Science.gov

Sample records for renal dynamic imaging

  1. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Goiffon, Reece J.; Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-03-01

    Kidneys normally filter the blood of excess salts and metabolic products, such as urea, while retaining plasma proteins. In diseases such as multiple myeloma and diabetes mellitus, the renal function is compromised and protein escapes into the urine. In this study, we present the use of fluorescence lifetime imaging (FLI) to image excess serum protein in urine (proteinuria). The near-infrared fluorescent dye LS-288 has distinct lifetimes when bound to protein versus free in solution, providing contrast between the protein-rich viscera and the mostly protein-free bladder. FLI with LS-288 in mice revealed that fluorescence lifetime (FLT) differences in the bladder relative to surrounding tissues was due to the fractional contributions of the bound and unbound dye molecules. The FLT of LS-288 decreased in the case of proteinuria while fluorescence intensity was unchanged. The results show that FLI can be useful for the dynamic imaging of protein-losing nephropathy due to diabetes mellitus and other renal diseases and suggest the potential use of the FLI to distinguish tumors from fluid-filled cysts in the body.

  2. [Imaging renal cell carcinoma].

    PubMed

    Bazan, F; Busto, M

    2014-01-01

    Renal cell carcinoma is the eighth most common malignancy in adults and the most common malignancy in the kidney. It is thus a very common disease for radiologists. This review aims to provide a general overview of the imaging techniques used to diagnose, characterize, and help plan the treatment of renal cell carcinoma as well as to review basic aspects related to staging, imaging-guided percutaneous treatment, and follow-up in the most common clinical scenarios.

  3. Imaging of Renal Medullary Carcinoma

    PubMed Central

    Faiella, Eliodoro; Santucci, Domiziana; Mallio, Carlo Augusto; Nezzo, Marco; Quattrocchi, Carlo Cosimo; Beomonte Zobel, Bruno; Grasso, Rosario Francesco

    2017-01-01

    Renal medullary carcinoma (RMC) is a rare, highly aggressive tumor recognized as an independent pathological entity. African-descent adolescents and young adults with sickle cell hemoglobinopathy are the most affected groups. This rare subtype of renal cell carcinoma has its own morphogenetic and pathological characteristics. The major clinical manifestations include gross hematuria, abdominal or flank pain, and weight loss. The prognosis is very poor, with 95% of cases diagnosed at an advanced stage of the disease. In this review, we summarize the morphologic and dynamic characteristics of RMC under various imaging modalities such as ultrasound, computed tomography, and magnetic resonance. Differential diagnosis and management strategies are also discussed.

  4. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast Enhanced MR Imaging Assessments

    PubMed Central

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A.; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J.; Pedrosa, Ivan

    2015-01-01

    Objective To investigate potential correlations between perfusion by arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE) MRI derived quantitative measures of vascularity in renal masses >2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Methods Informed written consent was obtained from all patients before imaging in this HIPAA-compliant, IRB-approved, prospective study. 36 consecutive patients scheduled for surgery of a known renal mass >2 cm underwent 3T ASL and DCE MRI. ASL measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived Ktrans, Kep, and Ve in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P<0.05 was considered statistically significant. Results Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ±12 years). PASL correlated with Ktrans (ρ=0.48, P=0.0091 for the entire tumor and ρ=0.43, P=0.03 for the high flow area, respectively) and Kep (ρ=0.46, P=0.01 for the entire tumor and ρ=0.52, P=0.008 for the high flow area, respectively). PASL (ρ=0.66, P=0.0002), Ktrans (ρ=0.61, P=0.001), and Kep (ρ=0.64, P=0.0006) also correlated with MVD in high and low perfusion areas in ccRCC. Conclusions PASL correlate with the DCE-derived measures of vascular permeability and flow, Ktrans and Kep, in renal masses >2cm in size. Both measures correlate to MVD in clear cell histology. MICROABSTRACT Arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However there are intrinsic differences between these two imaging methods, such as the relative contribution of vascular permeability

  5. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  6. Renal arteries (image)

    MedlinePlus

    A renal angiogram is a test used to examine the blood vessels of the kidneys. The test is performed ... main vessel of the pelvis, up to the renal artery that leads into the kidney. Contrast medium ...

  7. Imaging of Solid Renal Masses.

    PubMed

    Kay, Fernando U; Pedrosa, Ivan

    2017-03-01

    Detection of solid renal masses has increased, although it has not resulted in significant mortality reduction from renal cell carcinoma. Efforts for improved lesion characterization have been pursued and incorporated in management algorithms, in order to distinguish clinically significant tumors from favorable or benign conditions. Concurrently, imaging methods have produced evidence supporting their role as useful tools not only in lesion detection but also characterization. In addition, newer modalities, such as contrast-enhanced ultrasonography, and advanced applications of MR imaging, are being investigated. This article reviews the current role of different imaging methods in the characterization of solid renal masses.

  8. Image-Guided Renal Intervention.

    PubMed

    Frey, Gregory T; Sella, David M; Atwell, Thomas D

    2015-09-01

    The role of interventional radiology in the management of renal malignancy has expanded in the past 2 decades, largely because of the efficacy of image-guided ablation in treating renal cell carcinoma (RCC). Clinical guidelines now incorporate ablation into standardized RCC management algorithms. Importantly, both radiofrequency ablation and cryoablation have shown long-term durability in the definitive treatment of RCC, and early outcomes following microwave ablation are equally promising. While selective renal artery embolization has a role in the palliation of select patients with RCC, it can also be used to minimize complications in the ablation of larger renal masses.

  9. Scintigraphic imaging in renal infections.

    PubMed

    Rossleigh, M A

    2009-02-01

    The scintigraphic imaging modality of choice in the evaluation of renal infections is renal cortical scintigraphy utilizing [(99m)Tc]dimercaptosuccinic acid (DMSA). This technique is able to demonstrate upper tract involvement with infection and to assess for the presence of renal cortical scarring following a urinary tract infection (UTI). There are recent publications advocating its use to determine which patients need to proceed to further investigation with cystography. It is also being utilized in the evaluation of different treatment regimes used in patients with UTI. Fluorodeoxyglucose (FDG)-PET and leukocyte scanning have only a minor role in the diagnosis of renal infection. Their main application is in the diagnosis of renal cyst infections in patients with polycystic renal disease.

  10. Multiphoton imaging of renal regulatory mechanisms.

    PubMed

    Peti-Peterdi, János; Toma, Ildikó; Sipos, Arnold; Vargas, Sarah L

    2009-04-01

    Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.

  11. Integrated imaging of neonatal renal masses.

    PubMed

    Kirks, D R; Rosenberg, E R; Johnson, D G; King, L R

    1985-01-01

    Thirty-three neonatal renal masses were evaluated during a 2-year interval. The final diagnoses in these 33 patients were hydronephrosis [14], multicystic dysplastic kidney [10], renal vein thrombosis [3], obstructed upper pole duplication [2], polycystic kidney disease [2], nephroblastomatosis [1], and mesoblastic nephroma [1]. We recommend an integrated imaging approach that utilizes sonography to clarify anatomy and renal scintigraphy or excretory urography to determine renal function.

  12. Renal amyloidosis. Evaluation by gallium imaging

    SciTech Connect

    Lee, V.W.; Skinner, M.; Cohen, A.S.; Ngai, S.; Peng, T.T.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity for detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.

  13. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults.

    PubMed

    Keramida, Georgia; James, Jacqueline M; Prescott, Mary C; Peters, Adrien Michael

    2015-09-01

    To understand pitfalls and limitations in adult renography, it is necessary to understand firstly the physiology of the kidney, especially the magnitude and control of renal blood flow, glomerular filtration rate and tubular fluid flow rate, and secondly the pharmacokinetics and renal handling of the three most often used tracers, Tc-99m-mercaptoacetyltriglycine (MAG3), Tc-99m-diethylene triamine pentaacetic acid (DTPA) and Tc-99m-dimercaptosuccinic acid (DMSA). The kidneys may be imaged dynamically with Tc-99m-MAG3 or Tc-99m-DTPA, with or without diuretic challenge, or by static imaging with Tc-99m-DMSA. Protocols are different according to whether the kidney is native or transplanted. Quantitative analysis of dynamic data includes measurement of renal vascularity (important for the transplanted kidney), absolute tracer clearance rates, differential renal function (DRF) and response to diuretic challenge. Static image reveals functional renal parenchymal damage, both focal and global, is useful in the clinical management of obstructive uropathy, renal stone disease and hypertension (under angiotensin converting enzyme inhibition), and is the preferred technique for determining DRF. Diagnosis based on morphological appearances is important in transplant management. Even though nuclear medicine is now in the era of hybrid imaging, renal imaging remains an important subspecialty in nuclear medicine and requires a sound basing in applied physiology, the classical supporting discipline of nuclear medicine.

  14. Multimodality Imaging Findings of a Renal Aspergilloma

    PubMed Central

    Bulakçı, Mesut; Kartal, Merve Gülbiz; Çelenk, Erhan; Tunçer, Sena; Kılıçaslan, Işın

    2016-01-01

    Background Renal aspergillosis is a rare infection that usually occurs in persons with a predisposition for this condition. Its differential diagnosis includes primary and metastatic renal malignancies, pyelonephritis and secondary abscess formation, granulomatous disorders, and renal infarction. We aim to stress the role of multimodality imaging and percutaneous biopsy in the diagnosis of this condition. Case Report We present diffusion weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT) findings in addition to conventional imaging modalities in a 55-year-old man with secondary renal aspergilloma. Conclusion Radiological imaging methods are an integral part of diagnostic workup for renal aspergillosis. A definitive diagnosis is made by histopathological and/or microbiological examination of the material obtained via percutaneous biopsy under guidance of imaging methods. PMID:27994929

  15. Multimodality imaging of renal inflammatory lesions

    PubMed Central

    Das, Chandan J; Ahmad, Zohra; Sharma, Sanjay; Gupta, Arun K

    2014-01-01

    Spectrum of acute renal infections includes acute pyelonephritis, renal and perirenal abscesses, pyonephrosis, emphysematous pyelonephritis and emphysematous cystitis. The chronic renal infections that we routinely encounter encompass chronic pyelonephritis, xanthogranulomatous pyelonephritis, and eosinophilic cystitis. Patients with diabetes, malignancy and leukaemia are frequently immunocompromised and more prone to fungal infections viz. angioinvasive aspergillus, candida and mucor. Tuberculosis and parasitic infestation of the kidney is common in tropical countries. Imaging is not routinely indicated in uncomplicated renal infections as clinical findings and laboratory data are generally sufficient for making a diagnosis. However, imaging plays a crucial role under specific situations like immunocompromised patients, treatment non-responders, equivocal clinical diagnosis, congenital anomaly evaluation, transplant imaging and for evaluating extent of disease. We aim to review in this article the varied imaging spectrum of renal inflammatory lesions. PMID:25431641

  16. Multimodality imaging of renal inflammatory lesions.

    PubMed

    Das, Chandan J; Ahmad, Zohra; Sharma, Sanjay; Gupta, Arun K

    2014-11-28

    Spectrum of acute renal infections includes acute pyelonephritis, renal and perirenal abscesses, pyonephrosis, emphysematous pyelonephritis and emphysematous cystitis. The chronic renal infections that we routinely encounter encompass chronic pyelonephritis, xanthogranulomatous pyelonephritis, and eosinophilic cystitis. Patients with diabetes, malignancy and leukaemia are frequently immunocompromised and more prone to fungal infections viz. angioinvasive aspergillus, candida and mucor. Tuberculosis and parasitic infestation of the kidney is common in tropical countries. Imaging is not routinely indicated in uncomplicated renal infections as clinical findings and laboratory data are generally sufficient for making a diagnosis. However, imaging plays a crucial role under specific situations like immunocompromised patients, treatment non-responders, equivocal clinical diagnosis, congenital anomaly evaluation, transplant imaging and for evaluating extent of disease. We aim to review in this article the varied imaging spectrum of renal inflammatory lesions.

  17. Imaging in acute renal infection in children

    SciTech Connect

    Sty, J.R.; Wells, R.G.; Starshak, R.J.; Schroeder, B.A.

    1987-03-01

    Infection is the most common disease of the urinary tract in children, and various imaging techniques have been used to verify its presence and location. On retrospective analysis, 50 consecutive children with documented upper urinary tract infection had abnormal findings on renal cortical scintigraphy with 99mTc-glucoheptonate. The infection involved the renal poles only in 38 and the poles plus other renal cortical areas in eight. Four had abnormalities that spared the poles. Renal sonograms were abnormal in 32 of 50 children. Excretory urograms were abnormal in six of 23 children in whom they were obtained. Vesicoureteral reflux was found in 34 of 40 children in whom voiding cystourethrography was performed. These data show the high sensitivity of renal cortical scintigraphy with 99mTc-glucoheptonate in documenting upper urinary tract infection. The location of the abnormalities detected suggests that renal infections spread via an ascending mode and implies that intrarenal reflux is a major contributing factor.

  18. Image-Guided Adrenal and Renal Biopsy

    PubMed Central

    Sharma, Karun V.; Venkatesan, Aradhana M.; Swerdlow, Daniel; DaSilva, Daniel; Beck, Avi; Jain, Nidhi; Wood, Bradford J.

    2010-01-01

    Image-guided biopsy is a safe and well-established technique that is familiar to most interventional radiologists (IRs). Improvements in image-guidance, biopsy tools and biopsy techniques now routinely allow for safe biopsy of renal and adrenal lesions which traditionally were considered difficult to reach or technically challenging. Image-guided biopsy is used to establish the definitive tissue diagnosis in adrenal mass lesions that can not be fully characterized with imaging or laboratory tests alone. It is also used to establish definitive diagnosis in some cases of renal parenchymal disease and has an expanding role in diagnosis and characterization of renal masses prior to treatment. Although basic principles and techniques for image-guided needle biopsy are similar regardless of organ, this paper will highlight some technical considerations, indications and complications which are unique to the adrenal gland and kidney because of their anatomic location and physiologic features. PMID:20540919

  19. [Diagnostic imaging of peripheral renal vascular disorders].

    PubMed

    Hélénon, O; Correas, J M; Eiss, D; Khairoune, A; Merran, S

    2004-02-01

    Peripheral vascular disorders of the kidney involve the intrarenal branches of the renal vascular tree. It include occlusive (infarction and cortical necrosis) and non-occlusive vascular lesions (acquired arteriovenous fistulas, arteriovenous malformation, false aneurysms and microaneurysms). Initial diagnosis relies on color Doppler US and CT angiography. Angiography plays a therapeutic role. MR imaging provides useful diagnostic information on perfusion disorders especially in patients with renal insufficiency.

  20. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  1. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index.

    PubMed

    Abd Ellah, Mohamed; Kremser, Christian; Pallwein, Leo; Aigner, Friedrich; Schocke, Michael; Peschel, Reinhard; Pedross, Florian; Pinggera, Germar-Michael; Wolf, Christian; Alsharkawy, Mostafa A M; Jaschke, Werner; Frauscher, Ferdinand

    2010-10-01

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12h before and 12h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p<0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p<0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  2. Diagnostic value of routine bone scintigraphy renal imaging in renal cell carcinoma

    SciTech Connect

    Chancellor, M.B.; Konnak, J.W.; Grossman, H.B.

    1989-05-01

    Technetium-99m-phosphate compounds used in bone scanning are excreted by the kidney, and excellent renal images can be obtained on routine bone scintigrams. The preoperative bone scans of 49 patients who underwent radical nephrectomy for renal cell carcinoma between 1981 and 1985 were reviewed for renal imaging. Ninety-four percent of the patients had abnormal bone scan renal images (82% had focal decreased uptake, and 12% had focal increased uptake). Six percent of the renal images were symmetrical bilaterally. When bone scans are employed in the postoperative follow-up of patients with renal cancer, they can be used to assess the status of the remaining kidney.

  3. Renal compartment segmentation in DCE-MRI images.

    PubMed

    Yang, Xin; Le Minh, Hung; Tim Cheng, Kwang-Ting; Sung, Kyung Hyun; Liu, Wenyu

    2016-08-01

    Renal compartment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) images is an important task for functional kidney evaluation. Despite advancement in segmentation methods, most of them focus on segmenting an entire kidney on CT images, there still lacks effective and automatic solutions for accurate segmentation of internal renal structures (i.e. cortex, medulla and renal pelvis) from DCE-MRI images. In this paper, we introduce a method for renal compartment segmentation which can robustly achieve high segmentation accuracy for a wide range of DCE-MRI data, and meanwhile requires little manual operations and parameter settings. The proposed method consists of five main steps. First, we pre-process the image time series to reduce the motion artifacts caused by the movement of the patients during the scans and enhance the kidney regions. Second, the kidney is segmented as a whole based on the concept of Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects anatomical structures that are homogeneous in the spatial domain and stable in terms of temporal dynamics. MSTV-based kidney segmentation is robust to noises and does not require a training phase. It can well adapt to kidney shape variations caused by renal dysfunction. Third, voxels in the segmented kidney are described by principal components (PCs) to remove temporal redundancy and noises. And then k-means clustering of PCs is applied to separate voxels into multiple clusters. Fourth, the clusters are automatically labeled as cortex, medulla and pelvis based on voxels' geometric locations and intensity distribution. Finally, an iterative refinement method is introduced to further remove noises in each segmented compartment. Experiments on 14 real clinical kidney datasets and 12 synthetic dataset demonstrate that results produced by our method match very well with those segmented manually and the performance of our method is superior to the other five existing methods.

  4. New normal values not related to age and sex, of glomerular filtration rate by (99m)Tc-DTPA renal dynamic imaging, for the evaluation of living kidney graft donors.

    PubMed

    Zhao, Xiuyi; Shao, Yahui; Wang, Yanming; Tian, Jun; Sun, Ben; Ru, Yanhui; Zhang, Aimin; Hao, Junwen

    2012-01-01

    The aim of this study was to investigate the normal values of glomerular filtration rate (GFR) by technetium-99m diaethylene-triamine-pentaacetic acid ((99m)Tc-DTPA) renal dynamic imaging for living kidney graft donors. In a total of 212 candidate donors, GFR was examined using (99m)Tc-DTPA renal dynamic imaging. Donors with GFR≥80mL/(min×1.73m(2)) and as low as with GFR≥70mL/(min×1.73m(2)) but a normal endogenous creatinine clearance rate (CCr) were quantified for living kidney donation. Differences in GFR levels based on sex and age were analyzed using rank correlation coefficient. Out of the 212 candidates, 161 were finally selected as kidney graft donors. The double kidney total GFR between the male and female donor groups, the GFR levels among differently-aged donor groups, and the GFR levels between the elderly (>55 years) and young- and middle-aged (≤55 years) donor groups did not show any significant difference (P>0.05). After kidney donation, renal function measured by blood urea nitrogen (BUN) and serum creatinine of all donors returned to normal within one week, and no serious complications were noticed. In conclusion, renal dynamic imaging by (99m)Tc-DTPA had a good accuracy and repeatability in GFR evaluation for living kidney donors. Candidate donors with GFR between 70mL/(min×1.73m(2)) and 80mL/(min×1.73m(2)) can be selected as kidney donors after strict screening. In living kidney donors GFR is not significantly correlated with age or sex.

  5. Imaging of adrenal and renal hemorrhage.

    PubMed

    Hammond, Nancy A; Lostumbo, Antonella; Adam, Sharon Z; Remer, Erick M; Nikolaidis, Paul; Yaghmai, Vahid; Berggruen, Senta M; Miller, Frank H

    2015-10-01

    Hemorrhage of the kidneys and adrenal glands has many etiologies. In the adrenal glands, trauma, anticoagulation, stress, sepsis, surgery, and neoplasms are common causes of hemorrhage. In the kidneys, reasons for hemorrhage include trauma, bleeding diathesis, vascular diseases, infection, infarction, hemorrhagic cyst rupture, the Antopol-Goldman lesion, and neoplasms. Angiomyolipoma and renal cell carcinoma are the neoplasms most commonly associated with hemorrhage in the kidneys and adrenal cortical carcinoma, metastases, and pheochromocytoma are associated with hemorrhage in the adrenal glands. Understanding the computed tomography and magnetic resonance imaging features, and causes of hemorrhage in the kidneys and adrenal glands is critical. It is also important to keep in mind that mimickers of hemorrhage exist, including lymphoma in both the kidneys and adrenal glands, and melanoma metastases in the adrenal glands. Appropriate imaging follow-up of renal and adrenal hemorrhage should occur to exclude an underlying malignancy as the cause. If there is suspicion for malignancy that cannot be definitively diagnosed on imaging, surgery or biopsy may be warranted. Angiography may be indicated when there is a suspected underlying vascular disease. Unnecessary intervention, such as nephrectomy, may be avoided in patients with benign causes or no underlying disease. Appropriate management is dependent on accurate diagnosis of the cause of renal or adrenal hemorrhage and it is incumbent upon the radiologist to determine the etiology.

  6. Nuclear renal imaging in acute pyelonephritis

    SciTech Connect

    Handmaker, H.

    1982-07-01

    Patients with acute pyelonephritis may present with a spectrum of clinical signs and symptoms. There are few noninvasive diagnostic studies, however, to confirm or exclude this diagnosis. A small number of patients, generally those with severe disease, will demonstrate radiographic changes on excretory urography, but the lack of sensitivity of the IVP in early, acute pyelonephritis is well documented. Several radionuclide techniques have been proposed to assist in the earlier detection of this clinical problem including imaging with Mercury-197 chlormerodrin, Gallium-67 citrate, Technetium-99m glucoheptonate. Technetium-99m DMSA, and, more recently, Indium-111 labeled white blood cells. The success of the renal cortical imaging agents as well as those which localize in infection are described in this report. There appears to be a complimentary role or the cortical imaging agents and the radiopharmaceuticals which localize in bacterial infection. Cortical agents offer the advantage of specific assessment of functioning renal tissue and a convenient, rapid method for following the response to treatment in a noninvasive manner. A pattern is described which may be diagnostic; correlation with Gallium-67 citrate of Indium-111 WBCs may increase the probability of infection as the cause for the cortical abnormality. The measurement of differential renal function using cortical agents provides additional information to assist the clinician in predicting the late effects of infection. Improved sensitivity and specificity, and a reproducible method for following the response to therapy in patients with acute pyelonephritis are the advantages of the techniques described.

  7. Radionuclide imaging of rare congenital renal fusion anomalies.

    PubMed

    Volkan, Bilge; Ceylan, Emel; Kiratli, Pinar Ozgen

    2003-03-01

    Demonstration of a congenital renal anomaly plays an important role in the treatment of patients with renal infection. These patients are prone to infections because of coexisting urinary tract anomalies such as duplicated ureter, ureter opening anomalies, and urinary stasis. Assessment of renal parenchymal damage resulting from acute or chronic renal infection is the primary indication for radionuclide imaging with Tc-99m DMSA. In addition, this technique allows congenital anomalies to be identified. The authors review congenital renal fusion anomalies identified in children through Tc-99m DMSA imaging. They conclude that Tc-99m DMSA imaging can reveal important diagnostic information about various congenital anomalies, including fusion anomalies.

  8. Quantitative planar imaging in renal scintigraphy

    NASA Astrophysics Data System (ADS)

    Lárraga, J. M.; Martínez-Dávalos, A.; Martínez-Duncker, C.; Rodríguez, R. Herrera

    2002-08-01

    In this work we show the results of the implementation of the double energy window method (DEW) to correct for scatter and geometric mean of opposite image to correct for attenuation of radiation within the patient for absolute quantification of radiotracer in renal scintigraphy studies. We show that DEW method subestimates the scatter radiation within main energy window and that result in a 11% of maximun error for the determination of true activity of a renal kidney phantom. Moreover, in order to avoid transmission scans of patients we perform a Monte Carlo simulation (MC) for the determination of scatter component of the main energy window. The results of the MC simulation was validated with experimental data of emission studies.

  9. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  10. Multiphoton imaging of renal tissues in vitro.

    PubMed

    Peti-Peterdi, János

    2005-06-01

    The highly inhomogeneous and light-scattering structure of living renal tissue makes the application of conventional imaging techniques more difficult compared with other parenchymal organs. On the other hand, key physiological processes of the kidney, such as regulation of glomerular filtration, hemodynamics, concentration, and dilution, involve complex interactions between multiple cell types and otherwise inaccessible structures that necessitate visual approaches. An ideal solution is multiphoton excitation fluorescence microscopy, a state-of-the-art imaging technique superior for deep optical sectioning of living tissue samples. Here, we review the basics and advantages of multiphoton microscopy and provide examples for its application in renal physiology using dissected cortical and medullary tissues in vitro. In combination with microperfusion techniques, the major functions of the juxtaglomerular apparatus, tubuloglomerular feedback and renin release, can be studied with high spatial and temporal resolution. Salt-dependent changes in macula densa cell volume, vasoconstriction of the afferent arteriole, and activity of an intraglomerular precapillary sphincter composed of renin granular cells are visualized in real time. Release and tissue activity of renin can be studied on the individual granule level. Imaging of the living inner medulla shows how interstitial cells interconnect cells of the vasa recta, loop of Henle, and collecting duct. In summary, multiphoton microscopy is an exciting new optical sectioning technique that has great potential for numerous future developments and is ideal for applications that require deep optical sectioning of living tissue samples.

  11. WE-D-204-07: Development of An ImageJ Plugin for Renal Function Quantification: RenalQuant

    SciTech Connect

    Marques da Silva, A; Narciso, L

    2015-06-15

    Purpose: Commercial workstations usually have their own software to calculate dynamic renal functions. However, usually they have low flexibility and subjectivity on delimiting kidney and background areas. The aim of this paper is to present a public domain software, called RenalQuant, capable to semi-automatically draw regions of interest on dynamic renal scintigraphies, extracting data and generating renal function quantification parameters. Methods: The software was developed in Java and written as an ImageJ-based plugin. The preprocessing and segmentation steps include the user’s selection of one time frame with higher activity in kidney’s region, compared with background, and low activity in the liver. Next, the chosen time frame is smoothed using a Gaussian low pass spatial filter (σ = 3) for noise reduction and better delimitation of kidneys. The maximum entropy thresholding method is used for segmentation. A background area is automatically placed below each kidney, and the user confirms if these regions are correctly segmented and positioned. Quantitative data are extracted and each renogram and relative renal function (RRF) value is calculated and displayed. Results: RenalQuant plugin was validated using retrospective 20 patients’ 99mTc-DTPA exams, and compared with results produced by commercial workstation software, referred as reference. The renograms intraclass correlation coefficients (ICC) were calculated and false-negative and false-positive RRF values were analyzed. The results showed that ICC values between RenalQuant plugin and reference software for both kidneys’ renograms were higher than 0.75, showing excellent reliability. Conclusion: Our results indicated RenalQuant plugin can be trustingly used to generate renograms, using DICOM dynamic renal scintigraphy exams as input. It is user friendly and user’s interaction occurs at a minimum level. Further studies have to investigate how to increase RRF accuracy and explore how to solve

  12. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  13. Complications of renal transplantation: evaluation with US and radionuclide imaging.

    PubMed

    Brown, E D; Chen, M Y; Wolfman, N T; Ott, D J; Watson, N E

    2000-01-01

    Following renal transplantation, patients are often evaluated with ultrasonography (US) or radionuclide imaging to assess renal function and the presence of possible complications. Both modalities are inexpensive, noninvasive, and nonnephrotoxic. A basic understanding of the surgical techniques commonly used for renal transplantation is useful when imaging these patients in order to recognize complications and to direct further imaging or intervention. The most frequent complications of renal transplantation include perinephric fluid collections; decreased renal function; and abnormalities of the vasculature, collecting system, and renal parenchyma. Perinephric fluid collections are common following transplantation, and their clinical significance depends on the type, location, size, and growth of the fluid collection, features that are well-evaluated with US. Causes of diminished renal function include acute tubular necrosis, rejection, and toxicity from medications. Radionuclide imaging is the most useful modality for assessing renal function. Vascular complications of transplantation include occlusion or stenosis of the arterial or venous supply, arteriovenous fistulas, and pseudoaneurysms. Although the standard for evaluating these vascular complications is angiography, US is an excellent noninvasive method for screening. Other transplant complications such as abnormalities of the collecting system and renal parenchyma are well-evaluated with both radionuclide imaging and US.

  14. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation.

  15. Glomerular filtration rate measured by 99mTc‐DTPA renal dynamic imaging is significantly lower than that estimated by the CKD‐EPI equation in horseshoe kidney patients

    PubMed Central

    Qi, Yan; Hu, Panpan; Wei, Kai; Jin, Meiling; Ma, Guangyu; Li, Qinggang; Xu, Baixuan; Chen, Xiangmei

    2016-01-01

    Abstract Aim Gate's glomerular filtration rate (gGFR) measured by 99mTc‐DTPA renal dynamic imaging and estimated GFR (eGFR) estimated by the Chronic Kidney Disease Epidemiology Collaboration (CKD‐EPI) equation are two indexes used to evaluate renal function. However, little is known about whether gGFR can be used to accurately assess renal function in horseshoe kidney (HSK) patients with renal fusion anomalies. Methods Nineteen HSK patients (HSK group) diagnosed by renal imaging and 38 CKD patients with “normal kidney shape” (non‐HSK group) matched to the HSK patients in terms of gender, age and biochemical indicators at Chinese PLA General Hospital were enrolled in this study. Gender, age, serum total protein (TP), albumin (ALB), blood urea nitrogen (BUN), serum creatinine (Scr), gGFR and eGFR were recorded and analyzed using χ2 test, t‐test, and Wilcoxon test which was presented as median(IQR). Results (1) There were no significant differences in gender, age, TP, ALB, BUN, Scr, or eGFR between these two groups. (2) In HSK patients, the renogram showed abnormal renal axis with the lower poles orientated medially. The timed uptake curve showed that the isotope excretion in the HSK group was slower than that in the non‐HSK group. (3) For all HSK patients, gGFR was significantly lower than eGFR (range –12.52 mL/min per 1.73m2 to –93.18 mL/min per 1.73m2). There was no significant difference in eGFR between the HSK [96.42 (36.02) mL/min per 1.73 m2] and non‐HSK groups [94.46 (33.00) mL/min per 1.73 m2]. The gGFR of the HSK group [41.18 (16.60) mL/min per 1.73m2] was much lower than that of the non‐HSK group [86.42(26.40) mL/min per 1.73m2, P < 0.001] and the eGFR of the HSK group (P < 0.001). The gGFR and eGFR of the non‐HSK group were not significantly different. Conclusion gGFR measured by 99mTc‐DTPA renal dynamic imaging is significantly lower than eGFR estimated by the CKD‐EPI equation, which indicates that

  16. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  17. Use of radionuclide renal imaging for clinical followup after extracorporeal shock wave lithotripsy of renal stones.

    PubMed

    Michaels, E K; Pavel, D G; Orellana, P; Montes, A; Olea, E

    1992-09-01

    Patients treated by extracorporeal shock wave lithotripsy (ESWL) are usually evaluated by excretory urography within 1 month after treatment to determine the clearance of stone debris and rule out asymptomatic obstruction. In an attempt to obtain more precise functional information, we used 99mtechnetium-diethylenetriaminepentaacetic acid and 131iodine-hippurate radionuclide renal imaging studies, and a plain abdominal radiograph as the initial followup study after ESWL of 64 kidneys in 55 patients. Of 53 kidneys studied within 60 days after ESWL 42 had abnormal radionuclide renal imaging studies demonstrating pelviocaliceal stasis, excretory delay or poor function, 8 of which required subsequent interventions for obstructing stone debris. Five patients had excretory delay after ESWL that was unexpected based on a pre-ESWL excretory urogram showing normal function without dilation. A subset of 23 patients with large stone burden or anatomical deformity from a prior operation had baseline radionuclide renal imaging studies before ESWL; function improved in 4 and worsened in 5 by radionuclide renal imaging studies after completion of treatment. A total of 19 patients had radionuclide renal imaging studies earlier (within 17 days) after ESWL because of poor function and/or large stone burden, and as expected they had evidence of obstruction from stone debris, which necessitated further followup. Our experience suggests that followup of ESWL by radionuclide renal imaging studies provides specific functional information that is of particular value in the management of patients with obstructing stone debris and/or diminished renal function. Radionuclide renal imaging studies may also reveal unsuspected obstruction or functional impairment after ESWL of uncomplicated stones, and is recommended as routine followup after ESWL.

  18. Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma

    PubMed Central

    Wu, Yan; Kwon, Young Suk; Labib, Mina; Foran, David J.; Singer, Eric A.

    2015-01-01

    As the most common neoplasm arising from the kidney, renal cell carcinoma (RCC) continues to have a significant impact on global health. Conventional cross-sectional imaging has always served an important role in the staging of RCC. However, with recent advances in imaging techniques and postprocessing analysis, magnetic resonance imaging (MRI) now has the capability to function as a diagnostic, therapeutic, and prognostic biomarker for RCC. For this narrative literature review, a PubMed search was conducted to collect the most relevant and impactful studies from our perspectives as urologic oncologists, radiologists, and computational imaging specialists. We seek to cover advanced MR imaging and image analysis techniques that may improve the management of patients with small renal mass or metastatic renal cell carcinoma. PMID:26609190

  19. Renal masses in children. An integrated imaging approach to diagnosis

    SciTech Connect

    Wolfson, B.J.; Gainey, M.A.; Faerber, E.N.; Capitanio, M.A.

    1985-11-01

    In view of the continuing technologic advancements in the development and availability of diagnostic imaging modalities, it is appropriate to assess periodically the currently accepted approaches to the evaluation of renal masses in children. The roles, advantages, and disadvantages of plain film, intravenous urography, ultrasonography, radionuclide scintigraphy, computed tomography, angiography, and magnetic resonance imaging in the approach to the evaluation of renal masses in children are discussed. An integrated imaging approach that provides the most accurate and necessary information for diagnosis and treatment is recommended. 70 references.

  20. [Imaging evaluation of renal function: principles and limitations].

    PubMed

    Vivier, P-H; Dolores, M; Le Cloirec, J; Beurdeley, M; Liard, A; Elbaz, F; Roset, J-B; Dacher, J-N

    2011-04-01

    The kidney performs multiple functions. Glomerular filtration is the most studied of these functions. In clinical practice, the surgical indication for patients with unilateral uropathy is frequently based on the split renal function as demonstrated by scintigraphy. MRI is not yet validated as a technique but nonetheless offers an interesting non-radiating alternative to achieve both morphological and functional renal evaluation. Recent pulse sequences such as diffusion, arterial spin labeling, and blood oxygenation dependent imaging may also provide additional information. CT and US remain of limited value for the evaluation of renal function.

  1. /sup 97/Ru-DMSA for delayed renal imaging. [Dogs

    SciTech Connect

    Oster, Z.H.; Som, P.; Gil, M.C.; Goldman, A.G.; Fairchild, R.G.; Meinken, G.E.; Srivastava, S.C.; Atkins, H.L.; Richards, P.; Brill, A.B.

    1981-01-01

    Dimercaptosuccinic acid (DMSA) was labeled with /sup 97/Ru both with and without the addition of SnCl.2H/sub 2/O. The tin-containing preparation was found to induce higher cortical deposition of /sup 97/Ru-DMSA than the tin-free preparation. Visualization of the renal cortex was excellent 4 to 48 hours after injection in normal dogs with renal insufficiency. It is concluded that /sup 97/Ru-(Sn+/sup 2/)-DMSA is a potentially useful renal imaging agent when delayed scintigraphy is necessary because of decompensaton of the kidneys.

  2. /sup 97/Ru-DMSA for delayed renal imaging

    SciTech Connect

    Oster, Z.H.; Som, P.; Gil, M.C.

    1981-10-01

    Dimercaptosuccinic acid (DMSA) was labeled with /sup 97/Ru both with and without the addition of SnCl-2H/sub 2/O. The tin-containing preparation was found to induce higher cortical deposition of /sup 97/Ru-DMSA than the tin-free preparation. Visualization of the renal cortex was excellent 4 to 48 hours after injection in normal dogs and in dogs with renal insufficiency. It is concluded that /sup 97/Ru-(SN/sup 2 +/)-DMSA is a potentially useful renal imaging agent when delayed scintigraphy is necessary because of decompensation of the kidneys.

  3. Functional renal imaging: new trends in radiology and nuclear medicine.

    PubMed

    Durand, Emmanuel; Chaumet-Riffaud, Philippe; Grenier, Nicolas

    2011-01-01

    The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging.

  4. Appraisal of lupus nephritis by renal imaging with gallium-67

    SciTech Connect

    Bakir, A.A.; Lopez-Majano, V.; Hryhorczuk, D.O.; Rhee, H.L.; Dunea, G.

    1985-08-01

    To assess the activity of lupus nephritis, 43 patients with systemic lupus erythematosus (SLE) were studied by gallium imaging. Delayed renal visualization 48 hours after the gallium injection, a positive result, was noted in 25 of 48 scans. Active renal disease was defined by the presence of hematuria, pyuria (10 or more red blood cells or white blood cells per high-power field), proteinuria (1 g or more per 24 hours), a rising serum creatinine level, or a recent biopsy specimen showing proliferative and/or necrotizing lesions involving more than 20 percent of glomeruli. Renal disease was active in 18 instances, inactive in 23, and undetermined in seven (a total of 48 scans). Sixteen of the 18 scans (89 percent) in patients with active renal disease showed positive findings, as compared with only four of 23 scans (17 percent) in patients with inactive renal disease (p less than 0.001). Patients with positive scanning results had a higher rate of hypertension (p = 0.02), nephrotic proteinuria (p = 0.01), and progressive renal failure (p = 0.02). Mild mesangial nephritis (World Health Organization classes I and II) was noted only in the patients with negative scanning results (p = 0.02) who, however, showed a higher incidence of severe extrarenal SLE (p = 0.04). It is concluded that gallium imaging is a useful tool in evaluating the activity of lupus nephritis.

  5. Dynamic Radiographic Imaging

    SciTech Connect

    Volkov, A.; Turley, D.; Veeser, L.; Lukyanov, N.; Yegorov, N.; Baker, S.A.; Mirenko, V.; Lewis, W.; Kuropatkin, Y.

    1999-06-01

    A radiographic system recently developed by American and Russian collaborators is designed to capture multiple images of a dynamic event lasting less than 10 microseconds. Various optical and electro-optical components were considered and their performance compared. The final system employed a solid crystal of lutetium oxyorthosilicate doped with cerium (LSO:Ce or LSO) for X-ray-to-light conversion with a coherent fiber optic bundle to relay the scintillator image to a streak camera with charge coupled device (CCD) readout. Resolution and sensitivity studies were carried out for this system on two different sources of X-rays: a 20 MeV microtron and a 70 MeV betatron.

  6. Image diagnosis of parathyroid glands in chronic renal failure

    SciTech Connect

    Takagi, H.; Tominaga, Y.; Uchida, K.; Yamada, N.; Morimoto, T.; Yasue, M.

    1983-07-01

    Twenty-two out of 31 patients with chronic renal failure and secondary hyperparathyroidism who underwent parathyroidectomy before operation underwent non-invasive image diagnosis of parathyroid glands by computed tomography (CT), scintigraphy with /sup 201/TlCl and /sup 99m/TcO/sup 4 +/, and/or ultrasonography. CT visualized 39 of 45 parathyroid glands (86.7%), weighing more than 500 mg. Scintigraphy with a subtraction method using a computer performed the diagnosis in 19 of 27 glands (70.4%). Ultrasonography detected 21 of 27 glands (77.8%). Image diagnosis was also useful in the postoperative follow-up study. The non-invasive image diagnosis of parathyroid glands in patients with chronic renal failure is thus valuable for 1) definite diagnosis of secondary hyperparathyroidism, 2) localization, and 3) diagnosis for effectiveness of conservative treatment.

  7. Quantitative imaging of basic functions in renal (patho)physiology.

    PubMed

    Kang, Jung Julie; Toma, Ildiko; Sipos, Arnold; McCulloch, Fiona; Peti-Peterdi, Janos

    2006-08-01

    Multiphoton fluorescence microscopy offers the advantages of deep optical sectioning of living tissue with minimal phototoxicity and high optical resolution. More importantly, dynamic processes and multiple functions of an intact organ can be visualized in real time using noninvasive methods, and quantified. These studies aimed to extend existing methods of multiphoton fluorescence imaging to directly observe and quantify basic physiological parameters of the kidney including glomerular filtration rate (GFR) and permeability, blood flow, urinary concentration/dilution, renin content and release, as well as more integrated and complex functions like the tubuloglomerular feedback (TGF)-mediated oscillations in glomerular filtration and tubular flow. Streptozotocin-induced diabetes significantly increased single-nephron GFR (SNGFR) from 32.4 +/- 0.4 to 59.5 +/- 2.5 nl/min and glomerular permeability to a 70-kDa fluorophore approximately eightfold. The loop diuretic furosemide 2-fold diluted and increased approximately 10-fold the volume of distal tubular fluid, while also causing the release of 20% of juxtaglomerular renin content. Significantly higher speeds of individual red blood cells were measured in intraglomerular capillaries (16.7 +/- 0.4 mm/s) compared with peritubular vessels (4.7 +/- 0.2 mm/s). Regular periods of glomerular contraction-relaxation were observed, resulting in oscillations of filtration and tubular flow rate. Oscillations in proximal and distal tubular flow showed similar cycle times ( approximately 45 s) to glomerular filtration, with a delay of approximately 5-10 and 25-30 s, respectively. These innovative technologies provide the most complex, immediate, and dynamic portrayal of renal function, clearly depicting the components and mechanisms involved in normal physiology and pathophysiology.

  8. Imaging regional renal function parameters using radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Qiao, Yi

    A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney

  9. DIDA - Dynamic Image Disparity Analysis.

    DTIC Science & Technology

    1982-12-31

    Understanding, Dynamic Image Analysis , Disparity Analysis, Optical Flow, Real-Time Processing ___ 20. ABSTRACT (Continue on revere side If necessary aid identify...three aspects of dynamic image analysis must be studied: effectiveness, generality, and efficiency. In addition, efforts must be made to understand the...environment. A better understanding of the need for these Limiting constraints is required. Efficiency is obviously important if dynamic image analysis is

  10. Diffusion-weighted magnetic resonance imaging in cystic renal masses

    PubMed Central

    Balyemez, Fikret; Aslan, Ahmet; Inan, Ibrahim; Ayaz, Ercan; Karagöz, Vildan; Özkanli, Sıdıka Şeyma; Acar, Murat

    2017-01-01

    Introduction: We aimed to introduce the diagnostic value of diffusion-weighted (DWI) magnetic resonance imaging (MRI) for distinguishing benign and malignant renal cystic masses. Methods: Abdominal DWI-MRIs of patients with Bosniak categories 2F, 3, and 4 cystic renal masses were evaluated retrospectively. Cystic masses were assigned as benign or malignant according to histopathological or followup MRI findings and compared with apparent diffusion coefficient (ADC) values. Results: There were 30 patients (18 males and 12 females, mean age was 59.23 ± 12.08 years [range 38–83 years]) with cystic renal masses (eight Bosniak category 2F, 12 Bosniak category 3, 10 Bosniak category 4). Among them, 14 cysts were diagnosed as benign and 16 as malignant by followup imaging or histopathological findings. For the malignant lesions, the mean ADC values were lower than for benign lesions (p=0.001). An ADC value of ≤2.28 ×10−6 mm2/s or less had a sensitivity of 75% and a specificity of 92.86% for detecting malignancy. Conclusions: ADC can improve the diagnostic performance of MRI in the evaluation of complex renal cysts when used together with conventional MRI sequences. PMID:28163806

  11. Atherosclerotic renal artery stenosis in the post-CORAL era part 1: the renal penumbra concept and next-generation functional diagnostic imaging.

    PubMed

    Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet

    2016-04-01

    After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion.

  12. Survey on the Use of Nuclear Renal Imaging in the United States.

    PubMed

    Archer, Kelly D; Bolus, Norman E

    2016-12-01

    Throughout the years, the role of nuclear medicine departments in the care of renal patients has changed as a result of technologic advancements and other factors. This study evaluated the current role of nuclear renal imaging.

  13. Renal cell carcinoma: histological classification and correlation with imaging findings.

    PubMed

    Muglia, Valdair F; Prando, Adilson

    2015-01-01

    Renal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes.

  14. A new fluorescent imaging of renal inflammation with RCP.

    PubMed

    Nakamura, Kentaro; Tabata, Yasuhiko

    2010-12-20

    The objective of this study is to design a fluorescent imaging agent with R-Gel, one of the recombinant polymers (RCP), for renal inflammation. The R-Gel based on human type I collagen has multiple Arg-Gly-Asp (RGD) motifs which are ligands for some types of integrin receptors on the cell surface. After intravenous administration of R-Gel labeled by Cy7 of a fluorescent dye to three animal models of nephritis mousse, interstitial nephritis (by using UUO model mice), glomerulonephritis (HIGA mice), and ischemia-reperfusion injured kidney (I/R mice), the extent of fluorescent imaging at the renal inflammation was assessed. The Cy7-labeled R-Gel was accumulated in the inflammation site to a significantly greater extent than in the normal one at 24h after administration. The renal pattern of fluorescent imaging was similar to that of administration anti-Mac1 antibody. Taken together, it is conceivable that the R-Gel was targeted to macrophages infiltrated into the inflammation site of kidney.

  15. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  16. Imaging-based diagnosis of acute renal allograft rejection

    PubMed Central

    Thölking, Gerold; Schuette-Nuetgen, Katharina; Kentrup, Dominik; Pawelski, Helga; Reuter, Stefan

    2016-01-01

    Kidney transplantation is the best available treatment for patients with end stage renal disease. Despite the introduction of effective immunosuppressant drugs, episodes of acute allograft rejection still endanger graft survival. Since efficient treatment of acute rejection is available, rapid diagnosis of this reversible graft injury is essential. For diagnosis of rejection, invasive core needle biopsy of the graft is the “gold-standard”. However, biopsy carries the risk of significant graft injury and is not immediately feasible in patients taking anticoagulants. Therefore, a non-invasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review current imaging-based state of the art approaches for non-invasive diagnostics of acute renal transplant rejection. We especially focus on new positron emission tomography-based as well as targeted ultrasound-based methods. PMID:27011915

  17. Renal Graft Fibrosis and Inflammation Quantification by an Automated Fourier-Transform Infrared Imaging Technique.

    PubMed

    Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-08-01

    Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice.

  18. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  19. Dynamic granularity of imaging systems

    DOE PAGES

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  20. Glomerular Dynamic Studies of the Pathogenesis of Acute Renal Failure.

    DTIC Science & Technology

    1984-06-30

    IAD-A174 113 GLOMERULAR DYNAMIC STUDIES OF THE PATHOGENESIS OF ANOTE 1/1 RENAL FAILURE(U) VIRGINIA COMNWEALTH UNIV RICHMOND I D E OKEN 3e JUN 84...8217i1 . d /or 1 Special June 30, 1984 Supported by U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012 Contract...values might be underestimated by tubular inulin leakage if measured in the customary fashion.) Nephron filtration fraction was estimated from the

  1. Dynamics of renal electrolyte excretion in growing mice.

    PubMed

    Schmidt, Katharina; Ripper, Maria; Tegtmeier, Ines; Humberg, Evelyn; Sterner, Christina; Reichold, Markus; Warth, Richard; Bandulik, Sascha

    2013-01-01

    Genetically modified mice represent important models for elucidating renal pathophysiology, but gene deletions frequently cause severe failure to thrive. In such cases, the analysis of the phenotype is often limited to the first weeks of life when renal excretory function undergoes dramatic physiological changes. Here, we investigated the postnatal dynamics of urinary ion excretion in mice. The profiles of urinary electrolyte excretion of mice were examined from birth until after weaning using an automated ion chromatography system. Postnatally, mice grew about 0.4 g/day, except during two phases with slower weight gain: (i) directly after birth during adaptation to extrauterine conditions (P0-P2) and (ii) during the weaning period (P15-P21), when nutrition changed from mother's milk to solid chow and water. During the first 3 days after birth, remarkable changes in urinary Na(+), Ca(2+), Mg(2+), and phosphate concentrations occurred, whereas K(+) and Cl(-) concentrations hardly changed. From days 4-14 after birth, Na(+), Ca(2+), Mg(2+), K(+), and Cl(-) concentrations remained relatively stable at low levels. Urinary concentrations of creatinine, NH4(+), phosphate, and sulfate constantly increased from birth until after weaning. Profiles of salt excretion in KCNJ10(-/-) mice exemplified the relevance of age-dependent analysis of urinary excretion. In conclusion, the most critical phases for analysis of renal ion excretion during the first weeks of life are directly after birth and during the weaning period. The age dependence of urinary excretion varies for the different ions. This should be taken into consideration when the renal phenotype of mice is investigated during the first weeks of life.

  2. Comparison of magnetic resonance imaging and radionuclide imaging in the evaluation of renal transplant failure

    SciTech Connect

    Goldsmith, M.S.; Tanasescu, D.E.; Waxman, A.D.; Crues, J.V. III

    1988-04-01

    Magnetic resonance imaging (MRI) was compared with radionuclide scintigraphy (RNS) in 16 patients with renal transplants undergoing renal failure to determine which modality could best discriminate between rejection, acute tubular necrosis (ATN), and cyclosporin nephrotoxicity (CN). Although all rejecting transplants had reduced corticomedullary differentiation (CMD) on T1-weighted MR images, four of five cases of ATN had appearances that could not be distinguished from rejection. A normal CMD suggests nonrejection, but diminished CMD is nonspecific. Tc-99m DTPA/I-131 hippuran RNS was superior to MRI in differentiating rejection from ATN. Although ATN and CN have similar RNS patterns, this distinction can usually be made based on the clinical time course. Other potential uses of MRI in the evaluation of the renal transplants are discussed.

  3. Detection of urinary extravasation by delayed technetium-99m DTPA renal imaging

    SciTech Connect

    Taki, J.; Tonami, N.; Aburano, T.; Hisada, K.

    1986-08-01

    Delayed imaging with Tc-99m DTPA renal scintigraphy demonstrated urinary extravasation in a patient with acute anuria in whom early sequential imaging showed no abnormal extrarenal radionuclide accumulation.

  4. Value of obtaining renal images following brain scintigraphy with technetium-99m glucoheptonate

    SciTech Connect

    Moreno, A.J.; Rodriguez, A.A.; Spicer, M.J.; Jackson, R.E.; Byrd, B.F.; Turnbull, G.L.

    1986-08-01

    The value of adding an extra view of the kidneys immediately following brain imaging with Tc-99m glucoheptonate was investigated in a two-year retrospective study at our institution. Between October 1982 and October 1984, 561 individuals underwent Tc-99m glucoheptonate brain imaging with the added renal view. Twenty-nine of these individuals (5.2%) demonstrated renal abnormalities. The abnormal renal findings were clinically correlated in 24 of these persons. Sixteen (67%) of these 24 individuals were unaware of any renal abnormality. Useful information can be obtained from renal images incidental to brain imaging at no added expense or radiation exposure to the patient, and at a minimal cost in time to the imaging clinic.

  5. Image-based retrieval system and computer-aided diagnosis system for renal cortical scintigraphy images

    NASA Astrophysics Data System (ADS)

    Mumcuoğlu, Erkan; Nar, Fatih; Uğur, Omer; Bozkurt, M. Fani; Aslan, Mehmet

    2008-03-01

    Cortical renal (kidney) scintigraphy images are 2D images (256x256) acquired in three projection angles (posterior, right-posterior-oblique and left-posterior-oblique). These images are used by nuclear medicine specialists to examine the functional morphology of kidney parenchyma. The main visual features examined in reading the images are: size, location, shape and activity distribution (pixel intensity distribution within the boundary of each kidney). Among the above features, activity distribution (in finding scars if any) was found to have the least interobserver reproducibility. Therefore, in this study, we developed an image-based retrieval (IBR) and a computer-based diagnosis (CAD) system, focused on this feature in particular. The developed IBR and CAD algorithms start with automatic segmentation, boundary and landmark detection. Then, shape and activity distribution features are computed. Activity distribution feature is obtained using the acquired image and image set statistics of the normal patients. Active Shape Model (ASM) technique is used for more accurate kidney segmentation. In the training step of ASM, normal patient images are used. Retrieval performance is evaluated by calculating precision and recall. CAD performance is evaluated by specificity and sensitivity. To our knowledge, this paper is the first IBR or CAD system reported in the literature on renal cortical scintigraphy images.

  6. Renal nuclear imaging and analysis in pediatric patients.

    PubMed

    Ash, J M; Gilday, D L

    1980-06-01

    Because a renal scan reflects the physiologic configuration and function of the kidney, it provides information that cannot be obtained with conventional intravenous pyelography. It is particularly useful in children with hydronephrosis, vesicoureteral reflux, chronic pyelonephritis, and congenital renal anomalies.

  7. Imaging the clear cell renal cell carcinoma proteome

    PubMed Central

    Morgan, Todd M.; Seeley, Erin H.; Fadare, Oluwole; Caprioli, Richard M.; Clark, Peter E.

    2012-01-01

    Introduction A key barrier to identification of tissue biomarkers of clear cell renal cell carcinoma (ccRCC) is the heterogeneity of protein expression within tissue. However, by providing spectra for every 0.05 mm2 area of tissue, imaging mass spectrometry (IMS) reveals the spatial distribution of peptides. We sought to determine whether this approach could be used to identify and map protein signatures of ccRCC. Methods We constructed two tissue microarrays (TMA) with two cores each of matched tumor and normal tissue from nephrectomy specimens of 70 patients with ccRCC. Samples were analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (MS). Peptide signatures were identified within each TMA that differentiated cancer from normal tissue and then cross-validated. MS/MS sequencing was performed to determine identities of select differentially expressed peptides, and immunohistochemistry was used for validation. Results Peptide signatures were identified that demonstrated a classification accuracy within each TMA of 94.7–98.5% for each 0.05mm2 spot (spectrum) and 96.9–100% for each tissue core. Cross-validation across TMA's revealed classification accuracies of 82.6–84.7% for each spot and 88.9–92.4% for each core. We identified vimentin, histone 2A.X, and alpha-enolase as proteins with greater expression in cancer tissue, and validated this by immunohistochemistry. Conclusions IMS was able to identify and map specific peptides that accurately distinguished malignant from normal renal tissue, demonstrating its potential as a novel, high-throughput approach to ccRCC biomarker discovery. Given the multiple pathways and known heterogeneity involved in tumors such as ccRCC, multiple peptide signatures that maintain their spatial relationships may outperform traditional protein biomarkers. PMID:23009866

  8. Renal relevant radiology: radiologic imaging in autosomal dominant polycystic kidney disease.

    PubMed

    Rahbari-Oskoui, Frederic; Mittal, Ankush; Mittal, Pardeep; Chapman, Arlene

    2014-02-01

    Autosomal-dominant polycystic kidney disease is a systemic disorder and the most common hereditary renal disease, which is characterized by cyst growth, progressive renal enlargement, and development of renal failure. The cystic nature of autosomal dominant polycystic kidney disease and its renal and extrarenal complications (kidney stones, cyst hemorrhage, intracerebral aneurysm, liver cysts, cardiac valve abnormalities, etc.) give radiologic imaging studies a central role in the management of these patients. This article reviews the indications, comparative use, and limitation of various imaging modalities (ultrasonography, magnetic resonance imaging, computerized tomography scan, Positron emission tomography scan, and renal scintigraphy) for the diagnosis and management of complications in autosomal dominant polycystic kidney disease. Finally, this work provides evidence for the value of total kidney volume to predict disease progression in autosomal dominant polycystic kidney disease.

  9. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2016-07-12

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  10. Dynamic imaging with electron microscopy

    SciTech Connect

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-02-20

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  11. Immediate renal imaging and renography with /sup 99m/Tc methylene diphosphonate to assess renal blood flow, excretory function, and anatomy

    SciTech Connect

    Glass, E.C.; DeNardo, G.L.; Hines, H.H.

    1980-04-01

    /sup 99m/Tc methylene diphosphonate (/sup 99m/Tc MDP) was evaluated as a clinical renal imaging agent in 20 patients referred for bone scintigraphy. Sequential scintigraphy, which was started immediately after injection, yielded blood flow studies of high quality, and subsequent images accurately delineated renal anatomy and excretion in nonazotemic patients. In comparison with delayed images, early images were vastly superior in quality and demonstrated improved target-to-nontarget activity ratios (p < 0.001) and improved lesion detectability (p < 0.01). Renal imaging performed incidental to bone scintigraphy with MDP can be greatly enhanced by initiating sequential scintigraphy immediately after injection.

  12. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  13. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits.

  14. Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences

    PubMed Central

    2016-01-01

    We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors. PMID:27631007

  15. Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer.

    PubMed

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2011-11-01

    Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis.

  16. Prognostic value of intravenous dipyridamole thallium imaging in patients with diabetes mellitus considered for renal transplantation

    SciTech Connect

    Camp, A.D.; Garvin, P.J.; Hoff, J.; Marsh, J.; Byers, S.L.; Chaitman, B.R. )

    1990-06-15

    Patients with diabetes and end-stage renal failure are known to have a high risk for cardiac morbidity and mortality associated with renal transplantation. The most efficient method to determine preoperative cardiac risk has not been established. To determine the effectiveness of intravenous dipyridamole thallium imaging in predicting cardiac events, 40 diabetic renal transplant candidates were studied preoperatively in a prospective trial. The study group consisted of 40 patients whose average age was 42 years (range 27 to 64); 34 (85%) were hypertensive and 21 (53%) were cigarette smokers. Cardiac history included chest pain in 6 patients and prior myocardial infarction in 3 patients. Dipyridamole thallium imaging showed reversible defects in 9 patients, fixed defects in 8 patients and normal scans in 23 patients. Dipyridamole thallium imaging was performed using 0.56 mg/kg of dipyridamole infused intravenously over 4 minutes. Cardiac events occurred only in patients with reversible thallium defects, of which there were 6. Of these 6 patients, 3 had cardiac events before transplantation and 3 had them in the early postoperative phase (within 6 weeks of surgery). Of 21 patients who underwent renal transplantation, 3 had cardiac events within 6 weeks of transplantation. The average duration of follow-up was 11 months (range 1 to 21). Thus, dipyridamole thallium imaging is an effective method of identifying renal transplant candidates likely to develop cardiac complications. Routine coronary angiography may not be necessary to screen all renal transplant candidates for coronary artery disease before surgery.

  17. Advantage of indium-111 leukocytes over ultrasound in imaging an infected renal cyst

    SciTech Connect

    Fortner, A.; Taylor, A. Jr.; Alazraki, N.; Datz, F.L.

    1986-07-01

    Indium-111-labeled leukocyte scanning is a highly sensitive and specific method of detecting abscesses. This report describes a patient with polycystic kidneys and a single infected cyst. Ultrasound could not determine which cyst was infected, but the infected cyst could be localized by (/sup 111/In)leukocyte imaging in conjunction with a (/sup 99m/Tc)DMSA renal scan. The two radionuclide studies were used to identify an infected renal cyst and direct ultrasound guided aspiration.

  18. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury.

    PubMed

    Roberts, John; Chen, Bo; Curtis, Lisa M; Agarwal, Anupam; Sanders, Paul W; Zinn, Kurt R

    2007-10-01

    Accurate determination of renal function in mice is a major impediment to the use of murine models in acute kidney injury. The purpose of this study was to determine whether early changes in renal function could be detected using dynamic gamma camera imaging in a mouse model of ischemia-reperfusion (I/R) injury. C57BL/6 mice (n = 5/group) underwent a right nephrectomy, followed by either 30 min of I/R injury or sham surgery of the remaining kidney. Dynamic renal studies (21 min, 10 s/frame) were conducted before surgery (baseline) and at 5, 24, and 48 h by injection of (99m)Tc-mercaptoacetyltriglycine (MAG3; approximately 1.0 mCi/mouse) via the tail vein. The percentage of injected dose (%ID) in the kidney was calculated for each 10-s interval after MAG3 injection, using standard region of interest analyses. A defect in renal function in I/R-treated mice was detected as early as 5 h after surgery compared with sham-treated mice, identified by the increased %ID (at peak) in the I/R-treated kidneys at 100 s (P < 0.01) that remained significantly higher than sham-treated mice for the duration of the scan until 600 s (P < 0.05). At 48 h, the renal scan demonstrated functional renal recovery of the I/R mice and was comparable to sham-treated mice. Our study shows that using dynamic imaging, renal dysfunction can be detected and quantified reliably as early as 5 h after I/R insult, allowing for evaluation of early treatment interventions.

  19. Renal uptake of Tl-201 in hypertensive patients undergoing myocardial perfusion imaging

    SciTech Connect

    Hurwitz, G.A.; Mattar, A.G.; Bhargava, R.; Driedger, A.A.; Hogendoorn, P.; Wesolowski, C.A. )

    1990-02-01

    The detection of renovascular disease (RVD) has particular relevance in hypertensive patients (HP) who have symptoms of target organ damage. To evaluate the possibility of RVD in HP undergoing myocardial perfusion scintigraphy for chest pain symptoms, posterior renal images were obtained at 1-3 hours after Tl-201 injection. Analog and computer images were obtained for 5 minutes in 45 HP; 12 patients with no history of hypertension or renal disease served as normal controls. For qualitative analysis, images were coded and read by three observers as to symmetry of renal uptake. Differential renal uptake of Tl-201 (DRU) was quantitated on computer images. In normal controls, uptake was agreed on as symmetric. In HP, 6 patients had marked asymmetry of DRU and 4 had possibly significant asymmetry; 2 had decreased uptake in both kidneys suggesting bilateral RVD or nephrosclerosis. Objective correlation with DRU was obtained in 10 HP who had contrast angiography, confirming 4 cases of unilateral RVD and 2 of bilateral RVD. Thirteen patients also had renography with Tc-99m DTPA; differential renal function by this modality correlated well with DRU of Tl-201 (r = 0.98). Thus, DRU of Tl-201 can be used as a supplement to myocardial scintigraphy to identify HP who require further evaluation and treatment of RVD.

  20. Renal tubular receptor imaging with iodine-131-labeled peanut lectin: pharmacokinetics and renal clearance mechanism in animals

    SciTech Connect

    Boniface, G.R.; Suresh, M.R.; Willans, D.J.; Tam, Y.K.; Shysh, A.; Longenecker, B.M.; Noujaim, A.A.

    1986-05-01

    Intravenously administered peanut lectin (PNA), iodinated with /sup 131/I ((/sup 131/I)PNA), is rapidly cleared from the plasma by the kidneys in dogs (clearance (total body) = 17.52 +/- 8.74 ml/min). Dynamic gamma camera renal scintigraphy demonstrated renal accumulation and excretion phases of the (/sup 131/I)PNA renogram in dogs and rabbits (% injection dose-at-peak = 21.8 +/- 3.3% and 19.6 +/- 4.3%, time-to-peak = 44.6 +/- 4.8 min and 37.2 +/- 6.9 min, respectively). Immunoperoxidase staining of kidney sections, following i.v. administered PNA, demonstrated predominant accumulation by the proximal tubules of mice, rabbits, and dogs. The basement membrane was intensely stained at early times p.i. while intracellular and luminal PNA was evident within 1 hr. Urine analysis confirmed the presence of intact (/sup 131/I)PNA in the bladder contents, while protein degradation products, and a small percentage of the free iodide (less than 5%) were noted within 1 hr p.i. The relative proportion of free iodide increased at later times p.i. (greater than 6 hr). A receptor mediated excretion mechanism is proposed for the clearance of PNA and may be useful for the study of renal tubular function.

  1. Technetium-99m pyrophosphate imaging in acute renal failure associated with nontraumatic rhabdomyolysis

    SciTech Connect

    Patel, R.; Mishkin, F.S.

    1986-10-01

    Technetium-99m pyrophosphate (Tc-PYP) imaging was performed in five patients with acute renal failure associated with nontraumatic rhabdomyolysis. Four patients had phencyclidine intoxication and one had viral pneumonia. During the acute phase, marked uptake of pyrophosphate was seen in all patients in several muscle groups, but always in the thigh adductors. The results show that phencyclidine intoxication can result in diffuse muscle uptake of Tc-PYP without overt evidence of muscle injury. Tc-PYP imaging may provide a clue to the cause of acute renal failure in patients with suspected rhabdomyolysis in whom elevations of serum creatine phosphokinase concentrations are equivocal.

  2. Magnetic Resonance Imaging (MRI) Analysis of Ischemia/Reperfusion in Experimental Acute Renal Injury.

    PubMed

    Pohlmann, Andreas; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf

    2016-01-01

    Imbalance between renal oxygen delivery and demand in the first hours after reperfusion is suggested to be decisive in the pathophysiological chain of events leading to ischemia-induced acute kidney injury. Here we describe blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) for continuous monitoring of the deoxyhemoglobin-sensitive MR parameter T 2* in the renal cortex, outer medulla, and inner medulla of rats throughout renal ischemia/reperfusion (I/R). Changes during I/R are benchmarked against the effects of variations in the fraction of inspired oxygen (hypoxia, hyperoxia). This method may be useful for investigating renal blood oxygenation of rats in vivo under various experimental (patho)physiological conditions.

  3. Geocoronal Imaging with Dynamics Explorer

    NASA Astrophysics Data System (ADS)

    Rairden, Richard Louis

    The ultraviolet photometer of the University of Iowa spin-scan auroral imaging instrumentation on board the Dynamics Explorer-1 satellite has returned numerous images of the geocorona from altitudes of 570 km to 23,300 km. The geocoronal emissions viewed arise from the resonant scattering of solar Lyman-alpha radiation by the neutral hydrogen atoms which make up the earth's tenuous exosphere. This hydrogen exosphere extends from (TURN)500 km to greater than 80,000 km altitude, wherein the atoms travel on effectively collisionless trajectories loosely bound by the earth's gravity. In this thesis the geocoronal observations from 1981 through 1984 are compared to a spherically symmetric isothermal Chamberlain model of the exospheric density distribution. Model parameters are varied to obtain an acceptable fit. The radiative transfer equation is solved numerically for this multiple-scattering problem. Stellar intensities are monitored for inflight calibration of the DE-1 instrument. The solar Ly (alpha) flux is estimated through concurrent measurements made by the SME satellite, supplemented by published values of ground-observable solar indices. Extraterrestrial background intensities are adopted from earlier OGO-5 high-altitude measurements. The optimum fit utilizes a Chamberlain model of temperature T = 1050 K and exobase density n(,c) = 44,000 atoms cm('-3). The exobase is taken as r(,c) = 1.08 R(,E) (500 km altitude), and a satellite critical level of r(,cs) = 3.0 r(,c) is adopted. This model compares well with the DE-1 observations over the entire three years of data studied. It is concluded that the exospheric temperature does not change appreciably during this period. A definitive statement on long-term changes in the required exobase density is not made due to uncertainty in the degradation of instrument sensitivity with time. A readily observable departure from spherical symmetry is the geotail, an enhancement in the antisunward column density. Other

  4. 320-row CT renal perfusion imaging in patients with aortic dissection: A preliminary study

    PubMed Central

    Liu, Dongting; Liu, Jiayi; Wen, Zhaoying; Li, Yu; Sun, Zhonghua; Xu, Qin; Fan, Zhanming

    2017-01-01

    Objective To investigate the clinical value of renal perfusion imaging in patients with aortic dissection (AD) using 320-row computed tomography (CT), and to determine the relationship between renal CT perfusion imaging and various factors of aortic dissection. Methods Forty-three patients with AD who underwent 320-row CT renal perfusion before operation were prospectively enrolled in this study. Diagnosis of AD was confirmed by transthoracic echocardiography. Blood flow (BF) of bilateral renal perfusion was measured and analyzed. CT perfusion imaging signs of AD in relation to the type of AD, number of entry tears and the false lumen thrombus were observed and compared. Results The BF values of patients with type A AD were significantly lower than those of patients with type B AD (P = 0.004). No significant difference was found in the BF between different numbers of intimal tears (P = 0.288), but BF values were significantly higher in cases with a false lumen without thrombus and renal arteries arising from the true lumen than in those with thrombus (P = 0.036). The BF values measured between the true lumen, false lumen and overriding groups were different (P = 0.02), with the true lumen group having the highest. Also, the difference in BF values between true lumen and false lumen groups was statistically significant (P = 0.016), while no statistical significance was found in the other two groups (P > 0.05). The larger the size of intimal entry tears, the greater the BF values (P = 0.044). Conclusions This study shows a direct correlation between renal CT perfusion changes and AD, with the size, number of intimal tears, different types of AD, different renal artery origins and false lumen thrombosis, significantly affecting the perfusion values. PMID:28182709

  5. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  6. Modelling of the dynamic relationship between arterial pressure, renal sympathetic nerve activity and renal blood flow in conscious rabbits.

    PubMed

    Berger, C S; Malpas, S C

    1998-12-01

    A linear autoregressive/moving-average model was developed to describe the dynamic relationship between mean arterial pressure (MAP), renal sympathetic nerve activity (SNA) and renal blood flow (RBF) in conscious rabbits. The RBF and SNA to the same kidney were measured under resting conditions in a group of eight rabbits. Spectral analysis of the data sampled at 0.4 Hz showed that the low-pass bandwidth of the signal power for RBF was approximately 0. 05 Hz. An autoregressive/moving-average model with an exogenous input (ARMAX) was then derived (using the iterative Gauss-Newton algorithm provided by the MATLAB identification Toolbox), with MAP and SNA as inputs and RBF as output, to model the low-frequency fluctuations. The model step responses of RBF to changes in SNA and arterial pressure indicated an overdamped response with a settling time that was usually less than 2 s. Calculated residuals from the model indicated that 79 5 % (mean s.d., averaged over eight independent experiments) of the variation in RBF could be accounted for by the variations in arterial pressure and SNA. Two additional single-input models for each of the inputs were similarly obtained and showed conclusively that changes in RBF, in the conscious resting rabbit, are a function of both SNA and MAP and that the SNA signal has the predominant effect. These results indicate a strong reliance on SNA for the dynamic regulation of RBF. Such information is likely to be important in understanding the diminished renal function that occurs in a variety of disease conditions in which overactivity of the sympathetic nervous system occurs.

  7. Renal lymphoma imaged by ultrasound and Gallium-67

    SciTech Connect

    Shirkhoda, A.; Staab, E.V.; Mittelstaedt, C.A.

    1980-10-01

    Lymphomatous involvement of the kidneys, usually a secondary process, may be seen as single or multiple sonolucent or weakly echogenic masses on ultrasound. The majority of these patients have a known diagnosis of lymphoma and are being evaluated for change in nodal mass size, flank pain, and/or deteriorating renal function. Occasionally, these masses are discovered on an excretory urogram and are further investigated with ultrasound. The ultrasound findings may be confirmed with gallium scanning. Five such cases are presented along with the ultrasonic and gallium scan findings.

  8. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  9. Dynamic Programming Based Segmentation in Biomedical Imaging.

    PubMed

    Ungru, Kathrin; Jiang, Xiaoyi

    2017-01-01

    Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detection. Dynamic programming is a popular technique that satisfies these requirements in many ways. This work gives a brief overview over approaches and applications that utilize dynamic programming to solve problems in the challenging field of biomedical imaging.

  10. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.

    PubMed

    Feng, Lei; Siu, Kin; Moore, Leon C; Marsh, Donald J; Chon, Ki H

    2006-02-01

    We have developed a method that can identify switching dynamics in time series, termed the improved annealed competition of experts (IACE) algorithm. In this paper, we extend the approach and use it for detection of linear and nonlinear interactions, by employing histograms showing the frequency of switching modes obtained from the IACE, then examining time-frequency spectra. This extended approach is termed Histogram of improved annealed competition of experts-time frequency (HIACE-TF). The hypothesis is that frequent switching dynamics in HIACE-TF results are due to interactions between different dynamic components. To validate this assertion, we used both simulation examples as well as application to renal blood flow data. We compared simulation results to a time-phase bispectrum (TPB) approach, which can also be used to detect time-varying quadratic phase coupling between various components. We found that the HIACE-TF approach is more accurate than the TPB in detecting interactions, and remains accurate for signal-to-noise ratios as low as 15 dB. With all 10 data sets, comprised of volumetric renal blood flow data, we also validated the feasibility of the HIACE-TF approach in detecting nonlinear interactions between the two mechanisms responsible for renal autoregulation. Further validation of the HIACE-TF approach was achieved by comparing it to a realistic mathematical model that has the capability to generate either the presence or the absence of nonlinear interactions between two renal autoregulatory mechanisms.

  11. Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer

    PubMed Central

    Kothari, Sonal; Phan, John H.; Young, Andrew N.; Wang, May D.

    2016-01-01

    Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis PMID:28163980

  12. Mid-Term Vascular Safety of Renal Denervation Assessed by Follow-up MR Imaging

    SciTech Connect

    Schmid, Axel Schmieder, Raphael; Lell, Michael; Janka, Rolf; Veelken, Roland; Schmieder, Roland E.; Uder, Michael; Ott, Christian

    2016-03-15

    Background/AimsRenal denervation (RDN) emerged as a treatment option for reducing blood pressure (BP) in patients with treatment-resistant hypertension (TRH). However, concerns have been raised regarding the incidence of late renal artery stenosis or thromboembolism after RDN. The goal of the current study was, therefore, to conduct a prospective clinical trial on the mid-term vascular integrity of the renal arteries and the perfusion of the renal parenchyma assessed by magnetic resonance imaging (MRI) in the follow-up after catheter-based RDN.MethodsIn our single-centre investigator initiated study, 51 patients with true TRH underwent catheter-based RDN using the Symplicity Flex{sup TM} catheter (Medtronic Inc., Palo Alto, CA). Follow-up MRI was performed at a median of 11 months (interquartile range 6–18 months) after RDN on a 1.5T MR unit. High-resolution MR angiography (MRA) and MRI results were compared to the baseline digital angiography of renal arteries obtained at time of RDN. In case of uncertainties (N = 2) catheter angiography was repeated.ResultsBoth office and 24-h ambulatory BP were significantly reduced 6 and 12 months after RDN. Renal function remained unchanged 6 and 12 months after RDN. In all patients, MRA excluded new or progression of pre-existing low grade renal artery stenosis as well as focal aneurysms at the sites of radiofrequency ablation. In none of the patients new segmental perfusion deficits in either kidney were detected on MRI.ConclusionsNo vascular or parenchymal complications after radiofrequency-based RDN were detected in 51 patients followed up by MRI.

  13. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls.

    PubMed

    Toriihara, Akira; Kitazume, Yoshio; Nishida, Hidenori; Kubota, Kazunori; Nakadate, Masashi; Tateishi, Ukihide

    2015-01-01

    The whole-body 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) distribution in chronic renal failure (CRF) patients on hemodialysis would be different from that in subjects with normal renal function, because they lack urinary FDG excretion and remain in a constant volume overload. We evaluated the difference in the physiological uptake pattern of FDG between chronic renal failure patients on hemodialysis and control subjects. The subjects for this retrospective study consisted of 24 chronic renal failure patients on hemodialysis (HD group) and 24 age- and sex-matched control subjects (NC group). Standardized uptake values normalized by the body weight (SUVbw), ideal body weight (SUVibw), lean body mass (SUVlbm), and body surface area (SUVbsa) in the cerebellum, lungs, liver, gluteal muscles and subcutaneous fat, spleen, thoracolumbar spine, thoracic and abdominal aorta, and right atrium were calculated in positron emission tomography/computed tomography (PET/CT) images. SUVbw in the gluteal muscles, subcutaneous fat, spleen and right atrium was significantly higher in the HD group as compared to that in the NC group (p < 0.05; unpaired t test). In addition, SUVibm, SUVlbm, as well as SUVbsa in the abdominal aorta were significantly higher in the HD group as compared to those in the NC group (p < 0.05; unpaired t test). In conclusion, as compared to normal subjects, chronic renal failure patients on hemodialysis show significantly higher physiological FDG uptake in the soft tissues, spleen and blood pool.

  14. Magnetic resonance imaging in the diagnosis and staging of renal and perirenal neoplasms.

    PubMed

    Hricak, H; Demas, B E; Williams, R D; McNamara, M T; Hedgcock, M W; Amparo, E G; Tanagho, E A

    1985-03-01

    Thirty-one adult patients underwent magnetic resonance (MR) imaging after CT scans had demonstrated findings consistent with renal cell carcinoma. MR images were interpreted prospectively and independently of the CT findings. Because the CT scanning was performed at multiple institutions by many examiners, this study was not a direct comparison of CT versus MR. The preoperative diagnoses and staging of the neoplasms, as judged by MR, were compared with those obtained at laparotomy (n = 28), autopsy (n = 1), or biopsy (n = 2). Correct preoperative diagnoses were rendered in 31 patients (100%) on the basis of MR findings. The anatomic staging of 27 renal cell carcinomas was correctly performed by MR in 26 patients (86%). When compared with results of previous studies of the value of CT in the diagnosis and staging of renal neoplasms, MR appears to have several advantages in determination of the origin of the mass; the evaluation of vascular patency; the detection of perihilar lymph node metastases; and the evaluation of direct tumor invasion of adjacent organs. MR is sensitive in determining the extent of tumor thrombus and in evaluating invasion of the inferior vena caval wall. MR should assume an important role in the diagnosis and staging of renal neoplasms.

  15. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  16. Unfused renal ectopia: a rare form of congenital renal anomaly.

    PubMed

    Nursal, Gül Nihal; Büyükdereli, Gülgün

    2005-09-01

    Unfused crossed renal ectopia observed 1 in 75,000 autopsies is a rare congenital anomaly. Typically one kidney is located in the proximity of the other kidney, and the ureter of the anatomically anomalous kidney crosses the midline to insert to the bladder in its normal anatomic position. Although renal function is usually not affected, the condition is generally accompanied by other congenital anomalies. In this case report, static and dynamic scintigraphic images of two patients with unfused crossed renal ectopia are presented. Besides properties of imaging modalities, clinical features are discussed in light of the available literature.

  17. Renal radionuclide imaging, an evergreen forty years old.

    PubMed

    De Palma, D; Santos, A I

    2014-07-01

    Urinary tract congenital abnormalities (UCA) and febrile infections (UTI) are, respectively, 2 of the commonest congenital and acquired health problems in childhood. In both, radionuclide imaging still represent a cornerstone of diagnostic imaging, although the involved techniques are more or less the same from the early '80 s. During the last 2 decades, published papers focused on a deep revision about the optimal use and usefulness of such imaging tools in affected children, with the aim of reducing invasiveness, radiation burden and costs without losing efficacy. This approach leads to different results. In UCA, no consensus for a diagnostic algorithm was up to now reached, whilst, about febrile UTIs, guidelines were published in 2007 by the UK's National Institute for Clinical Excellence (NICE) and by the European Society of Paediatric Radiology (ESPR), in 2011 by the American Academy of Paediatrics (AAP), and in 2012 by the Italian Society of Paediatric Nephrology (SINP). Nevertheless, new data continuously arise and the scientific debate always revives. Every imaging tool now available has its own strengths and weaknesses, and so all published guidelines. All this body of knowledge must be critically analysed for obtaining a complete, up-to-date and flexible overview about these "always hot" topics.

  18. Dynamical Imaging using Spatial Nonlinearity

    DTIC Science & Technology

    2014-01-29

    829- 832. [29] H. Faulkner, J. Rodenburg, Movable Aperture Lensless Transmission Microscopy : A Novel Phase Retrieval Algorithm, Physical Review...Laser Scanning Fluorescence Microscopy , Science, 248 (1990) 73-76. [3] P.J. Campagnola, H.A. Clark, W.A. Mohler, A. Lewis, L.M. Loew, Second-harmonic...imaging microscopy of living cells, J Biomed Opt, 6 (2001) 277-286. [4] C. Barsi, J.W. Fleischer, Nonlinear Abbe theory, Nat Photonics, 7 (2013) 639

  19. Ultrasonographic imaging for structural characterization of renal affections and diagnosis of associated chronic renal failure in 10 dogs.

    PubMed

    Kumar, Vijay; Kumar, Adarsh; Varshney, A C

    2011-01-01

    The present study comprises of 10 dogs of either sex with primary indication of azotaemia. All the dogs were subjected to detailed clinical, haematobiochemical, urinalysis, and microbiological examination along with radiographical and ultrasonographical examination. Based on the ultrasonographic structural abnormalities, the different renal affections associated with CRF in majority of dogs were diagnosed. The different affections included "end-stage" kidneys (n = 4), hydronephrosis (n = 1), renomegaly (n = 1), nephritis (n = 1), nephrolithiasis (n = 1), nephrocalcinosis (n = 1), and renal cyst (n = 1). The significant ultrasonographic features in these affections included small kidneys with loss of corticomedullary demarcation ("end-stage" kidneys); increased cortical echogenicity (nephritis); dilation of the renal pelvis, separation of the central renal sinus with anechoic space, atrophy of renal medulla, (hydronephrosis); enlarged kidneys with increased overall echogenicity of renal cortex (renomegaly and associated nephritis); hyperechoic-mineralized structure with shadowing (nephrolithiasis); diffuse, small, multiple hyperechoic structures in the renal parenchyma with distal acoustic shadowing (nephrocalcinosis); small spherical intercortical anechoic structures fluid (renal cysts). In the present study, ultrasound proved to be a quick, convenient, and sensitive modality in detecting alterations in renal size and parenchymal architecture. All the dogs so diagnosed with CRF were rendered conservative medical treatment to control clinical signs of uraemia; maintain adequate fluid, electrolyte, and acid/base balance; provide adequate nutrition; minimize progression of renal failure.

  20. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    PubMed Central

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle's short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. PMID:28091604

  1. Pitfalls and Limitations of Radionuclide Renal Imaging in Pediatrics.

    PubMed

    Biassoni, Lorenzo

    2015-09-01

    The article presents common pitfalls encountered in pediatric radionuclide renography, illustrated with clinical cases. It is important to recognize normal variants. A good acquisition technique is essential. Correlation with other imaging techniques, with the clinical background and symptoms, is critical. A clear clinical question is essential: based on the question and knowing the strengths and weaknesses of each test, the test which can best answer the question can be selected. Awareness of the pitfalls of radionuclide renography helps avoid errors of interpretation and allows the selection of the most helpful test for clinical management.

  2. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    SciTech Connect

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.; Browne, Jacinta E.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed for use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast

  3. Enhanced dynamic range x-ray imaging.

    PubMed

    Haidekker, Mark A; Morrison, Logan Dain-Kelley; Sharma, Ajay; Burke, Emily

    2017-03-01

    X-ray images can suffer from excess contrast. Often, image exposure is chosen to visually optimize the region of interest, but at the expense of over- and underexposed regions elsewhere in the image. When image values are interpreted quantitatively as projected absorption, both over- and underexposure leads to the loss of quantitative information. We propose to combine multiple exposures into a composite that uses only pixels from those exposures in which they are neither under- nor overexposed. The composite image is created in analogy to visible-light high dynamic range photography. We present the mathematical framework for the recovery of absorbance from such composite images and demonstrate the method with biological and non-biological samples. We also show with an aluminum step-wedge that accurate recovery of step thickness from the absorbance values is possible, thereby highlighting the quantitative nature of the presented method. Due to the higher amount of detail encoded in an enhanced dynamic range x-ray image, we expect that the number of retaken images can be reduced, and patient exposure overall reduced. We also envision that the method can improve dual energy absorptiometry and even computed tomography by reducing the number of low-exposure ("photon-starved") projections.

  4. Dynamic metamaterial aperture for microwave imaging

    SciTech Connect

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  5. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  6. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    PubMed Central

    Borelli, Flavio Antonio de Oliveira; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R.

    2013-01-01

    Background Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. Objective To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. Methods In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). Results The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m2. Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Conclusion Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction. PMID:24061685

  7. Multimodal Imaging of Dynamic Functional Connectivity

    PubMed Central

    Tagliazucchi, Enzo; Laufs, Helmut

    2015-01-01

    The study of large-scale functional interactions in the human brain with functional magnetic resonance imaging (fMRI) extends almost to the first applications of this technology. Due to historical reasons and preconceptions about the limitations of this brain imaging method, most studies have focused on assessing connectivity over extended periods of time. It is now clear that fMRI can resolve the temporal dynamics of functional connectivity, like other faster imaging techniques such as electroencephalography and magnetoencephalography (albeit on a different temporal scale). However, the indirect nature of fMRI measurements can hinder the interpretability of the results. After briefly summarizing recent advances in the field, we discuss how the simultaneous combination of fMRI with electrophysiological activity measurements can contribute to a better understanding of dynamic functional connectivity in humans both during rest and task, wakefulness, and other brain states. PMID:25762977

  8. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  9. Imaging of hemorrhagic fever with renal syndrome: a potential bioterrorism agent of military significance.

    PubMed

    Bui-Mansfield, Liem T; Cressler, Dana K

    2011-11-01

    Hemorrhagic fever with renal syndrome (HFRS) is a potentially fatal infectious disease with worldwide distribution. Its etiologic agents are viruses of the genus Hantavirus of the virus family Bunyaviridae. Hypothetical ease of production and distribution of these agents, with their propensity to incapacitate victims and overwhelm health care resources, lend themselves as significant potential biological agents of terrorism. HFRS has protean clinical manifestations, which may mimic upper respiratory tract infection, nephrolithiasis, and Hantavirus pulmonary syndrome and may delay proper treatment. Sequelae of HFRS, such as hemorrhage, acute renal failure, retroperitoneal edema, pancreatitis, pulmonary edema, and neurologic symptoms, can be detected by different imaging modalities. Medical providers caring for HFRS patients must be aware of its radiologic features, which may help to confirm its clinical diagnosis. In this article, the authors review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and complications of HFRS.

  10. Utility of post-urinary tract infection imaging in patients with normal prenatal renal ultrasound.

    PubMed

    Sasaki, Jun; Parajuli, Nirmala; Sharma, Preeti; Nanda, Maya; Shah, Rina; Gershel, Jeffrey; Rauch, Daniel A

    2012-03-01

    The American Academy of Pediatrics recommends renal ultrasound (RUS) and voiding cystourethrography (VCUG) for all infants after a first urinary tract infection (UTI). However, many congenital renal anomalies are identified by a prenatal US. At the present time, there are no data regarding the yield of post-UTI imaging among infants who have a documented normal prenatal US. We retrospectively reviewed the charts of all patients <1 year of age with a first UTI who had normal kidneys noted on prenatal US to determine the frequency of abnormal findings. Abnormal RUS and VCUG results were noted in 5.1% (24 of 471) and 20.4% (75 of 368) of infants, respectively. While the abnormal US rate is significantly less than what has been previously reported, the frequency of abnormal VCUGs is similar. These results suggest that a post-UTI RUS may not be needed if the prenatal US was normal. However, a VCUG continues to be indicated.

  11. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optomechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  12. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optormechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  13. Spatiotemporal-atlas-based dynamic speech imaging

    NASA Astrophysics Data System (ADS)

    Fu, Maojing; Woo, Jonghye; Liang, Zhi-Pei; Sutton, Bradley P.

    2016-03-01

    Dynamic magnetic resonance imaging (DS-MRI) has been recognized as a promising method for visualizing articulatory motion of speech in scientific research and clinical applications. However, characterization of the gestural and acoustical properties of the vocal tract remains a challenging task for DS-MRI because it requires: 1) reconstructing high-quality spatiotemporal images by incorporating stronger prior knowledge; and 2) quantitatively interpreting the reconstructed images that contain great motion variability. This work presents a novel imaging method that simultaneously meets both requirements by integrating a spatiotemporal atlas into a Partial Separability (PS) model-based imaging framework. Through the use of an atlas-driven sparsity constraint, this method is capable of capturing high-quality articulatory dynamics at an imaging speed of 102 frames per second and a spatial resolution of 2.2 × 2.2 mm2. Moreover, the proposed method enables quantitative characterization of variability of speech motion, compared to the generic motion pattern across all subjects, through the spatial residual components.

  14. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy.

    PubMed

    Goya, Cemil; Kilinc, Faruk; Hamidi, Cihad; Yavuz, Alpaslan; Yildirim, Yasar; Cetincakmak, Mehmet Guli; Hattapoglu, Salih

    2015-02-01

    OBJECTIVE. The goal of this study is to evaluate the changes in the elasticity of the renal parenchyma in diabetic nephropathy using acoustic radiation force impulse imaging. SUBJECTS AND METHODS. The study included 281 healthy volunteers and 114 patients with diabetic nephropathy. In healthy volunteers, the kidney elasticity was assessed quantitatively by measuring the shear-wave velocity using acoustic radiation force impulse imaging based on age, body mass index, and sex. The changes in the renal elasticity were compared between the different stages of diabetic nephropathy and the healthy control group. RESULTS. In healthy volunteers, there was a statistically significant correlation between the shear-wave velocity values and age and sex. The shear-wave velocity values for the kidneys were 2.87, 3.14, 2.95, 2.68, and 2.55 m/s in patients with stage 1, 2, 3, 4, and 5 diabetic nephropathy, respectively, compared with 2.35 m/s for healthy control subjects. Acoustic radiation force impulse imaging was able to distinguish between the different diabetic nephropathy stages (except for stage 5) in the kidneys. The threshold value for predicting diabetic nephropathy was 2.43 m/s (sensitivity, 84.1%; specificity, 67.3%; positive predictive value, 93.1%; negative predictive value 50.8%; accuracy, 72.1%; positive likelihood ratio, 2.5; and negative likelihood ratio, 0.23). CONCLUSION. Acoustic radiation force impulse imaging could be used for the evaluation of the renal elasticity changes that are due to secondary structural and functional changes in diabetic nephropathy.

  15. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  16. Global ENA Imaging of Earth's Dynamic Magnetosphere

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2015-04-01

    The interaction between singly charged ions of Earth's magnetosphere and its neutral exosphere and upper atmosphere gives rise to Energetic Neutral Atoms (ENAs). This has enabled several missions to remotely image the global injection dynamics of the ring current and plasma sheet, the outflow of ions from Earth's polar regions, and the location of the sub-solar magnetopause. In this presentation we review ENA observations by the Astrid, IMAGE, TWINS and IBEX missions. We focus on results from the IMAGE/HENA Camera including observations of proton and oxygen ion injections in to the ring current and their impact on the force-balance and ionospheric coupling in the inner magnetosphere. We report also on the status of inversion techniques for retrieving the ion spatial and pitch-angle distributions from ENA images. The presentation concludes with a discussion of future next steps in ENA instrumentation and analysis capabilities required to deliver the science as recommended by the Heliophysics Decadal Survey.

  17. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  18. Dynamic (99m)Tc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging.

    PubMed

    Brolin, Gustav; Gleisner, Katarina Sjögreen; Ljungberg, Michael

    2013-05-21

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for (99m)Tc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  19. Robust detection of renal calculi from non-contract CT images using TV-flow and MSER features

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Wang, Shijun; Linguraru, Marius George; Summers, Ronald M.

    2013-03-01

    Renal calculi are one of the most painful urologic disorders causing 3 million treatments per year in the United States. The objective of this paper is the automated detection of renal calculi from CT colonography (CTC) images on which they are one of the major extracolonic findings. However, the primary purpose of the CTC protocols is not for the detection of renal calculi, but for screening of colon cancer. The kidneys are imaged with significant amounts of noise in the non-contrast CTC images, which makes the detection of renal calculi extremely challenging. We propose a computer-aided diagnosis method to detect renal calculi in CTC images. It is built on three novel techniques: 1) total variation (TV) flow to reduce image noise while keeping calculi, 2) maximally stable extremal region (MSER) features to find calculus candidates, 3) salient feature descriptors based on intensity properties to train a support vector machine classifier and filter false positives. We selected 23 CTC cases with 36 renal calculi to analyze the detection algorithm. The calculus size ranged from 1.0mm to 6.8mm. Fifteen cases were selected as the training dataset, and the remaining eight cases were used for the testing dataset. The area under the receiver operating characteristic curve (AUC) values were 0.92 in the training datasets and 0.93 in the testing datasets. The testing dataset confidence interval for AUC reported by ROCKIT was [0.8799, 0.9591] and the training dataset was [0.8974, 0.9642]. These encouraging results demonstrated that our detection algorithm can robustly and accurately identify renal calculi from CTC images.

  20. 3D texture analysis in renal cell carcinoma tissue image grading.

    PubMed

    Kim, Tae-Yun; Cho, Nam-Hoon; Jeong, Goo-Bo; Bengtsson, Ewert; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system.

  1. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Verkman, Alan S.; Koelsch, Bertram L.; Chaumeil, Myriam M.; Lustig, Michael; Ronen, Sabrina M.; Bok, Robert A.; Sands, Jeff M.; Larson, Peder E. Z.; Wang, Zhen J.; Larsen, Jan Henrik Ardenkjær; Kurhanewicz, John; Vigneron, Daniel B.

    2016-01-01

    In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools. PMID:27570835

  2. Reliability of whole slide images as a diagnostic modality for renal allograft biopsies.

    PubMed

    Jen, Kuang-Yu; Olson, Jean L; Brodsky, Sergey; Zhou, Xin J; Nadasdy, Tibor; Laszik, Zoltan G

    2013-05-01

    The use of digital whole slide images (WSI) in the field of pathology has become feasible for routine diagnostic purposes and has become more prevalent in recent years. This type of technology offers many advantages but must show the same degree of diagnostic reliability as conventional glass slides. Several studies have examined this issue in various settings and indicate that WSI are a reliable method for diagnostic pathology. Since transplant pathology is a highly specialized field that requires not only accurate but rapid diagnostic evaluation of biopsy materials, this field may greatly benefit from the use of WSI. In this study, we assessed the reliability of using WSI compared to conventional glass slides in renal allograft biopsies. We examined morphologic features and diagnostic categories defined by the Banff 07 Classification of Renal Allograft Pathology as well as additional morphologic features not included in this classification scheme. We found that intraobserver scores, when comparing the use of glass slides versus WSI, showed substantial agreement for both morphologic features (κ = 0.68) and acute rejection diagnostic categories (κ = 0.74). Furthermore, interobserver reliability was comparable for morphologic features (κ = 0.44 [glass] vs 0.42 [WSI]) and acute rejection diagnostic categories (κ = 0.49 [glass] vs 0.51 [WSI]). These data indicate that WSI are as reliable as glass slides for the evaluation of renal allograft biopsies.

  3. Assessment of renal oxygenation during partial nephrectomy using DLP hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Best, Sara L.; Thapa, Abhas; Holzer, Michael S.; Jackson, Neil; Mir, Saad A.; Donnally, Chester J.; Wehner, Eleanor; Raj, Ganesh V.; Livingston, Edward; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2011-03-01

    Digital Light Processing (DLP®) hyperspectral imaging (HsI) is a non-invasive method used to construct a highly sensitive, real-time tissue oxygenation map through the measurement of the percentage of oxyhemoglobin. We have demonstrated that this technology can detect the oxyhemoglobin in the blood vessels on the surface of the kidney and we have used this to monitor renal perfusion during kidney cancer operations, where the blood supply to the kidney is interrupted for a period of time. This technology may allow us to "personalize" surgery based on the oxygenation profile.

  4. Dynamic targeting image-guided radiotherapy

    SciTech Connect

    Huntzinger, Calvin; Munro, Peter; Johnson, Scott; Miettinen, Mika; Zankowski, Corey; Ahlstrom, Greg; Glettig, Reto; Filliberti, Reto; Kaissl, Wolfgang; Kamber, Martin; Amstutz, Martin; Bouchet, Lionel; Klebanov, Dan; Mostafavi, Hassan; Stark, Richard

    2006-07-01

    Volumetric imaging and planning for 3-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) have highlighted the need to the oncology community to better understand the geometric uncertainties inherent in the radiotherapy delivery process, including setup error (interfraction) as well as organ motion during treatment (intrafraction). This has ushered in the development of emerging technologies and clinical processes, collectively referred to as image-guided radiotherapy (IGRT). The goal of IGRT is to provide the tools needed to manage both inter- and intrafraction motion to improve the accuracy of treatment delivery. Like IMRT, IGRT is a process involving all steps in the radiotherapy treatment process, including patient immobilization, computed tomogaphy (CT) simulation, treatment planning, plan verification, patient setup verification and correction, delivery, and quality assurance. The technology and capability of the Dynamic Targeting{sup TM} IGRT system developed by Varian Medical Systems is presented. The core of this system is a Clinac (registered) or Trilogy{sup TM} accelerator equipped with a gantry-mounted imaging system known as the On-Board Imager{sup TM} (OBI). This includes a kilovoltage (kV) x-ray source, an amorphous silicon kV digital image detector, and 2 robotic arms that independently position the kV source and imager orthogonal to the treatment beam. A similar robotic arm positions the PortalVision{sup TM} megavoltage (MV) portal digital image detector, allowing both to be used in concert. The system is designed to support a variety of imaging modalities. The following applications and how they fit in the overall clinical process are described: kV and MV planar radiographic imaging for patient repositioning, kV volumetric cone beam CT imaging for patient repositioning, and kV planar fluoroscopic imaging for gating verification. Achieving image-guided motion management throughout the radiation oncology process

  5. Digital Image Correlation with Dynamic Subset Selection

    NASA Astrophysics Data System (ADS)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  6. ESPR uroradiology task force and ESUR paediatric working group: imaging recommendations in paediatric uroradiology, part IV: Minutes of the ESPR uroradiology task force mini-symposium on imaging in childhood renal hypertension and imaging of renal trauma in children.

    PubMed

    Riccabona, Michael; Lobo, M L; Papadopoulou, F; Avni, F E; Blickman, J G; Dacher, J N; Damasio, B; Darge, K; Ording-Müller, L S; Vivier, P H; Willi, U

    2011-07-01

    Two new recommendations of the European Society of Radiology task force and the European Society of Uroradiology workgroup on paediatric uroradiology are presented. One deals with diagnostic imaging in children after trauma to the urinary tract-renal trauma, in particular. The other concerns the evaluation of suspected renal hypertension. Available data in the paediatric literature are either unsatisfactory or controversial for both of these clinical settings. Therefore, the following consensus-based proposals aim at outlining effective imaging algorithms to reduce invasive imaging procedures while optimising diagnostic accuracy. The objective of following a more uniform imaging approach is to facilitate future meta-analysis as well as multicentre and other more evidence-based studies. The practise in paediatric radiology is typically based on local availability and on the limitations of professional expertise and equipment, balanced against the perceived needs of the individual child. Although this is unlikely to change in the near future, it does not release the physicians in charge of diagnostic imaging from their responsibility in choosing and providing state-of-the-art imaging and management protocols that are adapted specifically for use in children.

  7. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect

    Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun; Voisin, Sophie; Cheng, Chu-Lin; Horita, Jusuke; Perfect, Edmund

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  8. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  9. Motility Contrast Imaging and Tissue Dynamics Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; An, Ran; Turek, John

    Motion is the defining physiological characteristic of living matter. If we are interested in how things function, then the way they move is most informative. Motion provides an endogenous and functional suite of biomarkers that are sensitive to subtle changes that occur under applied pharmacological doses or cellular stresses. This chapter reviews the application of biodynamic imaging to measure cellular dynamics in three-dimensional tissue culture for drug screening applications. Nanoscale and microscale motions are detected through statistical fluctuations in dynamic speckle across an ensemble of cells within each resolution voxel. Tissue dynamics spectroscopy generates drug-response spectrograms that serve as phenotypic fingerprints of drug action and can differentiate responses from heterogeneous regions of tumor tissue.

  10. Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow

    SciTech Connect

    Mitchell, D.G.; Tobin, M.; LeVeen, R.; Tomaczewski, J.; Alavi, A.; Staum, M.; Kundel, H.

    1988-03-01

    To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using /sup 113/Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney.

  11. Texture-learning-based system for three-dimensional segmentation of renal parenchyma in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Peng, Cong-Qi; Chang, Yuan-Hsiang; Wang, Li-Jen; Wong, Yon-Choeng; Chiang, Yang-Jen; Jiang, Yan-Yau

    2009-02-01

    Abdominal CT images are commonly used for the diagnosis of kidney diseases. With the advances of CT technology, processing of CT images has become a challenging task mainly because of the large number of CT images being studied. This paper presents a texture-learning based system for the three-dimensional (3D) segmentation of renal parenchyma in abdominal CT images. The system is designed to automatically delineate renal parenchyma and is based on the texturelearning and the region-homogeneity-based approaches. The first approach is achieved with the texture analysis using the gray-level co-occurrence matrix (GLCM) features and an artificial neural network (ANN) to determine if a pixel in the CT image is likely to fall within the renal parenchyma. The second approach incorporates a two-dimensional (2D) region growing to segment renal parenchyma in single CT image slice and a 3D region growing to propagate the segmentation results to neighboring CT image slices. The criterion for the region growing is a test of region-homogeneity which is defined by examining the ANN outputs. In system evaluation, 10 abdominal CT image sets were used. Automatic segmentation results were compared with manually segmentation results using the Dice similarity coefficient. Among the 10 CT image sets, our system has achieved an average Dice similarity coefficient of 0.87 that clearly shows a high correlation between the two segmentation results. Ultimately, our system could be incorporated in applications for the delineation of renal parenchyma or as a preprocessing in a CAD system of kidney diseases.

  12. Preparation and evaluation of (99m)Tc-DMSA lyophilized kit for renal imaging.

    PubMed

    Jan, Syed Umer; Abbass, Hafiz Ghulam

    2013-05-01

    Dimercaptosuccinic acid (DMSA) has been evaluated and used with technetium 99m ((99m)Tc) in imaging of kidneys. DMSA lyophilized kits were prepared and radiolabelled with (99m)Tc. Paper and thin-layer chromatography have been employed using various eluent systems for the radiochemical analysis, percentage labeling and binding capacity of (99m)Tc-DMSA. Female albino rabbits were used for this study. Biological data obtained after intravenous injection of radiolabelled DMSA to female albino rabbits revealed 32.42% uptake and long retention time in the kidneys. On the basis of animal biodistribution data, it is suggested that DMSA when labeled with (99m)Tc is useful complex for renal imaging and can be successfully applied as a diagnostic tool in nuclear medicine. Clinical biodistribution and radiation dosimetry studies are planned in future.

  13. Reproducibility and interobserver agreement of the R.E.N.A.L. nephrometry score: focus on imaging features

    PubMed Central

    Vilaseca, Richard Mast; Westphalen, Antonio Carlos; Reis, Henrique Ferreira; Zogbi, Orlando Salomão; Silva, Gyl Eanes; dos Reis, Rodolfo Borges; Muglia, Valdair Francisco

    2017-01-01

    Objective To investigate the reproducibility and interobserver agreement for R.E.N.A.L. nephrometry scoring system. Materials and Methods Two independent radiologists retrospectively analyzed 46 consecutive patients with renal masses, between 2008 and 2012, using the R.E.N.A.L. nephrometry score (RENAL-NS), which is based on the evaluation of five anatomical features of the tumor, as evaluated with computed tomography or magnetic resonance imaging: Radius, Exophytic/endophytic properties, Nearness to the collecting system, Anterior or posterior descriptor, and Location relative to the polar line. Tumor complexity was graded as low, intermediate, or high. The interobserver agreement was calculated for the total score and for the score for each parameter. Surgical excision of the tumors was used as the standard of reference. Results The interobserver agreement for each of the RENAL-NS parameters, respectively, a hilar location, and the total score was 98%, 80%, 100%, 89%, 85%, 89%, and 93% of patients, corresponding to kappa values of 0.96, 0.65, 1.00, 0.75, 0.72, 0.78, and 0.88, respectively. The Nearness, Radius, and total score showed the best agreement. For the cases that were discordant in terms of the final score, no major implications in surgical planning were observed. Conclusion The RENAL-NS is a structured, useful system to assess the anatomical features of renal tumors. It is easily applicable and reproducible, even for less experienced radiologists. PMID:28298726

  14. Fetal and Postnatal Magnetic Resonance Imaging of Unilateral Cystic Renal Dysplasia in a Neonate with Tuberous Sclerosis.

    PubMed

    Tyagi, Vineet; Bornstein, Eran; Schacht, Robert; Lala, Shailee; Milla, Sarah

    2016-10-01

    Tuberous sclerosis (TS) is an autosomal dominant condition associated with mutations in the TSC1 and/or TSC2 genes. Clinical manifestations are multisystemic, and they often include lesions in the brain, skin, heart, kidneys, and bones. TSC2 gene mutations can be seen concomitantly with autosomal dominant polycystic kidney disease gene mutations. We present a case of a fetus with prenatal diagnosis of TS that had unique asymmetrical distribution of renal cystic disease. We describe the extensive work up with both fetal and neonatal magnetic resonance imaging with correlating images of the unilateral polycystic renal disease in addition to typical TS brain findings.

  15. Phase correlation imaging of unlabeled cell dynamics

    PubMed Central

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  16. The role of dynamic renal scintigraphy on clinical decision making in hydronephrotic children.

    PubMed

    Çamlar, Seçil Arslansoyu; Deveci, Nazlı; Soylu, Alper; Türkmen, Mehmet Atilla; Özmen, Derya; Çapakaya, Gamze; Kavukçu, Salih

    2017-01-01

    Hydronephrosis may be related to an obstructive cause, ureteropelvic/uretero-vesical junction obstruction or nonobstructive [vesicoureteral reflux (VUR)]. When an obstructive pathology is considered, dynamic renal scintigraphy may help to predict whether it is a true obstruction or not. In this study, we aimed to determine the contribution of dynamic renal scintigraphy with [99] mTc-MAG-3 to the clinical decision-making for surgery in hydronephrotic children. Files of the patients evaluated by MAG-3 scintigraphy for antenatal (AH)/postnatal (PH) hydronephrosis between 1992 and 2014 were reviewed. Gender, age, hydronephrosis (HN) grade by ultrasound (US), presence of VUR, MAG-3 result (obstructive vs. nonobstructive), ultimate diagnosis, and need for surgery were assessed. Cases with double collecting system and neurogenic bladder were excluded from the study. All of the patients had normal serum creatinine and eGFR. There were a total of 178 patients with 218 hydronephrotic renal units (mean age 34.7 ± 52.7 months; male/ female = 121/57, AH of 62%). MAG-3 was nonobstructive in 134 and obstructive in 84 hydronephrotic renal units. MAG-3 was obstructive in 47 of 121 (39%) males and 30 of 57 (53%) females (P = 0.058, odds ratio (OR) for obstruction was 1.9 for girls). MAG-3 was obstructive in 47 of 135 (35%) units with AH and 37 of 83 (45%) units with PH (P = 0.137). In 81 units with the society of fetal urology-4 HN by US, MAG-3 was obstructive in 55 (68%), and surgery was required in 52 of 55 (95%). Surgery was required for only two (7%) of the remaining 26 units with nonobstructive dilatation (P <0.001, sensitivity 96%, specificity 89%, OR 208). Antero-posterior diameter >16.5 mm was the best cutoff level for predicting obstruction by MAG-3 (sensitivity 75.2%; specificity 71%; OR 3.8). MAG-3 significantly affects clinical decision for surgery in HN. Hydronephrotic girls have more risk in terms of true obstruction. Combining MAG-3 with US improves the

  17. Imaging electric field dynamics with graphene optoelectronics

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-12-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  18. Imaging electric field dynamics with graphene optoelectronics

    PubMed Central

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-01-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena. PMID:27982125

  19. Quantitative biomolecular imaging by dynamic nanomechanical mapping.

    PubMed

    Zhang, Shuai; Aslan, Hüsnü; Besenbacher, Flemming; Dong, Mingdong

    2014-11-07

    The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view.

  20. Renal Scintigraphy

    MedlinePlus

    ... size with caption Related Articles and Media General Nuclear Medicine Radiation Dose in X-Ray and CT Exams X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Renal Scintigraphy Sponsored by ...

  1. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  2. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  3. Review of Source Images is Necessary for the Evaluation of Gadolinium-Enhanced MR Angiography for Renal Artery Stenosis

    SciTech Connect

    Wehrschuetz, M. Aschauer, M.; Portugaller, H.; Stix, A.; Wehrschuetz-Sigl, E.; Hausegger, K.; Ebner, F.

    2004-09-15

    The purpose of this study was to assess interobserver variability and accuracy in the evaluation of renal artery stenosis (RAS) with gadolinium-enhanced MR angiography (MRA) and digital subtraction angiography (DSA) in patients with hypertension. The authors found that source images are more accurate than maximum intensity projection (MIP) for depicting renal artery stenosis. Two independent radiologists reviewed MRA and DSA from 38 patients with hypertension. Studies were postprocessed to display images in MIP and source images. DSA was the standard for comparison in each patient. For each main renal artery, percentage stenosis was estimated for any stenosis detected by the two radiologists. To calculate sensitivity, specificity and accuracy, MRA studies and stenoses were categorized as normal, mild (1-39%), moderate (40-69%) or severe ({>=}70%), or occluded. DSA stenosis estimates of 70% or greater were considered hemodynamically significant. Analysis of variance demonstrated that MIP estimates of stenosis were greater than source image estimates for both readers. Differences in estimates for MIP versus DSA reached significance in one reader. The interobserver variance for MIP, source images and DSA was excellent (0.80< {kappa}{<=} 0.90). The specificity of source images was high (97%) but less for MIP (87%); average accuracy was 92% for MIP and 98% for source images. In this study, source images are significantly more accurate than MIP images in one reader with a similar trend was observed in the second reader. The interobserver variability was excellent. When renal artery stenosis is a consideration, high accuracy can only be obtained when source images are examined.

  4. Three new renal simulators for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia

    2014-03-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.

  5. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings.

  6. Imaging Collective Dynamics in the Neocortex

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya

    2005-03-01

    Central to understanding collective neural dynamics is the problem of obtaining spatiotemporal data which reveals the collective behavior of neural ensembles; this can be done either through multi-contact recordings or through various imaging modalities. As an example of both the power and limitations of imaging techniques, we consider the onset, spread, and termination of focal seizures, imaged using the intrinsic optical signal (IOS). The IOS is a change in light reflectance from neural tissue that correlates with the underlying electrophysiological activity. With incident light in the green range, the IOS reflects changes in blood volume (CBV signal); for incident light in the orange range, the IOS shows a change in the oxygenation state of hemoglobin (Hbr signal), and can be correlated with the BOLD (blood oxygen level dependent) fMRI signal; for incident red light, the IOS reflects changes in cell volume and/or light scattering (LS signal). Using the IOS to image the spread of focal neocortical seizures induced by 4-aminopyridine in the rat, we found that the CBV, Hbr and LS signals were equally useful in localizing the ictal onset. We found a focal, profound dip in hemoglobin oxygenation (Hbr signal) during the entire seizure duration, implying that brain perfusion is inadequate to meet the metabolic demands of an epileptic focus. We observed significant variability in the spatial distribution of the active region during seizure termination. However, the IOS was unable to resolve electrophysiologically distinct patterns of seizure onset and the signal, at all incident wavelengths, persisted long after seizure termination.

  7. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features

    SciTech Connect

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B.; Yao, Jianhua; Summers, Ronald M.; Linguraru, Marius George

    2015-01-15

    Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. Methods: The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e − 3) on all calculi from 1 to 433 mm{sup 3} in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.

  8. Dynamical diffraction artifacts in Laue microdiffraction images

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Noyan, I. C.

    2005-10-01

    Back-reflection images obtained from single-crystal semiconductor substrates using Laue microdiffraction with medium-to-high energy x rays (10-30 keV) may contain double spots, one strong and one weak, for the higher-energy reflections. Some of the weaker spots originate from the back surface of the sample and are due to dynamic diffraction from a finite crystal. Others may be due to epitaxial thin films on the substrate. The intensity and position of the back-surface peaks depend on the x-ray energy, sample characteristics, and diffraction geometry. We provide a set of simple equations that can be used to calculate the separation of such peak pairs. These equations can be used to identify the peaks from the back surface of the sample.

  9. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  10. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-10-01

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  11. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    SciTech Connect

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  12. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGES

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; ...

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  13. Radiowave Imaging of Ionospheric Electron Dynamics

    NASA Astrophysics Data System (ADS)

    van Bavel, Gregory Hugh

    1998-12-01

    This dissertation is a study of disturbances in the polar ionosphere. A relative ionospheric opacity meter (riometer) is a radio frequency instrument that enables the remote sensing of ionospheric disturbances by recording variations in the cosmic radio noise power received at a terrestrial antenna. The Imaging Riometer for Ionospheric Studies (IRIS) produces images of relative ionospheric opacity. In the ionosphere, the attenuation of a radio signal's amplitude is proportional to the electron number density n and the effective collision frequency ν. Therefore, a riometer is sensitive to variations of the product n/nu, but their effects are not separated. The theory of HF radiowave attenuation in a cold magetoplasma and electron continuity yield a pair of uni-directional wave equations that couple the dynamics of cosmic radio noise absorption to the vertical mean value of ν. These equations, and some simplifying assumptions, are the basis of a data analysis that transforms IRIS images into physical quantities related to the absorbing ionospheric electrons: mean velocity, mean effective collision frequency, net production rate and column density. A critical test case and coincident auroral observations support the reliability of the general results of the data analysis. Variations in the mean flow velocity indicate that the ionosphere is not in equilibrium. The mean effective collision frequency shows significant structural variations over 100 km and 1 minute intervals. Column density depletions lead enhancements in a geomagnetic poleward drift, while a net production region moves with the column density enhancement and intensifies as the pole-ward motion ceases. Regions of persistent electron production or loss are found where the collision frequency is relatively low, and specific locations can oscillate between net production and loss with periods of about 1 to 2 minutes. It is found that the spatial structure of a riometer image is chiefly determined by the

  14. Intratumoral Administration of Holmium-166 Acetylacetonate Microspheres: Antitumor Efficacy and Feasibility of Multimodality Imaging in Renal Cancer

    PubMed Central

    Elschot, Mattijs; Seevinck, Peter R.; Beekman, Freek J.; de Jong, Hugo W. A. M.; Uges, Donald R. A.; Kosterink, Jos G. W.; Luijten, Peter R.; Hennink, Wim E.; van het Schip, Alfred D.; Bosch, J. L. H. Ruud; Nijsen, J. Frank W.

    2013-01-01

    Purpose The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres (166HoAcAcMS). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI. Methods 166HoAcAcMS were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry. Results 166HoAcAcMS were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in 166HoAcAcMS treated mice (0.10±0.01 cm3 vs. 4.15±0.3 cm3 for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of 166HoAcAcMS in the kidney. Conclusions Intratumorally administered 166HoAcAcMS has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities. PMID:23320070

  15. Label-free fluorescence lifetime and second harmonic generation imaging microscopy improves quantification of experimental renal fibrosis.

    PubMed

    Ranjit, Suman; Dobrinskikh, Evgenia; Montford, John; Dvornikov, Alexander; Lehman, Allison; Orlicky, David J; Nemenoff, Raphael; Gratton, Enrico; Levi, Moshe; Furgeson, Seth

    2016-11-01

    All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. Here we develop a fast and operator-independent method to measure fibrosis utilizing the murine unilateral ureteral obstruction model which manifests a time-dependent fibrotic increase in obstructed kidneys while the contralateral kidneys are used as controls. After ureteral obstruction, kidneys were analyzed at 7, 14, and 21 days. Fibrosis was quantified using fluorescence lifetime imaging (FLIM) and second harmonic generation (SHG) in a Deep Imaging via Enhanced photon Recovery deep tissue imaging microscope. This microscope was developed for deep tissue along with second and third harmonic generation imaging and has extraordinary sensitivity toward harmonic generation. SHG data suggest the presence of more fibrillar collagen in the obstructed kidneys. The combination of short-wavelength FLIM and SHG analysis results in a robust assessment procedure independent of observer interpretation and let us create criteria to quantify the extent of fibrosis directly from the image. Thus, the FLIM-SHG technique shows remarkable improvement in quantification of renal fibrosis compared to standard histological techniques.

  16. Improvement in dynamic magnetic resonance imaging thermometry

    NASA Astrophysics Data System (ADS)

    Guo, Jun-Yu

    This dissertation is focused on improving MRI Thermometry (MRIT) techniques. The application of the spin-lattice relaxation constant is investigated in which T1 is used as indicator to measure the temperature of flowing fluid such as blood. Problems associated with this technique are evaluated, and a new method to improve the consistency and repeatability of T1 measurements is presented. The new method combines curve fitting with a measure of the curve null point to acquire more accurate and consistent T1 values. A novel method called K-space Inherited Parallel Acquisition (KIPA) is developed to achieve faster dynamic temperature measurements. Localized reconstruction coefficients are used to achieve higher reduction factors, and lower noise and artifact levels compared to that of GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) reconstruction. Artifacts in KIPA images are significantly reduced, and SNR is largely improved in comparison with that in GRAPPA images. The Root-Mean-Square (RMS) error of temperature for GRAPPA is 2 to 5 times larger than that for KIPA. Finally, the accuracy and comparison of the effects of motion on three parallel imaging methods: SENSE (SENSitivity Encoding), VSENSE (Variable-density SENSE) and KIPA are estimated. According to the investigation, KIPA is the most accurate and robust method among all three methods for studies with or without motion. The ratio of the normalized RMS (NRMS) error for SENSE to that for KIPA is within the range from 1 to 3.7. The ratio of the NRMS error for VSENSE to that for KIPA is about 1 to 2. These factors change with the reduction factor, motion and subject. In summary, the new strategy and method for the fast noninvasive measurement of T1 of flowing blood are proposed to improve stability and precision. The novel parallel reconstruction algorithm, KIPA, is developed to improve the temporal and spatial resolution for the PRF method. The motion effects on the KIPA method are also

  17. Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging.

    PubMed

    Nilsson, Anna; Goodwin, Richard J A; Swales, John G; Gallagher, Richard; Shankaran, Harish; Sathe, Abhishek; Pradeepan, Selvi; Xue, Aixiang; Keirstead, Natalie; Sasaki, Jennifer C; Andren, Per E; Gupta, Anshul

    2015-09-21

    Colistin and polymyxin B are effective treatment options for Gram-negative resistant bacteria but are used as last-line therapy due to their dose-limiting nephrotoxicity. A critical factor in developing safer polymyxin analogues is understanding accumulation of the drugs and their metabolites, which is currently limited due to the lack of effective techniques for analysis of these challenging molecules. Mass spectrometry imaging (MSI) allows direct detection of targets (drugs, metabolites, and endogenous compounds) from tissue sections. The presented study exemplifies the utility of MSI by measuring the distribution of polymyxin B1, colistin, and polymyxin B nonapeptide (PMBN) within dosed rat kidney tissue sections. The label-free MSI analysis revealed that the nephrotoxic compounds (polymyxin B1 and colistin) preferentially accumulated in the renal cortical region. The less nephrotoxic analogue, polymyxin B nonapeptide, was more uniformly distributed throughout the kidney. In addition, metabolites of the dosed compounds were detected by MSI. Kidney homogenates were analyzed using LC/MS/MS to determine total drug exposure and for metabolite identification. To our knowledge, this is the first time such techniques have been utilized to measure the distribution of polymyxin drugs and their metabolites. By simultaneously detecting the distribution of drug and drug metabolites, MSI offers a powerful alternative to tissue homogenization analysis and label or antibody-based imaging.

  18. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    PubMed Central

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  19. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology.

    PubMed

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.

  20. Dynamic imaging through turbid media based on digital holography.

    PubMed

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  1. Magnetic Resonance Imaging and Computed Tomography Characteristics of Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusion

    PubMed Central

    Li, Yuan; Wang, Chaofu; Zhou, Liangping; Zhu, Hui; Peng, Weijun

    2014-01-01

    Purpose To characterize Xp11.2 translocation renal cell carcinoma (RCC) using magnetic resonance imaging (MRI) and computed tomography (CT). Methods This study retrospectively collected the MRI and CT data of twelve patients with Xp11.2 translocation RCC confirmed by pathology. Nine cases underwent dynamic contrast-enhanced MRI (DCE-MRI) and 6 cases underwent CT, of which 3 cases underwent MRI and CT simultaneously. The MRI and CT findings were analyzed in regard to tumor position, size, hemorrhagic, cystic or necrotic components, calcification, tumor density, signal intensity and enhancement features. Results The age of the 12 patients ranged from 13 to 46 years (mean age: 23 years). T2WI revealed heterogeneous intensity, hyper-intensity, and slight hypo-intensity in 6 cases, 2 cases, and 1 case, respectively. On DCE-MR images, mild, moderate, and marked rim enhancement of the tumor in the corticomedullary phase (CMP) were observed in 1, 6, and 2 cases, respectively. The tumor parenchyma showed iso-attenuation (n = 4) or slight hyper-attenuation (n = 1) compared to the normal renal cortex on non-contrast CT images. Imaging findings were suggestive of hemorrhage (n = 4) or necrosis (n = 8) in the tumors, and there was evidence of calcification in 8 cases by CT (n = 3) and pathology (n = 8). On dynamic contrast-enhanced CT images, 3 cases and 1 case manifested moderate and strong CMP enhancement, respectively. Nine tumors by MRI and 4 tumors by CT showed prolonged enhancement. Three neoplasms presented at stage I, 2 at stage II, 3 at stage III, and 4 at stage IV according the 2010 AJCC staging criteria. Conclusions XP11.2 translocation RCC should be considered when a child or young adult patient presents with a renal tumor with heterogeneous features such as hemorrhage, necrosis, cystic changes, and calcification on CT and MRI and/or is accompanied by metastatic evidence. PMID:24926688

  2. Dynamic and still microcirculatory image analysis for quantitative microcirculation research

    NASA Astrophysics Data System (ADS)

    Ying, Xiaoyou; Xiu, Rui-juan

    1994-05-01

    Based on analyses of various types of digital microcirculatory image (DMCI), we summed up the image features of DMCI, the digitizing demands for digital microcirculatory imaging, and the basic characteristics of the DMCI processing. A dynamic and still imaging separation processing (DSISP) mode was designed for developing a DMCI workstation and the DMCI processing. Original images in this study were clinical microcirculatory images from human finger nail-bed and conjunctiva microvasculature, and intravital microvascular network images from animal tissue or organs. A series of dynamic and still microcirculatory image analysis functions were developed in this study. The experimental results indicate most of the established analog video image analysis methods for microcirculatory measurement could be realized in a more flexible way based on the DMCI. More information can be rapidly extracted from the quality improved DMCI by employing intelligence digital image analysis methods. The DSISP mode is very suitable for building a DMCI workstation.

  3. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    PubMed Central

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  4. The incidence and location of prostatic calculi on noncontrast computed tomography images in patients with renal calculi.

    PubMed

    Balasar, Mehmet; Poyraz, Necdet; Göğer, Yunus Emre; Unal, Yunus; Pişkin, Mehmet Mesut

    2015-08-01

    In this study, the incidence and location of prostatic calculi on noncontrast abdominal computed tomography (NCACT) images of patients with and without renal stones were investigated. Between 2006 and 2013, NCACT images were taken of 133 patients treated for renal stones (Group I) and of 100 age-matched control patients with putative urinary stone disease (Group II) in our clinic. The incidence and location of prostatic calculi on these images were determined. The location of prostatic calculus was classified as type A if they were located in the main prostatic ducts, and type B if they were located outside the ducts. Prostatic calculi were present in 44.4% of patients in Group I and 21.0% of patients in Group II. The incidence of prostatic calculi was significantly higher in patients with urinary stones compared with those without (P<0.001). The location of prostatic calculi in Group I included 74.6% type A and 25.4% type B while in Group II the locations were 76.2% type A and 23.8% type B. The incidence of prostatic calculi is more prevalent in patients with renal stones. On NCACT images, prostatic calculi were mostly detected in the main prostatic ducts, which were defined as type A.

  5. Dynamic infrared imaging for skin cancer screening

    NASA Astrophysics Data System (ADS)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  6. The International Atomic Energy Agency software package for the analysis of scintigraphic renal dynamic studies: a tool for the clinician, teacher, and researcher.

    PubMed

    Zaknun, John J; Rajabi, Hossein; Piepsz, Amy; Roca, Isabel; Dondi, Maurizio

    2011-01-01

    Under the auspices of the International Atomic Energy Agency, a new-generation, platform-independent, and x86-compatible software package was developed for the analysis of scintigraphic renal dynamic imaging studies. It provides nuclear medicine professionals cost-free access to the most recent developments in the field. The software package is a step forward towards harmonization and standardization. Embedded functionalities render it a suitable tool for education, research, and for receiving distant expert's opinions. Another objective of this effort is to allow introducing clinically useful parameters of drainage, including normalized residual activity and outflow efficiency. Furthermore, it provides an effective teaching tool for young professionals who are being introduced to dynamic kidney studies by selected teaching case studies. The software facilitates a better understanding through practically approaching different variables and settings and their effect on the numerical results. An effort was made to introduce instruments of quality assurance at the various levels of the program's execution, including visual inspection and automatic detection and correction of patient's motion, automatic placement of regions of interest around the kidneys, cortical regions, and placement of reproducible background region on both primary dynamic and on postmicturition studies. The user can calculate the differential renal function through 2 independent methods, the integral or the Rutland-Patlak approaches. Standardized digital reports, storage and retrieval of regions of interest, and built-in database operations allow the generation and tracing of full image reports and of numerical outputs. The software package is undergoing quality assurance procedures to verify the accuracy and the interuser reproducibility with the final aim of launching the program for use by professionals and teaching institutions worldwide.

  7. Dynamic infrared imaging for the detection of malignancy

    NASA Astrophysics Data System (ADS)

    Button, Terry M.; Li, Haifang; Fisher, Paul; Rosenblatt, Ruth; Dulaimy, Khaldoon; Li, Song; O'Hea, Brian; Salvitti, Mathew; Geronimo, Veronica; Geronimo, Christine; Jambawalikar, Sachin; Carvelli, Paola; Weiss, Richard

    2004-07-01

    The potential for malignancy detection using dynamic infrared imaging (DIRI) has been investigated in an animal model of human malignancy. Malignancy was apparent in images formed at the vasomotor and cardiogenic frequencies of tumour bearing mice. The observation of malignancy was removed by the administration of an agent that blocks vasodilation caused by nitric oxide (NO). Image patterns similar to those that characterize malignancy could be mimicked in normal mice using an NO producing agent. Apparently DIRI allows for cancer detection in this model through vasodilation caused by malignancy generated NO. Dynamic infrared detection of vasomotor and cardiogenic surface perfusion was validated in human subjects by a comparison with laser Doppler flowmetry (LDF). Dynamic infrared imaging technology was then applied to breast cancer detection. It is shown that dynamic infrared images formed at the vasomotor and cardiogenic frequencies of the normal and malignant breast have image pattern differences, which may allow for breast cancer detection.

  8. Evidence of a heterogeneous tissue oxygenation: renal ischemia/reperfusion injury in a large animal model

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.

    2013-03-01

    Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.

  9. Imaging complex nutrient dynamics in mycelial networks.

    PubMed

    Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L

    2008-08-01

    Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier

  10. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  11. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  12. Real-time extended dynamic range imaging in shearography

    SciTech Connect

    Groves, Roger M.; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

  13. Vesicoureteral Reflux Detected on Post-void Image of (99m)Tc MAG3 Renal Scintigraphy.

    PubMed

    Nizar, Naureen; Ahmed, Akhtar

    2013-05-01

    (99m)Tc MAG3 scintigraphic scan is sensitive at depicting focal parenchymal abnormalities and can be used for the measurement of overall renal function. We experienced a 5-year-old boy presenting with bilateral flank fain, intermittent urinary stream and dysuria. On the post-void delayed image of (99m)Tc MAG3 scintigraphic scan vesicoureteral reflux was detected in left non-functioning kidney, which was missed on voiding cystourethrography.

  14. Comparison of imaging methods for diagnosing enlarged parathyroid glands in chronic renal failure

    SciTech Connect

    Takagi, H.; Tominaga, Y.; Uchida, K.; Yamada, N.; Kano, T.; Kawai, M.; Morimoto, T.

    1985-07-01

    Three noninvasive imaging methods, CT, scintigraphy with /sup 201/TlCl and /sup 99m/TcO4-, and ultrasonography, were performed on 36 patients with chronic renal failure and secondary hyperparathyroidism. The patients subsequently underwent total parathyroidectomy and parathyroid autograft. The detection rates of the three methods for the 143 excised parathyroid glands were compared according to gland weight and location. Computed tomography detected 53.8% of all glands and 77.6% of 76 glands weighing more than 500 mg. Scintigraphy detected 51.0% of all glands and 77.6% of glands heavier than 500 mg. Ultrasonography detected 42.7% of all glands and 65.8% of glands heavier than 500 mg. The detection rate of upper glands was best with CT (53.5 and 87.9%): that of lower glands was best with scintigraphy (62.0 and 78.6%). Although the combination of the three methods diagnosed 66.4% of all glands and 89.5% of glands heavier than 500 mg, CT and scintigraphy, the best two combinations, visualized 64.3 and 88.2%.

  15. Renal Cell Carcinoma with Paraneoplastic Manifestations: Imaging with CT and F-18 FDG PET/CT.

    PubMed

    Nguyen, Ba D; Roarke, Michael C

    2007-01-01

    We present a case of renal cell carcinoma with prominent inflammatory and paraneoplastic manifestations. The initial CT detection of renal malignancy and subsequent post-therapeutic F-18 FDG PET/CT diagnosis of occult osseous metastasis were based on the patient's anemia, thrombocytosis and abnormally increased levels of serum C-reactive protein.

  16. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers

    SciTech Connect

    Taylor, A. Jr.; Eshima, D.; Fritzberg, A.R.; Christian, P.E.; Kasina, S.

    1986-06-01

    Animal studies have suggested that the nonisomeric N3S triamide mercaptide ligand, /sup 99m/Tc mercaptoacetyltriglycine (MAG3), may provide a satisfactory /sup 99m/Tc-labeled replacement for /sup 131/I hippurate (OIH). Sequential 30-min (/sup 99m/Tc)MAG3 (5-10 mCi) and (/sup 131/I)OIH (300 microCi) imaging studies were performed in ten normal volunteers in order to compare the image quality, renal excretion, blood clearance, and time to peak height of the renogram curve. In addition, (/sup 99m/Tc) MAG3 (5 mCi) and (/sup 131/I)OIH (150 microCi) were administered simultaneously in eight volunteers for comparison of 180-min blood and plasma clearances and urine excretion. In the sequential imaging studies, the blood clearance of (/sup 99m/Tc)MAG3 was more rapid than (/sup 131/I)OIH with a mean clearance of 1.30 l/min compared with 0.88 l/min for (/sup 131/I)OIH (p less than 0.05). Seventy-three percent of the injected dose of the MAG3 was excreted by 30 min compared with 66.8% for (/sup 131/I)OIH. Whole kidney and cortical renogram curves showed no significant difference in the time to peak height for MAG3 and (/sup 131/I)OIH. In all subjects, the quality of the (/sup 99m/Tc)MAG3 images were clearly superior to (/sup 131/I)OIH. Following simultaneous injection, blood and plasma clearances for (/sup 131/I)OIH were more rapid than MAG3 when determined for multiple time intervals from 0-30 to 0-180 min (p less than or equal to 0.05). The 0-30-min clearances of MAG3 and (/sup 131/I)OIH were only slightly greater than the 0-180-min clearances and can be used to obtain valid comparisons of the two agents. As in the sequential study, 30-min urine excretion was greater for MAG3 than (/sup 131/I)OIH (73.1 compared with 69.6%) but the difference was not statistically significant.

  17. Recent advances in intravital imaging of dynamic biological systems.

    PubMed

    Kikuta, Junichi; Ishii, Masaru

    2012-01-01

    Intravital multiphoton microscopy has opened a new era in the field of biological imaging. Focal excitation of fluorophores by simultaneous attack of multiple (normally "two") photons generates images with high spatial resolution, and use of near-infrared lasers for multiphoton excitation allows penetration of thicker specimens, enabling biologists to visualize living cellular dynamics deep inside tissues and organs without thin sectioning. Moreover, the minimized photo-bleaching and toxicity associated with multiphoton techniques is beneficial for imaging of live specimens for extended observation periods. Here we focus on recent findings using intravital multiphoton imaging of dynamic biological systems such as the immune system and bone homeostasis. The immune system comprises highly dynamic networks, in which many cell types actively travel throughout the body and interact with each other in specific areas. Therefore, real-time intravital imaging represents a powerful tool for understanding the mechanisms underlying this dynamic system.

  18. Calcium dynamics underlying the myogenic response of the renal afferent arteriole

    PubMed Central

    Edwards, Aurélie

    2013-01-01

    The renal afferent arteriole reacts to an elevation in blood pressure with an increase in muscle tone and a decrease in luminal diameter. This effect, known as the myogenic response, is believed to stabilize glomerular filtration and to protect the glomerulus from systolic blood pressure increases, especially in hypertension. To study the mechanisms underlying the myogenic response, we developed a mathematical model of intracellular Ca2+ signaling in an afferent arteriole smooth muscle cell. The model represents detailed transmembrane ionic transport, intracellular Ca2+ dynamics, the kinetics of myosin light chain phosphorylation, and the mechanical behavior of the cell. It assumes that the myogenic response is initiated by pressure-induced changes in the activity of nonselective cation channels. Our model predicts spontaneous vasomotion at physiological luminal pressures and KCl- and diltiazem-induced diameter changes comparable to experimental findings. The time-periodic oscillations stem from the dynamic exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum, coupled to the stimulation of Ca2+-activated potassium (KCa) and chloride (ClCa) channels, and the modulation of voltage-activated L-type channels; blocking sarco/endoplasmic reticulum Ca2+ pumps, ryanodine receptors (RyR), KCa, ClCa, or L-type channels abolishes these oscillations. Our results indicate that the profile of the myogenic response is also strongly dependent on the conductance of ClCa and L-type channels, as well as the activity of plasmalemmal Ca2+ pumps. Furthermore, inhibition of KCa is not necessary to induce myogenic contraction. Lastly, our model suggests that the kinetic behavior of L-type channels results in myogenic kinetics that are substantially faster during constriction than during dilation, consistent with in vitro observations (Loutzenhiser R, Bidani A, Chilton L. Circ. Res. 90: 1316–1324, 2002). PMID:24173354

  19. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2011-12-01

    In situ quantification of soil-plant water fluxes have not been fully successful due to a lack of non-destructive techniques capable of revealing roots or water fluxes at relevant spatial scales. Neutron imaging is a unique non-invasive tool that can assess sub-millimeter scale material properties and transport in situ, and which has been successfully applied to characterize soil and plant water status. Here, we have applied neutron radiography and tomography to quantify water transport through individual maize roots in response to internal plant demand. Zea mays seedlings were grown for 10 days in Flint silica sand within 2.6 cm diameter Al chambers. Using a reactor-based neutron source at Oak Ridge National Laboratory (HFIR), water fluxes were tracked through the maize soil-root systems by collecting consecutive neutron radiographs over a 12 h period following irrigation with D2O. D has a much lower neutron attenuation than H, thus D2O displacement of existing H2O within the plant vascular system, or influx of D2O into previously dry tissue or soil is readily tracked by changes in image intensity through time. Plant water release and uptake was regulated by periodically cycling on a high-intensity grow light. From each maize replicate, selected regions of interest (ROI) were delineated around individual roots, root free soil, stem and leaf segments. Changes in ROI were tracked through time to reveal patterns of water flux. The hydration of root and stem tissue cycled in response to illumination; root water content often increased during darkness, then decreased with illumination as water was transported from the root into the stem. Relative root-shoot hydration through time illustrates the balance between demand, storage capacity and uptake, which varies depending on root characteristics and its localized soil environment. The dynamic transport of water between soil, individual roots, stems and leaves was readily visualized and quantified illustrating the value

  20. Image-Guided Embolization Coil Placement for Identification of an Endophytic, Isoechoic Renal Mass During Robotic Partial Nephrectomy

    PubMed Central

    Forauer, Andrew; Seigne, John D.; Hyams, Elias S.

    2015-01-01

    Abstract Background: Intraoperative ultrasonography has proven to be a useful tool for tumor identification during robot-assisted laparoscopic partial nephrectomy (RALPN). However, its utility is limited in renal tumors that are completely endophytic and isoechoic in nature. We present a novel approach to intraoperative tumor identification using preoperative percutaneous intratumoral embolization coil placement that may be utilized in the management of such cases. Case Presentation: A 42-year-old Caucasian male was referred with an incidentally discovered right renal mass that was posterior and completely endophytic. He desired a RALPN; however, preoperative renal ultrasound demonstrated an isoechoic lesion. Thus, the patient underwent preoperative image-guided placement of an embolization coil within the tumor. This facilitated identification of the tumor intraoperatively using intracorporeal ultrasound centered on the coil and enabled resection with negative margins. Conclusion: Utilizing a novel approach analogous to preoperative localization of other solid malignancies, such as breast cancer, we were able to effectively identify and resect an isoechoic renal mass during RALPN. PMID:27579392

  1. Dynamic changes of early-stage aortic lipid deposition in chronic renal failure rats and effects of decorin gene therapy.

    PubMed

    Ma, Hong-Bo; Wang, Rong; Yu, Ke-Zhou; Yu, Che

    2015-02-01

    The aim of the present study was to clarify the association between lipid metabolism and the atherosclerosis in early-stage chronic renal failure at the molecular level and to explore the efficacy of decorin on chronic renal failure. Sprague Dawley rats receiving 5/6 nephrectomy and Sham surgery were divided into control and experimental groups. Sprague Dawley rats receiving 5/6 nephrectomy were divided into control and experimental groups, and the experimental group was further subdivided into rats receiving treatment with fibroblasts (FBs) transfected either with empty vector and with a decorin (DCN) gene. The dynamic levels of triglyceride (TG), total cholesterol (T-Ch) and total phospholipid (T-PL) were detected on the 10th, 30th and 60th days. The body weight, blood lipid levels, renal function and renal tissue were observed after four weeks, and transforming growth factor-βl and protein expression was detected by immunohistochemistry. In total, 4 weeks after treatment, the DCN expression in the renal tissue of rats treated with DCN-transfected FBs was significantly increased compared to that in the control rats. The results showed that the levels of the three lipids in the aortic arches were slightly elevated on the 10th day compared with those in the control group, and the TG level was significantly increased on the 30th day. The levels of T-Ch, TG and T-PL in the aortic arches were significantly elevated on the 60th day. The TG and T-Ch levels in the plasma and aortic tissues of Sprague Dawley rats receiving 5/6 nephrectomy without any treatment and after receiving treatment with FBs transfected with empty vector were significantly increased compared with those in the control group. The increased T-Ch and decreased T-PL levels in the erythrocyte membrane increased the rigidity of the erythrocyte and decreased erythrocyte deformability. In conclusion, highly expressed DCN mitigated renal fibrosis and thus delayed renal failure as well as mitigating the

  2. Dynamic changes of early-stage aortic lipid deposition in chronic renal failure rats and effects of decorin gene therapy

    PubMed Central

    MA, HONG-BO; WANG, RONG; YU, KE-ZHOU; YU, CHE

    2015-01-01

    The aim of the present study was to clarify the association between lipid metabolism and the atherosclerosis in early-stage chronic renal failure at the molecular level and to explore the efficacy of decorin on chronic renal failure. Sprague Dawley rats receiving 5/6 nephrectomy and Sham surgery were divided into control and experimental groups. Sprague Dawley rats receiving 5/6 nephrectomy were divided into control and experimental groups, and the experimental group was further subdivided into rats receiving treatment with fibroblasts (FBs) transfected either with empty vector and with a decorin (DCN) gene. The dynamic levels of triglyceride (TG), total cholesterol (T-Ch) and total phospholipid (T-PL) were detected on the 10th, 30th and 60th days. The body weight, blood lipid levels, renal function and renal tissue were observed after four weeks, and transforming growth factor-βl and protein expression was detected by immunohistochemistry. In total, 4 weeks after treatment, the DCN expression in the renal tissue of rats treated with DCN-transfected FBs was significantly increased compared to that in the control rats. The results showed that the levels of the three lipids in the aortic arches were slightly elevated on the 10th day compared with those in the control group, and the TG level was significantly increased on the 30th day. The levels of T-Ch, TG and T-PL in the aortic arches were significantly elevated on the 60th day. The TG and T-Ch levels in the plasma and aortic tissues of Sprague Dawley rats receiving 5/6 nephrectomy without any treatment and after receiving treatment with FBs transfected with empty vector were significantly increased compared with those in the control group. The increased T-Ch and decreased T-PL levels in the erythrocyte membrane increased the rigidity of the erythrocyte and decreased erythrocyte deformability. In conclusion, highly expressed DCN mitigated renal fibrosis and thus delayed renal failure as well as mitigating the

  3. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  4. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    NASA Astrophysics Data System (ADS)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  5. Phase Preserving Dynamic Range Compression of Aeromagnetic Images

    NASA Astrophysics Data System (ADS)

    Kovesi, Peter

    2014-05-01

    Geoscientific images with a high dynamic range, such as aeromagnetic images, are difficult to present in a manner that facilitates interpretation. The data values may range over 20000 nanoteslas or more but a computer monitor is typically designed to present input data constrained to 8 bit values. Standard photographic high dynamic range tonemapping algorithms may be unsuitable, or inapplicable to such data because they are have been developed on the basis of statistics of natural images, feature types found in natural images, and models of the human visual system. These algorithms may also require image segmentation and/or decomposition of the image into base and detail layers but these operations may have no meaning for geoscientific images. For geological and geophysical data high dynamic range images are often dealt with via histogram equalization. The problem with this approach is that the contrast stretch or compression applied to data values depends on how frequently the data values occur in the image and not on the magnitude of any data features themselves. This can lead to inappropriate distortions in the output. Other approaches include use of the Automatic Gain Control algorithm developed by Rajagopalan, or the tilt derivative. A difficulty with these approaches is that the signal can be over-normalized and perception of the overall variations in the signal can be lost. To overcome these problems a method is presented that compresses the dynamic range of an image while preserving local features. It makes no assumptions about the formation of the image, the feature types it contains, or its range of values. Thus, unlike algorithms designed for photographic images, this algorithm can be applied to a wide range of scientific images. The method is based on extracting local phase and amplitude values across the image using monogenic filters. The dynamic range of the image can then be reduced by applying a range reducing function to the amplitude values, for

  6. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  7. Acute pyelonephritis resulting in intense vascular blush during dynamic renal scintigraphy

    PubMed Central

    Joshi, Prathamesh; Deshpande, Sushil; Kulkarni, Mukta; Shetkar, Shubhangi

    2016-01-01

    A thirty-year-old male underwent Tc-99m diethylenetriaminepentaacetic acid renal scintigraphy for evaluation of gross hydronephrosis of left kidney. The perfusion phase revealed an intense vascular blush in left renal fossa. The uptake phase of scintigraphy revealed the absence of tracer uptake in left kidney. Contrast-enhanced computed tomography (CECT) was performed for evaluating the cause of vascular blush. CECT demonstrated features suggestive of acute pyelonephritis (APN) involving lower pole of the hydronephrotic left kidney, corresponding to the site of vascular blush seen on renal scintigraphy. The postnephrectomy specimen confirmed the diagnosis of APN suggested on CECT. PMID:26917903

  8. Renal expression of Toll-like receptor 2 and 4: dynamics in human allograft injury and comparison to rodents.

    PubMed

    Stribos, Elisabeth G D; van Werkhoven, Maaike B; Poppelaars, Felix; van Goor, Harry; Olinga, Peter; van Son, Willem J; Damman, Jeffrey; Seelen, Marc A

    2015-03-01

    Activation of the innate immunity through Toll-like receptors (TLRs) has been postulated to play an important role in the pathophysiology of renal allograft dysfunction. TLR2 and TLR4 dynamics in different human post-transplant pathological entities has never been studied. Therefore, we evaluated pre- and post-transplantation protein expression of TLR2 and TLR4 in human kidney biopsies. Human kidney biopsies obtained from living kidney donors and patients with acute tubular necrosis, acute cellular and vascular rejection and interstitial fibrosis/tubular atrophy (IF/TA) were used. Translating results from animal studies to the clinical situation is highly important considering the upcoming clinical studies with TLR inhibitors in human renal transplantation. Hence, the TLR2 and TLR4 expression in healthy mouse and rat kidneys was analyzed and compared with human kidneys. In healthy human kidneys, TLR2 is expressed on the endothelium and Bowman's capsule, while TLR4 is expressed on the endothelium only. No tubular staining was found for both receptors in human kidneys. In contrast to human biopsies, TLR2 and TLR4 expression in rodents was observed on tubular epithelial cells. In all acute rejection human biopsies, increased infiltration of TLR4(+) leukocytes was observed. In conclusion, a discrepancy exists between human and rodent renal TLR expression, which suggests careful attention when translating results from rodent studies to the human situation. Additionally, this study revealed human TLR2 and TLR4 expression dynamics in human biopsies pre- and post-transplantation.

  9. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  10. Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal

    NASA Astrophysics Data System (ADS)

    Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian

    2015-11-01

    Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.

  11. Technetium Tc 99m dimercaptosuccinic acid renal scintigraphy in children with acute pyelonephritis: correlation with other imaging tests.

    PubMed

    Mohkam, Masoumeh; Maham, Saiid; Rahmani, Afrand; Naghi, Ilana; Otokesh, Babak; Raiiati, Hamid; Mohseni, Nima; Shamshiri, Ahmad Reza; Sharifian, Mostafa; Dalirani, Reza; Ghazi, Ruhollah; Ahoopai, Majid

    2010-10-01

    INTRODUCTION. Urinary tract infection is the most common serious bacterial infection in children. The aim of this study was to compare the value of different laboratory and imaging techniques in detecting renal involvement in acute pyelonephritis. MATERIALS AND METHODS. In a cross-sectional study of patients 1 month to 14 years of age diagnosed with urinary tract infection were examined with systemic inflammatory markers, renal ultrasonography, voiding cystourethrography (VCUG), and technetium Tc 99m dimercaptosuccinic acid ((99m)Tc-DMSA) renal scintigraphy. A total of 1467 pediatric patients were eligible for treatment of pyelonephritis. Evaluations included a complete blood count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), urinalysis, urine culture, and measurement of serum blood urea nitrogen and creatinine levels. RESULTS. The results of (99m)Tc-DMSA scans were normal in 20.2%, mild decreased cortical uptake in 45.0%, moderate decreased cortical uptake in 12.3%, severe decreased cortical uptake in 12.0%, and decreased cortical function plus irregularity or scar formation in 10.5%. Voiding cystourethrography showed vesicoureteral reflux in 25.9%. The sensitivity of (99m)Tc-DMSA for prediction of vesicoureteral reflux was 84.1% with a negative predictive value of 80.6%. Significant differences were found in the level of blood leukocyte count (P = .03), urine leukocyte count (P = .003), ESR (P = .008), and age (P = .04) between patients with normal and abnormal (99m)Tc-DMSA scan results. CONCLUSIONS. We found that in patient with clinical signs of pyelonephritis, (99m)Tc-DMSA renal scintigraphy can detect pyelonephritis more accurately than the other inflammatory and imaging tests.

  12. Remote histology learning from static versus dynamic microscopic images.

    PubMed

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-05-06

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized. Digitized microscopy images can be presented in either a static or dynamic format. This study of remote histology education identifies whether dynamic pictures are superior to static images for the acquisition of histological knowledge. Test results of two cohorts of second-year Bachelor in Medicine students at Ghent University were analyzed in two consecutive academic years: Cohort 1 (n = 190) and Cohort 2 (n = 174). Students in Cohort 1 worked with static images whereas students in Cohort 2 were presented with dynamic images. ANCOVA was applied to study differences in microscopy performance scores between the two cohorts, taking into account any possible initial differences in prior knowledge. The results show that practical histology scores are significantly higher with dynamic images as compared to static images (F (1,361) = 15.14, P < 0.01), regardless of student's gender and performance level. Several reasons for this finding can be explained in accordance with cognitivist learning theory. Since the findings suggest that knowledge construction with dynamic pictures is stronger as compared to static images, dynamic images should be introduced in a remote setting for microscopy education. Further implementation within a larger electronic learning management system needs to be explored in future research. Anat Sci Educ 9: 222-230. © 2015 American Association of Anatomists.

  13. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  14. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP

    NASA Astrophysics Data System (ADS)

    Viana, R. S.; Agasthya, G. A.; Yoriyaz, H.; Kapadia, A. J.

    2013-09-01

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work—32S, 12C, 23Na, 14N, 31P and 39K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in 31P, 39K and 23Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  15. An improvement to the diffraction-enhanced imaging method that permits imaging of dynamic systems

    NASA Astrophysics Data System (ADS)

    Siu, K. K. W.; Kitchen, M. J.; Pavlov, K. M.; Gillam, J. E.; Lewis, R. A.; Uesugi, K.; Yagi, N.

    2005-08-01

    We present an improvement to the diffraction-enhanced imaging (DEI) method that permits imaging of moving samples or other dynamic systems in real time. The method relies on the use of a thin Bragg analyzer crystal and simultaneous acquisition of the multiple images necessary for the DEI reconstruction of the apparent absorption and refraction images. These images are conventionally acquired at multiple points on the reflectivity curve of an analyzer crystal which presents technical challenges and precludes imaging of moving subjects. We have demonstrated the potential of the technique by taking DEI "movies" of an artificially moving mouse leg joint, acquired at the Biomedical Imaging Centre at SPring-8, Japan.

  16. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  17. Dynamic Imaging of a Pigmented Free-Floating Vitreous Cyst.

    PubMed

    Grewal, Dilraj S; Fekrat, Sharon

    2016-10-01

    The authors present an incidentally noted pigmented anterior vitreous cyst in an asymptomatic male adult. Observation was elected. Stability during the course of 2 years and mobility of the vitreous cyst using dynamic imaging are demonstrated. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:975-977.].

  18. Dynamic Ultrasound Imaging Applications to Quantify Musculoskeletal Function

    PubMed Central

    Sikdar, Siddhartha; Wei, Qi; Cortes, Nelson

    2014-01-01

    Advances in imaging methods have led to new capability to study muscle and tendon motion in vivo. Direct measurements of muscle and tendon kinematics using imaging may lead to improved understanding of musculoskeletal function. This review presents quantitative ultrasound methods for muscle dynamics that can be used to assess in vivo musculoskeletal function when integrated with other conventional biomechanical measurements. PMID:24949846

  19. Dynamic ultrasound imaging applications to quantify musculoskeletal function.

    PubMed

    Sikdar, Siddhartha; Wei, Qi; Cortes, Nelson

    2014-07-01

    Advances in imaging methods have led to new capability to study muscle and tendon motion in vivo. Direct measurements of muscle and tendon kinematics using imaging may lead to improved understanding of musculoskeletal function. This review presents quantitative ultrasound methods for muscle dynamics that can be used to assess in vivo musculoskeletal function when integrated with other conventional biomechanical measurements.

  20. Analysis of dynamic brain imaging data.

    PubMed Central

    Mitra, P P; Pesaran, B

    1999-01-01

    Modern imaging techniques for probing brain function, including functional magnetic resonance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques for analysis and visualization of such imaging data to separate the signal from the noise and characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging, and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: "noise" characterization and suppression, and "signal" characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for nonstationarity in the data. Of particular note are 1) the development of a decomposition technique (space-frequency singular value decomposition) that is shown to be a useful means of characterizing the image data, and 2) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources. PMID:9929474

  1. Is There Hope for Renal Growth on Imaging Studies Following Ureteral Reimplant for Boys With Fetal Hydronephrosis and Urinary Reflux?

    PubMed Central

    Wang, Ming-Hsien

    2015-01-01

    Reflux nephropathy is thought to be the etiology for renal maldevelopment. We present two boys with fetal hydronephrosis and sterile vesicoureteral reflux (VUR). There was lack of renal growth of the refluxing renal units on surveillance renal ultrasound. Parents elected to undergo open ureteral reimplants. Post-surgical ultrasounds demonstrated improved renal growth. PMID:26793522

  2. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  3. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  4. Imaging plants dynamics in heterogenic environments.

    PubMed

    Fiorani, Fabio; Rascher, Uwe; Jahnke, Siegfried; Schurr, Ulrich

    2012-04-01

    Noninvasive imaging sensors and computer vision approaches are key technologies to quantify plant structure, physiological status, and performance. Today, imaging sensors exploit a wide range of the electromagnetic spectrum, and they can be deployed to measure a growing number of traits, also in heterogenic environments. Recent advances include the possibility to acquire high-resolution spectra by imaging spectroscopy and classify signatures that might be informative of plant development, nutrition, health, and disease. Three-dimensional (3D) reconstruction of surfaces and volume is of particular interest, enabling functional and mechanistic analyses. While taking pictures is relatively easy, quantitative interpretation often remains challenging and requires integrating knowledge of sensor physics, image analysis, and complex traits characterizing plant phenotypes.

  5. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  6. Dynamic fluorescence imaging with molecular agents for cancer detection

    NASA Astrophysics Data System (ADS)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  7. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  8. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study.

    PubMed

    Leung, Wilson Kc; Gao, L; Siu, Parco M; Lai, Christopher Wk

    2016-12-01

    An explosion in global epidemic of type 2 diabetes mellitus poses major rise in cases with vascular endothelial dysfunction ranging from micro- (retinopathy, nephropathy and neuropathy) to macro-vascular (atherosclerosis and cardiomyopathy) conditions. Functional destruction of endothelium is regarded as an early event that lays the groundwork for the development of renal microangiopathy and subsequent clinical manifestation of nephropathic symptoms. Recent research has shed some light on the molecular mechanisms of type 2 diabetes-associated comorbidity of endothelial dysfunction and nephropathy. Stemming from currently proposed endothelium-centered therapeutic strategies for diabetic nephropathy, this review highlighted some most exploited pathways that involve the intricate coordination of vasodilators, vasoconstrictors and vaso-modulatory molecules in the pathogenesis of diabetic nephropathy. We also emphasized the emerging roles of oxidative and epigenetic modifications of microvasculature as our prospective therapeutics for diabetic renal diseases. Finally, this review in particular addressed the potential use of multispectral optoacoustic tomography in real-time, minimally-invasive vascular imaging of small experimental animals for preclinical renal-kinetic drug trials.

  9. The accuracy of quantitative parameters in (99m) Tc-MAG3 dynamic renography: a national audit based on virtual image data.

    PubMed

    Brolin, Gustav; Edenbrandt, Lars; Granerus, Göran; Olsson, Anna; Afzelius, David; Gustafsson, Agneta; Jonsson, Cathrine; Hagerman, Jessica; Johansson, Lena; Riklund, Katrine; Ljungberg, Michael

    2016-03-01

    Assessment of image analysis methods and computer software used in (99m) Tc-MAG3 dynamic renography is important to ensure reliable study results and ultimately the best possible care for patients. In this work, we present a national multicentre study of the quantification accuracy in (99m) Tc-MAG3 renography, utilizing virtual dynamic scintigraphic data obtained by Monte Carlo-simulated scintillation camera imaging of digital phantoms with time-varying activity distributions. Three digital phantom studies were distributed to the participating departments, and quantitative evaluation was performed with standard clinical software according to local routines. The differential renal function (DRF) and time to maximum renal activity (Tmax ) were reported by 21 of the 28 Swedish departments performing (99m) Tc-MAG3 studies as of 2012. The reported DRF estimates showed a significantly lower precision for the phantom with impaired renal uptake than for the phantom with normal uptake. The Tmax estimates showed a similar trend, but the difference was only significant for the right kidney. There was a significant bias in the measured DRF for all phantoms caused by different positions of the left and right kidney in the anterior-posterior direction. In conclusion, this study shows that virtual scintigraphic studies are applicable for quality assurance and that there is a considerable uncertainty associated with standard quantitative parameters in dynamic (99m) Tc-MAG3 renography, especially for patients with impaired renal function.

  10. Accurate diagnosis of renal transplant rejection by indium-111 platelet imaging despite postoperative cyclosporin therapy

    SciTech Connect

    Collier, B.D.; Adams, M.B.; Kauffman, H.M.; Trembath, L.; Hoffmann, R.G.; Tisdale, P.L.; Rao, S.A.; Hellman, R.S.; Isitman, A.T.

    1988-08-01

    Previous reports indicate that In-111 platelet scintigraphy (IPS) is a reliable test for the early diagnosis of acute post-operative renal transplant rejection (TR). However, the recent introduction of cyclosporin for post-transplantation immunosuppression requires that the diagnostic efficacy of IPS once again be established. Therefore, a prospective IPS study of 73 post-operative renal transplant recipients was conducted. Fourty-nine patients received cyclosporin and 24 patients did not receive this drug. Between these two patient groups, there were no significant differences in the diagnostic sensitivities (0.86 vs 0.80) and specificities (0.93 vs 0.84) with which TR was identified. We conclude that during the first two weeks following renal transplantation the cyclosporin treatment regimen used at our institution does not limit the reliability of IPS as a test for TR.

  11. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment

    PubMed Central

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-01-01

    AIM: To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. METHODS: Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student’s t-test was used and a P-value < 0.05 was considered statistically significant. RESULTS: Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm3 for single sonication 3000J, 0.50-0.84 cm3, for double 3000J, 0.75-0.78 cm3 for single 4400J and 0.12-2.65 cm3 for double 4400J) and at postmortem (0.23-0.52 cm3, 0.25-0.82 cm3, 0.45-0.68 cm3 and 0.29-1.80 cm3, respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. CONCLUSION: Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI

  12. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  13. Efficient sinogram smoothing for dynamic neuroreceptor PET imaging

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; La Riviere, Patrick J.; Ye, James; Mukherjee, J.; Chen, Chin-Tu

    1997-05-01

    We have developed image-restoration techniques applicable to dynamic positron emission tomography that improve the visual quality and quantitative accuracy of neuroreceptor images. Starting wit data from a study of dopamine D-2 receptors in rhesus monkey striata using selective radioligands such as fallypride, we performed a novel effective 3D smoothing of the dynamic sinogram at a much lower computational cost than a truly 3D, adaptive smoothing. The processed sinogram was then input to a standard filtered back-projection algorithm and the resulting images were sharper and less noisy than images reconstructed from the unprocessed sinogram. Simulations were performed and the radioligand binding curves extracted from the restored images were found to be smoother and more accurate than those extracted form the unprocessed reconstructions. Comparison was also made to reconstructions from sinograms processed by the principal component analysis/projection onto convex sets algorithm.

  14. Dynamic feature analysis for Voyager at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Yagi, G. M.; Lorre, J. J.; Jepsen, P. L.

    1978-01-01

    Voyager 1 and 2 were launched from Cape Kennedy to Jupiter, Saturn, and beyond on September 5, 1977 and August 20, 1977. The role of the Image Processing Laboratory is to provide the Voyager Imaging Team with the necessary support to identify atmospheric features (tiepoints) for Jupiter and Saturn data, and to analyze and display them in a suitable form. This support includes the software needed to acquire and store tiepoints, the hardware needed to interactively display images and tiepoints, and the general image processing environment necessary for decalibration and enhancement of the input images. The objective is an understanding of global circulation in the atmospheres of Jupiter and Saturn. Attention is given to the Voyager imaging subsystem, the Voyager imaging science objectives, hardware, software, display monitors, a dynamic feature study, decalibration, navigation, and data base.

  15. Ultrasonic Imaging of Subsurface Objects Using Photorefractive Dynamic Holography

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2001-07-01

    The INEEL has developed a photorefractive ultrasonic imaging technology that records both phase and amplitude of ultrasonic waves on the surface of solids. Phase locked dynamic holography provides full field images of these waves scattered from subsurface defects in solids, and these data are compared with theoretical predictions. Laser light reflected by a vibrating surface is imaged into a photorefractive material where it is mixed in a heterodyne technique with a reference wave. This demodulates the data and provides an image of the ultrasonic waves in either 2 wave or 4 wave mixing mode. These data images are recorded at video frame rates and show phase locked traveling or resonant acoustic waves. This technique can be used over a broad range of ultrasonic frequencies. Acoustic frequencies from 2 kHz to 10 MHz have been imaged, and a point measuring (non-imaging) version of the system has measured picometer amplitudes at 1 GHz.

  16. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  17. Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.

    1978-01-01

    Radiotelemetry was used to measure arterial pressure and mesenteric and renal blood flows from nine unrestrained, conscious baboons during periods of rest, moderate exercise, and extreme excitement. A description of the experiments hardware is presented, including artificial depressants phenylcyclidine hydrochloride, 0.5-1.0 mg/kg, and pentobarbital sodium, 15 mg/kg, and an ultrasonic telemetry flow meter. Results showed rising heart rate and arterial pressure coupled with a reduction of mesenteric and renal flows as the level of exercise was increased. These findings are compared with mesenteric and renal flows somewhat above control level, but relatively stable heart rate and arterial pressure, postprandially. Attention is given to a quantitative analysis of the experimental results.

  18. Renal Blood Oxygenation Level-dependent Imaging in Longitudinal Follow-up of Donated and Remaining Kidneys.

    PubMed

    Seif, Maryam; Eisenberger, Ute; Binser, Tobias; Thoeny, Harriet C; Krauer, Fabienne; Rusch, Aurelia; Boesch, Chris; Vogt, Bruno; Vermathen, Peter

    2016-06-01

    Purpose To determine renal oxygenation changes associated with uninephrectomy and transplantation in both native donor kidneys and transplanted kidneys by using blood oxygenation level-dependent (BOLD) MR imaging. Materials and Methods The study protocol was approved by the local ethics committee. Thirteen healthy kidney donors and their corresponding recipients underwent kidney BOLD MR imaging with a 3-T imager. Written informed consent was obtained from each subject. BOLD MR imaging was performed in donors before uninephrectomy and in donors and recipients 8 days, 3 months, and 12 months after transplantation. R2* values, which are inversely related to tissue partial pressure of oxygen, were determined in the cortex and medulla. Longitudinal R2* changes were statistically analyzed by using repeated measures one-way analysis of variance with post hoc pair-wise comparisons. Results R2* values in the remaining kidneys significantly decreased early after uninephrectomy in both the medulla and cortex (P < .003), from 28.9 sec(-1) ± 2.3 to 26.4 sec(-1) ± 2.5 in the medulla and from 18.3 sec(-1) ± 1.5 to 16.3 sec(-1) ± 1.0 in the cortex, indicating increased oxygen content. In donors, R2* remained significantly decreased in both the medulla and cortex at 3 (P < .01) and 12 (P < .01) months. In transplanted kidneys, R2* remained stable during the first year after transplantation, with no significant change. Among donors, cortical R2* was found to be negatively correlated with estimated glomerular filtration rate (R = -0.47, P < .001). Conclusion The results suggest that BOLD MR imaging may potentially be used to monitor renal functional changes in both remaining and corresponding transplanted kidneys. (©) RSNA, 2016.

  19. Temporal image stacking for noise reduction and dynamic range improvement

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Nash, James; Goma, Sergio; Ramachandra, Vikas; Siddiqui, Hasib

    2013-03-01

    The dynamic range of an imager is determined by the ratio of the pixel well capacity to the noise floor. As the scene dynamic range becomes larger than the imager dynamic range, the choices are to saturate some parts of the scene or "bury" others in noise. In this paper we propose an algorithm that produces high dynamic range images by "stacking" sequentially captured frames which reduces the noise and creates additional bits. The frame stacking is done by frame alignment subject to a projective transform and temporal anisotropic diffusion. The noise sources contributing to the noise floor are the sensor heat noise, the quantization noise, and the sensor fixed pattern noise. We demonstrate that by stacking images the quantization and heat noise are reduced and the decrease is limited only by the fixed pattern noise. As the noise is reduced, the resulting cleaner image enables the use of adaptive tone mapping algorithms which render HDR images in an 8-bit container without significant noise increase.

  20. Multimodality Imaging Characteristics of the Common Renal Cell Carcinoma Subtypes: An Analysis of 544 Pathologically Proven Tumors

    PubMed Central

    Fu, Winnie; Huang, Guan; Moloo, Zaahir; Girgis, Safwat; Patel, Vimal H; Low, Gavin

    2016-01-01

    Objectives: The objective of this study was to define the characteristic imaging appearances of the common renal cell carcinoma (RCC) subtypes. Materials and Methods: The Institutional Review Board approval was obtained for this HIPAA-compliant retrospective study, and informed consent was waived. 520 patients (336 men, 184 women; age range, 22–88 years) underwent preoperative cross-sectional imaging of 544 RCCs from 2008 to 2013. The imaging appearances of the RCCs and clinical information were reviewed. Data analysis was performed using parametric and nonparametric statistics, descriptive statistics, and receiver operating characteristic analysis. Results: The RCC subtypes showed significant differences (P < 0.001) in several imaging parameters such as tumor margins, tumor consistency, tumor homogeneity, the presence of a central stellate scar, T2 signal intensity, and the degree of tumor enhancement. Low T2 signal intensity on magnetic resonance imaging (MRI) allowed differentiation of papillary RCC from clear cell and chromophobe RCCs with 90.9% sensitivity and 93.1% specificity. A tumor-to-cortex ratio ≥1 on the corticomedullary phase had 98% specificity for clear cell RCC. Conclusion: The T2 signal intensity of the tumor on MRI and its degree of enhancement are useful imaging parameters for discriminating between the RCC subtypes while gross morphological findings offer additional value in RCC profiling. PMID:28123840

  1. Accuracy of radionuclide imaging in distinguishing renal masses from normal variants

    SciTech Connect

    Older, R.A.; Korobkin, M.; Workman, J.; Cleeve, D.M.; Cleeve, L.K.; Sullivan, D.; Webster, G.D.

    1980-08-01

    To determine the accuracy of scintigraphy in distinguishing true renal masses from normal variants, 40 patients with excretory urographic findings indicating a possible, but not definite, mass lesion were studied. Scintigraphy correctly identified 17 true masses and 17 normal variants. Four false positive and two false negative results were obtained.

  2. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  3. Ship dynamics for maritime ISAR imaging.

    SciTech Connect

    Doerry, Armin Walter

    2008-02-01

    Demand is increasing for imaging ships at sea. Conventional SAR fails because the ships are usually in motion, both with a forward velocity, and other linear and angular motions that accompany sea travel. Because the target itself is moving, this becomes an Inverse- SAR, or ISAR problem. Developing useful ISAR techniques and algorithms is considerably aided by first understanding the nature and characteristics of ship motion. Consequently, a brief study of some principles of naval architecture sheds useful light on this problem. We attempt to do so here. Ship motions are analyzed for their impact on range-Doppler imaging using Inverse Synthetic Aperture Radar (ISAR). A framework for analysis is developed, and limitations of simple ISAR systems are discussed.

  4. Imaging the dynamics of individual electropores

    PubMed Central

    Sengel, Jason T.

    2016-01-01

    Electroporation is a widely used technique to permeabilize cell membranes. Despite its prevalence, our understanding of the mechanism of voltage-mediated pore formation is incomplete; methods capable of visualizing the time-dependent behavior of individual electropores would help improve our understanding of this process. Here, using optical single-channel recording, we track multiple isolated electropores in real time in planar droplet interface bilayers. We observe individual, mobile defects that fluctuate in size, exhibiting a range of dynamic behaviors. We observe fast (25 s−1) and slow (2 s−1) components in the gating of small electropores, with no apparent dependence on the applied potential. Furthermore, we find that electropores form preferentially in the liquid disordered phase. Our observations are in general supportive of the hydrophilic toroidal pore model of electroporation, but also reveal additional complexity in the interactions, dynamics, and energetics of electropores. PMID:27114528

  5. High Dynamic Range Digital Imaging of Spacecraft

    NASA Technical Reports Server (NTRS)

    Karr, Brian A.; Chalmers, Alan; Debattista, Kurt

    2014-01-01

    The ability to capture engineering imagery with a wide degree of dynamic range during rocket launches is critical for post launch processing and analysis [USC03, NNC86]. Rocket launches often present an extreme range of lightness, particularly during night launches. Night launches present a two-fold problem: capturing detail of the vehicle and scene that is masked by darkness, while also capturing detail in the engine plume.

  6. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    PubMed Central

    van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-01-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840

  7. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    NASA Astrophysics Data System (ADS)

    van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-09-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail.

  8. Renal artery aneurysms.

    PubMed

    González, J; Esteban, M; Andrés, G; Linares, E; Martínez-Salamanca, J I

    2014-01-01

    A renal artery aneurysm is defined as a dilated segment of renal artery that exceeds twice the diameter of a normal renal artery. Although rare, the diagnosis and incidence of this entity have been steadily increasing due to the routine use of cross-sectional imaging. In certain cases, renal artery aneurysms may be clinically important and potentially lethal. However, knowledge of their occurrence, their natural history, and their prognosis with or without treatment is still limited. This article aims to review the recent literature concerning renal artery aneurysms, with special consideration given to physiopathology, indications for treatment, different technical options, post-procedure complications and treatment outcomes.

  9. SYSTEMATIC DE-SATURATION OF IMAGES FROM THE ATMOSPHERIC IMAGING ASSEMBLY IN THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Schwartz, R. A.; Torre, G.; Piana, M. E-mail: torre@dima.unige.it

    2014-10-01

    Extreme ultraviolet (EUV) images of solar flares provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) are often affected by saturation effects in their core, physically most interesting, region. We introduce an image reconstruction procedure that allows recovering information in the primary saturation domain using the secondary images produced by the diffraction fringes as input data. Such a procedure is based on standard image-processing tools like correlation, convolution, and back-projection. Its effectiveness is tested in the case of AIA/SDO observations of the 2013 July 8 flaring event.

  10. Differential uptake of Tc-99m DMSA and Tc-99m EC in renal tubular disorders: Report of two cases and review of the literature

    PubMed Central

    Reddy Gorla, Arun Kumar; Agrawal, Kanhaiyalal; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-01-01

    Tc-99m DMSA and Tc-99m EC studies are invaluable functional imaging modalities for renal structural and functional assessment. Normally, the relative renal function estimated by the two methods correlates well with each other. We here present two patients with renal tubular acidosis who showed impaired/altered DMSA uptake with normal EC renal dynamic study depicting the pitfall of DMSA imaging in tubular disorders. The two presented cases also depict distinct pattern of Tc-99m DMSA scintigraphic findings in patients with proximal and distal renal tubular acidosis, thus highlighting the factors affecting DMSA kinetics. PMID:25210282

  11. Differential uptake of Tc-99m DMSA and Tc-99m EC in renal tubular disorders: Report of two cases and review of the literature.

    PubMed

    Reddy Gorla, Arun Kumar; Agrawal, Kanhaiyalal; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-07-01

    Tc-99m DMSA and Tc-99m EC studies are invaluable functional imaging modalities for renal structural and functional assessment. Normally, the relative renal function estimated by the two methods correlates well with each other. We here present two patients with renal tubular acidosis who showed impaired/altered DMSA uptake with normal EC renal dynamic study depicting the pitfall of DMSA imaging in tubular disorders. The two presented cases also depict distinct pattern of Tc-99m DMSA scintigraphic findings in patients with proximal and distal renal tubular acidosis, thus highlighting the factors affecting DMSA kinetics.

  12. [64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma

    PubMed Central

    Minn, Il; Koo, Soo Min; Lee, Hye Soo; Brummet, Mary; Rowe, Steven P.; Gorin, Michael A.; Sysa-Shah, Polina; Lewis, William D.; Ahn, Hye-Hyun; Wang, Yuchuan; Banerjee, Sangeeta Ray; Mease, Ronnie C.; Nimmagadda, Sridhar; Allaf, Mohamad E.; Pomper, Martin G.; Yang, Xing

    2016-01-01

    Carbonic anhydrase IX (CAIX) is a cell surface enzyme that is over-expressed in approximately 95% of cases of clear cell renal cell carcinoma (ccRCC), the most common renal cancer. We synthesized and performed in vitro and in vivo evaluation of a dual-motif ligand, [64Cu]XYIMSR-06, for imaging CAIX expression on ccRCC tumors using positron emission tomography (PET). [64Cu]XYIMSR-06 was generated in yields of 51.0 ± 4.5% (n=5) and specific activities of 4.1 – 8.9 GBq/μmol (110-240 Ci/mmol). Tumor was visualized on PET images by 1 h post-injection with high tumor-to-background levels (>100 tumor-to-blood and -muscle) achieved within 24 h. Biodistribution studies demonstrated a maximum tumor uptake of 19.3% injected dose per gram of radioactivity at 4 h. Tumor-to-blood, -muscle and -kidney ratios were 129.6 ± 18.8, 84.3 ± 21.0 and 2.1 ± 0.3, respectively, at 8 h post-injection. At 24 h a tumor-to-kidney ratio of 7.1 ± 2.5 was achieved. These results indicate pharmacokinetics superior to those of previously reported imaging agents binding to CAIX. [64Cu]XYIMSR-06 is a new low-molecular-weight PET ligand targeting CAIX, which can image localized and metastatic ccRCC. PMID:27437764

  13. Color Doppler dynamic tissue perfusion measurement: a novel tool in the assessment of renal parenchymal perfusion in children with vesicoureteral reflux

    PubMed Central

    Scholbach, Thomas M.; Scholbach, Jakob; Pawelec, Agata; Nachulewicz, Paweł; Wieczorek, Andrzej P.; Brodzisz, Agnieszka; Zajączkowska, Maria M.; Borzęcka, Halina

    2015-01-01

    Introduction Vesicoureteral reflux (VUR) occurs in 20–50% of children suffering from recurrent urinary tract infections (UTIs) and is associated with an increased risk of renal scarring and impaired renal function. Early detection of renal perfusion deterioration would allow for the implementation of more aggressive treatment and potentially prevent further damage to the renal parenchyma. The aim of the study was to assess renal parenchymal perfusions in children with recurrent UTIs with and without coexisting VUR, and compare the findings with the results of healthy patients. Material and methods Color Doppler sonographic dynamic renal parenchymal perfusion measurements were performed with PixelFlux (Chameleon-Software, Germany) software in 77 children with recurrent UTIs and coexisting VUR and in 30 children with UTIs without VUR. The findings were compared with the results of 53 healthy children. Results Cortical parenchymal perfusion of children suffering from UTIs and VUR was significantly reduced when compared to the control group. Statistically significant differences (p < 0.05) were found in all perfusion parameters (i.e. mean velocity (vmix), mean perfused area (Amix), mean perfusion intensity (Imix), tissue pulsatility index (TPI), and tissue resistance index (TRI)) between the control group and children suffering from UTIs and VUR, particularly VUR grades III and IV. There were no significant differences between the UTI group and the control group. No differences were found between the controls and VUR grade II. Conclusions Renal parenchymal perfusion decreases significantly with higher grades of VUR. PMID:27279857

  14. Estimation of pressure gradients at renal artery stenoses

    NASA Astrophysics Data System (ADS)

    Yim, Peter J.; Cebral, Juan R.; Weaver, Ashley; Lutz, Robert J.; Vasbinder, G. Boudewijn C.

    2003-05-01

    Atherosclerotic disease of the renal artery can reduce the blood flow leading to renovascular hypertension and ischemic nephopathy. The kidney responds to a decrease in blood flow by activation of the renin-angiotensin system that increases blood pressure and can result in severe hypertension. Percutaneous translumenal angioplasty (PTA) may be indicated for treatment of renovascular hypertension (RVH). However, direct measurement of renal artery caliber and degree of stenosis has only moderate specificity for detection of RVH. A confounding factor in assessment of the proximal renal artery is that diffuse atherosclerotic disease of the distal branches of the renal artery can produce the same effect on blood-flow as atherosclerotic disease of the proximal renal artery. A methodology is proposed for estimation of pressure gradients at renal artery stenoses from magnetic resonance imaging that could improve the evaluation of renal artery disease. In the proposed methodology, pressure gradients are estimated using computational fluid dynamics (CFD) modeling. Realistic CFD models are constructed from images of vessel shape and measurements of blood-flow rates which are available from magnetic resonance angiography (MRA) and phase-contrast magnetic resonance (MR) imaging respectively. CFD measurement of renal artery pressure gradients has been validated in a physical flow-through model.

  15. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.

  16. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  17. Dynamic imaging of preimplantation embryos in the murine oviduct

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Larina, Irina V.

    2015-03-01

    Studying the dynamic events involved in early preimplantation embryo development during their transport from the ovary to the uterus is of great significance to improve the understanding of infertility, and eventually to help reduce the infertility rate. The mouse is a widely used mammalian model in reproductive biology, however, dynamic imaging studies of mouse preimplantation embryos have been very limited due to the lack of proper imaging tools for such analysis. Here, we introduce an innovative approach, which can potentially be used for three-dimensional imaging and tracking of murine oocytes with optical coherence tomography (OCT) as they exit the ovary and migrate through the oviduct to the uterus. The imaging is performed with spectral-domain OCT system operating at 70 kHz A-scan rate. The preimplantation embryos and surrounding cumulus cells can be clearly visualized. Results from our experiments indicate that OCT has great potential for dynamic imaging of the oviduct and oocyte tracking, which provides the foundation for future investigations aimed at understanding dynamic events during preimplantation stages in normal development as well as in mouse models of infertility.

  18. Geocoronal Imaging with Dynamics Explorer: A First Look.

    DTIC Science & Technology

    1982-09-01

    Geocoronal isophote contours for this image 4 are shown on Plate lb. Another set of contours indicates the angle through vhich photons from the sun...contribution we subtract background intensities derived from isophote contour maps published by Bertaux and Blamont [1973] and Thomas and Krassa [1971...returned by the University of Iowa spin-scan imaging system on board Dynamics Explorer-I, along with quantitative information in the form of an isophote

  19. Using surface deformation to image reservoir dynamics

    SciTech Connect

    Vasco, D.W.; Karasaki, K.; Doughty, C.

    2000-02-01

    The inversion of surface deformation data such as tilt, displacement, or strain provides a noninvasive method for monitoring subsurface volume change. Reservoir volume change is related directly to processes such as pressure variations induced by injection and withdrawal. The inversion procedure is illustrated by an application to tiltmeter data from the Hijiori test site in Japan. An inversion of surface tilt data allows one to image flow processes in a fractured granodiorite. Approximately 650 barrels of water, injected 2 km below the surface, produces a peak surface tilt of the order of 0.8 microradians. The authors find that the pattern of volume change in the granodiorite is very asymmetrical, elongated in a north-northwesterly direction, and the maximum volume change is offset by more than 0.7 km to the east of the pumping well. The inversion of a suite of leveling data from the Wilmington oil field in Long Beach, California, images large-scale reservoir volume changes in 12 one- to two-year increments from 1976 to 1996. The influence of various production strategies is seen in the reservoir volume changes. In particular, a steam flood in fault block 2 in the northwest portion of the field produced a sudden decrease in reservoir volume.

  20. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry

    PubMed Central

    Farris, Alton B.; Ellis, Carla L.; Rogers, Thomas E.; Lawson, Diane; Cohen, Cynthia; Rosen, Seymour

    2016-01-01

    Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA). IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA). However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid–Schiff (PAS), and collagen III immunohistochemistry (IHC) were visually examined and quantitated on scanned whole slide images (WSIs) (N = 67 cases). When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P) WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001); and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002); however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM) correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001). Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS) width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively). Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD) and microvessel area (MVA) measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001). Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal

  1. Overhauser dynamic nuclear polarization amplification of NMR flow imaging.

    PubMed

    Lingwood, Mark D; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F; Han, Songi

    2012-03-01

    We describe the first study comparing the ability of phase shift velocity imaging and Overhauser dynamic nuclear polarization (DNP)-enhanced imaging to generate contrast for visualizing the flow of water. Prepolarization of water by the Overhauser DNP mechanism is performed in the 0.35T fringe field of an unshielded 2.0T non-clinical MRI magnet, followed by the rapid transfer of polarization-enhanced water to the 2.0T imaging location. This technique, previously named remotely enhanced liquids for image contrast (RELIC), produces a continuous flow of hyperpolarized water and gives up to an -8.2-fold enhanced signal within the image with respect to thermally polarized signal at 2.0T. Using flow through a cylindrical expansion phantom as a model system, spin-echo intensity images with DNP are compared to 3D phase shift velocity images to illustrate the complementary information available from the two techniques. The spin-echo intensity images enhanced with DNP show that the levels of enhancement provide an estimate of the transient propagation of flow, while the phase shift velocity images quantitatively measure the velocity of each imaging voxel. Phase shift velocity images acquired with and without DNP show that DNP weights velocity values towards those of the inflowing (DNP-enhanced) water, while velocity images without DNP more accurately reflect the average steady-state velocity of each voxel. We conclude that imaging with DNP prepolarized water better captures the transient path of water shortly after injection, while phase shift velocity imaging is best for quantifying the steady-state flow of water throughout the entire phantom.

  2. High dynamic range image compression by optimizing tone mapped image quality index.

    PubMed

    Ma, Kede; Yeganeh, Hojatollah; Zeng, Kai; Wang, Zhou

    2015-10-01

    Tone mapping operators (TMOs) aim to compress high dynamic range (HDR) images to low dynamic range (LDR) ones so as to visualize HDR images on standard displays. Most existing TMOs were demonstrated on specific examples without being thoroughly evaluated using well-designed and subject-validated image quality assessment models. A recently proposed tone mapped image quality index (TMQI) made one of the first attempts on objective quality assessment of tone mapped images. Here, we propose a substantially different approach to design TMO. Instead of using any predefined systematic computational structure for tone mapping (such as analytic image transformations and/or explicit contrast/edge enhancement), we directly navigate in the space of all images, searching for the image that optimizes an improved TMQI. In particular, we first improve the two building blocks in TMQI—structural fidelity and statistical naturalness components—leading to a TMQI-II metric. We then propose an iterative algorithm that alternatively improves the structural fidelity and statistical naturalness of the resulting image. Numerical and subjective experiments demonstrate that the proposed algorithm consistently produces better quality tone mapped images even when the initial images of the iteration are created by the most competitive TMOs. Meanwhile, these results also validate the superiority of TMQI-II over TMQI.

  3. Training and Maintaining: Developing a Successful and Dynamic Continuous Renal Replacement Therapy Program.

    PubMed

    Przybyl, Heather; Evans, Jill; Haley, Laurie; Bisek, Jodi; Beck, Emily

    2017-01-01

    Continuous renal replacement therapy (CRRT) is commonly used to support critically ill patients with acute kidney injury or chronic renal disease whose condition is too unstable for them to tolerate intermittent hemodialysis. Current publications related to CRRT programs in the United States and Canada note key themes related to the development and maintenance of CRRT training programs. A successful CRRT training program should consider and incorporate adult learning principles whenever possible. A variety of teaching methods to deliver information to nurses, including online learning modules, didactic lecture, return demonstration, and high-fidelity patient simulation are key to training programs for this high-risk complex therapy. This article outlines the approach to training nurses to care for patients receiving CRRT at a health care system in Arizona.

  4. Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer

    PubMed Central

    Stewart, Grant D.; Powles, Thomas; Van Neste, Christophe; Meynert, Alison; O'Mahony, Fiach; Laird, Alexander; Deforce, Dieter; Van Nieuwerburgh, Filip; Trooskens, Geert; Van Criekinge, Wim; De Meyer, Tim; Harrison, David J.

    2016-01-01

    Background Genetic intratumoral heterogeneity (ITH) hinders biomarker development in metastatic clear cell renal cancer (mccRCC). Epigenetic relative to genetic ITH or the presence of consistent epigenetic changes following targeted therapy in mccRCC have not been evaluated. The aim of this study was to determine methylome/genetic ITH and to evaluate specific epigenetic and genetic changes associated with sunitinib therapy. Patients and methods Multi-region DNA sampling performed on sequential frozen pairs of primary tumor tissue from 14 metastatic ccRCC patients, in the Upfront Sunitinib (SU011248) Therapy Followed by Surgery in Patients with Metastatic Renal Cancer: a Pilot Phase II Study (SuMR; ClinicalTrials.gov identifier: NCT01024205), at presentation (biopsy) and after 3-cycles of 50mg sunitinib (nephrectomy). Untreated biopsy and nephrectomy samples before and after renal artery ligation were controls. Ion Proton sequencing of 48 key ccRCC genes, and MethylCap-seq DNA methylation analysis was performed, data was analysed using the statistical computing environment R. Results Unsupervised hierarchical clustering revealed complete methylome clustering of biopsy and three nephrectomy samples for each patient (14/14 patients). For mutational status, untreated biopsy and all treated nephrectomy samples clustered together in 8/13 (61.5%) patients. The only methylation target significantly altered following sunitinib therapy was VHL promoter region 7896829 which was hypermethylated with treatment (FDR=0.077, P<0.001) and consistent for all patients (pre-treatment 50% patients had VHL mutations, 14% patients VHL hypermethylation). Renal artery ligation did not affect this result. No significant differences in driver or private mutation count was found with sunitinib treatment. Conclusions Demonstration of relative methylome homogeneity and consistent VHL hypermethylation, after sunitinib, may overcome the hurdle of ITH present at other molecular levels for

  5. Image Familiarization Sharpens Response Dynamics of Neurons in Inferotemporal Cortex

    PubMed Central

    Meyer, Travis; Walker, Christopher; Cho, Raymond Y.; Olson, Carl R.

    2015-01-01

    Repeated viewing of an image over days and weeks induces a marked reduction in the strength with which neurons in monkey inferotemporal cortex respond to it. The processing advantage that attaches to this reduction is unknown. One possibility is that truncation of the response to a familiar image leaves neurons in a state of readiness to respond to ensuing images and thus enhances their ability to track rapidly changing displays. We have explored this possibility by assessing neuronal responses to familiar and novel images in rapid serial visual displays. Inferotemporal neurons respond more strongly to familiar than to novel images in such displays. The effect is stronger among putative inhibitory neurons than among putative excitatory neurons. A comparable effect occurs at the level of the scalp potential in humans. We conclude that long-term familiarization sharpens the response dynamics of neurons in both monkey and human extrastriate visual cortex. PMID:25151263

  6. FPGA Implementation of Discrete-Time Neuronal Network for Dynamic Image Segmentation

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ken'ichi; Musashi, Mio; Yoshinaga, Tetsuya

    We have developed a discrete-time dynamical system for dynamic image segmentation. It consists of a global inhibitor and modified chaotic neurons that can generate oscillatory responses. Dynamic image segmentation is performed using its oscillatory responses. This letter presents an implementation of our system in a field programmable gate array (FPGA) device and a successful result of dynamic image segmentation.

  7. Imaging of Myocardial Fibrosis in Patients with End-Stage Renal Disease: Current Limitations and Future Possibilities

    PubMed Central

    Patel, A. S.; Marsh, A.-M.; McAdam, J.; McCann, G. P.; Burton, J. O.

    2017-01-01

    Cardiovascular disease in patients with end-stage renal disease (ESRD) is driven by a different set of processes than in the general population. These processes lead to pathological changes in cardiac structure and function that include the development of left ventricular hypertrophy and left ventricular dilatation and the development of myocardial fibrosis. Reduction in left ventricular hypertrophy has been the established goal of many interventional trials in patients with chronic kidney disease, but a recent systematic review has questioned whether reduction of left ventricular hypertrophy improves cardiovascular mortality as previously thought. The development of novel imaging biomarkers that link to cardiovascular outcomes and that are specific to the disease processes in ESRD is therefore required. Postmortem studies of patients with ESRD on hemodialysis have shown that the extent of myocardial fibrosis is strongly linked to cardiovascular death and accurate imaging of myocardial fibrosis would be an attractive target as an imaging biomarker. In this article we will discuss the current imaging methods available to measure myocardial fibrosis in patients with ESRD, the reliability of the techniques, specific challenges and important limitations in patients with ESRD, and how to further develop the techniques we have so they are sufficiently robust for use in future clinical trials. PMID:28349062

  8. Real-Time, Holographic, Dynamic Image-Storage Device

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Lafleur, Sharon S.

    1995-01-01

    Solid-state device developed for high-speed acquisition, dynamic storage, and amplification of three-dimensional holographic images. Holograms generated via four-wave mixing in two or more photorefractive crystals (or subelements of single crystal) to create single-crystal or multicrystal oscillator. Apparatus provides dynamic storage of holographic image of object after electronic shutter closed to turn off object beam. Provides capability to store, amplify, process, and transmit time-varying, two-dimensional, spatial information. Developments include sensors, actuators, and optical computers operating at speeds on order of speed of light. Potential in applications in which need for high-speed acquisition and storage of three-dimensional holographic images.

  9. ESPR uroradiology task force and ESUR Paediatric Work Group--Imaging recommendations in paediatric uroradiology, part VI: childhood renal biopsy and imaging of neonatal and infant genital tract. Minutes from the task force session at the annual ESPR Meeting 2012 in Athens on childhood renal biopsy and imaging neonatal genitalia.

    PubMed

    Riccabona, Michael; Lobo, Maria Luisa; Willi, Ulrich; Avni, Fred; Damasio, Beatrice; Ording-Mueller, Lil-Sofie; Blickman, Johan; Darge, Kassa; Papadopoulou, Frederika; Vivier, Pierre-Hugues

    2014-04-01

    The European Society of Paediatric Radiology Uroradiology Task Force and the ESUR Paediatric Work Group jointly publish guidelines for paediatric urogenital imaging. Two yet unaddressed topics involving patient safety and imaging load are addressed in this paper: renal biopsy in childhood and imaging of the neonatal genital tract, particularly in girls. Based on our thorough review of literature and variable practice in multiple centers, procedural recommendations are proposed on how to perform renal biopsy in children and how to approach the genital tract in (female) neonates. These are statements by consensus due to lack of sufficient evidence-based data. The procedural recommendation on renal biopsy in childhood aims at improving patient safety and reducing the number of unsuccessful passes and/or biopsy-related complications. The recommendation for an imaging algorithm in the assessment of the neonatal genital tract focuses on the potential of ultrasonography to reduce the need for more invasive or radiating imaging, however, with additional fluoroscopy or MRI to be used in selected cases. Adherence to these recommendations will allow comparable data and evidence to be generated for future adaptation of imaging strategies in paediatric uroradiology.

  10. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user.

  11. Dynamic support region-based astronomical image deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Geng, Ze-xun; Chen, Bo; Xu, Qing; Zhang, Bao-ming; Gong, Zhi-hui

    2008-07-01

    The performance of high-resolution imaging with large optical instruments is severely limited by atmospheric turbulence, and an image deconvolution is required for reaching the diffraction limit. A new astronomical image deconvolution algorithm is proposed, which incorporates dynamic support region and improved cost function to NAS-RIF algorithm. The enhanced NAS-RIF (ENAS-RIF) method takes into account the noise in the image and can dynamically shrink support region (SR) in application. In restoration process, initial SR is set to approximate counter of the true object, and then SR automatically contracts with iteration going. The approximate counter of interested object is detected by means of beamlet transform detecting edge. The ENAS-RIF algorithm is applied to the restorations of in-door Laser point source and long exposure extended object images. The experimental results demonstrate that the ENAS-RIF algorithm works better than classical NAS-RIF algorithm in deconvolution of the degraded image with low SNR and convergence speed is faster.

  12. Evaluation of a novel laparoscopic camera for characterization of renal ischemia in a porcine model using digital light processing (DLP) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2012-03-01

    Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.

  13. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  14. Imaging and Modeling the Dynamics of Clathrin-Mediated Endocytosis

    PubMed Central

    Mettlen, Marcel

    2014-01-01

    Clathrin-mediated endocytosis (CME) plays a central role in cellular homeostasis and is mediated by clathrin-coated pits (CCPs). Live-cell imaging has revealed a remarkable heterogeneity in CCP assembly kinetics, which can be used as an intrinsic source of mechanistic information on CCP regulation but also poses several major problems for unbiased analysis of CME dynamics. The backbone of unveiling the molecular control of CME is an imaging-based inventory of the full diversity of individual CCP behaviors, which requires detection and tracking of structural fiduciaries and regulatory proteins with an accuracy of >99.9%, despite very low signals. This level of confidence can only be achieved by combining appropriate imaging modalities with self-diagnostic computational algorithms for image analysis and data mining. PMID:25167858

  15. A Review of Digital Image Correlation Applied to Structura Dynamics

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Avitabile, Peter; Warren, Christopher; Pingle, Pawan; Helfrick, Mark

    2010-05-01

    A significant amount of interest exists in performing non-contacting, full-field surface velocity measurement. For many years traditional non-contacting surface velocity measurements have been made by using scanning Doppler laser vibrometry, shearography, pulsed laser interferometry, pulsed holography, or an electronic speckle pattern interferometer (ESPI). Three dimensional (3D) digital image correlation (DIC) methods utilize the alignment of a stereo pair of images to obtain full-field geometry data, in three dimensions. Information about the change in geometry of an object over time can be found by comparing a sequence of images and virtual strain gages (or position sensors) can be created over the entire visible surface of the object of interest. Digital imaging techniques were first developed in the 1980s but the technology has only recently been exploited in industry and research due to the advances of digital cameras and personal computers. The use of DIC for structural dynamic measurement has only very recently been investigated. Within this paper, the advantages and limits of using DIC for dynamic measurement are reviewed. Several examples of using DIC for dynamic measurement are presented on several vibrating and rotating structures.

  16. Dynamic mask: new approach to laser engraving of halftone images

    NASA Astrophysics Data System (ADS)

    Kadan, Victor N.; Pekarik, Alexander S.; Estrela Liopis, Rafael V.

    1997-03-01

    New approach to laser engraving of half tone images has been proposed and tested. Combining two basic approaches to laser engraving -- single pulse mask imaging and raster element construction by pack of laser pulses -- the new system constructs every individual raster element by imaging on the workpiece surface a dynamic mask of controlled size. The dynamic mask shape corresponds to the required raster element shape. This approach offers several important advantages over the conventional ones: (1) analog control of the mask shape provides gray level continuum, thus ensuring the image quality, unattainable by other means; (2) raster element marking by single laser pulse provides very good marking rate. It takes only one scan of the writing laser head to mark raster line. Much more powerful laser pulses can be used to engrave complete raster element by single pulse instead of its point-by-point construction by consecutive laser pulses; (3) the influence of laser beam quality parameters, such as beam divergence, and power instabilities on the gray level has been greatly reduced because raster element shape primarily depends on the mask shape and not on the power level and beam divergence. Dynamic mask system can be used both with cw and pulsed laser. Gray scale tones can be reproduced by the linear raster line width in the first case. Advantages of the new device have been demonstrated by engravings on stone, wood, etc. made with 50 W carbon-dioxide laser.

  17. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  18. Animal evaluation of technetium-99m triamide mercaptide complexes as potential renal imaging agents

    SciTech Connect

    Eshima, D.; Taylor, A. Jr.; Fritzberg, A.R.; Kasina, S.; Hansen, L.; Sorenson, J.F.

    1987-07-01

    Technetium-99m mercaptoacetylglycylglycylglycine (MAG3), a (/sup 99m/Tc)triamide mercaptide (N3S) compound has been synthesized in an attempt to obviate the stereochemistry problems associated with the diamide dimercaptide (N2S2) ligands. Because initial studies have been promising, the terminal glycine on the MAG3 compound has been varied to create a new series of N3S compounds. Twelve new N3S complexes were initially screened in mice and the more promising complexes, /sup 99m/Tc mercaptoacetylgylcylglycyl-glycine ((/sup 99m/Tc)MAG3), /sup 99m/Tc mercaptoacetylgylcylglycyl-L-alanine ((/sup 99m/Tc)MAG2-Ala), and both complexes of /sup 99m/Tc mercaptoeacetylglycylglycyl-L-asparagine ((/sup 99m/Tc)MAG2-Asn) and /sup 99m/Tc mercaptoacetylglycylglycyl-L-glutamine ((/sup 99m/Tc)MAG2-Gln), were further evaluated in rats utilizing constant infusion blood clearances, extraction efficiencies and protein binding assays. The renal excretion of all these complexes compared favorably with simultaneously administered (/sup 131/I)OIH and (/sup 125/I)iothalamate. The triamide mercaptide complexes represent a new ligand class for /sup 99m/Tc, which may provide a variety of complexes for the evaluation of renal tubular function.

  19. Spectral imaging of microvascular function in a renal cell carcinoma after treatment with a vascular disrupting agent

    NASA Astrophysics Data System (ADS)

    Wankhede, Mamta; deDeugd, Casey; Siemann, Dietmar W.; Sorg, Brian S.

    2009-02-01

    Tumors are highly metabolically active and thus require ample oxygen and nutrients to proliferate. Neovasculature generated by angiogenesis is required for tumors to grow beyond a size of about 1-2mm. Functional tumor vasculature also provides an access point for development of distant metastases. Due to the importance of the microvasculature for tumor growth, proliferation, and metastasis, the microvasculature has emerged as a therapeutic target for treatment of solid tumors. We employed spectral imaging in a rodent window chamber model to observe and measure the oxygen transport function of tumor microvasculature in a human renal cell carcinoma after treatment with a fast acting vascular disrupting agent. Human Caki-1 cells were grown in a dorsal skin-fold window chamber in athymic nude mice. Spectral imaging was used to measure hemoglobin saturation immediately before, immediately after and also at 2, 4, 6, 8, 24 and 48 hours after administration of the tubulin binding agent OXi4503. Up to 4 hours after treatment, tumor microvasculature was disrupted from the tumor core towards the periphery as seen in deoxygenation as well as structural changes of the vasculature. Reoxygenation and neovascularization commenced from the periphery towards the core from 6 - 48 hours after treatment. The timing of the effects of vascular disrupting agents can influence scheduling of repeat treatments and combinatorial treatments such as chemotherapy and radiation therapy. Spectral imaging can potentially provide this information in certain laboratory models from endogenous signals with microvessel resolution.

  20. Treatment Failure After Image-Guided Percutaneous Radiofrequency Ablation (RFA) of Renal Tumors - A Systematic Review with Description of Type, Frequency, Risk Factors and Management.

    PubMed

    Vollherbst, Dominik; Bertheau, Robert; Kauczor, Hans-Ulrich; Radeleff, Boris Alexis; Pereira, Philippe L; Sommer, Christof-Matthias

    2017-03-01

    Background Radiofrequency ablation (RFA) is an established treatment for small renal tumors. The objective of this review is to systematically assess the type, frequency, risk factors and management of treatment failure after image-guided percutaneous RFA of renal tumors. Method 10 studies (967 patients, 1033 tumors) with a mean/median follow-up of ≥ 30 months were systematically identified and analyzed. Results and Conclusion Image-guided percutaneous RFA of localized renal tumors is very effective. The most common type of treatment failure is residual unablated tumor (5.9 %), followed by local tumor progression (4.7 %). De novo tumors in the kidneys occur in 1.3 % of cases and extra-renal metastases in 2.0 %. Local tumor progression, de novo tumors in the kidneys and extra-renal metastases occur predominantly later than 12 months after initial RFA. Tumor size > 3 cm and central tumor location are the major risk factors for treatment failure. In the case of treatment failure, repeated RFA shows high success rates (86.3 % for residual unablated tumors and 87.5 % for local tumor progression). Key Points: · Treatment failure can be subdivided into residual unablated tumor and local tumor progression.. · Residual unablated tumor occurs in 5.9 % of cases.. · Local tumor progression occurs in 4.7 % of cases.. · Tumor size and location are the major risk factors for treatment failure.. · Repeated RFA is effective and commonly used for management.. Citation Format · Vollherbst D, Bertheau R, Kauczor H et al. Treatment Failure After Image-Guided Percutaneous Radiofrequency Ablation (RFA) of Renal Tumors - A Systematic Review with Description of Type, Frequency, Risk Factors and Management. Fortschr Röntgenstr 2017; 189: 219 - 227.

  1. High-dynamic-range pixel architectures for diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Karim, Karim S.; Yin, Sherman; Nathan, Arokia; Rowlands, John A.

    2004-05-01

    One approach to increase pixel signal-to-noise ratio (SNR) in low noise digital fluoroscopy is to employ in-situ pixel amplification via current-mediated active pixel sensors (C-APS). Experiments reveal a reduction in readout noise and indicate that an a-Si C-APS, coupled together with an established X-ray detection technology such as amorphous selenium (a-Se), can meet the stringent requirements (of < 1000 noise electrons) for digital X-ray fluoroscopy. A challenge with the C-APS circuit is the presence of a small-signal input linearity constraint. While using such a pixel amplifier for real-time fluoroscopy (where the exposure level is small) is feasible, the voltage change at the amplifier input is much higher in chest radiography or mammography due to the larger X-ray exposure levels. The larger input voltage causes the C-APS output to be non-linear thus reducing the pixel dynamic range. In addition, the resulting larger pixel output current causes the external column amplifier to saturate further reducing the pixel dynamic range. In this research, we investigate two alternate amplified pixel architectures that exhibit higher dynamic range. The test pixels are designed and simulated using an a-Si TFT model implemented in Verilog-A and results indicate a linear performance, high dynamic range, and a programmable circuit gain via choice of supply voltage and sampling time. These high dynamic range pixel architectures have the potential to enable a large area, active matrix flat panel imager (AMFPI) to switch instantly between low exposure, fluoroscopic imaging and higher exposure radiographic imaging modes. Lastly, the high dynamic range pixel circuits are suitable for integration with on-panel multiplexers for both gate and data lines, which can further reduce circuit complexity.

  2. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    SciTech Connect

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-19

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 {mu}m), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm.

  3. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel E.; Douglas, David R.

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  4. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel; Douglas, David R.; Legg, Robert A.; Tennant, Christopher D.

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  5. Statistical analysis of dynamic sequences for functional imaging

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Min; Chen, Chin-Tu; Wernick, Miles N.

    2000-04-01

    Factor analysis of medical image sequences (FAMIS), in which one concerns the problem of simultaneous identification of homogeneous regions (factor images) and the characteristic temporal variations (factors) inside these regions from a temporal sequence of images by statistical analysis, is one of the major challenges in medical imaging. In this research, we contribute to this important area of research by proposing a two-step approach. First, we study the use of the noise- adjusted principal component (NAPC) analysis developed by Lee et. al. for identifying the characteristic temporal variations in dynamic scans acquired by PET and MRI. NAPC allows us to effectively reject data noise and substantially reduce data dimension based on signal-to-noise ratio consideration. Subsequently, a simple spatial analysis based on the criteria of minimum spatial overlapping and non-negativity of the factor images is applied for extraction of the factors and factor images. In our simulation study, our preliminary results indicate that the proposed approach can accurately identify the factor images. However, the factors are not completely separated.

  6. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  7. Log files analysis to assess the use and workload of a dynamic web server dedicated to end-stage renal disease.

    PubMed

    Ben Said, Mohamed; Le Mignot, Loic; Richard, Jean Baptiste; Le Bihan, Christine; Toubiana, Laurent; Jais, Jean-Philippe; Landais, Paul

    2006-01-01

    A Multi-Source Information System (MSIS), has been designed for the Renal Epidemiology and Information Network (REIN) dedicated to End-Stage Renal Disease (ESRD). MSIS aims at providing reliable follow-up data for ESRD patients. It is based on an n-tier architecture, made out of a universal client, a dynamic Web server connected to a production database and to a data warehouse. MSIS is operational since 2002 and progressively deployed in 9 regions in France. It includes 16,677 patients. We show that the analysis of MSIS web log files allows evaluating the use of the system and the workload in a public-health perspective.

  8. [Imaging of the kidney].

    PubMed

    Renard-Penna, Raphaelle; Marcy, Pierre-Yves; Lacout, Alexis; Thariat, Juliette

    2012-03-01

    Imaging of the kidney relies on three main imaging modalities: ultrasound, CT scan and MRI, on one hand, and scintigraphy, on the other hand. First intent ultrasound provides anatomic/vascular and functional information. Tissue perfusion assessment using ultrasound can be improved using contrast agents. Renal ultrasound is particularly useful but remains operator and tumor/patient-dependent (obese, ectopic kidney, type and site of tumor). It is cheap and does not irradiate. Ultrasound contrast agents can improve the sensitivity of ultrasound in many clinical situations. Intravenous urography has been replaced by CT scan. Multi-slice CT scan is indeed the main renal imaging modality: it allows for angiographic and urographic explorations. MRI provides anatomic and functional information. Renal failure must be looked for before performing CT scan or MRI so as to avoid iatrogenic complications. Severe renal failure is a contraindication to both. Each imaging modality has pros and cons and specific indications. CT scan is the mainstay of renal imaging provided that standardized injection protocols are used, that the dose is limited (low-dose protocol) and renal function is assessed. Dynamic renal scintigraphy can be used in situations where information on the function of each kidney is necessary.

  9. Digital optical tomography system for dynamic breast imaging.

    PubMed

    Flexman, Molly L; Khalil, Michael A; Al Abdi, Rabah; Kim, Hyun K; Fong, Christopher J; Desperito, Elise; Hershman, Dawn L; Barbour, Randall L; Hielscher, Andreas H

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  10. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  11. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2007-11-02

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  12. Hybrid bright-field and hologram imaging of cell dynamics

    PubMed Central

    Byeon, Hyeokjun; Lee, Jaehyun; Doh, Junsang; Lee, Sang Joon

    2016-01-01

    Volumetric observation is essential for understanding the details of complex biological phenomena. In this study, a bright-field microscope, which provides information on a specific 2D plane, and a holographic microscope, which provides information spread over 3D volumes, are integrated to acquire two complementary images simultaneously. The developed system was successfully applied to capture distinct T-cell adhesion dynamics on inflamed endothelial layers, including capture, rolling, crawling, transendothelial migration, and subendothelial migration. PMID:27640337

  13. Hybrid bright-field and hologram imaging of cell dynamics

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeokjun; Lee, Jaehyun; Doh, Junsang; Lee, Sang Joon

    2016-09-01

    Volumetric observation is essential for understanding the details of complex biological phenomena. In this study, a bright-field microscope, which provides information on a specific 2D plane, and a holographic microscope, which provides information spread over 3D volumes, are integrated to acquire two complementary images simultaneously. The developed system was successfully applied to capture distinct T-cell adhesion dynamics on inflamed endothelial layers, including capture, rolling, crawling, transendothelial migration, and subendothelial migration.

  14. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  15. Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging

    PubMed Central

    Findlay, Anne M.; Ambrose, Josiah B.; Cahn-Weiner, Deborah A.; Houde, John F.; Honma, Susanne; Hinkley, Leighton B.N.; Berger, Mitchel S.; Nagarajan, Srikantan S.; Kirsch, Heidi E.

    2012-01-01

    Objective The goal of the current study was to examine the dynamics of language lateralization using magnetoencephalographic (MEG) imaging, to determine the sensitivity and specificity of MEG-imaging, and to determine if MEG-imaging can become a viable alternative to the intracarotid amobarbital procedure (IAP), the current gold-standard for preoperative language lateralization in neurosurgical candidates. Methods MEG was recorded during an auditory verb-generation task and imaging analysis of oscillatory activity was initially performed in 21 subjects with epilepsy, brain tumor, or arteriovenous malformation who had undergone IAP and MEG. Time-windows and brain regions-of-interest that best discriminated between IAP determined left or right dominant for language were identified. Parameters derived in the retrospective analysis, was applied to a prospective cohort of 14 patients and healthy controls. Results Power decreases in the beta-frequency band were consistently observed following auditory stimulation in inferior frontal, superior temporal, and parietal cortices; similar power decreases were also seen in inferior frontal cortex prior to and during overt verb generation. Language lateralization was clearly observed to be a dynamic process that is bilateral for several hundred milliseconds during periods of auditory perception and overt speech production. Correlation with the IAP was seen in 13 of 14 (93%) of prospective patients, with the test demonstrating a sensitivity of 100% and specificity of 92%. Interpretation Our results demonstrate excellent correlation between MEG imaging findings with the IAP for language lateralization, and provide new insights into the spatiotemporal dynamics of cortical speech processing. PMID:22522481

  16. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  17. A new method using multiphoton imaging and morphometric analysis for differentiating chromophobe renal cell carcinoma and oncocytoma kidney tumors

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Mukherjee, Sushmita; Jain, Manu

    2016-03-01

    Distinguishing chromophobe renal cell carcinoma (chRCC) from oncocytoma on hematoxylin and eosin images may be difficult and require time-consuming ancillary procedures. Multiphoton microscopy (MPM), an optical imaging modality, was used to rapidly generate sub-cellular histological resolution images from formalin-fixed unstained tissue sections from chRCC and oncocytoma.Tissues were excited using 780nm wavelength and emission signals (including second harmonic generation and autofluorescence) were collected in different channels between 390 nm and 650 nm. Granular structure in the cell cytoplasm was observed in both chRCC and oncocytoma. Quantitative morphometric analysis was conducted to distinguish chRCC and oncocytoma. To perform the analysis, cytoplasm and granules in tumor cells were segmented from the images. Their area and fluorescence intensity were found in different channels. Multiple features were measured to quantify the morphological and fluorescence properties. Linear support vector machine (SVM) was used for classification. Re-substitution validation, cross validation and receiver operating characteristic (ROC) curve were implemented to evaluate the efficacy of the SVM classifier. A wrapper feature algorithm was used to select the optimal features which provided the best predictive performance in separating the two tissue types (classes). Statistical measures such as sensitivity, specificity, accuracy and area under curve (AUC) of ROC were calculated to evaluate the efficacy of the classification. Over 80% accuracy was achieved as the predictive performance. This method, if validated on a larger and more diverse sample set, may serve as an automated rapid diagnostic tool to differentiate between chRCC and oncocytoma. An advantage of such automated methods are that they are free from investigator bias and variability.

  18. Dynamic phase imaging and processing of moving biological organisms

    NASA Astrophysics Data System (ADS)

    Creath, Katherine; Goldstein, Goldie

    2012-03-01

    This paper describes recent advances in developing a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. "Label-free" measurements of biological objects in reflection using harmless light levels are possible without the need for scanning and vibration isolation. This instrument utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns taking advantage of the polarization properties of light enabling phase image movies in real time at video rates to track dynamic motions and volumetric changes. Optical thickness data are derived from phase images after processing to remove the background surface shape to quantify changes in cell position and volume. Data from a number of different pond organisms will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of the image processing involved and the monitoring of different biological processes.

  19. Imaging red blood cell dynamics by quantitative phase microscopy.

    PubMed

    Popescu, Gabriel; Park, YoungKeun; Choi, Wonshik; Dasari, Ramachandra R; Feld, Michael S; Badizadegan, Kamran

    2008-01-01

    Red blood cells (RBCs) play a crucial role in health and disease, and structural and mechanical abnormalities of these cells have been associated with important disorders such as Sickle cell disease and hereditary cytoskeletal abnormalities. Although several experimental methods exist for analysis of RBC mechanical properties, optical methods stand out as they enable collecting mechanical and dynamic data from live cells without physical contact and without the need for exogenous contrast agents. In this report, we present quantitative phase microscopy techniques that enable imaging RBC membrane fluctuations with nanometer sensitivity at arbitrary time scales from milliseconds to hours. We further provide a theoretical framework for extraction of membrane mechanical and dynamical properties using time series of quantitative phase images. Finally, we present an experimental approach to extend quantitative phase imaging to 3-dimensional space using tomographic methods. By providing non-invasive methods for imaging mechanics of live cells, these novel techniques provide an opportunity for high-throughput analysis and study of RBC mechanical properties in health and disease.

  20. Dynamic, Nondestructive Imaging of a Bioengineered Vascular Graft Endothelium

    PubMed Central

    Lu, Peng; Xu, Yong; Rylander, Christopher G.; Wang, Ge; Sapoznik, Etai; Criswell, Tracy; Lee, Sang Jin; Soker, Shay; Rylander, Marissa Nichole

    2013-01-01

    Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB) imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning. PMID:23585885

  1. Evaluation of dysfunction and malformations of the urinary tract in patients with meningomyelocele, by renal dynamic scintigraphy and direct radionuclide cystography. An Indian perspective.

    PubMed

    Patel, Chetan D; Chawla, Madhavi; Nadig, Murali R; Mahapatra, Ashok K; Bal, Chandrasekhar

    2007-01-01

    Meningomyelocele (MMC) is the most common form of neural crest closure defect and may be associated with dysfunction and malformations of multiple organs including urinary tract. It affects as many as 2-4 in 1000 live births, however there are no epidemiological studies available from India. Anatomical and neurogenic abnormalities of the urinary tract are known to occur in these patients. Scanty literature is available regarding the utility of radionuclide procedures in the evaluation of urinary tract in patients of MMC. The aim of this study was to evaluate urinary tract dysfunction and malformations in patients operated of MMC by diuretic renal dynamic scintigraphy (RDS) and direct radionuclide cystography (DRCG). In this retrospective analysis, 140 operated patients for MMC, mean age: 4.46, range: 1-18 years; 83 male and 57 female, referred to our department for evaluation of the upper renal tract, were studied. Neurogenic bladder (NB) was associated in 69 patients. The diagnosis of NB was based on clinical features like incontinence, expressibility of urine bladder and on urodynamic studies. RDS was performed after the intravenous administration of 10.36 MBq/kg of technetium-99m diethylene triamine penta-acetate or 99mTc-L, L-ethylenedicysteine. All patients with hydronephrosis (HDN) or hydroureteronephrosis (HDUN) on RDS underwent DRCG using 11.1-18.5 MBq of 99mTc-sulphur colloid. Our results showed that: out of the 140 patients, 78 (56%) including 33 with NB, had normal renal scintigraphy. Six patients (4%) had congenital renal anomalies. Twenty patients (14%) revealed non-obstructive HDN and had no vesico-ureteric reflux (VUR). Thirty-six patients (26%) with bilateral HDUN also had NB of which 19 (53%) had VUR. Fourteen (74%) of these patients with VUR had impaired renal function. In discussion, patients with MMC may present with disordered innervation of the detrussor muscle and external sphincter, which adversely affects the bladder function and

  2. Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function

    PubMed Central

    Schroeder, Marie

    2016-01-01

    Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch. PMID:27899435

  3. Renal scintiscanning. A review

    PubMed Central

    Davies, E. Rhys

    1970-01-01

    Renal scintiscanning is a simple investigation that does not require special preparation and is well tolerated by patients. Radiopharmaceuticals used in linear scanning are accumulated in the renal cortex. This accumulation is diminished: (a) when the cortex is destroyed, e.g. by pyelonephritis, injury, etc.; and (b) when the amount available to the cortex is reduced, e.g. by ischaemia. The scintigram depicts the kidneys unimpeded by bowel contents, gives a qualitative assessment of renal function and shows the distribution of zones of normal function. Recent technical improvements show great promise in deriving a quantitative measure of renal function in some circumstances. The location of normally functioning cortex is often important in the management of renal diseases and the value of scintiscanning is then considerable. It is occasionally useful in planning surgery. The anatomy of the renal collecting system can be shown only by urography. High dose techniques achieve this even in the face of renal failure, and scintiscanning has few indications in investigating lesions that distort the renal anatomy, e.g. tumours and cysts. Renal scintiscanning is a very valuable additional method to urography, arteriography and renography in investigation of renal disorders. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4905447

  4. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  5. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells

    PubMed Central

    Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.

    2016-01-01

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics. PMID:27872481

  6. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells

    NASA Astrophysics Data System (ADS)

    Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.

    2016-11-01

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.

  7. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  8. In vivo multiphoton imaging of immune cell dynamics.

    PubMed

    Okada, Takaharu; Takahashi, Sonoko; Ishida, Azusa; Ishigame, Harumichi

    2016-11-01

    Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.

  9. An incidental detection of aortic aneurysm on Tc-99m MAG3 renal scintigraphy.

    PubMed

    Sadic, Murat; Demirel, Koray; Koca, Gökhan; Atilgan, Hasan Ikbal; Korkmaz, Meliha

    2013-01-01

    A 71-year-old man with newly diagnosed hypertension was referred for Technetium-99m mercaptoacetyltriglycine (Tc-99m MAG3) renal scintigraphy to evaluate the recent onset of impairment in renal functions. Dynamic imaging revealed activity flow which was suspicious for aortic aneurysm (AA) with a concurrent decrease in left renal blood flow. CT angiography of the thoracoabdominal aorta confirmed that this area corresponded to AA. The purpose of this report was to present the first case of incidental detection of AA on Tc-99m MAG3 scintigraphy and highlight the importance of correlative imaging for the diagnosis of abnormal radioactivity accumulation in the region of vascular structures.

  10. Global Auroral Imaging for the Dynamics Explorer Mission

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1998-01-01

    The two Dynamics Explorer spacecraft, DE-1 and DE-2, were launched on August 3, 1981, into polar coplanar orbits at different altitudes for the purpose of studying interactive processes within the atmosphere-ionosphere-magnetosphere system. The DE-1 spacecraft (high-altitude mission) used an elliptical orbit that was selected to allow: (1) measurements extending from the hot magnetospheric plasma through the plasmasphere to the cool ionosphere; (2) global auroral imaging, wave measurements in the heart of the magnetosphere, and crossing of auroral field lines at several earth radii; and (3) measurements for significant periods of time along a magnetic field flux tube. The orbit of Dynamics Explorer 1 offered an opportunity to obtain global images of Earth's dayglow and auroral luminosities and to acquire consecutive images of the entire auroral oval during the growth, onset, expansion, and recovery phases of substorms. The University of Iowa's Spin-scan Auroral Imaging (SAI) instrument, was on-board DE-1. SAI was activated in orbit and placed in routine operation on September 23, 1981, and has provided outstanding new contributions in the fields of auroral, magnetospheric and geocoronal physics, introduced a powerful tool for the study of global atmospheric ozone, and initiated the first search from space for marine bioluminescence on the surface of the global ocean. The SAI instrumentation consists of three imaging photometers, two for visible wavelengths and the third for vacuum-ultraviolet wavelengths equipped with primary catoptric optics with superpolished mirror surfaces. The primary focusing element is an off-axis section of a parabolic mirror that is used to provide an optical path completely free of support structures for the mirrors.

  11. Dynamic phase imaging utilizing a 4-dimensional microscope system

    PubMed Central

    Creath, Katherine

    2011-01-01

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions. PMID:24357901

  12. Femtosecond electron imaging of defect-modulated phonon dynamics

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  13. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  14. Segmentation of dynamic PET images with kinetic spectral clustering

    NASA Astrophysics Data System (ADS)

    Mouysset, S.; Zbib, H.; Stute, S.; Girault, J. M.; Charara, J.; Noailles, J.; Chalon, S.; Buvat, I.; Tauber, C.

    2013-10-01

    Segmentation is often required for the analysis of dynamic positron emission tomography (PET) images. However, noise and low spatial resolution make it a difficult task and several supervised and unsupervised methods have been proposed in the literature to perform the segmentation based on semi-automatic clustering of the time activity curves of voxels. In this paper we propose a new method based on spectral clustering that does not require any prior information on the shape of clusters in the space in which they are identified. In our approach, the p-dimensional data, where p is the number of time frames, is first mapped into a high dimensional space and then clustering is performed in a low-dimensional space of the Laplacian matrix. An estimation of the bounds for the scale parameter involved in the spectral clustering is derived. The method is assessed using dynamic brain PET images simulated with GATE and results on real images are presented. We demonstrate the usefulness of the method and its superior performance over three other clustering methods from the literature. The proposed approach appears as a promising pre-processing tool before parametric map calculation or ROI-based quantification tasks.

  15. Insights into nuclear dynamics using live-cell imaging approaches.

    PubMed

    Bigley, Rachel B; Payumo, Alexander Y; Alexander, Jeffrey M; Huang, Guo N

    2017-03-01

    The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website.

  16. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    PubMed Central

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  17. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump-probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump-probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S2 state to the vibrationally hot S1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  18. Dynamic diffuse optical tomography imaging of peripheral arterial disease.

    PubMed

    Khalil, Michael A; Kim, Hyun K; Kim, In-Kyong; Flexman, Molly; Dayal, Rajeev; Shrikhande, Gautam; Hielscher, Andreas H

    2012-09-01

    Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool.

  19. Dynamic speckle image segmentation using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  20. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  1. Application of DIRI dynamic infrared imaging in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  2. Motion-compensated compressed sensing for dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  3. Nuclear dynamics in metastatic cells studied by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Monroy, Freddy; Popescu, Gabriel

    2015-03-01

    We used a new quantitative high spatiotemporal resolution phase imaging tool to explore the nuclear structure and dynamics of individual cells. We used a novel analysis tool to quantify the diffusion outside and inside the nucleus of live cells. We also obtained information about the nuclear spatio temporal mass density in metastatic cells. The results indicate that in the cytoplasm, the intracellular transport is mainly active (direct, deterministic), while inside the nucleus it is both active and passive (diffusive, random). We calculated the standard deviation of velocities in active transport and the diffusion coefficient for passive transport.

  4. Imaging intracellular RNA distribution and dynamics in living cells.

    PubMed

    Tyagi, Sanjay

    2009-05-01

    Powerful methods now allow the imaging of specific mRNAs in living cells. These methods enlist fluorescent proteins to illuminate mRNAs, use labeled oligonucleotide probes and exploit aptamers that render organic dyes fluorescent. The intracellular dynamics of mRNA synthesis, transport and localization can be analyzed at higher temporal resolution with these methods than has been possible with traditional fixed-cell or biochemical approaches. These methods have also been adopted to visualize and track single mRNA molecules in real time. This review explores the promises and limitations of these methods.

  5. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  6. High dynamic range imaging for the detection of motion

    NASA Astrophysics Data System (ADS)

    Hay, Jeffrey Robert

    High dynamic range imaging involves imaging at a bit depth higher than the typical 8-12 bits offered by standard video equipment. We propose a method of imaging a scene at high dynamic range, 14+ bits, to detect motion correlated with changes in the measured optical signal. Features within a scene, namely edges, can be tracked through a time sequence and produce a modulation in light levels associated with the edge moving across a region being sampled by the detector. The modulation in the signal is analyzed and a model is proposed that allows for an absolute measurement of the displacement of an edge. In addition, turbulence present in the received optical path produces a modulation in the received signal that can be directly related to the various turbulent eddy sizes. These features, present in the low frequency portion of the spectrum, are correlated to specific values for a relative measurement of the turbulence intensity. In some cases a single element sensor is used for a measurement at a single point. Video technology is also utilized to produce simultaneous measurements across the entire scene. Several applications are explored and the results discussed. Key applications include: the use of this technique to analyze the motions of bridges for the assessment of structural health, non-contact methods of measuring the blood pulse waveform and respiration rate of an individual(s), and the imaging of turbulence, including clear air turbulence, for relative values of intensity. Resonant frequencies of bridges can be measured with this technique as well as eddies formed from turbulent flow.

  7. Dynamic Imaging of Individual Remyelination Profiles in Multiple Sclerosis

    PubMed Central

    Bodini, Benedetta; Veronese, Mattia; García‐Lorenzo, Daniel; Battaglini, Marco; Poirion, Emilie; Chardain, Audrey; Freeman, Léorah; Louapre, Céline; Tchikviladze, Maya; Papeix, Caroline; Dollé, Frédéric; Zalc, Bernard; Lubetzki, Catherine; Bottlaender, Michel; Turkheimer, Federico

    2016-01-01

    Background Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin in the central nervous system white matter, Pittsburgh compound B ([11C]PiB) can be used as a positron emission tomography (PET) tracer to explore myelin dynamics in MS. Methods Patients with active relapsing‐remitting MS (n = 20) and healthy controls (n = 8) were included in a longitudinal trial combining PET with [11C]PiB and magnetic resonance imaging. Voxel‐wise maps of [11C]PiB distribution volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the global index of myelin content change; the index of demyelination; and the index of remyelination. Results At baseline, there was a progressive reduction in [11C]PiB binding from the normal‐appearing white matter to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal decrease in the tracer binding at the voxel level. During follow‐up, high between‐patient variability was found for all indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p = 0.006 and beta‐coefficient = –0.67 with the Expanded Disability Status Scale; p = 0.003 and beta‐coefficient = –0.68 with the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index. Interpretation [11C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients depending on their individual remyelination potential, which significantly correlates with clinical disability. This technique should be considered to assess novel promyelinating drugs. Ann Neurol 2016;79:726–738 PMID:26891452

  8. Acoustic Radiation Force Impulse Imaging for Noninvasive Evaluation of Renal Parenchyma Elasticity: Preliminary Findings

    PubMed Central

    Xu, Hui-Xiong; Peng, Ai; Zhang, Yi-Feng; Liu, Lin-Na

    2013-01-01

    Objective To evaluate the diagnostic value of acoustic radiation force impulse (ARFI) to test the elasticity of renal parenchyma by measuring the shear wave velocity (SWV) which might be used to detect chronic kidney disease (CKD). Methods 327 healthy volunteers and 64 CKD patients were enrolled in the study. The potential influencing factors and measurement reproducibility were evaluated in the healthy volunteers. Correlations between SWV and laboratory tests were analyzed in CKD patients.?Receiver-operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance of ARFI. Results The SWV of healthy volunteers correlated significantly to age (r = −0.22, P<0.001, n = 327) and differed significantly between men and women (2.06±0.48 m/s vs. 2.2±0.52 m/s, P = 0.018, n = 327). However, it did not correlate significantly to height, weight, body mass index, waistline, kidney dimension and the depth for SWV measurement (n = 30). Inter- and intraobserver agreement expressed as intraclass coefficient correlation were 0.64 (95% CI: 0.13 to 0.82, P = 0.011) and 0.6 (95% CI: 0.31 to 0.81, P = 0.001) (n = 40). The mean SWV in healthy volunteers was 2.15±0.51 m/s, while was 1.81±0.43 m/s, 1.79±0.29 m/s, 1.81±0.44 m/s, 1.64±0.55 m/s, and 1.36±0.17 m/s for stage 1, 2, 3, 4 and 5 in CKD patients respectively. The SWV was significantly higher for healthy volunteers compared with each stage in CKD patients. ARFI could not predict the different stages of CKD except stage 5. In CKD patients, SWV correlated to e-GFR (r = 0.3, P = 0.018), to urea nitrogen (r =  −0.3, P = 0.016), and to creatinine (r =  −0.41, P = 0.001). ROC analyses indicated that the area under the ROC curve was 0.752 (95% CI: 0.704 to 0.797) (P<0.001). The cut-off value for predicting CKD was 1.88 m/s (sensitivity 71.87% and specificity 69.69%). Conclusion ARFI may be a potentially useful tool in detecting CKD. PMID

  9. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    SciTech Connect

    Zelefsky, Michael J.; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.

  10. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome

    PubMed Central

    Yang, Jing; Tan, Hua; Huang, Shanqian; Cui, Yujun; Dong, Lu; Ma, Chaofeng; Ma, Changan; Zhou, Sen; Wu, Xiaoxu; Zhang, Yanyun; Wang, Jingjun; Yang, Ruifu; Stenseth, Nils Chr.; Xu, Bing

    2017-01-01

    Zoonoses are increasingly recognized as an important burden on global public health in the 21st century. High-resolution, long-term field studies are critical for assessing both the baseline and future risk scenarios in a world of rapid changes. We have used a three-decade-long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, coupled with epidemiological data from an endemic area of China, and show that the shift in the ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the human-wildlife interface. We reveal that environmental forcing, especially rainfall and resource availability, exert important cascading effects on intra-annual variability in the wildlife reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes. Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonality in transmission, generated from interlocking cycles of agricultural phenology and rodent behavior driven by the rainy seasons. PMID:28141833

  11. Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging.

    PubMed

    Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B

    2013-04-01

    Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.

  12. First mesospheric wind images using the Michelson interferometer for airglow dynamics imaging.

    PubMed

    Langille, J A; Ward, W E; Nakamura, T

    2016-12-10

    The Michelson interferometer for airglow dynamics imaging (MIADI) is a ground-based instrument that combines an imaging capability with the Doppler Michelson interferometry in order to remotely detect motions in the mesopause region using spectrally isolated airglow emissions: the O(S1) emission at 557.73 nm and the OH (6, 2) P1 (2) at 839.918 nm. A measurement and analysis approach has been developed that allows simultaneous images of the line-of-sight Doppler wind field and irradiance field to be obtained. A working field instrument was installed and tested at a field site outside Fredericton, NB (45.96 N, 66.65 W) during the summer of 2014. Successful measurements over a 6 h period were obtained on 31 July 2014. This paper describes the MIADI measurement and analysis approach and presents the work that has been done to extract images of the line-of-sight Doppler wind field and irradiances from these observations. The imaging capability is validated by identifying the presence of large-scale and small-scale geophysical perturbations in the images.

  13. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  14. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    NASA Astrophysics Data System (ADS)

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-01

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  15. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    SciTech Connect

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-15

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  16. Imaging and dynamics of light atoms and molecules on graphene

    NASA Astrophysics Data System (ADS)

    Meyer, Jannik C.; Girit, C. O.; Crommie, M. F.; Zettl, A.

    2008-07-01

    Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunnelling microscope revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunnelling microscopy has limited applicability due to restrictions in, for example, sample conductivity, cleanliness, and data acquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM), has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high-atomic-number) atoms can now be detected by TEM even when embedded within a semiconductor material. But detecting an individual low-atomic-number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM owing to the very low contrast of light elements. Here we demonstrate a means to observe, by conventional TEM, even the smallest atoms and molecules: on a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic-scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.

  17. Imaging and dynamics of light atoms and molecules on graphene.

    PubMed

    Meyer, Jannik C; Girit, C O; Crommie, M F; Zettl, A

    2008-07-17

    Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunnelling microscope revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunnelling microscopy has limited applicability due to restrictions in, for example, sample conductivity, cleanliness, and data acquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM), has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high-atomic-number) atoms can now be detected by TEM even when embedded within a semiconductor material. But detecting an individual low-atomic-number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM owing to the very low contrast of light elements. Here we demonstrate a means to observe, by conventional TEM, even the smallest atoms and molecules: on a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic-scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.

  18. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    NASA Astrophysics Data System (ADS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-10-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.

  19. Probing peroxisome dynamics and biogenesis by fluorescence imaging.

    PubMed

    Jauregui, Miluska; Kim, Peter K

    2014-03-03

    Peroxisomes are the most recently discovered classical organelles, and only lately have their diverse functions been truly recognized. Peroxisomes are highly dynamic structures, changing both morphologically and in number in response to both extracellular and intracellular signals. This metabolic organelle came to prominence due to the many genetic disorders caused by defects in its biogenesis or enzymatic functions. There is now growing evidence that suggests peroxisomes are involved in lipid biosynthesis, innate immunity, redox homeostasis, and metabolite scavenging, among other functions. Therefore, it is important to have available suitable methods and techniques to visualize and quantify peroxisomes in response to various cellular signals. This unit includes a number of protocols that will enable researchers to image, qualify, and quantify peroxisome numbers and morphology-with both steady-state and time-lapse imaging using mammalian cells. The use of photoactivatable fluorescent proteins to detect and measure peroxisome biogenesis is also described. Altogether, the protocols described here will facilitate understanding of the dynamic changes that peroxisomes undergo in response to various cellular signals.

  20. Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays

    NASA Astrophysics Data System (ADS)

    Barber, John L.; Barnes, Cris W.; Sandberg, Richard L.; Sheffield, Richard L.

    2014-05-01

    Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at the larger scale of grains. There is a need for the study of materials at the "mesoscale," the scale at which subgranular physical processes and intergranular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can penetrate multiple grains of material would be a transformative technique for the study of the performance of materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large mesoscale spots at very hard energies. It should provide the theory and design background for the experiments and facilities required to control materials in extreme environments, in particular for the next generation of very-hard-x-ray free electron lasers.

  1. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering

    PubMed Central

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-01-01

    Biological systems undergo dynamical changes continuously which span multiple spatial and temporal scales. To study these complex biological dynamics in vivo, high-speed volumetric imaging that can work at large imaging depth is highly desired. However, deep tissue imaging suffers from wavefront distortion, resulting in reduced Strehl ratio and image quality. Here we combine the two wavefront engineering methods developed in our lab, namely the optical phase-locked ultrasound lens based volumetric imaging and the iterative multiphoton adaptive compensation technique, and demonstrate in vivo volumetric imaging of microglial and mitochondrial dynamics at large depth in mouse brain cortex and lymph node, respectively. PMID:26832504

  2. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering.

    PubMed

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-01-25

    Biological systems undergo dynamical changes continuously which span multiple spatial and temporal scales. To study these complex biological dynamics in vivo, high-speed volumetric imaging that can work at large imaging depth is highly desired. However, deep tissue imaging suffers from wavefront distortion, resulting in reduced Strehl ratio and image quality. Here we combine the two wavefront engineering methods developed in our lab, namely the optical phase-locked ultrasound lens based volumetric imaging and the iterative multiphoton adaptive compensation technique, and demonstrate in vivo volumetric imaging of microglial and mitochondrial dynamics at large depth in mouse brain cortex and lymph node, respectively.

  3. [Dynamic renal echography versus urography in the follow-up of patients who have undergone ureterosigmoidostomy].

    PubMed

    Montanari, E; Tzoumas, S; Deiana, G; Cogni, M; Guarneri, A; Zanetti, G; Austoni, E

    1994-09-01

    The main post uretero-sigmoidostomy complications are stricture of the anastomosis, chronic infection and urolithiasis. In our institution the patients with ureterosigmodostomy undergo a follow-up protocol in which blood chemistry, ultrasonography, intravenous pyelography and C.T. are periodically performed. The aim of the present paper is to compare the accuracy of kidney sonography after diuretic stimulation with intravenous pyelography in the diagnosis of ureteral stenosis. Out of 91 patient with ureterosigmoidostomy 18 patients (34 kidneys) underwent intravenous pyelography, a basal U.S. and then a dynamic one at 5, 10, 15, 30, 45, 60, 90, 120 minutes after administration of furosemide 20 mg i.v. At basal U.S. 27 kidneys were normal and 7 showed a dilations. After diuretic stimulation we observed 16 normal kidneys, 16 dilated units and 2 intermittent hydronephrosis. Out of 16 dilated kidneys 6 became normal in 60 minutes. Out of 10 dilated units 3 were normal in 90 minutes (hipotonic), 2 were normal before 120 minutes (low grade obstruction) and 5 were dilated after 120 minutes (high grade obstruction). With intravenous pyelography we observed 27 normal kidneys and seven dilated units. Dynamic sonography have shown high sensibility (100%), specificity (88.8%) and accuracy (91%) in diagnosis of ureteral obstruction in to I.V.P. in the follow-up of this kind of divesion.

  4. Two-photon imaging and analysis of neural network dynamics

    NASA Astrophysics Data System (ADS)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  5. Dynamic Imaging of Surface Motion with a Stereo Borescope

    SciTech Connect

    Michael Berninger, Stuart Baker

    2008-12-11

    A new stereo borescope has been investigated that would provide a time-resolved calibrated method of recording the motion and deformation of a three-dimensional (3-D) surface during explosively driven dynamic shock experiments at the Nevada Test Site. In these experiments, geometries would likely prove to be incompatible with conventional direct optical systems. Single line-of-sight borescopes lack adequate depth-of-field for quantitative imaging of the 3-D surface. To improve depth-of-field and provide time resolution, a stereo borescope has been fabricated for use with a nine-frame framing camera. At one end, stereo optics couple light from the dynamic surface into a pair of flexible 1-mm-diameter correlated fiber-optic bundles. At the other end, small-format lenses (~3 mm) interface with the framing camera, which is set up to simultaneously record the separate-perspective views. All nine frames could be recorded in a period as short as 1.8 μs, and spatial resolution is optimized to 11 line-pairs per mm. To achieve pseudo 3-D depth perception, photogrammetric analysis has been demonstrated with commercial software from ADAM technology (Australia). This paper presents the results from time-resolved stereo images of dynamic surfaces collected in a series of high-explosives experiments at the National Security Technologies, LLC, “Boom Box” in Santa Barbara, CA. Experience with the stereo borescope has suggested other potentially useful stereoscopic applications, such as stereo viewing of moving surfaces on the interiors of engines and the heating of moving components, and the viewing material deposition on interior surfaces during machine operations and fabrication processes.

  6. Global auroral imaging instrumentation for the Dynamics Explorer Mission

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Craven, J. D.; Ackerson, K. L.; English, M. R.; Eather, R. H.; Carovillano, R. L.

    1981-01-01

    The instrumentation for obtaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. It is noted that the three spin-scan auroral imaging photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design that includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels making up an image frame. It is pointed out that the full width of the fields-of-view of the photometers corresponding to a single pixel is 0.29 deg and that the angular dimensions of a typical full frame are 30 deg x 30 deg and span 14,400 pixels.

  7. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  8. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  9. In vivo quantification of autofluorescence dynamics during renal ischemia and reperfusion under dual UV excitation

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2007-02-01

    We explore an optical spectroscopy approach to monitor the progression of ischemia and reperfusion in situ using a rat model. The system utilizes the sensitivity of NADH emission to changes in cell metabolism during ischemia and reperfusion. In addition, the emission from tryptophan is employed as a normalization against changes in other optical properties of the tissue. Ischemia was induced in one kidney followed by at least 60 minutes of reperfusion. During both phases, autofluorescence images of the exposed surfaces of both the ischemic kidney and the normal (control) kidney were acquired and the respective average emission intensities were determined. Preliminary results indicate that the kinetics of the ratio of the emissions under these two excitations is related to the injury time.

  10. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  11. Vicarious liver visualization in solitary functioning kidney with technetium-99m ethylenedicysteine renal scintigraphy

    PubMed Central

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Gupta, Nitin; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a case of 3-year-old boy who was incidentally diagnosed to have single left kidney on ultrasonography. Dynamic technetium-99m ethylenedicysteine renal scintigraphy was acquired for assessing the existing kidney function showed the tracer localization in bilateral renal fossae during the entire study. The single-photon emission computerized tomography/computerized tomography study revealed activity in the right renal fossa to be in the enlarged right lobe of the liver, which was mimicking as impaired functioning right kidney in planar images. The hybrid imaging helped in accurate delineation of tracer uptake by confirming it to be the false appearance of the right kidney in planar imaging. This case report also highlights the possible mechanism of renal tracer uptake in the liver parenchyma. PMID:26170576

  12. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    SciTech Connect

    Raman, R N; Pivetti, C D; Matthews, D L; Troppmann, C; Demos, S G

    2008-02-08

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia as well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.

  13. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2008-02-01

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia as well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using a fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.

  14. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping.

    PubMed

    Rutherford, Elaine; Talle, Mohammed A; Mangion, Kenneth; Bell, Elizabeth; Rauhalammi, Samuli M; Roditi, Giles; McComb, Christie; Radjenovic, Aleksandra; Welsh, Paul; Woodward, Rosemary; Struthers, Allan D; Jardine, Alan G; Patel, Rajan K; Berry, Colin; Mark, Patrick B

    2016-10-01

    Noninvasive quantification of myocardial fibrosis in end-stage renal disease is challenging. Gadolinium contrast agents previously used for cardiac magnetic resonance imaging (MRI) are contraindicated because of an association with nephrogenic systemic fibrosis. In other populations, increased myocardial native T1 times on cardiac MRI have been shown to be a surrogate marker of myocardial fibrosis. We applied this method to 33 incident hemodialysis patients and 28 age- and sex-matched healthy volunteers who underwent MRI at 3.0T. Native T1 relaxation times and feature tracking-derived global longitudinal strain as potential markers of fibrosis were compared and associated with cardiac biomarkers. Left ventricular mass indices were higher in the hemodialysis than the control group. Global, Septal and midseptal T1 times were all significantly higher in the hemodialysis group (global T1 hemodialysis 1171 ± 27 ms vs. 1154 ± 32 ms; septal T1 hemodialysis 1184 ± 29 ms vs. 1163 ± 30 ms; and midseptal T1 hemodialysis 1184 ± 34 ms vs. 1161 ± 29 ms). In the hemodialysis group, T1 times correlated with left ventricular mass indices. Septal T1 times correlated with troponin and electrocardiogram-corrected QT interval. The peak global longitudinal strain was significantly reduced in the hemodialysis group (hemodialysis -17.7±5.3% vs. -21.8±6.2%). For hemodialysis patients, the peak global longitudinal strain significantly correlated with left ventricular mass indices (R = 0.426), and a trend was seen for correlation with galectin-3, a biomarker of cardiac fibrosis. Thus, cardiac tissue properties of hemodialysis patients consistent with myocardial fibrosis can be determined noninvasively and associated with multiple structural and functional abnormalities.

  15. The scintigraphic pattern of renal angiomyolipoma

    SciTech Connect

    Jaikishen, P.; Oster, Z.H.; Atkins, H.L. )

    1990-03-01

    The patterns of renal and gallium scintigraphy in a patient with renal angiomyolipoma are presented. Renal study with Tc-99m DTPA demonstrated a photopenic area in the flow and delayed images. Ga-67 citrate imaging did not show any evidence of increased activity. Although this pattern is also seen in renal cysts, scintigraphy seems to be valuable in the evaluation of angiomyolipoma. It helps differentiate it from renal carcinoma or renal abscess (which may be gallium avid), especially when the tumor is characterized by a paucity of adipose tissue and complicated by hemorrhage, in which case CT and ultrasonographic patterns are not diagnostic.

  16. Characterization of Enhancing MS Lesions by Dynamic Texture Parameter Analysis of Dynamic Susceptibility Perfusion Imaging

    PubMed Central

    Verma, Rajeev K.; Slotboom, Johannes; Locher, Cäcilia; Heldner, Mirjam R.; Weisstanner, Christian; Abela, Eugenio; Kellner-Weldon, Frauke; Zbinden, Martin; Kamm, Christian P.; Wiest, Roland

    2016-01-01

    Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA). Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions) of 12 patients. Enhancing lesions (n = 25) were prestratified into enhancing lesions with increased permeability (EL+; n = 11) and enhancing lesions with subtle permeability (EL−; n = 14). Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences (p < 0.05) were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL). Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD): EL+ versus EL− and EL+ versus NEL), while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration. PMID:26885524

  17. Imaging of calcium dynamics in pollen tube cytoplasm.

    PubMed

    Barberini, María Laura; Muschietti, Jorge

    2015-01-01

    Cytoplasmic calcium [(Ca(2+))cyt] is a central component of cellular signal transduction pathways. In plants, many external and internal stimuli transiently elevate (Ca(2+))cyt, initiating downstream responses that control different features of plant development. In pollen tubes the establishment of an oscillatory gradient of calcium at the tip is essential for polarized growth. Disruption of the cytosolic Ca(2+) gradient by chelators or channel blockers inhibits pollen tube growth. To quantify the physiological role of (Ca(2+))cyt in cellular systems, genetically encoded Ca(2+) indicators such as Yellow Cameleons (YCs) have been developed. The Cameleons are based on a fluorescence resonance energy transfer (FRET) process. Here, we describe a method for imaging cytoplasmic Ca(2+) dynamics in growing pollen tubes that express the fluorescent calcium indicator Yellow Cameleon 3.6 (YC 3.6), using laser-scanning confocal microscopy.

  18. System of acquisition and processing of images of dynamic speckle

    NASA Astrophysics Data System (ADS)

    Vega, F.; >C Torres,

    2015-01-01

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group.

  19. Real-time dynamic holographic image storage device

    NASA Technical Reports Server (NTRS)

    Lafleur, Sharon S. (Inventor); Montgomery, Raymond C. (Inventor)

    1990-01-01

    A real-time dynamic holographic image storage device uses four-wave mixing in a pair of photorefractive crystals. An oscillation is produced between the crystals which can be maintained indefinitely after the initial object beam is discontinued. The object beam produces an interference pattern in a first crystal to produce phase-conjugated object beam which is directed towards the second crystal. In the second crystal another interference pattern is created which produces a reconstructed object beam. The reconstructed object beam is directed back towards the first crystal. The interference patterns are produced by interaction of the object and phase-conjugated object beam with a read and write beam in each of the crystals. By manipulation of the ratio of the read and write beam intensities in at least one of the crystals, the phase-conjugate or reconstructed object beam output therefrom can be amplified to maintain stable oscillation between the two crystals.

  20. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  1. A dynamic Web application within an n-tier architecture: a Multi-Source Information System for end-stage renal disease.

    PubMed

    Ben Saïd, Mohamed; Simonet, Ana; Guillon, Didier; Jacquelinet, Christian; Gaspoz, Franck; Dufour, Eric; Mugnier, Claude; Jais, Jean Philippe; Simonet, Michel; Landais, Paul

    2003-01-01

    A Multi-Source Information System (MSIS) has been designed for the Renal Epidemiology and Information Network (REIN) dedicated to End-Stage Renal Disease. Interoperability has been considered at 4 levels: semantics, network, formats and contents. An n-tier architecture has been chosen at the network level. It is made out of a universal client, a dynamic Web server connected to a production database and to a data warehouse. The MSIS is patient-oriented, based on a regional organization. Its implementation in the context of a regional experimentation is presented with insights on the design and underlying technologies. The n-tier architecture is a robust model and flexible enough to aggregate multiple information sources and integrate modular developments. The data warehouse is dedicated to support health care decision-making.

  2. Increasing Linear Dynamic Range of a CMOS Image Sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  3. Imaging cellular dynamics in vivo with multicolor fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.

    2005-04-01

    The new field of in vivo cell biology is being developed with multi-colored fluorescent proteins. With the use of fluorescent proteins, the behavior of individual cells can be visualized in the living animal. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of the tumor-stroma cell-cell interaction especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts and macrophages. Another example is the color-coding of cells with RFP or GFP such that both cell types and their interaction can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo with fluorescent proteins. Mice, in which the regulatory elements of the stem-cell marker nestin drive GFP expression, can be used to visualize hair follicle stem cells including their ability to form hair follicles as well as blood vessels. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Dual-color cells also enable the in vivo imaging of cell and nuclear deformation as well as trafficking in capillaries in living animals. Multiple-color labeling of cells will enable multiple events to be simultaneously visualized in vivo including cell-cell interaction, gene expression, ion fluxes, protein and organelle trafficking, chromosome dynamics and numerous other processes currently still studied in vitro.

  4. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI.

  5. Imaging the dynamics of chlorine atom reactions with alkenes

    NASA Astrophysics Data System (ADS)

    Estillore, Armando D.; Visger, Laura M.; Suits, Arthur G.

    2010-08-01

    We report a study of chlorine atom reactions with a series of target monounsaturated alkene molecules: 1-pentene, 1-hexene, 2-hexene, and cyclohexene. These reactions were studied using crossed-beam dc slice ion imaging at collision energies of 4 and 7 kcal/mol. Images of the reactively scattered alkenyl radical products were obtained via single photon ionization at 157 nm. The angular distributions at low collision energy are largely isotropic, suggesting the formation of a complex that has a lifetime comparable to or longer than its rotational period, followed by HCl elimination. At high collision energy, the distributions show a sharp forward peak superimposed on the isotropic component accounting for ˜13% of the product flux. The translational energy distributions peak near zero for the backscattered product, in sharp contrast to the results for alkanes. In the forward direction, the translational energy distributions change dramatically with collision energy. At the high collision energy, a sharp forward peak at ˜80% of the collision energy appears, quite reminiscent of results of our recent study of Cl+pentane reactions. The scattering distributions for all target molecules are similar, suggesting similarity of the reaction dynamics among these molecules. Ab initio calculations of the energetics and ionization energies for the various product channels were performed at the CBS-QB3 level to aid in interpreting the results.

  6. Dynamic Programming Using Polar Variance for Image Segmentation.

    PubMed

    Rosado-Toro, Jose A; Altbach, Maria I; Rodriguez, Jeffrey J

    2016-10-06

    When using polar dynamic programming (PDP) for image segmentation, the object size is one of the main features used. This is because if size is left unconstrained the final segmentation may include high-gradient regions that are not associated with the object. In this paper, we propose a new feature, polar variance, which allows the algorithm to segment objects of different sizes without the need for training data. The polar variance is the variance in a polar region between a user-selected origin and a pixel we want to analyze. We also incorporate a new technique that allows PDP to segment complex shapes by finding low-gradient regions and growing them. The experimental analysis consisted on comparing our technique with different active contour segmentation techniques on a series of tests. The tests consisted on robustness to additive Gaussian noise, segmentation accuracy with different grayscale images and finally robustness to algorithm-specific parameters. Experimental results show that our technique performs favorably when compared to other segmentation techniques.

  7. F-pili dynamics by live-cell imaging.

    PubMed

    Clarke, Margaret; Maddera, Lucinda; Harris, Robin L; Silverman, Philip M

    2008-11-18

    Bacteria have evolved numerous mechanisms for cell-cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize the dynamics of F-pili (conjugative pili encoded by the F plasmid of Escherichia coli). We establish that F-pili normally undergo cycles of extension and retraction in the absence of any obvious triggering event, such as contact with a recipient cell. When made, such contacts are able to survive the shear forces felt by bacteria in liquid media. Our data emphasize the role of F-pilus flexibility both in efficiently sampling a large volume surrounding donor cells in liquid culture and in establishing and maintaining cell-cell contact. Additionally and unexpectedly, we infer that extension and retraction are accompanied by rotation about the long axis of the filament.

  8. Fluorescence imaging of cholesterol and temperature dependent cell membrane dynamics

    NASA Astrophysics Data System (ADS)

    Weber, Petra; Wagner, Michael; Strauss, Wolfgang S. L.; Schneckenburger, Herbert

    2007-07-01

    Cholesterol content is an important factor for membrane dynamics of living cells. With well defined protocols of depletion and enrichment the impact of cholesterol on membrane dynamics was examined by fluorescence microscopy. In addition, the intracellular cholesterol content was determined with biochemical methods. Changes of cholesterol amounts in cell membranes have previously been related to specific disease and may have some influence on the uptake of pharmaceutical agents. A combination of conventional and total internal reflection fluorescence microscopy was applied to the fluorescence marker laurdan, a polarity-sensitive probe, whose electronic excitation energy is different in polar and non-polar environment. Once incorporated into cell membranes, the fluorescence of laurdan shows a spectral shift towards longer wavelength when its molecules get into contact with adjacent water molecules, e.g. when a phase transition from the tightly packed gel phase to the liquid crystalline phase of membrane lipids occurs. The generalized polarization (GP, characterizing this spectral shift) as well as the fluorescence lifetime (τ) of laurdan revealed to be appropriate measures for membrane stiffness and fluidity. GP generally decreased with increasing temperature and was always higher for the plasma membrane than for intracellular membranes. Enrichment of cholesterol caused a pronounced increase, whereas depletion of cholesterol caused a decrease of GP. In addition, pronounced changes of the fluorescence lifetime pattern occurred in the subnanosecond range. GP, and τ were determined as integral values of single cells or small cell collectives and were also displayed as microscopic images.

  9. Live cell imaging of phosphoinositide dynamics during Legionella infection.

    PubMed

    Weber, Stephen; Hilbi, Hubert

    2014-01-01

    The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.

  10. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  11. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    PubMed

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  12. Maximum-Intensity-Projection Imaging for Dynamic Analysis of Mental Sweating by Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Saigusa, Hiroyuki; Ueda, Yoshihiro; Yamada, Akihiro; Ohmi, Masato; Ohnishi, Makoto; Kuwabara, Mitsuo; Haruna, Masamitsu

    2008-09-01

    Optical coherence tomography (OCT) shows great potential for microscopic observation of human sweating dynamics. It should be a key technology in the development of new techniques for the study of dynamic physiology. In this study, the dynamic motion of eccrin sweat glands is visualized by three-dimensional (3-D) OCT imaging, and a novel 3-D image construction method, using maximum intensity projection (MIP) of B-mode OCT images, is proposed for in vivo dynamic analysis of mental sweating on human fingertips. Time-sequential MIP-OCT images with a frame spacing of 1.4 s provide quantitative analysis of the sweating dynamics, which in turn leads to the evaluation of the activity of the sympathetic nerve. Dynamic changes in the microstructure of eccrin sweat glands can be clearly observed in the 3-D images constructed by volume rendering.

  13. Evaluation of Vascular Disease Progression in Retinopathy of Prematurity using Static and Dynamic Retinal Images

    PubMed Central

    Myung, Jane S.; Gelman, Rony; Aaker, Grant D.; Radcliffe, Nathan M.; Chan, R.V. Paul; Chiang, Michael F.

    2011-01-01

    Purpose To measure accuracy and speed for detection of vascular progression in retinopathy of prematurity (ROP) from serial images. Two strategies are compared: static side-by-side presentation vs. dynamic flickering of superimposed image pairs. Design Prospective comparative study. Methods Fifteen de-identified, wide-angle retinal image pairs were taken from infants who eventually developed plus disease. Image pairs representing vascular disease progression were taken ≥1 week apart, and control images without progression were taken on same day. Dynamic flickering pairs were created by digital image registration. Ten experts independently reviewed each image pair on a secure website using both strategies, and were asked to identify progression or state that images were identical. Accuracy and speed were measured, using examination date and ophthalmoscopic findings as a reference standard. Results Using static images, experts were accurate in a mean (%) ± standard deviation (SD) of 11.4/15 (76%) ± 1.7 image pairs. Using dynamic flickering images, experts were accurate in a mean (%) ± SD of 11.3/15 (75%) ± 1.7 image pairs. There was no significant difference in accuracy between these strategies (p=0.420). Diagnostic speed was faster using dynamic flickering (24.7±8.3 seconds) versus static side-by-side images (40.3±18.3 seconds) (p=0.002). Experts reported higher confidence when interpreting dynamic flickering images (p=0.001). Conclusions Retinal imaging provides objective documentation of vascular appearance, with potentially improved ability to recognize ROP progression compared to standard ophthalmoscopy. Speed of identifying vascular progression was faster by review of dynamic flickering image pairs than by static side-by-side images, although there was no difference in accuracy. PMID:22019222

  14. Ineffectiveness of dipyridamole SPECT thallium imaging as a screening technique for coronary artery disease in patients with end-stage renal failure

    SciTech Connect

    Marwick, T.H.; Steinmuller, D.R.; Underwood, D.A.; Hobbs, R.E.; Go, R.T.; Swift, C.; Braun, W.E. )

    1990-01-01

    The efficacy of dipyridamole single photon emission computed tomography (SPECT) thallium as a screening test for coronary artery disease (CAD), was studied in 45 patients with end-stage renal failure undergoing evaluation for renal transplantation. Coronary arteriography, dipyridamole SPECT thallium imaging and clinical follow-up were performed in all patients. Nineteen patients (42%) had an obstruction of 50% or more in at least one coronary artery. Fourteen patients had a positive thallium scan, but 7 of these were false-positives (sensitivity 37%, specificity 73%). The sensitivity was considerably lower than that quoted for non-ESRF patients in the literature, and significantly lower than a control group of 19 patients without ESRF having comparable severity and distribution of CAD. Five of the 6 patients who died of cardiac causes over a mean follow-up period of 25 months had normal thallium imaging, but all had significant coronary artery disease at cardiac catheterization. Dipyridamole SPECT thallium imaging has not proved a useful screening test for angiographically significant CAD, and does not predict cardiac prognosis in this population.

  15. Tumor Control Outcomes Following Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases from Renal Cell Carcinoma

    PubMed Central

    Zelefsky, Michael J; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei, Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2014-01-01

    Purpose To report tumor local progression-free outcomes following treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Methods and Materials Between 2004 and 2010, a total of 105 lesions from renal cell carcinomas were treated with either SD-IGRT to prescription doses of 18–24 Gy (median, 24 Gy) or hypofractionation (3 or 5 fractions) with prescription doses ranging between 20 and 30 Gy. The median follow-up was 12 months (range, 1–48 months). Results The overall 3-year actuarial local progression-free survival (LPFS) for all lesions was 44%. The 3-year LPFS for those who received high single-dose (24 Gy; n = 45), low single-dose (< 24 Gy; n = 14), and hypofractionation regimens (n = 46) were 88%, 21%, and 17%, respectively (high single dose versus low single dose, p = 0.001; high single dose versus hypofractionation, p < 0.001). Multivariate analysis revealed the following variables as significant predictors of improved LPFS: dose of 24 Gy compared with lower dose (p = 0.009), and single dose versus hypofractionation (p = 0.008). Conclusion High-dose SD-IGRT is a non-invasive procedure resulting in high probability of local tumor control for metastatic renal cell cancers, generally considered radioresistant according to classical radiobiological ranking. PMID:21596489

  16. Imaging mesospheric winds using the Michelson interferometer for airglow dynamics imaging

    NASA Astrophysics Data System (ADS)

    Langille, Jeffery; Ward, William E.

    2016-07-01

    The first ground based images of mesospheric winds in airglow are presented and discussed in this paper. These were obtained with the Michelson Interferometer for Airglow Dynamics Imaging (MIADI)a ground based field widened Michelsoin interferometer designed to obtain two dimensional images of the line of sight Doppler wind and irradiance field in the mesosphere. The purpose of this instrument is to measure perturbations in line-of-sight wind and airglow irradiance associated with gravity waves. In its current configuration, the instrument observes an ~80 km x ~80 km region of the night sky in ~33 minutes using the O(1S) emission at 557.73 nm and the OH (6, 2) P1 (2) emission at 839.918 nm. The instrument was installed and tested at a field site outside Fredericton, NB (45.96 N, 66.65 W) during the summer of 2014. Successful measurements over a six hour period were obtained on July 31, 2014. Variations in the meridional and zonal wind were observed that are consistent with a semi-diurnal tide with an amplitude of ˜ 35 m/s. Small scale variations (< 10 m/s) were also observed that indicate the presence of gravity waves. In this paper, the instrument concept will be presented and the field measurements and their precision and accuracy discussed.

  17. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  18. Maximum intensity projection imaging for dynamic analysis of mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Saigusa, Hiroyuki; Ueda, Yoshihiro; Ohmi, Masato; Ohnishi, Makoto; Kuwabara, Mitsuo; Haruna, Masamitsu

    2009-02-01

    A novel 3-D image construction method with maximum intensity projection (MIP) of B-mode OCT images is proposed for in vivo dynamic analysis of mental sweating on human fingertips. Time-sequential MIP-OCT images with the frame spacing as short as 1.4 sec provide us quantitative analysis of the sweating dynamics to evaluate of activity of sympathetic nerve. Dynamic changes in the microstructure of eccrin sweat glands can be clearly observed in the 3-D images constructed by volume rendering.

  19. Photodissociation dynamics of 2-bromopropane using velocity map imaging technique.

    PubMed

    Zhu, Rongshu; Tang, Bifeng; Zhang, Xiu; Zhang, Bing

    2010-06-03

    Photodissociation dynamics of 2-bromopropane in the A band was investigated at several wavelengths between 232 and 267 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of Br ((2)P(3/2)) and Br* ((2)P(1/2)) were analyzed to yield corresponding total translational energy and angular distributions. The total translational energy distributions showed that the channel leading to Br carried more internal energy in the 2-C(3)H(7) moiety than the channel leading to Br*. The anisotropy parameters of beta (Br) were obtained to be between 0.68 and 1.49, and beta (Br*) between 0.73 and 1.96, indicating that the Br* product originates from direct excitation of the (3)Q(0) state and the (1)Q(1) --> (3)Q(0) nonadiabatic transition, and the Br product from direct excitation of the (1)Q(1) or (3)Q(1) state and the (3)Q(0) --> (1)Q(1) nonadiabatic transition. The curve crossing probabilities were determined to be increase with the wavelength. As compared with the case of CH(3)Br, the two heavier branched CH(3) groups significantly enhance the Br ((2)P(3/2)) production from nonadiabatic contribution. The curve crossing from the (3)Q(0) to the (1)Q(1) surface is much higher than that of the reverse from the (1)Q(1) to the (3)Q(0) surface, which may have resulted from the difference in shape between the potential energy surfaces of the (3)Q(0) and (1)Q(1) states. Finally, based on the experimental data, the partial absorption cross sections of the A band for the (3)Q(0), (3)Q(1), and (1)Q(1) states were extracted.

  20. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  1. High-Resolution Dynamic Speech Imaging with Joint Low-Rank and Sparsity Constraints

    PubMed Central

    Fu, Maojing; Zhao, Bo; Carignan, Christopher; Shosted, Ryan K.; Perry, Jamie L.; Kuehn, David P.; Liang, Zhi-Pei; Sutton, Bradley P.

    2014-01-01

    Purpose To enable dynamic speech imaging with high spatiotemporal resolution and full-vocal-tract spatial coverage, leveraging recent advances in sparse sampling. Methods An imaging method is developed to enable high-speed dynamic speech imaging exploiting low-rank and sparsity of the dynamic images of articulatory motion during speech. The proposed method includes: a) a novel data acquisition strategy that collects navigators with high temporal frame rate, and b) an image reconstruction method that derives temporal subspaces from navigators and reconstructs high-resolution images from sparsely sampled data with joint low-rank and sparsity constraints. Results The proposed method has been systematically evaluated and validated through several dynamic speech experiments. A nominal imaging speed of 102 frames per second (fps) was achieved for a single-slice imaging protocol with a spatial resolution of 2.2 × 2.2 × 6.5 mm3. An eight-slice imaging protocol covering the entire vocal tract achieved a nominal imaging speed of 12.8 fps with the identical spatial resolution. The effectiveness of the proposed method and its practical utility was also demonstrated in a phonetic investigation. Conclusion High spatiotemporal resolution with full-vocal-tract spatial coverage can be achieved for dynamic speech imaging experiments with low-rank and sparsity constraints. PMID:24912452

  2. Dynamic imaging of pulmonary ventilation. Description of a novel digital fluoroscopic system.

    PubMed

    Kiuru, A; Svedström, E; Kuuluvainen, I

    1991-03-01

    A new fluoroscopic imaging device consisting of an AT-microcomputer and a digital image memory unit has been used in experimental and clinical ventilation studies during a 2-year period. Digital images with 256 shades of gray were collected during one to 3 ventilation cycles at the rate of 6 to 25 images/s and stored on an optical laser disc. Both subtracted time interval difference (TID-) images and images relative, for example, to the mean image of the cycle (REL-images) were produced. The series of images could also be evaluated dynamically using animation sequences or analyzed using region of interest calculations. The method gave dynamic information with adequate spatial resolution and was easy to use in clinical practice. The radiation dose was kept low due to the high kilovoltage and heavy beam filtration technique. In experimental studies the software enabled flexible measurements of physiological pulmonary parameters.

  3. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  4. Cadmium and renal cancer

    SciTech Connect

    Il'yasova, Dora; Schwartz, Gary G. . E-mail: gschwart@wfubmc.edu

    2005-09-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine.

  5. On tear film breakup (TBU): dynamics and imaging.

    PubMed

    Braun, Richard J; Driscoll, Tobin A; Begley, Carolyn G; King-Smith, P Ewen; Siddique, Javed I

    2017-02-20

    We report the results of some recent experiments to visualize tear film dynamics. We then study a mathematical model for tear film thinning and tear film breakup (TBU), a term from the ocular surface literature. The thinning is driven by an imposed tear film thinning rate which is input from in vivo measurements. Solutes representing osmolarity and fluorescein are included in the model. Osmolarity causes osmosis from the model ocular surface, and the fluorescein is used to compute the intensity corresponding closely to in vivo observations. The imposed thinning can be either one-dimensional or axisymmetric, leading to streaks or spots of TBU, respectively. For a spatially-uniform (flat) film, osmosis would cease thinning and balance mass lost due to evaporation; for these space-dependent evaporation profiles TBU does occur because osmolarity diffuses out of the TBU into the surrounding tear film, in agreement with previous results. The intensity pattern predicted based on the fluorescein concentration is compared with the computed thickness profiles; this comparison is important for interpreting in vivo observations. The non-dimensionalization introduced leads to insight about the relative importance of the competing processes; it leads to a classification of large vs small TBU regions in which different physical effects are dominant. Many regions of TBU may be considered small, revealing that the flow inside the film has an appreciable influence on fluorescence imaging of the tear film.

  6. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms

    NASA Astrophysics Data System (ADS)

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R.

    2013-09-01

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the ‘tumor-enhancement curve’. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about

  7. Solid renal masses in adults

    PubMed Central

    Mittal, Mahesh Kumar; Sureka, Binit

    2016-01-01

    With the ever increasing trend of using cross-section imaging in today's era, incidental detection of small solid renal masses has dramatically multiplied. Coincidentally, the number of asymptomatic benign lesions being detected has also increased. The role of radiologists is not only to identify these lesions, but also go a one step further and accurately characterize various renal masses. Earlier detection of small renal cell carcinomas means identifying at the initial stage which has an impact on prognosis, patient management and healthcare costs. In this review article we share our experience with the typical and atypical solid renal masses encountered in adults in routine daily practice. PMID:28104933

  8. Dynamic Imaging of Strain and Stress Evolution in Laboratory Earthquakes with the Ultra-High-Speed Digital Image Correlation Technique

    NASA Astrophysics Data System (ADS)

    Rubino, V.; Rosakis, A.; Lapusta, N.

    2015-12-01

    Dynamic imaging of strain and stress during rupture enables unprecedented observations of key rupture features as well as decoding the nature of friction. We present the dynamic evolution of strains and stresses in our dynamic rupture experiments. We employ a laboratory earthquake setup to study dynamic ruptures in a highly instrumented setting, where we produce both supershear and sub-Rayleigh events. Earthquakes are mimicked in the laboratory by dynamic rupture propagating along the inclined frictional interface of two quadrilateral Homalite plates prestressed in compression and shear. The diagnostics previously employed in this setup include temporally accurate but spatially sparse laser velocimetry measurements as well as a sequence of full-field photoelastic images. These measurements have been successfully employed to capture important rupture features but they do not give enough information to characterize the full-field strains and stresses. In this study, we obtain the experimental sequences of full-field displacements, velocities, strains and stresses produced under a wide range of slip rates by our newly developed technique of ultra high-speed digital image correlation (DIC). This is the first technique capable of imaging spatial and temporal variations in strains and stresses during spontaneously developing experimental dynamic rupture. This technique combines pattern-matching algorithms with ultra-high-speed photography and highly tailored analysis to obtain full-field time histories. We have verified the accuracy of the measurements by comparing the velocity time-histories at selected locations with the measurements using the well-developed technique of laser velocimetry. The newly developed ultra-high-speed full-field imaging technique can also be used to obtain unprecedented measurements of evolving dynamic friction during dynamic rupture, and we will report on our initial results on the dynamic friction evolution.

  9. Impact of geometric mean imaging in the accurate determination of partial function in MAG3 renal scanning in a patient with retroperitoneal mass.

    PubMed

    Takesh, Mustafa; Zechmann, Christian M; Haufe, Sabine; Giesel, Frederik L; Kratochwil, Clemens

    2011-01-01

    Liposarcoma frequently occurs in the retroperitoneum and lower extremities, accounting for 20% of all mesenchymal malignancies. Liposarcomas vary by histology and can be classified into four types. Those four types are well differentiated, myxoid/round cell, pleomorphic and dedifferentiated. Due to retroperitoneal location of this tumor, it is expected to affect the kidney position. Renography has provided a unique tool for noninvasive evaluation of various functional parameters e.g. relative renal function. Most renography studies are carried out using the posterior view, under the assumption that the depths of both kidneys are similar so that the radiotracer counts in the region of interest will be attenuated to the same extent. Errors in estimation of the relative renal function may arise if the kidneys are at different depths e.g. secondary to a pushing tumor. Geometric mean imaging from combined anterior and posterior views helps to overcome this issue. This case shows the impact of geometric mean imaging in the truthful determination of partial function in patients with retroperitoneal liposarcoma.

  10. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results.

    PubMed

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-04-01

    An image-processing technique for separating bones from soft tissue in static chest radiographs has been developed. The present study was performed to evaluate the usefulness of dynamic bone images in quantitative analysis of rib movement. Dynamic chest radiographs of 16 patients were obtained using a dynamic flat-panel detector and processed to create bone images by using commercial software (Clear Read BS, Riverain Technologies). Velocity vectors were measured in local areas on the dynamic images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as a reduced rib velocity field, resulting in an asymmetrical distribution of rib movement. Vector maps in all normal cases exhibited left/right symmetric distributions of the velocity field, whereas those in abnormal cases showed asymmetric distributions because of locally limited rib movements. Dynamic bone images were useful for accurate quantitative analysis of rib movements. The present method has a potential for an additional functional examination in chest radiography.

  11. Video Imaging System Particularly Suited for Dynamic Gear Inspection

    NASA Technical Reports Server (NTRS)

    Broughton, Howard (Inventor)

    1999-01-01

    A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.

  12. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  13. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.

    PubMed

    Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio

    2009-12-01

    Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.

  14. Bayer patterned high dynamic range image reconstruction using adaptive weighting function

    NASA Astrophysics Data System (ADS)

    Kang, Hee; Lee, Suk Ho; Song, Ki Sun; Kang, Moon Gi

    2014-12-01

    It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range. However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to the fact that the input images taken with a short exposure time contain much noise in the dark regions, which contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since input images are acquired at different times, the images contain different motion information, which results in ghost artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by considering the differences of the luminance and the chrominance values between several input images. Unlike conventional methods, which generally work on a color image processed by the image processing module (IPM), the proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also improves the efficiency in hardware implementation. Experimental results show that the proposed method can reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

  15. ATMOSPHERIC DYNAMICS OF BROWN DWARFS AND DIRECTLY IMAGED GIANT PLANETS

    SciTech Connect

    Showman, Adam P.; Kaspi, Yohai

    2013-10-20

    A variety of observations provide evidence for vigorous motion in the atmospheres of brown dwarfs and directly imaged giant planets. Motivated by these observations, we examine the dynamical regime of the circulation in the atmospheres and interiors of these objects. Brown dwarfs rotate rapidly, and for plausible wind speeds, the flow at large scales will be rotationally dominated. We present three-dimensional, global, numerical simulations of convection in the interior, which demonstrate that at large scales, the convection aligns in the direction parallel to the rotation axis. Convection occurs more efficiently at high latitudes than low latitudes, leading to systematic equator-to-pole temperature differences that may reach ∼1 K near the top of the convection zone. The interaction of convection with the overlying, stably stratified atmosphere will generate a wealth of atmospheric waves, and we argue that, as in the stratospheres of planets in the solar system, the interaction of these waves with the mean flow will cause a significant atmospheric circulation at regional to global scales. At large scales, this should consist of stratified turbulence (possibly organizing into coherent structures such as vortices and jets) and an accompanying overturning circulation. We present an approximate analytic theory of this circulation, which predicts characteristic horizontal temperature variations of several to ∼50 K, horizontal wind speeds of ∼10-300 m s{sup –1}, and vertical velocities that advect air over a scale height in ∼10{sup 5}-10{sup 6} s. This vertical mixing may help to explain the chemical disequilibrium observed on some brown dwarfs. Moreover, the implied large-scale organization of temperature perturbations and vertical velocities suggests that near the L/T transition, patchy clouds can form near the photosphere, helping to explain recent observations of brown-dwarf variability in the near-IR.

  16. Four-dimensional imaging of moisture dynamics during landslide reactivation

    NASA Astrophysics Data System (ADS)

    Uhlemann, Sebastian; Chambers, Jonathan; Wilkinson, Paul; Maurer, Hansruedi; Merritt, Andrew; Meldrum, Philip; Kuras, Oliver; Gunn, David; Smith, Alister; Dijkstra, Tom

    2017-01-01

    Landslides pose significant risks to communities and infrastructure, and mitigating these risks relies on understanding landslide causes and triggering processes. It has been shown that geophysical surveys can significantly contribute to the characterization of unstable slopes. However, hydrological processes can be temporally and spatially heterogeneous, requiring their related properties to be monitored over time. Geoelectrical monitoring can provide temporal and volumetric distributions of electrical resistivity, which are directly related to moisture content. To date, studies demonstrating this capability have been restricted to 2-D sections, which are insufficient to capture the full degree of spatial heterogeneity. This study is the first to employ 4-D (i.e., 3-D time lapse) resistivity imaging on an active landslide, providing long-term data (3 years) highlighting the evolution of moisture content prior to landslide reactivation and showing its decline post reactivation. Crucially, the time-lapse inversion methodology employed here incorporates movements of the electrodes on the unstable surface. Although seasonal characteristics dominate the shallow moisture dynamics during the first 2 years with surficial drying in summer and wetting in winter, in the months preceding reactivation, moisture content increased by more than 45% throughout the slope. This is in agreement with independent data showing a significant rise in piezometric heads and shallow soil moisture contents as a result of prolonged and intense rainfall. Based on these results, remediation measures could be designed and early-warning systems implemented. Thus, resistivity monitoring that can allow for moving electrodes provides a new means for the effective mitigation of landslide risk.

  17. Laparoscopic Renal Cryoablation

    PubMed Central

    Schiffman, Marc; Moshfegh, Amiel; Talenfeld, Adam; Del Pizzo, Joseph J.

    2014-01-01

    In light of evidence linking radical nephrectomy and consequent suboptimal renal function to adverse cardiovascular events and increased mortality, research into nephron-sparing techniques for renal masses widely expanded in the past two decades. The American Urological Association (AUA) guidelines now explicitly list partial nephrectomy as the standard of care for the management of T1a renal tumors. Because of the increasing utilization of cross-sectional imaging, up to 70% of newly detected renal masses are stage T1a, making them more amenable to minimally invasive nephron-sparing therapies including laparoscopic and robotic partial nephrectomy and ablative therapies. Cryosurgery has emerged as a leading option for renal ablation, and compared with surgical techniques it offers benefits in preserving renal function with fewer complications, shorter hospitalization times, and allows for quicker convalescence. A mature dataset exists at this time, with intermediate and long-term follow-up data available. Cryosurgical recommendations as a first-line therapy are made at this time in limited populations, including elderly patients, patients with multiple comorbidities, and those with a solitary kidney. As more data emerge on oncologic efficacy, and technical experience and the technology continue to improve, the application of this modality will likely be extended in future treatment guidelines. PMID:24596441

  18. Coral Reef Dynamics: Integrating Field Survey, and Satellite Image Data to Monitor and Model Biogeophysical Dynamics

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Roelfsema, C.; Leon, J.; Borrego, R.; Canto, R.; Joyce, K.; McGowan, H. A.; Mackellar, M. C.

    2012-12-01

    Developing a complete understanding of the contemporary biogeophysical processes shaping coral reef ecosystems requires integration across multiple disciplines. This paper outlines the results obtained across multiple disciplinary projects for developing an integrated understanding of the biogeophysical processes shaping Heron Reef, on the Great Barrier Reef Australia. Heron Reef is a lagoonal platform reef on the southern Great Reef, with a small coral cay on its western edge. Over the past 10 years the nature of research undertaken On Heron reef has moved from plot-scale field surveys and lab experiments, to process-based measurements and experiments over the entire reef, its adjacent oceanic areas and atmosphere. Resultsfrom four projects are presented to act as the foundation for a conceptual model of biogeophysical processes affecting the reef. These cover: (1) benthic composition mapping; (2) biogeophysical forcing processes; (3) dynamics of benthic composition; and (4) dynamics of geomorphic zonation. (1) Benthic composition and reef structure/bathymetry/rugosity mapping to centimetre scales have been completed on an annual basis for > 10 years using standardised methods to quantify the composition of the reef substrate and benthos. Assessment of the resulting annual data sets, shows distinctive spatial variability in macro-algal and benthic micro-algal cover within and between years, while coral cover changes are longer term, unless linked to disturbance events. These data are critical for calibrating and validating satellite image mapping and models of benthic cover composition and dynamics, and determining input areas for foot-printing of eddy-correlation measurements of coral reef energy and gas fluxes. (2) Biogeophysical processes affected by surface energy and gas exchanges and hydrodynamic forcing by gravity waves and tidal currents have only been measured within past 10 years due to developments in sensor technology. For Heron Reef, several

  19. Renal Stones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Renal stones are never convenient, but they are a particular concern for astronauts who have limited access to treatment during flight. Researchers are examining how earthbound preventions for renal stone formation work in flight, ensuring missions are not ended prematurely due to this medical condition. The micrograph shows calcium oxalate crystals in urine. These small crystals can develop to form renal stones. Principal Investigator: Dr. Peggy Whitson, NASA Johnson Space Center, Houston, TX.

  20. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  1. High dynamic range imaging pipeline: perception-motivated representation of visual content

    NASA Astrophysics Data System (ADS)

    Mantiuk, Rafal; Krawczyk, Grzegorz; Mantiuk, Radoslaw; Seidel, Hans-Peter

    2007-02-01

    The advances in high dynamic range (HDR) imaging, especially in the display and camera technology, have a significant impact on the existing imaging systems. The assumptions of the traditional low-dynamic range imaging, designed for paper print as a major output medium, are ill suited for the range of visual material that is shown on modern displays. For example, the common assumption that the brightest color in an image is white can be hardly justified for high contrast LCD displays, not to mention next generation HDR displays, that can easily create bright highlights and the impression of self-luminous colors. We argue that high dynamic range representation can encode images regardless of the technology used to create and display them, with the accuracy that is only constrained by the limitations of the human eye and not a particular output medium. To facilitate the research on high dynamic range imaging, we have created a software package (http://pfstools.sourceforge.net/) capable of handling HDR data on all stages of image and video processing. The software package is available as open source under the General Public License and includes solutions for high quality image acquisition from multiple exposures, a range of tone mapping algorithms and a visual difference predictor for HDR images. Examples of shell scripts demonstrate how the software can be used for processing single images as well as video sequences.

  2. Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source

    NASA Astrophysics Data System (ADS)

    Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.

    2016-12-01

    X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.

  3. A large renal pelvic diverticulum, presenting incomplete excretion during tc-99m MAG-3 scintigraphy and tracer accumulation on tc-99m DMSA scintigraphy; a case report.

    PubMed

    Turgut, Bulent; Erselcan, Taner; Ozdemir, Semra; Hasbek, Zekiye; Tosun, H Bayram; Topaktas, Seher

    2004-12-01

    This case report illustrates the dynamic and static renal scintigraphic images of a patient with an unusual large diverticulum of the renal pelvis. The initial diagnosis by intravenous pyelography (IVP) and ultrasonographic (US) examination was a renal pelvic diverticulum of the left kidney, and the patient was referred to the nuclear medicine department for exploration of the effect of the pelvic diverticulum on renal functions. We performed dynamic renal scintigraphy with technetium-99m (Tc-99m) labeled mercaptoacetyl triglycine (MAG-3) and static renal scintigraphy with Tc-99m labeled dimercaptosuccinic acid (DMSA). In dynamic renal scintigraphy, bilaterally normal concentration function was observed. While right kidney excretion function was normal, an incomplete excretion pattern was seen on the left side. Complete urinary flow obstruction occurred approximately at the 10th minute of the acquisition, which did not seem to respond to the i.v. furosemide application. However, when only the renal cortex was included in the region of interest, the obstructive pattern disappeared. In static renal scintigraphy, a large renal pelvic diverticulum localized antero-medially was clearly visualized in the left-anterior oblique projection, most probably due to accumulation of radiopharmaceutical inside it. This case showed that a renal pelvic diverticulum should be thought of when an incomplete excretion pattern is seen on dynamic renal scintigraphy. Using only a cortical region of interest may also help to distinguish other types of obstructive pattern from diverticulum. Additionally, Tc-99m DMSA scintigraphy may show diverticulum localization with antero-oblique projections in addition to routine projections.

  4. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  5. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  6. Single grating x-ray imaging for dynamic biological systems

    NASA Astrophysics Data System (ADS)

    Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.

    2012-07-01

    Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.

  7. Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast.

    PubMed

    Millard, T P; Endrizzi, M; Everdell, N; Rigon, L; Arfelli, F; Menk, R H; Stride, E; Olivo, A

    2015-07-29

    X-rays are commonly used as a means to image the inside of objects opaque to visible light, as their short wavelength allows penetration through matter and the formation of high spatial resolution images. This physical effect has found particular importance in medicine where x-ray based imaging is routinely used as a diagnostic tool. Increasingly, however, imaging modalities that provide functional as well as morphological information are required. In this study the potential to use x-ray phase based imaging as a functional modality through the use of microbubbles that can be targeted to specific biological processes is explored. We show that the concentration of a microbubble suspension can be monitored quantitatively whilst in flow using x-ray phase contrast imaging. This could provide the basis for a dynamic imaging technique that combines the tissue penetration, spatial resolution, and high contrast of x-ray phase based imaging with the functional information offered by targeted imaging modalities.

  8. Performance enhancement and background removal to improve dynamic phase imaging of biological organisms

    PubMed Central

    Creath, Katherine; Goldstein, Goldie

    2014-01-01

    This paper describes recent advances in enhancing optical imaging performance and removal of background shape for a new, novel interference dynamic microscope system. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for labels or contrast agents. This instrument utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns. It incorporates the polarization properties of light to capture phase image movies in real time at video rates enabling tracking of dynamic motions and volumetric changes. Optical thickness data are obtained from phase images after processing to remove the background surface shape to quantify changes in cell position and volume. Data from a number of different biological organisms will be presented. These data highlight examples of the optical image quality and image processing. PMID:23366597

  9. Fabrication of mAb G250-SPIO molecular magnetic resonance imaging nanoprobe for the specific detection of renal cell carcinoma in vitro.

    PubMed

    Lu, Cailuan; Li, Jingjing; Xu, Kai; Yang, Chun; Wang, Jiali; Han, Cuiping; Liu, Xiaohua

    2014-01-01

    Molecular magnetic resonance imaging (mMRI) has been paid more and more attention for early diagnosis of cancer. A sensitive and specific mMRI probe plays the most important role in this technique. In this study, superparamagnetic iron oxide (SPIO) nanoparticles and mAb G250 were conjugated as mMRI probe for the detection of clear cell renal cell carcinoma (ccRCC) using 3.0-Tesla MRI in vitro. mAb G250 could specifically recognize carbonic anhydrase IX (CAIX) antigen overexpressed in ccRCC and the SPIO nanoparticles as MRI contrast agent presented excellent MRI response and good biocompatibility. The successful assembly of this nanoprobe was confirmed by UV-vis spectrum, FT-IR spectroscopy and DLS analysis. In vitro MRI study on ccRCC cells and control cells indicated that our fabricated mAb G250-SPIO nanoprobe could be used in the specific labeling of clear cell renal carcinoma cells successfully.

  10. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    PubMed Central

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it’s diameter from laser speckle images. This approach demonstrates high reliability and stability. PMID:27446704

  11. Raman and FTIR imaging of dynamic polymer systems

    NASA Astrophysics Data System (ADS)

    Bobiak, John Peter

    This work aims to expand the applications of Raman and infrared imaging in materials science and engineering. Recent developments in spectroscopic imaging technology have led to relatively fast image acquisition rates, enabling the in situ analysis of various engineering processes. A brief review of spectroscopic imaging principles and existing applications is provided as background before three novel applications are set forth. First, the effectiveness of FTIR imaging for modeling polymer dissolution behavior was examined in a series of binary poly (methyl methacrylate) (PMMA) systems. The dissolution behavior was influenced by polymer conformation as well as the solvent characteristics. The results indicate that chemistry alone is a poor predictor of dissolution rate. Rather, the diffusion coefficients of both the polymer and solvent have a foremost impact on the dissolution process. One major complication in modeling diffusion-related process by FTIR imaging is the precise determination of component locations in a series of images. This issue is addressed through the introduction of a new position-reporting technique based on hypothesis testing. A rudimentary drug release system, consisting of a poly (ethylene-co-vinyl acetate) film and a nicotine solution, was used to illustrate the importance of precisely reporting the nicotine diffusion front position. The new reporting method provided an inherent level of certainty to the position report. This method was applied to qualitatively assess the uptake of nicotine from solutions containing different solubilizing agents, which were capable of either promoting or inhibiting nicotine uptake. Finally, Raman mapping and Raman line imaging were used to classify individual carbon nanotubes that were dispersed on a substrate. Individual nanotubes displayed a range of spectral characteristics, indicating that the bulk sample was a mixture of materials with different graphitic domain sizes. The results from images acquired

  12. Remote Histology Learning from Static versus Dynamic Microscopic Images

    ERIC Educational Resources Information Center

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-01-01

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…

  13. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE)

    PubMed Central

    Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram

    2010-01-01

    MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794

  14. High-speed and high-dynamic range difference imaging based on the near-sensor image processing concept

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2009-02-01

    The paper describes the Near Sensor Image Processing (NSIP) paradigm developed in the early 1990s and shows that it was a precursor to recent architectures proposed for direct (in the sensor) image processing and high dynamic range (HDR) image sensing. Both of these architectures are based on the specific properties of CMOS light sensors, in particular the ability to continuously monitor the accumulation of photon-induced charge as a function of time. We further propose an extension of the original NSIP pixel to include a circuit that facilitates temporal and spatio-temporal processing.

  15. Optical sensed image fusion with dynamic neural networks

    NASA Astrophysics Data System (ADS)

    Shkvarko, Yuri V.; Ibarra-Manzano, Oscar G.; Jaime-Rivas, Rene; Andrade-Lucio, Jose A.; Alvarado-Mendez, Edgar; Rojas-Laguna, R.; Torres-Cisneros, Miguel; Alvarez-Jaime, J. A.

    2001-08-01

    The neural network-based technique for improving the quality of the image fusion is proposed as required for the remote sensing (RS) imagery. We prose to exit information about the point spread functions of the corresponding RS imaging systems combining it with prior realistic knowledge about the properties of the scene contained in the maximum entropy (ME) a priori image model. Applying the aggregate regularization method to solve the fusion tasks aimed to achieve the best resolution and noise suppression performances of the overall resulting image solves the problem. The proposed fusion method assumes the availability to control the design parameters, which influence the overall restoration performances. Computationally, the fusion method is implemented using the maximum entropy Hopfield-type neural network with adjustable parameters. Simulations illustrate the improved performances of the developed MENN-based image fusion method.

  16. High dynamic range compression and detail enhancement of infrared images in the gradient domain

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Xie, Wei; Ma, Guorui; Qin, Qianqing

    2014-11-01

    To find the trade-off between providing an accurate perception of the global scene and improving the visibility of details without excessively distorting radiometric infrared information, a novel gradient-domain-based visualization method for high dynamic range infrared images is proposed in this study. The proposed method adopts an energy function which includes a data constraint term and a gradient constraint term. In the data constraint term, the classical histogram projection method is used to perform the initial dynamic range compression to obtain the desired pixel values and preserve the global contrast. In the gradient constraint term, the moment matching method is adopted to obtain the normalized image; then a gradient gain factor function is designed to adjust the magnitudes of the normalized image gradients and obtain the desired gradient field. Lastly, the low dynamic range image is solved from the proposed energy function. The final image is obtained by linearly mapping the low dynamic range image to the 8-bit display range. The effectiveness and robustness of the proposed method are analyzed using the infrared images obtained from different operating conditions. Compared with other well-established methods, our method shows a significant performance in terms of dynamic range compression, while enhancing the details and avoiding the common artifacts, such as halo, gradient reversal, hazy or saturation.

  17. Research on temperature distribution of combustion flames based on high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Feng, Huajun; Xu, Zhihai; Li, Qi

    2007-10-01

    The imaging-based three-color method is widely used in the field of non-contact temperature measurement of combustion flames. In this paper, by analyzing the imaging process of a combustion flame in detail, we re-derivate the three-color method by adopting a theory of high dynamic range imaging. Instead of using white balanced, gamma calibrated or other algorithms applied 8-bit pixel values, we use irradiance values on the image plane; these values are obtained by combining two differently exposed raw images into one high dynamic range irradiance map with the help of the imaging system's response function. An instrumentation system is presented and a series of experiments have been carried out, the results of which are satisfactory.

  18. Dynamic Image Forces Near a Metal Surface and the Point-Charge Motion

    ERIC Educational Resources Information Center

    Gabovich, A. M.; Voitenko, A. I.

    2012-01-01

    The problem of charge motion governed by image force attraction near a plane metal surface is considered and solved self-consistently. The temporal dispersion of metal dielectric permittivity makes the image forces dynamic and, hence, finite, contrary to the results of the conventional approach. Therefore, the maximal attainable velocity turns out…

  19. Temporal resolved x-ray penumbral imaging technique using heuristic image reconstruction procedure and wide dynamic range x-ray streak camera

    SciTech Connect

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Azechi, Hiroshi; Nishimura, Hiroaki; Izawa, Yasukazu; Nozaki, Shinya; Chen, Yen-wei

    2004-10-01

    Temporal resolved x-ray penumbral imaging has been developed using an image reconstruction procedure of the heuristic method and a wide dynamic range x-ray streak camera (XSC). Reconstruction procedure of the penumbral imaging is inherently intolerant to noise, a reconstructed image is strongly distorted by artifacts caused by noise in a penumbral image. Statistical fluctuation in the number of detected photon is the dominant source of noise in an x-ray image, however acceptable brightness of an image is limited by dynamic range of an XSC. The wide dynamic range XSC was used to obtain penumbral images bright enough to be reconstructed. Additionally, the heuristic method was introduced in the penumbral image reconstruction procedure. Distortion of reconstructed images is sufficiently suppressed by these improvements. Density profiles of laser driven brominated plastic and tin plasma were measured with this technique.

  20. IR image quality assessment and real-time optimum seeking method based on dynamic visual characteristics

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Gang; Gao, Yongmin; Lei, Hao; Wu, Haiying; Wang, Yu; Rong, Xiaolong

    2016-10-01

    Image quality is an important factor that influences the dynamic target information perception; it is the key factor of real-time target state analysis and judgment. In order to solve the multi-observation station comparison and video optimum seeking problem in the process of target information perception and recognition, an image quality assessment method based on visual characteristics is proposed for infrared target tracking. First, it analyses the basic infrared target image characteristics and application requirements, analyses the status and problems of the multi station optimum seeking technology. According to the expected research results, the processing flow of image processing is established. Then, the image quality objective assessment index is established, which reflects the basic characteristics of the target image, and the assessment index is integrated into the normalized assessment function. According to the quality assessment function, the infrared image quality assessment based on infrared target recognition and image analysis processing is realized, which is mainly characterized by the region of interest and dynamic visual characteristics. And on the basis of this technology, the real-time optimum seeking of multi station infrared target tracking image is completed. In order to verify the effectiveness of the method and the practical application effect, it designs the quality assessment and comparison of different station infrared images. Example shows that the method proposed in this paper can realize multi-observation station infrared image assessment comparison, image quality sorting, the optimum seeking of the infrared image based on the quality assessment. The results accord with the characteristics of infrared target image and dynamic visual characteristics.

  1. Image, word, action: interpersonal dynamics in a photo-sharing community.

    PubMed

    Suler, John

    2008-10-01

    In online photo-sharing communities, the individual's expression of self and the relationships that evolve among members is determined by the kinds of images that are shared, by the words exchanged among members, and by interpersonal actions that do not specifically rely on images or text. This article examines the dynamics of personal expression via images in Flickr, including a proposed system for identifying the dimensions of imagistic communication and a discussion of the psychological meanings embedded in a sequence of images. It explores how photographers use text descriptors to supplement their images and how different types of comments on photographs influence interpersonal relationships. The "fav"--when members choose an image as one of their favorites--is examined as one type of action that can serve a variety of interpersonal functions. Although images play a powerful role in the expression of self, it is the integration of images, words, and actions that maximize the development of relationships.

  2. Future of the Renal Biopsy: Time to Change the Conventional Modality Using Nanotechnology

    PubMed Central

    Khosroshahi, Hamid Tayebi; Sarbaz, Yashar; Shakeri Bavil, Abolhassan

    2017-01-01

    At the present time, imaging guided renal biopsy is used to provide diagnoses in most types of primary and secondary renal diseases. It has been claimed that renal biopsy can provide a link between diagnosis of renal disease and its pathological conditions. However, sometimes there is a considerable mismatch between patient renal outcome and pathological findings in renal biopsy. This is the time to address some new diagnostic methods to resolve the insufficiency of conventional percutaneous guided renal biopsy. Nanotechnology is still in its infancy in renal imaging; however, it seems that it is the next step in renal biopsy, providing solutions to the limitations of conventional modalities. PMID:28316612

  3. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  4. Dynamic Holographic Lock-In Imaging of Ultrasonic Waves

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Datta, S.K.

    1999-05-01

    A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of ultrasonic traveling wave surface displacement and phase in all planar directions simultaneously without scanning. The imaging method performs optical lock-in operation. A single antisymmetric Lamb wave mode image produces direct quantitative determination of the phase velocity in all planar directions showing plate stiffness anisotropy. Excellent agreement was obtained with modeling calculations of the phase velocity in all planar directions for an anisotropic sheet material. The approach functions with diffusely scattering surfaces, subnanometer motions and at frequencies from Hz to GHz.

  5. Dynamic CT perfusion image data compression for efficient parallel processing.

    PubMed

    Barros, Renan Sales; Olabarriaga, Silvia Delgado; Borst, Jordi; van Walderveen, Marianne A A; Posthuma, Jorrit S; Streekstra, Geert J; van Herk, Marcel; Majoie, Charles B L M; Marquering, Henk A

    2016-03-01

    The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.

  6. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  7. Computer Interpretation of a Dynamic Image from a Moving Vehicle.

    DTIC Science & Technology

    1981-05-01

    scenes. The two orientations chosen are parallel to the ground plane, which we call "horizontal", and parallel to the image plane, which we call " vertical ...the .. . ... . .. . . . . . .. ... . . 12 wall of a building parallel to the direction of travel, this two-orientation representation would need to ...feature(s); and vertices , corresponding to the junction of line segments (Hanson 1976). The result of aggregation is an image which is partitioned into

  8. Evolution of pulmonary perfusion defects demonstrated with contrast-enhanced dynamic MR perfusion imaging.

    PubMed

    Howarth, N R; Beziat, C; Berthezène, Y

    1999-01-01

    Pulmonary perfusion defects can be demonstrated with contrast-enhanced dynamic MR perfusion imaging. We present the case of a patient with a pulmonary artery sarcoma who presented with a post-operative pulmonary embolus and was followed in the post-operative period with dynamic contrast-enhanced MR perfusion imaging. This technique allows rapid imaging of the first passage of contrast material through the lung after bolus injection in a peripheral vein. To our knowledge, this case report is the first to describe the use of this MR technique in showing the evolution of peripheral pulmonary perfusion defects associated with pulmonary emboli.

  9. Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator.

    PubMed

    Minderer, Matthias; Liu, Wenrui; Sumanovski, Lazar T; Kügler, Sebastian; Helmchen, Fritjof; Margolis, David J

    2012-01-01

    In vivo optical imaging can reveal the dynamics of large-scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long-term investigation of cortical map dynamics using wide-field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide-field GECI signals report sensory-evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.

  10. Dynamic quantitative phase imaging for biological objects using a pixelated phase mask

    PubMed Central

    Creath, Katherine; Goldstein, Goldie

    2012-01-01

    This paper describes research in developing a dynamic quantitative phase imaging microscope providing instantaneous measurements of dynamic motions within and among live cells without labels or contrast agents. It utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns derived using the polarization properties of light to track dynamic motions and morphological changes. Optical path difference (OPD) and optical thickness (OT) data are obtained from phase images. Two different processing routines are presented to remove background surface shape to enable quantification of changes in cell position and volume over time. Data from a number of different moving biological organisms and cell cultures are presented. PMID:23162725

  11. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity.

  12. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  13. Atherosclerotic renal artery stenosis: Current status

    PubMed Central

    Kwon, Soon Hyo; Lerman, Lilach O.

    2014-01-01

    Atherosclerotic renal artery stenosis (ARAS) remains a major cause of secondary hypertension and renal failure. Randomized, prospective trials show that medical treatment should constitute the main therapeutic approach in ARAS. Regardless of intensive treatment and adequate blood pressure control, however, renal and extra-renal complications are not uncommon. Yet, the precise mechanisms, accurate detection, and optimal treatment in ARAS remain elusive. Strategies oriented to early detection and targeting these pathogenic pathways might prevent development of clinical endpoints. Here, we review the results of recent clinical trials, current understanding of the pathogenic mechanisms, novel imaging techniques to assess renal damage in ARAS, and treatment options. PMID:25908472

  14. Intrinsically High-Q Dynamic AFM Imaging in Liquid with a Significantly Extended Needle Tip

    PubMed Central

    Minary-Jolandan, Majid; Tajik, Arash; Wang, Ning; Yu, Min-Feng

    2012-01-01

    Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially-available tapping mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operation frequency of over 200 kHz was demonstrated. The method has the potential to be extended to acquire viscoelastic materials properties and provide truly gentle imaging of soft biological samples in physiological environments. PMID:22595833

  15. Dynamic imaging with multiple resolutions along phase-encode and slice-select dimensions.

    PubMed

    Panych, L P; Zhao, L; Jolesz, F A; Mulkern, R V

    2001-06-01

    An implementation is reported of an imaging method to obtain MUltiple Resolutions along Phase-encode and Slice-select dimensions (MURPS), which enables dynamic imaging of focal changes using a graded, multiresolution approach. MURPS allows one to trade spatial resolution in part of the volume for improved temporal resolution in dynamic imaging applications. A unique method of Hadamard slice encoding is used, enabling the varying of the phase encode and slice resolution while maintaining a constant effective TR throughout the entire 3-D volume. MURPS was implemented using a gradient-recalled echo sequence, and its utility was demonstrated for MR temperature monitoring. In this preliminary work, it has been shown that changes throughout a large volume can be effectively monitored in times that would normally only permit dynamic imaging in one or a very few slices.

  16. Dynamic Multiscale Boundary Conditions for 4D CT Images of Healthy and Emphysematous Rat

    SciTech Connect

    Jacob, Rick E.; Carson, James P.; Thomas, Mathew; Einstein, Daniel R.

    2013-06-14

    Changes in the shape of the lung during breathing determine the movement of airways and alveoli, and thus impact airflow dynamics. Modeling airflow dynamics in health and disease is a key goal for predictive multiscale models of respiration. Past efforts to model changes in lung shape during breathing have measured shape at multiple breath-holds. However, breath-holds do not capture hysteretic differences between inspiration and expiration resulting from the additional energy required for inspiration. Alternatively, imaging dynamically – without breath-holds – allows measurement of hysteretic differences. In this study, we acquire multiple micro-CT images per breath (4DCT) in live rats, and from these images we develop, for the first time, dynamic volume maps. These maps show changes in local volume across the entire lung throughout the breathing cycle and accurately predict the global pressure-volume (PV) hysteresis.

  17. System for renal movement elimination and renal diagnosis supported by vague knowledge

    NASA Astrophysics Data System (ADS)

    Martin, Jens; Hiltner, Jens; Fathi, Madjid; Reusch, Bernd; Stattaus, Joerg; Hacklaender, Thomas

    2000-06-01

    For the analysis of renal function, sequences of 90 magnet resonance images of the abdominal region showing both kidneys are taken in intervals of two seconds after a contrast medium was applied. Respiration of the patients during the acquisition of the images leads to organ movements throughout the series. These displacements are corrected by using an extended cepstral technique. To minimize registration errors caused by inhomogeneous movements of organs and tissues during respiration, the cepstrum-relevant part of the images is limited to small regions of interest around both kidneys. Even organ movements of sub-pixel range can be detected. After correction, the kidneys are the same position throughout the sequence. The regions of interest marked in one image are projected to all other images. To archive diagnostic results, dynamic contrast medium evaluations for different tissues of the kidneys are computed with signal-intensity-time graphs. Using a-priori knowledge about parameters of the SIT-graph for a whole kidney and about organ shape and structure, pixels of the kidney-segment are divided into the three classes renal cortex, medulla and pelvis. As a result, precise graphs can be computed for each tissue. The evaluation of the system is in progress, time save is more than one hour per patient.

  18. Bioluminescent system for dynamic imaging of cell and animal behavior

    SciTech Connect

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James; and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  19. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    NASA Astrophysics Data System (ADS)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  20. Perfusion thallium imaging of type I diabetes patients with end stage renal disease: Comparison of oral and intravenous dipyridamole administration

    SciTech Connect

    Boudreau, R.J.; Strony, J.T.; duCret, R.P.; Kuni, C.C.; Wang, Y.; Wilson, R.F.; Schwartz, J.S.; Castaneda-Zuniga, W.R. )

    1990-04-01

    Eighty patients with type I diabetes and end stage renal disease were prospectively evaluated for coronary artery disease with dipyridamole-thallium-201 scintigraphy and quantitative coronary angiography. Forty patients received dipyridamole orally, and 40 received it intravenously. The prevalence of coronary artery disease was 53%. There were no significant differences in the accuracy of the two dipyridamole tests (sensitivity = 85%, specificity = 85%, accuracy = 85% for the oral group; sensitivity = 86%, specificity = 72%, accuracy = 79% for the intravenous group). Combining the 80 patients into a single group gave a sensitivity of 86%, a specificity of 79%, and an accuracy of 83% for the detection of coronary disease. Although the accuracy of this test in this patient population was similar to that previously reported for other groups, the prevalence of disease was high and resulted in a low predictive value of a negative test (83%).

  1. Dynamic magnetic resonance imaging of the temporomandibular joint using FLASH sequences.

    PubMed

    Conway, W F; Hayes, C W; Campbell, R L

    1988-11-01

    Magnetic resonance imaging (MRI) is a suitable modality for the visualization of the temporomandibular joint (TMJ) in both normal and pathologic conditions. Until recently, MRI had been unable to provide diagnostic dynamic images of the TMJ during opening. A series of 30 TMJ MRI examinations of 17 symptomatic patients and two normal volunteers (15 to 43 years old; 14 men and five women) was performed. Fast low angle shot (FLASH) sequences were used to provide a series of dynamic images of the TMJ in various phases of opening. In 30% of the joint examined, FLASH sequences contributed clinically significant information not available with standard T1-weighted sequences. These results suggest that FLASH images are particularly useful in distinguishing normal disc variants from pathologic conditions in which the disc is displaced anteriorly to a mild extent. The short imaging time of FLASH sequences decreases motion artifact in patients who have difficulty remaining still during the examination.

  2. Dynamic optical imaging of vascular and metabolic reactivity in rheumatoid joints.

    PubMed

    Lasker, Joseph M; Fong, Christopher J; Ginat, Daniel T; Dwyer, Edward; Hielscher, Andreas H

    2007-01-01

    Dynamic optical imaging is increasingly applied to clinically relevant areas such as brain and cancer imaging. In this approach, some external stimulus is applied and changes in relevant physiological parameters (e.g., oxy- or deoxyhemoglobin concentrations) are determined. The advantage of this approach is that the prestimulus state can be used as a reference or baseline against which the changes can be calibrated. Here we present the first application of this method to the problem of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed initial dynamic imaging case studies on a limited number of healthy volunteers and patients diagnosed with RA. Focusing on three cases studies, we illustrated our major finds. These studies support our hypothesis that differences in the vascular reactivity exist between affected and unaffected joints.

  3. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  4. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    PubMed Central

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-01-01

    Abstract. A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy. PMID:26662065

  5. Atomically resolved real-space imaging of hot electron dynamics

    PubMed Central

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  6. Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b

    PubMed Central

    Wingert, Rebecca A.; Davidson, Alan J.

    2013-01-01

    Kidney nephrons are comprised of proximal and distal tubule segments that perform unique roles in excretion. The developmental pathways that establish nephron segment identities from renal progenitors are poorly understood. Here, we used the zebrafish pronephros to study nephron segmentation. We found that zebrafish nephron progenitors undergo elaborate spatiotemporal expression changes of many genes before adopting a segment fate. Initially, two domains of nephron progenitors are established, then are subdivided and demarcate individual nephron segments. Using genetic and chemical genetic models of retinoic acid (RA) deficiency, we discovered that RA modulates rostral progenitor formation. To delineate downstream pathways, we knocked down the irx3b transcription factor and found it regulates proximal tubule segment size and distal segment differentiation. Our results suggest a model whereby RA patterns the early field of nephron progenitors, with subsequent factors like irx3b acting to refine later progenitor subdomains and ensure activation of segment-specific gene programs. PMID:21761484

  7. Dynamical Imaging of Physiological Motion in Liver Tissue by Using Complex Correlation Method between Successive Echo Frames

    NASA Astrophysics Data System (ADS)

    Yagi, Shin-ichi; Komatsu, Maki; Akimoto, Shin

    2002-05-01

    The 2-dimensional (2-D) ultrasonic imaging of static strain or elasticity in soft tissues with quantitative images of distributed parameters has been developed for medical diagnosis. However it is very hard to realize the quantitative image of stationary elastic parameters because living tissues are always affected by dynamical pressure change under the pulsatile blood circulation. Thus to replace the static image dynamically limited to local tissue substances the straightforward, physiological dynamic image of slight local motion during a frame interval, which cannot be visualized in conventional B-mode images, was pursued in this study. In the overall performance analysis of estimated axial displacement on accuracy, variance and spatial resolution, physiological dynamic images, which recorded velocity and acceleration between successive echo frames, were demonstrated by using real-time clinical data acquired from hepatohemangeoma. These images proved that real-time imaging is a practical and promising approach toward achieving an advanced version of clinical palpation, ultrasonic visualized palpation.

  8. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming.

    PubMed

    Larocca, Francesco; Chiu, Stephanie J; McNabb, Ryan P; Kuo, Anthony N; Izatt, Joseph A; Farsiu, Sina

    2011-06-01

    Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader-even in the presence of significant imaging outliers.

  9. Solar dynamics imaging system a back-end instrument for the proposed NLST

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.; Hemanth, P.; Reardon, K.

    2016-12-01

    The Solar Dynamics Imaging System (SDIS) will be one of the focal plane instruments operated at the National Large Solar Telescope (NLST). The prime objective of the instrument is to obtain high spatial and temporal resolution images of the region of interest on the Sun in the wavelength range from 390 nm to 900 nm. The SDIS provides filtergrams using broad-band filters while preserving the Strehl ratio provided by the telescope. Furthermore, the SDIS is expected to provide observations that allow image reconstruction to extract wave front information and achieve a homogenous image quality over the entire FOV.

  10. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  11. 4D rotational x-ray imaging of wrist joint dynamic motion

    SciTech Connect

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-09-15

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints.

  12. Neural dynamics of image representation in the primary visual cortex.

    PubMed

    Yan, Xiaogang; Khambhati, Ankit; Liu, Lei; Lee, Tai Sing

    2012-01-01

    Horizontal connections in the primary visual cortex have been hypothesized to play a number of computational roles: association field for contour completion, surface interpolation, surround suppression, and saliency computation. Here, we argue that horizontal connections might also serve a critical role for computing the appropriate codes for image representation. That the early visual cortex or V1 explicitly represents the image we perceive has been a common assumption in computational theories of efficient coding (Olshausen and Field (1996)), yet such a framework for understanding the circuitry in V1 has not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation (Cornelissen et al., 2006; von der Heydt et al., 2003). In this study, we investigated, neurophysiologically, how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be decomposed into three components: a bottom-up feedforward input, an articulation of color tuning and a contextual modulation signal that is inversely proportional to the distance away from the bounding contrast border. We demonstrate through computational simulations that the behaviors of a model for image representation are consistent with many aspects of our neural observations. We conclude that the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests an additional new interpretation of the functional roles of horizontal connections in the primary visual cortex.

  13. Modalities and Clinical Applications of Dynamic Infrared Imaging

    DTIC Science & Technology

    2007-11-02

    capillary bed. These include: 1. Visual assessment of spatial abnormalities in perfusion kinetics that can be used in diagnosis of joint disease and...autonomic nervous disorders; joint inflammation; neurotoxic agents; mental stress; lie detection. I. INTRODUCTION Perfusion dynamics of tissues and...Pages 3 classical permanent hyperthermal conditions: Chronic joint inflammation, associated with local vasodilatation and consequent attenuation of

  14. Dynamic Speckle Imaging with Low-Cost Devices

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Arizaga, Ricardo; Rabal, Hector; Molesini, Giuseppe

    2008-01-01

    Light from a rough sample surface illuminated with a laser consists of a speckle pattern. If the surface evolves with time, the pattern becomes dynamic, following the activity of the sample. This phenomenon is used both in research and in industry to monitor processes and systems that change with time. The measuring equipment generally includes…

  15. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  16. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  17. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging.

    PubMed

    Rouvière, Olivier; Raudrant, Anne; Ecochard, René; Colin-Pangaud, Catherine; Pasquiou, Carole; Bouvier, Raymonde; Maréchal, Jean Marie; Lyonnet, Denis

    2003-05-01

    Our objectives were to determine time-enhancement curves of prostate cancer, peripheral zone, and adenoma at gadolinium-enhanced MR imaging, and to determine if a high-spatial/low-temporal dynamic imaging could be accurate in depicting prostate cancer, or if a higher temporal resolution (and a lower spatial resolution) should be favored. Thirty-nine patients with prostate cancer underwent MR imaging before radical prostatectomy by using T1- and T2-weighted axial images and a single-slice dynamic gadolinium-enhanced sequence (40 images; one image per 6 s; injection of 20 ml at 2 ml/s). After analysis of the pathologic specimens, four region-of-interest (ROI) cursors (cancer, peripheral zone, adenoma, and muscle) were retrospectively placed on dynamic images. Time-enhancement curves of the ROIs were obtained. The theoretical accuracy of a 30-s dynamic multislice MR sequence in depicting cancer within peripheral zone and adenoma (ROC curves) was calculated from these curves. On average, prostate cancer enhanced more and earlier than peripheral zone and adenoma, but there were great interindividual variations. For start delays ranging from 12 to 84 s, the areas under the ROC curves ranged from 0.602 to 0.698 for the depiction of cancer within adenoma and from 0.614 to 0.827 for the depiction of cancer within peripheral zone. The best results were obtained with a 36-s start delay. In conclusion, we found a 30-s scanning window which seems to allow a good depiction of cancer within peripheral zone. Because of largely overlapping enhancement patterns, cancer will probably not be depicted within adenoma by dynamic imaging, at least by using low temporal resolution.

  18. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  19. [Indices of static and dynamic components of pressure load (assessed by 24-hour blood pressure monitoring) and the state of renal function in patients with essential hypertension].

    PubMed

    Zelveian, P A; Buniatian, M S; Oshchepkova, E V; Lazareva, N V; Rogoza, A N

    2011-01-01

    Aim of this study was to evaluate possible relationship between parameters of blood pressure (BP) profile and glomerular filtration rate in patients (pts) with I-II stage essential hypertension (EH). Material and methods. We studied 120 pts (97 men), aged 23-65 (50,2+/-0,6) years with I (n=98) and II (n=22) stage EH. In BP profile (SL-90207) we calculated 24-hour, daytime, nighttime values of systolic, diastolic, pulse pressures (SBP, DBP, PP), time load (TL), variability and nocturnal fall (NF) of BP. The state of renal function was assessed by measurement of glomerular filtration rate (GFR) calculated by the Cockcroft formula. Results. After nonlinear statistical analysis by Gauss-Newton all patients were divided into three groups according to GFR tertiles. Significant differences were found between these groups by 24-hour, nighttime and daytime values of SBP and DBP. Values of SBP were the lowest in group II. In group II lowest values of PP were also observed, but statistically significant differences were found only in nocturnal PP values between groups II and III. There were no significant differences between groups by TL and NF of BP. In group Ill (high GFR) variability of daytime values of SBP and DBF were significantly higher. Univariate correlation analysis showed statistically significant negative relationship between GFR and nocturnal PP in patients with lowest level of GFR. Positive correlations between nocturnal values of PP and GFR in groups II and III were also observed. Conclusion. These results indicated the presence of strong relationship between high values of nocturnal PP and decreasing of glomerular filtration rate in patients with EH and thus confirmed significance of "constant" and "dynamic" components of pressure load as a marker of impairment of renal function.

  20. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  1. Imaging second messenger dynamics in developing neural circuits

    PubMed Central

    Dunn, Timothy A.; Feller, Marla B.

    2010-01-01

    A characteristic feature of developing neural circuits is that they are spontaneously active. There are several examples, including the retina, spinal cord and hippocampus, where spontaneous activity is highly correlated amongst neighboring cells, with large depolarizing events occurring with a periodicity on the order of minutes. One likely mechanism by which neurons can “decode” these slow oscillations is through activation of second messengers cascades that either influence transcriptional activity or drive posttranslational modifications. Here we describe recent experiments where imaging has been used to characterize slow oscillations in the cAMP/PKA second messenger cascade in retinal neurons. We review the latest techniques in imaging this specific second messenger cascade, its intimate relationship with changes in intracellular calcium concentration, and several hypotheses regarding its role in neurodevelopment. PMID:18383551

  2. Imaging the dynamics of free-electron Landau states.

    PubMed

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-08-08

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  3. Compressed Sensing (CS) Imaging with Wide FOV and Dynamic Magnification

    DTIC Science & Technology

    2011-03-14

    shows another set of optical sectioning imaging results captured using the experimental setup. In this case, a biological specimen ( pollen grain ) was...can see that as the optical section moves in the depth direction, different information of the pollen grain specimen in the depth direction was...result of a pollen grain specimen. between adjacent optical sections in the depth direction is 1/xrn. The distance $Q$0 + n, where n is zero-mean

  4. Dynamic Approaches for Facial Recognition Using Digital Image Speckle Correlation

    NASA Astrophysics Data System (ADS)

    Rafailovich-Sokolov, Sara; Guan, E.; Afriat, Isablle; Rafailovich, Miriam; Sokolov, Jonathan; Clark, Richard

    2004-03-01

    Digital image analysis techniques have been extensively used in facial recognition. To date, most static facial characterization techniques, which are usually based on Fourier transform techniques, are sensitive to lighting, shadows, or modification of appearance by makeup, natural aging or surgery. In this study we have demonstrated that it is possible to uniquely identify faces by analyzing the natural motion of facial features with Digital Image Speckle Correlation (DISC). Human skin has a natural pattern produced by the texture of the skin pores, which is easily visible with conventional digital cameras of resolution greater than 4 mega pixels. Hence the application of the DISC method to the analysis of facial motion appears to be very straightforward. Here we demonstrate that the vector diagrams produced by this method for facial images are directly correlated to the underlying muscle structure which is unique for an individual and is not affected by lighting or make-up. Furthermore, we will show that this method can also be used for medical diagnosis in early detection of facial paralysis and other forms of skin disorders.

  5. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  6. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation.

    PubMed

    Lu, L; Fan, D; Bie, B X; Ran, X X; Qi, M L; Parab, N; Sun, J Z; Liao, H J; Hudspeth, M C; Claus, B; Fezzaa, K; Sun, T; Chen, W; Gong, X L; Luo, S N

    2014-07-01

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  7. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics

    PubMed Central

    Li, Dong; Shao, Lin; Chen, Bi-Chang; Zhang, Xi; Zhang, Mingshu; Moses, Brian; Milkie, Daniel E.; Beach, Jordan R.; Hammer, John A.; Pasham, Mithun; Kirchhausen, Tomas; Baird, Michelle A.; Davidson, Michael W.; Xu, Pingyong; Betzig, Eric

    2015-01-01

    Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and a-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions. PMID:26315442

  8. Dynamic contrast-enhanced magnetic resonance imaging of osseous spine metastasis before and 1 hour after high-dose image-guided radiation therapy.

    PubMed

    Lis, Eric; Saha, Atin; Peck, Kyung K; Zatcky, Joan; Zelefsky, Michael J; Yamada, Yoshiya; Holodny, Andrei I; Bilsky, Mark H; Karimi, Sasan

    2017-01-01

    OBJECTIVE High-dose image-guided radiation therapy (HD IGRT) has been instrumental in mitigating some limitations of conventional RT. The recent emergence of dynamic contrast-enhanced (DCE) MRI to investigate tumor physiology can be used to verify the response of human tumors to HD IGRT. The purpose of this study was to evaluate the near-immediate effects of HD IGRT on spine metastases through the use of DCE MRI perfusion studies. METHODS Six patients with spine metastases from prostate, thyroid, and renal cell carcinoma who underwent HD IGRT were studied using DCE MRI prior to and 1 hour after HD IGRT. The DCE perfusion parameters plasma volume (Vp) and vascular permeability (Ktrans) were measured to assess the near-immediate and long-term tumor response. A Mann-Whitney U-test was performed to compare significant changes (at p ≤ 0.05) in perfusion parameters before and after RT. RESULTS The authors observed a precipitous drop in Vp within 1 hour of HD IGRT, with a mean decrease of 65.2%. A significant difference was found between Vp values for before and 1 hour after RT (p ≤ 0.05). No significant change was seen in Vp (p = 0.31) and Ktrans (p = 0.1) from 1 hour after RT to the first follow-up. CONCLUSIONS The data suggest that there is an immediate effect of HD IGRT on the vascularity of spine metastases, as demonstrated by a precipitous decrease in Vp. The DCE MRI studies can detect such changes within 1 hour after RT, and findings are concordant with existing animal models.

  9. ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain

    PubMed Central

    Welker, K.; Boxerman, J.; Kalnin, A.; Kaufmann, T.; Shiroishi, M.; Wintermark, M.

    2016-01-01

    SUMMARY MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  10. Development of High Speed Interferometry Imaging and Analysis Techniques for Compressible Dynamic Stall

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.

    1998-01-01

    The development of a high-speed, phase-locked, realtime, point diffraction interferometry system for quantitative imaging unsteady separated flows is described. The system enables recording of up to 224 interferograms of the dynamic stall flow over an oscillating airfoil using a drum camera at rates of up to 40 KHz controlled by custom designed electronic interlocking circuitry. Several thousand interferograms of the flow have been obtained using this system. A comprehensive image analysis package has been developed for automatic processing of this large number of images. The software has been specifically tuned to address the special characteristics of airfoil flow interferograms. Examples of images obtained using the standard and the high-speed interferometry techniques are presented along with a demonstration of the image processing routine's ability to resolve the fine details present in these images.

  11. Congenital renal anomalies detected in adulthood

    PubMed Central

    Muttarak, M; Sriburi, T

    2012-01-01

    Objective To document the types of congenital renal anomalies detected in adulthood, the clinical presentation and complications of these renal anomalies, and the most useful imaging modality in detecting a renal anomaly. Materials and methods This study was approved by the institutional review board and informed consent was waived. Between January 2007 and January 2011, the clinical data and imaging studies of 28 patients older than 18 years diagnosed with renal anomaly at the authors’ institution were retrospectively reviewed. Renal anomalies in this study included only those with abnormality in position and in form. Results Of these 28 patients, 22 underwent imaging studies and their results constituted the material of this study. Of the 22 patients, 14 had horseshoe kidneys (HSK), four had crossed renal ectopia and four had malrotation. Sixteen patients were men and six were women. The patients ranged in age from 19 to 74 years (mean age 51.1 years). Clinical presentations were abdominal pain (13), fever (13), haematuria (4), palpable mass (2), asymptomatic (2), polyuria (1) dysuria (1), blurred vision (1), and headache with weakness of left extremities (1). Imaging studies included abdominal radiograph (15), intravenous pyelography (IVP) (8), retrograde pyelography (RP) (4), ultrasonography (US) (7), and computed tomography (CT) (9). Associated complications included urinary tract stones (17), urinary tract infection (16), hydronephrosis (12), and tumours (2). Abdominal radiograph suggested renal anomalies in nine out of 15 studies. IVP, RP, US and CT suggested anomalies in all patients who had these studies performed. However, CT was the best imaging modality to evaluate anatomy, function and complications of patients with renal anomalies. Conclusion HSK was the most common renal anomaly, with abdominal pain and fever being the most common presentations. UTI and stones were the most common complications. IVP, RP, US and CT can be used to diagnose renal

  12. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  13. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics

    PubMed Central

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L.; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-01

    Summary Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements. PMID:26766446

  14. A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Gou, Xu; Li, Zhi; Li, Jian

    2017-04-01

    In this paper, we propose a novel chaotic image encryption algorithm which involves a block image scrambling scheme and a new dynamic index based diffusion scheme. Firstly, the original image is divided into two equal blocks by vertical or horizontal directions. Then, we use the chaos matrix to construct X coordinate, Y coordinate and swapping control tables. By searching the X coordinate and Y coordinate tables, the swapping position of the processing pixel is located. The swapping control table is used to control the swapping of the pixel in the current block or the other block. Finally, the dynamic index scheme is applied to the diffusing of the scrambled image. The simulation results and performance analysis show that the proposed algorithm has an excellent safety performance with only one round.

  15. Parametric imaging via kinetics-induced filter for dynamic positron emission tomography.

    PubMed

    Bian, Zhaoying; Huang, Jing; Lu, Lijun; Ma, Jianhua; Zeng, Dong; Feng, Qianjin; Chen, Wufan

    2013-01-01

    Due to the noisy measurement of the voxel-wise time activity curve (TAC), parametric imaging for dynamic positron emission tomography (PET) is a challenging task. To address this problem, some spatial filters, such as Gaussian filter, bilateral filter, wavelet-based filter, and so on, are often performed to reduce the noise of each frame. However, these filters usually just consider local properties of each frame without exploring the kinetic information. In this paper, aiming to improve the quantitative accuracy of parametric imaging, we present a kinetics-induced filter to lower the noise of dynamic PET images by incorporating the kinetic information. The present kinetics-induced filter is designed via the similarity between voxel-wise TACs under the framework of bilateral filter. Experimental results with a simulation study demonstrate that the present kinetics-induced filter can achieve noticeable gains than other existing methods for parametric images in terms of quantitative accuracy measures.

  16. Context-dependent JPEG backward-compatible high-dynamic range image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  17. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  18. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics

    PubMed Central

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo

    2017-01-01

    We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume. PMID:28230188

  19. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo

    2017-02-01

    We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.

  20. Fast imaging technique to study drop impact dynamics of non-Newtonian fluids.

    PubMed

    Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich

    2014-03-05

    In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena.

  1. Dynamic contrast-enhanced optical imaging of in vivo organ function

    PubMed Central

    Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-01-01

    Abstract. Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ’s response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition. PMID:23085904

  2. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  3. Cardiovascular Metabolic Imaging: Physiologic and Biochemical Dynamics In Vivo

    PubMed Central

    McMillin-Wood, Jeanie B.; Bassingthwaighte, James B.

    2010-01-01

    Fifty-eight investigators from the fields of biochemistry, physiology, cardiology, nuclear medicine, and physics met to discuss the development of metabolic imaging techniques for application to cardiovascular and pulmonary studies in health and disease. The workshop was sponsored by the Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute and was held on September 16 to 18 in Bethesda, Maryland, in facilities provided by the American College of Cardiology. This report summarizes the presentations and discussions and presents recommendations for future studies. PMID:3902281

  4. Cardiovascular Metabolic Imaging: Physiologic and Biochemical Dynamics In Vivo

    PubMed Central

    Bassingthwaighte, James B.; McMillin-Wood, Jeanie B.; Brown, Truman R.; Budinger, Thomas F.; Ingwall, Joanne S.; Rovetto, Michael J.; Schelbert, Heinrich R.; McCallum, Zena

    2010-01-01

    Fifty-eight investigators from the fields of biochemistry, physiology, cardiology, nuclear medicine, and physics met to discuss the development of metabolic imaging techniques for application to cardiovascular and pulmonary studies in health and disease. The workshop was sponsored by the Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute and was held on September 16 to 18 in Bethesda, Maryland, in facilities provided by the American College of Cardiology. This report summarizes the presentations and discussions and presents recommendations for future studies. PMID:3876891

  5. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    PubMed Central

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-01-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media. PMID:28361951

  6. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  7. 3.5D dynamic PET image reconstruction incorporating kinetics-based clusters

    PubMed Central

    Lu, Lijun; Karakatsanis, Nicolas A.; Tang, Jing; Chen, Wufan; Rahmim, Arman

    2012-01-01

    Standard 3D dynamic PET imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves (TACs) at the voxel or region-of-interest. The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posterior (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled “3.5D” image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) MLEM, and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 regions-of-interest (ROIs). Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise vs. bias performance) for parametric DV and DVR images. The method was also tested on a 90 min 11C

  8. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  9. TH-A-18C-10: Dynamic Intensity Weighted Region of Interest Imaging

    SciTech Connect

    Pearson, E; Pan, X; Pelizzari, C

    2014-06-15

    Purpose: For image guidance tasks full image quality is not required throughout the entire image. With dynamic filtration of the kV imaging beam the noise properties of the CT image can be locally controlled, providing a high quality image around the target volume with a lower quality surrounding region while providing substantial dose sparing to the patient as well as reduced scatter fluence on the detector. Methods: A dynamic collimation device with 3mm copper blades has been designed to mount in place of the bowtie filter on the On-Board Imager (Varian Medical Systems). The beam intensity is reduced by 95% behind the copper filters and the aperture is controlled dynamically to conformally illuminate a given ROI during a standard cone-beam CT scan. A data correction framework to account for the physical effects of the collimator prior to reconstruction was developed. Furthermore, to determine the dose savings and scatter reduction a monte carlo model was built in BEAMnrc with specifics from the Varian Monte Carlo Data Package. The MC model was validated with Gafchromic film. Results: The reconstructed image shows image quality comparable to a standard scan in the specified ROI, with higher noise and streaks in the outer region but still sufficient information for alignment to high contrast structures. The monte carlo modeling showed that the scatter-to-primary ratio was reduced from 1.26 for an unfiltered scan to 0.45 for an intensity weighted scan, suggesting that image quality may be improved in the inner ROI. Dose in the inner region was reduced 10–15% due to reduced scatter and by as much as 75% in the outer region. Conclusion: Dynamic intensity-weighted ROI imaging allows reduction of imaging dose to sensitive organs away from the target region while providing images that retain their utility for patient setup and procedure guidance. Funding was provided in part by Varian Medical Systems and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P30 CA

  10. Development of new method image diagnosis through hybrid PACS -- with a special concern to a dynamic image

    NASA Astrophysics Data System (ADS)

    Maeda, Tomoho; Nishimoto, Hitoshi; Yoshida, Shoji; Yachida, Masuyoshi; Tohyama, Yasuhiko; Yamamoto, Hiroshi

    1990-08-01

    We conceived a hybrid PACS which combines analogue and digital elements where it is required. We experimented a clinical application of the dynamic image utilizing the analogue element which is a feature of the hybrid PACS. With the analogue optical disk, dynamic image acquisition of 30 frames per second is possible and image recording is also possible with any modality of X-ray fluoroscopy function. In addition, X-ray dose to the patient is one-fifth to one-tenth compared with the conventional cine filming method while its still image is clear and a data acquisition to the PACS is easy. We applied this system to the areas of the otorhinolaryngology, orthopaedics and respiratory disease and could perform a various analysis of the disease status under natural conditions, also we found that this system is useful for judging an effect of a treatment as well as jugding a functional recovery after an operation and an effect of a rehabilitation. We are also planning to extend the application to the areas of the digestive system and the group examination from now on.

  11. Dynamic imaging of the recycling endosomal network in macrophages.

    PubMed

    Wall, Adam A; Condon, Nicholas D; Yeo, Jeremy C; Hamilton, Nicholas A; Stow, Jennifer L

    2015-01-01

    Recycling endosomes (REs) form an extensive and complex network of subcompartmentalized vesicular and tubular elements that connect with the cell surface and other endosomes in macrophages. As surveillance and defense cells of the innate immune system, macrophages are highly dependent on REs for their active and voluminous cell surface turnover and endocytic, exocytic, and recycling of membrane and cargo. Here we set out three approaches for imaging and analyzing REs in macrophages, based on the expression of fluorescently labeled RE-associated proteins and the uptake of fluorescent cargo. Subcompartments of the REs are identified by co-expression and co-localization analysis of RE associated Rab GTPases. Transferrin is a well-known cargo marker as it recycles through REs and it is compared here to other cargo, revealing how different endocytic routes intersect with REs. We show how the movement of transferrin through REs can be modeled and quantified in live cells. Finally, since phagosomes are a signature organelle for macrophages, and REs fuse with the maturing phagosome, we show imaging of REs with phagosomes using a genetically encoded pH-sensitive SNARE-based probe. Together these approaches provide multiple ways to comprehensively analyze REs and the important roles they play in these immune cells and more broadly in other cell types.

  12. Computer acquisition of 3D images utilizing dynamic speckles

    NASA Astrophysics Data System (ADS)

    Kamshilin, Alexei A.; Semenov, Dmitry V.; Nippolainen, Ervin; Raita, Erik

    2006-05-01

    We present novel technique for fast non-contact and continuous profile measurements of rough surfaces by use of dynamic speckles. The dynamic speckle pattern is generated when the laser beam scans the surface under study. The most impressive feature of the proposed technique is its ability to work at extremely high scanning speed of hundreds meters per second. The technique is based on the continuous frequency measurements of the light-power modulation after spatial filtering of the scattered light. The complete optical-electronic system was designed and fabricated for fast measurement of the speckles velocity, its recalculation into the distance, and further data acquisition into computer. The measured surface profile is displayed in a PC monitor in real time. The response time of the measuring system is below 1 μs. Important parameters of the system such as accuracy, range of measurements, and spatial resolution are analyzed. Limits of the spatial filtering technique used for continuous tracking of the speckle-pattern velocity are shown. Possible ways of further improvement of the measurements accuracy are demonstrated. Owing to its extremely fast operation, the proposed technique could be applied for online control of the 3D-shape of complex objects (e.g., electronic circuits) during their assembling.

  13. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors

    NASA Astrophysics Data System (ADS)

    Christodoulou, Anthony G.; Redler, Gage; Clifford, Bryan; Liang, Zhi-Pei; Halpern, Howard J.; Epel, Boris

    2016-09-01

    Hypoxic tumors are resistant to radiotherapy, motivating the development of tools to image local oxygen concentrations. It is generally believed that stable or chronic hypoxia is the source of resistance, but more recent work suggests a role for transient hypoxia. Conventional EPR imaging (EPRI) is capable of imaging tissue pO2in vivo, with high pO2 resolution and 1 mm spatial resolution but low imaging speed (10 min temporal resolution for T1-based pO2 mapping), which makes it difficult to investigate the oxygen changes, e.g., transient hypoxia. Here we describe a new imaging method which accelerates dynamic EPR oxygen imaging, allowing 3D imaging at 2 frames per minute, fast enough to image transient hypoxia at the "speed limit" of observed pO2 change. The method centers on a low-rank tensor model that decouples the tradeoff between imaging speed, spatial coverage/resolution, and number of inversion times (pO2 accuracy). We present a specialized sparse sampling strategy and image reconstruction algorithm for use with this model. The quality and utility of the method is demonstrated in simulations and in vivo experiments in tumor bearing mice.

  14. ESPR Uroradiology Task Force and ESUR Paediatric Working Group--Imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children.

    PubMed

    Riccabona, Michael; Avni, Fred Efraim; Damasio, Maria Beatrice; Ording-Müller, Lil-Sofie; Blickman, Johan G; Darge, Kassa; Lobo, Maria Luisa; Papadopoulou, Frederica; Vivier, Pierre-Hugues; Willi, Ullrich

    2012-10-01

    The ESPR Uroradiology Task Force and the ESUR Paediatric Working Group present two new recommendations on imaging in childhood cystic kidney disease and in childhood renal transplantation, and address the presently restricted availability of contrast-enhanced (ce) US in children. New insights into the genetics require an updated classification of paediatric cystic kidney disease along with a new concept of diagnostic imaging. Characteristic imaging features are key to the new classification. Available recommendations for imaging renal transplantation in children are not satisfactory. The following consensus-based algorithm proposes a more effective and more uniform imaging concept, reducing invasiveness, enhancing diagnostic accuracy, and facilitating future multicentre studies and meta-analysis. At present, ce-US in children can only be performed off-license, since the only approved US contrast agent (CA) for children has been taken off the market. Nevertheless, paediatric ce-US is practiced at multiple places using Sonovue (Bracco, Milan, Italy), a generally available agent in Europe. From a medical and scientific perspective, paediatric ce-US should be promoted, and efforts are undertaken to collect data on paediatric US-CA applications. Routine paediatric imaging depends on local expertise and availability of equipment. The imaging recommendations and supportive data are intended to ease the physicians' difficult task of dealing with the specific diagnostic demands of paediatric paediatric cystic kidney disease and transplantation.

  15. A systematic desaturation method for images from the Atmospheric Imaging Assembly in the Solar Dynamics Observatory.

    NASA Astrophysics Data System (ADS)

    Torre, Gabriele; Schwartz, Richard; Piana, Michele; Massone, Anna Maria; Benvenuto, Federico

    2016-05-01

    The fine spatial resolution of the SDO AIA CCD's is often destroyed by the charge in saturated pixels overflowing into a swath of neighboring cells during fast rising solar flares. Automated exposure control can only mitigate this issue to a degree and it has other deleterious effects. Our method addresses the desaturation problem for AIA images as an image reconstruction problem in which the information content of the diffraction fringes, generated by the interaction between the incoming radiation and the hardware of the spacecraft, is exploited to recover the true image intensities within the primary saturated core of the image. This methodology takes advantage of some well defined techniques like cross-correlation and the Expectation Maximization method to invert the direct relation between the diffraction fringes intensities and the true flux intensities. During this talk a complete overview on the structure of the method will be provided, besides some reliability tests obtained by its application against synthetic and real data.

  16. Clustering-Based Linear Least Square Fitting Method for Generation of Parametric Images in Dynamic FDG PET Studies

    PubMed Central

    Huang, Xinrui; Zhou, Yun; Bao, Shangliang; Huang, Sung-Cheng

    2007-01-01

    Parametric images generated from dynamic positron emission tomography (PET) studies are useful for presenting functional/biological information in the 3-dimensional space, but usually suffer from their high sensitivity to image noise. To improve the quality of these images, we proposed in this study a modified linear least square (LLS) fitting method named cLLS that incorporates a clustering-based spatial constraint for generation of parametric images from dynamic PET data of high noise levels. In this method, the combination of K-means and hierarchical cluster analysis was used to classify dynamic PET data. Compared with conventional LLS, cLLS can achieve high statistical reliability in the generated parametric images without incurring a high computational burden. The effectiveness of the method was demonstrated both with computer simulation and with a human brain dynamic FDG PET study. The cLLS method is expected to be useful for generation of parametric images from dynamic FDG PET study. PMID:18273393

  17. Dynamic imaging for CAR-T-cell therapy.

    PubMed

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As