acres). The quarry was used by the Army for disposal of chemically contaminated (explosive) materials in the 1940s and was later used for the disposal of radioactively contaminated material by the Atomic Energy Commission (AEC) in the 1960s. Approximately 110,000 m{sup 3} (144,000 yd{sup 3}) of soil and waste material was removed from the quarry and transported to the chemical plant area as part of completing the remedial action stipulated in the Record of Decision (ROD) for the Quarry Bulk Waste Operable Unit (DOE 1990). Bulk waste removal was completed in October 1995. These wastes have been placed in the disposal cell at the chemical plant. Prior to bulk waste removal, contaminated water contained in the quarry pond was also removed; approximately 170 million liters (44 million gal) have been treated as of March 1998.« less
NASA Astrophysics Data System (ADS)
Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.
2017-08-01
Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (< 20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We suggest a common formation mechanism for these contemporary and relict features, whereby a boulder embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly facilitate rock failure. This implies that models of glacial erosion need to take fracture patterns of bedrock into account.
Method of CO.sub.2 removal from a gasesous stream at reduced temperature
Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A
2014-11-18
A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.
Reducing cement content in concrete mixtures : [research brief].
DOT National Transportation Integrated Search
2011-12-01
Concrete mixtures contain crushed rock or gravel, and sand, bound together by Portland cement in combination with supplemental cementitious materials (SCMs), which harden through a chemical reaction with water. Portland cement is the most costly comp...
Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)
Coplen, Tyler B.; Shrestha, Yesha
2016-01-01
There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.
NASA Astrophysics Data System (ADS)
Aubert, D.; Probst, A.; Stille, P.
2003-04-01
Physical and chemical weathering of rocks and minerals lead to soil formation and allow the removal of chemical elements from these systems to ground- or surface waters. But most of the time the determination of element concentrations in soils is not sufficient to estimate whether they are being accumulated or what is their ability to be released in the environment. Thus, the distribution and chemical binding for a given element is very important because it determines its mobility and potential bioavailability throughout a soil profile. Heavy metals and REE (Rare Earth Elements) are particularly of environmental concern because of their potential toxicity. For most of them, their chemical form strongly depends on the evolution of physico-chemical parameters like pH or redox conditions that will induce adsorption-desorption, complexation or co-precipitation phenomena in the material. The purpose of this study is to determine the distribution of several major and trace elements (especially REE, Th and U) in an acidic forested podzolic soil profile from the Vosges Mountains (France). To achieve this goal we use a 7 step sequential extraction procedure that allows determining precisely the origin and the behaviour of particular elements in the environment (Leleyter et al., 1999). In addition we performed leaching experiments using very dilute acetic and hydrochloric acid in order to establish the origin of REE in this soil. The results of the sequential extraction indicate that most of the metals, Th and U are mainly bound to Fe oxides. Organic matter appears also to be a great carrier of P, Ca, Fe and REE even if its content is very low in the deep horizons of the soil. Moreover, we show that in each soil horizon, middle REE (MREE) to heavy REE (HREE) are more labile than light REE (LREE). Leaching experiments using dilute acid solution further suggest that in the shallowest horizons REE largely derive from atmospheric deposition whereas at greater depth, weathering and particularly phosphate mineral weathering (apatite) is the main contributor to labile REE in the soil.
OXIDATION SCREENING STUDIES FOR CCL ORGANIC CHEMICALS
The understanding of the oxidation reactions associated with the Agency's Contaminant Candidate List (CCL)chemicals is important from several perspectives. Chemicals are added to the CCL because of their potential to negatively impact human health. The removal/control of that che...
Jin, Hanyong; Zhou, Zhenhuan; Wang, Dongmei; Guan, Shanshan; Han, Weiwei
2015-01-01
Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydrolase and β-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the β-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy. PMID:25794283
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.
Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook
2016-07-01
Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savabi, F.; Geiger, P.J.; Bessman, S.P.
1984-03-01
Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references.
Applications of polymeric smart materials to environmental problems.
Gray, H N; Bergbreiter, D E
1997-01-01
New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277
Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza
2017-07-31
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Management of wastewater from the vegetable dehydration industry in Egypt--a case study.
El-Gohary, Fatma; El-Kamah, Hala; Abdel Wahaab, Rifaat; Mahmoud, Mohamed; Ibrahim, Hamdy A
2012-01-01
Management of wastewater from the vegetable dehydration industry was the subject of this study. A continuous monitoring programme for wastewater was carried out for almost four months. The characterization of the wastewater indicated that the vegetable dehydration wastewater contains moderate concentrations of organics, solids and nutrients. The wastewater was subjected to three different treatment processes, namely aerobic treatment, anaerobic treatment and chemical coagulation-flocculation treatment. For aerobic treatment, the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total suspended solids (TSS) was accomplished within 5 h, and no further reduction was observed after that, with the steady state COD and BOD5 removal efficiencies being 95% +/- 10% and 97% +/- 8%, respectively. For anaerobic treatment, the removal efficiencies for COD, BOD5 and TSS were 67-81%, 70-86% and 56-69%, respectively at hydraulic retention times (HRTs) of 5, 6 and 8 h. Chemical coagulation-flocculation treatment also achieved good results. The COD removal efficiency was 72%, 51% and 75% for ferric chloride (56 g/m3 of wastewater), lime (140 g/m3 of wastewater) and ferric chloride aided with lime (100 g/m3 for ferric chloride and 200 g/m3 for lime), respectively. The corresponding TSS removal values were 92% +/- 17%, 20% +/- 7% and 93% +/- 9%. Based on the available results and the seasonally operated mode of this industry in Egypt, the chemical coagulation-flocculation process is therefore considered to be moste applicable from a technical point of view and for the simplicity of operation and maintenance.
Removal characteristics of anionic metals by micellar-enhanced ultrafiltration.
Baek, Kitae; Kim, Bo-Kyong; Cho, Hyun-Jeong; Yang, Ji-Won
2003-05-30
Surfactant-based separation of Fe(CN)(6)(3-) and CrO(4)(2-) using regenerated cellulose membrane was studied in order to assess the potential of micellar-enhanced ultrafiltration for the remediation of wastewater or groundwater polluted with ferriccyanide and chromate. In the ferriccyanide/octadecylamine acetate (ODA) and chromate/ODA systems, removal of ferriccyanide increased from 73 to 92% and to 98%, and that of chromate from 64 to 97% and to >99.9% as the molar ratio of ODA to ferriccyanide and to chromate increased from 1 to 2 and to 3, respectively. In the ferriccyanide/chromate/ODA system, while the removal of ferriccyanide increased from 62 to 72% and to 93%, the removal of chromate from 20 to 38% and to 68% as the molar ratio of ferriccyanide:chromate:ODA increased from 1:1:1 to 1:1:2 and to 1:1:4, respectively. With the molar ratio of 1:1:6, the removal was >99.9 and 98% for chromate and ferriccyanide, respectively. Ferriccyanide ions were more easily bound to ODA micelles because the binding power of ferriccyanide was greater than that of chromate.
Data Needs for Stellar Atmosphere and Spectrum Modeling
NASA Technical Reports Server (NTRS)
Short, C. I.
2006-01-01
The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.
Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN
NASA Astrophysics Data System (ADS)
Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.
2006-06-01
Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.
Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.
Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel
2016-11-04
Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Riley, Stephanie M; Ahoor, Danika C; Regnery, Julia; Cath, Tzahi Y
2018-02-01
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
The use of specific antibodies to mediate fusion between Sendai virus envelopes and living cells.
Loyter, A; Tomasi, M; Gitman, A G; Etinger, L; Nussbaum, O
1984-01-01
Incubation of Sendai virus particles with non-ionic detergents such as Triton X-100 completely solubilizes the viral envelopes. Removal of the detergent from the supernatant (which contains the two main viral glycoproteins) leads to the formation of fusogenic, reconstituted viral envelopes. Soluble macromolecules such as DNA or proteins can be enclosed within the reconstituted vesicles, while membrane components can be inserted into the viral envelopes. Fusion of such loaded or 'hybrid' reconstituted envelopes with living cells in culture results in either microinjection or transfer of the viral components to the recipient cells. Thus such reconstituted envelopes can serve as efficient carriers for the introduction of macromolecules of biological interest into living cells in culture. A more specific vehicle has been constructed by chemically coupling anti-cell membrane antibodies (anti-human erythrocyte antibody) to the viral envelope. Such antibody-bearing intact virus particles or reconstituted envelopes bound to and fused with virus receptor-depleted cells. In addition, anti-Sendai virus antibodies were coupled to neuraminidase-treated human erythrocytes. Such antibodies mediated the binding and fusion of intact Sendai virus particles and their reconstituted envelopes to virus receptor-depleted cells.
Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography
NASA Astrophysics Data System (ADS)
Ducker, Robert E.; Montague, Matthew T.; Sun, Shuqing; Leggett, Graham J.
2007-09-01
Using a scanning near-field optical microscope coupled to a UV laser, an approach we term scanning near-field photolithography (SNP), structures as small as 9 nm (ca. λ/30) may be fabricated in self-assembled monolayers of alkanethiols on gold surfaces. Selective exposure of the adsorbate molecules in the near field leads to photoconversion of the alkylthiolate to a weakly bound alkylsulfonate which may be displaced readily be a contrasting thiol, leading to a chemical pattern, or used as a resist for the selective etching of the underlying metal. A novel ultra-mild etch for gold is reported, and used to etch structures as small as 9 nm. Photopatterning of oligo(ethylene glycol) (OEG) terminated selfassembled monolayers facilitates the fabrication of biomolecular nanostructures. Selective removal of the protein-resistant OEG terminated adsorbates created regions that may be functionalized with a second thiol and derivatized with a biomolecule. Finally, the application of SNP to nanopatterning on oxide surfaces is demonstrated. Selective exposure of monolayers of phosphonic acids adsorbed onto aluminum oxide leads to cleavage of the P-C bond and desorption of the adsorbate molecule. Subsequent etching, using aqueous based, yields structures as small as 100 nm.
46 CFR 194.05-5 - Chemicals in the chemistry laboratory.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...
46 CFR 194.05-5 - Chemicals in the chemistry laboratory.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...
46 CFR 194.05-5 - Chemicals in the chemistry laboratory.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...
46 CFR 194.05-5 - Chemicals in the chemistry laboratory.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...
46 CFR 194.05-5 - Chemicals in the chemistry laboratory.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked or...
27 CFR 19.736 - Daily production records.
Code of Federal Regulations, 2010 CFR
2010-04-01
... removed from the premises. (7) The quantity and testing for alcoholic content of fusel oil or other chemicals removed from the production system and the disposition thereof with the name of the consignee, if...