Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique
2015-01-01
Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination. PMID:25874750
Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique
2015-01-01
Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination.
Co-extinction in a host-parasite network: identifying key hosts for network stability.
Dallas, Tad; Cornelius, Emily
2015-08-17
Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.
Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S
2017-04-26
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Conserving genetic diversity in Ponderosa Pine ecosystem restoration
L.E. DeWald
2017-01-01
Restoration treatments in the ponderosa pine (Pinus ponderosa P. & C. Lawson) ecosystems of the southwestern United States often include removing over 80 percent of post-EuroAmerican settlement-aged trees to create healthier forest structural conditions. These types of stand density reductions can have negative effects on genetic diversity. Allozyme analyses...
Matt D. Busse; Samual E. Beattie; Robert F. Powers; Felipe G. Sanchez; Allan E. Tiarks
2006-01-01
We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...
Bacterial dynamics in steady-state biofilters: beyond functional stability.
Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis
2012-01-01
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.
Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones
NASA Astrophysics Data System (ADS)
Penn, Justin; Weber, Thomas; Deutsch, Curtis
2016-09-01
Oxygen deficient zones (ODZs) below the ocean surface regulate marine productivity by removing bioavailable nitrogen (N). A complex microbial community mediates N loss, but the interplay of its diverse metabolisms is poorly understood. We present an ecosystem model of the North Pacific ODZ that reproduces observed chemical distributions yet predicts different ODZ structure, rates, and climatic sensitivity compared to traditional geochemical models. An emergent lower O2 limit for aerobic nitrification lies below the upper O2 threshold for anaerobic denitrification, creating a zone of microbial coexistence that causes a larger ODZ but slower total rates of N loss. The O2-dependent competition for the intermediate nitrite produces gradients in its oxidation versus reduction, anammox versus heterotrophic denitrification, and the net ecological stoichiometry of N loss. The latter effect implies that an externally driven ODZ expansion should favor communities that more efficiently remove N, increasing the sensitivity of the N cycle to climate change.
Erasers of Histone Acetylation: The Histone Deacetylase Enzymes
Seto, Edward; Yoshida, Minoru
2014-01-01
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964
Visualisation and graph-theoretic analysis of a large-scale protein structural interactome
Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael
2003-01-01
Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933
Design and construction of phosphorus removal structures for improving water quality
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) input to surface waters is considered the most limiting nutrient with regard to eutrophication. The result has been a negative impact on recreation, ecosystem diversity, drinking water treatment, and the associated economics of each. Depending on region, over 50% of P inputs to surfa...
Robert A. Haack; Robert E. Acciavatti; Toby Petrice; Robert Davdison
2000-01-01
Ground beetles (Carabidae) are often used as bioindicators in land-use studies because they are (1) diverse, (2) abundant, (3) well known taxonomically, and (4) appear highly sensitive to habitat change. In 1996, we initiated a study on the Huron-Manistee National Forests in Newaygo County, Michigan, to document changes in the carabid community structure as a result of...
Angelini, Christine; Silliman, Brian R
2014-01-01
Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions.
Gu, Dungang; Xu, Huan; He, Yan; Zhao, Feng; Huang, Minsheng
2015-01-01
Macrophyte combined with artificial aeration is a promising in situ remediation approach for urban rivers polluted with nutrients and organic matter. However, seasonal variations and aeration effects on phytoremediation performance and root-adhered microbial communities are still unclear. In this study, Pontederia cordata was used to treat polluted urban river water under various aeration intensities. Results showed that the highest removal efficiencies of chemical oxygen demand (COD(Cr)) and total nitrogen (TN) were attained under aeration of 30 L min(-1) in spring and summer and 15 L min(-1) in autumn, while total phosphorus (TP) removal reached maximum with aeration of 15 L min(-1) in all seasons. Moderate aeration was beneficial for increasing the diversity of root-adhered bacteria communities, and the shift of bacterial community structure was more pronounced in spring and autumn with varying aeration intensity. The dual effect, i.e. turbulence and dissolved oxygen (DO), of aeration on the removal of COD(Cr) and TN prevailed over the individual effect of DO, while DO was the most influential factor for TP removal and the root-adhered bacterial community diversity. P. cordata combined with 15 L min(-1) aeration was deemed to be the best condition tested in this study.
Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao
2017-11-01
Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Passive reestablishment of riparian vegetation following removal of invasive knotweed (Polygonum)
Shannon M. Claeson; Peter A. Bisson
2013-01-01
Japanese knotweed and congeners are invasive to North America and Europe and spread aggressively along rivers establishing dense monotypic stands, thereby reducing native riparian plant diversity, structure, and function. Noxious weed control programs attempt to eradicate the knotweed with repeated herbicide applications under the assumption that the system will...
Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena
2015-01-01
Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953
Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves
2015-12-01
A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bakker, Elisabeth S.; Gill, Jacquelyn L.; Johnson, Christopher N.; Vera, Frans W. M.; Sandom, Christopher J.; Asner, Gregory P.; Svenning, Jens-Christian
2016-01-01
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions. PMID:26504223
Bakker, Elisabeth S; Gill, Jacquelyn L; Johnson, Christopher N; Vera, Frans W M; Sandom, Christopher J; Asner, Gregory P; Svenning, Jens-Christian
2016-01-26
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World's terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions.
Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik
2017-01-01
Recent emphasis on increasing structural complexity and species diversity reflective of natural ecosystems through the use of retention harvesting approaches is coinciding with increased demand for forest-derived bioenergy feedstocks, largely sourced through the removal of harvest residues associated with whole-tree harvest. Uncertainties about the consequences of such...
Listopad, Claudia M C S; Köbel, Melanie; Príncipe, Adriana; Gonçalves, Paula; Branquinho, Cristina
2018-01-01
Climate change and increasing socio-economic pressure is placing many ecosystems of high ecological and economic value at risk. This is particularly urgent in dryland ecosystems, such as the montado, a multifunctional savannah-like system heavily modeled by grazing. There is still an ongoing debate about the trade-offs between livestock grazing and the potential for ecosystem regeneration. While it is consensual that overgrazing hinders the development of the shrubs and trees in this system, the effects of undergrazing or grazing exclusion are unclear. This study provides the unique opportunity to study the impact of grazing on compositional and structural biodiversity by examining the ecological chronosequence in a long-term ecological research site, located in Portugal, where grazing exclusion was controlled for over 15years. As the threat of intensification persists, even in areas where climate shifts are evident, there is a critical need to understand if and how the montado might recover by removing grazing pressure. We evaluate succession on structural and compositional diversity after grazing pressure is removed from the landscape at 5, 10, and 15years post-cattle exclusion and contrast it with currently grazed plots. A LiDAR-derived structural diversity index (LHDI), a surrogate of ecosystem structure and function first developed for the pine-grassland woodland systems, is used to quantify the impact of grazing exclusion on structure and natural regeneration. The distribution of the vegetation, particularly those of the herbaceous and shrub strata (>10≤150cm), presents statistically significant changes. The LHDI closely mimics the compositional biodiversity of the shrubs, with an increase in diversity with increased years without grazing. Under present climate conditions, both shrub regeneration and the establishment of tree saplings were strongly promoted by grazing exclusion, which has important management implications for the long-term sustainability of montado systems. Copyright © 2017 Elsevier B.V. All rights reserved.
What Should a Restored River Look Like? (Invited)
NASA Astrophysics Data System (ADS)
Florsheim, J. L.; Chin, A.
2010-12-01
Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause economic and cultural impacts to a public that that has often encroached on land too close to the riparian zone to accommodate the magnitude of these processes. Thus, to accomplish river system restoration in rural areas, science is needed to inform policy-makers and managers about the multidimensional physical extent of the riparian zone required for restoration of bio-hydro-geomorphic processes that promote functioning ecology. In urban areas, river system restoration requires a long-term dedication to education, fund raising for land acquisition, infrastructure removal, as well as planning, new riparian policy, governance, and management that takes into account the value and dynamic nature of river processes. So, what should a restored river look like? The banks of the restored river might be thought of as an aquatic-terrestrial ecotone that is longitudinally, laterally, and vertically connected to adjacent ecosystems. This ecotone includes a non-stationary mosaic of bare ground, irregular topography, live vegetation of diverse ages, sizes, and type, dead woody material, and diverse fauna.
The role of macrobiota in structuring microbial communities along rocky shores
Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.
2014-10-16
Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less
The role of macrobiota in structuring microbial communities along rocky shores
Gilbert, Jack A.; Gibbons, Sean M.
2014-01-01
Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459
Pereira, Alyne Duarte; Leal, Cíntia Dutra; Dias, Marcela França; Etchebehere, Claudia; Chernicharo, Carlos Augusto L; de Araújo, Juliana Calabria
2014-08-01
The effects of phenol on the nitrogen removal performance of a sequencing batch reactor (SBR) with anammox activity and on the microbial community within the reactor were evaluated. A phenol concentration of 300 mg L(-1) reduced the ammonium-nitrogen removal efficiency of the SBR from 96.5% to 47%. The addition of phenol changed the microbial community structure and composition considerably, as shown by denaturing gradient gel electrophoresis and 454 pyrosequencing of 16S rRNA genes. Some phyla, such as Proteobacteria, Verrucomicrobia, and Firmicutes, increased in abundance, whereas others, such as Acidobacteria, Chloroflexi, Planctomycetes, GN04, WS3, and NKB19, decreased. The diversity of the anammox bacteria was also affected by phenol: sequences related to Candidatus Brocadia fulgida were no longer detected, whereas sequences related to Ca. Brocadia sp. 40 and Ca. Jettenia asiatica persisted. These results indicate that phenol adversely affects anammox metabolism and changes the bacterial community within the anammox reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stokholm-Bjerregaard, Mikkel; McIlroy, Simon J; Nierychlo, Marta; Karst, Søren M; Albertsen, Mads; Nielsen, Per H
2017-01-01
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The " Candidatus Accumulibacter" PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus , and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio , the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
How mammalian predation contributes to tropical tree community structure.
Paine, C E Timothy; Beck, Harald; Terborgh, John
2016-12-01
The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.
Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng
2014-01-01
A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981
7 CFR 81.9 - Inspection and certification of diversion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... diversion. When the removal of the prune-plum trees is complete, the producer(s) will notify the Committee on a form provided by the Committee. The Committee will certify that the trees approved for removal...
7 CFR 81.9 - Inspection and certification of diversion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... diversion. When the removal of the prune-plum trees is complete, the producer(s) will notify the Committee on a form provided by the Committee. The Committee will certify that the trees approved for removal...
Petri, R M; Forster, R J; Yang, W; McKinnon, J J; McAllister, T A
2012-06-01
To determine the effects of the removal of forage in high-concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture-independent methods. Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson's index of 16S PCR-DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real-time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P ≤ 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M
2015-04-01
Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
7 CFR 82.9 - Inspection and certification of diversion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... diversion. When the removal of the clingstone peach trees is complete, the grower will notify the CCPA on a form provided by the CCPA. The CCPA will certify that the trees approved for removal from the acreage...
7 CFR 82.9 - Inspection and certification of diversion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... diversion. When the removal of the clingstone peach trees is complete, the grower will notify the CCPA on a form provided by the CCPA. The CCPA will certify that the trees approved for removal from the acreage...
Mohanty, Bijoy K; Kushner, Sidney R
2010-01-01
Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.
Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott
2018-05-01
The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.
Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang
2015-01-01
Biofiltration has been widely used to reduce organic matter and control the formation of disinfection by-products in drinking water. Backwashing might affect the biofilters' performance and the attached microbiota on filter medium. In this study, the impacts of backwashing on the removal of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and N-nitrosamine precursors by a pilot-scale biological activated carbon (BAC) filtration system were investigated. The impacts of backwashing on biomass and microbial community structure of BAC biofilm were also investigated. Phospholipid fatty acid (PLFA) analysis showed that backwashing reduced nearly half of the attached biomass on granular activated carbon (GAC) particles, followed by a recovery to the pre-backwashing biomass concentration in 2 days after backwashing. Backwashing was found to transitionally improve the removal of DOC, DON and N-nitrosamine precursors. MiSeq sequencing analysis revealed that backwashing had a strong impact on the bacterial diversity and community structure of BAC biofilm, but they could gradually recover with the operating time after backwashing. Phylum Proteobacteria was the largest bacterial group in BAC biofilm. Microorganisms from genera Bradyrhizobium, Hyphomicrobium, Microcystis and Sphingobium might contribute to the effective removal of nitrogenous organic compounds by drinking water biofilter. This work could add some new insights towards the operation of drinking water biofilters and the biological removal of organic matter.
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Morley, S.A.; Duda, J.J.; Coe, H.J.; Kloehn, K.K.; McHenry, M.L.
2008-01-01
The impending removal of two dams on the Elwha River in Washington State offers a unique opportunity to study ecosystem restoration at a watershed scale. We examine how periphyton and benthic invertebrate assemblages vary across regulated and unregulated sections of the Elwha River and across different habitat types, and establish baseline data for tracking future changes following dam removal. We collected multiple years of data on physical habitat, water chemistry, periphyton, and benthic invertebrates from 52 sites on the Elwha River and a reference section on the Quinault River, a neighboring basin. We found that substrate in regulated river sections was coarser and less heterogeneous in size than in unregulated sections, and summer water temperature and specific conductivity higher. Periphyton biomass was also consistently higher in regulated than unregulated sections. Benthic invertebrate assemblage structure at sites above both dams was distinct from sites between and below the dams, due in large part to dominance of mayfly taxa compared to higher relative abundance of midges and non-insect taxa at downstream sites. Following dam removal, we anticipate that both periphyton and benthic invertebrate abundance and diversity will temporarily decrease between and below dams as a result of sediment released from behind the reservoirs. Over the long-term, increased floodplain heterogeneity and recolonization by anadromous fish will alter benthic invertebrate and periphyton assemblages via increases in niche diversity and inputs of marine-derived nutrients. The extended timeline predicted for Elwha River recovery and the complexities of forecasting ecological response highlights the need for more long-term assessments of dam removal and river restoration practices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CLINGSTONE PEACH DIVERSION PROGRAM § 82.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... CLINGSTONE PEACH DIVERSION PROGRAM § 82.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... CLINGSTONE PEACH DIVERSION PROGRAM § 82.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... CLINGSTONE PEACH DIVERSION PROGRAM § 82.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of...
Soto-Cerda, Braulio J; Cloutier, Sylvie
2013-01-01
Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations ( F ST = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically ( P > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.
Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K
2011-08-01
A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guarnieri, Giuseppe; Bevilacqua, Stanislao; Vignes, Fabio; Fraschetti, Simonetta
2014-07-01
Increasing anthropogenic pressures are causing long-lasting regime shifts from high-diversity ecosystems to low-diversity degraded ones. Understanding the effects of multiple threats on ecosystems, and identifying processes allowing for the recovery of biodiversity, are the current major challenges in ecology. In several temperate marine areas, large parts of rocky subtidal habitats characterised by high diversity have been completely degraded to barren grounds by overfishing, including illegal date mussel fishing. Bare areas are characterized by the dominance of sea urchins whose grazing perpetuates the impact of overfishing. We investigated experimentally the separate and combined effects of nutrient enrichment and sea urchin exclusion on the recovery of barren grounds. Our results indicate that the two factors have a synergistic effect leading to the re-establishment of erect macroalgal canopies, enhancing the structural complexity of subtidal assemblages. In particular, in the overfished system considered here, the recovery of disturbed assemblages could occur only if sea urchins are removed. However, the recolonization of barren grounds by erect macroalgae is further enhanced under enriched conditions. This study demonstrates that the recovery of dramatically depleted marine habitats is possible, and provides useful indications for specific management actions, which at present are totally lacking, to achieve the restoration of barren grounds caused by human activity.
Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes.
Peiffer, Friederike; Bejarano, Sonia; Palavicini de Witte, Giacomo; Wild, Christian
2017-01-01
The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month -1 ) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher -1 h -1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.
Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes
Palavicini de Witte, Giacomo; Wild, Christian
2017-01-01
The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month−1) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher−1 h−1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained. PMID:29062597
NASA Astrophysics Data System (ADS)
Allison, Mead A.; Vosburg, Brian M.; Ramirez, Michael T.; Meselhe, Ehab A.
2013-01-01
SummaryThe large Mississippi River flood in 2011 was notable in the lowermost Louisiana, USA reach for requiring operation of several flood control structures to reduce stress on artificial levees: the largest diversion went through the gated Bonnet Carré Spillway, which was opened for 42 days in May and June. The removal of approximately 20% of the total flood discharge from the river provided an opportunity to examine the impact of large water diversion on the sediment transport capacity of large rivers. Boat-based, acoustic and water and bed sampling surveys were conducted in the Mississippi River channel adjacent to the Spillway immediately prior to the opening of the structure, at full capacity, and immediately following (June 2011) and 1 year after (June 2012) closure. The surveys were designed to examine (1) elevation change of the channel bed due to scour or aggradation of sediment, and (2) suspended and bedload transport variability upriver and downriver of the Spillway. The results indicate that approximately 9.1 million tons of sand were deposited on the channel bed immediately downriver of the water exit pathway and extending at least 13 km downriver at a rapidly and progressively reducing magnitude per river kilometer. The surficial deposit was of finer grain size than the lateral sand bars in the channel upriver of the structure. We argue the deposit was largely delivered from suspension derived from the observed deflation of lateral bars upstream of the diversion point, rather than from sand arriving from the drainage basin. Approximately 69% of the 2011 flood deposit was removed from the 13 km downstream reach between June 2011 and June 2012. We conclude that the source of the channel deposit was the reduction in stream power, and, thus, in the sediment transport capacity of the Mississippi, associated with the water withdrawal. The re-entrainment of this material in the following flood year indicates the system rapidly re-establishes an equilibrium to pre-opening conditions. Future diversions in the river for coastal restoration will have to address this issue to maintain a deep draft navigation channel in the Mississippi River.
Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie
2014-07-01
The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.
Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics.
Mattson, Jeffrey M; Turcotte, Raphaël; Zhang, Yanhang
2017-02-01
Elastic and collagen fibers are well known to be the major load-bearing extracellular matrix (ECM) components of the arterial wall. Studies of the structural components and mechanics of arterial ECM generally focus on elastin and collagen fibers, and glycosaminoglycans (GAGs) are often neglected. Although GAGs represent only a small component of the vessel wall ECM, they are considerably important because of their diverse functionality and their role in pathological processes. The goal of this study was to study the mechanical and structural contributions of GAGs to the arterial wall. Biaxial tensile testing was paired with multiphoton microscopic imaging of elastic and collagen fibers in order to establish the structure-function relationships of porcine thoracic aorta before and after enzymatic GAG removal. Removal of GAGs results in an earlier transition point of the nonlinear stress-strain curves [Formula: see text]. However, stiffness was not significantly different after GAG removal treatment, indicating earlier but not absolute stiffening. Multiphoton microscopy showed that when GAGs are removed, the adventitial collagen fibers are straighter, and both elastin and collagen fibers are recruited at lower levels of strain, in agreement with the mechanical change. The amount of stress relaxation also decreased in GAG-depleted arteries [Formula: see text]. These findings suggest that the interaction between GAGs and other ECM constituents plays an important role in the mechanics of the arterial wall, and GAGs should be considered in addition to elastic and collagen fibers when studying arterial function.
Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface
NASA Astrophysics Data System (ADS)
Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.
2018-01-01
Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.
Diversity of lignicolous basidiomycetes in coarse woody debris
K. K. Nakasone
1993-01-01
Basidiomycetes are the most conspicuous fungi on wood and are the main decomposers. Lignicolous basidiomycetes include white-rotters that remove both lignin and cellulose, and brown-rotters that remove only the cellulose and hemicellulose. The South is a region of diverse lignicolous basidiomycetes because it is the northern limit for many tropical and subtropical...
Urban ecosystem services: tree diversity and stability of tropospheric ozone removal.
Manes, Fausto; Incerti, Guido; Salvatori, Elisabetta; Vitale, Marcello; Ricotta, Carlo; Costanza, Robert
2012-01-01
Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.
Removing ammonium from water and wastewater using cost-effective adsorbents: A review.
Huang, Jianyin; Kankanamge, Nadeeka Rathnayake; Chow, Christopher; Welsh, David T; Li, Tianling; Teasdale, Peter R
2018-01-01
Ammonium is an important nutrient in primary production; however, high ammonium loads can cause eutrophication of natural waterways, contributing to undesirable changes in water quality and ecosystem structure. While ammonium pollution comes from diffuse agricultural sources, making control difficult, industrial or municipal point sources such as wastewater treatment plants also contribute significantly to overall ammonium pollution. These latter sources can be targeted more readily to control ammonium release into water systems. To assist policy makers and researchers in understanding the diversity of treatment options and the best option for their circumstance, this paper produces a comprehensive review of existing treatment options for ammonium removal with a particular focus on those technologies which offer the highest rates of removal and cost-effectiveness. Ion exchange and adsorption material methods are simple to apply, cost-effective, environmentally friendly technologies which are quite efficient at removing ammonium from treated water. The review presents a list of adsorbents from the literature, their adsorption capacities and other parameters needed for ammonium removal. Further, the preparation of adsorbents with high ammonium removal capacities and new adsorbents is discussed in the context of their relative cost, removal efficiencies, and limitations. Efficient, cost-effective, and environmental friendly adsorbents for the removal of ammonium on a large scale for commercial or water treatment plants are provided. In addition, future perspectives on removing ammonium using adsorbents are presented. Copyright © 2017. Published by Elsevier B.V.
Relationship of Course Woody Debris to Red-Cockaded Woodpecker Prey Diversity and Abundance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, G.S.
1999-09-03
The abundance of diversity of prey commonly used by the red-cockaded woodpecker were monitored in experimental plots in which course woody debris was manipulated. In one treatment, all the woody debris over four inches was removed. In the second treatment, the natural amount of mortality remained intact. The overall diversity of prey was unaffected; however, wood roaches were significantly reduced by removal of woody debris. The latter suggests that intensive utilizations or harvesting practices may reduce foraging.
Ramilo, P; Martínez-Falcón, A P; García-López, A; Brustel, H; Galante, E; Micó, E
2017-12-08
Mediterranean oak forests of the Iberian Peninsula host a great diversity of saproxylic beetles. For centuries, humans have carried out traditional management practices in this area, at both habitat and tree level, causing changes in forest structure. The aim of this study was to evaluate the anthropic effect of these traditional practices on saproxylic beetle diversity by measuring a set of environmental variables related to forest structure at both plot and tree level. Fauna was collected using window traps over a period of 12 mo. Multiple regression procedures showed which variables significantly affected the diversity of the studied assemblage. Our results demonstrated that the different metrics used to assess the diversity of assemblages responded variably depending on the management strategies applied and the level at which they were carried out. Certain management practices that disrupted the landscape from its natural state, such as the introduction of livestock or the local removal of particular trees, maximized species richness but, nevertheless, had a negative effect on the rest of diversity metrics analyzed. However, other practices such as pollarding, which involves the suppression of the main branch of the tree, had a positive effect on all diversity metrics evaluated as it promoted the formation of potential microhabitats for saproxylic fauna. We concluded that not all types and degrees of traditional forest management favor saproxylic beetle diversity and that different diversity metrics should be taken into consideration in future strategies for the protection and conservation of this fauna. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sakano, Y.; Kerkhof, L.
1998-01-01
Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria. PMID:9835577
NASA Technical Reports Server (NTRS)
Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)
1998-01-01
Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.
Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.
Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren
2014-01-01
The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function.
Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests
Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren
2014-01-01
The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function. PMID:25162731
Mesoscale behavior study of collector aggregations in a wet dust scrubber.
Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue
2018-01-01
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.
Leal, Laura C; Andersen, Alan N; Leal, Inara R
2014-01-01
Anthropogenic disturbance can have important indirect effects on ecosystems by disrupting species interactions. Here we examine the effects of anthropogenic disturbance on distance dispersal by ants for the diaspores of myrmecochorous Euphorbiaceae in Brazilian Caatinga. Rates of diaspore removal and distances removed of Croton sonderianus and Jatropha mollissima were observed at 24 sites ranging from low to very high disturbance (primarily grazing by livestock, hunting and firewood collection). Despite a large number of seed-disperser ant species, there were only two species providing high-quality distance-dispersal services, Dinoponera quadriceps (40% of all observed seed removals) and Ectatomma muticum (33%). D. quadriceps was responsible for 97% of all removals >2 m, and 100% of all removals >5 m. Removal rates did not vary with disturbance for C. sonderianus (small elaiosome), but declined with increasing disturbance for J. mollissima (large elaiosome). The number of removals by Ectatomma was highest at intermediate levels of disturbance, whereas those by Dinoponera decreased systematically with increasing levels of disturbance. Mean dispersal distance was four times higher at sites experiencing low disturbance, where removals >5 m represented a third of all removal events, compared with very highly disturbed sites, where no removals >5 m were observed. Despite high overall diversity there is very limited functional redundancy in disperser ant species, resulting in low disperser resilience in relation to disturbance. This is likely to have important implications for recruitment by myrmecochorous plants, and therefore on vegetation composition and structure, at sites subject to high anthropogenic disturbance.
Zhao, Jie; Wan, Songze; Zhang, Chenlu; Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei
2014-01-01
Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H') and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.
Is biotic resistance enhanced by natural variation in diversity?
Grace, James B.; Harrison, Susan P.; Cornell, Howard
2017-01-01
Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the underlying processes by dissecting how biotic resistance to new invaders may be shaped by the same environmental influences that determine diversity and other community properties.In grasslands with heterogeneous soils, we added invaders and removed competitors to analyze the causes of invasion resistance. Abiotic resistance was measured using invader success in the absence of the resident community. Biotic resistance was measured as the reduction in invader success in the presence of the resident community.Invaders were most successful where biotic resistance was lowest and abiotic resistance was highest, confirming the dominant role of biotic resistance. Contrary to theory, though, biotic resistance was highest where both species richness and functional diversity were lowest. In the multivariate framework of a structural equation model, biotic resistance was independent of community diversity, and was highest where fertile soils led to high community biomass.Seed predation slightly augmented biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results.We conclude that in natural systems, diversity may be correlated with invasibility and yet have little effect on biotic resistance to invasion. More generally, the environmental causes of variation in diversity should be considered when examining the potential functional consequences of diversity.
Frank, Anke S K; Wardle, Glenda M; Dickman, Chris R; Greenville, Aaron C
Biodiversity conservation in rangeland environments is often addressed by removing livestock, but inconsistent responses by biota mean that the efficacy of this form of management is hotly debated. Reasons for this inconsistency include the usually short duration and small spatial scale of manipulations compared to the area of grazing properties, as well as divergent responses amongst biota. In low-productivity arid environments, the pulse-reserve dynamic also complicates the outcome of manipulations. Here, we tested and extended these ideas in a heterogeneous desert environment in central Australia that consists of small patches of open woodland (gidgee) in a grassland (spinifex) matrix. Taking advantage of a controlled property-scale removal of cattle, and a rain event that stimulated productivity, we first quantified differences in the vegetation and small vertebrates of these two habitats, and then tracked the diversity, composition, and abundance of these biota for 6–19 months post-rain. We predicted that the two habitats would differ in the structure, composition, and reproductive output of their constituent plant species. We predicted also that the effects of cattle removal would interact with these habitat differences, with the abundance, richness, and diversity of small mammals and reptiles differing across habitats and grazing treatments. As anticipated, plant species composition in woodland was distinct from that in grassland and varied over time. The effects of cattle removal were habitat specific: Plant composition responded to de-stocking in woodland, but not in grassland; flowers were more abundant, and palatable plant cover also was greater following cessation of grazing pressure. The responses of small mammals but not reptiles showed some accord with our predictions, varying over time but inconsistently with treatment, and perhaps reflected high variability in capture success. We conclude that the timing and length of sampling are important when evaluating the responses of biota to livestock removal, as is the inclusion of all key habitats in the sampling regime.
Mistletoe as a keystone resource: an experimental test
Watson, David M.; Herring, Matthew
2012-01-01
Various entities have been designated keystone resources, but few tests have been attempted and we are unaware of any experimental manipulations of purported keystone resources. Mistletoes (Loranthaceae) provide structural and nutritional resources within canopies, and their pervasive influence on diversity led to their designation as keystone resources. We quantified the effect of mistletoe on diversity with a woodland-scale experiment, comparing bird diversities before and after all mistletoe plants were removed from 17 treatment sites, with those of 11 control sites and 12 sites in which mistletoe was naturally absent. Three years after mistletoe removal, treatment woodlands lost, on average, 20.9 per cent of their total species richness, 26.5 per cent of woodland-dependent bird species and 34.8 per cent of their woodland-dependent residents, compared with moderate increases in control sites and no significant changes in mistletoe-free sites. Treatment sites lost greater proportions of birds recorded nesting in mistletoe, but changes in species recorded feeding on mistletoe did not differ from control sites. Having confirmed the status of mistletoe as a keystone resource, we suggest that nutrient enrichment via litter-fall is the main mechanism promoting species richness, driving small-scale heterogeneity in productivity and food availability for woodland animals. This explanation applies to other parasitic plants with high turnover of enriched leaves, and the community-scale influence of these plants is most apparent in low productivity systems. PMID:22787026
Does natural variation in diversity affect biotic resistance?
Harrison, Susan; Cornell, Howard; Grace, James B.
2015-01-01
Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the key underlying process by dissecting how community diversity is shaped by the same environmental gradients that determine biotic and abiotic resistance to new invaders. In grasslands on highly heterogeneous soils, we used addition of a recent invader, competitor removal and structural equation modelling (SEM) to analyse soil influences on community diversity, biotic and abiotic resistance and invader success. Biotic resistance, measured by reduction in invader success in the presence of the resident community, was negatively correlated with species richness and functional diversity. However, in the multivariate SEM framework, biotic resistance was independent of all forms of diversity and was positively affected by soil fertility via community biomass. Abiotic resistance, measured by invader success in the absence of the resident community, peaked on infertile soils with low biomass and high community diversity. Net invader success was determined by biotic resistance, consistent with this invader's better performance on infertile soils in unmanipulated conditions. Seed predation added slightly to biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results. Synthesis. In natural systems, diversity may be correlated with invasibility and yet have no effect on either biotic or abiotic resistance to invasion. More generally, the environmental causes of variation in diversity should not be overlooked when considering the potential functional consequences of diversity.
Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong
2017-07-03
This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining water-treatment facilities as otherwise required. (4) A permanent diversion or a stream channel... the permit area and to assure the safety of the public. Diversions shall not be used to divert water... shall be restored in accordance with this part. Before diversions are removed, downstream water...
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining water-treatment facilities as otherwise required. (4) A permanent diversion or a stream channel... the permit area and to assure the safety of the public. Diversions shall not be used to divert water... shall be restored in accordance with this part. Before diversions are removed, downstream water...
Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary.
Bernardino, Angelo Fraga; Gomes, Luiz Eduardo de Oliveira; Hadlich, Heliatrice Louise; Andrades, Ryan; Correa, Lucas Barreto
2018-01-01
Despite over 21,000ha of mangrove forests being removed per year in Brazil, ecological changes following mangrove deforestation have been overlooked. Here we evaluated changes in benthic macrofaunal assemblages and food-webs at a mangrove removal and natural sites in a tropical estuary in Eastern Brazil. The impacted site had coarser sediment particle sizes suggesting significant changes in sedimentation processes after forest clearing. Spatial differences in macrofaunal abundance, biomass and diversity were not directly associated with the removal of mangrove forests, supporting recolonization of impacted areas by estuarine fauna. However, benthic assemblage composition, infaunal δ 13 C signatures and food-web diversity markedly differed at the impacted site being strongly related to sedimentary changes. The loss of infaunal trophic diversity that followed mangrove removal suggests that large-scale forest clearing may impact estuarine food webs, with potential consequences to nearby coastal ecosystems given the high clearing rate of mangrove forests in Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.
White, Nancy; Ali, Robert; Larance, Briony; Zador, Deborah; Mattick, Richard P; Degenhardt, Louisa
2016-01-01
Around 65% of people incarcerated in prisons in Australia, America and Europe have a history of drug dependence, sometimes treated with opioid substitution treatment (OST) medications. Studies report that those in treatment in prison do engage in some level of diversion to others, whether on a voluntary or coerced basis. We aimed to examine the use of prescribed and non-prescribed OST medications by those in prisons, especially buprenorphine-naloxone film (BNX-F); the extent of non-adherence and diversion and reasons for such practices; and the impact of the introduction of BNX-F into the prison system. Mixed methods study drawing on: (i) structured interviews with current OST clients (n = 60) who reported being incarcerated in the 12 months prior to being interviewed and (ii) qualitative interviews with key experts working in corrections and prison (or justice) health settings. The majority were prescribed OST medications in prison, with 25% removing all or part of their supervised dose on at least one occasion, and 44% reporting use of non-prescribed medications. Some reported intravenous use (14% injected). One-third of OST recipients reported selling/sharing OST medications with others in prison. The introduction of BNX-F into the prison system saw different diversion methods used and removal from dosing within prison. Despite prison being a highly regulated and controlled environment, some level of diversion and sharing of psychoactive medication occurs among prisoners. The buprenorphine formulations used in OST present particular challenges with respect to supervised dosing in this setting. [White N, Ali R, Larance B, Zador D, Mattick RP, Degenhardt L. The extramedical use and diversion of opioid substitution medications and other medications in prison settings in Australia following the introduction of buprenorphine-naloxone film. Drug Alcohol Rev 2015;●●:●●-●●]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D
2015-03-01
Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape. © 2014 John Wiley & Sons Ltd.
Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine
2016-02-01
Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.
Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities
Martins, Gustavo M.; Arenas, Francisco; Neto, Ana I.; Jenkins, Stuart R.
2012-01-01
The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’ functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning. PMID:22952950
Effects of fishing and regional species pool on the functional diversity of fish communities.
Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R
2012-01-01
The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.
Yang, Meng; Zhong, Yuezhi; Zhang, Baogang; Shi, Jiaxin; Huang, Xueyang; Xing, Yi; Su, Lin; Liu, Huipeng; Borthwick, Alistair G L
2018-01-31
Anode materials and structures are of critical importance for microbial fuel cells (MFCs) recovering energy from toxic substrates. Carbon-fiber-felt anodes modified by layers of vertically oriented TiO 2 and Fe 2 O 3 nanosheets were applied in the present study. Enhanced sulfide removal efficiencies (both over 90%) were obtained after a 48-h operation, with maximum power densities improved by 1.53 and 1.36 folds compared with MFCs with raw carbon-fiber-felt anode. The modified anodes provided more active sites for microbial adhesion with increasing biomass densities. High-throughput 16S rRNA gene sequencing analysis also indicated the increase in microbial diversities. Bacteroidetes responsible for bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide removal were found in the MFCs with the modified anodes, with less anaerobic fermentative bacteria as Firmicutes appeared. This indicates that the proposed materials are competitive for applications of MFCs generating bioelectricity from toxic sulfide.
Park, Sora; Yu, Jaecheul; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2011-08-01
A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m(3)d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kanaya, Gen
2014-04-01
Influences of sediment types on recolonization of estuarine macrozoobenthos were tested using enclosures in a hypertrophic lagoon. Three types of azoic sediment, sand (S), sulfide-rich mud (M), and mud removed of sulfide through iron addition (MFe), were set in field for 35 days during a hypoxic period. A total of 14 taxa including opportunistic polychaetes and amphipods occurred. Infaunal community in S treatment was characterized by highest diversity, total density and biomass, and population density of five dominant taxa, while those parameters were lowest in M treatment. Sulfide removal in MFe treatment achieved much higher density, biomass, and population densities of several taxa in the sediment. Multivariate analyses demonstrated that the established community structure was unique to each treatment. These imply that dissolved sulfide level as well as sediment grain size is a key determinant for the community composition and recolonization speed of early colonists in estuarine soft-bottom habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.
2012-06-01
Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.
Qingchao Li; H. Lee Allen; Arthur G. Wollum
2004-01-01
The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...
James L. Hanula; Scott Horn
2011-01-01
1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...
Fra-Vázquez, A; Morales, N; Figueroa, M; Val Del Río, A; Regueiro, L; Campos, J L; Mosquera-Corral, A
2016-09-01
Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016. © 2016 American Institute of Chemical Engineers.
The use of PCR-DGGE to determine bacterial fingerprints for poultry and red meat abattoir effluent.
de Smidt, O
2016-01-01
Strict legislation and chemical composition monitoring of effluent may be useful, but the data generated do not allow for source tracking, and enforcing legislation remains problematic in the South African setting. These difficulties emphasize the necessity for effluent source traceability. Denaturing gradient gel electrophoresis (DGGE) targeting the V3 region of the 16S rRNA gene was considered as fingerprinting technique for effluent originating from abattoirs slaughtering different animal species. The influence of treatment to remove excess fat from effluent prior to molecular analyses and different PCR approaches on the detection of bacterial diversity were considered. Use of a treatment option to remove fat and a nested PCR approach resulted in up to 51% difference in inter-sample diversity similarity. A robust approach with no pre-treatment to remove PCR inhibitors, such as fat, and direct amplification from genomic DNA yielded optimal/maximal bacterial diversity fingerprints. Repeatable fingerprints were obtained for poultry abattoir effluent over a 4-month period, but profiles for the red meat abattoir varied with maximum similarity detected only 33·2%. Genetic material from faecal indicators Aeromona spp and Clostridium spp were detected. Genera unique to each effluent were present; Anoxybacillus, Patulibacter and Oleispira in poultry abattoir effluent and Porphyromonas and Peptostreptococcus in red meat abattoir effluent. This study was the first to demonstrate the application of denaturing gradient gel electrophoresis (DGGE) to construct bacterial diversity fingerprints for high-throughput abattoir effluents. Proved redundancy of fat removal as PCR inhibitor and change in diversity similarity introduced by nested PCR approach. The importance of limiting excessive handling/processing which could lead to misrepresented diversity profiles was emphasized. © 2015 The Society for Applied Microbiology.
Coastal habitat and biological community response to dam removal on the Elwha River
Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.
2017-01-01
Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.
Lafferty, Kevin D.; Suchanek, Tom
2016-01-01
“Food Web Complexity and Species Diversity” (Paine 1966) is the most-cited empirical article published in the American Naturalist. In short, Paine removed predatory sea stars (Pisaster ochraceus) from the rocky intertidal and watched the key prey species, mussels (Mytilus californianus), crowd out seven subordinate primary space-holding species. However, because these mussels are a foundational species, they provide three-dimensional habitat for over 300 associated species inhabiting the mussel beds; thus, removing sea stars significantly increases community-wide diversity. In any case, most ecologists cite Paine (1966) to support a statement that predators increase diversity by interfering with competition. Although detractors remained skeptical of top-down effects and keystone concepts, the paradigm that predation increases diversity spread. By 1991, “Food Web Complexity and Species Diversity” was considered a classic ecological paper, and after 50 years it continues to influence ecological theory and conservation biology.
Edge, Albert S B
2003-01-01
The alteration of proteins by post-translational modifications, including phosphorylation, sulphation, processing by proteolysis, lipid attachment and glycosylation, gives rise to a broad range of molecules that can have an identical underlying protein core. An understanding of glycosylation of proteins is important in clarifying the nature of the numerous variants observed and in determining the biological roles of these modifications. Deglycosylation with TFMS (trifluoromethanesulphonic acid) [Edge, Faltynek, Hof, Reichert, and Weber, (1981) Anal. Biochem. 118, 131-137] has been used extensively to remove carbohydrate from glycoproteins, while leaving the protein backbone intact. Glycosylated proteins from animals, plants, fungi and bacteria have been deglycosylated with TFMS, and the most extensively studied types of carbohydrate chains in mammals, the N-linked, O-linked and glycosaminoglycan chains, are all removed by this procedure. The method is based on the finding that linkages between sugars are sensitive to cleavage by TFMS, whereas the peptide bond is stable and is not broken, even with prolonged deglycosylation. The relative susceptibility of individual sugars in glycosidic linkage varies with the substituents at C-2 and the occurrence of amido and acetyl groups, but even the most stable sugars are removed under conditions that are sufficiently mild to prevent scission of peptide bonds. The post-translational modifications of proteins have been shown to be required for diverse biological functions, and selective procedures to remove these modifications play an important role in the elucidation of protein structure and function. PMID:12974674
Alford, Aaron L; Hellgren, Eric C; Limb, Ryan; Engle, David M
2012-04-01
Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.
Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A.; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C. M.; Osorio, F.; Gonzalez-Lopez, Jesus
2015-01-01
Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed. PMID:26421306
Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus
2015-01-01
Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.
Cárdenas, Manuel; Castro, Juan; Campos, Mercedes
2012-01-01
This study shows that disturbance caused by cover-crop removal (CCR) in an organic olive orchard affects ground-spider populations. The effect of CCR on various organic olive-orchard plots was assessed by monitoring the abundance and diversity of ground-dwelling spiders. Covered plots in the organic olive orchard were compared with uncovered plots where the covers had been removed mechanically. CCR positively affected the most abundant spider species Zodarion styliferum (Simon) (Araneae: Zodariidae) as well as other species of running spiders belonging to the families Gnaphosidae and Lycosidae. Over time, the two types of plots did not significantly differ in diversity or dominance. Similarly, no differences were detected between the study plots in terms of the distribution of individuals when a cluster-similarity analysis was performed. This lack of difference in diversity might be due to the spatial scale used in the study or climatology. Because of their general effects, CCR profoundly changed the abundance of spiders in the olive orchard, but with no clear impact on spider diversity. PMID:22938154
Zeng, Wei; Zhang, Limin; Fan, Pengchao; Guo, Jingjing; Peng, Yongzhen
2018-05-01
Candidatus Accumulibacter has been identified as dominant polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus (P) removal (EBPR) from wastewater. This study revealed the relevance of community structure, abundance and seasonal population dynamics of Candidatus Accumulibacter to process operation of wastewater treatment plants (WWTPs) in China using ppk1 gene as phylogenetic marker. All sludge samples had properties of denitrifying P removal using nitrate as an electron acceptor. Accumulibacter abundance in the anaerobic-anoxic-oxic (A 2 O) process was the highest (26% of total bacteria), and higher in winter than in summer with a better EBPR performance. Type-II was the dominant Accumulibacter in all processes, and type-I accounted for a small proportion of total Accumulibacter. The abundance of Clade-IIC as the most dominant clade reached 2.59×10 9 cells/g MLSS and accounted for 87.3% of total Accumulibacter. Clade IIC mainly contributed to denitrifying P removal. Clades IIA, IIC and IID were found in all processes, while clade-IIF was only found in oxidation ditch process through phylogenetic analysis. High proportion of clade IID to total Accumulibacter led to poor performance of aerobic P-uptake in inverted A 2 O process. Therefore, Accumulibacter clades in WWTPs were diverse, and EBPR performance was closely related to the clade-level community structures and abundances of Accumulibacter. Copyright © 2017. Published by Elsevier B.V.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Diversions. (a) General requirements. (1) With the approval of the regulatory authority, any flow from mined areas abandoned before May 3, 1978, and any flow from undisturbed areas or reclaimed areas, after... local, State, and Federal laws and regulations. (3) Temporary diversions shall be removed when no longer...
NASA Astrophysics Data System (ADS)
Zhang, Xian-Rui; He, Sai-Fei; Zhang, Shuo; Li, Jing; Li, Shan; Liu, Jin-Song; Zhang, Lei
2017-02-01
Two polymorphs (AM-A and AM-B) of azilsartan medoxomil (AM) and four AM solvatomorphs with toluene (AM-TOL), 1,4-dioxane (AM-DIO), chloroform (AM-TCM) and N,N-dimethylacetamide (AM-DMA) have been prepared by the hydrolysis of azilsartan medoxomil potassium in aqueous-organic solutions. In the crystal structures of two polymorphs and three solvatomorphs (AM-TOL, AM-DIO and AM-TCM), two asymmetric AM molecules form the dimeric cycle-like structures via intermolecular Nsbnd H⋯N hydrogen bonds in R22 (26) ring, while AM-DMA shows intramolecular Nsbnd H⋯O hydrogen bond between AM and DMA molecules. The hydrogen bonds (Csbnd H⋯O or Csbnd H⋯N) and π···π (or Csbnd H···π) interactions are helpful to stabilize the conformational diversity of AM. The solvent-induced experiment shows that solvent molecules have great influence on the solvatomorph formation and DIO can form the most steady solvatomorph than other solvents. The thermal study demonstrates that toluene molecules in three solvatomorphs (AM-TOL, AM-DIO and AM-TCM) are the most difficult to remove from the cage. Our results illustrate that the solvent plays significant role in tuning the size of the cage and producing the conformational diversity of AM molecules.
Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands
NASA Astrophysics Data System (ADS)
Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen
2015-10-01
Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems.
Anaerobic Ammonium Oxidation and its Contribution to Nitrogen Removal in China's Coastal Wetlands
NASA Astrophysics Data System (ADS)
Hou, L., Sr.
2016-02-01
Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China's coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China's coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China's coastal wetland ecosystems.
Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands
Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen
2015-01-01
Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435
Maintenance of soil functioning following erosion of microbial diversity.
Wertz, Sophie; Degrange, Valérie; Prosser, James I; Poly, Franck; Commeaux, Claire; Freitag, Thomas; Guillaumaud, Nadine; Roux, Xavier Le
2006-12-01
The paradigm that soil microbial communities, being very diverse, have high functional redundancy levels, so that erosion of microbial diversity is less important for ecosystem functioning than erosion of plant or animal diversity, is often taken for granted. However, this has only been demonstrated for decomposition/respiration functions, performed by a large proportion of the total microbial community, but not for specialized microbial groups. Here, we determined the impact of a decrease in soil microbial diversity on soil ecosystem processes using a removal approach, in which less abundant species were removed preferentially. This was achieved by inoculation of sterile soil microcosms with serial dilutions of a suspension obtained from the same non-sterile soil and subsequent incubation, to enable recovery of community size. The sensitivity to diversity erosion was evaluated for three microbial functional groups with known contrasting taxonomic diversities (ammonia oxidizers < denitrifiers < heterotrophs). Diversity erosion within each functional group was characterized using molecular fingerprinting techniques: ribosomal intergenic spacer analysis (RISA) for the eubacterial community, denaturing gradient gel electrophoresis (DGGE) analysis of nirK genes for denitrifiers, and DGGE analysis of 16S rRNA genes for betaproteobacterial ammonia oxidizers. In addition, we simulated the impact of the removal approach by dilution on the number of soil bacterial species remaining in the inoculum using values of abundance distribution of bacterial species reported in the literature. The reduction of the diversity of the functional groups observed from genetic fingerprints did not impair the associated functioning of these groups, i.e. carbon mineralization, denitrification and nitrification. This was remarkable, because the amplitude of diversity erosion generated by the dilution approach was huge (level of bacterial species loss was estimated to be around 99.99% for the highest dilution). Our results demonstrate that the vast diversity of the soil microbiota makes soil ecosystem functioning largely insensitive to biodiversity erosion even for functions performed by specialized groups.
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination. PMID:29867858
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
Chonova, Teofana; Keck, François; Labanowski, Jérôme; Montuelle, Bernard; Rimet, Frédéric; Bouchez, Agnès
2016-01-15
Hospital wastewaters (HWW) contain wider spectrum and higher quantity of pharmaceuticals than urban wastewaters (UWW), but they are generally discharged in sewers without pretreatment. Since traditional urban wastewater treatment plants (WWTP) are not designed to treat HWWs, treated effluents may still contain pollutants that could impair receiving aquatic environments. Hence, a better understanding of the effect of pharmaceuticals in the environment is required. Biofilms are effective "biological sensors" for assessing the environmental effects of pharmaceuticals due to their ability to respond rapidly to physical, chemical and biological fluctuations by changes in their structure and composition. This study evaluated the efficiency of biological treatment with conventional activated sludge system performed parallel on HWW and UWW. Furthermore, six successive monthly colonizations of biofilms were done on autoclaved stones, placed in grid-baskets in the hospital treated effluents (HTE) and urban treated effluents (UTE). The biomass of these biofilms as well as the structure and diversity of their bacterial communities were investigated. Results showed better treatment efficiency for phosphate and nitrite/nitrate during the treatment of UWW. Pharmaceuticals from all investigated therapeutic classes (beta-blockers, nonsteroidal anti-inflammatory drugs, antibiotics, analgesics and anticonvulsants) were efficiently removed, except for carbamazepine. The removal efficiency of the antibiotics, NSAIDs and beta-blockers was higher during the treatment of HWW. HTE and UTE shaped the bacterial communities in different ways. Higher concentrations of pharmaceuticals in the HTE caused adapted development of the microbial community, leading to less developed biomass and lower bacterial diversity. Seasonal changes in solar irradiance and temperature, caused changes in the community composition of biofilms in both effluents. According to the removal efficiency of pharmaceuticals, the separate treatment was beneficial. However, their high concentrations in the HTE and the following adaptations of biofilm communities identify the importance of adapting wastewater treatment to specific hospital pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Hanson, Jacob J; Lorimer, Craig G
2007-07-01
Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.
Alofs, Karen M; Fowler, Norma L
2013-03-01
Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent paradox is consistent with reports from other systems and may be the result of variation in environmental factors at larger scales similarly influencing both invasibility and richness. The habitat loss and fragmentation associated with woody plant encroachment are two of many processes that commonly threaten biodiversity, including climate change. Many of these processes are similarly likely to increase invasibility via their negative effects on native diversity.
Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib
2016-02-01
The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin
2014-06-01
An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis
2016-03-01
The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine the chitin organizations in the fruit fly, Drosophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interestingly many of the homologous anatomical structures from diverse arthropods exhibit similar patterns of chitin organization suggesting that a common set of parameters, govern chitin organization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Ximei; Johnston, Eric R; Barberán, Albert; Ren, Yi; Lü, Xiaotao; Han, Xingguo
2017-10-01
Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity. © 2017 John Wiley & Sons Ltd.
Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil.
Zwiener, Victor P; Bihn, Jochen H; Marques, Márcia C M
2012-06-01
Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region). Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession.
Lining seam elimination algorithm and surface crack detection in concrete tunnel lining
NASA Astrophysics Data System (ADS)
Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling
2016-11-01
Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.
How Do You Intentionally Design to Maximize Success in the Academically Diverse Classroom?
ERIC Educational Resources Information Center
Chandler, Renee; Zaloudek, Julie A.; Carlson, Kitrina
2017-01-01
Addressing academic diversity in today's college classroom is challenging. This chapter explores Universal Design for Learning as a viable framework for removing barriers for all students in higher education.
[Alternative splicing regulation: implications in cancer diagnosis and treatment].
Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca
2015-04-08
The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Díaz-Garduño, B; Pintado-Herrera, M G; Biel-Maeso, M; Rueda-Márquez, J J; Lara-Martín, P A; Perales, J A; Manzano, M A; Garrido-Pérez, C; Martín-Díaz, M L
2017-08-01
Emerging contaminants (ECs) and regulated compounds (RCs) from three different WWTP effluents were measured in the current study. The efficiency of two tertiary treatments, Photobiotreatment (PhtBio) and Multi-Barrier Treatment (MBT), for removing contaminants was determined. Results indicated different percentages of removal depending on the treatment and the origin of the effluent. Risk Quotients (RQs) were determined for different species of algae, Daphnia, and fish. RQ results revealed diverse risk values depending on the bioindicator species. Tonalide, galaxolide (fragrances), and ofloxacin (antibiotic) were the most persistent and harmful substances in tested effluents. "Negligible risk" category was reached since a wide diversity of ECs were removed by MBT with high removal percentages. Contrarily, PhtBio was effective only in the depuration of certain chemical compounds, and its efficiency depended on the composition of the raw effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chang, Xiaoyan; Li, Dong; Liang, Yuhai; Yang, Zhuo; Cui, Shaoming; Liu, Tao; Zeng, Huiping; Zhang, Jie
2013-04-01
The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23 degrees C). The average removal rate and removal loading of NH4(+)-N and TN was 83.90%, 1.26 kg N/(m3 x day), and 70.14%, 1.09 kg N/(m3 x day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.
Parmenter, Robert R; MacMahon, James A
1983-09-01
This study addressed the relative importances of shrub "resources" on a rodent community in a sagebrush dominated shrub-steppe ecosystem in southwestern Wyoming. Direct effects of shrubs (i.e., providing rodents with "food and cover") were assessed by removing shrubs from a 1.25 ha study plot and monitoring both rodent populations and their food resources. Shrub architecture and shrub-related food resources were found to be unimportant to deermice (Peromyscus maniculatus), Great Basin pocket mice (Perognathus parvus) northern grasshopper mice (Onychomys leucogaster) and Uinta ground squirrels (Spermophilus armatus), as shrub removal caused no significant changes in population sizes, sex ratios or age structure. Least chipmunks (Eutamias minimus) responded to shrub removal by leaving the plot and moving into adjacent shrubland. The montane vole (Microtus montanus) population showed a slight increase following shrub removal. Shrub removal did not alter the abundance of major rodent food resources on the plot (percent cover of herbaceous vegetation, soil seed reserves and ground-dwelling arthropods). Micrometeorological data suggested that shrubs did not significantly ameliorate a nocturnal rodent's micro-climate, but may have affected diurnal rodents' thermal loading rates by removing shade. While shrub architecture and food resources do not directly affect most of the rodents in this shrub-steppe ecosystem, shrubs may be important to rodents in a long-term time frame. Shrubs provide "safe sites" for germination and growth of herbaceous vegetation, thereby enhancing the diversity of the potential rodent food resources.
Amézquita, Sandra; Favila, Mario E
2010-04-01
Many studies have evaluated the effect of forest fragmentation on dung beetle assemblage structure. However, few have analyzed how forest fragmentation affects the processes carried out by these insects in tropical forests where their food sources consist mainly of dung produced by native herbivore mammals. With the conversion of forests to pastures, cattle dung has become an exotic alternative and abundant food for dung beetles. This study compares dung removal rates of native (monkey) and exotic (cow) dung in different-sized fragments of tropical rain forests, during the dry and rainy seasons at the Los Tuxtlas Biosphere Reserve. Dung removal rates were affected by season, dung type, and the interaction between resource type and season. During the dry season, the removal rates of monkey dung were somewhat similar than during the rainy season, whereas the removal rates of cow dung were much higher during the rainy season. Dung beetle biomass and species richness were almost three times greater in monkey dung than in cow dung. Monkey dung attracted species belonging to the dweller, roller, and tunneler guilds; cow dung attracted mostly tunnelers. Therefore, the use of exotic dung may result in a biased misconception of the rates of dung removal in tropical forest and an underestimation of dung beetle diversity. This study highlights the importance of working with natural tropical forest resources when attempting to identify realistic tendencies concerning processes in natural habitats and those modified by fragmentation and by other human activities.
Warming and fertilization alter the dilution effect of host diversity on disease severity.
Liu, Xiang; Lyu, Shengman; Zhou, Shurong; Bradshaw, Corey J A
2016-07-01
An essential ecosystem service is the dilution effect of biodiversity on disease severity, yet we do not fully understand how this relationship might change with continued climate warming and ecosystem degradation. We designed removal experiments in natural assemblages of Tibetan alpine meadow vegetation by manipulating plot-level plant diversity to investigate the relationship between different plant biodiversity indices and foliar fungal pathogen infection, and how artificial fertilization and warming affect this relationship. Although pathogen group diversity increased with host species richness, disease severity decreased as host diversity rose (dilution effect). The dilution effect of phylogenetic diversity on disease held across different levels of host species richness (and equal abundances), meaning that the effect arises mainly in association with enhanced diversity itself rather than from shifting abundances. However, the dilution effect was weakened by fertilization. Among indices, phylogenetic diversity was the most parsimonious predictor of infection severity. Experimental warming and fertilization shifted species richness to the most supported predictor. Compared to planting experiments where artificial communities are constructed from scratch, our removal experiment in natural communities more realistically demonstrate that increasing perturbation adjusts natural community resistance to disease severity. © 2016 by the Ecological Society of America.
Sui, Qianwen; Liu, Chong; Dong, Hongmin; Zhu, Zhiping
2014-09-01
A membrane bioreactor (MBR) was developed for the treatment of anaerobically digested swine wastewater and to investigate the effect of ammonium nitrogen concentration on biological nitrogen removal and ammonia-oxidizing bacteria (AOB) community structures. The MBR achieved a high NH4(+)-N removal efficiency of 0.08 kgNMLSS(-1)d(-1) and removed 95% of the influent NH4(+)-N. The TN removal rate was highest of 82.62% at COD/TN and BOD5/TN ratios of 8.76 ± 0.30 and 3.02 ± 0.09, respectively. With the decrease in ammonium nitrogen concentrations, the diversity of the AOB community declined and showed a simple pattern of DGGE. However, the AOB population size remained high, with abundance of 10(7)-10(9) copies mL(-1). With the decrease of ammonium nitrogen concentrations, Nitrosomonas eutropha gradually disappeared, whereas Nitrosomonas sp. OZK11 showed constant adaptability to survive during each treatment stage. The selective effect of ammonium concentration on AOB species could be due to the affinity for NH4(+)-N. In this study, the changes of ammonium nitrogen concentrations in digested swine wastewater were found to have selective effects on the composition of AOB community, and biological nitrogen removal was improved by optimising the influencing parameters. Copyright © 2014. Published by Elsevier B.V.
Differential resistance of drinking water bacterial populations to monochloramine disinfection.
Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde
2014-04-01
The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.
Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki
2017-08-24
This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.
Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Gao, Ruiru; Yang, Fan; Wei, Lingling; Li, Leilei; He, Hongju; Huang, Zhenying
2013-12-01
Post-dispersal seed removal by animals can lead to extensive seed loss and thus is an important factor in structuring plant communities. However, we know much less about post-dispersal seed predation than about other forms of herbivory. Mucilage plays many ecological roles in adaptation of plants to diverse environments; nevertheless, until now the role of mucilage in ant-mediated seed movement remains largely hypothetical. We studied the role of mucilage in seed removal of Artemisia sphaerocephala by ants in Mu Us Sandland in Inner Mongolia, China. Messor aciculatus was the most active seed predator of Artemisia sphaerocephala. Time to first ant collecting (T 1st) of wet intact seeds was longest and significantly different from that for dry intact seeds, wet demucilaged seeds, and dry demucilaged seeds; number of seeds removed to ant nests was lowest for wet intact seeds. After they were collected by ants, 5 % of wet intact seeds were dropped during transport. Our results indicate that seed mucilage of Artemisia sphaerocephala may play a significant role in post-dispersal seed removal by (1) making seeds less attractive to ants, thus resulting in a delay of collection time; (2) forming a strong bond to soil particles, making it difficult for ants to remove seeds; and (3) making seeds more likely to be dropped during transport, thereby allowing them to escape from predation even after collection by ants. This study demonstrates the importance of mucilage in reducing seed removal by ants and thus in anchoring seeds of desert plants in the vicinity of mother plants.
Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz
2016-01-01
Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.
Huang, Jianping; Yang, Shisu; Zhang, Siqi
2016-11-01
To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.
Non-native fish control below Glen Canyon Dam - Report from a structured decision-making project
Runge, Michael C.; Bean, Ellen; Smith, David; Kokos, Sonja
2011-01-01
This report describes the results of a structured decision-making project by the U.S. Geological Survey to provide substantive input to the Bureau of Reclamation (Reclamation) for use in the preparation of an Environmental Assessment concerning control of non-native fish below Glen Canyon Dam. A forum was created to allow the diverse cooperating agencies and Tribes to discuss, expand, and articulate their respective values; to develop and evaluate a broad set of potential control alternatives using the best available science; and to define individual preferences of each group on how to manage the inherent trade-offs in this non-native fish control problem. This project consisted of two face-to-face workshops, held in Mesa, Arizona, October 18-20 and November 8-10, 2010. At the first workshop, a diverse set of objectives was discussed, which represented the range of concerns of those agencies and Tribes present. A set of non-native fish control alternatives ('hybrid portfolios') was also developed. Over the 2-week period between the two workshops, four assessment teams worked to evaluate the control alternatives against the array of objectives. At the second workshop, the results of the assessment teams were presented. Multi-criteria decision analysis methods were used to examine the trade-offs inherent in the problem, and allowed the participating agencies and Tribes to express their individual judgments about how those trade-offs should best be managed in Reclamation`s selection of a preferred alternative. A broad array of objectives was identified and defined, and an effort was made to understand how these objectives are likely to be achieved by a variety of strategies. In general, the objectives reflected desired future conditions over 30 years. A rich set of alternative approaches was developed, and the complex structure of those alternatives was documented. Multi-criteria decision analysis methods allowed the evaluation of those alternatives against the array of objectives, with the values of individual agencies and tribes deliberately preserved. Trout removal strategies aimed at the Paria to Badger Rapid reach (PBR), with a variety of permutations in deference to cultural values, and with backup removal at the Little Colorado River reach (LCR) if necessary, were identified as top-ranking portfolios for all agencies and Tribes. These PBR/LCR removal portfolios outperformed LCR-only removal portfolios, for cultural reasons and for effectiveness - the probability of keeping the humpback chub population above a desired threshold was estimated to be higher under the PBR/LCR portfolios than the LCR-only portfolios. The PBR/LCR removal portfolios also outperformed portfolios based on flow manipulations, primarily because of the effect of sport fishery and wilderness recreation objectives, as well as cultural objectives. The preference for the PBR/LCR removal portfolios was quite robust to variation in the objective weights and to uncertainty about the underlying dynamics, at least over the ranges of uncertainty investigated. Examination of the effect of uncertainty on the recommended outcomes allowed us to complete a 'value of information' analysis. The results of this analysis led to an adaptive strategy that includes three possible long-term management actions (no action; LCR removal; or PBR removal) and seeks to reduce uncertainty about the following two issues: the degree to which rainbow trout limit chub populations, and the effectiveness of PBR removal to reduce trout emigration downstream into Marble and eastern Grand Canyons, where the largest population of humpback chub exist. In the face of uncertainty about the effectiveness of PBR removal, a case might be made for including flow manipulations in an adaptive strategy, but formal analysis of this case was not conducted. The full set of conclusions described above is not definitive, however. This analysis described in this report is a simplified depiction of the t
Wang, Ya-Fen; Tam, Nora Fung-Yee
2012-04-15
Changes of microbial community structure and its relationship with various environmental variables in surface marine sediments were examined for a one-year period after the removal of an old floating dock in Hong Kong SAR, South China. Temporal variations in the microbial community structure were clearly revealed by principal component analysis (PCA) of the microbial ester-linked fatty acid methyl ester (EL-FAME) profiles. The most obvious shift in microbial community structure was detected 6 months after the removal of the dock, although no significant decline in the levels of pollutants could be detected. As determined by EL-FAME profiles, the microbial diversity recovered and the predominance of gram-negative bacteria was gradually replaced by gram-positive bacteria and fungi in the impacted stations. With redundancy analysis (RDA), the concentration of total polycyclic aromatic hydrocarbons (PAHs) was found to be the second important determinant of microbial community structure, next to Time. The relative abundance of 18:1ω9c and hydroxyl fatty acids enriched in the PAH hot spots, whereas 16:1ω9 and 18:1ω9t were negatively correlated to total PAH concentration. The significant relationships observed between microbial EL-FAME profiles and pollutants, exampled by PAHs in the present study, suggested the potential of microbial community analysis in the assessment of the natural attenuation process in contaminated environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Eckert, Andrew J; van Heerwaarden, Joost; Wegrzyn, Jill L; Nelson, C Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C; Neale, David B
2010-07-01
Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as F(ST) outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.
Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A
2014-06-01
The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.
Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M
2018-04-19
Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.
Computing the Partition Function for Kinetically Trapped RNA Secondary Structures
Lorenz, William A.; Clote, Peter
2011-01-01
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972
Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.
Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen
2016-10-01
Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
Van Nostrand, Joy D.; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong
2017-01-01
Illumina’s MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1–3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility. PMID:28453559
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Chongqing; Wu, Liyou; Qin, Yujia
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform
Wen, Chongqing; Wu, Liyou; Qin, Yujia; ...
2017-04-28
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less
Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform.
Wen, Chongqing; Wu, Liyou; Qin, Yujia; Van Nostrand, Joy D; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong
2017-01-01
Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.
Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed
2016-01-15
Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors. Copyright © 2015 Elsevier B.V. All rights reserved.
Belle, Jad I; Nijnik, Anastasia
2014-05-01
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
A minimalist approach to stereoselective glycosylation with unprotected donors.
Le Mai Hoang, Kim; He, Jing-Xi; Báti, Gábor; Chan-Park, Mary B; Liu, Xue-Wei
2017-10-27
Mechanistic study of carbohydrate interactions in biological systems calls for the chemical synthesis of these complex structures. Owing to the specific stereo-configuration at each anomeric linkage and diversity in branching, significant breakthroughs in recent years have focused on either stereoselective glycosylation methods or facile assembly of glycan chains. Here, we introduce the unification approach that offers both stereoselective glycosidic bond formation and removal of protection/deprotection steps required for further elongation. Using dialkylboryl triflate as an in situ masking reagent, a wide array of glycosyl donors carrying one to three unprotected hydroxyl groups reacts with various glycosyl acceptors to furnish the desired products with good control over regioselectivity and stereoselectivity. This approach demonstrates the feasibility of straightforward access to important structural scaffolds for complex glycoconjugate synthesis.
Greenstein, Katherine E; Lew, Julia; Dickenson, Eric R V; Wert, Eric C
2018-06-01
The evolving demands of drinking water treatment necessitate processes capable of removing a diverse suite of contaminants. Biofiltration can employ biotransformation and sorption to remove various classes of chemicals from water. Here, pilot-scale virgin anthracite-sand and previously used biological activated carbon (BAC)-sand dual media filters were operated for ∼250 days to assess removals of 0.4 mg/L ammonia as nitrogen, 50-140 μg/L manganese, and ∼100 ng/L each of trace organic compounds (TOrCs) spiked into pre-ozonated Colorado River water. Anthracite achieved complete nitrification within 200 days and started removing ibuprofen at 85 days. Limited manganese (10%) removal occurred. In contrast, BAC completely nitrified ammonia within 113 days, removed all manganese at 43 days, and exhibited steady state removal of most TOrCs by 140 days. However, during the first 140 days, removal of caffeine, DEET, gemfibrozil, naproxen, and trimethoprim decreased, suggesting a shift from sorption to biotransformation. Acetaminophen and sulfamethoxazole were removed at consistent levels, with complete removal of acetaminophen achieved throughout the study; ibuprofen removal increased with time. When subjected to elevated (1 μg/L) concentrations of TOrCs, BAC removed larger masses of chemicals; with a subsequent decrease and ultimate cease in the TOrCs spike, caffeine, DEET, gemfibrozil, and trimethoprim notably desorbed. By the end of operation, anthracite and BAC exhibited equivalent quantities of biomass measured as adenosine triphosphate, but BAC harbored greater microbial diversity (examined with 16S rRNA sequencing). Improved insight was gained regarding concurrent biotransformation, sorption, and desorption of multiple organic and inorganic contaminants in pilot-scale drinking water biofilters. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Transformation of soil and vegetable conditions at oil production territories
NASA Astrophysics Data System (ADS)
Gatina, Evgeniia
2017-04-01
On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source. Operation of oil fields leads to introduction of the synanthropes relating to meadow and wetland groups of plants. Transformation depends on loading time. At the initial stage of operation of the oil field the synantropization of a plant cover leads to increase in species diversity. At long technogenic loading decrease in values of indexes of a biodiversity due to oppression of native species of plants is observed. Technology-related influence of oil fields is a regional factor of change of specific structure of plant communities. Modern oil production has to be followed by purposeful formation of the operated natural and technology-related ecosystems with adjustable parameters and higher stability in relation to a complex of technogenic oil-field influence.
NASA Astrophysics Data System (ADS)
Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.
2012-12-01
The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by examining stable nutrient isotopes in fish tissue. Here we summarize the multidisciplinary studies we are undertaking and present some preliminary results from three years of pre-removal study. We highlight our stream channel geometry and bed sediment grain size investigations that reveal impoundments bedded primarily by coarse materials and storing very little sediment, circumstances that are influenced by the reach's geology and late Quaternary history. The pre-removal data from our nine studies help us characterize the impounded and fragmented ecosystem on the eve of dam removal and help us further develop and refine testable hypotheses for ecosystem response to the project.
NASA Astrophysics Data System (ADS)
Kearns, Patrick J.; Angell, John H.; Feinman, Sarah G.; Bowen, Jennifer L.
2015-03-01
Enrichment of natural waters, soils, and sediments by inorganic nutrients, including nitrogen, is occurring at an increasing rate and has fundamentally altered global biogeochemical cycles. Salt marshes are critical for the removal of land-derived nitrogen before it enters coastal waters. This is accomplished via multiple microbially mediated pathways, including denitrification. Many of these pathways, however, are also a source of the greenhouse gas nitrous oxide (N2O). We used clone libraries and quantative PCR (qPCR) to examine the effect of fertilization on the diversity and abundance of two functional genes associated with denitrification and N2O production (norB and nosZ) in experimental plots at the Great Sippewissett Salt Marsh (Falmouth, MA, USA) that have been enriched with nutrients for over 40 years. Our data showed distinct nosZ and norB community structures at different nitrogen loads, especially at the highest level of fertilization. Furthermore, calculations of the Shannon Diversity Index and Chao1 Richness Estimator indicated that nosZ gene diversity and richness increased with increased nitrogen supply, however no such relationship existed with regard to richness and diversity of the norB gene. Results from qPCR demonstrated that nosZ gene abundance was an order of magnitude lower in the extra-highly fertilized plots compared to the other plots, but the abundance of norB was not affected by fertilization. The majority of sequences obtained from the marsh plots had no close cultured relatives and they were divergent from previously sequenced norB and nosZ fragments. Despite their divergence from any cultured representatives, most of the norB and nosZ sequences appeared to be from members of the Alpha- and Betaproteobacteria, suggesting that these classes are particularly important in salt marsh nitrogen cycling. Our results suggest that both norB and nosZ containing microbes are affected by fertilization and that the Great Sippewissett Marsh may harbor distinct clades of novel denitrifying microorganisms that are responsible for both the production and removal of N2O.
Ahmadi, Mahmoud Kamal; Fawaz, Samar; Jones, Charles H.; Zhang, Guojian
2015-01-01
Yersiniabactin (Ybt) is a mixed nonribosomal peptide-polyketide natural product natively produced by the pathogen Yersinia pestis. The compound enables iron scavenging capabilities upon host infection and is biosynthesized by a nonribosomal peptide synthetase featuring a polyketide synthase module. This pathway has been engineered for expression and biosynthesis using Escherichia coli as a heterologous host. In the current work, the biosynthetic process for Ybt formation was improved through the incorporation of a dedicated step to eliminate the need for exogenous salicylate provision. When this improvement was made, the compound was tested in parallel applications that highlight the metal-chelating nature of the compound. In the first application, Ybt was assessed as a rust remover, demonstrating a capacity of ∼40% compared to a commercial removal agent and ∼20% relative to total removal capacity. The second application tested Ybt in removing copper from a variety of nonbiological and biological solution mixtures. Success across a variety of media indicates potential utility in diverse scenarios that include environmental and biomedical settings. PMID:26025901
Roles of type II thioesterases and their application for secondary metabolite yield improvement.
Kotowska, Magdalena; Pawlik, Krzysztof
2014-09-01
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an "assembly line" and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such "unnatural" natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)--discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.
NASA Astrophysics Data System (ADS)
Wan, L. G.; Lin, Q.; Bian, D. J.; Ren, Q. K.; Xiao, Y. B.; Lu, W. X.
2018-02-01
In order to reveal the spatial difference of the bacterial community structure in the Micro-pressure Air-lift Loop Reactor, the activated sludge bacterial at five different representative sites in the reactor were studied by denaturing gradient gel electrophoresis (DGGE). The results of DGGE showed that the difference of environmental conditions (such as substrate concentration, dissolved oxygen and PH, etc.) resulted in different diversity and similarity of microbial flora in different spatial locations. The Shannon-Wiener diversity index of the total bacterial samples from five sludge samples varied from 0.92 to 1.28, the biodiversity index was the smallest at point 5, and the biodiversity index was the highest at point 2. The similarity of the flora between the point 2, 3 and 4 was 80% or more, respectively. The similarity of the flora between the point 5 and the other samples was below 70%, and the similarity of point 2 was only 59.2%. Due to the different contribution of different strains to the removal of pollutants, it can give full play to the synergistic effect of bacterial degradation of pollutants, and further improve the efficiency of sewage treatment.
Rudko, Sydney P; Ruecker, Norma J; Ashbolt, Nicholas J; Neumann, Norman F; Hanington, Patrick C
2017-06-01
Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log 10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be inappropriate to adequately assess risk and ensure public safety when treated and partially treated wastewaters are encountered. This study argues for the use of human pinworm as a conservative indicator of the presence of helminth ova due to its small size, buoyancy, prevalence in humans, and environmental resistance. Copyright © 2017 American Society for Microbiology.
Rudko, Sydney P.; Ruecker, Norma J.; Ashbolt, Nicholas J.; Neumann, Norman F.
2017-01-01
ABSTRACT Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be inappropriate to adequately assess risk and ensure public safety when treated and partially treated wastewaters are encountered. This study argues for the use of human pinworm as a conservative indicator of the presence of helminth ova due to its small size, buoyancy, prevalence in humans, and environmental resistance. PMID:28341675
Diverse structural approaches to haem appropriation by pathogenic bacteria.
Hare, Stephen A
2017-04-01
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.
Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong
2010-11-01
This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.
SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns
NASA Astrophysics Data System (ADS)
Koestel, John
2016-04-01
3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected plugins.
Dias, João Carlos T; Silva, Cláudio M; Mounteer, Ann H; Passos, Flavia M L; Linardi, Valter R
2003-01-01
An evaluation of the efficiency of treatment of kraft mill foul condensates in a membrane bioreactor was carried out in the laboratory. Efficiency and rate of methanol removal were quantified at operating temperatures of 35, 45 and 55 degrees C. The structure of the bacterial community present in the reactor biomass at the different operating temperatures was evaluated by in situ hybridization of the biomass samples with fluorescently-labelled probes (FISH) targeting the Eubacteria, the alpha, beta and gamma subclasses of the Proteobacteria, the low G + C content Gram-positive bacteria (Bacillus spp.), while community function was evaluated by in situ hybridization with a methanol dehydrogenase gene (mxaF) probe. Methanol removal efficiency decreased from 99.4 to 92%, and removal rate from 2.69 mg MeOH/l x min to 2.49 mg MeOH/l x min when the operating temperature was increased from 35 to 55 degrees C. This decrease in methanol removal was accompanied by a decrease (from 58% to 42%) in the relative proportion of cells that hybridized with the mxaF probe. The relative proportion of Bacillus spp. increased from 5 to 20% while the proportion of members of the alpha subclass of Proteobacteria decreased from 16% to 6% when the bioreactor operating temperature was raised from 35 to 55 degrees C. The relative proportions of bacteria belonging to the beta (22-25%) and gamma (18-20%) subclasses of the Proteobacteria remained relatively constant regardless of operating temperature. Proteobacteria (alpha, beta and gamma subclasses) and Bacillus spp. represented 61, 67 and 71% of the Eubacteria in the biomass sampled at 35, 45 and 55 degrees C, respectively. The FISH technique was shown to be an efficient method for detection of both structural and functional changes in the bacterial communities that could be related to efficiency of methanol removal in a membrane bioreactor operating at different temperatures.
Seed yield, development, and variation in diverse poa pratensis accessions
USDA-ARS?s Scientific Manuscript database
Post harvest residue removal is critical for continued high seed production of Kentucky bluegrass (Poa pratensis L.). Previous work showed some accessions have little or no yield reduction with mechanical residue removal compared with the controversial practice of open field burning. Using 10 of t...
Shrestha, Bijay; Basnet, Prakash; Dhungana, Roshan K.; ...
2017-07-24
We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp 3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp 3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.
Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A
2016-06-01
Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.
Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao
2017-11-01
Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P < 0.05). The high abundance of ANAMMOX and DAMO bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.
Weber, Christoph; Hartig, Andreas; Hartmann, Roland K; Rossmanith, Walter
2014-08-01
The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of... clingstone peach trees are no longer standing and capable of producing a crop, and the roots of the trees...
High diversity within the periphyton community of an algal turf scrubber on the Susquehanna River
USDA-ARS?s Scientific Manuscript database
Algal turf scrubber systems have been evaluated for their ability to remove dissolved nutrients from a variety of natural waters and agricultural wastewaters. Although these systems have been well characterized with respect to productivity and nutrient removal, very little is known about the commun...
Ma, Bingrui; Yu, Naling; Han, Yuetong; Gao, Mengchun; Wang, Sen; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Jin, Chunji; Gao, Feng
2018-06-13
The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH 4 + -N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Zhang, Zhaohan; Gao, Peng; Cheng, Jiaqi; Liu, Guohong; Zhang, Xiaoqi; Feng, Yujie
2018-06-01
Packing nano mediators into anaerobic system is an attractive technology to strengthen refractory pollutant removal and methane production from wastewater, but is limited by the drawbacks such as easy loss and poor mass transfer. In this study, GAC/NZVI mediator was added into EGSB reactor to investigate the enhancement effects and mechanism for anaerobic digestion of tetracycline wastewater and its impacts on microbial community structure. The results indicated that GAC/NZVI could enhance COD and TOC removal by 12.1% and 10.3%, while have no evident influence on tetracycline removal and sulfide production. The biogas production and methane content were increased by 21.2% and 26.9%, respectively. GAC/NZVI addition resulted in formation of densely packed aggregates, and evidently increased the electrical conductivity and EPS content in sludge. Fe content in sludge was 20.43% with the loss of only 5.4% during 34 d operation. Microbial community analysis revealed that GAC/NZVI addition could both increase the Chao 1 richness index and Shannon diversity index of bacteria and archaea. It was notable that total methanogens contents increased from 74.7% to 81.74% at genera level, resulting in higher methane production, while Treponema increase might promote the degradation of tetracycline and its metabolite, leading to higher COD removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Zhipeng; Henderson, Gemma; Yang, Yahan; Li, Guangyu
2017-01-01
Reductive acetogenesis by homoacetogens represents an alternative pathway to methanogenesis to remove metabolic hydrogen during rumen fermentation. In this study, we investigated the occurrence of homoacetogen in the rumens of pasture-fed roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed either oak-leaf-based (tannin-rich, 100 mg/kg dried matter), corn-stover-based, or corn-silage-based diets, by using formyltetrahydrofolate synthetase (FTHFS) gene sequences as a marker. The diversity and richness of FTHFS sequences was lowest in animals fed oak leaf, indicating that tannin-containing plants may affect rumen homoacetogen diversity. FTHFS amino acid sequences in the rumen of roe deer significantly differed from those of sika deer. The phylogenetic analyses showed that 44.8% of sequences in pasture-fed roe deer, and 72.1%, 81.1%, and 37.5% of sequences in sika deer fed oak-leaf-, corn-stover-, and corn-silage-based diets, respectively, may represent novel bacteria that have not yet been cultured. These results demonstrate that the rumens of roe deer and sika deer harbor potentially novel homoacetogens and that diet may influence homoacetogen community structure.
Eckert, Andrew J.; van Heerwaarden, Joost; Wegrzyn, Jill L.; Nelson, C. Dana; Ross-Ibarra, Jeffrey; González-Martínez, Santíago C.; Neale, David. B.
2010-01-01
Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as FST outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes. PMID:20439779
Gao, Juan; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Li, Xiaofei; Lin, Xianbiao; Yu, Chendi; Wang, Rong; Jiang, Xiaofen; Sun, Xiuru
2016-10-01
For the past few decades, human activities have intensively increased the reactive nitrogen enrichment in China's coastal wetlands. Although denitrification is a critical pathway of nitrogen removal, the understanding of denitrifier community dynamics driving denitrification remains limited in the coastal wetlands. In this study, the diversity, abundance, and community composition of nirS-encoding denitrifiers were analyzed to reveal their variations in China's coastal wetlands. Diverse nirS sequences were obtained and more than 98 % of them shared considerable phylogenetic similarity with sequences obtained from aquatic systems (marine/estuarine/coastal sediments and hypoxia sea water). Clone library analysis revealed that the distribution and composition of nirS-harboring denitrifiers had a significant latitudinal differentiation, but without a seasonal shift. Canonical correspondence analysis showed that the community structure of nirS-encoding denitrifiers was significantly related to temperature and ammonium concentration. The nirS gene abundance ranged from 4.3 × 10(5) to 3.7 × 10(7) copies g(-1) dry sediment, with a significant spatial heterogeneity. Among all detected environmental factors, temperature was a key factor affecting not only the nirS gene abundance but also the community structure of nirS-type denitrifiers. Overall, this study significantly enhances our understanding of the structure and dynamics of denitrifying communities in the coastal wetlands of China.
Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng
2018-03-01
This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced phenol removal in an innovative lignite activated coke-assisted biological process.
Zhang, Chen; Li, Jianfeng; Cheng, Fangqin; Liu, Yu
2018-07-01
In this study, a lignite activated coke (LAC)-assisted activated sludge (AS) process was developed for enhancing biodegradation of phenol, while the effects of LAC on sludge properties and microbial community structure were investigated. It was found that more than 90% of phenol was removed within 1 h in the LAC/AS, which was 3 times higher than the conventional AS process. Moreover, the floc size and settleability were also significantly improved in the LAC/AS. These results suggested that LAC could serve as the nucleating agent to promote the formation of compact floc, which was beneficial for toxicity mitigation and system stability. The microbial community analysis by 16S high-throughput pyrosequencing technology further revealed a more abundant bacterial richness and diversity in the LAC/AS process loaded with phenol, while some phenol degraders, such as Propionibacteriaceae were enriched. Engineering implications further suggests the LAC-assisted AS process is technically sound and economically viable. Copyright © 2018 Elsevier Ltd. All rights reserved.
Salisbury, Sarah J; McCracken, Gregory R; Keefe, Donald; Perry, Robert; Ruzzante, Daniel E
2016-09-01
Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration-drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T-Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature. © 2016 John Wiley & Sons Ltd.
Fuentes, María S; Raimondo, Enzo E; Amoroso, María J; Benimeli, Claudia S
2017-04-01
Although the use of organochlorine pesticides (OPs) is restricted or banned in most countries, they continue posing environmental and health concerns, so it is imperative to develop methods for removing them from the environment. This work is aimed to investigate the simultaneous removal of three OPs (lindane, chlordane and methoxychlor) from diverse types of systems by employing a native Streptomyces consortium. In liquid systems, a satisfactory microbial growth was observed accompanied by removal of lindane (40.4%), methoxychlor (99.5%) and chlordane (99.8%). In sterile soil microcosms, the consortium was able to grow without significant differences in the different textured soils (clay silty loam, sandy and loam), both contaminated or not contaminated with the OPs-mixture. The Streptomyces consortium was able to remove all the OPs in sterile soil microcosm (removal order: clay silty loam > loam > sandy). So, clay silty loam soil (CSLS) was selected for next assays. In non-sterile CSLS microcosms, chlordane removal was only about 5%, nonetheless, higher rates was observed for lindane (11%) and methoxychlor (20%). In CSLS slurries, the consortium exhibited similar growth levels, in the presence of or in the absence of the OPs-mixture. Not all pesticides were removed in the same way; the order of pesticide dissipation was: methoxychlor (26%)>lindane (12.5%)>chlordane (10%). The outlines of microbial growth and pesticides removal provide information about using actinobacteria consortium as strategies for bioremediation of OPs-mixture in diverse soil systems. Texture of soils and assay conditions (sterility, slurry formulation) were determining factors influencing the removal of each pesticide of the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage
Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent
2011-01-01
The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543
Performance and bacterial community structure of a 10-years old constructed mangrove wetland.
Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe
2017-11-30
Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min
2013-10-15
It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Podadera, Diego S; Engel, Vera L; Parrotta, John A; Machado, Deivid L; Sato, Luciane M; Durigan, Giselda
2015-11-01
Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.
NASA Astrophysics Data System (ADS)
Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda
2015-11-01
Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.
Grassland restoration with and without fire: evidence from a tree-removal experiment
C.B. Halpern; R.D. Haugo; J.A. Antos; S.S. Kaas; A.L. Kilanowski
2012-01-01
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by...
Engineering and Ecological Aspects of Dam Removal-An Overview
2006-09-01
indicated. Figure 3. Teton Dam failure, Idaho, 1976 BENEFITS AND COSTS OF DAMS Dams have provided and continue to provide a diverse...ERDC TN-EMRRP-SR-80 1 Engineering and Ecological Aspects of Dam Removal—An Overview September 2006 By Jock Conyngham1, J. Craig Fischenich1...High ______________________________________________________________________ OVERVIEW Decommissioning and removing dams has
Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie
2014-03-01
A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Disturbance induced decoupling between host genetics and composition of the associated microbiome.
Wegner, Karl Mathias; Volkenborn, Nils; Peter, Hannes; Eiler, Alexander
2013-11-09
Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
NASA Astrophysics Data System (ADS)
Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri
2010-06-01
The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.
Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri
2010-06-01
The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.
ERIC Educational Resources Information Center
Wilson, Marenda A.; DePass, Anthony; Bean, Andrew J.
2018-01-01
The faculty and student populations in academia are not representative of the diversity in the U.S. population. Thus, research institutions and funding agencies invest significant funds and effort into recruitment and retention programs that focus on increasing the flow of historically underrepresented minorities (URMs) into the science,…
Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D
2015-06-15
Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diversion and injection of buprenorphine-naloxone film two years post-introduction in Australia.
Larance, Briony; Mattick, Richard; Ali, Robert; Lintzeris, Nicholas; Jenkinson, Rebecca; White, Nancy; Kihas, Ivana; Cassidy, Rosemary; Degenhardt, Louisa
2016-01-01
We report 2 years of post-marketing surveillance of the diversion and injection of buprenorphine-naloxone (BNX) film following its introduction in 2011. Interviews were conducted with people who inject drugs regularly (PWID) (2004-2013), opioid substitution therapy clients (2013, n = 492) and key experts (n = 44). Key outcomes were unsanctioned removal of supervised doses, diversion, injection and street price. Prevalence of past 6-month injection among PWID was adjusted for background availability of opioid substitution therapy medications using sales data. Among out-of-treatment PWID, the levels of regular (weekly+) BNX film injection were comparable to methadone and BNX tablets, and lower than mono-buprenorphine, adjusting for background availability. Fewer BNX film clients [3%; 95% (CI) 1-5] regularly injected their medication than mono-buprenorphine clients (25%; 95% CI 11-39), but at levels equivalent to those among methadone (3%; 95% CI 1-6) and BNX tablet clients (2%; 95% CI 0-6). Key experts perceived BNX film needed less supervised dosing time as it dissolved rapidly and was harder to remove from the mouth than sublingual tablets; however, removal of supervised doses was higher among BNX film clients (15%; 95% CI: 10-20) than methadone clients (3%; 95% CI 1-6), and not significantly different from BNX tablet (11%; 95% CI 2-21) and mono-buprenorphine clients (31%; 95% CI 16-46). Two years post-introduction, levels of BNX film diversion and injection remained comparable with those for methadone and BNX tablets, and lower than mono-buprenorphine. We found no evidence that BNX film has lower non-adherence and diversion than the tablet formulation. [Larance B, Mattick R, Ali R, Lintzeris N, Jenkinson R, White N, Kihas I, Cassidy R, Degenhardt L. Diversion and injection of buprenorphine-naloxone film two years post-introduction in Australia. Drug Alcohol Rev 2015]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Presumed fair: ironic effects of organizational diversity structures.
Kaiser, Cheryl R; Major, Brenda; Jurcevic, Ines; Dover, Tessa L; Brady, Laura M; Shapiro, Jenessa R
2013-03-01
This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high-status group members to legitimize the status quo by becoming less sensitive to discrimination targeted at underrepresented groups and reacting more harshly toward underrepresented group members who claim discrimination. Six experiments support these hypotheses in designs using 4 types of diversity structures (diversity policies, diversity training, diversity awards, idiosyncratically generated diversity structures from participants' own organizations) among 2 high-status groups in tests involving several types of discrimination (discriminatory promotion practices, adverse impact in hiring, wage discrimination). Implications of these experiments for organizational diversity and employment discrimination law are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved
The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films
NASA Astrophysics Data System (ADS)
Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.
2018-04-01
In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.
Reconstitution of full‐thickness skin by microcolumn grafting
Wang, Ying; Vuong, Linh N.; Fisher, Jeremy M.; Farinelli, William A.; Anderson, R. Rox
2016-01-01
Abstract In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long‐standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm‐scale, full‐thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. PMID:27296503
Differential effects of understory and overstory gaps on tree regeneration
Brian Beckage; Brian D. Kloppel; J. Alan Yenkley; Sharon F. Taylor; David C. Coleman
2008-01-01
Gaps in the forest canopy can increase the diversity of tree regeneration. Understory shrubs also compete with tree seedlings for limited resources and may depress tree recruitment We compared effects of shrub removal and canopy windthrow gups on seedling recruitment and understory resource levels. Shrub removal, with the canopy left intact, was associated with...
USDA-ARS?s Scientific Manuscript database
Contaminant removal in constructed wetlands may largely be a function of many microbial processes. However, information about bacterial, archaea, and fungi communities in constructed wetlands for the removal of swine waste is limited. In this study, we used 454/GS-FLX pyrosequencing to assess bacter...
Bruun, Susanne Wrang; Søndergaard, Ib; Jacobsen, Susanne
2007-09-05
Hydrated gluten, treated with various salts, was analyzed by near-infrared (NIR) spectroscopy to assess the ability of this method to reveal protein structure and interaction changes in perturbed food systems. The spectra were pretreated with second-derivative transformation and extended multiplicative signal correction for improving the band resolution and removing physical and quantitative spectral variations. Principal component analysis of the preprocessed spectra showed spectral effects that depended on salt type and concentration. Although both gluten texture and the NIR spectra were little influenced by treatment with salt solutions of low concentrations (0.1-0.2 M), they were significantly and diversely affected by treatment with 1.0 M salt solutions. Compared to hydration in water, hydration in 1.0 M sulfate salts caused spectral effects similar to a drying-out effect, which could be explained by salting-out.
Support Tool in the Diagnosis of Major Depressive Disorder
NASA Astrophysics Data System (ADS)
Nunes, Luciano Comin; Pinheiro, Plácido Rogério; Pequeno, Tarcísio Cavalcante; Pinheiro, Mirian Calíope Dantas
Major Depressive Disorder have been responsible for millions of professionals temporary removal, and even permanent, from diverse fields of activities around the world, generating damage to social, financial, productive systems and social security, and especially damage to the image of the individual and his family that these disorders produce in individuals who are patients, characteristics that make them stigmatized and discriminated into their society, making difficult their return to the production system. The lack of early diagnosis has provided reactive and late measures, only when the professional suffering psychological disorder is already showing signs of incapacity for working and social relationships. This article aims to assist in the decision making to establish early diagnosis of these types of psychological disorders. It presents a proposal for a hybrid model composed of expert system structured methodologies for decision support (Multi-Criteria Decision Analysis - MCDA) and representations of knowledge structured in logical rules of production and probabilities (Artificial Intelligence - AI).
Structure and Function of Viral Deubiquitinating Enzymes.
Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L
2017-11-10
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grandmothers raising grandchildren: family structure and well-being in culturally diverse families.
Goodman, Catherine; Silverstein, Merril
2002-10-01
This study addressed well-being of grandmothers raising grandchildren in coparenting and custodial households in a sample of African American, Latino, and White grandmothers. A sample of 1,058 grandmothers was recruited through the schools and media. Grandmothers raising or helping to raise school-aged grandchildren in Los Angeles were interviewed, and analyses were conducted within ethnic groups. African American grandmothers experienced equal well-being in coparenting and custodial families; however, if the stresses related to the parents' problems were removed by statistical control, they favored the custodial arrangement. Latino grandmothers had greater well-being in coparenting families, reflecting a tradition of intergenerational living. White custodial grandmothers experienced somewhat higher levels of affect (positive and negative) but showed no difference in other types of well-being. The cultural lens through which grandparenthood is viewed has a marked impact on the adaptation to custodial or coparenting family structures.
Substrate specificity of the ubiquitin and Ubl proteases
Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark
2016-01-01
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468
Kanaya, Gen; Uehara, Tadayasu; Kikuchi, Eisuke
2016-08-15
An annual field survey and in situ recolonization experiment revealed the effects of sedimentary sulfide (H2S) on macrozoobenthos in a eutrophic brackish lagoon. Species diversity was much lower throughout the year in muddy opportunist-dominant sulfidic areas. Mass mortality occurred during warmer months under elevated H2S levels. An enclosure experiment demonstrated that sedimentary H2S modified community composition, size structure, and colonization depth of macrozoobenthos. Species-specific responses to each sediment type (sand, sulfidic mud, and mud with H2S removed) resulted in changes in the established community structure. Dominant polychaetes (Hediste spp., Pseudopolydora spp., and Capitella teleta) occurred predominantly in a thin surface layer in the presence of H2S. On the other hand, organic-rich mud facilitated settlement of polychaete larvae if it does not contain H2S. These results demonstrate that sediment characteristics, including H2S level and organic content, were key structuring factors for the macrozoobenthic assemblage in organically polluted estuarine sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Euglena Transcript Processing.
McWatters, David C; Russell, Anthony G
2017-01-01
RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.
Xie, Xuehui; Liu, Na; Ping, Jing; Zhang, Qingyun; Zheng, Xiulin; Liu, Jianshe
2018-06-01
In present study, a hydrolysis acidification (HA) reactor was used for simulated dyeing wastewater treatment. Co-substrates included starch, glucose, sucrose, yeast extract (YE) and peptone were fed sequentially into the HA reactor to enhance the HA process effects. The performance of the HA reactor and the microbial community structure in HA process were investigated under different co-substrates conditions. Results showed that different co-substrates had different influences on the performance of HA reactor. The highest decolorization (50.64%) and COD removal rate (60.73%) of the HA reactor were obtained when sucrose was as the co-substrate. And it found that carbon co-substrates starch, glucose and sucrose exhibited better decolorization and higher COD removal efficiency of the HA reactor than the nitrogen co-substrates YE and peptone. Microbial community structure in the HA process was analyzed by Illumina MiSeq sequencing. Results revealed different co-substrates had different influences on the community structure and microbial diversity in HA process. It was considered that sucrose could enrich the species such as Raoultella, Desulfovibrio, Tolumonas, Clostridium, which might be capable of degrading the dyes. Sucrose was considered to be the best co-substrate of enhancing the HA reactor's performance in this study. This work would provide deep insight into the influence of many different co-substrates on HA reactor performance and microbial communities in HA process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guo, Xueping; Pang, Weihai; Dou, Chunling; Yin, Daqiang
2017-05-01
The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic population structure of Shoal Bass within their native range
Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.
2018-01-01
Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is conserved and overall adaptability of the species is maintained.
Resilience of Invaded Riparian Landscapes: The Potential Role of Soil-Stored Seed Banks
NASA Astrophysics Data System (ADS)
Tererai, Farai; Gaertner, Mirijam; Jacobs, Shayne M.; Richardson, David M.
2015-01-01
We investigated the potential role of soil-stored seed banks in driving vegetation recovery under varying intensities of invasion by the alien tree Eucalyptus camaldulensis along the Berg River in South Africa's Western Cape Province. We asked: How do richness, diversity, and composition of soil-stored seed banks vary with invasion intensity? What is the difference between the seed banks and above-ground vegetation with respect to species richness, diversity, composition, and structure? To what extent do soil-stored seed banks provide reliable sources for restoring native plant communities? Through a seedling-emergence approach, we compared seedling density, richness, and diversity in plots under varying Eucalyptus cover. Seed bank characteristics were also compared with those of the above-ground vegetation. Except in terms of diversity and density, the richness and composition of native species varied significantly among invasion conditions. Despite the paucity of native tree and shrub species in the seed bank, it was more diverse than extant vegetation. Some species occurred exclusively either in the seed bank or in the above-ground vegetation. Although this ecosystem has been degraded by several agents, including Eucalyptus invasion, soil-stored seed banks still offer modest potential for driving regeneration of native plant communities, but secondary invasions need to be managed carefully. Remnant populations of native plants in the above-ground vegetation remaining after E. camaldulensis clearing provide a more promising propagule source for rapid regeneration. Further work is needed to elucidate possible effects of invasion on successional pathways following E. camaldulensis removal and the effects of hydrochory on seed bank dynamics.
Mixtures of macrophyte growth forms promote nitrogen cycling in wetlands.
Choudhury, Maidul I; McKie, Brendan G; Hallin, Sara; Ecke, Frauke
2018-09-01
The importance of aquatic plant diversity in regulating nutrient cycling in wetlands remains poorly understood. We investigated how variation in macrophyte growth form (emerging, submerged and bryophyte) combinations and species mixtures affect nitrogen (N) removal from the water and N accumulation in plant biomass. We conducted a wetland mesocosm experiment for 100 days during July-September 2015. Twelve species were grown in mono- and in two-species mixed cultures for a total of 32 single and two-growth form combinations. Nitrogen removal from the water was quantified on three occasions during the experiment, while N accumulation in plant biomass was determined following termination of the experiment. The number of species and growth forms present increased N removal and accumulation. The growth form combinations of emerging and bryophyte species showed the highest N accumulation and N removal from water, followed by combinations of emerging species. By contrast, submerged species growing in the presence of emerging or other submerged species showed the lowest levels of N accumulation and N removal. Temporal variation in N removal also differed among growth form combinations: N removal was highest for emerging-bryophyte combinations in July, but peaked for the emerging-submerged and emerging-bryophyte combinations in August. Indeed, the occurrence of complementarity among macrophyte species, particularly in combinations of bryophyte and emerging species, enhanced N removal and uptake during the entire growing season. Our study highlights the importance of bryophytes, which have been neglected in research on nutrient cycling in wetlands, for aquatic N cycling, especially given their worldwide distribution across biomes. Overall, our findings point towards the potential important role of the diversity of macrophyte growth forms in regulating key ecosystem processes related to N cycling in wetlands. Copyright © 2018 Elsevier B.V. All rights reserved.
Unique competitive effects of lianas and trees in a tropical forest understory.
Wright, Alexandra; Tobin, Mike; Mangan, Scott; Schnitzer, Stefan A
2015-02-01
Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.
Vela, Veronica X; Patton, Elizabeth W; Sanghavi, Darshak; Wood, Susan F; Shin, Peter; Rosenbaum, Sara
Long-acting reversible contraception (LARC) is the most effective reversible method to prevent unplanned pregnancies. Variability in state-level policies and the high cost of LARC could create substantial inconsistencies in Medicaid coverage, despite federal guidance aimed at enhancing broad access. This study surveyed state Medicaid payment policies and outreach activities related to LARC to explore the scope of services covered. Using publicly available information, we performed a content analysis of state Medicaid family planning and LARC payment policies. Purposeful sampling led to a selection of nine states with diverse geographic locations, political climates, Medicaid expansion status, and the number of women covered by Medicaid. All nine states' Medicaid programs covered some aspects of LARC. However, only a single state's payment structure incorporated all core aspects of high-quality LARC service delivery, including counseling, device, insertion, removal, and follow-up care. Most states did not explicitly address counseling, device removal, or follow-up care. Some states had strategies to enhance access, including policies to increase device reimbursement, stocking and delivery programs to remove cost barriers, and covering devices and insertion after an abortion. Although Medicaid policy encourages LARC methods, state payment policies frequently fail to address key aspects of care, including counseling, follow-up care, and removal, resulting in highly variable state-level practices. Although some states include payment policy innovations to support LARC access, significant opportunities remain. Published by Elsevier Inc.
Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R
2017-06-01
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy gradients and the geographic distribution of local ant diversity.
Kaspari, Michael; Ward, Philip S; Yuan, May
2004-08-01
Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
Poeydebat, Charlotte; Carval, Dominique; Tixier, Philippe; Daribo, Marie-Odette; De Lapeyre De Bellaire, Luc
2018-05-04
Black leaf streak disease (BLSD), caused by the fungus Mycosphaerella fijiensis, is an important threat to banana production. Although its control relies on costly and unsustainable use of fungicides, ecological regulation of BLSD linked to field-scale plant diversity has received little attention. We monitored banana phytometers in plots in banana-based fields where no fungicides were applied. Within each plot, we measured plant richness in three strata, canopy openness, necrotic leaf removal, Musa abundance and richness. We quantified ecological regulation of five BLSD parameters (inoculum sources, spore abundance, lesion density, incubation time, and the area under the disease progression curve) and identified, using structural equation modeling, the characteristics of the plant community and the mechanisms likely responsible for the regulation. Regulation occurred, but most effectively before lesion formation, and was mainly related to plant richness between 1.5 and 5m high. A barrier effect, rather than a dilution effect, more likely limited spore abundance. Our results support the hypothesis that the potential effects of plant richness on leaf-scale microclimate variability and on the diversity of epiphyllic microorganisms are involved in the regulation of incubation time and lesion density. Field-scale management of plant diversity may be a promising lever to foster ecological regulation of BLSD.
Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong
2007-05-01
For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.
Removing an exotic shrub from riparian forests increases butterfly abundance and diversity
James Hanula; Scott Horn
2011-01-01
Invasive plants are one of the greatest threats to endangered insect species and a major threat to Lepidoptera in eastern North America. We investigated the effects of the invasive shrub Chinese privet (Ligustrum sinense) and two methods (mulching or hand-felling) of removing it from riparian forests on butterfly communities and compared them to untreated, heavily...
Thomas N. Kaye; Matt Blakely-Smith; Walter G. Thies
2008-01-01
Intensive forest management practices often disturb understory vegetation. and the recovery of these plant communities may depend on the type and severity of the disturbance. We examined the effects of stump removal and N-fertilization on understory plant communities and functional group (shrubs, graminoids, forbs, and introduced species) cover and diversity at five...
Mixed Contaminants Removal Efficiency Using Bio-FeS Nanoparticles.
Seo, Hyunhee; Roh, Yul
2018-02-01
Advances in nanotechnology has provided diverse industrial applications including an environmental remediation field. In particular, bio-nanotechnology gives extended eco-friendly remediation practice. Among diverse bio-nanoparticles synthesized by microorganisms, the iron based nanoparticles (NPs) are of great interest because of their availability, low cost and toxicity to human health and the environment. In this study, iron based nanoparticles were biologically synthesized and mineralogically identified. Also, the removal efficiency of mixed contaminants, high As(III)-low Cr(VI) and high As(V)-low Cr(VI), using these bio-nanoparticles were conducted. As a result, biologically synthesized NPs were identified as FeS complex and their catalytic capacity showed highly effective to immobilize more than 97% of mixed contaminants by adsorption/mineralization.
Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg
2014-01-01
Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests. PMID:25050914
Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg
2014-01-01
Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests.
NASA Astrophysics Data System (ADS)
Dunfield, K. E.; Gaiero, J. R.; Condron, L.
2017-12-01
Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P < 0.05). Transcript expression was highest in the removed biomass treatment which corresponded the reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.
Drennan, Dina M; Almstrand, Robert; Ladderud, Jeffrey; Lee, Ilsu; Landkamer, Lee; Figueroa, Linda; Sharp, Jonathan O
2017-05-15
Sulfate-reducing bioreactors (SRBRs) represent a passive, sustainable, and long-term option for mitigating mining influenced water (MIW) during release. Here we investigate spatial zinc precipitation profiles as influenced by substrate differentiation, inorganic ligand availability (inorganic carbon and sulfide), and microbial community structure in pilot-scale SRBR columns fed with sulfate and zinc-rich MIW. Through a combination of aqueous sampling, geochemical digests, electron microscopy and energy-dispersive x-ray spectroscopy, we were able to delineate zones of enhanced zinc removal, identify precipitates of varying stability, and discern the temporal and spatial evolution of zinc, sulfur, and calcium associations. These geochemical insights revealed spatially variable immobilization regimes between SRBR columns that could be further contrasted as a function of labile (alfalfa-dominated) versus recalcitrant (woodchip-dominated) solid-phase substrate content. Both column subsets exhibited initial zinc removal as carbonates; however precipitation in association with labile substrates was more pronounced and dominated by metal-sulfide formation in the upper portions of the down flow columns with micrographs visually suggestive of sphalerite (ZnS). In contrast, a more diffuse and lower mass of zinc precipitation in the presence of gypsum-like precipitates occurred within the more recalcitrant column systems. While removal and sulfide-associated precipitation were spatially variable, whole bacterial community structure (ANOSIM) and diversity estimates were comparatively homogeneous. However, two phyla exhibited a potentially selective relationship with a significant positive correlation between the ratio of Firmicutes to Bacteroidetes and sulfide-bound zinc. Collectively these biogeochemical insights indicate that depths of maximal zinc sulfide precipitation are temporally dynamic, influenced by substrate composition and broaden our understanding of bio-immobilized zinc species, microbial interactions and potential operational and monitoring tools in these types of passive bioreactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burak K. Pekin; Michael J. Wisdom; Bryan A. Endress; Bridgett J. Naylor; Catherine G. Parks
2014-01-01
Ungulates exert a strong influence on the composition and diversity of vegetation communities. However, little is known about how ungulate browsing pressure interacts with episodic disturbances such as fire and stand thinning. We assessed shrub responses to variable browsing pressure by cattle and elk in fuels treated (mechanical removal of fuels followed by prescribed...
The spatial influence of Pseudotsuga menziesii retention trees on ectomycorrhiza diversity.
D.L. Luoma; C.A. Stockdale; R. Molina; J.L. Eberhart
2006-01-01
This study examines the effect of retained green trees on diversity of mycorrhizal fungi after stand harvest. A significant reduction of mycorrhizal root type richness resulted from the harvest treatment. Samples taken under tree crowns showed no significant decline in the mean number of mycorrhiza types per soil core. In areas well removed from retention trees, there...
Hambsch, B; Bösl, M; Eberhagen, I; Müller, U
2012-01-01
This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian
2016-11-01
A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Shengyong; Han, Yuxing; Zhuang, Haifeng; Han, Hongjun; Li, Kun
2017-10-01
A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.91%, 34.28%, -36.05% and 64.34%, respectively. High-throughput sequencing showed a microorganisms succession from inoculated activated sludge (S1) to activated sludge in MBR (S2) with high salinity. Richness and diversity of microorganisms in S2 was lower than S1 and the community structure of S1 exhibited more even than S2. The most relative abundance of genus in S1 and S2 were unclassified_Desulfarculaceae (9.39%) and Roseibaca (62.1%), respectively. High salinity and intermittent aeration represented different influence on the denitrifying genus, and non-aeration phase provided feasible dissolved oxygen condition for denitrifying genera realizing denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bai, Yaohui; Sun, Qinghua; Sun, Renhua; Wen, Donghui; Tang, Xiaoyan
2012-09-01
The denitrifier communities of a bioaugmented and non-augmented zeolite-biological aerated filter (Z-BAFs) were investigated and compared because the bioaugmented Z-BAF provided better and more stable treatment efficiency for nitrate and nitrite removal. Terminal restriction fragment length polymorphism (T-RFLP) and reverse transcription T-RFLP (RT-T-RFLP) were applied to analyse the denitrifier community diversity in the biofilm collected from each Z-BAF. The results showed that the bioaugmentation technology favourably changed the indigenous denitrifier community and enhanced denitrification under nitrogen loading shocks. The cDNA clone libraries were developed to explore the active denitrifier community structures of both filters. The results showed that the active denitrifiers in both the bioaugmented and non-bioaugmented Z-BAF belonged to alpha-, beta- and gamma-proteobacteria. However, the sequence of the introduced denitrifier (Paracoccus sp. BW001) was not found in the clone library of the bioaugmented filter, which implied that the removal of nitrate and nitrite was attributed mainly to the indigenous denitrifiers in the adjusted bacterial community in the bioaugmented Z-BAF.
Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl
2017-05-01
The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO 2 -H 2 S absorption column (AC) via settled broth recirculation. CO 2 -removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H 2 S removal was achieved regardless of the operational conditions. A maximum CH 4 concentration of 94% with a limited O 2 and N 2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm -2 d -1 and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bassin, J. P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M. C. M.
2011-01-01
The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “Candidatus Accumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal (“Candidatus Accumulibacter”). PMID:21926194
Planes, S; Fauvelot, C
2002-02-01
We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.
Ajemian, Matthew J.; Wetz, Jennifer J.; Shipley-Lozano, Brooke; Shively, J. Dale; Stunz, Gregory W.
2015-01-01
Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper. PMID:25954943
Gao, Xiang
2017-02-01
Cyanobacteria are photosynthetic oxygen-evolving prokaryotes that are distributed in diverse habitats. They synthesize the ultraviolet (UV)-screening pigments, scytonemin (SCY) and mycosporine-like amino acids (MAAs), located in the exopolysaccharide (EPS) matrix. Multiple roles for both pigments have gradually been recognized, such as sunscreen ability, antioxidant activity, and heat dissipation from absorbed UV radiation. In this study, a filamentous terrestrial cyanobacterium Nostoc flagelliforme was used to evaluate the potential stabilizing role of SCY on the EPS matrix. SCY (∼3.7 %) was partially removed from N. flagelliforme filaments by rinsing with 100 % acetone for 5 s. The physiological damage to cells resulting from this treatment, in terms of photosystem II activity parameter Fv/Fm, was repaired after culturing the sample for 40 h. The physiologically recovered sample was further desiccated by natural or rapid drying and then allowed to recovery for 24 h. Compared with the normal sample, a relatively slower Fv/Fm recovery was observed in the SCY-partially removed sample, suggesting that the decreased SCY concentration in the EPS matrix caused cells to suffer further damage upon desiccation. In addition, the SCY-partially removed sample could allow the release of MAAs (∼25 %) from the EPS matrix, while the normal sample did not. Therefore, damage caused by drying of the former resulted from at least the reduction of structural stability of the EPS matrix as well as the loss of partial antioxidant compounds. Considering that an approximately 4 % loss of SCY led to this significant effect, the structurally stabilizing potential of SCY on the EPS matrix is crucial for terrestrial cyanobacteria survival in complex environments.
Petrie, Bruce; McAdam, Ewan J; Lester, John N; Cartmell, Elise
2014-10-01
It is proposed that wastewater treatment facilities meet legislated discharge limits for a range of micropollutants. However, the heterogeneity of these micropollutants in wastewaters make removal difficult to predict since their chemistry is so diverse. In this study, a range of organic and inorganic micropollutants known to be preferentially removed via different mechanisms were selected to challenge the activated sludge process (ASP) and determine its potential to achieve simultaneous micropollutant removal. At a fixed hydraulic retention time (HRT) of 8 h, the influence of an increase in solids retention time (SRT) on removal was evaluated. Maximum achievable micropollutant removal was recorded for all chemicals (estrogens, nonylphenolics and metals) at the highest SRT studied (27 days). Also, optimisation of HRT by extension to 24 h further augmented organic biodegradation. Most notable was the enhancement in removal of the considerably recalcitrant synthetic estrogen 17α-ethinylestradiol which increased to 65 ± 19%. Regression analysis indicates that this enhanced micropollutant behaviour is ostensibly related to the concomitant reduction in food: microorganism ratio. Interestingly, extended HRT also initiated nonylphenol biodegradation which has not been consistently observed previously in real wastewaters. However, extending HRT increased the solubilisation of particulate bound metals, increasing effluent aqueous metals concentrations (i.e., 0.45 μm filtered) by >100%. This is significant as only the aqueous metal phase is to be considered for environmental compliance. Consequently, identification of an optimum process condition for generic micropollutant removal is expected to favour a more integrated approach where upstream process unit optimisation (i.e., primary sedimentation) is demanded to reduce loading of the particle bound metal phase onto the ASP, thereby enabling longer HRT in the ASP to be considered for optimum removal of organic micropollutants. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Maximizing the Gains and Minimizing the Pains of Diversity: A Policy Perspective.
Galinsky, Adam D; Todd, Andrew R; Homan, Astrid C; Phillips, Katherine W; Apfelbaum, Evan P; Sasaki, Stacey J; Richeson, Jennifer A; Olayon, Jennifer B; Maddux, William W
2015-11-01
Empirical evidence reveals that diversity-heterogeneity in race, culture, gender, etc.-has material benefits for organizations, communities, and nations. However, because diversity can also incite detrimental forms of conflict and resentment, its benefits are not always realized. Drawing on research from multiple disciplines, this article offers recommendations for how best to harness the benefits of diversity. First, we highlight how two forms of diversity-the diversity present in groups, communities, and nations, and the diversity acquired by individuals through their personal experiences (e.g., living abroad)-enable effective decision making, innovation, and economic growth by promoting deeper information processing and complex thinking. Second, we identify methods to remove barriers that limit the amount of diversity and opportunity in organizations. Third, we describe practices, including inclusive multiculturalism and perspective taking, that can help manage diversity without engendering resistance. Finally, we propose a number of policies that can maximize the gains and minimize the pains of diversity. © The Author(s) 2015.
Microbial community and performance of slaughterhouse wastewater treatment filters.
Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C
2014-06-16
The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.
Perspectives of HIV agencies on improving HIV prevention, treatment, and care services in the USA.
Khosla, Nidhi; Zachary, Iris
2016-10-01
HIV healthcare services in the USA are made available through a complex funding and delivery system. We present perspectives of HIV agencies on improvements that could lead to an ideal system of HIV prevention, treatment and care. We conducted semi-structured interviews with representatives from 21 HIV agencies offering diverse services in Baltimore, MD. Thematic analysis revealed six key themes: (1) Focusing on HIV prevention, (2) Establishing common entry-points for services, (3) Improving information availability, (4) Streamlining funding streams, (5) Removing competitiveness and (6) Building trust. We recommend that in addition to addressing operational issues regarding service delivery and patient care, initiatives to improve HIV service systems should address underlying social issues such as building trust.
Cravotta, Charles A.
2010-01-01
A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.
Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong
2018-02-01
Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.
Reproducibility and quantitation of amplicon sequencing-based detection
Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng
2011-01-01
To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative analysis of the β-diversity of microbial communities. PMID:21346791
Nickels, Janet S.; Bobbie, Ronald J.; Lott, Dan F.; Martz, Robert F.; Benson, Peter H.; White, David C.
1981-01-01
Metals exposed to rapidly flowing seawater are fouled by microbes that increase heat transfer resistance. In this study, results of biochemical test methods quantitatively relating the biomass and community structure of the microfouling film on aluminum and titanium to heat transfer resistance across the metal surface during three cycles of free fouling and manual brushing showed that cleaning accelerates the rate of fouling measured as the loss of heat transfer efficiency and as microfouling film biomass. The results also showed that the rate of fouling, measured as an increase in heat transfer resistance, is faster on titanium than on aluminum but that the titanium surface is more readily cleaned. In three cycles of free fouling and cleaning with a stiff-bristle nylon brush, the free-fouling communities re-forming on aluminum became enriched in bacteria containing short-branched fatty acids as the cycling progressed. The free-fouling community on titanium revealed an increasingly diverse morphology under scanning electron microscopy that was enriched in a portion of the microeucaryotes. Brushing removed most of the biomass, but left a residual community that was relatively enriched in a portion of the bacterial assembly containing cyclopropane fatty acids on aluminum and in a more diverse community on the titanium surface. The residual communities left after cleaning of titanium revealed an increase in bacteria with short-branched fatty acids and in microeucaryotes as cleaning continued. No significant changes occurred in the residual microbial community structure left on aluminum with cleaning; it was, again, less diverse than that remaining on titanium. The residual communities secreted a twofold-larger amount of extracellular polymer, measured as the ratio of total organic carbon to lipid phosphate, than did the free-fouling community on both surfaces. Images PMID:16345798
Effects of water removal on a Hawaiian stream ecosystem
Kinzie, R. A.; Chong, C.; Devrell, J.; Lindstrom, D.; Wolff, R.
2006-01-01
A 3-year study of Wainiha River on Kaua'i, Hawai'i, was carried out to determine the impact that water removal had on key stream ecosystem parameters and functions. The study area included a diversion dam for a hydroelectric plant that removes water at an elevation of 213 m and returns it to the stream about 6 km downstream at an elevation of 30 m. There were two high-elevation sites, one with undiverted flow and one with reduced flow, and two low-elevation sites, one with reduced flow and one with full flow restored. Monthly samples were taken of instream and riparian invertebrates and plants. When samples from similar elevations were compared, dewatered sites had lower concentrations of benthic photosynthetic pigments than full-flow sites, and benthic ash-free dry mass (AFDM) was higher at the two low-elevation sites regardless of flow. Benthic chlorophyll a (chl a) and AFDM were higher in summer months than in the winter. Benthic invertebrate abundance was highest at the full-flow, low-elevation site and benthic invertebrate biomass was highest at the full-flow, high-elevation site. Season had only marginal effects on abundance and biomass of benthic invertebrates. Diversity of benthic invertebrates was higher at the more-downstream sites. Abundance of drifting invertebrates was highest at the site above the diversion dam and generally higher in winter than in summer months. Biomass of drifting invertebrates was also highest at the above-dam site but there was little seasonal difference. Almost all parameters measured were lowest at the site just downstream of the diversion dam. The biotic parameters responded only weakly to flows that had occurred up to 1 month before the measurements were made. Flow, elevation, and season interact in complex ways that impact ecosystem parameters and functions, but water diversion can override all these environmental factors. ?? 2006 by University of Hawai'i Press All rights reserved.
We Are Family: Using Diverse Family Structure Literature with Children
ERIC Educational Resources Information Center
Gilmore, Deanna Peterschick; Bell, Kari
2006-01-01
The structure of the American family has changed over the years. Although the traditional father, mother, child structure still dominates, other family patterns are emerging. In this article the authors present: (1) current statistics relating to diverse family structures; (2) reasons for using diverse family structure literature with children;…
Lepš, Jan; Májeková, Maria; Vítová, Alena; Doležal, Jiří; de Bello, Francesco
2018-02-01
The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity. © 2017 by the Ecological Society of America.
Whitlock, Raj
2014-01-01
Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful. PMID:25210204
Jin, Xiaohui; Peldszus, Sigrid
2012-01-01
Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.
Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites
NASA Technical Reports Server (NTRS)
Ortega, Maya C.
2011-01-01
Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.
Reconstitution of full-thickness skin by microcolumn grafting.
Tam, Joshua; Wang, Ying; Vuong, Linh N; Fisher, Jeremy M; Farinelli, William A; Anderson, R Rox
2017-10-01
In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System
Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric
2012-01-01
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326
Doco, Thierry; Williams, Pascale; Meudec, Emmanuelle; Cheynier, Véronique; Sommerer, Nicolas
2015-01-21
The major neutral oligosaccharides of a Carignan red wine have been characterized for the first time. The oligosaccharides were prepared after removal of phenolic compounds by polyamide chromatography and of polysaccharides by alcohol precipitation and then were fractionated by anion exchange and size-exclusion chromatography. In a second step, the glycosyl composition and linkages of wine oligosaccharides were determined. Oligosaccharide fractions were analyzed by mass spectrometry (MS) with an electrospray ionization (ESI) source and an ion trap mass analyzer after separation by hydrophilic interaction liquid chromatography on a Nucleodur HILIC column (zwitterionic sulfoalkyl betaine stationary phase). Glycosyl residue composition analysis showed the predominant presence of arabinose, with galactose, rhamnose, and mannose in lower proportion. Neutral oligosaccharides were present at a concentration of 185 mg/L in this wine. The MS spectra in the negative ion mode of the oligosaccharide fractions showed a series of oligosaccharidic structures corresponding to oligo-arabinans often linked to the basic unit α-l-Rhap-(1 → 4)-α-d-GalpA. The wine oligosaccharides identified correspond to arabino-oligosaccharides, rhamno-arabino-oligosaccharides, and different rhamnogalacturonan-arabino-oligosaccharides with DP ranging from 5 to 49, resulting from the degradation of grape cell wall pectins. Oligosaccharides have an extreme diversity, with more than 100 peaks detected in HPLC-ESI-MS spectra corresponding each to at least one oligosaccharidic structure.
Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.
Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes
2015-03-01
Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-01-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-03-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.
The diversity effect in diagnostic reasoning.
Rebitschek, Felix G; Krems, Josef F; Jahn, Georg
2016-07-01
Diagnostic reasoning draws on knowledge about effects and their potential causes. The causal-diversity effect in diagnostic reasoning normatively depends on the distribution of effects in causal structures, and thus, a psychological diversity effect could indicate whether causally structured knowledge is used in evaluating the probability of a diagnosis, if the effect were to covary with manipulations of causal structures. In four experiments, participants dealt with a quasi-medical scenario presenting symptom sets (effects) that consistently suggested a specified diagnosis (cause). The probability that the diagnosis was correct had to be rated for two opposed symptom sets that differed with regard to the symptoms' positions (proximal or diverse) in the causal structure that was initially acquired. The causal structure linking the diagnosis to the symptoms and the base rate of the diagnosis were manipulated to explore whether the diagnosis was rated as more probable for diverse than for proximal symptoms when alternative causations were more plausible (e.g., because of a lower base rate of the diagnosis in question). The results replicated the causal diversity effect in diagnostic reasoning across these conditions, but no consistent effects of structure and base rate variations were observed. Diversity effects computed in causal Bayesian networks are presented, illustrating the consequences of the structure manipulations and corroborating that a diversity effect across the different experimental manipulations is normatively justified. The observed diversity effects presumably resulted from shortcut reasoning about the possibilities of alternative causation.
Thomas, Matthew C; Selinger, L Brent; Inglis, G Douglas
2012-08-01
The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.
Thomas, Matthew C.; Selinger, L. Brent
2012-01-01
The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143
Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P
2016-07-01
The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.
NASA Astrophysics Data System (ADS)
Sezer, Güneş Günay; Arıcı, Mürsel; Erucar, İlknur; Yeşilel, Okan Zafer; Özel, Handan Ucun; Gemici, Betül Tuba; Erer, Hakan
2017-11-01
Two new coordination polymers (CPs) - [Zn(μ4-ppda)(μ-abpy)0.5]n(1) and [Cd(μ3-opda)(μ-abpy)0.5(H2O)]n(2) (o/ppda = 1,2/1,4-phenylenediacetate, abpy = 4,4‧-azobis(pyridine)) - have been synthesized by using Zn(II)/Cd(II) salts in the presence of o- and p-phenylenediacetic acid and abpy under hydrothermal conditions. Their structures have been characterized by FT-IR spectroscopy, elemental analysis, X-ray powder diffraction and single crystal X-ray diffraction techniques. The structural diversities were observed depending on anionic ligands and metal centers in the synthesized complexes. Complex 1 consists of a 2-fold interpenetrated 3D+3D→3D framework with pcu topology while complex 2 has a 2D structure with sql topology. The adsorption of methylene blue (MB) was studied to examine the potential of the title CPs for removal of dyes from aqueous solution. Molecular dynamics (MD) simulations were also performed to examine diffusion of MB in 1 and 2. Thermal and optical properties of two complexes were also discussed.
Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J
2015-11-01
Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.
Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang
2010-06-01
Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.
Kiyuna, Luma Sayuri Mazine; Fuess, Lucas Tadeu; Zaiat, Marcelo
2017-05-01
Throughout the sugarcane harvest, it is common for sulfate to accumulate in the vinasse of sugar and ethanol plants. However, little is known regarding the influence of sulfate on the anaerobic digestion (AD) of vinasse, which may lead to severe performance losses. This study assessed the influence of various COD/sulfate ratios (12.0, 10.0 and 7.5) on both COD removal and methane (CH 4 ) production from sugarcane vinasse AD. Batch assays were conducted in thermophilic conditions. At a COD/sulfate ratio of 7.5, CH 4 production was 35% lower compared with a ratio of 12.0, considering a diversion of approximately 13.6% of the electron flow to sulfidogenesis. The diversion of electrons to sulfidogenesis was negligible at COD/sulfate ratios higher than 25, considering the exponential increase in CH 4 production. Organic matter degradation was not greatly affected by sulfidogenesis, with COD removal levels higher than 80%, regardless of the initial COD/sulfate ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mejias Carpio, Isis E; Franco, Diego Castillo; Zanoli Sato, Maria Inês; Sakata, Solange; Pellizari, Vivian H; Seckler Ferreira Filho, Sidney; Frigi Rodrigues, Debora
2016-04-15
Understanding the diversity and metal removal ability of microorganisms associated to contaminated aquatic environments is essential to develop metal remediation technologies in engineered environments. This study investigates through 16S rRNA deep sequencing the composition of a biostimulated microbial consortium obtained from the polluted Tietê River in São Paulo, Brazil. The bacterial diversity of the biostimulated consortium obtained from the contaminated water and sediment was compared to the original sample. The results of the comparative sequencing analyses showed that the biostimulated consortium and the natural environment had γ-Proteobacteria, Firmicutes, and uncultured bacteria as the major classes of microorganisms. The consortium optimum zinc removal capacity, evaluated in batch experiments, was achieved at pH=5 with equilibrium contact time of 120min, and a higher Zn-biomass affinity (KF=1.81) than most pure cultures previously investigated. Analysis of the functional groups found in the consortium demonstrated that amine, carboxyl, hydroxyl, and phosphate groups present in the consortium cells were responsible for zinc uptake. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinematic diversity suggests expanded roles for fly halteres
Hall, Joshua M.; McLoughlin, Dane P.; Kathman, Nicholas D.; Yarger, Alexandra M.; Mureli, Shwetha; Fox, Jessica L.
2015-01-01
The halteres of flies are mechanosensory organs that provide information about body rotations during flight. We measured haltere movements in a range of fly taxa during free walking and tethered flight. We find a diversity of wing–haltere phase relationships in flight, with higher variability in more ancient families and less in more derived families. Diverse haltere movements were observed during free walking and were correlated with phylogeny. We predicted that haltere removal might decrease behavioural performance in those flies that move them during walking and provide evidence that this is the case. Our comparative approach reveals previously unknown diversity in haltere movements and opens the possibility of multiple functional roles for halteres in different fly behaviours. PMID:26601682
Luiz, Amom Mendes; Sawaya, Ricardo J.
2018-01-01
Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575
Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F
2010-11-04
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byles, Bryan W.; Cullen, David A.; More, Karren Leslie
We report that hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO 2 and todorokite-MnO 2. The other two phasesmore » have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl 2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g -1, 44.4 mg g -1, and 43.1 mg g -1 in NaCl, KCl, and MgCl 2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g -1 s -1, 0.165 mg g -1 s -1, and 0.164 mg g -1 s -1 in NaCl, KCl, and MgCl 2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. In conclusion, this work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.« less
Byles, Bryan W.; Cullen, David A.; More, Karren Leslie; ...
2017-12-18
We report that hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO 2 and todorokite-MnO 2. The other two phasesmore » have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl 2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g -1, 44.4 mg g -1, and 43.1 mg g -1 in NaCl, KCl, and MgCl 2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g -1 s -1, 0.165 mg g -1 s -1, and 0.164 mg g -1 s -1 in NaCl, KCl, and MgCl 2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. In conclusion, this work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.« less
Ontiveros-Valencia, Aura; Tang, Youneng; Zhao, He-Ping; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Rittmann, Bruce E; Krajmalnik-Brown, Rosa
2014-07-01
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Chen, Yuan; Wang, Li; Ma, Fang; Yang, Ji-xian; Qiu, Shan
2014-01-01
The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.
Xu, Xianglong; Liu, Guohua; Wang, Yuanyuan; Zhang, Yuankai; Wang, Hao; Qi, Lu; Wang, Hongchen
2018-02-01
A sequencing batch reactor (SBR)-anaerobic ammonium oxidation (anammox) system was started up with the paddy soil as inoculated sludge. The key microbial community structure in the system along with the enrichment time was investigated by using molecular biology methods (e.g., high-throughput 16S rRNA gene sequencing and quantitative PCR). Meanwhile, the influent and effluent water quality was continuously monitored during the whole start-up stage. The results showed that the microbial diversity decreased as the operation time initially and increased afterwards, and the microbial niches in the system were redistributed. The anammox bacterial community structure in the SBR-anammox system shifted during the enrichment, the most dominant anammox bacteria were CandidatusJettenia. The maximum biomass of anammox bacteria achieved 1.68×10 9 copies/g dry sludge during the enrichment period, and the highest removal rate of TN achieved around 75%. Copyright © 2017. Published by Elsevier B.V.
Consumer diversity interacts with prey defenses to drive ecosystem function.
Rasher, Douglas B; Hoey, Andrew S; Hay, Mark E
2013-06-01
Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji and found that protected reefs supported 7-17x greater biomass, 2-3x higher species richness of herbivorous fishes, and 3-11x more live coral cover than did fished reefs. In contrast, macroalgae were 27-61x more abundant and 3-4x more species-rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside vs. outside reserves. We then video-recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy vs. complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong negative relationships between herbivore diversity and macroalgal abundance and diversity across the six study reefs. Our findings indicate that the total diet breadth of the herbivore community and the probability of all macroalgae being removed from reefs by herbivores increases with increasing herbivore diversity, but that a few critical species drive this relationship. Therefore, interactions between algal defenses and herbivore tolerances create an essential role for consumer diversity in the functioning and resilience of coral reefs.
Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H.; Kyin, Saw; Shwe, Henry H.; Harris, Rachel L.; Oh, Youmi; Yi, Min Joo; Purtschert, Roland; Slater, Greg F.; Ono, Shuhei; Wei, Siwen; Li, Long; Sherwood Lollar, Barbara; Onstott, Tullis C.
2016-01-01
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. PMID:27872277
Di Lellis, Maddalena A; Sereda, Sergej; Geißler, Anna; Picot, Adrien; Arnold, Petra; Lang, Stefanie; Troschinski, Sandra; Dieterich, Andreas; Hauffe, Torsten; Capowiez, Yvan; Mazzia, Christophe; Knigge, Thomas; Monsinjon, Tiphaine; Krais, Stefanie; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R
2014-11-01
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.
75 FR 35440 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... productivity and intra-population diversity and promote local adaptation, and (3) use Chinook salmon... hatchery-origin Chinook salmon removal on natural Chinook salmon productivity and develop an adaptive...
NASA Technical Reports Server (NTRS)
Perry, J. L.; Agui, J. H.; Vijayakimar, R
2016-01-01
Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.
Auer, Lucas; Mariadassou, Mahendra; O'Donohue, Michael; Klopp, Christophe; Hernandez-Raquet, Guillermina
2017-11-01
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates. © 2017 John Wiley & Sons Ltd.
Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils
Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc
2016-01-01
Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the effect of application of carrot residue, earthworms or the surfactant on the bacterial community structure was more accentuated in the arable soil than in the pasture soil. It was found that removal of anthracene was not linked to changes in the bacterial community structure. PMID:27727277
Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.
Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming
2015-01-01
Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.
Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong
2012-09-01
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
NASA Astrophysics Data System (ADS)
Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.
2015-12-01
Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06028a
Lu, Xin; Zhou, Haijian; Du, Xiaoli; Liu, Sha; Xu, Jialiang; Cui, Zhigang; Pang, Bo; Kan, Biao
2016-11-01
Vibrio parahaemolyticus is a common seafood-borne pathogenic bacterium which causes gastroenteritis in humans. Continuous surveillance on the molecular characters of the clinical and environmental V. parahaemolyticus strains needs to be conducted for the epidemiological and genetic purposes. To generate a picture of the population distribution of V. parahaemolyticus in eastern China isolated from clinical cases of gastroenteritis and environmental samples, we investigated the genetic and evolutionary relationships of the strains using the commonly used multi-locus sequence typing (MLST, in which seven house-keeping genes are used in the protocol). A highly genetic diversity within the V. parahaemolyticus population was observed but ST3 was still dominant in the clinical strains, and 103 new sequence types (ST) were found in the clinical strains by searching in the global V. parahaemolyticus MLST database. With these genetically diverse strains, we estimated the recombination rates of the loci in MLST analysis. The locus recA was found to be subject to exceptionally high rate of recombination, and the recombinant single nucleotide polymorphisms (SNPs) were also identified within the seven loci. The phylogenetic tree of the strains was re-constructed using the maximum likelihood method by removing the recombination SNPs of the seven loci, and the minimum spanning tree was re-constructed with the six loci without recA. Some changes were observed in comparison with the previously used methods, suggesting that the homologous recombination has roles in shaping the clonal structure of V. parahaemolyticus. We propose the recombination-free SNPs strategy in the clonality analysis of V. parahaemolyticus, especially when using the maximum likelihood method. Copyright © 2016. Published by Elsevier B.V.
Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio
2016-01-01
Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD).
Pan, Shihui; Yan, Ning; Liu, Xinyue; Wang, Wenbing; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E
2014-11-01
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
The microbial community of a biofilm contact reactor for the treatment of winery wastewater.
de Beer, D M; Botes, M; Cloete, T E
2018-02-01
To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.
Griotti, Mariana; Muñoz-Escobar, Christian; Ferretti, Nelson E
2017-08-01
The link between vegetation structure and spider diversity has been well explored in the literature. However, few studies have compared spider diversity and its response to vegetation at two conceptual levels: assemblage (species diversity) and ensemble (guild diversity). Because of this, we studied spider diversity in riparian and adjacent habitats of a river system from the Chacoan subregion in central Argentina and evaluated their linkage with vegetation structure at these two levels. To assess vegetation structure, we measured plant species richness and vegetation cover in the herb and shrub - tree layers. We collected spiders for over 6 months by using vacuum netting, sweep netting and pitfall traps. We collected 3,808 spiders belonging to 119 morphospecies, 24 families and 9 guilds. At spider assemblage level, SIMPROF analysis showed significant differences among studied habitats. At spider ensemble level, nevertheless, we found no significant differences among habitats. Concerning the linkage with vegetation structure, BIOENV test showed that spider diversity at either assemblage or ensemble level was not significantly correlated with the vegetation variables assessed. Our results indicated that spider diversity was not affected by vegetation structure. Hence, even though we found a pattern in spider assemblages among habitats, this could not be attributed to vegetation structure. In this study, we show that analyzing a community at two conceptual levels will be useful for recognizing different responses of spider communities to vegetation structure in diverse habitat types. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.
Quantification of loading in biomechanical testing: the influence of dissection sequence.
Funabashi, Martha; El-Rich, Marwan; Prasad, Narasimha; Kawchuk, Gregory N
2015-09-18
Sequential dissection is a technique used to investigate loads experienced by articular tissues. When the joint of interest is tested in an unconstrained manner, its kinematics change with each tissue removal. To address this limitation, sufficiently rigid robots are used to constrain joint kinematics. While this approach can quantify loads experienced by each tissue, it does not assure similar results when removal order is changed. Specifically, structure loading is assumed to be independent of removal order if the structure behaves linearly (i.e. principle of superposition applies), but dependent on removal order when response is affected by material and/or geometry nonlinearities and/or viscoelasticiy (e.g. biological tissues). Therefore, this experiment was conducted to evaluate if structure loading created through robotic testing is dependent on the order in which connectors are removed. Six identical models were 3D printed. Each model was composed of 2 rigid bodies and 3 connecting structures with nonlinear time-dependent behavior. To these models, pure rotations were applied about a predefined static center of rotation using a parallel robot. A unique dissection sequence was used for each of the six models and the same movements applied robotically after each dissection. When comparing the moments experienced by each structure between different removal sequences, a statistically significant difference (p<0.05) was observed. These results suggest that even in an optimized environment, the sequence in which nonlinear viscoelastic structures are removed influence model loading. These findings support prior work suggesting that tissue loads obtained from robotic testing are specific to removal order. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego
2017-08-01
Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.
Kearns, Ade; Whitley, Elise
2018-01-01
ABSTRACT This article examines whether perceived neighborhood ethnic diversity is associated with a range of social outcomes in a postindustrial city undergoing regeneration. The research included a survey in 3 types of deprived area in Glasgow: those undergoing regeneration, those directly adjoining regeneration areas, and those further removed from regeneration areas. In areas undergoing regeneration, perceived diversity was positively associated with many residential, cohesion, safety, and empowerment outcomes. This was also true, although to a lesser extent, in deprived areas at some distance from regeneration areas. In areas immediately surrounding the regeneration areas, perceived diversity had mixed associations with residential and safety outcomes and few associations with cohesion and empowerment outcomes. The results suggest that the effects of perceived diversity are context dependent within a city. Moreover, regeneration processes alter neighborhood contexts and therefore enable scale, timing, and duration of diversity to mediate the relationships between perceived diversity and social outcomes. PMID:29479290
Ardiansyah, A; Fotedar, R
2016-07-01
Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2) > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.
Kinematic diversity suggests expanded roles for fly halteres.
Hall, Joshua M; McLoughlin, Dane P; Kathman, Nicholas D; Yarger, Alexandra M; Mureli, Shwetha; Fox, Jessica L
2015-11-01
The halteres of flies are mechanosensory organs that provide information about body rotations during flight. We measured haltere movements in a range of fly taxa during free walking and tethered flight. We find a diversity of wing-haltere phase relationships in flight, with higher variability in more ancient families and less in more derived families. Diverse haltere movements were observed during free walking and were correlated with phylogeny. We predicted that haltere removal might decrease behavioural performance in those flies that move them during walking and provide evidence that this is the case. Our comparative approach reveals previously unknown diversity in haltere movements and opens the possibility of multiple functional roles for halteres in different fly behaviours. © 2015 The Author(s).
Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes
The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...
Multi-barrier approach for removing organic micropollutants using mobile water treatment systems.
Yu, Youngbeom; Choi, Yang Hun; Choi, Jaewon; Choi, Soohoon; Maeng, Sung Kyu
2018-05-20
The diversity of organic micropollutants (OMPs) in aquatic environments has been increasing rapidly during the last decade. Therefore, it is important to monitor and attenuate emerging contaminants before they can negatively affect the aquatic environment. However, due to the diversity and complexity of OMPs, there are limitations to using a single method for treating a combination of these pollutants. To address this issue, a mobile water treatment system (MWTS) equipped with different treatment units was designed to remove OMPs under field conditions. The MWTS was configured with various modular units including coagulation, flocculation, dissolved air flotation, membrane filtration, ozone oxidation, granular activated carbon, and UV disinfection. Each treatment unit could be operated either individually or in different combinations to identify the optimal configuration of treatment units for the removal of OMPs. To investigate the effectiveness of the MWTS, twelve OMPs were selected and introduced simultaneously into the feed water samples collected from different rivers throughout Korea. The current study proved that the MTWS is an effective solution to treat OMPs and is a time saving treatment system. The combined effects of the different treatment units removed over 99% of the selected OMPs, regardless of their physicochemical properties. Moreover, since the system is mobile, on-site analyses can be conducted to identify the most effective treatment method and configuration for each OMP. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Hua; Song, Hai-Liang; Yang, Xiao-Li; Zhang, Shuai; Yang, Yu-Li; Zhang, Li-Min; Xu, Han; Wang, Ya-Wen
2018-05-08
A continuous flow microbial fuel cell constructed wetland (MFC-CW) coupled with a biofilm electrode reactor (BER) system was constructed to remove sulfamethoxazole (SMX). The BER unit powered by the stacked MFC-CWs was used as a pretreatment unit, and effluent flowed into the MFC-CW for further degradation. The experimental results indicated that the removal rate of 2 or 4 mg/L SMX in a BER unit was nearly 90%, and the total removal rate in the coupled system was over 99%. As the hydraulic retention time (HRT) was reduced from 16 h to 4 h, the SMX removal rate in the BER decreased from 75% to 48%. However, the total removal rate in the coupled system was still over 97%. The maximum SMX removal rate in the MFC-CW, which accounted for 42%-55% of the total removal, was obtained in the anode layer. In addition, the relative abundances of sul genes detected in the systems were in the order of sulI > sulII > sulIII, and significant positive correlations of sul gene copy numbers versus SMX concentration and 16S rRNA gene copy numbers were observed. Furthermore, significant negative correlations were identified between sul genes, 16S rRNA gene copy numbers, and HRT. The abundances of the sul genes in the effluent of the MFC-CW were lower than the abundances observed in the BER effluent. High-throughput sequencing revealed that the microbial community diversity of the BER was affected by running time, power supply forms and HRT. Bio-electricity from the MFC-CW may reduce microbial community diversity and contribute to reduction of the antibiotic resistance gene (ARG) abundance in the BER. Taken together, the BER-MFC-CW coupled system is a potential tool to treat wastewater containing SMX and attenuate corresponding ARG abundance. Copyright © 2018 Elsevier B.V. All rights reserved.
2011-11-01
Bimetallic Treatment System (BTS) for PCB Removal from Older Structures on DoD Facilities By Thomas Krug and Suzanne O’Hara, Geosyntec...COST AND PERFORMANCE REPORT FOR: Application of a Bimetallic Treatment System (BTS) for PCB Removal from Older Structures on DOD Facilities...11 3.4 Reduction in PCB concentrations in treated paint to less
Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities
2011-11-01
Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities November 2011 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2011 4. TITLE AND SUBTITLE Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities 5a...EASE OF IMPLEMENTATION .......................................................................... 13 3.4 REDUCTION IN PCB CONCENTRATIONS IN TREATED
Alignment Pins for Assembling and Disassembling Structures
NASA Technical Reports Server (NTRS)
Campbell, Oliver C.
2008-01-01
Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.
Cossu, Rosa Maria; Casola, Claudio; Giacomello, Stefania; Vidalis, Amaryllis
2017-01-01
Abstract The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content. PMID:29228262
Monge, Aurélien; Arrault, Alban; Marot, Christophe; Morin-Allory, Luc
2006-08-01
The data for 3.8 million compounds from structural databases of 32 providers were gathered and stored in a single chemical database. Duplicates are removed using the IUPAC International Chemical Identifier. After this, 2.6 million compounds remain. Each database and the final one were studied in term of uniqueness, diversity, frameworks, 'drug-like' and 'lead-like' properties. This study also shows that there are more than 87 000 frameworks in the database. It contains 2.1 million 'drug-like' molecules among which, more than one million are 'lead-like'. This study has been carried out using 'ScreeningAssistant', a software dedicated to chemical databases management and screening sets generation. Compounds are stored in a MySQL database and all the operations on this database are carried out by Java code. The druglikeness and leadlikeness are estimated with 'in-house' scores using functions to estimate convenience to properties; unicity using the InChI code and diversity using molecular frameworks and fingerprints. The software has been conceived in order to facilitate the update of the database. 'ScreeningAssistant' is freely available under the GPL license.
Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.
An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan
2018-05-08
Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin
2015-12-01
Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.
Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong
2018-01-01
This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y
2017-11-30
The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng
2016-03-01
A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
...), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring and... vibratory hammer extraction methods and structures will be removed via cable lifting. In addition... be removed via vibratory hammer extraction methods. Operations will begin on the pilings and...
Pynaert, Kris; Smets, Barth F.; Wyffels, Stijn; Beheydt, Daan; Siciliano, Steven D.; Verstraete, Willy
2003-01-01
In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought to be jointly responsible for the high autotrophic N removal, occur side by side throughout the biofilm. PMID:12788771
Application of Ultrasonic Bone Curette in Endoscopic Endonasal Skull Base Surgery: Technical Note
Rastelli, Milton M.; Pinheiro-Neto, Carlos D.; Fernandez-Miranda, Juan C.; Wang, Eric W.; Snyderman, Carl H.; Gardner, Paul A.
2014-01-01
Background Endoscopic endonasal surgery (EES) of the skull base often requires extensive bone work in proximity to critical neurovascular structures. Objective To demonstrate the application of an ultrasonic bone curette during EES. Methods Ten patients with skull base lesions underwent EES from September 2011 to April 2012 at the University of Pittsburgh Medical Center. Most of the bone work was done with high-speed drill and rongeurs. The ultrasonic curette was used to remove specific structures. Results All the patients were submitted to fully endoscopic endonasal procedures and had critical bony structures removed with the ultrasonic bone curette. Two patients with degenerative spine diseases underwent odontoid process removal. Five patients with clival and petroclival tumors underwent posterior clinoid removal. Two patients with anterior fossa tumors underwent crista galli removal. One patient underwent unilateral optic nerve decompression. No mechanical or heat injury resulted from the ultrasonic curette. The surrounding neurovascular structures and soft tissue were preserved in all cases. Conclusion In selected EES, the ultrasonic bone curette was successfully used to remove loose pieces of bone in narrow corridors, adjacent to neurovascular structures, and it has advantages to high-speed drills in these specific situations. PMID:24719795
Sun, Yujiao; Zuo, Jiane; Cui, Longtao; Deng, Qian; Dang, Yan
2010-02-01
Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.
Kolbert, Zsuzsanna; Feigl, Gábor; Bordé, Ádám; Molnár, Árpád; Erdei, László
2017-04-01
Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO 2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Zhu; Zhang, Xu-Xiang; Lu, Xin; Liu, Bo; Li, Yan; Long, Chao; Li, Aimin
2014-01-01
Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment. PMID:25420093
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.
2016-11-01
The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2009-01-01
A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.
López-Vallejo, Fabian; Nefzi, Adel; Bender, Andreas; Owen, John R.; Nabney, Ian T.; Houghten, Richard A.; Medina-Franco, Jose L.
2011-01-01
Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, several experimental methods have been developed. However, limited efforts have been performed so far to quantify the diversity of the broadly used diversity-oriented synthetic (DOS) libraries. Herein we report a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries from libraries, which is a DOS approach. Using MACCS keys, radial and different pharmacophoric fingerprints as well as six molecular properties, it was demonstrated the increased structural and property diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing drugs, NCI Diversity and the Molecular Libraries Small Molecule Repository revealed the structural uniqueness of the combinatorial libraries (mean similarity < 0.5 for any fingerprint representation). In particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like character in property space. This study represents the first comprehensive quantification of the diversity of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of DOS libraries with existing drugs or any other compound collection. PMID:21294850
Addition of multiple limiting resources reduces grassland diversity
USDA-ARS?s Scientific Manuscript database
Niche dimensionality is the most general theoretical explanation for biodiversity: more niches allow for more ecological tradeoffs between species and thus greater opportunities for coexistence. Resource competition theory predicts that removing resource limitations, by increasing resource availabil...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.
1996-05-01
Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole andmore » crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.« less
Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity
Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.
2008-01-01
The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215
Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan
2015-01-01
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding. PMID:25901573
Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter
2017-10-01
H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the... mouth of Chapman Bay. Pilings would be removed by vibratory hammer extraction methods and structures... day would be removed via vibratory hammer extraction methods. Typically the hammer vibrates for less...
Effect of copper sulphate treatment on natural phytoplanktonic communities.
Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian
2006-12-01
Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.
Guan, Wei; Yin, Min; He, Tao; Xie, Shuguang
2015-10-01
Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands.
Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori
2016-12-01
The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Insider Threat - Material Control and Accountability Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T
2011-01-01
The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur bymore » an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.« less
Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures
NASA Astrophysics Data System (ADS)
Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk
2015-05-01
Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.
Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.
2013-01-01
Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198
Koelling, V A; Hamrick, J L; Mauricio, R
2011-01-01
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327
Association of coral algal symbionts with a diverse viral community responsive to heat shock.
Brüwer, Jan D; Agrawal, Shobhit; Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R
2017-08-17
Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.
Oklahoma geology, the challenge in a changing environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, G.B.; Tillman, B.L.
1993-02-01
A diversity of geology and programs exists in Oklahoma which requires the SCS geologist to use a wide range of experience in order to contribute to the many existing programs. The US Soil Conservation Service geologist work force consists of Bob L. Tillman, Sedimentation Geologist, Chickasha, and Glen B. Miller, Engineering Geologist, Stillwater, Oklahoma. Their poster display illustrates channel erosion commonly encountered during planning investigations within Oklahoma. Channel erosion consists of the removal of soil and rock by a concentrated flow of water. It includes, but is not limited to, ephemeral gully erosion, streambank erosion, roadside erosion, and flood-plain scour.more » All contribute sediment to floodwater retarding structures and are important considerations in watershed planning. Each of these types of channel erosion are displayed and discussed on the poster display.« less
Fluoride in drinking water and its removal.
Meenakshi; Maheshwari, R C
2006-09-01
Excessive fluoride concentrations have been reported in groundwaters of more than 20 developed and developing countries including India where 19 states are facing acute fluorosis problems. Various technologies are being used to remove fluoride from water but still the problem has not been rooted out. In this paper, a broad overview of the available technologies for fluoride removal and advantages and limitations of each one have been presented based on literature survey and the experiments conducted in the laboratory with several processes. It has been concluded that the selection of treatment process should be site specific as per local needs and prevailing conditions as each technology has some limitations and no one process can serve the purpose in diverse conditions.
Shelley A. Evans; Charles B. Halpern; Donald McKenzie
2012-01-01
Many aspects of forest structure are thought to contribute to the presence, abundance, and diversity of forest-floor bryophytes. To what extent easily measured characteristics of local environment (overstory structure or substrate availability) explain patterns of abundance and diversity remains unclear in most forest ecosystems. We explore these relationships in four...
Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama
Wendell R. Haag; Melvin L. Jr. Warren
2010-01-01
1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...
Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola
2006-09-01
Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.
Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.
2009-01-01
Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.
NASA Astrophysics Data System (ADS)
Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.
2017-07-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.
2017-01-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-01-01
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions. PMID:26355955
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-09-10
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co(2+) solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co(2+) reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the "structural influence" crucial for the full and dynamical understanding of nZVI reactions.
NASA Astrophysics Data System (ADS)
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-09-01
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.
Gap formation following climatic events in spatially structured plant communities
Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan
2015-01-01
Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803
Inorganic pyrophosphatases: structural diversity serving the function
NASA Astrophysics Data System (ADS)
Samygina, V. R.
2016-05-01
The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.
[Diversity of parasitic protozoan mitochondria and adaptive evolution].
Tian, Hai-Feng; Wen, Jian-Fan
2010-02-01
Eukaryotic mitochondrion generally possess a definite and canonical structure and function. However, in the unicellular parasitic protozoa, various atypical mitochondria with respect to the number, structure, and function, have been discovered consecutively, revealing the variability, plasticity and rich diversity of mitochondrion. Here, we review the mitochondrial diversity in diverse parasitic protozoa, and the underlying reason for such diversity--the adaptive evolution of mitochondrion to the micro-oxygen or anaero parasitic environment of these parasites is also analyzed and discussed.
Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081
Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan
2018-01-02
Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because conventional composting often fails to remove these compounds, we evaluated if hyperthermophilic composting with elevated temperature is more efficient at removing ARGs and MGEs and explored the underlying mechanisms of ARG removal of the two composting methods. We found that hyperthermophilic composting removed ARGs and MGEs more efficiently than conventional composting (89% and 49%, respectively). Furthermore, the half-lives of ARGs and MGEs were lower in hyperthermophilic compositing compared to conventional composting (67% and 58%, respectively). More-efficient removal of ARGs and MGEs was associated with a higher reduction in bacterial abundance and diversity of potential ARG hosts. Partial least-squares path modeling suggested that reduction of MGEs played a key role in ARG removal in hyperthermophilic composting, while ARG reduction was mainly driven by changes in bacterial community composition under conventional composting. Together these results suggest that hyperthermophilic composting can significantly enhance the removal of ARGs and MGEs and that the mechanisms of ARG and MGE removal can depend on composting temperature.
Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.
Jung, Jaejoon; Philippot, Laurent; Park, Woojun
2016-03-14
The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.
Jung, Jaejoon; Philippot, Laurent; Park, Woojun
2016-01-01
The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship. PMID:26972977
2010-11-05
the Banana River to the West and mosquito control lagoons to the East. The building components that are to be treated are from inside the structure... peeling /removal) is given. Untreated areas of panel 3 and 4 were tested as a control, to determine the adhesion qualities of the paint prior to...similarly shows untreated panel 4. Both panels (untreated) were scored a 5, indicating no peeling or removal of the paint upon removal of the pressure
NASA Astrophysics Data System (ADS)
Qian, Guoyu; Wang, Zhi; Gong, Xuzhong; Sun, Liyuan
2017-12-01
Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.
Impact of Chinese privet and its removal on pollinator diversity and abundance
James L. Hanula; Scott Horn
2009-01-01
Chinese privet (Ligustrum sinense) was introduced into the United States in 1852 as an ornamental shrub, and by 1932 was established throughout the Southeast. In the 1990s privet occurred on 2.9 million acres of forest...
Underrepresentation and the Question of Diversity.
ERIC Educational Resources Information Center
Gillett-Karam, Rosemary; And Others
1991-01-01
Considers the underrepresentation of women and minorities in community colleges, discussing barriers that have these groups out of administrative positions. Underscores the importance of leadership and vision in removing these barriers. Identifies inclusionary practices of community colleges, graduate programs, and professional organizations that…
ERIC Educational Resources Information Center
Governick, Heather; Wellington, Thom
1998-01-01
Examines the options for upgrading, replacing, and removal or closure of underground storage tanks (UST). Reveals the diverse regulatory control involving USTs, the Environmental Protection Agency's interest in pursuing violators, and stresses the need for administrators to be knowledgeable about state and local agency definitions of regulated…
Rouse, Matthew N.; Saleh, Amgad A.; Seck, Amadou; Keeler, Kathleen H.; Travers, Steven E.; Hulbert, Scot H.; Garrett, Karen A.
2011-01-01
Background Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. Methodology/Principal Findings Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. Significance Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly. PMID:21532756
Consumer diversity interacts with prey defenses to drive ecosystem function
Rasher, Douglas B.; Hoey, Andrew S.; Hay, Mark E.
2013-01-01
Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji, and found that protected reefs supported 7–17x greater biomass and 2–3x higher species richness of herbivorous fishes, and 3–11x more live coral cover than did fished reefs. In contrast, macroalgae were 27–61x more abundant and 3–4x more species rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside versus outside reserves. We then video recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy versus complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong, negative relationships between herbivore diversity and macroalgal abundance and diversity across the six study reefs. Our findings indicate that the total diet breadth of the herbivore community and the probability of all macroalgae being removed from reefs by herbivores increases with increasing herbivore diversity, but that a few critical species drive this relationship. Therefore, interactions between algal defenses and herbivore tolerances create an essential role for consumer diversity in the functioning and resilience of coral reefs. PMID:23923498
Susanne Winter; Andreas Böck; Ronald E. McRoberts
2012-01-01
Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...
Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.
Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio
2013-05-01
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias
2014-05-01
Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation processes are greatly enhanced by the addition of the reactive layer. However, a significant portion of recharge occurs through preferential flow paths with short residence times in the reactive layer.
The future of the northeast Atlantic benthic flora in a high CO2 world
Brodie, Juliet; Williamson, Christopher J; Smale, Dan A; Kamenos, Nicholas A; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L; Burrows, Michael T; Collins, Sinead; Donohue, Penelope J C; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A; Schmidt, Daniela N; Suggett, David; Teichberg, Mirta; Hall-Spencer, Jason M
2014-01-01
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds. PMID:25077027
Jiang, Xinbai; Shen, Jinyou; Lou, Shuai; Mu, Yang; Wang, Ning; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun
2016-09-01
Membrane-free bioelectrochemical systems (MFBESs) have been developed for the degradation of nitro-aromatic contaminants, but the microbial communities that are involved have not been comprehensively investigated. In this study, the microbial communities were evaluated and compared for treating different structures of nitrophenols (NPs), i.e., o-nitrophenol (ONP), m-nitrophenol (MNP) and p-nitrophenol (PNP), in the MFBES. The results demonstrated that NPs reduction in the MFBES decreased in efficiency in the following order: ONP>MNP>PNP. Illumina MiSeq sequencing results showed that richness and diversity of bacterial species in the anodic and cathodic communities decreased when fed different NPs. Though remarkable differences in community composition were found between anodic and cathodic biofilms in the MFBES, three core genera-Treponema, Desulfovibrio and Geobacter-were dominant in the anodic or cathodic biofilm, regardless of various NPs. Other functional genera in the anodic or cathodic biofilm were selectively enriched in the MFBES treating the three NPs with different structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Liu, Xiaofei; Sinopoli, Bruno
We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochasticmore » systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.« less
Engineered Mononuclear Variants in Bacillus cereus Metallo-β-lactamase BcII Are Inactive†
Abriata, Luciano A.; González, Lisandro J.; Llarrull, Leticia I.; Tomatis, Pablo E.; Myers, William K.; Costello, Alison L.; Tierney, David L.; Vila, Alejandro J.
2008-01-01
Metallo-β-lactamases (MβLs) are zinc enzymes able to hydrolyze almost all β-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of MβLs has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-β-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms. Despite extensive studies, there is still controversy about the nature of the active BcII species. Here we have designed two mutant enzymes in which each one of the metal binding sites was selectively removed. Both mutants were almost inactive, despite preserving most of the structural features of each metal site. These results reveal that neither site isolated in the MβL scaffold is sufficient to render a fully active enzyme. This suggests that only the dinuclear species is active or that the mononuclear variants can be active only if aided by other residues that would be metal ligands in the dinuclear species. PMID:18652482
The future of the northeast Atlantic benthic flora in a high CO2 world.
Brodie, Juliet; Williamson, Christopher J; Smale, Dan A; Kamenos, Nicholas A; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L; Burrows, Michael T; Collins, Sinead; Donohue, Penelope J C; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A; Schmidt, Daniela N; Suggett, David; Teichberg, Mirta; Hall-Spencer, Jason M
2014-07-01
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.
Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao
2016-06-01
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
To lag or not to lag? How to compare indices of stock markets that operate on different times
NASA Astrophysics Data System (ADS)
Sandoval, Leonidas
2014-06-01
Financial markets worldwide do not have the same working hours. As a consequence, the study of correlation or causality between financial market indices becomes dependent on whether we should use all indices on the same day or lagged indices in computations of correlation matrices. The answer this article proposes is that we should consider both, by representing original and lagged indices in the same network. We then obtain a better understanding of how indices that operate on different hours relate to each other. We use a diverse range of 79 stock market indices from around the world and study their correlation structure, the eigenvalues and eigenvectors of their correlations under different time periods and volatility, as well as the differences between the working hours of the stock exchanges in order to analyze the possible time zone effects and suggest ways to remove them. We also analyze the enlarged correlation matrix obtained from original and lagged indices and examine a network structure derived from it, thus showing connections between lagged and original indices that could not be well represented before.
Continuous cryopump with a method for removal of solidified gases
Carlson, Larry W.; Herman, Harold
1989-01-01
An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases absorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel.
Continuous cryopump with a method for removal of solidified gases
Carlson, L.W.; Herman, H.
1988-05-05
An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.
The nuclear matrix prepared by amine modification
Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon
1999-01-01
The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671
An experimental investigation of fault tolerant software structures in an avionics application
NASA Technical Reports Server (NTRS)
Caglayan, Alper K.; Eckhardt, Dave E., Jr.
1989-01-01
The objective of this experimental investigation is to compare the functional performance and software reliability of competing fault tolerant software structures utilizing software diversity. In this experiment, three versions of the redundancy management software for a skewed sensor array have been developed using three diverse failure detection and isolation algorithms and incorporated into various N-version, recovery block and hybrid software structures. The empirical results show that, for maximum functional performance improvement in the selected application domain, the results of diverse algorithms should be voted before being processed by multiple versions without enforced diversity. Results also suggest that when the reliability gain with an N-version structure is modest, recovery block structures are more feasible since higher reliability can be obtained using an acceptance check with a modest reliability.
Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou
2018-05-18
Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass.
Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Bułkowska, Katarzyna; Wojnowska-Baryła, Irena
2014-11-01
The potential for bisphenol A (BPA) removal by mixed consortia of immobilized microorganisms with high nitrification activity was investigated with BPA concentrations in the influent from 2.5 to 10.0 mg/L. The presence of BPA limited ammonium oxidation; nitrification efficiency decreased from 91.2±1.3% in the control series to 47.4±9.4% when BPA concentration in wastewater was the highest. The efficiency of BPA removal rose from 87.1±5.5% to 92.9±2.9% with increased BPA concentration in the influent. Measurement of oxygen uptake rates by biomass exposed to BPA showed that BPA was mainly removed by heterotrophic bacteria. A strong negative correlation between the BPA removal efficiency and nitrification efficiency indicated the limited contribution of ammonia-oxidizing bacteria (AOB) to BPA biodegradation. Exposure of biomass to BPA changed the quantity and diversity of AOB in the biomass as shown by real-time PCR and denaturing gradient gel electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimization of electrocoagulation process for the treatment of landfill leachate
NASA Astrophysics Data System (ADS)
Huda, N.; Raman, A. A.; Ramesh, S.
2017-06-01
The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.
Potential impacts of water diversion on fishery resources in the Great Lakes
Manny, Bruce A.
1984-01-01
Uses of Great Lakes water within the Great Lakes basin are steadily increasing, and critical water shortages elsewhere may add to the demands for diversions of water out of the basin in the near future. The impacts of such diversions on fish in the Great Lakes must be considered in the context of in-basin uses of the water, because in-basin uses already adversely affect the fishery resources. Temporary in-basin water withdrawals from Lake Michigan by industry in 1980 equaled 260% of the total volume of water between the shoreline and the 10-meter depth - the littoral waters most heavily used by fish as spawning and nursery grounds. Nearly 100% of the fish removed by these water withdrawals were killed. Enough young alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Michigan and young yellow perch (Perca flavescens) in western Lake Erie have been removed at water intakes in recent years to reduce the productivity and biomass of adult fish stocks. Out-of-basin diversions of water at Chicago and at the Welland Canal, channel modifications in the St. Clair River, and in-basin consumptive water withdrawals have lowered the annual mean water level of Lakes Michigan and Huron by about 27 cm and that of Lake Erie by about 10 cm, dewatering wetlands that historically served as spawning and nursery habitat for many valuable fish species. The dollar value of fish lost to water diversions and withdrawals has not yet been estimated, but water withdrawals alone have already reduced the annual economic impact of the Great Lakes fisheries, which has been estimated to be 1.16 billion dollars.
Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian
2015-10-01
Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method. © 2014 Institute of Zoology, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Dai, C.; Zhang, Y.
2015-12-01
The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.
Rodriguez-Sanchez, Alejandro; Leyva-Diaz, Juan Carlos; Gonzalez-Martinez, Alejandro; Poyatos, Jose Manuel
2017-11-01
Three pilot-scale bioreactors were started up and operated under salinity-amended urban wastewater feeding. The bioreactors were configured as membrane bioreactor and two different hybrid, moving bed biofilm reactor-membrane bioreactor and operated with a hydraulic retention time of 9.5 h, a solid residence time of 11.75 days and a total solids concentration of 2500 mg L -1 . The three systems showed excellent performance in suspended solids, BOD 5 , and COD removal (values of 96-100%, 97-99%, and 88-90%, respectively), but poor nitrogen removal (values of 20-30%). The bacterial community structure during the start-up phase and the stabilization phase were different, as showed by β-diversity analyses. The differences between aerobic and anoxic biomass-and between suspended and attached biomass-were higher at the start-up phase than at the stabilization phase. The start-up phase showed high abundances of Chiayiivirga (mean values around 3-12% relative abundance) and Luteimonas (5-8%), but in the stabilization phase, the domination belonged to Thermomonas (3-14%), Nitrobacter (3-7%), Ottowia (3-11.5%), and Comamonas (2-6%), among others. Multivariate redundancy analyses showed that Thermomonas and Nitrosomonas were positively correlated with fast autotrophic kinetics, while Caulobacter and Ottowia were positively correlated with fast heterotrophic kinetics. Nitrobacter, Rhodanobacter, and Comamonas were positively correlated with fast autotrophic and heterotrophic kinetics. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1483-1495, 2017. © 2017 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Bustamante, María; Tajadura, Javier; Gorostiaga, José María; Saiz-Salinas, José Ignacio
2014-06-01
Macroalgae comprise a prominent part of the rocky benthos where many invertebrates develop, and are believed to be undergoing severe declines worldwide. In order to investigate how the vegetation structure (crustose, basal and canopy layers) contributes to the diversity, structure and function of benthic invertebrates, a total of 31 subtidal transects were sampled along the northeast Atlantic coast of Spain. Significant positive relationships were found between the canopy layer and faunal abundance, taxonomic diversity and functional group diversity. Canopy forming algae were also related to epiphytic invertebrates, medium size forms, colonial strategy and suspensivores. By contrast, basal algae showed negative relationships with all variables tested except for detritivores. Multivariate multiple regression analyses (DISTLM) point to crustose as well as canopy layers as the best link between seaweeds and invertebrate assemblage structure. A close relationship was found between taxonomic and functional diversities. In general, low levels of taxonomic redundancy were detected for functional groups correlated with vegetation structure. A conceptual model based on the results is proposed, describing distinct stages of invertebrate assemblages in relation to the vertical structure of vegetation.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.
Alldred, Mary; Baines, Stephen B; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes
Alldred, Mary; Baines, Stephen B.; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688
Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp)
USDA-ARS?s Scientific Manuscript database
The genetic diversity of cowpea was analyzed and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from USDA GRIN cowpea collection, originally collected from 56 countries worldwide. Genotyping by sequencing was used to discover single nucleotide polymorphism...
Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian
2014-01-01
Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between genetic variants and species diversity may be crucial in shaping tree communities.
Zhou, Xin; Guo, Xuesong; Han, Yunping; Liu, Junxin; Ren, Jincheng; Wang, Yu; Guo, Yantao
2012-09-01
Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.
Anaerobic ammonia removal in presence of organic matter: a novel route.
Sabumon, P C
2007-10-01
This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP=-248+/-25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO(2)(-), NO(3)(-) and SO(4)(2-)) studied, NO(2)(-) was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH(4)(+) to NO(3)(-), followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation.
Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David
2012-01-01
The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395
40 CFR 403.7 - Removal credits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... representative of the actual operation of the POTW Treatment Plant, an alternative sampling schedule will be... statistically valid description of daily, weekly and seasonal sewage treatment plant loadings and performance... the intentional or unintentional diversion of flow from the POTW before the POTW Treatment Plant...
Agent-Customized Training for Human Learning Performance Enhancement
ERIC Educational Resources Information Center
Blake, M. Brian; Butcher-Green, Jerome D.
2009-01-01
Training individuals from diverse backgrounds and in changing environments requires customized training approaches that align with the individual learning styles and ever-evolving organizational needs. Scaffolding is a well-established instructional approach that facilitates learning by incrementally removing training aids as the learner…
PRECIPITATION AND INACTIVATION OF PHOSPHORUS AS A LAKE RESTORATION TECHNIQUE
Many eutrophic lakes respond slowly following nutrient diversion because of long water retention times, and the recycling of phosphorus from sediments and other internal sources. Treatment of lakes with aluminum sulfate and/or sodium aluminate is a successful method for removing ...
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
View of hydrodynamic support cylinders, removed from structure and relocated ...
View of hydrodynamic support cylinders, removed from structure and relocated for reconditioning to return them to service. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Mallon, C A; Le Roux, X; van Doorn, G S; Dini-Andreote, F; Poly, F; Salles, J F
2018-03-01
Although many environments like soils are constantly subjected to invasion by alien microbes, invaders usually fail to succeed, succumbing to the robust diversity often found in nature. So far, only successful invasions have been explored, and it remains unknown to what extent an unsuccessful invasion can impact resident communities. Here we hypothesized that unsuccessful invasions can cause impacts to soil functioning by decreasing the diversity and niche breadth of resident bacterial communities, which could cause shifts to community composition and niche structure-an effect that is likely exacerbated when diversity is compromised. To examine this question, diversity gradients of soil microbial communities were subjected to invasion by the frequent, yet oft-unsuccessful soil invader, Escherichia coli, and evaluated for changes to diversity, bacterial community composition, niche breadth, and niche structure. Contrary to expectations, diversity and niche breadth increased across treatments upon invasion. Community composition and niche structure were also altered, with shifts of niche structure revealing an escape by the resident community away from the invader's resources. Importantly, the extent of the escape varied in response to the community's diversity, where less diverse communities experienced larger shifts. Thus, although transient and unsuccessful, the invader competed for resources with resident species and caused tangible impacts that modified both the diversity and functioning of resident communities, which can likely generate a legacy effect that influences future invasion attempts.
Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine.
Zarrelli, Armando; DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio; Isidori, Marina; Lavorgna, Margherita; Passananti, Monica; Previtera, Lucio
2012-06-01
Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and (1)H and (13)C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Yanhao; Zhong, Fohua; Xia, Siqing; Wang, Xuejiang; Li, Jixiang
2009-10-15
A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.
NASA Astrophysics Data System (ADS)
Li, Henan; He, Weihua; Qu, Youpeng; Li, Chao; Tian, Yan; Feng, Yujie
2017-07-01
A benthic microbial electrochemical system (BMES) of 350 L is built for the bioremediation of river sediment (Ashi river, Harbin, China). Carbon mesh anode with honeycomb-structure supports and activated carbon cathodes are applied for the construction. Synthesis wastewater with glucose is added to simulate the natural condition of Ashi River as an intermittent pollutant-holding water body and accelerate the removal of accumulated bio-refractory organic contents in sediment, represented by the concentration changes of polycyclic aromatic hydrocarbons, as the co-metabolic substrate for bacteria. The effluent TOC in the water layer of BMES is stable at 40 ± 2 mg L-1 and further reduced to 19 ± 5 mg L-1 after the addition of synthesis wastewater, while the removal of polycyclic aromatic hydrocarbons(Benzo(b)fluoranthene, Benzo(k)fluoranthene and Benzo(a)pyrene) in sediment samples reaches 74%. A maximum power density of 63 ± 3 mW m-2 is achieved by BMES, which decrease to 42 ± 2 mW m-2 due to cathode degradation and further reduce to 30 ± 3 mW m-2 attributed to substrate limitation at the end of operation. Community analyses show the diversity of anode community is improved during operation and the abundance of Chloroflexi, Firmicutes and exoelectrogenic microbes like G. psychrophilus increase.
Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs
Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; ...
2016-04-21
Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor I–V characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e.,more » positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. In conclusion, the suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III–V/Si heterogeneously integrated electronics.« less
Low temperature MBBR nitrification: Microbiome analysis.
Young, Bradley; Delatolla, Robert; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain
2017-03-15
This study aims to investigate post carbon removal moving bed biofilm reactor (MBBR) nitrification through the transition from 20 °C to 1 °C and during through long term operation at 1 °C. Four pilot nitrifying MBBR reactors were operated at various ammonia loading rates to elucidate the temperature effects on ammonia removal rates, cell viability and bacterial communities. The transition from 20 °C to 1 °C and during long term operation at 1 °C were modeled using Arrhenius temperature correction coefficients. Specifically, the steady state removal rates at 1 °C on average were 22.8% of the maximum ammonia removal rate at 20 °C, which corresponds to an Arrhenius temperature correction of 1.086 during steady operation at 1 °C. The microbial communities of the nitrifying MBBR biofilm were shown to be significantly more diverse at 20 °C as compared to 1 °C operation. Although less diverse at 1 °C, 2000 species of bacteria were identified in the nitrifying biofilm during operation at this low temperature. Nitrosomonads were shown to be the dominant ammonia oxidizing bacteria (AOB) and Nitrospira was shown to be the dominant nitrite oxidizing bacteria (NOB) in all the pilot MBBR reactors at all temperatures. The performance of the post carbon removal nitrifying MBBR systems were shown to be enhanced at 1 °C by an increase in the viable embedded biomass as well as thicker biofilm. This effectively increases the number of viable cell present during low temperature operation, which partially compensates for the significant decrease in rate of ammonia removal per nitrifying cell. Operation at the highest loading conditions tested in this study at 1 °C were shown to reduce the ammonia removal rate compared to lower loading conditions at 1 °C. The lower performance at higher loading conditions at 1 °C demonstrated an enrichment in the stress response metagenomics pathways of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Repeatability and implementation of a forest vegetation indicator.
Andrew N. Gray; David L. Azuma
2005-01-01
The composition, diversity, and structure of vascular plants are important indicators of forest health. Changes in species diversity, structural diversity, and the abundance of non-native species are common national concerns, and are part of the international criteria for assessing sustainability of forestry practices. The vegetation indicator for the national Forest...
Structural Analysis of the Resident Assistant Cultural Diversity Questionnaire
ERIC Educational Resources Information Center
Johnson, Vanessa D.; Kang, Young-Shin; Thompson, George F.
2011-01-01
This study investigated the five-factor structure of the Resident Assistant Cultural Diversity (RACD) instrument, which assesses resident assistant (RA) confidence in addressing issues of cultural diversity in college and university residence halls. The instrument has five components that explore RA confidence: (1) belief in the need for cultural…
Guo, X J; Lu, Z Y; Wang, P; Li, H; Huang, Z Z; Lin, K F; Liu, Y D
2015-10-01
Petrochemical wastewater often contains high concentrations of phenol and sulfate that must be properly treated to meet discharge standards. This study acclimated anaerobic-activated sludge to treat saline phenolic wastewater with sulfate reduction and clarified the diversity and degradation mechanism of the microbial community. The active sludge in an upflow anaerobic sludge blanket (UASB) reactor could remove 90 % of phenol and maintain the effluent concentration of SO4 (2-) below 400 mg/L. Cloning and sequencing showed that Clostridium spp. and Desulfotomaculum spp. were major phenol-degrading bacteria. Phenol was probably degraded through the carboxylation pathway and sulfate reduction catalyzed by adenosine-5'-phosphosulfate (APS) reductase and dissimilatory sulfite reductase (DSR). A real-time polymerase chain reaction (RT-PCR) showed that as phenol concentration increased, the quantities of 16S rRNA gene, dsrB, and mcrA in the sludge all decreased. The relative abundance of dsrB dropped to 12.46 %, while that of mcrA increased to 56.18 %. The change in the electron flow ratio suggested that the chemical oxygen demand (COD) was removed mainly by sulfate-reducing bacteria under a phenol concentration of 420 mg/L, whereas it was removed mainly by methanogens above 630 mg/L.
Holzem, R M; Gardner, C M; Gunsch, C K
2018-01-01
Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH 4 + removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH 4 + removal. Elevated levels of NO 3 - and NO 2 - were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.
McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman
1998-01-01
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.
McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.
1998-06-23
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.
Environmental application of biochar: Current status and perspectives.
Oliveira, Fernanda R; Patel, Anil K; Jaisi, Deb P; Adhikari, Sushil; Lu, Hui; Khanal, Samir Kumar
2017-12-01
In recent years, there has been a significant interest on biochar for various environmental applications, e.g., pollutants removal, carbon sequestration, and soil amelioration. Biochar has several unique properties, which makes it an efficient, cost-effective and environmentally-friendly material for diverse contaminants removal. The variability in physicochemical properties (e.g., surface area, microporosity, and pH) provides an avenue for biochar to maximize its efficacy to targeted applications. This review aims to highlight the vital role of surface architecture of biochar in different environmental applications. Particularly, it provides a critical review of current research updates related to the pollutants interaction with surface functional groups of biochars and the effect of the parameters variability on biochar attributes pertinent to specific pollutants removal, involved mechanisms, and competence for these removals. Moreover, future research directions of biochar research are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scalable and reusable micro-bubble removal method to flatten large-area 2D materials
NASA Astrophysics Data System (ADS)
Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.
2018-04-01
Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.
Historical habitat connectivity affects current genetic structure in a grassland species.
Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J
2013-01-01
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Life history diversity in Klamath River steelhead
Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G.; Quinones, Rebecca M.; Hobbs, James A.
2016-01-01
Oncorhynchus mykiss exhibits a vast array of life histories, which increases its likelihood of persistence by spreading risk of extirpation among different pathways. The Klamath River basin (California–Oregon) provides a particularly interesting backdrop for the study of life history diversity in O. mykiss, in part because the river is slated for a historic and potentially influential dam removal and habitat recolonization project. We used scale and otolith strontium isotope (87Sr/86Sr) analyses to characterize life history diversity in wildO. mykiss from the lower Klamath River basin. We also determined maternal origin (anadromous or nonanadromous) and migratory history (anadromous or nonanadromous) of O. mykiss and compared length and fecundity at age between anadromous (steelhead) and nonanadromous (Rainbow Trout) phenotypes of O. mykiss. We identified a total of 38 life history categories at maturity, which differed in duration of freshwater and ocean rearing, age at maturation, and incidence of repeat spawning. Approximately 10% of adult fish sampled were nonanadromous. Rainbow Trout generally grew faster in freshwater than juvenile steelhead; however, ocean growth afforded adult steelhead greater length and fecundity than adult Rainbow Trout. Although 75% of individuals followed the migratory path of their mother, steelhead produced nonanadromous progeny and Rainbow Trout produced anadromous progeny. Overall, we observed a highly diverse array of life histories among Klamath River O. mykiss. While this diversity should increase population resilience, recent declines in the abundance of Klamath River steelhead suggest that life history diversity alone is not sufficient to stabilize a population. Our finding that steelhead and Rainbow Trout give rise to progeny of the alternate form (1) suggests that dam removal might lead to a facultatively anadromous O. mykiss population in the upper basin and (2) raises the question of whether both forms of O. mykiss in the Klamath River should be managed under the same strategy.
Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A
2013-01-01
Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than coral exudates. PMID:23303369
Impact of Salinity Gradients on Ammonia Bioattenuation Processes in a Photosynthetic Wetland Biomat
NASA Astrophysics Data System (ADS)
Vega, M.; Jones, Z.; Sharp, J.
2017-12-01
Shallow, open water treatment wetlands may be able to offset challenges associated with the reclamation of impaired waters (e.g., membrane fouling, aeration costs, etc.) due to natural biogeochemical fluctuations produced by a benthic, photoactive biomat. This diatomaceous, redox-stratified biomat has demonstrated significant nitrate and trace organic removal from municipal wastewater streams and the microbial community has been thoroughly characterized. However, research is required to predict shifts in community structure and function in response to the excess salinity, ammonia, and metal gradients of impaired waters. Batch microcosm studies inoculating biomat from an active open water treatment wetland with incremental dilutions of hydraulic fracturing produced water were conducted in a light chamber with oscillating twelve-hour light and dark cycles to assess the effect of an impaired water matrix on biomat functionality. Diurnal photosynthetic signatures and ammonia removal kinetics were quantified in various experiments probing the effects of oscillating light conditions, biomat depth, water column isolation, nitrogen source, and salinity gradients in conjunction with phylogenetic profiles and morphological characterization. Diurnal pH and dissolved oxygen fluctuations were present at all produced water permutations, perhaps indicating stabilization of photosynthetic communities. Ammonia attenuation results suggest that the biomat is effective at removing ammonia, although first order rate constants decrease with increasing produced water abundance. Microbial community diversity appears to decrease with increasing salinity, and it is likely that these shifts correspond to variation in ecosystem function and thus treatment effectiveness. The application of shallow, open water treatment wetlands to remediate impaired waters has the potential to address societally relevant problems while discerning fundamental biogeochemical phenomena.
The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanula, James L.; Horn, Scott; Wade, Dale D.
2006-08-01
Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burnedmore » pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.« less
Eby, Stephanie; Burkepile, Deron E; Fynn, Richard W S; Burns, Catherine E; Govender, Navashni; Hagenah, Nicole; Koerner, Sally E; Matchett, Katherine J; Thompson, Dave I; Wilcox, Kevin R; Collins, Scott L; Kirkman, Kevin P; Knapp, Alan K; Smith, Melinda D
2014-05-01
Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...
Code of Federal Regulations, 2010 CFR
2010-10-01
... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...
Code of Federal Regulations, 2012 CFR
2012-10-01
... not limited to, artificial housing, waste removal, health care, protection from predators, and... operations of the Armed Forces that relate to combat, and the adequate and realistic testing of military... population is “biologically viable” when its ability to maintain its genetic diversity, to reproduce, and to...
CEC's Policy on Children with Exceptionalities in Charter Schools
ERIC Educational Resources Information Center
Council for Exceptional Children (NJ3), 2011
2011-01-01
The Council for Exceptional Children (CEC) vigorously supports educational reforms within the public schools which promote rigorous learning standards, strong educational outcomes, shared decision making, diverse educational offerings, and the removal of unnecessary administrative requirements. However, such schools must reflect a commitment to…
Harmonizing national forest inventories
Ronald E. McRoberts; Erkki O. Tomppo; Klemens Schadauer; Göran Ståhl
2012-01-01
International agreements increasingly require that countries report estimates of national forest resources. The United Nations Framework Convention on Climate Change requires that countries submit annual reports of greenhouse gas emissions and removals by sources and sinks. The Convention on Biological Diversity requires that countries identify and monitor components...
USDA-ARS?s Scientific Manuscript database
Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...
Code of Federal Regulations, 2011 CFR
2011-01-01
.../DRIED PLUM DIVERSION PROGRAM § 81.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Prune Tree Removal Program.” (d) Committee means the Prune Marketing Committee... of prune-plum trees after approval of applications by the Committee through June 30, 2002. (f...
Code of Federal Regulations, 2014 CFR
2014-01-01
.../DRIED PLUM DIVERSION PROGRAM § 81.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Prune Tree Removal Program.” (d) Committee means the Prune Marketing Committee... of prune-plum trees after approval of applications by the Committee through June 30, 2002. (f...
Code of Federal Regulations, 2012 CFR
2012-01-01
.../DRIED PLUM DIVERSION PROGRAM § 81.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Prune Tree Removal Program.” (d) Committee means the Prune Marketing Committee... of prune-plum trees after approval of applications by the Committee through June 30, 2002. (f...
Code of Federal Regulations, 2013 CFR
2013-01-01
.../DRIED PLUM DIVERSION PROGRAM § 81.3 Definitions. (a) Administrator means the Administrator of AMS. (b... means “Application for Prune Tree Removal Program.” (d) Committee means the Prune Marketing Committee... of prune-plum trees after approval of applications by the Committee through June 30, 2002. (f...
Arnan, Xavier; Cerdá, Xim; Retana, Javier
2015-01-01
We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.
ZHANG, DAPENG; AREVALO-GARDINI, ENRIQUE; MISCHKE, SUE; ZÚÑIGA-CERNADES, LUIS; BARRETO-CHAVEZ, ALEJANDRO; AGUILA, JORGE ADRIAZOLA DEL
2006-01-01
• Background and Aims Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. •Methods Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. •Key Results Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. •Conclusions These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations. PMID:16845139
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M
2010-01-01
The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.
Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin
2017-04-01
To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.
Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang
2018-05-05
The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.
Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.
Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig
2013-01-01
The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.
Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling
NASA Astrophysics Data System (ADS)
Xu, Mengya; Wang, Gang; Zeng, Zhixiang; Chen, Junjun; Zhang, Xingyuan; Wang, Longsheng; Song, Weiguang; Xue, Qunji
2017-12-01
The frequent marine oil spill accidents in nowadays has aroused great attention all over the world. Lots of superwetting absorption materials with 2D or 3D structures are fabricated to efficiently remove oil spill, but the desorption of the absorbed oil is more difficult. Oil contaminants adhere on the surface will decline the performance and reusability of the absorption materials. Discarding or burning them will bring secondary pollution. Faced with these problems, we prepared an oil extractor integrated by a superhydrophobic-superoleophilic stainless steels wire mesh and a 3D porous cellulose sponge with superhydrophilicity-superoleophilicity in air and superoleophobicity in water. The oil extractor can in situ collect oil spill no matter on the water or under the water. More importantly, it is good at underwater oil desorption, which ensure the recovery and reuse of oil, and meanwhile avoid the materials being fouled by oils. More than 85.5% of crude oil could be successfully discharged only in 2 min when the oil-contaminated sponge was placed in water. The findings in this work not only put forward a new strategy for collection and reuse of various "oils", but also offer a facile method to achieve a combination of two kinds of materials with diverse wettability.
Impact of volcanic ash on anammox communities in deep sea sediments.
Song, Bongkeun; Buckner, Caroline T; Hembury, Deborah J; Mills, Rachel A; Palmer, Martin R
2014-04-01
Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie
2015-11-01
This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.
Innovations from the "ivory tower": Wilhelm Barthlott and the paradigm shift in surface science.
Neinhuis, Christoph
2017-01-01
This article is mainly about borders that have tremendous influence on our daily life, although many of them exist and act mostly unrecognized. In this article the first objective will be to address more generally the relation between university and society or industry, borders within universities, borders in thinking and the huge amount of misunderstandings and losses resulting from these obvious or hidden borders. In the second part and in more detail, the article will highlight the impact of the research conducted by Wilhelm Barthlott throughout his scientific career during which not only one border was removed, shifted or became more penetrable. Among the various fields of interest not mentioned here (e.g., systematics of Cactaceae, diversity and evolution of epiphytes, the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity), plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific career of Wilhelm Barthlott. Based on research that was regarded already old-fashioned in the 1970s and 1980s, systematic botany, results and knowledge were accumulated that, some 20 years later, initiated a fundamental turnover in how surfaces were recognized not only in biology, but even more evident in materials science.
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D'Angelo, S; Khan, T A; Reddy, S T; Naranjo, L; Ferrara, F; Bradbury, A R M
2015-08-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D’Angelo, S; Khan, T.A.; Reddy, S. T.; Naranjo, L.; Ferrara, F.; Bradbury, A.R.M.
2015-01-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. PMID:26451649
Molecular basis of glyphosate resistance: Different approaches through protein engineering
Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel
2011-01-01
Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647
Savage, Angela K; van Duynhoven, John P M; Tucker, Gregory; Daykin, Clare A
2011-12-01
Grapes and related products, such as juices, and in particular, their polyphenols, have previously been associated with many health benefits, such as protection against cardiovascular disease. Within grapes, a large range of structurally diverse polyphenols can be present, and their characterisation stands as a challenge. (1)H NMR spectroscopy in principle would provide a rapid, nondestructive and straightforward method for profiling of polyphenols. However, polyphenol profiling and identification in grape juices is hindered because of signals of prevailing carbohydrates causing spectral overlap and compromising dynamic range. This study describes the development of an extraction method prior to analysis using (1)H NMR spectroscopy, which can, potentially, significantly increase the number of detectable polyphenols and aid their identification, by reduction of signal overlap and selective removal of heavily dominating compounds such as sugars. Copyright © 2012 John Wiley & Sons, Ltd.
Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine
2008-01-01
The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392
Structural diversity of domain superfamilies in the CATH database.
Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A
2006-07-14
The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain superfamilies has been made available through the CATH Dictionary of Homologous Structures (DHS).
Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y
2017-01-01
A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm 2 . When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.
Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng
2014-06-01
The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.
Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd
2014-01-01
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860
Wavelet tree structure based speckle noise removal for optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
2016-06-01
Reports an error in "Presumed fair: Ironic effects of organizational diversity structures" by Cheryl R. Kaiser, Brenda Major, Ines Jurcevic, Tessa L. Dover, Laura M. Brady and Jenessa R. Shapiro (Journal of Personality and Social Psychology, 2013[Mar], Vol 104[3], 504-519). In the article, a raw data merging error in one racial discrimination claim condition from Experiment 6 inadvertently resulted in data analyses on an inaccurate data set. When the error was discovered by the authors and corrected, all analyses reported in Experiment 6 for claim validity, seriousness of the claim, and support for the claimant were inaccurate and none were statistically significant. The conclusions should be altered to indicate that participants with management experience who reflected on their own workplace diversity policies did not show the predicted effects. The literature review, remaining five studies, and remaining conclusions in the article are unaffected by this error. Experiment 6 should also report that 26.4% (not 26.4.7%) of participants had a graduate degree and eight participants (not 8%) did not provide educational data. Experiment 5 should have referred to the claim validity measure as a six-item measure ( .92) rather than a five-item measure; analyses on claim validity are accurate in text. Table 2's note should have said standard errors, not standard deviations. (The following abstract of the original article appeared in record 2012-31077-001.) This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high-status group members to legitimize the status quo by becoming less sensitive to discrimination targeted at underrepresented groups and reacting more harshly toward underrepresented group members who claim discrimination. Six experiments support these hypotheses in designs using 4 types of diversity structures (diversity policies, diversity training, diversity awards, idiosyncratically generated diversity structures from participants' own organizations) among 2 high-status groups in tests involving several types of discrimination (discriminatory promotion practices, adverse impact in hiring, wage discrimination). Implications of these experiments for organizational diversity and employment discrimination law are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Prescott, Graham W; Edwards, David P; Foster, William A
2015-05-01
The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four-hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species-rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits.
Jiang, Cong; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang
2017-01-01
This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs. PMID:28640897
Jiang, Cong; Geng, Jinju; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang
2017-01-01
This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs.
Postoperative esophageal leak management with the Polyflex esophageal stent.
Freeman, Richard K; Ascioti, Anthony J; Wozniak, Thomas C
2007-02-01
Leak after esophageal anastomosis or perforation repair prolongs hospitalization, prevents oral hydration and nutrition, and can produce localized infection or sepsis. This investigation reviews our experience treating postoperative esophageal leaks with the Polyflex esophageal stent (Boston Scientific, Natick, Mass). Over a 30-month period, patients with a postoperative esophageal leak were treated with the Polyflex stent for leak occlusion. Leak occlusion was confirmed by means of esophagraphy. Patients were followed until their stent was removed and their esophageal leak had resolved. Twenty-one patients had 27 stents placed for leak occlusion after esophagectomy (n = 5), esophageal perforation (n = 5), surgical (n = 4) or endoscopic (n = 2) antireflux procedure, and esophageal diverticulectomy (n = 3) or myotomy (n = 2). The mean interval between surgical intervention and stent placement was 12 +/- 8 days (range, 3-31 days). Occlusion of the leak occurred in 20 patients. One patient experienced a dehiscence of the surgical esophageal perforation repair requiring esophageal diversion. Stent migration requiring repositioning (n = 3) or replacement (n = 4) occurred in 5 (24%) patients. Twenty (95%) stents were removed without residual leak (mean, 51 +/- 43 days; range, 15-175 days). One patient had a stricture after stent removal that required endoscopic dilatation. One patient in this series died. The Polyflex esophageal stent is an effective method for occluding a postoperative esophageal leak. It rapidly eliminates contamination of the mediastinum, pleura, and peritoneum; allows oral hydration and nutrition; and is easily removable. These stents also offer an appealing alternative to traditional esophageal diversion and subsequent reconstruction in patients with a persistent esophageal leak.
Functional consequences of climate change-induced plant species loss in a tallgrass prairie.
Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K
2011-04-01
Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.
A comparison of canopy structure measures for predicting height growth of underplanted seedlings
John M. Lhotka; Edward F. Loewenstein
2013-01-01
The study compares the relationship between 15 measures of canopy structure and height growth of underplanted yellow-poplar (Liriodendron tulipifera L.) seedlings. Investigators used 4 midstory removal intensities to create a structural gradient across fifty 0.05-ha experimental plots; removals resulted in a range of canopy cover between 51 to 96...
Naegele, Rachel P.; Boyle, Samantha; Quesada-Ocampo, Lina M.; Hausbeck, Mary K.
2014-01-01
Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance. PMID:24819601
Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan.
Thormann, Imke; Reeves, Patrick; Reilley, Ann; Engels, Johannes M M; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M
2016-01-01
Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.
Doi, Hideyuki; Chang, Kwang-Hyeon; Nishibe, Yuichiro; Imai, Hiroyuki; Nakano, Shin-ichi
2013-01-01
The importance of analyzing the determinants of biodiversity and community composition by using multiple trophic levels is well recognized; however, relevant data are lacking. In the present study, we investigated variations in species diversity indices and community structures of the plankton taxonomic groups-zooplankton, rotifers, ciliates, and phytoplankton-under a range of local environmental factors in pond ecosystems. For each planktonic group, we estimated the species diversity index by using linear models and analyzed the community structure by using canonical correspondence analysis. We showed that the species diversity indices and community structures varied among the planktonic groups and according to local environmental factors. The observed lack of congruence among the planktonic groups may have been caused by niche competition between groups with similar trophic guilds or by weak trophic interactions. Our findings highlight the difficulty of predicting total biodiversity within a system, based upon a single taxonomic group. Thus, to conserve the biodiversity of an ecosystem, it is crucial to consider variations in species diversity indices and community structures of different taxonomic groups, under a range of local conditions.
Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan
Reeves, Patrick; Reilley, Ann; Engels, Johannes M. M.; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M.
2016-01-01
Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum. PMID:27513459
Dealing with the mentally ill in the criminal justice system in Germany.
Konrad, Norbert; Lau, Steffen
2010-01-01
Mentally disordered prisoners in Germany are subject to special legal regulations, which can be traced back to the 1933 "Dangerous Habitual Offenders and their Detention and Rehabilitation Act". There are no special diversion programs in Germany but diversion does in fact happen via legal regulations that are based on the construct of legal responsibility. Diversion refers to the removal of offenders from the criminal justice system at any stage of the procedure and court proceedings. In recent years the number of occupied beds in forensic psychiatric hospitals has continued to rise. At the same time the number of people in prisons has slightly decreased while there has been a slight increase in the number of available beds in general psychiatry. Germany experienced public and media concern about the risk posed by conditionally released mentally ill offenders and other perceived inadequacies in the criminal justice system. Therefore the way in which prisoners or forensic patients are supervised after they have been discharged was reformed in 2007 in order to assure a more efficient control of their conduct after their release from custody by means of mandatory treatment and monitoring. Special outpatient clinics were to assist discharged patients in complying with the conditions of probation and parole. However organisational structures for these specialised outpatient institutions vary within Germany because of its federal administration. This results in regional differences in conditions of treatment and probably in differences in quality as well, but surveys about the effects, efficacy or effectiveness of forensic outpatient treatment in Germany are scarce. Copyright 2010 Elsevier Ltd. All rights reserved.
Functionally relevant diversity of closely related Nitrospira in activated sludge.
Gruber-Dorninger, Christiane; Pester, Michael; Kitzinger, Katharina; Savio, Domenico F; Loy, Alexander; Rattei, Thomas; Wagner, Michael; Daims, Holger
2015-03-01
Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.
McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L
2012-05-01
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.
A New Formulation for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Brooks, Kathleen; Geiger, Cherie; Clausen, Christian
2009-01-01
This new technology report will describe the laboratory development of a new and innovative solution for the removal and destruction of PCBs found in painted structures or within the binding or caulking material on structures. The technology incorporates a Bimetallic Treatment System (BTS) that extracts and degrades only the PCBs found on the facilities, leaving in most cases the structure virtually unaltered.
Commentary: Diversity 3.0: a necessary systems upgrade.
Nivet, Marc A
2011-12-01
This is a defining moment for health and health care in the United States, and medical schools and teaching hospitals have a critical role to play. The combined forces of health care reform, demographic shifts, continued economic woes, and the projected worsening of physician shortages portend major challenges for the health care enterprise in the near future. In this commentary, the author employs a diversity framework implemented by IBM and argues that this framework should be adapted to an academic medicine setting to meet the challenges to the health care enterprise. Using IBM's diversity framework, the author explores three distinct phases in the evolution of diversity thinking within the academic medicine community. The first phase included isolated efforts aimed at removing social and legal barriers to access and equality, with institutional excellence and diversity as competing ends. The second phase kept diversity on the periphery but raised awareness about how increasing diversity benefits everyone, allowing excellence and diversity to exist as parallel ends. In the third phase, which is emerging today and reflects a growing understanding of diversity's broader relevance to institutions and systems, diversity and inclusion are integrated into the core workings of the institution and framed as integral for achieving excellence. The Association of American Medical Colleges, a leading voice and advocate for increased student and faculty diversity, is set to play a more active role in building the capacity of the nation's medical schools and teaching hospitals to move diversity from a periphery to a core strategy.
Evolutionary profiles from the QR factorization of multiple sequence alignments
Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-01-01
We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270
Kamika, Ilunga; Momba, Maggie N. B.
2014-01-01
The present study aims firstly at determining the microbial diversity of mine-water collected in Emalahleni, South Africa and secondly isolating and characterizing the most dominant bacterial species found in the mine water in terms of its resistance to both V5+ and Ni2+ in a modified wastewater liquid media. The results revealed a microbial diversity of 17 orders, 27 families and 33 genera were found in the mine-water samples with Marinobacteria (47.02%) and Anabaena (17.66%) being the most abundant genera. Considering their abundance in the mine-water samples, a species of the Marinobacter genera was isolated, identified, and characterised for metal tolerance and removal ability. The MWI-1 isolate (Marinobacter sp. MWI-1 [AB793286]) was found to be closely related to Marinobacter goseongensis at 97% of similarity. The isolate was exposed to various concentrations of Ni2+ and V5+ in wastewater liquid media and its tolerance to metals was also assessed. The MWI-1 isolate could tolerate V5+ and Ni2+ separately at concentrations (in terms of MIC) up to 13.41±0.56 mM and 5.39±0.5 mM at pH 7, whereas at pH 3, the tolerance limit decrease to 11.45±0.57 mM and 2.67±0.1 mM, respectively. The removal of V5+ and Ni2+ in liquid media was noted to gradually decrease with a gradual increase of the test metals. A significant difference (p<0.05) between V5+ and Ni2+ removal was noted. Marinobacter sp. MWI-1 achieved the maximum permissible limit of 0.1 mg-V5+/L prescribed by UN-FAO at 100 mg/L, while at 200 mg/L only V5+ was removed at approximately 95% and Ni2+ at 47%. This study suggests that mine-water indigenous microorganisms are the best solution for the remediation of polluted mine water. PMID:24465951
Plant community diversity and composition provide little resistance to Juniperus encroachment
Amy C. Ganguli; David M. Engle; Paul M. Mayer; Eric C. Heligren
2008-01-01
Widespread encroachment of the fire-intolerant species Juniperus virginiana L. into North American grasslands and savannahs where fire has largely been removed has prompted the need to identify mechanisms driving J. virginiana encroachment. We tested whether encroachment success of J. virginiana is related to...
The effect of elevated CO2 on arsenic accumulation in diverse ecotypes of Arabidopsis thaliana
USDA-ARS?s Scientific Manuscript database
Phytoremediation is the ability of photosynthesizing plants to extract soil contaminates and concentrates them into above ground tissue for easy removal. Ostensibly, rising concentrations of atmospheric carbon dioxide, [CO2], should stimulate photosynthesis and biomass; and could, potentially, incre...
Laroche, Olivier; Wood, Susanna A; Tremblay, Louis A; Lear, Gavin; Ellis, Joanne I; Pochon, Xavier
2017-01-01
Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products.
Wood, Susanna A.; Tremblay, Louis A.; Lear, Gavin; Ellis, Joanne I.; Pochon, Xavier
2017-01-01
Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products. PMID:28533985
Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.
Su, Yiming; Adeleye, Adeyemi S; Keller, Arturo A; Huang, Yuxiong; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei
2015-05-01
Sulfide-modified nanoscale zerovalent iron (S-nZVI) is attracting a lot of attention due to its ease of production and high reactivity with organic pollutants. However, its structure is still poorly understood and its potential application in heavy metal remediation has not been explored. Herein, the structure of S-nZVI and its cadmium (Cd) removal performance under different aqueous conditions were carefully investigated. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur was incorporated into the zerovalent iron core. Scanning electron microscopy (SEM) with EDS analysis demonstrated that sulfur was also homogeneously distributed within the nanoparticles. When the concentration of Na2S2O4 was increased during synthesis, a flake-like structure (FeSx) increased significantly. S-nZVI had an optimal Cd removal capacity of 85 mg/g, which was >100% higher than for pristine nZVI. Even at pH 5, over 95% removal efficiency was observed, indicating sulfide compounds played a crucial role in metal ion removal and particle chemical stability. Oxygen impaired the structure of S-nZVI but enhanced Cd removal capacity to about 120 mg/g. Particle aging had no negative effect on removal capacity of S-nZVI, and Cd-containing mixtures remained stable in a two months experiment. S-nZVI can efficiently sequester dissolved metal ions from different contaminated water matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 63.7957 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... removed from process equipment; residues removed from air pollution control equipment; and debris removed..., concrete, steel, fiberglass, or plastic) which provide structural support and is designed to hold an...
Saravanan, K; Panigrahi, B K; Suresh, K; Sundaravel, B; Magudapathy, P; Gupta, Mukul
2018-08-24
Ion beam irradiation technique has been proposed, for efficient, fast and eco-friendly reduction of graphene oxide (GO), as an alternative to the conventional methods. 5 MeV, Au + ion beam has been used to reduce the free standing GO flake. Both electronic and nuclear energy loss mechanisms of the irradiation process play a major role in removal of oxygen moieties and recovery of graphene network. Atomic resolution scanning tunnelling microscopy analysis of the irradiated GO flake shows the characteristic honeycomb structure of graphene. X-ray absorption near edge structure analysis at C K-edge reveals that the features of the irradiated GO flake resemble the few layer graphene. Resonant Rutherford backscattering spectrometry analysis evidenced an enhanced C/O ratio of ∼23 in the irradiated GO. In situ sheet resistance measurements exhibit a sharp decrease of resistance (few 100 s of Ω) at a fluence of 6.5 × 10 14 ions cm -2 . Photoluminescence spectroscopic analysis of irradiated GO shows a sharp blue emission, while pristine GO exhibits a broad emission in the visible-near IR region. Region selective reduction, tunable electrical and optical properties by controlling C/O ratio makes ion irradiation as a versatile tool for the green reduction of GO for diverse applications.
Microbial ecology of denitrification in biological wastewater treatment.
Lu, Huijie; Chandran, Kartik; Stensel, David
2014-11-01
Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of biofilm on flow over and through a permeable bed
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook-Smith, Gregory; Christensen, Kenneth
2016-11-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solids, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of 'suction' and 'ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
Effects of biofilm on flow over and through a permeable bed
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Aybar, M.; Perez Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.
2016-12-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of `suction' and `ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed (Figure 1). Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and accurately control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
Evolution of structural diversity of trichothecene mycotoxins
USDA-ARS?s Scientific Manuscript database
Fungal secondary metabolites (SMs) are diverse in structure and biological activity. Most can be divided into families of analogs that share a core structure but vary in patterns of functional groups (substituents) attached to the core. Typically, fungal genes responsible for synthesis of the same S...
Staining paraffin embedded sections of scald of barley before paraffin removal.
Xi, K; Burnett, P A
1997-07-01
Staining of paraffin embedded sections with periodic acid-Schiff reagent and fast green before paraffin removal resulted in differentiation of barley seed and leaf tissue from fungal structures of Rhynchosporium secalis. Crystal violet, toluidine blue O and antiline blue also successfully stained fungal structures of R. secalis in barley leaf tissues. Staining of embedded sections before paraffin removal allows simple processing of a series of sections, saves time and reduces solvent consumption.
Coetzer, Willem G.; Downs, Colleen T.; Perrin, Mike R.
2017-01-01
Background Illegal trade in rare wildlife species is a major threat to many parrot species around the world. Wildlife forensics plays an important role in the preservation of endangered or threatened wildlife species. Identification of illegally harvested or traded animals through DNA techniques is one of the many methods used during forensic investigations. Natural populations of the South African endemic Cape Parrot (Poicephalus robustus) are negatively affected by the removal of eggs and chicks for the pet trade. Methods In this study, 16 microsatellite markers specifically designed for the South African endemic Cape Parrot (P. robustus) are assessed for their utility in forensic casework. Using these 16 loci, the genetic diversity of a subset of the captive Cape Parrot population was also assessed and compared to three wild Cape Parrot populations. Results It was determined that the full 16 locus panel has sufficient discriminatory power to be used in parentage analyses and can be used to determine if a bird has been bred in captivity and so can be legally traded or if it has been illegally removed from the wild. In cases where birds have been removed from the wild, this study suggests that a reduced 12 locus microsatellite panel has sufficient power to assign confiscated birds to geographic population of origin. Discussion The level of genetic diversity observed within the captive Cape Parrot population was similar to that observed in the wild populations, which suggests that the captive population is not suffering from decreased levels of genetic diversity. The captive Cape Parrots did however have double the number of private alleles compared to that observed in the most genetically diverse wild population. This is probably due to the presence of rare alleles present in the founder population, which has not been lost due to genetic drift, as many of the individuals tested in this study are F1–F3 wild descendants. The results from this study provide a suit of markers that can be used to aid conservation and law enforcement authorities to better control legal and illegal trade of this South African endemic. PMID:28344897
USDA-ARS?s Scientific Manuscript database
Sclerotinia trifoliorum is recently reported as a new pathogen of chickpea in North America. The diversity and genetic structure of this heterothallic fungus is poorly understood. This study was designed to investigate the genetic structure and diversity of the pathogen. A collection of 133 isolates...
Ulyshen, Michael D; Hanula, James L
2009-08-01
Large-scale experimental manipulations of dead wood are needed to better understand its importance to animal communities in managed forests. In this experiment, we compared the abundance, species richness, diversity, and composition of arthropods in 9.3-ha plots in which either (1) all coarse woody debris was removed, (2) a large number of logs were added, (3) a large number of snags were added, or (4) no coarse woody debris was added or removed. The target taxa were ground-dwelling arthropods, sampled by pitfall traps, and saproxylic beetles (i.e., dependent on dead wood), sampled by flight intercept traps and emergence traps. There were no differences in total ground-dwelling arthropod abundance, richness, diversity, or composition among treatments. Only the results for ground beetles (Carabidae), which were more species rich and diverse in log input plots, supported our prediction that ground-dwelling arthropods would benefit from additions of dead wood. There were also no differences in saproxylic beetle abundance, richness, diversity, or composition among treatments. The findings from this study are encouraging in that arthropods seem less sensitive than expected to manipulations of dead wood in managed pine forests of the southeastern United States. Based on our results, we cannot recommend inputting large amounts of dead wood for conservation purposes, given the expense of such measures. However, the persistence of saproxylic beetles requires that an adequate amount of dead wood is available in the landscape, and we recommend that dead wood be retained whenever possible in managed pine forests.
Deep Molecular Diversity of Mammalian Synapses: Why It Matters and How to Measure It
O’Rourke, Nancy A.; Weiler, Nick C.; Micheva, Kristina D.; Smith, Stephen J
2013-01-01
Summary Pioneering studies during the middle of the twentieth century revealed substantial diversity amongst mammalian chemical synapses and led to a widely accepted synapse type classification based on neurotransmitter molecule identity. Subsequently, powerful new physiological, genetic and structural methods have enabled the discovery of much deeper functional and molecular diversity within each traditional neurotransmitter type. Today, this deep diversity continues to pose both daunting challenges and exciting new opportunities for neuroscience. Our growing understanding of deep synapse diversity may transform how we think about and study neural circuit development, structure and function. PMID:22573027
Miyanaga, Akimasa
2017-12-01
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Claisse, Jeremy T; Pondella, Daniel J; Love, Milton; Zahn, Laurel A; Williams, Chelsea M; Bull, Ann S
2015-01-01
When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.
Reeve, Bryce B; Stover, Angela M; Alfano, Catherine M; Smith, Ashley Wilder; Ballard-Barbash, Rachel; Bernstein, Leslie; McTiernan, Anne; Baumgartner, Kathy B; Piper, Barbara F
2012-11-01
Brief, valid measures of fatigue, a prevalent and distressing cancer symptom, are needed for use in research. This study's primary aim was to create a shortened version of the revised Piper Fatigue Scale (PFS-R) based on data from a diverse cohort of breast cancer survivors. A secondary aim was to determine whether the PFS captured multiple distinct aspects of fatigue (a multidimensional model) or a single overall fatigue factor (a unidimensional model). Breast cancer survivors (n = 799; stages in situ through IIIa; ages 29-86 years) were recruited through three SEER registries (New Mexico, Western Washington, and Los Angeles, CA) as part of the Health, Eating, Activity, and Lifestyle (HEAL) study. Fatigue was measured approximately 3 years post-diagnosis using the 22-item PFS-R that has four subscales (Behavior, Affect, Sensory, and Cognition). Confirmatory factor analysis was used to compare unidimensional and multidimensional models. Six criteria were used to make item selections to shorten the PFS-R: scale's content validity, items' relationship with fatigue, content redundancy, differential item functioning by race and/or education, scale reliability, and literacy demand. Factor analyses supported the original 4-factor structure. There was also evidence from the bi-factor model for a dominant underlying fatigue factor. Six items tested positive for differential item functioning between African-American and Caucasian survivors. Four additional items either showed poor association, local dependence, or content validity concerns. After removing these 10 items, the reliability of the PFS-12 subscales ranged from 0.87 to 0.89, compared to 0.90-0.94 prior to item removal. The newly developed PFS-12 can be used to assess fatigue in African-American and Caucasian breast cancer survivors and reduces response burden without compromising reliability or validity. This is the first study to determine PFS literacy demand and to compare PFS-R responses in African-Americans and Caucasian breast cancer survivors. Further testing in diverse populations is warranted.
Wax removal for accelerated cotton scouring with alkaline pectinase.
Agrawal, Pramod B; Nierstrasz, Vincent A; Klug-Santner, Barbara G; Gübitz, Georg M; Lenting, Herman B M; Warmoeskerken, Marijn M C G
2007-03-01
A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.
String Technique for Anterior Orbital Fish Hook Removal.
Starr, Matthew R; Choi, Michael B; Mahr, Michael A; Mettu, Pradeep; Patterson, David F
2018-06-13
Removing fish hooks is a common procedure performed by many emergency department providers. There are several techniques that are commonly employed to aid in successful removal. However, when a fish hook becomes embedded within the orbit, there are limited options as to avoid damaging vital surrounding structures. The authors report the removal of a fish hook within the anterior orbit using the string technique in a 25-year-old patient. The procedure was performed under general anesthesia with the aid of size 5 polyglactin suture wrapped around the hook. The procedure itself took less than 10 seconds and was successful in swiftly and safely removing the hook without damaging surrounding orbital structures. The patient recovered well without any permanent sequelae.
Animal social networks as substrate for cultural behavioural diversity.
Whitehead, Hal; Lusseau, David
2012-02-07
We used individual-based stochastic models to examine how social structure influences the diversity of socially learned behaviour within a non-human population. For continuous behavioural variables we modelled three forms of dyadic social learning, averaging the behavioural value of the two individuals, random transfer of information from one individual to the other, and directional transfer from the individual with highest behavioural value to the other. Learning had potential error. We also examined the transfer of categorical behaviour between individuals with random directionality and two forms of error, the adoption of a randomly chosen existing behavioural category or the innovation of a new type of behaviour. In populations without social structuring the diversity of culturally transmitted behaviour increased with learning error and population size. When the populations were structured socially either by making individuals members of permanent social units or by giving them overlapping ranges, behavioural diversity increased with network modularity under all scenarios, although the proportional increase varied considerably between continuous and categorical behaviour, with transmission mechanism, and population size. Although functions of the form e(c)¹(m)⁻(c)² + (c)³(Log(N)) predicted the mean increase in diversity with modularity (m) and population size (N), behavioural diversity could be highly unpredictable both between simulations with the same set of parameters, and within runs. Errors in social learning and social structuring generally promote behavioural diversity. Consequently, social learning may be considered to produce culture in populations whose social structure is sufficiently modular. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aboveground and belowground effects of single-tree removals in New Zealand rain forest.
Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M
2008-05-01
There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.
Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang
2013-07-01
Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Akins, Andrea L; Hansen, Michael J.; Seider, Michael J.
2015-01-01
Historically, Lake Superior supported one of the largest and most diverse Lake Trout Salvelinus namaycush fisheries in the Laurentian Great Lakes, but Lake Trout stocks collapsed due to excessive fishery exploitation and predation by Sea Lampreys Petromyzon marinus. Lake Trout stocking, Sea Lamprey control, and fishery regulations, including a refuge encompassing Gull Island Shoal (Apostle Islands region), were used to enable recovery of Lake Trout stocks that used this historically important spawning shoal. Our objective was to determine whether future sustainability of Lake Trout stocks will depend on the presence of the Gull Island Shoal Refuge. We constructed a stochastic age-structured simulation model to assess the effect of maintaining the refuge as a harvest management tool versus removing the refuge. In general, median abundances of age-4, age-4 and older (age-4+), and age-8+ fish collapsed at lower instantaneous fishing mortality rates (F) when the refuge was removed than when the refuge was maintained. With the refuge in place, the F that resulted in collapse depended on the rate of movement into and out of the refuge. Too many fish stayed in the refuge when movement was low (0–2%), and too many fish became vulnerable to fishing when movement was high (≥22%); thus, the refuge was more effective at intermediate rates of movement (10–11%). With the refuge in place, extinction did not occur at any simulated level of F, whereas refuge removal led to extinction at all combinations of commercial F and recreational F. Our results indicate that the Lake Trout population would be sustained by the refuge at all simulated F-values, whereas removal of the refuge would risk population collapse at much lower F (0.700–0.744). Therefore, the Gull Island Shoal Refuge is needed to sustain the Lake Trout population in eastern Wisconsin waters of Lake Superior.
Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Relationship between diversity and the vertical structure of the upper ocean
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.
1985-12-01
The sources of diversity in the plankton ecosystem of the upper 250 m in the eastern tropical Pacific Ocean are explored in the data from LHPR plankton profiles. Though there is good evidence for resource partitioning among feeding guilds of congeners, and for specialization in predation—both known to create diversity in simple aquatic ecosystems—the existence of a stable vertical structure, including a thermocline, may be one of the more important causes of variation in regional plankton diversity in the euphotic zone.
Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).
Cox, Christian L; Chippindale, Paul T
2014-08-01
We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Ma, Xinrong; He, Kaize; He, Zhiming; Wang, Feng; Zhao, Hai
2015-03-01
Carriers were added to a pilot-scale duckweed-based (Lemna japonica 0223) wastewater treatment system to immobilize and enhance microorganisms. This system and another parallel duckweed system without carriers were operated for 1.5 years. The results indicated the addition of the carrier did not significantly affect the growth and composition of duckweed, the recovery of total nitrogen (TN), total phosphorus (TP) and CO2 or the removal of TP. However, it significantly improved the removal efficiency of TN and NH4(+)-N (by 19.97% and 15.02%, respectively). The use of 454 pyrosequencing revealed large differences of the microbial communities between the different components within a system and similarities within the same components between the two systems. The carrier biofilm had the highest bacterial diversity and relative abundance of nitrifying bacteria (3%) and denitrifying bacteria (24% of Rhodocyclaceae), which improved nitrogen removal of the system. An efficient N-removal duckweed system with enhanced microorganisms was established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Xiaojing; Zhang, Nan; Fu, Haoqiang; Chen, Tao; Liu, Sa; Zheng, Shuhua; Zhang, Jie
2017-11-01
In this study, a membrane bioreactor (MBR) was adopted for completely autotrophic nitrogen removal over nitrite (CANON) process. Zinc oxide nanoparticles (ZnO NPs) was step-wise increased to analyze the influence on nitrogen removal, microbial activity and microbial communities. Finally ZnO NPs was removed to study its recovery capability. The bioactivities of ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AAOB) and nitrite-oxidizing bacteria (NOB) were detected by batch experiments. Results showed that the ZnO NPs with low concentration (≤5mgL -1 ) was profitable for nitrogen removal while the high concentration performed inhibition, and it lowered the abundance of both AOB and NOB while enhanced that of AAOB. ZnO NPs with high concentration (≥10mgL -1 ) suppressed both AOB and AAOB, and long-term exposure within ZnO NPs led to microbial diversity decrease. The inhibition threshold of ZnO NPs on CANON process was 10mgL -1 , and the profitable concentration was 1mgL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Huda, N; Raman, A A A; Bello, M M; Ramesh, S
2017-12-15
The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
7 CFR 81.10 - Claim for payment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROGRAMS PRUNE/DRIED PLUM DIVERSION PROGRAM § 81.10 Claim for payment. (a) To obtain payment for the trees... Committee. Such form shall include the Committee's certification that the qualifying trees from the blocks... check to the producer in the amount of $8.50 per eligible tree removed. (b) [Reserved] ...
An organismal view of dendrochronology
Kevin T. Smith
2008-01-01
An organism is the most basic unit of independent life. The tree-ring record is defined by organismal processes. Dendrochronology contributes to investigations far removed from organismal biology, e.g., archeology, climatology, disturbance ecology, etc. The increasing integration of dendrochronology into a diverse research community suggests an opportunity for a brief...
Salt marshes provide a unique intertidal habitat between land and sea, making them one of the most diverse and productive ecosystems on Earth. Their ecosystem services are often undervalued, and are being degraded by multiple stressors such as human development and climate change...
Salt marshes provide a unique intertidal habitat between land and sea, making them one of the most diverse and productive ecosystems on Earth. Their ecosystem services are often undervalued, and are being degraded by multiple stressors such as human development and climate change...
7 CFR 81.8 - Application and approval for participation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... office personnel. (b) Applications for participation in the Prune-Plum Diversion Program can be obtained... in question, and/or as needed, the statement must show an agreement to participate in the tree... the tree removal. However, obtaining such assent shall be the responsibility of the applicant who...
7 CFR 81.8 - Application and approval for participation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... office personnel. (b) Applications for participation in the Prune-Plum Diversion Program can be obtained... in question, and/or as needed, the statement must show an agreement to participate in the tree... the tree removal. However, obtaining such assent shall be the responsibility of the applicant who...
7 CFR 81.8 - Application and approval for participation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... office personnel. (b) Applications for participation in the Prune-Plum Diversion Program can be obtained... in question, and/or as needed, the statement must show an agreement to participate in the tree... the tree removal. However, obtaining such assent shall be the responsibility of the applicant who...
7 CFR 81.10 - Claim for payment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... check to the producer in the amount of $8.50 per eligible tree removed. (b) [Reserved] ... PROGRAMS PRUNE/DRIED PLUM DIVERSION PROGRAM § 81.10 Claim for payment. (a) To obtain payment for the trees... Committee. Such form shall include the Committee's certification that the qualifying trees from the blocks...
7 CFR 81.10 - Claim for payment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... check to the producer in the amount of $8.50 per eligible tree removed. (b) [Reserved] ... PROGRAMS PRUNE/DRIED PLUM DIVERSION PROGRAM § 81.10 Claim for payment. (a) To obtain payment for the trees... Committee. Such form shall include the Committee's certification that the qualifying trees from the blocks...
7 CFR 81.10 - Claim for payment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... check to the producer in the amount of $8.50 per eligible tree removed. (b) [Reserved] ... PROGRAMS PRUNE/DRIED PLUM DIVERSION PROGRAM § 81.10 Claim for payment. (a) To obtain payment for the trees... Committee. Such form shall include the Committee's certification that the qualifying trees from the blocks...
7 CFR 81.8 - Application and approval for participation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... office personnel. (b) Applications for participation in the Prune-Plum Diversion Program can be obtained... in question, and/or as needed, the statement must show an agreement to participate in the tree... the tree removal. However, obtaining such assent shall be the responsibility of the applicant who...
7 CFR 81.10 - Claim for payment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... check to the producer in the amount of $8.50 per eligible tree removed. (b) [Reserved] ... PROGRAMS PRUNE/DRIED PLUM DIVERSION PROGRAM § 81.10 Claim for payment. (a) To obtain payment for the trees... Committee. Such form shall include the Committee's certification that the qualifying trees from the blocks...
USDA-ARS?s Scientific Manuscript database
The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...
USDA-ARS?s Scientific Manuscript database
The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...