Science.gov

Sample records for renal excretory mechanisms

  1. Relative roles of metabolism and renal excretory mechanisms in xenobiotic elimination by fish

    SciTech Connect

    Pritchard, J.B. Univ. of Florida, St. Augustine ); Bend, J.R. )

    1991-01-01

    Renal clearance techniques were used to examine the relative contributions of metabolism and renal tubular transport in determining the rates of excretion of benzo(a)pyrene (BaP) and several of its phase I metabolites by southern flounder, Paralichthys lethostigma. Each compound ({sup 3}H-labeled) was injected at a dose of 2.5 {mu}mole/kg, producing plasma concentrations of 1 to 5 {mu}M. Despite extensive plasma binding, the uncorrected renal clearance of BaP-7,8-dihydrodiol exceeded the glomerular filtration rate (GFR) by more than 20-fold. Phenolic BaP metabolites also showed net secretion. Clearances of all four compounds studied were reduced by probenecid and other organic anion, including the herbicide 2,4-dichlorophenoxyacetic acid. HPLC analysis demonstrated that the bulk of the material excreted in the urine was not the parent compound, but sulfate or glucuronide conjugates of its phenolic or dihydrodiol metabolites. Excretion of sulfate conjugates predominated over the first 24 hr, whereas the glucuronide conjugates were the primary excretory products in succeeding days. In vitro, isolated renal tubules transported both glucuronide and sulfate conjugates, but sulfates were the preferred substrates. Isolated tubules were shown to be capable of catalyzing conjugation reactions, producing predominantly glucuronide conjugates. Liver slices produced both types of conjugates. Thus, the rapid excretion of BaP-7,8-dihydrodiol reflected a combination of two processes. First, this metabolite was rapidly converted to its sulfate conjugate, primarily via extrarenal tissues. Second, the sulfate conjugate was preferentially transported to the urine via secretion on the organic anion transport system.

  2. Renal malignancies with normal excretory urograms

    SciTech Connect

    Kass, D.A.; Hricak, H.; Davidson, A.J.

    1983-10-01

    Four patients with malignant renal masses showed no abnormality of excretory urograms with tomography. Of the four lesions, two were primary renal cell carcinomas, one was a metastatic focus from a contralateral renal cell carcinoma, and one was a metastatic lesion from rectal adenocarcinoma. A normal excretory urogram should not be considered sufficient to exclude a clinically suspected malignant renal mass. In such an instance, diagnostic evaluation should be pursued using a method capable of topographic anatomic display, such as computed tomography or sonography.

  3. Functional consequences of prenatal methylmercury exposure: effects on renal and hepatic responses to trophic stimuli and on renal excretory mechanisms

    SciTech Connect

    Slotkin, T.A.; Kavlock, R.J.; Cowdery, T.; Orband, L.; Bartolome, M.

    1986-01-01

    The effects of prenatal exposure to methylmercury on the functional development of renal and hepatic response systems was examined in the developing rat. Methylmercury produced an elevation of basal activity of renal ornithine decarboxylase (ODC, an enzyme involved in regulation of cellular maturation) and an eventual relative hypertrophy; liver ODC was reduced and hypertrophy was not evident. In contrast, the reactivity of liver ODC to trophic stimulants (vasopressin, isoproterenol) was markedly enhanced by prenatal methylmercury exposure, whereas renal ODC responses were much less affected (vasopressin) or actually reduced (isoproterenol). Targeted actions of methylmercury on renal excretory function were also prominent, with increased fractional excretions urea and electrolytes and an eventual reduction in glomerular filtration as assessed by creatinine clearance. These studies show that doses of methylmercury ordinarily associated with selective actions on development of neurobehavioral patterns also influence the functional ontogeny of other organ systems; furthermore, the fact that the target tissues are different for prenatal vs postnatal methylmercury exposure, indicates that the functional teratology of methylmercury exhibits critical periods of sensitivity.

  4. [Capacities of examination of renal function at excretory urography].

    PubMed

    Bosin, V Iu; Zyrianov, V Iu

    2004-01-01

    The study was undertaken to enhance the diagnostic capacities of excretory urography in evaluating renal function, by determining the renal clearance of a contrast medium. The main task of the study was to develop bloodless and rather reliable ways of estimating the volume of the body's distributed contrast medium and its urinary concentration in the patient at urography. Excretory urography was performed in 248 patients aged 12 to 75 years. The specific gravity of excreted urine was determined with a standard laboratory urometer to 0.001 g/cm3. Absoption spectrophotometry was used to determine the serum concentration of contrast medium in 67 patients. The values of concentrations were plotted in the semilogarithmic ordinate system, followed by extrapolation of the initial segment of the plot to the so-called zero point determining the value of the concentration of contrast medium at the moment of its complete distribution in the intercellular space. The derived value was compared with the medium's dose coming into the body, which made it possible to determine the degree of dilution of the substance, i.e. the volume of its distribution in the organism. There was a linear relationship between the concentrations of renally eliminated contrast medium and the specific gravity of excreted urine. The numerical value of the constant reflecting this relationship is equal to 6. There was evidence for that such studies could be made by routine urometry. A high correlation was found between the body mass and the volume of distribution of contrast medium in the intercellular space. The discovery of the above regularities permitted the procedure for measuring the values of two most important physiological renal process (glomerular filtration and trabecular water reabsorption) to be simplified and widely available. The paper outlines the great promises for using excretory urography as a scanning functional test during a primary study and a follow-up of the patient's status.

  5. Comprehensive renal scintillation procedures in spinal cord injury: comparison with excretory urography

    SciTech Connect

    Lloyd, L.K.; Dubovsky, E.V.; Bueschen, A.J.; Witten, D.M.; Scott, J.W.; Kuhlemeier, K.; Stover, S.L.

    1981-07-01

    A /sup 131/iodine orthoiodohippurate comprehensive renal scintillation procedure was performed and compared to results of excretory urography in 200 spinal cord injury patients. No severe urographic abnormalities were undetected by the comprehensive renal scintillation procedure. Only 1.4 per cent of renal units had greater than minimal pyelocaliectasis or ureterectasis in the presence of a normal radionuclide examination. A relatively large number of abnormalities were detected on the renal scintillation procedure when the excretory urogram was normal. Serial followup will be required to determine the significance of these findings but present data suggest that a comprehensive renal scintillation procedure and a plain film of the kidneys, ureters and bladder may be used for screening upper urinary tract abnormalities in lieu of an excretory urogram. This is particularly advantageous for the spinal cord injury population, since there have been no toxic or allergic reactions reported, no bowel preparation or dehydration is required and there is relatively low radiation exposure.

  6. 99mtechnetium-dimercapto-succinic acid renal scanning and excretory urography in diagnosis of renal scars in children

    SciTech Connect

    McLorie, G.A.; Aliabadi, H.; Churchill, B.M.; Ash, J.M.; Gilday, D.L. )

    1989-09-01

    We compared the ability of excretory urography (without tomography) and 99mtechnetium-dimercapto-succinic acid renal scanning to detect renal scars in 32 children with primary vesicoureteral reflux. These children did not have hydronephrosis, renal failure or urinary tract obstruction. In all cases both studies were conducted within a 10-month period. The findings from both modalities were in agreement for 51 of the 64 renal units evaluated (80%). Evaluation of the excretory urogram indicated 6 cases of diffuse and 2 of focal scarring that were not detected by evaluation of the renal scan. The sensitivity of excretory urography to detect renal scars was 84% and the specificity was 83%. The 99mtechnetium-dimercapto-succinic acid renal scan showed 5 cases of focal renal scarring not detected by excretory urography. The sensitivity of the renal scan to detect renal scars was 77% and the specificity was 75%. We conclude that neither study alone could effectively replace the other for the detection of renal scars, and recommend that both be included in the initial evaluation and followup of patients with renal scars.

  7. Exercise training improves renal excretory responses to acute volume expansion in rats with heart failure.

    PubMed

    Zheng, Hong; Li, Yi-Fan; Zucker, Irving H; Patel, Kaushik P

    2006-12-01

    Experiments were performed to test the postulate that exercise training (ExT) improves the blunted renal excretory response to acute volume expansion (VE), in part, by normalizing the neural component of the volume reflex typically observed in chronic heart failure (HF). Diuretic and natriuretic responses to acute VE were examined in sedentary and ExT groups of rats with either HF or sham-operated controls. Experiments were performed in anesthetized (Inactin) rats 6 wk after coronary ligation surgery. Histological data indicated that there was a 34.9 +/- 3.0% outer and 42.5 +/- 3.2% inner infarct of the myocardium in the HF group. Sham rats had no observable damage to the myocardium. In sedentary rats with HF, VE produced a blunted diuresis (46% of sham) and natriuresis (35% of sham) compared with sham-operated control rats. However, acute VE-induced diuresis and natriuresis in ExT rats with HF were comparable to sham rats and significantly higher than sedentary HF rats. Renal denervation abolished the salutary effects of ExT on renal excretory response to acute VE in HF. Since glomerular filtration rates were not significantly different between the groups, renal hemodynamic changes may not account for the blunted renal responses in rats with HF. Additional experiments confirmed that renal sympathetic nerve activity responses to acute VE were blunted in sedentary HF rats; however, ExT normalized the renal sympathoinhibition in HF rats. These results confirm an impairment of neurally mediated excretory responses to acute VE in rats with HF. ExT restored the blunted excretory responses as well as the renal sympathoinhibitory response to acute VE in HF rats. Thus the beneficial effects of ExT on cardiovascular regulation in HF may be partly due to improvement of the neural component of volume reflex.

  8. Effects of chronic sympatho-inhibition on renal excretory function in renovascular hypertension.

    PubMed

    Burke, Sandra L; Evans, Roger G; Head, Geoffrey A

    2011-05-01

    Treatment of renovascular hypertension with drugs that directly target the renin-angiotensin system may compromise glomerular filtration and renal excretory function, leading to renal failure. Centrally acting sympathoinhibitory agents also inhibit the renin-angiotensin system, so we determined whether this treatment modality alters renal excretory function in rabbits with renovascular hypertension. Rabbits were equipped with bilateral renal artery flow probes and a renal nerve electrode. Hypertension was induced with a renal artery clip (2K1C) or rabbits were sham-clipped. After 2 weeks, a subcutaneous minipump was implanted to deliver rilmenidine (2.5 mg/kg per day) or vehicle for 3 weeks. Haemodynamic variables and renal function were studied under control conditions and during intravenous infusion of isotonic saline (154 mmol/l NaCl) at increasing rates of 4, 12 and 36 ml/kg per hour. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were greater in 2K1C rabbits than sham-clipped rabbits, but total urine flow, sodium excretion and glomerular filtration rate were similar in the two groups. In 2K1C rabbits, rilmenidine reduced MAP to close to control levels and reduced RSNA (40%), but did not significantly alter basal renal blood flow, glomerular filtration rate, urine flow or sodium excretion. The natriuretic response to isotonic saline load in 2K1C rabbits was not significantly altered by rilmenidine. These observations show that chronic treatment of rabbits with renal artery stenosis with a centrally acting sympathoinhibitory agent, despite normalizing MAP, does not compromise renal excretory function. Thus, this treatment modality may be particularly useful in renovascular hypertension. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

  9. Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerine.

    PubMed

    Bishara, Bishara; Karram, Tony; Khatib, Samer; Ramadan, Rawi; Schwartz, Henry; Hoffman, Aaron; Abassi, Zaid

    2009-03-01

    Increased intra-abdominal pressure (IAP) (pneumoperitoneum) during laparoscopic surgery may result in adverse effects on kidney function. The mechanisms underlying this phenomenon have not been fully determined. The present study was designed to: (1) investigate the effects of incremental increases in IAP on renal function in normal rats and (2) evaluate whether the nitric oxide (NO) system is involved in renal dysfunction characterizing pneumoperitoneum. Male rats were organized into two groups. The first group was subjected to IAP of 0 (baseline), 7 or 14 mmHg, over 1 h for each pressure, followed by a deflation period of 60 min (recovery). Two additional groups were pretreated with: (1) non-depressor dose of nitroglycerine (NTG) and (2) nitro-L-arginine-methylester (L-NAME), an NO synthase inhibitor, before applying 14 mmHg for 1 h. Urine flow rate (V), Na+ excretion (U(Na)V), glomerular filtration rate (GFR), renal plasma flow (RPF), and blood pressure were determined throughout the experiments. There were no significant changes in V, U(Na)V, GFR, and RPF during 7 mmHg insufflation. However, significant reductions in these parameters were observed during 14 mmHg: V from 8.49 +/- 0.92 to 6.12 +/- 0.54 microl/min, U(Na)V from 1.29 +/- 0.28 to 0.39 +/- 0.09 microEq/min, and FE(Na) from 0.37 +/- 0.11 to 0.27 +/- 0.04%. These alterations in excretory functions were associated with a considerable decline in GFR from 1.85 +/- 0.09 to 0.88 +/- 0.09 ml/min, p < 0.05, (-46.3 +/- 5.2% from baseline) and RPF from 8.66 +/- 0.62 to 4.33 +/- 0.49 ml/min, p < 0.05, (-51.93 +/- 5.24% from baseline), without a significant change in mean arterial blood pressure (MAP). When the animals were pretreated with NTG, the adverse effects of pneumoperitoneum on V, U(Na)V, GFR, and RPF were substantially improved, suggesting that NO system plays a beneficial counter-regulatory role during laparoscopy. In line with this notion, pretreatment with L-NAME remarkably aggravated pneumoperitoneum

  10. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    PubMed Central

    Botros, Fady T.; Dobrowolski, Leszek; Navar, L. Gabriel

    2012-01-01

    Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models. PMID:22518281

  11. Renal parenchymal appearance on /sup 123/iodine-hippurate renoscintigrams and excretory urograms

    SciTech Connect

    Nielsen, J.B.; Taagehoj-Jensen, F.; Andresen, J.H.; Jorgensen, T.M.; Djurhuus, J.C.; Sorensen, S.S.; Charles, P.

    1985-02-01

    In 61 patients with vesicoureteral reflux renal scar formation was diagnosed by excretory urography and /sup 123/iodine-hippurate scintigrams. Scar formation on the nephrograms was detected in the upper, middle and lower zones of the kidneys on tomography exposures. Scintigraphic detection of scars was performed on the computerized uptake of the parenchymal phase. Maximal time elapse between the 2 investigations was 1 year. Excretory urography revealed 37 kidneys with a total of 74 regional scars. On scintigraphy 57 kidneys were judged to have 102 scars. There were 281 regions judged to be identical on the scintigram and the nephrogram. A true positive ratio (sensitivity) of 0.46 and a true negative ratio (specificity) of 0.90 were noted for the excretory urogram, compared to a sensitivity of 0.64 and a specificity of 0.81 for renography. The study confirms an over-representation of scars judged from scintigrams, which calls for further investigation of scar formation detection.

  12. Attenuation of renal excretory responses to ANG II during inhibition of superoxide dismutase in anesthetized rats

    PubMed Central

    Khan, Md. Abdul Hye; Islam, Mohammed Toriqul; Castillo, Alexander

    2010-01-01

    To examine the functional interaction between superoxide dismutase (SOD) and NADPH oxidase activity, we assessed renal responses to acute intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a SOD inhibitor, diethyldithiocarbamate (DETC, 0.5 mg·kg−1·min−1), in enalaprilat-pretreated (33 μg·kg−1·min−1) rats (n = 11). Total (RBF) and regional (cortical, CBF; medullary; MBF) renal blood flows were determined by Transonic and laser-Doppler flowmetry, respectively. Renal cortical and medullary tissue NADPH oxidase activity in vitro was determined using the lucigenin-chemiluminescence method. DETC treatment alone resulted in decreases in RBF, CBF, MBF, glomerular filtration rate (GFR), urine flow (V), and sodium excretion (UNaV) as reported previously. Before DETC, ANG II infusion decreased RBF (−18 ± 3%), CBF (−16 ± 3%), MBF [−5 ± 6%; P = not significant (NS)], GFR (−31 ± 4%), V (−34 ± 2%), and UNaV (−53 ± 3%). During DETC infusion, ANG II also caused similar reductions in RBF (−20 ± 4%), CBF (−19 ± 3%), MBF (−2 ± 2; P = NS), and in GFR (−22 ± 7%), whereas renal excretory responses (V; −12 ± 2%; UNaV; −24 ± 4%) were significantly attenuated compared with those before DETC. In in vitro experiments, ANG II (100 μM) enhanced NADPH oxidase activity both in cortical [13,194 ± 1,651 vs. 20,914 ± 2,769 relative light units (RLU)/mg protein] and in medullary (21,296 ± 2,244 vs. 30,597 ± 4,250 RLU/mg protein) tissue. Application of DETC (1 mM) reduced the basal levels and prevented ANG II-induced increases in NADPH oxidase activity in both tissues. These results demonstrate that renal excretory responses to acute ANG II administration are attenuated during SOD inhibition, which seems related to a downregulation of NADPH oxidase in the deficient condition of SOD activity. PMID:19923406

  13. Renal endothelin system and excretory function in Wistar-Kyoto and Long-Evans rats.

    PubMed

    Girchev, R; Bäcker, A; Markova, P; Kramer, H J

    2006-01-01

    The role of the kidney endothelin system in the renal regulation of fluid and electrolyte excretion was investigated in Wistar-Kyoto (WKY) and Long-Evans (LE) rats in which we found previously marked differences in the renal excretory responses to endothelin A receptor blockade. The selective endothelin A and B receptor antagonists BQ-123 (16.4 nmol kg(-1) min(-1)) and BQ-788 (25 nmol kg(-1) min(-1)) were infused i.v. for 50 min in conscious chronically instrumented WKY and LE rats and their renal function and renal endothelin system were studied. Without effects on glomerular filtration rate or renal blood flow, BQ-123 and BQ-788 decreased by more than 50% (P < 0.01) both urine flow rate and electrolyte excretion in WKY rats but only urine flow rate (P < 0.05) in LE rats. Endothelin-1 content, preproET-1/GPDH mRNA ratio, B(max) and K(d) of total endothelin receptors in renal cortex did not differ between the two strains. In contrast, plasma endothelin-1 concentration (0.58 +/- 0.04 vs. 1.05 +/- 0.01 femtomol mL(-1); P < 0.01), renal papillary ET-1 concentration (68 +/- 5 vs. 478 +/- 62 fmol mg(-1) protein; P < 0.01) and preproET-1/GPDH mRNA ratio (0.65 +/- 0.09 vs. 0.88 +/- 0.05; P < 0.05) as well as total endothelin receptor number in renal papilla (B(max) 5.3 +/- 0.4 vs. and 9.0 +/- 1.2 pmol mg(-1) protein; P < 0.05) were markedly lower in LE than in WKY rats. In vitro studies showed that in both strains ET(B) receptors on renal cortical membranes amounted between 65% and 67% and on papillary membranes between 85% and 88%. The present data show that the selective ET(A) or ET(B) receptor blockade differentially affects tubular water and salt handling, which becomes apparent in conditions of low renal papillary endothelin receptor number and tissue endothelin-1 concentration.

  14. Role of the renal sympathetic nervous system in mediating renal ischaemic injury-induced reductions in renal haemodynamic and excretory functions.

    PubMed

    Salman, Ibrahim M; Ameer, Omar Z; Sattar, Munavvar A; Abdullah, Nor A; Yam, Mun F; Najim, Hafsa S; Khan, Abdul Hye; Johns, Edward J

    2010-04-01

    We investigated the role of renal sympathetic innervation in the deterioration of renal haemodynamic and excretory functions during the early post-ischaemic phase of renal ischaemia/reperfusion injury. Anaesthetised male Sprague-Dawley rats were subjected to unilateral renal ischaemia by clamping the left renal artery for 30 min followed by reperfusion. Following acute renal denervation clearance experiments were performed. In a different set of experiments, the renal nerves were electrically stimulated at increasing frequencies and responses in renal blood flow and renal vascular resistance were recorded. Denervated post-ischaemic acute renal failure (ARF) rats showed higher urine flow rate, absolute and fractional sodium excretions, urinary sodium to urinary potassium, glomerular filtration rate and basal renal blood flow but lower basal renal vascular resistance (all p < 0.05 vs innervated ARF rats). Potassium excretion was significantly lower in denervated group as per fractional (p < 0.05 vs innervated ARF rats) but not absolute potassium excretion (p > 0.05 vs innervated ARF rats). The rise in mean arterial pressure and renal vasoconstrictor response to renal nerve stimulation were blunted in denervated ischaemic ARF rats (all p < 0.05 vs innervated ARF rats). Renal histopathology in denervated ARF rats manifested a significantly lower medullary congestion, inflammation and tubular injury compared to innervated counterparts (p < 0.05 vs innervated ARF rats). The findings strongly suggest the involvement of renal sympathetic tone in the post-ischaemic events of ischaemic ARF, as the removal of its action to a degree ameliorated the post-ischaemic renal dysfunctions.

  15. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats.

    PubMed

    O'Neill, Julie; Corbett, Alan; Johns, Edward J

    2013-02-01

    Angiotensin II at the kidney regulates renal hemodynamic and excretory function, but the actions of an alternative metabolite, angiotensin (1-7), are less clear. This study investigated how manipulation of dietary sodium intake influenced the renal hemodynamic and excretory responses to intrarenal administration of angiotensin (1-7). Renal interstitial infusion of angiotensin (1-7) in anesthetized rats fed a normal salt intake had minimal effects on glomerular filtration rate but caused dose-related increases in urine flow and absolute and fractional sodium excretions ranging from 150 to 200%. In rats maintained for 2 wk on a low-sodium diet angiotensin (1-7) increased glomerular filtration rate by some 45%, but the diuretic and natriuretic responses were enhanced compared with those in rats on a normal sodium intake. By contrast, renal interstitial infusion of angiotensin (1-7) in rats maintained on a high-sodium intake had no effect on glomerular filtration rate, whereas the diuresis and natriuresis was markedly attenuated compared with those in rats fed either a normal or low-sodium diet. Plasma renin and angiotensin (1-7) were highest in the rats on the low-sodium diet and depressed in the rats on a high-sodium diet. These findings demonstrate that the renal hemodynamic and excretory responses to locally administered angiotensin (1-7) is dependent on the level of sodium intake and indirectly on the degree of activation of the renin-angiotensin system. The exact way in which angiotensin (1-7) exerts its effects may be dependent on the prevailing levels of angiotensin II and its receptor expression.

  16. Renal transplantation promptly restores excretory function but disturbed L-arginine metabolism persists in patients during the early period after surgery.

    PubMed

    Žunić, Gordana; Vučević, Dragana; Tomić, Aleksandar; Drašković-Pavlović, Biljana; Majstorović, Ivana; Spasić, Slavica

    2015-01-30

    The synthesis and whole body metabolism of L-arginine (Arg) are disturbed in renal diseases. Renal transplantation represents the best therapy in the end-stage of these diseases. In the present we compared alterations of plasma Arg and related compounds with renal excretory function in patients with end-stage renal disease, before and after kidney transplantation. Arg, asymmetric dimethylarginine (ADMA), citrulline (Cit), glutamine (Gln), ornithine (Orn), phenylalanine (Phe), tyrosine (Tyr), urea, creatinine, albumin, and nitrate were analyzed in patients before, immediately after (0-time) and 1, 2, 3, 7 and 14 days following living donors kidney transplantation. Healthy subjects were controls. Glomerular filtration rate (GFR) and amino acid molar ratios were calculated. Before transplantation creatinine, urea, Cit, Gln, ADMA, and nitrate were above, while GFR and Arg were below controls, confirming disturbed excretory and metabolic renal functions in patients with renal disease. Renal transplantation promptly normalized creatinine, urea, GFR, Cit, and nitrate. However, regardless of increased molar Phe/Tyr ratios, indicating increased net protein catabolism in peripheral tissues, low Arg and elevated ADMA concentrations persisted throughout the examined period. Alterations of other amino acids also suggest similarly disturbed Arg metabolism in patients after kidney transplantation. In conclusion, renal transplant promptly restored its excretory function, but increased net protein catabolism, disturbed Arg metabolism and endothelial dysfunction in entire body of these patients were not improved throughout the early period after the operation. That has to be considered in their therapy.

  17. Impaired tubular excretory function as a late renal side effect of chemotherapy in children.

    PubMed

    Kakihara, Toshio; Imai, Chihaya; Hotta, Hiromitsu; Ikarashi, Yukie; Tanaka, Atsushi; Uchiyama, Makoto

    2003-03-01

    Renal drug excretion is variously influenced by nephrotoxic drugs. This study was designed to evaluate renal function as a late renal side effects in children receiving combination chemotherapy for malignancy. Follow-up studies of 30 newly diagnosed patients were performed a median of 12 months after completion of chemotherapy. The glomerular filtration rate (GFR) was measured using sodium thiosulfate. The following were also assessed: urinary high-molecular-weight fraction (urinary albumin/urinary creatinine ratio); para-aminohippurate (PAH) clearance; urinary low-molecular-weight fraction (urinary beta2-microglobulin/urinary creatinine ratio); and routine serum and urinary parameters. Serum and urinary electrolytes were normal in most patients. GFR was low in four patients (13%). Urinary high-molecular-weight fraction was elevated in two patients. Urinary low-molecular-weight fraction was elevated in one patient. PAH clearance was below the referenced normal value in 73% of the patients. This report demonstrates decreased PAH clearance as a late renal side effect of chemotherapy and suggests disturbed function of the organic anion transport system. The unexpected high serum concentration of drugs excreted through the organic anion transport system may induce severe side effects. Elucidation of the mechanism and clinical relevance of decreased PAH clearance is warranted.

  18. Modification of the relationship between blood pressure and renal albumin permeability by impaired excretory function and diabetes.

    PubMed

    Fotheringham, James; Odudu, Aghogho; McKane, William; Ellam, Timothy

    2015-03-01

    In animal models, reduced nephron mass impairs renal arteriolar autoregulation, increasing vulnerability of the remaining nephrons to elevated systemic blood pressure (BP). A feature of the resulting glomerular capillary hypertension is an increase in glomerular permeability. We sought evidence of a similar remnant nephron effect in human chronic kidney disease. In participants from the United States National Health and Nutrition Examination Surveys 1999 to 2010 (N=23 710), we examined the effect of reduced estimated glomerular filtration rate (eGFR) on the relationship between brachial artery BP and albumin permeability. Renal albumin permeability increased exponentially with systolic BP >110 mm Hg, and this association was modified by independent interactions with both excretory impairment and diabetes mellitus. Each 10 mm Hg increase in systolic BP was accompanied by an increase in fractional albumin excretion of 1.10-, 1.11-, 1.17-, 1.22-, and 1.38-fold for participants with eGFR≥90, 90>eGFR≥60, 60>eGFR≥45, 45>eGFR≥30, and eGFR<30 mL/min/1.73 m(2), respectively, adjusted for age, sex, race, antihypertensive use, eGFR category, diabetes mellitus, smoking, history of cardiovascular disease, body mass index, and C-reactive protein. A 10 mm Hg systolic BP increment was associated with increases in fractional albumin excretion of 1.10- and 1.21-fold in nondiabetic and diabetic participants, respectively. Using urine albumin creatinine ratio as an alternative measure of albumin leak in eGFR-adjusted analyses gave the same conclusions. Our findings are consistent with the presence of a remnant nephron effect in human kidney disease. Future trials should consider the nephroprotective benefits of systolic BP lowering in kidney disease populations stratified by eGFR.

  19. Molecular mechanisms of renal aging.

    PubMed

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice.

    PubMed

    Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-08-01

    Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.

  1. Changing indications for excretory urography

    SciTech Connect

    Kumar, R.; Schreiber, M.H.

    1985-07-19

    Most individuals suspected of having renovascular hypertension, men with benign prostatic enlargement, women with recurrent infections of the urinary tract or urinary stress incontinence, women undergoing hysterectomy, uremic and diabetic patients, and patients with renal transplant or adult polycystic kidney disease should not, as a rule, undergo routine excretory urography (EU). Possible morbidity and mortality and unwarranted cost do not justify the study, since the majority of individuals in any of these situations do not benefit from the information obtained from the study. Excretory urography must be performed selectively, rather than routinely, in such persons. As the authors emphasize, modified EU, often using only two to three films, may be performed under many clinical situations to reduce radiation exposure, toxic effects, and cost to the patient.

  2. Immediate renal imaging and renography with /sup 99m/Tc methylene diphosphonate to assess renal blood flow, excretory function, and anatomy

    SciTech Connect

    Glass, E.C.; DeNardo, G.L.; Hines, H.H.

    1980-04-01

    /sup 99m/Tc methylene diphosphonate (/sup 99m/Tc MDP) was evaluated as a clinical renal imaging agent in 20 patients referred for bone scintigraphy. Sequential scintigraphy, which was started immediately after injection, yielded blood flow studies of high quality, and subsequent images accurately delineated renal anatomy and excretion in nonazotemic patients. In comparison with delayed images, early images were vastly superior in quality and demonstrated improved target-to-nontarget activity ratios (p < 0.001) and improved lesion detectability (p < 0.01). Renal imaging performed incidental to bone scintigraphy with MDP can be greatly enhanced by initiating sequential scintigraphy immediately after injection.

  3. Perinatal Taurine Imbalance Followed by High Sugar Intake Alters the Effects of Estrogen on Renal Excretory Function in Adult Female Rats.

    PubMed

    Roysommuti, Sanya; Lerdweeraphon, Wichaporn; Michael Wyss, J

    2017-01-01

    This study tests the hypothesis that perinatal taurine imbalance impairs renal function in adult female rats via alterations in estrogen activity. Female Sprague-Dawley rats were fed normal rat chow and water containing 3% beta-alanine (TD), 3% taurine (TS) or water alone (C) from conception until weaning. Then, female offspring received normal rat chow and water with (CG, TDG, TSG) or without (CW, TDW, TSW) 5% glucose. At 7-8 weeks of age, renal function at rest and after acute saline load was tested in conscious, restrained female rats treated with non-selective estrogen receptor blocker tamoxifen for a week. Compared to control, TD or TS did not affect mean arterial pressure (MAP). Tamoxifen significantly increased resting MAP only in TDG compared to TDW groups. Although renal blood flow did not significantly differ among the groups, renal vascular resistance increased in TSG compared to CW, CG, and TSW groups. Glomerular filtration rate and water and sodium excretion were not significantly different among the groups. Compared to CW, saline load significantly depressed fractional water excretion in CG, TDW, TDG, and TSW, and fractional sodium excretion in CG, TDW, TDG, TSW, and the TSG groups. Potassium excretion was not significantly different among the corresponding groups. Fractional potassium excretion significantly increased in TDW compared to CG and in TSG compared to CG and TSW groups. These differences were abolished by tamoxifen treatment. These data indicate that in adult female rats, perinatal taurine imbalance, particularly followed by high sugar intake, alters renal function via an estrogenic mechanism.

  4. Sickle cell disease: renal manifestations and mechanisms

    PubMed Central

    Nath, Karl A.; Hebbel, Robert P.

    2015-01-01

    Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ+-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16–18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms. PMID:25668001

  5. A single mechanism to explain the effect of calcium on renal function.

    PubMed

    Lahera, V; Ruilope, L M; Romero, J C

    1991-07-01

    It is known that calcium induces the formation of potent vasodilators in endothelial cells and vasoconstriction in smooth muscle cells, whereas in the renal parenchyma, it modulates sodium excretion through vascular and tubular mechanisms. Consequently, an increased concentration of calcium in renal circulation may induce a sequence of contrasting hemodynamics and excretory effects depending on the threshold of a particular mechanism that is first being stimulated. In order to identify this sequence of responses and their respective thresholds, we infused into the renal artery of anesthetized dogs progressively increasing doses of calcium gluconate that ranged from 1 to 400 micrograms/kg/min. The administration of 1, 10, and 100 micrograms/kg/min of calcium gluconate was followed by a significant increase in urinary excretion of PGE2 and 6-keto-PGF1 alpha and by a marked diuresis and natriuresis without altering renal blood flow (RBF) or glomerular filtration rate (GFR). Renin release was increased by 80% only during the infusion of the 10 micrograms/kg/min dose. The intrarenal infusion of a 400 micrograms/kg/min dose of calcium produced marked decreases in RBF and GFR, while urine sodium excretion (UNaV), UPGE2V, and U6-keto-PGF1 alpha V continued and were markedly elevated. During all these maneuvers, mean arterial pressure remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Molecular Mechanisms of Renal Ammonia Transport

    PubMed Central

    Weiner, I. David; Hamm, L. Lee

    2015-01-01

    Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH3 diffusion and NH4+ trapping has given way to a model postulating that a variety of proteins specifically transport NH3 and NH4+ and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H+ or K+ but also transport NH4+. Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport. PMID:17002591

  7. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system.

    PubMed

    Stone, Craig E; Hall, David H; Sundaram, Meera V

    2009-05-15

    Unicellular tubes or capillaries composed of individual cells with a hollow lumen perform important physiological functions including fluid or gas transport and exchange. These tubes are thought to build intracellular lumina by polarized trafficking of apical membrane components, but the molecular signals that promote luminal growth and luminal connectivity between cells are poorly understood. Here we show that the lipocalin LPR-1 is required for luminal connectivity between two unicellular tubes in the Caenorhabditis elegans excretory (renal) system, the excretory duct cell and pore cell. Lipocalins are a large family of secreted proteins that transport lipophilic cargos and participate in intercellular signaling. lpr-1 is required at a time of rapid luminal growth, it is expressed by the duct, pore and surrounding cells, and it can function cell non-autonomously. These results reveal a novel signaling mechanism that controls unicellular tube formation, and provide a genetic model system for dissecting lipocalin signaling pathways.

  8. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system

    PubMed Central

    Stone, Craig E.; Hall, David H.; Sundaram, Meera V.

    2011-01-01

    Unicellular tubes or capillaries composed of individual cells with a hollow lumen perform important physiological functions including fluid or gas transport and exchange. These tubes are thought to build intracellular lumina by polarized trafficking of apical membrane components, but the molecular signals that promote luminal growth and luminal connectivity between cells are poorly understood. Here we show that the lipocalin LPR-1 is required for luminal connectivity between two unicellular tubes in the Caenorhabditis elegans excretory (renal) system, the excretory duct cell and pore cell. Lipocalins are a large family of secreted proteins that transport lipophilic cargos and participate in intercellular signaling. lpr-1 is required at a time of rapid luminal growth, it is expressed by the duct, pore and surrounding cells, and it can function cell nonautonomously. These results reveal a novel signaling mechanism that controls unicellular tube formation, and provide a genetic model system for dissecting lipocalin signaling pathways. PMID:19269285

  9. Multiphoton imaging of renal regulatory mechanisms.

    PubMed

    Peti-Peterdi, János; Toma, Ildikó; Sipos, Arnold; Vargas, Sarah L

    2009-04-01

    Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.

  10. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  11. Oxidant Mechanisms in Renal Injury and Disease.

    PubMed

    Ratliff, Brian B; Abdulmahdi, Wasan; Pawar, Rahul; Wolin, Michael S

    2016-07-20

    A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.

  12. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  13. [Mechanisms of repair after renal injury].

    PubMed

    Menè, P; Polci, R; Festuccia, F

    2003-01-01

    Recovery from kidney injury through repair mechanisms often linked to inflammation is conditioned by nature and severity of the insult. In the assessment of kidney repair, functional recovery should be kept distinct from structural repair: compensatory hypertrophy/function of intact nephrons often masks the inability of the kidney to heal or replace damaged structures. The mechanisms of repair reflect three degrees of injury, differently handled by the kidney. First, repair of DNA damage is accomplished through proofreading DNA polymerases, along with other controls for sequence misalignment / nucleotide replacement. If DNA cannot be repaired, cells carrying mutation(s) are disposed of through apoptosis, which is also critical to clearing damaged kidney cells and infiltrating leukocytes in acute and chronic ischemic, immunological, or chemical damage. A second mechanism of repair is linked to proliferation of surviving cells. At least 5 types of reparative proliferation are known to occur, some of which implicate stem cell immigration from distant reservoirs, followed by in situ differentiation. A third mode of repair could be referred to as structural repair, indeed limited in the human kidney by the absence of postnatal nephrogenesis. Recovery from acute tubular necrosis involves remodelling of the proximal tubule, with a strict requirement for integrity of the basement membrane. Contrary to the current dogma that only acute injury can be repaired, whereas chronic damage leads to irreversible loss of nephrons, evidence is emerging that some degree of renal remodelling occurs even in chronic renal disease, despite the occurrence of stabilized structural changes.

  14. Renal cirsoid arteriovenous malformation masquerading as neoplasia.

    PubMed

    Silverthorn, K; George, D

    1988-12-01

    A woman with renal colic and microscopic hematuria had filling defects in the left renal collecting system detected on excretory urography. A nephrectomy, performed because of suspected malignancy, might have been averted by renal angiography.

  15. Theoretical assessment of renal autoregulatory mechanisms.

    PubMed

    Sgouralis, Ioannis; Layton, Anita T

    2014-06-01

    A mathematical model of renal hemodynamics was used to assess the individual contributions of the tubuloglomerular feedback (TGF) mechanism and the myogenic response to glomerular filtration rate regulation in the rat kidney. The model represents an afferent arteriole segment, glomerular filtration, and a short loop of Henle. The afferent arteriole model exhibits myogenic response, which is activated by hydrostatic pressure variations to induce changes in membrane potential and vascular muscle tone. The tubule model predicts tubular fluid and Cl(-) transport. Macula densa Cl(-) concentration is sensed as the signal for TGF, which acts to constrict or dilate the afferent arteriole. With this configuration, the model afferent arteriole maintains stable glomerular filtration rate within a physiologic range of perfusion pressure (80-180 mmHg). The contribution of TGF to overall autoregulation is significant only within a narrow band of perfusion pressure values (80-110 mmHg). Model simulations of ramp-like perfusion pressure perturbations agree well with findings by Flemming et al. (Flemming B, Arenz N, Seeliger E, Wronski T, Steer K, Persson PB. J Am Soc Nephrol 12: 2253-2262, 2001), which indicate that changes in vascular conductance are markedly sensitive to pressure velocity. That asymmetric response is attributed to the rate-dependent kinetics of the myogenic mechanism. Moreover, simulations of renal autoregulation in diabetes mellitus predict that, due to the impairment of the voltage-gated Ca(2+) channels of the afferent arteriole smooth muscle cells, the perfusion pressure range in which single-nephron glomerular filtration rate remains stable is reduced by ~70% and that TGF gain is reduced by nearly 40%, consistent with experimental findings.

  16. Mechanism of glucocorticoid effect on renal transport of phosphate.

    PubMed

    Turner, S T; Kiebzak, G M; Dousa, T P

    1982-11-01

    We explored whether glucocorticoid administration, a known stimulus of renal gluconeogenesis (GNG), could decrease avid inorganic phosphate (Pi) reabsorption in rats stabilized on low-phosphorus diet (LPD). Rats adapted to LPD were injected with the glucocorticoid (GCD) triamcinolone acetonide (1.25 or 2.5 mg.100 g body wt-1.day-1 ip) for 2 days; they showed a profound increase in urinary excretion of Pi during the injection period. In clearance studies GCD increased the clearance and fractional excretion of Pi but did not change the filtered load of Pi. Initial "uphill" Na+-gradient (Nao+ greater than Nai+)-dependent uptake of 32Pi by luminal brush-border membrane (BBM) vesicles prepared from renal cortex of rats treated with GCD was markedly (greater than 40%) decreased compared with control rats; Na+-gradient-dependent uptake of D-[3H]glucose was not diminished. At the "equilibrium" time interval, measured at 120 min, BBM vesicles from control and GCD-treated rats did not differ in the uptake of 32Pi or D-[3H]glucose. With kinetic analysis, BBM from GCD-treated rats showed a marked decrease (-40%) in the maximum velocity (Vmax) of initial Na+-dependent 32Pi uptake, but the apparent affinity of the BBM transport system for Pi (apparent Km = 0.078 mM Pi) was not different from that of controls. Alkaline phosphatase specific activity was much lower (-40%) in BBM from GCD-treated rats compared with controls, but the activities of three other BBM enzymes (maltase, leucine aminopeptidase, and gamma-glutamyl transferase) were not different. The addition of triamcinolone to BBM in vitro had no effect on either Na+-dependent uptake of 32Pi or alkaline phosphatase activity. The rate of GNG from alpha-ketoglutarate was significantly increased in cortical slices from GCD-treated rats adapted to LPD. Also, the NAD+-to-NADH ratio was higher in the renal cortex of GCD-treated rats, although the total content of NAD [NAD+ + NADH] was not different from controls. Renal excretory

  17. A regulatory program for excretory system regeneration in planarians.

    PubMed

    Scimone, M Lucila; Srivastava, Mansi; Bell, George W; Reddien, Peter W

    2011-10-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin.

  18. A regulatory program for excretory system regeneration in planarians

    PubMed Central

    Scimone, M. Lucila; Srivastava, Mansi; Bell, George W.; Reddien, Peter W.

    2011-01-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin. PMID:21937596

  19. Mechanism of postarrhythmic renal vasoconstriction in the anesthetized dog.

    PubMed Central

    Katholi, R E; Oparil, S; Urthaler, F; James, T N

    1979-01-01

    The mechanism of postarrhythmic renal vasoconstriction was studied in 28 dogs anesthetized with pentobarbital sodium (30 mg/kg i.v.). Rapid atrial or ventricular pacing or induction of atrial fibrilation were used to produce at least 20% prompt decrease in cardiac output and mean arterial blood pressure. Return to control cardiac output and blood pressure occurred within 3 minutes after cessation of the arrhythmia, but renal blood flow remained significantly decreased (26%) with gradual recovery by 17.7 +/- 6.6 min. Infusion of phentolamine (0.25 mg/min) into the renal artery, intravenous hexamethonium (l mg/kg), adrenal demedullation, or cooling the cervical vagi prevented postarrhythmic renal vasoconstriction. In contrast, renal denervation, intravenous bretylium (10 mg/kg), intravenous atropine (0.5 mg/kg) or intrarenal SQ 20881 (0.20 mg/min) has no effect on postarrhythmic renal vasoconstriction. Intravenous propranolol (0.5 mg/kg) intensified postarrhythmic renal vasoconstriction. These data suggested that the postarrhythmic renal vasoconstrictive response required intact vagi and was due to alpha adrenergic stimulation by adrenal catecholamines. However, femoral arterial catecholamine levels were not elevated above control during postarrhythmic renal vasoconstriction. We therefore sought local vascular pathways by which catecholamines might reach the kidneys. An adrenorenal vascular network was found in each dog. Collection of catecholamines from these vessels during postarrhythmic renal vasoconstriction in six dogs revealed catecholamine concentrations threefold higher than simultaneously collected femoral arterial catecholamines levels. Because ligation of these vessels abolished postarrhythmic renal vasoconstriction in each dog, we conclude that postarrhythmic renal vasconstriction is due to adrenal catecholamines reaching the kidneys through an adreno-renal vascular network and that the response requires intact vagi. Images PMID:447852

  20. Dietary protein-induced changes in excretory function: a general animal design feature.

    PubMed

    Singer, Michael A

    2003-12-01

    Mammals are ureotelic and respond to an increased protein intake with an increase in glomerular filtration rate and renal plasma flow. Birds and terrestrial insects are uricotelic and following a high protein intake increase tubular urate secretion by the kidney (birds) or Malpighian tubule (insects). Ureogenic fish given NH(4)Cl increase gill and renal clearance of urea and gill clearance of ammonia. Renal mass increases in mammals, birds and reptiles given a high protein intake. Thus, animals in general respond to an increase in protein intake with a change in excretory function such as to increase the clearance of the major nitrogenous end-products of protein metabolism. The components of this general animal excretory response include; a redistribution of regional perfusion with increased renal and gill blood flow, increased GFR and gill ammonia clearance, increased renal tubular urate clearance, changes in urea transport protein abundance and/or function and renal hypertrophy. Animal groups differ as to which components are accentuated. Amino acid catabolism with generation of ammonia appears to be a necessary prerequisite for this excretory response to occur. A hypothesis is put forward that ammonia itself is a regulatory molecule and an important signal communicating between amino acid catabolism following an increase in protein intake and the sequence of events leading to a change in excretory function.

  1. Circadian regulation of renal function.

    PubMed

    Firsov, Dmitri; Bonny, Olivier

    2010-10-01

    Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms.

  2. Mechanisms in hyperkalemic renal tubular acidosis.

    PubMed

    Karet, Fiona E

    2009-02-01

    The form of renal tubular acidosis associated with hyperkalemia is usually attributable to real or apparent hypoaldosteronism. It is therefore a common feature in diabetes and a number of other conditions associated with underproduction of renin or aldosterone. In addition, the close relationship between potassium levels and ammonia production dictates that hyperkalemia per se can lead to acidosis. Here I describe the modern relationship between molecular function of the distal portion of the nephron, pathways of ammoniagenesis, and hyperkalemia.

  3. Mechanisms of hypertension in renal radiation

    SciTech Connect

    Juncos, L.; Cornejo, J.C.; Cejas, H.; Broglia, C. )

    1990-02-01

    This study was undertaken to investigate the role played by renal functional and structural changes in the development of radiation-induced hypertension. Four groups of rats were studied: (1) left kidney radiated, (2) sham procedure, (3) uninephrectomy followed 3 weeks later by radiation of the contralateral kidney, and (4) uninephrectomy followed by sham procedure 3 weeks later. All radiated rats became hypertensive at 12 weeks (p less than 0.05) and had higher protein excretion (p less than 0.05). In the presence of an intact contralateral kidney, radiation causes mild-to-moderate histological abnormalities, and therefore, creatinine clearance and water and sodium handling do not change. Plasma renin activity increased in this group (p less than 0.05). Radiated uninephrectomized rats showed decreased creatinine clearance (p less than 0.05), but renin activity remained unchanged. These rats developed severe histological abnormalities in glomeruli, interstitia, tubuli, and vessels resulting in increased sodium and water output. The average of individual tubular and interstitial scores correlated significantly with both water intake and output but not with sodium excretion. These studies suggest that in the presence of an intact kidney, renin is an important determinant in the development or maintenance of radiation hypertension, whereas in the absence of the contralateral kidney, severe histological changes and renal failure are prominent despite increased water intake and output. The more severe glomerular sclerosis and proteinuria in the latter model could be related to diminished renal mass.

  4. Mechanisms of renal cell repair and regeneration after acute renal failure.

    PubMed

    Nony, Paul A; Schnellmann, Rick G

    2003-03-01

    In many cases, acute renal failure (ARF) is the result of proximal tubular cell injury and death and can arise in a variety of clinical situations, especially following renal ischemia and drug or toxicant exposure. Although much research has focused on the cellular events leading to ARF, less emphasis has been placed on the mechanisms of renal cell repair and regeneration, although ARF is reversed in over half of those who acquire it. Studies using in vivo and in vitro models have demonstrated the importance of proliferation, migration, and repair of physiological functions of injured renal proximal tubular cells (RPTC) in the reversal of ARF. Growth factors have been shown to produce migration and proliferation of injured RPTC, although the specific mechanisms through which growth factors promote renal regeneration in vivo are unclear. Recently, interactions between integrins and extracellular matrix proteins such as collagen IV were shown to promote the repair of physiological functions in injured RPTC. Specifically, collagen IV synthesis and deposition following cellular injury restored integrin polarity and promoted repair of mitochondrial function and active Na(+) transport. Furthermore, exogenous collagen IV, but not collagen I, fibronectin, or laminin, promoted the repair of physiological functions without stimulating proliferation. These findings suggest the importance of establishing and/or maintaining collagen IV-integrin interactions in the stimulation of repair of physiological functions following sublethal cellular injury. Furthermore, the pathway that stimulates repair is distinct from that of proliferation and migration and may be a viable target for pharmacological intervention.

  5. Mechanisms of renal hyporesponsiveness to BNP in heart failure.

    PubMed

    Egom, Emmanuel E; Feridooni, Tiam; Hotchkiss, Adam; Kruzliak, Peter; Pasumarthi, Kishore B S

    2015-06-01

    The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.

  6. The insect excretory system as a target for novel pest control strategies.

    PubMed

    Ruiz-Sanchez, Esau; O'Donnell, Michael J

    2015-10-01

    The insect excretory system plays essential roles in osmoregulation, ionoregulation and toxin elimination. Understanding the mechanisms of fluid and ion transport by the epithelial cells of the excretory system provides a foundation for development of novel pest management strategies. In the present review, we focus on two such strategies: first, impairment of osmoregulation by manipulation of diuretic or antidiuretic signaling pathways and second, interference with toxin elimination by inhibition of toxin transport systems.

  7. Hyponatremia due to hypothyroidism: a pure renal mechanism.

    PubMed

    Schmitz, P H; de Meijer, P H; Meinders, A E

    2001-03-01

    Hyponatremia is a common disorder. When hyponatremia is the result of hypothyroidism it can be successfully treated with thyroid hormone substitution. We followed cumulative sodium- and fluid balances of a patient with hyponatremia, resulting from hypothyroidism. We concluded that hyponatremia in hypothyroidism is due to a pure renal mechanism, and cannot be ascribed to inappropriate secretion of antidiuretic hormone.

  8. Comparative physiology of renal tubular transport mechanisms.

    PubMed Central

    Long, S.; Giebisch, G.

    1979-01-01

    This manuscript discusses current concepts of glomerular filtration and tubular transport of sodium, water, potassium, and urinary acidification by vertebrate kidneys in a comparative context. Work in mammalian and amphibian nephrons receives major emphasis due to our interest in application of new techniques for investigation of cellular mechanisms; when available, data from other vertebrate classes are discussed. Images FIG. 3 PMID:395765

  9. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces.

    PubMed

    Virginio, Veridiana G; Monteiro, Karina M; Drumond, Fernanda; de Carvalho, Marcos O; Vargas, Daiani M; Zaha, Arnaldo; Ferreira, Henrique B

    2012-05-01

    Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.

  10. Functional visualization of the excretory system of adult Schistosoma mansoni by the fluorescent marker resorufin.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2002-12-01

    Excretion of metabolic wastes as well as xenobiotics is a major concern of all living organisms, and the Platyhelminthes including Schistosoma mansoni possess the protonephridial excretory system for their survival. Except for some ultra-structural and biochemical information, little is known about the protonephridium of platyhelminths due to a lack of established techniques for exploring the excretory activity. This study describes a new technique to assess the excretory activity of S. mansoni by use of the fluorescent marker resorufin, which is a potential substrate of the drug efflux pump, P-glycoprotein. After simple diffusion into the schistosome body, fluorescent resorufin was concentrated in the excretory tubules by an energy-dependent mechanism and excreted via the nephridiopore. The present technique of labelling functionally the excretory system was applicable to adult worms, but not schistosomula or cercariae. A variety of modulators known to interfere with mammalian P-glycoprotein function perturbed resorufin excretion from male adult schistosomes, including cyclosporin A, Ro11-2933, verapamil, or nifedipine. This technique of labelling the excretory system with fluorescent resorufin has enabled us to study aspects of the physiological function, hitherto unknown, of the protonephridial system of S. mansoni.

  11. Morphogenesis of the human excretory lacrimal system

    PubMed Central

    de la Cuadra-Blanco, C; Peces-Peña, M D; Jáñez-Escalada, L; Mérida-Velasco, J R

    2006-01-01

    The aim of this study was to determine the principal developmental stages in the formation of the excretory lacrimal system in humans and to establish its morphogenetic period. The study was performed using light microscopy on serial sections of 51 human specimens: 33 embryos and 18 fetuses ranging from 8 to 137 mm crown–rump length (CR; 5–16 weeks of development). Three stages were identified in the morphogenesis of the excretory lacrimal system: (1) the formative stage of the lacrimal lamina (Carnegie stages 16–18); (2) the formative stage of the lacrimal cord (Carnegie stages 19–23); and (3) the maturative stage of the excretory lacrimal system, from the 9th week of development onward. A three-dimensional reconstruction of the excretory lacrimal system was performed from serial sections of an embryo at the end of the embryonic period (27 mm CR). PMID:16879594

  12. OBESITY-INDUCED HYPERTENSION: INTERACTION OF NEUROHUMORAL AND RENAL MECHANISMS

    PubMed Central

    Hall, John E.; do Carmo, Jussara M.; da Silva, Alexandre A.; Wang, Zhen; Hall, Michael E.

    2015-01-01

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65–75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include 1) physical compression of the kidneys by fat in and around the kidneys, 2) activation of the renin-angiotensin-aldosterone system (RAAS), and 3) increased sympathetic nervous system (SNS) activity. Activation of the RAAS system is likely due, in part, to renal compression as well as SNS activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for SNS activation in obesity have not been fully elucidated but appear to require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes, and inflammation. Unless effective anti-obesity drugs are developed, the impact of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase. PMID:25767285

  13. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.

    PubMed

    Hall, John E; do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Hall, Michael E

    2015-03-13

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.

  14. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  15. The role of GDNF in patterning the excretory system.

    PubMed

    Shakya, Reena; Jho, Eek-hoon; Kotka, Pille; Wu, Zaiqi; Kholodilov, Nikolai; Burke, Robert; D'Agati, Vivette; Costantini, Frank

    2005-07-01

    Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.

  16. Molecular Mechanisms of Renal Cellular Nephrotoxicity due to Radiocontrast Media

    PubMed Central

    Michael, Ashour; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Navarra, Michele

    2014-01-01

    Modern iodinated radiocontrast media are all based on the triiodinated benzene ring with various chemical modifications having been made over the last few decades in order to reduce their toxicity. However, CIN remains a problem especially in patients with pre-existing renal failure. In vitro studies have demonstrated that all RCM are cytotoxic. RCM administration in vivo may lead to a decrease in renal medullary oxygenation leading to the generation of reactive oxygen species that may cause harmful effects to renal tissue. In addition, endothelin and adenosine release and decreased nitric oxide levels may worsen the hypoxic milieu. In vitro cell culture studies together with sparse in vivo rat model data have shown that important cell signalling pathways are affected by RCM. In particular, the prosurvival and proproliferative kinases Akt and ERK1/2 have been shown to be dephosphorylated (deactivated), whilst proinflammatory/cell death molecules such as the p38 and JNK kinases and the transcription factor NF-κB may be activated by RCM, accompanied by activation of apoptotic mediators such as caspases. Increasing our knowledge of the mechanisms of RCM action may help to develop future therapies for CIN. PMID:24745009

  17. Mechanism of renal concentration of technetium-99m glucoheptonate

    SciTech Connect

    Lee, H.B.; Blaufox, M.D.

    1985-11-01

    Seventy female Sprague-Dawley rats were studied to determine the mechanism of tubular localization and the effects of commonly encountered changes in hydration and acid-base balance on renal uptake and urinary excretion of technetium-99m glucoheptonate ((/sup 99m/Tc)GHA). The in-vivo protein binding and protein-free plasma clearance of (/sup 99m/Tc)GHA also were quantitated. Kidney uptake of (/sup 99m/Tc)GHA averaged 11% of the injected dose in control animals. This varied slightly among groups but was significantly reduced by probenecid blockade and para-aminohippuric acid (PAH) competition to 4 and 2, respectively. Technetium-99m DMSA was not affected in its renal accumulation by these maneuvers. The total plasma clearance of (/sup 99m/Tc)GHA was lower than iodine-125( SVI)iothalamate but the clearance of the protein free supernate was higher, raising a possibility of some tubular secretion. Hepatic uptake was minimal in all groups averaging less than 1% injected dose. These data demonstrate that renal accumulation of (/sup 99m/Tc)GHA is blocked by probenecid and PAH suggesting that it is actively concentrated in the proximal tubule by enzyme systems similar to those involved in PAH and hippuran transport. It appears that (/sup 99m/Tc)GHA uptake measures a different aspect of kidney function than (/sup 99m/Tc)DMSA.

  18. Coordinate regulation of gene expression in the C. elegans excretory cell by the POU domain protein CEH-6.

    PubMed

    Armstrong, Kristin R; Chamberlin, Helen M

    2010-01-01

    Excretory renal organs are critical in animals for osmoregulation and the elimination of waste. Renal organs across a range of species exhibit cellular and molecular similarities. For example, class III POU-homeodomain transcription factors are expressed in the renal organs of many invertebrates and vertebrates. However, the functional role for these factors is not well characterized. To better understand the role of class III POU-homeodomain proteins in animal excretory systems, we have characterized a set of genes expressed in the Caenorhabditis elegans excretory cell, and determined their regulation by the POU-III transcription factor CEH-6. Our molecular and biochemical studies show that CEH-6 regulates a subset of genes expressed in the excretory cell. Additionally, we find that the CEH-6-dependent genes share two molecular features: they contain at least one octamer regulatory element and they encode for transport and channel proteins. This work suggests that a role for POU-III factors in renal organs is to coordinate the expression of a set of functionally related genes.

  19. Mechanism of renal effects of intracerebroventricular histamine in rabbits.

    PubMed

    Kook, Y J; Kim, K K; Yang, D K; Ahn, D S; Choi, B K

    1988-01-01

    Histamine, when given intracerebroventricularly (i.c.v.), has been reported to produce antidiuresis in the rabbit. In this study it was attempted to elucidate the mechanism involved in the effect. Histamine (H), 100 micrograms/kg i.c.v., produced antidiuresis with decreases in renal plasma flow and glomerular filtration rate in urethane-anesthetized rabbits. With larger doses, a tendency towards increased electrolyte excretion was noted in spite of decreased filtration. In the denervated kidney, marked diuresis and natriuresis were observed following i.c.v. H, whereas the contralateral innervated kidney responded with typical antidiuresis. Reserpinized rabbits also responded with marked natriuresis to i.c.v. H. Diphenhydramine (D), 250 micrograms/kg i.c.v., increased urine flow rate, sodium and potassium excretion, along with increase in renal perfusion. With 750 micrograms/kg i.c.v., marked natriuresis was observed in spite of decreased filtration. When H was given after D (250 micrograms/kg) the antidiuresis was completely abolished, and diuresis became more prominent. Cimetidine, 250 micrograms/kg i.c.v., elicited antidiuresis with decreases in renal hemodynamics, the pretreatment with cimetidine did not influence the antidiuresis by H and no natriuresis was noted. The present study suggests that histamine, given i.c.v., influences renal function in dual ways, i.e., antidiuresis by increasing the sympathetic tone to the kidney and diuresis due to some humoral natriuretic factor, the latter becoming apparent only when the former influence has been removed, and further suggests that H1-receptors might be involved in the nerve-mediated antidiuresis, whereas H2-receptors might mediate the humorally induced natriuresis and diuresis.

  20. [Nle3,d-Phe6 ]-γ2 -melanocyte-stimulating hormone possesses the renal excretory but not the cardiovascular actions of the native γ2 -melanocyte-stimulating hormone in anaesthetized rats.

    PubMed

    Cope, Georgina; Flanagan, Evelyn T; Houghton, Belinda L; Walsh, Sarah A; Johns, Edward J; Healy, Vincent

    2013-01-01

    The present study compared the cardiovascular and renal actions of γ(2) -melanocyte-stimulating hormone (γ(2) MSH) with those of the synthetic analogue [Nle(3) ,d-Phe(6) ]-γ(2) MSH (NDP-γ(2) MSH) and explored the effects of high dietary salt intake on the renal actions of NDP-γ(2) MSH. Both peptides were infused systemically (3-1000 nmol/kg) and intrarenally (500 fmol/min) into innervated and renally denervated rats fed either a normal (0.4% NaCl) or high-salt (4% NaCl; HS) diet. Mean arterial pressure (MAP), glomerular filtration rate (GFR), urinary sodium excretion (U(N) (a) V), urinary output (UV) and fractional sodium excretion were determined, as was expression of the melanocortin MC(3) receptor in inner medullary collecting duct (IMCD) epithelial cells. Both renal and systemic infusion of γ(2) MSH increased MAP by 23 ± 2% and 54 ± 4%, respectively, but equivalent doses of NDP-γ(2) MSH had no significant pressor effects. Both peptides had similar natriuretic and diuretic effects in rats fed a normal salt diet. However, NDP-γ(2) MSH increased U(N) (a) V and UV by two- to threefold in rats fed the normal salt diet and by six- to sevenfold in rats fed the HS diet. Furthermore, NDP-γ(2) MSH induced a 3.5-fold increase in GFR only in rats fed the HS diet. These renal effects of NDP-γ(2) MSH were not abolished by prior renal denervation. Rats fed the HS diet also exhibited a 4.5-fold increase in MC(3) receptor expression in IMCD epithelial cells. Intrarenal infusion of NDP-γ(2) MSH induced the natriuretic but not the cardiovascular effects exhibited by γ(2) MSH. The renal activities may be attributed to a direct binding of NDP-γ(2) MSH to MC(3) receptors expressed in IMCD cells, leading to a potent natriuretic effect that is independent of renal innervation. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  1. Diagnostic value of combined static-excretory MR Urography in children with hydronephrosis.

    PubMed

    Emad-Eldin, Sally; Abdelaziz, Omar; El-Diasty, Tarek A

    2015-03-01

    The aim of this study was to determine the feasibility, accuracy and diagnostic potential of combined static-excretory MR Urography in children with sonographically detected hydronephrosis. We prospectively evaluated 28 children (11 girls and 17 boys), mean age 8.3 years (range 2 months-16 years). Static-excretory MR Urography was performed in all cases. The results of MR Urography were compared with the results of other imaging modalities, cystoscopy and surgery. In 28 children, 61 renal units were evaluated by MR Urography (the renal unit is the kidney and its draining ureter). The final diagnoses included: normal renal units (n = 23); uretropelvic junction obstruction (n = 14); megaureter (n = 8); midureteric stricture (n = 1), complicated duplicated systems (n = 5), post ESWL non-obstructive dilation (n = 2), extrarenal pelvis (n = 4), dysplastic kidney (n = 4). Complex pathology and more than one disease entity in were found in 7 children. The MRI diagnosis correlated with the final diagnosis in 57 units, with diagnostic accuracy 93.4%. In conclusions static and excretory MRU give both morphological and functional information in a single examination without exposure to ionizing radiation and iodinated contrast agent. It is a valuable imaging technique for children with upper urinary tract dilatation; especially in cases of complex congenital pathologies and severely hydronephrotic kidney.

  2. Diagnostic value of combined static-excretory MR Urography in children with hydronephrosis

    PubMed Central

    Emad-Eldin, Sally; Abdelaziz, Omar; El-Diasty, Tarek A.

    2014-01-01

    The aim of this study was to determine the feasibility, accuracy and diagnostic potential of combined static-excretory MR Urography in children with sonographically detected hydronephrosis. We prospectively evaluated 28 children (11 girls and 17 boys), mean age 8.3 years (range 2 months–16 years). Static-excretory MR Urography was performed in all cases. The results of MR Urography were compared with the results of other imaging modalities, cystoscopy and surgery. In 28 children, 61 renal units were evaluated by MR Urography (the renal unit is the kidney and its draining ureter). The final diagnoses included: normal renal units (n = 23); uretropelvic junction obstruction (n = 14); megaureter (n = 8); midureteric stricture (n = 1), complicated duplicated systems (n = 5), post ESWL non-obstructive dilation (n = 2), extrarenal pelvis (n = 4), dysplastic kidney (n = 4). Complex pathology and more than one disease entity in were found in 7 children. The MRI diagnosis correlated with the final diagnosis in 57 units, with diagnostic accuracy 93.4%. In conclusions static and excretory MRU give both morphological and functional information in a single examination without exposure to ionizing radiation and iodinated contrast agent. It is a valuable imaging technique for children with upper urinary tract dilatation; especially in cases of complex congenital pathologies and severely hydronephrotic kidney. PMID:25750748

  3. Renal mechanisms of calcium homeostasis in sheep and goats.

    PubMed

    Herm, G; Muscher-Banse, A S; Breves, G; Schröder, B; Wilkens, M R

    2015-04-01

    In small ruminants, the renal excretion of calcium (Ca) and phosphate (Pi) is not modulated in response to dietary Ca restriction. Although this lack of adaptation was observed in both sheep and goats, differences in renal function between these species cannot be excluded. Recent studies demonstrated that compared with sheep, goats have a greater ability to compensate for challenges to Ca homeostasis, probably due to a more pronounced increase in calcitriol production. Therefore, the aim of the present study was to examine the effect of 1) dietary Ca restriction, 2) administration of calcitriol, and 3) lactation on Ca and Pi transport mechanisms and receptors as well as enzymes involved in vitamin D metabolism in renal tissues of sheep and goats. Whereas RNA expression of renal transient receptor potential vanilloid channel type 5 was unaffected by changes in dietary Ca content, a significant stimulation was observed with administration of calcitriol in both sheep (P < 0.001) and goats (P < 0.01). Calbindin-D28K was downregulated during dietary Ca restriction in goats (P < 0.05). Expression of the sodium/Ca exchanger type 1 was decreased by low Ca intake in sheep (P < 0.05) and upregulated by calcitriol treatment in goats (P < 0.05). A significant reduction in RNA expression of the cytosolic and the basolateral Ca transporting proteins was also demonstrated for lactating goats in comparison to dried-off animals. Species differences were found for vitamin D receptor expression, which was stimulated by calcitriol treatment in sheep (P < 0.01) but not in goats. As expected, expression of 1α-hydroxylase was upregulated by dietary Ca restriction (P < 0.001; P < 0.05) and inhibited by exogenous calcitriol (P < 001; P < 0.05) in both sheep and goats. However, whereas 24-hydroxylase expression was stimulated to the same extent by calcitriol treatment in sheep, irrespective of the diet (P < 0.001), a modulatory effect of dietary Ca supply on 24-hydroxylase induction was

  4. Hyperglycemia and mechanical stress: targeting the renal podocyte.

    PubMed

    Lewko, Barbara; Stepinski, Jan

    2009-11-01

    Hyperglycemia and deriving from glomerular hypertension mechanical stress are the key factors underlying pathogenesis of diabetic nephropathy (DN). Multiple direct and secondary effects of both these factors are mediated by complex signaling pathways with extensive interactions. The common signaling pathways stimulated by high glucose and mechanical insult may act in an additive manner, thereby accelerating the cell damage. Podocytes, the cells covering the outer aspect of glomerular basement membrane (GBM), are subjected not only to the load of filtered glucose but also to diverse mechanical forces. Bulging into the Bowman's space, they have no support from the apical side, which makes them particularly susceptible to the effects of mechanical strain. Both high glucose and mechanical stress may impair the protein systems anchoring the podocyte foot processes in GBM, therefore blunting resistance of these cells to mechanical forces. Modulation by these factors of expression and activity of numerous structural and functional proteins results in the (auto)inflammatory responses, dysfunction, apoptosis or necrosis of the podocytes. Loss of the podocytes is irreversible due to their inability to proliferate and to replenish damaged cells. Podocytes are injured early in the course of DN, which, most likely, underlies further glomerular and renal damage in diabetes. This review summarizes the effects of elevated glucose and mechanical stress that seem to be involved in podocyte impairment in diabetes, with particular focus on the possible interactions between these factors.

  5. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity

    PubMed Central

    Sundaram, Meera V.; Buechner, Matthew

    2016-01-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal’s life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes. PMID:27183565

  6. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity.

    PubMed

    Sundaram, Meera V; Buechner, Matthew

    2016-05-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.

  7. How helminths use excretory secretory fractions to modulate dendritic cells

    PubMed Central

    White, Rhiannon R.; Artavanis-Tsakonas, Katerina

    2012-01-01

    It is well known that helminth parasites have immunomodulatory effects on their hosts. They characteristically cause a skew toward TH2 immunity, stimulate Treg cells while simultaneously inhibiting TH1 and TH17 responses. Additionally, they induce eosinophilia and extensive IgE release. The exact mechanism of how the worms achieve this effect have yet to be fully elucidated; however, parasite-derived secretions and their interaction with antigen presenting cells have been centrally implicated. Herein, we will review the effects of helminth excretory-secretory fractions on dendritic cells and discuss how this interaction is crucial in shaping the host response. PMID:23221477

  8. The renal nerves in chronic heart failure: efferent and afferent mechanisms.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

  9. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  10. [Renal and extra-renal mechanisms of sodium and water retention in cirrhosis with ascites].

    PubMed

    Peña, J C

    1995-01-01

    In this work we analyze the renal and systemic factors involved in the sodium retention in two conditions: in extracellular volume depletion and in edema forming states, particularly liver cirrhosis with ascitis. In this paper we accept that the volume loss of body fluids stimulates the "effective arterial blood volume" (VAE). This term results from a decrease in the arterial blood volume secondary to a fall in cardiac output or a peripheral arterial vasodilatation. The reduction in the VAE stimulates: the high pressure baroreceptors (carotid sinus and aortic arch); the intrarrenal mechanisms, such as the yuxtaglomerular apparatus and the renin angiotensin aldosterone system; the sympathetic adrenergic system; the non osmotic release of antidiuretic hormone; prostaglandins (PGE1, Tromboxane) and endothelin; and inhibits the atrial natriuretic peptide. We also describe the sodium transport mechanisms along the nephron during physiological conditions and after volume depletion, and in edema formation states, specially hepatic cirrhosis with ascitis. We speculate that the intrarenal mechanisms are more important and persistent than the systemic mechanisms. It is possible that the sodium retention of these states might be the result of direct stimuli of the tubular sodium transport mechanisms in the different segments of the nephron, mediated by the co and counter transports, ATPase activity or by the second messengers cyclic AMP and cyclic GMP. The clonation and structural characterization of the different sodium transports may help us to establish, more precisely, the intracellular tubular mechanisms responsible for the tendency of the body to retain sodium. The amount of information generated in the future may help us to demonstrate, with more precision, the mechanisms responsible for the sodium retention and excretion in normal and pathological conditions, particularly the edema forming states such as cardiac failure, nephrotic syndrome and hepatic cirrhosis with

  11. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    PubMed

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-06-09

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.

  12. Obstructive renal injury: from fluid mechanics to molecular cell biology

    PubMed Central

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  13. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  14. 3D excretory MR urography: improved image quality with intravenous saline and diuretic administration.

    PubMed

    Ergen, F Bilge; Hussain, Hero K; Carlos, Ruth C; Johnson, Timothy D; Adusumilli, Saroja; Weadock, William J; Korobkin, Melvyn; Francis, Isaac R

    2007-04-01

    To assess the effect of diuretic administration on the image quality of excretory magnetic resonance urography (MRU) obtained following intravenous hydration, and to determine whether intravenous hydration alone is sufficient to produce diagnostic quality studies of nondilated upper tracts. A total of 22 patients with nondilated upper tracts were evaluated with contrast-enhanced MRU. All patients received 250 mL of saline intravenously immediately prior to the examination. A total of 11 patients received 10-20 mg furosemide in addition to saline. Imaging was performed with a three-dimensional (3D) and two-dimensional (2D) breathhold spoiled gradient-echo sequences. Excretory MRU images were acquired five minutes after the administration of 0.1 mmol/kg gadolinium and were independently reviewed by two radiologists, who were blinded to the MRU technique. Readers evaluated the calyces, renal pelvis, and ureters qualitatively for degree of opacification, distention, and artifacts on a four-point scale. Statistical analysis was performed using a permutation test. There was no significant disagreement between the two readers (P=0.14). Furosemide resulted in significant improvement in calyceal and renal pelvis distention (P<0.005), and significant artifact reduction in all upper tract segments (P<0.001) compared to the effect of saline alone. Intravenous furosemide significantly improves the image quality of excretory MRU studies obtained following intravenous hydration. Intravenous saline alone is insufficient to produce diagnostic quality studies of the non-dilated upper tracts. Copyright (c) 2007 Wiley-Liss, Inc.

  15. Mechanisms of renal tubular defects in old age.

    PubMed Central

    Dontas, A. S.; Marketos, S. G.; Papanayiotou, P.

    1972-01-01

    The mechanisms of renal tubular dysfunction in old age have been examined in twenty-eight clinically healthy elderly subjects without infection, and in fourteen subjects of similar age with laboratory evidence of intrarenal infection. The data were compared with those from thirteen clinically healthy young subjects. Studied were: proximal tubular (Tm(PAH)) and distal tubular (CH2O) activity, minimal and maximal osmolal U/P ratios, maximal osmolal excretion in hydropenia, and GFR levels under standard hydration and under water-loading. The reduction of GFR in old age is evident particularly in men under conditions of standard hydration: it is accentuated in the presence of renal infection. Proximal tubular activity is also significantly lower in elderly men, especially if they have chronic bacteriuria. The reduction is closely related to GFR levels, with identical Tm(PAH):C(in) ratios in all groups. This supports the intact nephron hypothesis for this part of the nephron. Distal tubular activity is depressed in old age in both sexes proportionately more than proximal tubular activity or the GFR. The lower CH2O: GFR ratios imply a selective distal tubular damage. Maximal osmolal U/P ratios in hydropenia are significantly higher in the young (mean 367) than in either the elderly non-infected (mean 279) or the elderly infected subjects (mean 212). Conversely, minimal U/P ratios in water-loading are lower in the young (mean 0.247) than in either elderly group (means 0.418 and 0.668). Osmolal excretion in hydropenia is not different between the groups, but urine flows in water-loading clearly separate them. The data indicate that simple functions of the distal-collecting tubule (e.g. the CH2O), are less affected in old age than are functions involving several medullary structures (as is the maximal U(osm) or U/P ratio). They suggest that the main impairment of the distal tubular cell involves the failure to achieve a proper osmotic gradient between tubular fluid and

  16. Mechanism underlying renal failure caused by pathogenic Candida albicans infection.

    PubMed

    Jae-Chen, Shin; Young-Joo, Jeon; Seon-Min, Park; Kang Seok, Seo; Jung-Hyun, Shim; Jung-Il, Chae

    2015-03-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen that commonly causes nosocomial infections. Systemic candidiasis is encountered with increasing frequency in immunocompromised hosts, leading to renal failure that results in severe morbidity and mortality. The present study investigated the mechanisms underlying kidney susceptibility following infection with several C. albicans strains, such as B311 and SC5314. Fungal growth of the highly virulent SC5314 strain was 10(3)-fold higher compared to the nonpathogenic B311 strain in the kidneys. An intravenous challenge of SC5314 in mice, elevated blood urea nitrogen (BUN) and creatine levels, which resulted in mortality at 8 or 35 days after infection in a dose- and time-dependent manner, whereas all the B311-infected mice had BUN and creatinine levels in the normal range and survived. Whether virulent C. albicans may escape clearance by activating signaling pathways that lead to the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was investigated. B311 infections significantly elevated TNF-α and IL-1β mRNA expression in the kidneys, whereas the expression in SC5314-infected mice remained unchanged. Furthermore, B311 infection significantly elevated the plasma levels of TNF-α and IL-1β. These results indicated that the less virulent strains of C. albicans induced pro-inflammatory cytokines in mice. These results determined that an impairment of the protective mechanisms occurred in the kidneys with virulent C. albicans infection.

  17. Radionuclide evaluation of renal function.

    PubMed

    Bueschen, A J; Witten, D M

    1979-06-01

    The renal scintillation camera study and the excretory urogram should be considered to be complementary studies. The renal scintillation camera study provides an accurate evaluation of changes in total, differential, and segmental renal function but affords only a gross assessment of anatomic changes. The excretory urogram provides superior information about renal anatomic changes but only inferior information about functional changes of the kidney. The advantages of a renal scintillation camera study with regard to the patient are that it is done in a state of normal hydration, it requires no bowel preparation, it is not associated with allergic reactions, it provides a low radiation exposure, and it is a noninvasive procedure for differential renal function which requires no ureteral catheters.

  18. Excretory urographic localization of adrenal cortical tumors and pheochromocytomas.

    PubMed

    Pickering, R S; Hartman, G W; Weeks, R E; Sheps, S G; Hattery, R R

    1975-02-01

    An excretory urographic evaluation of 124 surgically proved adrenal tumors comprising 65 pheochromocytomas, 36 cortical adenomas and 23 cortical carcinomas is reported. The addition of linear tomography improved the diagnostic accuracy over conventional excretory urography. All types of tomographic examinations demonstrated at least 70% of adrenal tumors. Excretory urographic procedures are relatively safe, simple and economical and should be used as the initial step in attempting to localize clinically suspected and chemically diagnosed adrenal tumors.

  19. A structure-function analysis of ion transport in crustacean gills and excretory organs.

    PubMed

    Freire, Carolina A; Onken, Horst; McNamara, John C

    2008-11-01

    Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.

  20. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  1. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  2. Integrated imaging of neonatal renal masses.

    PubMed

    Kirks, D R; Rosenberg, E R; Johnson, D G; King, L R

    1985-01-01

    Thirty-three neonatal renal masses were evaluated during a 2-year interval. The final diagnoses in these 33 patients were hydronephrosis [14], multicystic dysplastic kidney [10], renal vein thrombosis [3], obstructed upper pole duplication [2], polycystic kidney disease [2], nephroblastomatosis [1], and mesoblastic nephroma [1]. We recommend an integrated imaging approach that utilizes sonography to clarify anatomy and renal scintigraphy or excretory urography to determine renal function.

  3. Distribution kinetics of enoxacin and its metabolite oxoenoxacin in excretory fluids of healthy volunteers.

    PubMed Central

    Jaehde, U; Sörgel, F; Naber, K G; Zürcher, J; Schunack, W

    1995-01-01

    The distribution kinetics of enoxacin and its main metabolite oxoenoxacin in excretory fluids was investigated in 11 healthy volunteers. A single intravenous dose of 428 mg of enoxacin was given as a 1-h infusion. Serial samples of plasma, urine, saliva, nasal secretions, tears, and sweat were drawn and analyzed for enoxacin and oxoenoxacin by reversed-phase high-pressure liquid chromatography. Large differences in the concentration-time profiles of the excretory fluids analyzed were observed. Nasal secretions exhibited the highest enoxacin exposure, as assessed by the area under the concentration-time curve. Excretory fluid/plasma area under the concentration-time curve ratios were found to be 1.67 +/- 0.36 for nasal secretions, 0.76 +/- 0.28 for saliva, 0.25 +/- 0.07 for sweat, and 0.23 +/- 0.11 for tears. The elimination half-life of enoxacin from sweat (8.27 +/- 2.63 h) was significantly longer than that for plasma (5.10 +/- 0.46 h). Oxoenoxacin was detected in urine and saliva and exhibited a higher renal clearance and a lower saliva exposure than the parent compound. In contrast to that of the metabolite, distribution of enoxacin in saliva was found to be time and pH dependent. In conclusion, our study revealed considerable differences in the distribution kinetics of enoxacin among various excretory sites. Because of distinct acidic and basic properties, the anionic oxometabolite significantly differs from the zwitterionic parent compound in its distribution characteristics. PMID:8540722

  4. Renal lymphangioma: a cause of neonatal nephromegaly.

    PubMed

    Pickering, S P; Fletcher, B D; Bryan, P J; Abramowsky, C R

    1984-01-01

    A newborn male presented with bilateral nephromegaly and mild hypertension. Function of the right kidney was reduced on excretory urography. Ultrasound showed bilaterally enlarged kidneys with increased echogenicity and poorly defined corticomedullary junctions. Areas of decreased medullary enhancement were seen on CT. Renal biopsy demonstrated lymphangioma, probably arising from the peripelvic renal tissues.

  5. Excretion of fluorescent substrates of mammalian multidrug resistance-associated protein (MRP) in the Schistosoma mansoni excretory system.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2004-01-01

    The protonephridium of platyhelminths including Schistosoma mansoni plays a pivotal role in their survival by excretion of metabolic wastes as well as xenobiotics, and can be revealed in the living adult parasite by certain fluorescent compounds which are concentrated in excretory tubules and collecting ducts. To determine the presence of the multidrug resistance-associated protein (MRP) as a possible transporter in protonephridial epithelium, adult schistosomes were exposed to a fluorescent Ca2+ indicator, fluo-3 acetyloxymethyl ester, which is a potential substrate of mammalian MRP. Specific fluorescence related to fluo-3/Ca2+ chelate delineated the whole length of the protonephridial system. Simultaneously, a fluorescent substance was accumulated in the posterior part of collecting ducts and the excretory bladder. Similarly, when other fluorogenic substrates for mammalian MRP such as monoclorobimane, fluorescein diacetate, and 5(6)-carboxyfluorescein diacetate were applied to adult schistosomes, these fluorescent markers were observed in the excretory tubules through to the excretory bladder. The excretory system of mechanically-transformed schistosomula was not labelled with any of these 4 fluorescent markers. These findings suggest that the protonephridial epithelium of adult schistosomes, but not schistosomula, might express the homologue of the mammalian MRP transporting organic anionic conjugates with glutathione, glucuronate or sulphate as well as unconjugated amphiphilic organic anions.

  6. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion.

    PubMed Central

    Anderson, R J; Cronin, R E; McDonald, K M; Schrier, R W

    1976-01-01

    Clinical states with portal venous hypertension are frequently associated with impairment in renal hemodynamics and water excretion, as well as increased renin secretion. In the present investigation, portal venous pressure (PVP) was increased in anesthetized dogs undergoing a water diuresis. Renal arterial pressure was maintained constant in all studies. As PVP was increased from 6 to 20 mm Hg, decreases in cardiac output (2.5-2.0 liter/min, P less than 0.05) and mean arterial pressure (140-131 mm Hg, P less than 0.05) were observed. Increases in PVP were also associated with decreases in glomerular filtration rate (GFR, 40-31 ml/min, P less than 0.001), renal blood flow (RBF, 276-193 ml/min, P less than 0.001), and increases in renin secretion (232-939 U/min, P less than 0.025) in innervated kidneys. No significant change in either GFR or RBF and a decrease in renin secretion occurred with increases in PVP in denervated kidneys. To dissociate the changes in cardiac output and mean arterial pressure induced by increase PVP from the observed decreases in GFR and RBF, studies were performed on animals undergoing constriction of the thoracic inferior vena cava. In these studies, similar decreases in cardiac output and mean arterial pressure were not associated with significant changes in GFR or RBF. Increases in PVP also were associated with an antidiuresis as urine osmolality increased from 101 to 446 mosmol/kg H2O (P less than 0.001). This antidiuresis was significantly blunted but not abolished by acute hypophysectomy. In hypophysectomized animals, changes in free water clearance and urine flow were linearly correlated as PVP was increased. These studies indicate that increases in PVP result in decreases in GFR and RBF and increases in renin secretion mediated by increased renal adrenergic tone. Increased PVP is also associated with antidiuresis; this antidiuresis is mediated both by vasopressin release and by diminished tubular fluid delivery to the distal

  7. Interspecies scaling of urinary excretory amounts of nine drugs belonging to different therapeutic areas with diverse chemical structures - accurate prediction of the human urinary excretory amounts.

    PubMed

    Bhamidipati, Ravi Kanth; Mullangi, Ramesh; Srinivas, Nuggehally R

    2017-02-01

    1. The human urinary excretory amounts of total drug (parent + metabolites) were predicted for nine drugs with diverse chemical structures using simple allometry. The drugs used for scaling were cephapirin, olanzapine, labetolol, carisbamate, voriconazole, tofacitinib, nevirapine, ropinirole, and cyclindole. 2. The traditional allometric scaling was attempted using Y = aW(b) relationship. The corresponding predicted urinary amounts were converted into % recovery by using appropriate human dose. Appropriate statistical tests comprising of fold-difference (predicted/observed values) and error calculations (MAE and RMSE) were performed. 3. The interspecies scaling of all nine drugs tested showed excellent correlation (r > 0.9672). The predictions for eight out of nine drugs (exception was cephaphirin) were contained within 0.80-1.25 fold-differences. The MAE and RMSE were within ± 18% and 14.64%, respectively. 4. The present work supported the potential application of prospective allometry scaling to predict the urinary excretory amounts of the total drug and gauge any issues for the renal handling of the total drug.

  8. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    PubMed

    Hahn-Windgassen, Annett; Van Gilst, Marc R

    2009-07-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  9. The Caenorhabditis elegans HNF4α Homolog, NHR-31, Mediates Excretory Tube Growth and Function through Coordinate Regulation of the Vacuolar ATPase

    PubMed Central

    Hahn-Windgassen, Annett; Van Gilst, Marc R.

    2009-01-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system. PMID:19668342

  10. The renal concentrating mechanism and the clinical consequences of its loss

    PubMed Central

    Agaba, Emmanuel I.; Rohrscheib, Mark; Tzamaloukas, Antonios H.

    2012-01-01

    The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions. PMID:23293407

  11. Inter-dependent regulation of afferent renal nerve activity and renal function: Role of TRPV1, NK1 and CGRP receptors

    PubMed Central

    Xie, Chaoqin; Sachs, Jeffrey R.; Wang, Donna H.

    2009-01-01

    Our previous studies have shown that the activation of the transient receptor potential vanilloid type 1 (TRPV1) expressed in the renal pelvis leads to an increase in ipsilateral afferent renal nerve activity (ARNA) and contralateral renal excretory function, but the molecular mechanisms of TRPV1 action are largely unknown. This study tests the hypothesis that activation of receptors of neurokinin 1 (NK1) or calcitonin gene-related peptide (CGRP) by endogenously released substance P (SP) or CGRP following TRPV1 activation, respectively, governs TRPV1-induced increases in ARNA and renal excretory function. Capsaicin (CAP, 0.04, 0.4, 4nM), a selective TRPV1 agonist, administrated into the renal pelvis dose-dependently increased ARNA. CAP (4nM)-induced increases in ipsilateral ARNA or contralateral urine flow rate (Uflow) and urinary sodium excretion (UNa) were abolished by capsazepine (CAPZ), a selective TRPV1 antagonist, RP67580, or L703,606, selective NK1 antagonists, but not by CGRP8-37, a selective CGRP receptor antagonist. Both SP (7.4nM) and CGRP (0.13μM) increased ARNA, Uflow, or UNa, and increases in these parameters induced by CGRP but not SP were abolished by CAPZ. CAP at 4nM perfused into the renal pelvis caused the release of SP and CGRP, which was blocked by CAPZ but not by RP67580, L703,606, or CGRP8-37. Immunofluorescence results showed that NK1 receptors were expressed in sensory neurons in dorsal root ganglion (DRG) and sensory nerve fibers innervating the renal pelvis. Taken together, our data indicate that NK1 activation induced by SP release upon TRPV1 activation governs TRPV1 function and a TRPV1-dependent mechanism is operant in CGRP action. PMID:18364471

  12. Renal tubular receptor imaging with iodine-131-labeled peanut lectin: pharmacokinetics and renal clearance mechanism in animals

    SciTech Connect

    Boniface, G.R.; Suresh, M.R.; Willans, D.J.; Tam, Y.K.; Shysh, A.; Longenecker, B.M.; Noujaim, A.A.

    1986-05-01

    Intravenously administered peanut lectin (PNA), iodinated with /sup 131/I ((/sup 131/I)PNA), is rapidly cleared from the plasma by the kidneys in dogs (clearance (total body) = 17.52 +/- 8.74 ml/min). Dynamic gamma camera renal scintigraphy demonstrated renal accumulation and excretion phases of the (/sup 131/I)PNA renogram in dogs and rabbits (% injection dose-at-peak = 21.8 +/- 3.3% and 19.6 +/- 4.3%, time-to-peak = 44.6 +/- 4.8 min and 37.2 +/- 6.9 min, respectively). Immunoperoxidase staining of kidney sections, following i.v. administered PNA, demonstrated predominant accumulation by the proximal tubules of mice, rabbits, and dogs. The basement membrane was intensely stained at early times p.i. while intracellular and luminal PNA was evident within 1 hr. Urine analysis confirmed the presence of intact (/sup 131/I)PNA in the bladder contents, while protein degradation products, and a small percentage of the free iodide (less than 5%) were noted within 1 hr p.i. The relative proportion of free iodide increased at later times p.i. (greater than 6 hr). A receptor mediated excretion mechanism is proposed for the clearance of PNA and may be useful for the study of renal tubular function.

  13. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury

    SciTech Connect

    Zalups, R.K.; Minor, K.H.

    1995-09-01

    The present study provides evidence for the existence of both a luminal and a basolateral mechanism involved in the renal tubular uptake of inorganic mercury. The researchers compared the disposition of inorganic mercury in groups of surgical control rats, rats that underwent a unilateral ureteral ligation, and rats that underwent a bilateral ureteral ligation that were pretreated with either normal saline or a 7.5 mmol/kg intravenous dose of PAH 5 min prior to receiving a nontoxic 0.5-{mu}mol/kg intravenous dose of mercuric chloride. The {open_quotes}stop-flow{close_quotes} conditions induced by either unilateral or bilateral ureteral ligation caused a significant reduction in the uptake and content of mercury in the kidneys (whose ureter was ligated) both at 1 h and 24 h after the intravenous injection of the nontoxic dose of mercuric chloride. This decreased renal uptake of mercury was due specifically to decreased uptake of mercury in the renal cortex and outer stripe of the outer medulla. The amount of mercury has not taken up during ureteral ligation represents the portion of mercury that is presumably taken up by a luminal mechanism. Pretreatment with PAH also caused a significant reduction in the renal uptake of mercury in the cortex and outer stripe of the outer medulla. When either unilateral or bilateral ureteral ligation was combined with PAH pretreatment, an additive inhibitory effect occurred with respect to the renal uptake of mercury. In fact, the renal uptake of mercury was reduced by approximately 85% at 1 h after the injection of mercuric chloride. Since the luminal uptake of mercury was blocked by ureteral ligation, the effect of PAH on the renal uptake of mercury must have occurred at the basolateral membrane. Two distinct mechanisms are involved in mercury uptake, with one mechanism located on the luminal membrane and another located on the basolateral membrane. 22 refs., 11 figs., 2 tabs.

  14. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning?

    PubMed

    McMartin, Kenneth

    2009-11-01

    Ethylene glycol (EG) poisoning often results in acute renal failure, particularly if treatment with fomepizole or ethanol is delayed because of late presentation or diagnosis. The mechanism has not been established but is thought to result from the production of a toxic metabolite. A literature review utilizing PubMed identified papers dealing with renal toxicity and EG or oxalate. The list of papers was culled to those relevant to the mechanism and treatment of the renal toxicity associated with either compound. ROLE OF METABOLITES: Although the "aldehyde" metabolites of EG, glycolaldehyde, and glyoxalate, have been suggested as the metabolites responsible, recent studies have shown definitively that the accumulation of calcium oxalate monohydrate (COM) crystals in kidney tissue produces renal tubular necrosis that leads to kidney failure. In vivo studies in EG-dosed rats have correlated the severity of renal damage with the total accumulation of COM crystals in kidney tissue. Studies in cultured kidney cells, including human proximal tubule (HPT) cells, have demonstrated that only COM crystals, not the oxalate ion, glycolaldehyde, or glyoxylate, produce a necrotic cell death at toxicologically relevant concentrations. COM CRYSTAL ACCUMULATION: In EG poisoning, COM crystals accumulate to high concentrations in the kidney through a process involving adherence to tubular cell membranes, followed by internalization of the crystals. MECHANISM OF TOXICITY: COM crystals have been shown to alter membrane structure and function, to increase reactive oxygen species and to produce mitochondrial dysfunction. These processes are likely to be involved in the mechanism of cell death. Accumulation of COM crystals in the kidney is responsible for producing the renal toxicity associated with EG poisoning. The development of a pharmacological approach to reduce COM crystal adherence to tubular cells and its cellular interactions would be valuable as this would decrease the renal

  15. Mechanisms of the renal vasodilation caused by insulin in anesthetized pigs.

    PubMed

    Molinari, C; Battaglia, A; Bona, G; Grossini, E; Mary, D A; Ruggeri, P; Stoker, J B; Vacca, G

    2001-08-24

    The present study was planned to determine the mechanisms involved in the renal vasodilation caused by insulin. Changes in flow caused by the intravenous infusion of 0.004 IU/kg/min of insulin at constant heart rate, aortic blood pressure, left ventricular contractility and blood levels of glucose and potassium in the left renal artery were assessed using an electromagnetic flowmeter. In ten pigs, infusion of insulin caused an increase in renal blood flow which averaged 12.8% of the control values. After hemodynamic variables had returned to control values, insulin infusion was repeated in five pigs following blockade of alpha-adrenergic receptors with injection of phentolamine into the renal artery and in the other five pigs following blockade of nitric oxide formation with injection in the same artery of Nomega-nitro-L-arginine methyl ester (L-NAME). After blockade of alpha-adrenergic receptors, insulin infusion caused an increase in renal blood flow which averaged 18.1% of the control values, being significantly enhanced with respect to the increase previously obtained in the same pigs. On the contrary, after blockade of nitric oxide formation insulin infusion caused a decrease in renal blood flow which averaged 6.5% of the control values. These responses were respectively abolished by the subsequent injection into the renal artery of L-NAME and phentolamine. The present study showed that the renal vasodilation caused by insulin in the anesthetized pig was the result of two opposite effects which involved a predominant vasodilation mediated by the release of nitric oxide from the endothelium and a sympathetic vasoconstrictor mechanism mediated by alpha-adrenergic receptors.

  16. Excretory system of representatives from family Diplozoidae (Monogenea).

    PubMed

    Konstanzová, V; Koubková, B; Kašný, M; Ilgová, J; Dzika, E; Gelnar, M

    2016-04-01

    Diplozoons are representatives of blood-feeding ectoparasites from the family Diplozoidae (Polyopisthocotylea, Monogenea). Although these worms have been the subject of numerous taxonomical, phylogenetic, and ecological studies, the detailed study of their excretory system has remained relatively neglected. Our observations focused on the morphological and ultrastructural features of the excretory apparatus of four diplozoid species: Diplozoon paradoxum, Eudiplozoon nipponicum, Paradiplozoon bliccae, and Paradiplozoon homoion. Observations were obtained using two microscope methods: light microscopy, equipped with differential interference contrast (Nomarski DIC) and transmission electron microscopy (TEM). The ultrastructure of two basic compartments which forms the excretory apparatus, flame cells with filtration apparatus, and canal cells forming the protonephridial ducts is revealed in this study. A unique consecutive sequence of longitudinal semi-thin sections of the excretory pore of E. nipponicum is visualized there for the first time.

  17. Asymmetric horseshoe kidney in the infant: value of renal nuclear scanning

    SciTech Connect

    Grandone, C.H.; Haller, J.O.; Berdon, W.E.; Friedman, A.P.

    1985-02-01

    Five infants with an abdominal mass were found to have asymmetric horseshoe kidney. In all five, ultrasound and excretory urography were inconclusive; only after renal nuclear imaging was the diagnosis confirmed and planned surgery cancelled.

  18. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies

    PubMed Central

    NOGUEIRA, ANTÓNIO; JOÃO PIRES, MARIA; ALEXANDRA OLIVEIRA, PAULA

    2017-01-01

    Chronic kidney disease (CKD) is a long-term condition in which the kidneys do not work correctly. It has a high prevalence and represents a serious hazard to human health and estimated to affects hundreds of millions of people. Diabetes and hypertension are the two principal causes of CKD. The progression of CKD is characterized by the loss of renal cells and their replacement by extracellular matrix (ECM), independently of the associated disease. Thus, one of the consequences of CKD is glomerulosclerosis and tubulointerstitial fibrosis caused by an imbalance between excessive synthesis and reduced breakdown of the ECM. There are many molecules and cells that are associated with progression of renal fibrosis e.g. angiotensin II (Ang II). Therefore, in order to understand the biopathology of renal fibrosis and for the evaluation of new treatments, the use of animal models is crucial such as: surgical, chemical and physical models, spontaneous models, genetic models and in vitro models. However, there are currently no effective treatments for preventing the progression of renal fibrosis. Therefore it is essential to improve our knowledge of the cellular and molecular mechanisms of the progress of renal fibrosis in order to achieve a reversion/elimination of renal fibrosis. PMID:28064215

  19. Long-term course and mechanisms of progression of renal disease in hemolytic uremic syndrome.

    PubMed

    Repetto, Horatio A

    2005-08-01

    In the classic form of hemolytic uremic syndrome associated with toxins of gram-negative enterobacteria, mortality in the acute stage has been lower than 5% since 1978 (data from the Nephrology Committee, Argentine Society of Pediatrics). Children usually die because of severe involvement of the central nervous system, intestine, or myocardium and its complications, or because of intercurrent infection. Treatment in this phase is supportive, and efforts should be put into prevention of infection by Shiga-like toxin-producing enterohemorrhagic Escherichia coli. Of the 95% who survive, approximately one third is at risk for having chronic sequelae. Motor, sensory, or intellectual deficits, intestinal strictures, myocardial infarctions, or diabetes are infrequent. The more-frequent chronic renal lesion is characterized by the hyperfunction of nephrons remaining after the acute necrotizing lesion, which leads to progressive scarring, and not by persistence or recurrence of the microangiopathic process. Three courses of progression to end-stage renal failure have been described. Children with most severe forms do not recover from acute renal failure and enter directly into a dialysis and transplantation program. A second group recovers renal function partially, with persistent proteinuria and frequently hypertension; progression to end-stage renal failure occurs in 2 to 5 years. The third group may recover normal serum creatinine and creatinine clearance, with persistent proteinuria. They are at risk of progressing to chronic renal failure and end-stage renal disease after more than 5 years, and sometimes as late as 20 years, after the acute disease. Treatment should aim at preventing the mechanisms associated with progressive renal scarring. Transplantation is indicated in this form of hemolytic uremic syndrome, because there is little, if any, risk of recurrence, and the prognosis is similar to that of transplantation for other diseases.

  20. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA)

    PubMed Central

    Sebastian, Anthony; McSherry, Elisabeth; Morris, R. Curtis

    1971-01-01

    The mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA) was investigated in 10 patients, each of whom had impaired proximal renal tubular reabsorption of bicarbonate as judged from a greater than 15-20% reduction of renal tubular bicarbonate reabsorption (THCO3-) at normal plasma bicarbonate concentrations. When the plasma bicarbonate concentration ([HCO3-]p) was experimentally increased to normal levels in three patients with a fractional potassium excretion (CK/Cin) of less than 1.0 during acidosis, CK/Cin and urinary potassium excretion (UKV/Cin) increased strikingly and concurrently with a striking increase in urinary sodium (UNaV/Cin) and bicarbonate (UHCO3-V/Cin) excretion. When [HCO3-]p was increased to normal levels in two patients with a CK/Cin of greater than 1.0 during acidosis and in whom UNaV/Cin and UHCO3-V/Cin were already markedly increased, CK/Cin did not increase further. When [HCO3-]p was decreased to subnormal levels in a patient given ammonium chloride, UKV/Cin, CK/Cin, and UHCO3-V/Cin decreased concurrently. In the six patients in whom [HCO3-]p was maintained at normal levels (oral alkali therapy) for 2 months or longer, CK/Cin was directly related to the urinary excretion rates of sodium and bicarbonate, hence was directly related to the magnitude of reduction of THCO3- at normal [HCO3-]p; CK/Cin was greater than 0.55 in all six patients and greater than 1.0 in four. In eight patients with classic RTA (type 1 RTA), proximal renal tubular reabsorption of bicarbonate was largely intact as judged from a trivial reduction of THCO3- at normal [HCO3-]p. When [HCO3-]p was either increased from subnormal to normal levels, or decreased from normal to subnormal levels, UHCO3-V/Cin remained essentially constant, and UKV/Cin did not change significantly. When correction of acidosis was sustained, UHCO3-V/Cin remained a trivial fraction of that filtered, and CK/Cin was consistently less than 0

  1. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ

    PubMed Central

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-01-01

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. DOI: http://dx.doi.org/10.7554/eLife.07405.001 PMID:26057828

  2. Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development.

    PubMed

    Marcorelles, Pascale; Gillet, Danièle; Friocourt, Gaëlle; Ledé, Françoise; Samaison, Laura; Huguen, Geneviève; Ferec, Claude

    2012-03-01

    Sterility due to bilateral destruction in utero or in early infancy resulting in congenital absence of the vas deferens is the rule in male patients with cystic fibrosis. To understand the developmental pattern of this anomaly, the microscopic morphology of the male excretory system was analyzed during development and the expression of the cystic fibrosis transmembrane conductance regulator protein was explored by immunohistochemistry. We observed that cystic fibrosis fetuses had no excretory ducts agenesis or obstruction until 22 weeks of gestation. However, a focal inflammatory pattern and mucinous plugs in the oldest cystic fibrosis case suggested a disruptive mechanism. Immunolabeling of cytoplasmic epithelial cystic fibrosis transmembrane conductance regulator protein was demonstrated in all cystic fibrosis and control cases with a similar pattern of expression of the protein between age-matched controls and cystic fibrosis cases. At midgestation, an apical intensification appeared in both cystic fibrosis and control cases and was stable during the remainder of fetal life. No gradient of intensity could be detected between the different segments of the excretory tract. These findings are different from those reported in adults. The absence of any morphologic anomaly until 22 weeks of gestation, the focal destruction of the epithelial structures during the second trimester, and the chronological pattern of expression of cystic fibrosis transmembrane conductance regulator are of interest for a better understanding of the pathophysiology of this disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Notch and Ras promote sequential steps of excretory tube development in C. elegans

    PubMed Central

    Abdus-Saboor, Ishmail; Mancuso, Vincent P.; Murray, John I.; Palozola, Katherine; Norris, Carolyn; Hall, David H.; Howell, Kelly; Huang, Kai; Sundaram, Meera V.

    2011-01-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks. PMID:21771815

  4. Notch and Ras promote sequential steps of excretory tube development in C. elegans.

    PubMed

    Abdus-Saboor, Ishmail; Mancuso, Vincent P; Murray, John I; Palozola, Katherine; Norris, Carolyn; Hall, David H; Howell, Kelly; Huang, Kai; Sundaram, Meera V

    2011-08-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.

  5. Molecular mechanisms in lithium-associated renal disease: a systematic review.

    PubMed

    Rej, Soham; Pira, Shamira; Marshe, Victoria; Do, André; Elie, Dominique; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J

    2016-11-01

    Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease. We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium's effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers. From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD. Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium's biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

  6. Traumatic amputation of the left lower renal pole in children

    SciTech Connect

    Waxman, J.; Belman, A.B.; Kass, E.J.

    1985-07-01

    Four children between 5 and 10 years old suffered traumatic amputation of the left lower renal pole following flank trauma. All patients were evaluated with excretory urography and isotope renography. The renal scan clearly demonstrated failure of perfusion of the lower renal pole and urinary extravasation, and was believed to be more valuable than the standard excretory urogram as a diagnostic tool. All children were managed similarly: delayed (72 to 96 hours) exploration, simple removal of the amputated segment and insertion of a Penrose drain. They all have done well. The patients were normotensive at followup and had excellent function of the remaining portion of the kidney.

  7. Renal function in congenital anomalies of the kidney and urinary tract.

    PubMed

    Kemper, M J; Müller-Wiefel, D E

    2001-11-01

    Congenital anomalies of the kidneys and urinary tract are a major cause of chronic and end-stage renal failure in children. The molecular mechanisms having been elaborated, there is now growing evidence that kidney function is to a large extent determined genetically at an early stage. Assessment of kidney function is an important tool in clinical medicine and is feasible in utero. Postnatally, determination of absolute glomerular filtration rate and also of split and excretory renal function play an important role in the determination of treatment and prognosis. This is supplemented by other biochemical, molecular and interventional prognostic factors, which are of help in preservation of kidney survival by minimizing modulating factors. If chronic or terminal renal failure ensues in childhood or even in early infancy, however, improved medical care has led to encouraging results, ultimately influencing the motivation in the care of children with congenital anomalies of the kidney and urinary tract.

  8. Increased risk of renal dysfunction with percutaneous mechanical thrombectomy compared with catheter-directed thrombolysis.

    PubMed

    Morrow, Katherine L; Kim, Ann H; Plato, Steven A; Shevitz, Andrew J; Goldstone, Jerry; Baele, Henry; Kashyap, Vikram S

    2017-05-01

    Percutaneous mechanical thrombectomy (PMT) is regularly used in the treatment of both venous and arterial thrombosis. Although there has been no formal report, PMT has been linked to cases of reversible postoperative acute kidney injury (AKI). The purpose of this study is to evaluate the risk of renal dysfunction in patients undergoing PMT vs catheter-directed thrombolysis (CDT) for treatment of an acute thrombus. This study is a retrospective review of all patients in a single institution with a Current Procedural Terminology code for PMT or CDT from January 2009 through December 2014. Each patient was grouped into one of the four following procedural categories: PMT only, PMT with tissue plasminogen activator (tPA) pulse-spray, PMT with CDT, or CDT only. Preoperative and postoperative creatinine and glomerular filtration rate (GFR) values were obtained for each patient. The RIFLE (Risk, Injury, Failure, Loss, and End-stage renal disease) criteria were used to categorize the extent of renal dysfunction. χ(2) analysis, one-way analysis of variance, and unpaired t-test were used to assess significance. A total of 227 patients were reviewed, of which 82 were excluded due to either existence of preoperative AKI, history of end-stage renal disease, or lack of clinical data. Of the remaining 145 patients, 53 (37%) presented with arterial thrombosis (mean age, 62 years; 43% male) and 92 (63%) presented with venous thrombosis (mean age, 48 years; 45% male). The incidence of renal dysfunction was highest in the PMT/tPA pulse group (21%), followed by the PMT group (20%) and the PMT/CDT group (14%). CDT was not associated with renal dysfunction. PMT (P = .046), and PMT/tPA pulse (P = .033) were associated with higher rates of renal dysfunction than the CDT controls. The average preoperative GFR for the 22 patients who developed AKI was 53.7 ± 9.4 mL/min/1.73 m(2). The minimum postoperative GFR within 48 hours was an average of 35 ± 16 mL/min/1.73 m(2

  9. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production.

    PubMed

    Chaiyadet, Sujittra; Smout, Michael; Johnson, Michael; Whitchurch, Cynthia; Turnbull, Lynne; Kaewkes, Sasithorn; Sotillo, Javier; Loukas, Alex; Sripa, Banchob

    2015-10-01

    Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south

  10. The Role of Hydrogen Sulfide in Renal System

    PubMed Central

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases. PMID:27803669

  11. Mechanisms of Renal Control of Potassium Homeostasis in Complete Aldosterone Deficiency

    PubMed Central

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V.; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A.

    2015-01-01

    Aldosterone-independent mechanisms may contribute to K+ homeostasis. We studied aldosterone synthase knockout (AS−/−) mice to define renal control mechanisms of K+ homeostasis in complete aldosterone deficiency. AS−/− mice were normokalemic and tolerated a physiologic dietary K+ load (2% K+, 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K+ intake (5% K+), AS−/− mice decompensated and became hyperkalemic. High-K+ diets induced upregulation of the renal outer medullary K+ channel in AS−/− mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K+ excretion was detected only with a 2% K+ diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS−/− mice than in AS+/+ mice and was downregulated in mice of both genotypes in response to increased K+ intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS−/− mice. In contrast with the kidney, the distal colon of AS−/− mice did not respond to dietary K+ loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K+ load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K+ channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K+ secretion and increased intratubular availability of Na+ that can be reabsorbed in exchange for K+ secreted. PMID:25071088

  12. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency.

    PubMed

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A; Loffing, Johannes

    2015-02-01

    Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted. Copyright © 2015 by the American Society of Nephrology.

  13. Renal Protective Effect of Probucol in Rats with Contrast-Induced Nephropathy and its Underlying Mechanism

    PubMed Central

    Wang, Na; Wei, Ri-bao; Li, Qing-ping; Yang, Xi; Li, Ping; Huang, Meng-jie; Wang, Rui; Cai, Guang-yan; Chen, Xiang-mei

    2015-01-01

    Background Contrast-induced nephropathy (CIN) refers to acute renal damage that occurs after the use of contrast agents. This study investigated the renal protective effect of probucol in a rat model of contrast-induced nephropathy and the mechanism of its effect. Material/Methods Twenty-eight Wistar rats were randomly divided into the control group, model group, N-acetylcysteine(NAC) group, and probucol group. We used a rat model of iopromide-induced CIN. One day prior to modeling, the rats received gavage. At 24 h after the modeling, blood biochemistry and urine protein were assessed. Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in renal tissue. Kidney sections were created for histopathological examination. Results The model group of rats showed significantly elevated levels of blood creatinine, urea nitrogen, 24-h urine protein, histopathological scores, and parameters of oxidative stress (P<0.05). Both the NAC and probucol groups demonstrated significantly lower Scr, BUN, and urine protein levels compared to the model group (P<0.05), with no significant difference between these 2 groups. The NAC group and the probucol group had significantly lower MDA and higher SOD than the model group at 24 h after modeling (P<0.05). The 8-OHdG-positive tubule of the probucol group and NAC group were significantly lower than those of the model group (p=0.046, P=0.0008), with significant difference between these 2 groups (P=0.024). Conclusions Probucol can effectively reduce kidney damage caused by contrast agent. The underlying mechanism may be that probucol accelerates the recovery of renal function and renal pathology by reducing local renal oxidative stress. PMID:26408630

  14. Effects of enalaprilat on the renin-angiotensin-aldosterone system and on renal function during CO2 pneumoperitoneum.

    PubMed

    Borba, Marcelo Rodrigues; Lopes, Roberto Iglesias; Carmona, Murilo; Neto, Boulangier Mioto; Nahas, Sérgio Carlos; Pereira, Paulo Roberto Bueno

    2005-10-01

    Mechanical and hormonal factors have been implicated in pneumoperitoneum-induced renal alterations. The aim of this study was to evaluate the effects of enalaprilat (Vasotec) administration on renal function during CO2 pneumoperitoneum, given that this drug, which is an angiotensin-converting enzyme inhibitor, by inhibiting the renin-angiotensin-aldosterone system, alters hormone-induced changes during pneumoperitoneum. Thirty adult dogs were randomly assigned to one of three groups (N = 10 each): group A (pneumoperitoneum not performed); group B (CO2 + enalaprilat); group C CO2 only. The groups were analyzed with consideration for body weight, hematologic values, hemodynamic parameters, and renal function (plasma renin activity, urinary debt, creatinine clearance, and sodium-excretory fraction). Hemodynamic and acid-basic parameter differences did not influence renal function. Plasma renin activity decreased significantly in group B compared with group C and stayed close to the values in group A. Creatinine clearance remained constant in group B, while in group C, creatinine clearance dropped, and this difference was statistically significant. Urinary debt and sodium-excretory fraction increased in group B during pneumoperitoneum and 60 minutes after this period in comparison with the other groups without reaching statistical significance. The decline in urinary debt and in creatinine clearance observed during pneumoperitoneum was less accentuated with administration of enalaprilat.

  15. Molecular mechanisms of membrane polarity in renal epithelial cells.

    PubMed

    Campo, C; Mason, A; Maouyo, D; Olsen, O; Yoo, D; Welling, P A

    2005-01-01

    Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.

  16. Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences.

    PubMed

    Tomat, Analia Lorena; Salazar, Francisco Javier

    2014-05-01

    A substantial body of epidemiological and experimental evidence suggests that a poor fetal and neonatal environment may "program" susceptibility in the offspring to later development of cardiovascular, renal and metabolic diseases. This review focuses on current knowledge from the available literature regarding the mechanisms linking an adverse developmental environment with an increased risk for cardiovascular, renal and metabolic diseases in adult life. Moreover, this review highlights important sex-dependent differences in the adaptation to developmental insults. Developmental programming of several diseases is secondary to changes in different mechanisms inducing important alterations in the normal development of several organs that lead to significant changes in birth weight. The different diseases occurring as a consequence of an adverse environment during development are secondary to morphological and functional cardiovascular and renal changes, to epigenetic changes and to an activation of several hormonal and regulatory systems, such as angiotensin II, sympathetic activity, nitric oxide, COX2-derived metabolites, oxidative stress and inflammation. The important sex-dependent differences in the developmental programming of diseases seem to be partly secondary to the effects of sex hormones. Recent studies have shown that the progression of these diseases is accelerated during aging in both sexes. The cardiovascular, renal and metabolic diseases during adult life that occur as a consequence of several insults during fetal and postnatal periods are secondary to multiple structural and functional changes. Future studies are needed in order to prevent the origin and reduce the incidence and consequences of developmental programmed diseases.

  17. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  18. Ultrastructure of the excretory system of Trilocularia acanthiaevulgaris (Cestoda, Tetraphyllidea).

    PubMed

    McCullough, J S; Fairweather, I

    1991-01-01

    The fine structure of the excretory system in the juvenile (plerocercoid-like) form of Trilocularia acanthiaevulgaris is described. The flame cell bears a bunch of 50-70 cilia, which are anchored in the cytoplasm by means of basal bodies possessing striated rootlets. All the cilia in the "flame" are aligned in the same direction. The flame and duct cells are connected by interdigitating ribs of cytoplasm separated by a fibrous sheet. Both internal and external leptotriches are also present. The lumen of the excretory ducts is intracellular in origin. The apical surface of the cytoplasm lining the duct is convoluted and its surface area is further amplified by means of microvilli. The fine structure of the excretory system in this primitive tapeworm is compared with that described for other parasitic and free-living flatworms.

  19. Targeted next-generation sequencing and non-coding RNA expression analysis of clear cell papillary renal cell carcinoma suggests distinct pathological mechanisms from other renal tumour subtypes.

    PubMed

    Lawrie, Charles H; Larrea, Erika; Larrinaga, Gorka; Goicoechea, Ibai; Arestin, María; Fernandez-Mercado, Marta; Hes, Ondrej; Cáceres, Francisco; Manterola, Lorea; López, José I

    2014-01-01

    Clear cell tubulopapillary renal cell carcinoma (CCPRCC) is a recently described rare renal malignancy that displays characteristic gross, microscopic and immunohistochemical differences from other renal tumour types. However, CCPRCC remains a very poorly understood entity. We therefore sought to elucidate some of the molecular mechanisms involved in this neoplasm by carrying out targeted next-generation sequencing (NGS) to identify associated mutations, and in addition examined the expression of non-coding (nc) RNAs. We identified multiple somatic mutations in CCPRCC cases, including a recurrent [3/14 cases (21%)] non-synonymous T992I mutation in the MET proto-oncogene, a gene associated with epithelial-to-mesenchymal transition (EMT). Using a microarray approach, we found that the expression of mature (n = 1105) and pre-miRNAs (n = 1105), as well as snoRNA and scaRNAs (n = 2214), in CCPRCC cases differed from that of clear cell renal cell carcinoma (CCRCC) or papillary renal cell carcinoma (PRCC) tumours. Surprisingly, and unlike other renal tumour subtypes, we found that all five members of the miR-200 family were over-expressed in CCPRCC cases. As these miRNAs are intimately involved with EMT, we stained CCPRCC cases for E-cadherin, vimentin and β-catenin and found that the tumour cells of all cases were positive for all three markers, a combination rarely reported in other renal tumours that could have diagnostic implications. Taken together with the mutational analysis, these data suggest that EMT in CCPRCC tumour cells is incomplete or blocked, consistent with the indolent clinical course typical of this malignancy. In summary, as well as describing a novel pathological mechanism in renal carcinomas, this study adds to the mounting evidence that CCPRCC should be formally considered a distinct entity. Microarray data have been deposited in the GEO database [GEO accession number (GSE51554)]. Copyright © 2013 Pathological Society of Great Britain and Ireland

  20. Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats.

    PubMed

    Zhu, Yi; Wang, Youping; Wang, Donna H

    2005-10-01

    To test the hypothesis that activation of the vanilloid receptor 1 (VR1) expressed in sensory nerves innervating the renal pelvis leads to diuresis and natriuresis, a selective VR1 receptor agonist, capsaicin (2.4 nmol), or vehicle was perfused intravenously or into the left renal pelvis of anesthetized rats at a rate without changing renal perfusion pressure. Mean arterial pressure was not altered by capsaicin administered intravenously or into the renal pelvis. Capsaicin perfusion into the left renal pelvis but not intravenously caused significant increases in urine flow rate and urinary sodium excretion bilaterally in a dose-dependent manner, which were abolished by capsazepine, a selective VR1 receptor antagonist, given ipsilaterally to the renal pelvis or by ipsilateral renal denervation. Capsaicin given intravenously or into the left renal pelvis increased plasma calcitonin gene-related peptide levels to the same extent. Increased plasma calcitonin gene-related peptide levels induced by capsaicin (68.9+/-2.8 pg/mL) perfusion into the renal pelvis was prevented either by capsazepine (22.5+/-10.1 pg/mL) given ipsilaterally into the renal pelvis or by ipsilateral renal denervation (25.9+/-2.3 pg/mL). Taken together, our data show that unilateral activation of VR1-positive sensory nerves innervating the renal pelvis leads to bilateral diuresis and natriuresis via a mechanism that is independent of plasma calcitonin gene-related peptide levels. These data suggest that VR1-positive sensory nerves in the kidney enhance renal excretory function, a mechanism that may be critically involved in sodium and fluid homeostasis.

  1. A two-hit mechanism for sepsis-induced impairment of renal tubule function

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2013-01-01

    Renal insufficiency is a common and severe complication of sepsis, and the development of kidney dysfunction increases morbidity and mortality in septic patients. Sepsis is associated with a variety of defects in renal tubule function, but the underlying mechanisms are incompletely understood. We used a cecal ligation and puncture (CLP) model to examine mechanisms by which sepsis influences the transport function of the medullary thick ascending limb (MTAL). MTALs from sham and CLP mice were studied in vitro 18 h after surgery. The results show that sepsis impairs the ability of the MTAL to absorb HCO3− through two distinct mechanisms. First, sepsis induces an adaptive decrease in the intrinsic capacity of the tubules to absorb HCO3−. This effect is associated with an increase in ERK phosphorylation in MTAL cells and is prevented by pretreatment of CLP mice with a MEK/ERK inhibitor. The CLP-induced reduction in intrinsic HCO3− absorption rate appears to involve loss of function of basolateral Na+/H+ exchange. Second, sepsis enhances the ability of LPS to inhibit HCO3− absorption, mediated through upregulation of Toll-like receptor 4 (TLR4)-ERK signaling in the basolateral membrane. The two inhibitory mechanisms are additive and thus can function in a two-hit capacity to impair renal tubule function in sepsis. Both effects depend on ERK and are eliminated by interventions that prevent ERK activation. Thus the TLR4 and ERK signaling pathways represent potential therapeutic targets to treat or prevent sepsis-induced renal tubule dysfunction. PMID:23324175

  2. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  3. Anatrophic nephrolithotomy: preservation of renal function demonstrated by differential quantitative radionuclide renal scans

    SciTech Connect

    Belis, J.A.; Morabito, R.A.; Kandzari, S.J.; Lai, J.C.; Gabriele, O.F.

    1981-06-01

    Differential quantitative radionuclide renal scans have been used to confirm that early removal of staghorn calculi by anatrophic nephrolithotomy preserves renal parenchyma without significant renal damage by the surgical procedure. The /sup 99m/technetium diethylenetriaminepentaacetic acid scan was useful in predicting recovery of function in the involved kidney, while the /sup 131/iodine orthoiodohippurate scan provided a quantitative evaluation of the effect of the surgical procedure on individual kidney function. All of 13 consecutive patients evaluated by /sup 131/iodine orthoiodohippurate renal scans had stable or improved effective renal plasma flow to the involved kidney and an unchanged or improved total excretory index 6 months after nephrolithotomy.

  4. Anatrophic nephrolithotomy: preservation of renal function demonstrated by differential quantitative radionuclide renal scans.

    PubMed

    Belis, J A; Morabito, R A; Kandzari, S J; Lai, J C; Gabriele, O F

    1981-06-01

    Differential quantitative radionuclide renal scans have been used to confirm that early removal of staghorn calculi by anatrophic nephrolithotomy preserves renal parenchyma without significant renal damage by the surgical procedure. The 99mtechnetium diethylenetriaminepentaacetic acid scan was useful in predicting recovery of function in the involved kidney, while the 131iodine orthoiodohippurate scan provided a quantitative evaluation of the effect of the surgical procedure on individual kidney function. All of 13 consecutive patients evaluated by 131iodine orthoiodohippurate renal scans had stable or improved effective renal plasma flow to the involved kidney and an unchanged or improved total excretory index 6 months after nephrolithotomy.

  5. Renal and extrarenal mechanisms of perinatal programming after intrauterine growth restriction.

    PubMed

    Dötsch, Jörg

    2009-04-01

    The concept of fetal programming of disease in later life after intrauterine growth restriction (IUGR) has opened a potential new perspective on the treatment and prevention of arterial hypertension. Numerous large studies have recently confirmed the relationship between low birth weight and raised blood pressure. Hyperalimentation after birth appears to add to the risk of higher blood pressure later in life. However, there is still a controversy and clear intervention studies have not yet been possible. Therefore, the gain of knowledge about the underlying mechanisms of fetal programming is of utmost importance.Two major groups of mechanisms may be identified: renal and extrarenal mechanisms. Renal mechanisms include the reduction of nephron number, which is encountered in patients and animals with low birth weight. According to the so-called Brenner hypothesis, this may lead to increased arterial blood pressure. Another important renal system is the renin-angiotensin-aldosterone system, which appears to be more active on a number of levels in low birth weight individuals. Finally, there is the conversion of cortisol to inactive cortisone by the 11beta-hydroxysteroid dehydrogenase in distal tubule cells, which is reduced after intrauterine growth restriction. This enables a more powerful activation of mineralocorticoid receptors by cortisol. Extrarenal mechanisms include alterations in vascular structure (primary and secondary), increased activity of the sympathetic nerve system, and maybe most interestingly, an impairment of endothelial function. The latter is at least partially caused by an inactivation of nitric oxide by an excess of free oxygen radicals. In summary, mechanisms of fetal programming are only in the process of being revealed, and research has to focus on finding the key mechanism that might allow for successful intervention.

  6. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    PubMed Central

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  7. Ultrasound strain elastography in assessment of cortical mechanical behavior in acute renal vein occlusion: in vivo animal model.

    PubMed

    Gao, Jing; He, Wen; Cheng, Ling-Gang; Li, Xiao-Ya; Zhang, Xiou-Ru; Juluru, Krishna; Al Khori, Noor; Coya, Adrienne; Min, Robert

    2015-01-01

    To assess the correlation of quantitative ultrasound strain parameters with the severity of cortical edema in renal vein occlusion, we prospectively performed ultrasound strain elastography on a canine acute renal vein occlusion model prior to and following 10, 20, and 40min of renal vein ligation. Strain and strain relaxation time representing the deformation and relaxation of the renal cortices and reference soft tissue were produced by the external compression with the ultrasound transducer and estimated using commercially available 2-D speckle tracking software. Cortical thickness was additionally measured. Repeated-measures analysis of variance was used to examine the difference in cortical thickness, strain ratio (mean cortical strain divided by mean reference tissue strain), and strain relaxation time ratio (cortical relaxation time divided by reference tissue relaxation time) prior to and after renal vein ligation. Pearson's correlation coefficient was applied to test the relationship between strain parameters and the time of the renal vein ligation. There was a strong positive correlation between the duration of renal vein ligation and strain (R(2)=0.97) and strain relaxation time (R(2)=0.98) ratios. Significant differences in strain and strain relaxation time ratios were found at all measured timepoints (all P≪.001). Cortical thickness, however, showed no significant difference between timepoints (P=.065). Our result suggest that strain and strain relaxation time ratios may be used as quantitative markers for the assessment of the renal cortical mechanical behavior in subclinical acute renal vein occlusion.

  8. The biaxial active mechanical properties of the porcine primary renal artery.

    PubMed

    Zhou, Boran; Rachev, Alexander; Shazly, Tarek

    2015-08-01

    The mechanical response of arteries under physiological loads can be delineated into passive and active components. The passive response is governed by the load-bearing constituents within the arterial wall, elastin, collagen, and water, while the active response is a result of vascular smooth muscle cell (SMC) contraction. In muscular blood vessels, such as the primary renal artery, high SMC wall content suggests an elevated importance of the active response in determining overall vessel behavior. This study is a continuation of our previous investigation, in which a four-fiber constitutive model of the passive response of the primary porcine renal artery was identified. Here we focus on the active response of this vessel, specifically in the case of maximal SMC contraction, and develop a constitutive model of the active stress-stretch relations. The results of this study demonstrate the existence of biaxial active stress in the vessel wall, and suggest the active mechanical response is a critical component of renal arterial performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mild renal hypertension alters run training effects on the frequency response of rat cardiomyocyte mechanics.

    PubMed

    Palmer, Bradley M; Mokelke, Eric A; Thayer, Anne M; Moore, Russell L

    2003-11-01

    We examined the effects of run training on the frequency dependence of cardiomyocyte mechanics and intracellular calcium concentration ([Ca2+]i) dynamics in rats with mild renal hypertension. Male Fischer 344 rats aged 2-3 mo underwent a sham operation or stenosis of the left renal artery, which increased systolic blood pressure 20-30 mmHg. Half of the rats in each group underwent treadmill run training for >16 wk. Isolated cardiomyocytes were paced at 1.0 and 0.2 Hz in 2 mM external Ca2+ concentration at 29 degrees C. Under these conditions, negative frequency responses, i.e., decreased value with increased frequency, were recorded for peak shortening, shortening velocity, and the integral of the [Ca2+]i transient in both groups. Run training amplified the negative frequency response for the integral of the [Ca2+]i transient in both groups, but it amplified the negative frequency response for the shortening dynamics only in the normotensive sham-operated and not in the hypertensive rats. These results, as well as others for relaxation parameters, suggest that renal hypertension altered the effects of run training on the frequency response for cardiomyocyte contractile apparatus and/or passive mechanical properties, which respond to [Ca2+]i.

  10. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis.

    PubMed

    Xia, Jia; He, Li-qun; Su, Xiao

    2016-05-01

    Renal interstitial fibrosis (RIF) is a common development in chronic renal diseases that can lead to uremia and be life-threatening. The RIF pathology has complicated extracellular and intercellular mechanisms, involving many cells and cytokines, resulting in an incomplete mechanistic understanding of the disease. Finding effective herbs or herbal extracts for prevention and treatment of RIF is crucial because current medical approaches do not reliably slow or reverse RIF. In recent years, many experts have worked to identify herbs or herbal extracts to combat RIF both in vivo and in vitro, with some success. This review attempts to summarize the possible interventional mechanisms of herbs or herbal extracts involved in protecting and reversing RIF. The authors found some herbs and their extracts that may ameliorate renal impairments through anti-inflammation, anti-fibrogenesis and stabilization of extra cellular matrix. Among them, tetramethylpyrazine/ligustrazine, curcumin and polyglucoside of Tripterygium have experimentally shown good potential for improving RIF. However, conclusive evidence is still needed, especially in randomized controlled clinical trials. We expect that herbs or herbal extracts will play an important role in RIF treatment and reversal in the future.

  11. The excretory system of young chickens experiencing mercury toxicity--effects on kidney development, morphology, and function.

    PubMed

    Hester, P Y; Brake, J; Sikes, C V; Thaxton, P; Pardue, S L

    1978-01-01

    Four trials were conducted to determine if toxic levels of mercury affect kidney development, morphology, and renal function. Mercury, administered via the drinking water as mercuric chloride caused a reduction in gross kidney weight, an increase in relative kidney weight and a slight but significant increase in the percentage water retained by left kidney of 6-week-old cockerels. Mercury had no effect on renal function of 6-week-old birds as indicated by the clearance of phenol red from circulation. Histological discontinuity of the kidney was extensive and evidenced by foamy cell degeneration and nuclear pyknosis. Although mercury caused gross alterations in the morphology of the kidney, normal excretory function was maintained.

  12. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts

    USDA-ARS?s Scientific Manuscript database

    The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or...

  13. Use of radionuclide renal imaging for clinical followup after extracorporeal shock wave lithotripsy of renal stones.

    PubMed

    Michaels, E K; Pavel, D G; Orellana, P; Montes, A; Olea, E

    1992-09-01

    Patients treated by extracorporeal shock wave lithotripsy (ESWL) are usually evaluated by excretory urography within 1 month after treatment to determine the clearance of stone debris and rule out asymptomatic obstruction. In an attempt to obtain more precise functional information, we used 99mtechnetium-diethylenetriaminepentaacetic acid and 131iodine-hippurate radionuclide renal imaging studies, and a plain abdominal radiograph as the initial followup study after ESWL of 64 kidneys in 55 patients. Of 53 kidneys studied within 60 days after ESWL 42 had abnormal radionuclide renal imaging studies demonstrating pelviocaliceal stasis, excretory delay or poor function, 8 of which required subsequent interventions for obstructing stone debris. Five patients had excretory delay after ESWL that was unexpected based on a pre-ESWL excretory urogram showing normal function without dilation. A subset of 23 patients with large stone burden or anatomical deformity from a prior operation had baseline radionuclide renal imaging studies before ESWL; function improved in 4 and worsened in 5 by radionuclide renal imaging studies after completion of treatment. A total of 19 patients had radionuclide renal imaging studies earlier (within 17 days) after ESWL because of poor function and/or large stone burden, and as expected they had evidence of obstruction from stone debris, which necessitated further followup. Our experience suggests that followup of ESWL by radionuclide renal imaging studies provides specific functional information that is of particular value in the management of patients with obstructing stone debris and/or diminished renal function. Radionuclide renal imaging studies may also reveal unsuspected obstruction or functional impairment after ESWL of uncomplicated stones, and is recommended as routine followup after ESWL.

  14. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms.

    PubMed

    Dworkin, L D; Benstein, J A; Parker, M; Tolbert, E; Feiner, H D

    1993-04-01

    Both glomerular hypertension and hypertrophy have been associated with the development of glomerular injury in models of hypertension and reduced renal mass. The purpose of this study was to examine the effects of antihypertensive therapy on these parameters in the remnant kidney model of progressive glomerular sclerosis. Rats underwent 5/6 nephrectomy and were randomly assigned to receive either no therapy, the calcium entry blocker (CEB), nifedipine, or the angiotensin converting enzyme inhibitor (CEI), enalapril. Administration of either drug was associated with a reduction in systemic blood pressure and in the severity of glomerular injury assessed eight weeks after renal ablation. Micropuncture studies four weeks after ablation revealed that systemic and glomerular capillary pressure were high in untreated remnant kidney rats and reduced by enalapril. Administration of nifedipine was associated with a decline in systemic pressure, however, plasma renin levels increased, causing efferent arteriolar vasoconstriction and persistence of glomerular hypertension. Morphometric analysis showed that kidney weight, glomerular volume and glomerular capillary radius were lower in nifedipine treated rats than in the other two groups, indicating that the CEB, but not enalapril, inhibited the hypertrophic response to ablation of renal mass. Therefore, both CEIs and CEBs reduce glomerular injury in rats with remnant kidneys but they may act by different mechanisms. CEI reduce glomerular capillary pressure while CEBs inhibit compensatory kidney growth.

  15. Macropinocytosis is the major mechanism for endocytosis of calcium oxalate crystals into renal tubular cells.

    PubMed

    Kanlaya, Rattiyaporn; Sintiprungrat, Kitisak; Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2013-01-01

    During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.

  16. [Effects and mechanism of "Jianpi Qinghua Decoction" on renal fibrosis in rats with glomerulosclerosis].

    PubMed

    Chen, Xian; He, Li-qun

    2014-10-01

    To investigate the mechanism of "Jianpi Qinghua Decoction" (JQD) on renal fibrosis by observing the impact of JQD on serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and kidney tumor necrosis factor-Α (TNF-Α) expressions in focal segmental glomerulosclerosis rats induced by nephrectomy combined with adriamycin. Totally 56 male SD rats were divided into normal group, sham operation group, model group, JQD group, Yiqi Jianpi group, Qingre Huashi group, and Niaoduqing group (all n=8). The model of focal segmental glomerulosclerosis was established by the unilateral nephrectomy and the injection of adriamycin in caudal vein of rat at a dose of 3 mg/kg in the latter 5 groups. JQD, the disassembled prescription of Jianpi Qinghua Decoction (Yiqi Jianpi Decoction and Qingre Huashi Decoction), and Niaoduqing Capsule were administered separately for 8 weeks. The serum TC, TG, LDL, and VLDL levels and the expression of Kidney TNF-Α were determined. Compared with normal group and sham operation group, the serum TC, TG, LDL, and VLDL levels and the kidney TNF-Α expression in the model group were significantly higher (all P<0.01). Compared with the model group, the JQD group, Qingre Huashi group, and Niaoduqing group had significantly lower serum TC, TG, LDL, and VLDL levels and kidney TNF-Α expression (all P<0.01). Compared with the model group, the Yiqi Jianpi group had significantly lower serum TC ,TG, and VLDL levels (all P<0.01), while the serum LDL level and kidney TNF-Α expression remained unchanged (all P>0.05). JQD can regulate serum lipids and lower the TNF-Α expression in kidney tissue and thus improve the renal inflammation and relieve renal fibrosis. The heat-clearing and dampness-removing herbs in the prescription play a central role in fighting against renal fibrosis.

  17. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma.

  18. The effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall.

    PubMed

    Hopkins, Alan A; Sheridan, William S; Sharif, Faisal; Murphy, Bruce P

    2014-11-28

    The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70°C for 120s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.

  19. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

    PubMed

    Watanabe, Hiroshi

    2013-01-01

    Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

  20. Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine

    PubMed Central

    Yun, Yu; Gao, Tao; Li, Yue; Gao, Zhiyi; Duan, Jinlian; Yin, Hua

    2016-01-01

    The main aim of the study was to prove the compensative effect of intestine for renal function. Rat kidney was impaired by intragastrically administrating adenine (400 mg per day for 5 days). Intestinal tract was harvested and equally divided into 20 segments except cecum. Kidneys were harvested and histologically examined with hematoxylin-eosin staining kits. Uric acid, urea (BUN), and creatinine in serum were determined with assay kits, and BUN and creatinine in every intestinal segment were also determined. The results showed that adenine was able to increase uric acid level in serum from 20.98 ± 6.98 μg/mL to 40.77 ± 7.52 μg/mL and cause renal function damage with BUN (from 3.87 ± 0.62 mM to 12.33 ± 3.27 mM) and creatinine (from 51.48 ± 6.98 μM to 118.25 ± 28.63 μM) increasing in serum and with abnormally micromorphological changes in kidney. The amount of BUN and creatinine distributed in intestinal tract was positively correlated with those in blood. In impaired renal function rats, the amount of BUN (from 4.26 ± 0.21 μMole to 10.72 ± 0.55 μMole) and creatinine (from 681.4 ± 23.3 nMole to 928.7 ± 21.3 nMole) distributed in intestinal tract significantly increased. All the results proved that intestinal tract had excretory function compensative for renal function. PMID:27975080

  1. [Effects and underlying mechanism of berberine on renal tubulointerstitial injury in diabetic rats].

    PubMed

    Ma, Z J; Hu, S L; Wang, S S; Guo, X; Zhang, X N; Sun, B; Chen, L M

    2016-10-18

    Objective: To investigate the effect of Berberine on renal tubulointerstitial injury and its potential mechanism in rats with type 2 diabetes mellitus (T2DM). Methods: Thirty Sprague-Dawley rats were randomly divided into 3 groups: normal control rats (NC group), diabetic rats without drug treatment (DM group), diabetic rats treated with Berberine (BBR group) for 8 weeks. At the end of the study, blood and urine samples were collected for biochemical examination, and tubulointerstitial fibrosis was quantified by Hematoxylin and Eosin (HE) and Masson staining. The expressions of E-cadherin (E-cad), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB) and monocyte chemoattractant protein 1 (MCP-1) were detected by immunohistochemistry analysis, real-time polymerase chain reaction (RT-PCR) and Western blot analysis. Results: 24 h urinary microalbumin (mAlb)[(170.5±58.1) vs (253.7±53.0) mg]and urinary N-acetyl-glucosaminidase (NAG)[(33.5±7.2) vs (49.5±9.3)U/L]in diabetic rats were significantly decreased by BBR treatment(both P<0.05). The apparent renal tubulointerstitial injury was found in the DM group, which was ameliorated by BBR treatment. The expression of α-SMA, NF-κB and MCP-1 were significantly decreased, accompanied by increased expression of E-cad in BBR-treated DM rats (all P<0.05). Conclusion: BBR could ameliorate renal tubulointerstitial injury in diabetic rats, the mechanism of which may be associated with the amelioration of epithelial-mesenchymal transition (EMT) through suppressing the expression of the NF-κB and MCP-1.

  2. Exploring the effect and mechanism of Hibiscus sabdariffa on urinary tract infection and experimental renal inflammation.

    PubMed

    Chou, Shun-Ting; Lo, Hsin-Yi; Li, Chia-Cheng; Cheng, Lu-Chen; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-12-24

    Hibiscus sabdariffa Linn., also known as roselle, is used in folk medicine as an anti-inflammatory agent. Urinary tract infection (UTI) is a common problem in long-term care facilities. However, effects of roselle on UTI and renal inflammation remained to be analyzed. Here we surveyed the effect of roselle drink on the prevention of UTI in long-term care facilities and analyzed the anti-inflammatory potential of roselle on lipopolysaccharide (LPS)-induced renal inflammation in mice. Survey questionnaires and clinical observation were applied to evaluate the use of roselle and the incidence of UTI in long-term care facilities. Mice were administrated roselle orally for 7 consecutive days and then challenged with LPS. Anti-renal inflammatory effects of roselle were analyzed by microarray and immunohistochemical staining. Clinical observation showed that taking roselle drink in residents with urinary catheters reduced the incidence of UTI in long-term care facilities. Renal inflammation is a key event of UTI. Roselle suppressed LPS-induced nuclear factor-κB (NF-κB) activation in cells and LPS-induced interleukin-1β production in mice a dose-dependent manner. Immunohistochemical staining showed that roselle inhibited LPS-induced NF-κB activation and inflammatory cell infiltration in kidney. Gene expression profiling further showed that roselle suppressed the expression of pro-inflammatory cytokine genes and enzyme genes involved in the production of prostaglandin and nitric oxide. In addition, NF-κB was the main transcription factor involved in the regulation of roselle-regulated gene expression in kidney. This is the first report applying clinical observation-guided transcriptomic study to explore the application and mechanism of roselle on UTI. Our findings suggested that roselle drink ameliorated LPS-induced renal inflammation via downregulation of cytokine network, pro-inflammatory product production, and NF-κB pathway. Moreover, this report suggested the

  3. [Renoprotective effects of statins under the conditions of acute renal failure, caused by rhabdomyolysis].

    PubMed

    Zamorskiĭ, I I; Zeleniuk, V G

    2014-01-01

    The experiment on white rats was targeted at the examination of influence of statins (atorvastatin, lovastatin, simvastatin) under the conditions of acute renal failure, caused by rhabdomyolysis. Renoprotective effects of statins were demonstrated by reduction of hyperazotemia and proteinuria and improvement of renal excretory function, which correlated with antioxidant properties of drugs.

  4. Characterization of the effects of erythromycin estolate and erythromycin base on the excretory function of the isolated rat liver

    SciTech Connect

    Gaeta, G.B.; Utili, R.; Adinolfi, L.E.; Abernathy, C.O.; Giusti, G.

    1985-09-15

    To investigate the mechanisms of erythromycin cholestasis, the effects of erythromycin estolate (EE) on the excretory function of the isolated perfused rat liver and on liver plasma membrane (LM) preparations were studied and compared to those of erythromycin base (EB) and lauryl sulfate (LS), added alone or in combination. EE (at 125 to 200 microM) caused dose-dependent reductions of bile and perfusate flows, bile acid (BA) excretion, and biliary BA concentration. The alterations of the excretory function were only in part due to the decreased perfusate flow. In contrast, both 200 and 300 microM concentrations of EB elicited similar choleretic responses, which were presumably related to the osmotic activity of the drug excreted in the bile. LS did not affect hepatic excretory functions. However, the simultaneous addition of EB and LS resulted in a rate of bile flow lower than that observed with EB alone. EE, but not EB, increased canalicular permeability to (/sup 14/C)sucrose as measured by bile to plasma (B:P) ratio. Neither drugs altered (/sup 14/C)erythritol B:P ratio. In LM preparations both Na+,K+- and Mg2+-ATPase activities were inhibited in a dose-dependent manner by EE, but not by EB. The data suggest that EE could affect bile flow by inhibiting cotransport of Na+ and BA and by altering LM permeability and support the view that the effect of erythromycins on the liver may be related to their surface activity.

  5. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  6. Engineered extracellular matrices with controlled mechanics modulate renal proximal tubular cell epithelialization

    PubMed Central

    Chen, Evan; Putnam, Andrew J.

    2017-01-01

    Acute kidney injury (AKI) is common and associated with significant morbidity and mortality. Recovery from many forms of AKI involves the proliferation of renal proximal tubular epithelial cells (RPTECs), but the influence of the microenvironment in which this recovery occurs remains poorly understood. Here we report the development of a poly(ethylene glycol) (PEG) hydrogel platform to study the influence of substrate mechanical properties on the proliferation of human RPTECs as a model for recovery from AKI. PEG diacrylate based hydrogels were generated with orthogonal control of mechanics and cell-substrate interactions. Using this platform, we found that increased substrate stiffness promotes RPTEC spreading and proliferation. RPTECs showed similar degrees of apoptosis and Yes-associated protein (YAP) nuclear localization regardless of stiffness, suggesting these were not key mediators of the effect. However, focal adhesion formation, cytoskeletal organization, focal adhesion kinase (FAK) activation, and extracellular signal-regulated kinase (ERK) activation were all enhanced with increasing substrate stiffness. Inhibition of ERK activation substantially attenuated the effect of stiffness on proliferation. In long-term culture, hydrogel stiffness promoted the formation of more complete epithelial monolayers with tight junctions, cell polarity, and an organized basement membrane. These data suggest that increased stiffness potentially may have beneficial consequences for the renal tubular epithelium during recovery from AKI. PMID:28715434

  7. Engineered extracellular matrices with controlled mechanics modulate renal proximal tubular cell epithelialization.

    PubMed

    Beamish, Jeffrey A; Chen, Evan; Putnam, Andrew J

    2017-01-01

    Acute kidney injury (AKI) is common and associated with significant morbidity and mortality. Recovery from many forms of AKI involves the proliferation of renal proximal tubular epithelial cells (RPTECs), but the influence of the microenvironment in which this recovery occurs remains poorly understood. Here we report the development of a poly(ethylene glycol) (PEG) hydrogel platform to study the influence of substrate mechanical properties on the proliferation of human RPTECs as a model for recovery from AKI. PEG diacrylate based hydrogels were generated with orthogonal control of mechanics and cell-substrate interactions. Using this platform, we found that increased substrate stiffness promotes RPTEC spreading and proliferation. RPTECs showed similar degrees of apoptosis and Yes-associated protein (YAP) nuclear localization regardless of stiffness, suggesting these were not key mediators of the effect. However, focal adhesion formation, cytoskeletal organization, focal adhesion kinase (FAK) activation, and extracellular signal-regulated kinase (ERK) activation were all enhanced with increasing substrate stiffness. Inhibition of ERK activation substantially attenuated the effect of stiffness on proliferation. In long-term culture, hydrogel stiffness promoted the formation of more complete epithelial monolayers with tight junctions, cell polarity, and an organized basement membrane. These data suggest that increased stiffness potentially may have beneficial consequences for the renal tubular epithelium during recovery from AKI.

  8. Nondisjunction reduplication of chromosome 3 is not a common mechanism in the development of human renal cell tumors.

    PubMed

    Kovacs, G; Wilkens, L; Papp, T

    1988-01-01

    Because of the recurrent loss of regions of the chromosome 3 short arm in renal cell carcinomas, a chromosomal mechanism for the expression of recessive cancer genes has been implicated in the development of this type of tumor. Nondisjunction and subsequent reduplication of a mutant chromosome is one of the presumed mitotic mechanisms leading to the expression of recessive cancer genes. Using variant fluorescence at the centromeric region of chromosome 3 and a restriction fragment length polymorphism on chromosome 3p, we found chromosome 3 heteromorphism in the constitutional cells of 14 of 15 patients with renal tumors showing two normal chromosomes 3. This heteromorphism was maintained in each tumor. Therefore, the mechanism of nondisjunction and reduplication in the development of homozygosity for a mutant chromosome 3 in renal tumors remains questionable.

  9. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  10. Immunomodulatory effects of Trichinella spiralis-derived excretory-secretory antigens.

    PubMed

    Radovic, Ivana; Gruden-Movsesijan, Alisa; Ilic, Natasa; Cvetkovic, Jelena; Mojsilovic, Slavko; Devic, Marija; Sofronic-Milosavljevic, Ljiljana

    2015-03-01

    Helminth-derived products, either released into the circulation during the course of the infection or isolated after in vitro cultivation of the parasite and applied by the injection, are able to suppress the host immune response to autoantigens and allergens, but mechanisms could differ. Prophylactic application of Trichinella spiralis excretory-secretory muscle larvae (ES L1) products ameliorates experimental autoimmune encephalomyelitis (EAE) with the same success as infection did. However, a shift to the Th2-type response in the periphery and in the central nervous system, accompanied by activation of regulatory mechanisms, had a striking, new feature of increased proportion of unconventional CD4(+)CD25(-)Foxp3(+) regulatory cells both in the periphery and in the central nervous system of animals treated with ES L1 before the induction of EAE.

  11. Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions.

    PubMed

    Jia, Weiwei; Du, Feifei; Liu, Xinwei; Jiang, Rongrong; Xu, Fang; Yang, Junling; Li, Li; Wang, Fengqing; Olaleye, Olajide E; Dong, Jiajia; Li, Chuan

    2015-05-01

    Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by human organic anion transporter 1 (OAT1) (Km, 121 μM), OAT2 (859 μM), OAT3 (1888 μM), and OAT4 (1880 μM) and rat Oat1 (117 µM), Oat2 (1207 μM), and Oat3 (1498 μM). Other renal transporters (human organic anion-transporting polypeptide 4C1 [OATP4C1], organic cation transporter 2 [OCT2], carnitine/organic cation transporter 1 [OCTN1], multidrug and toxin extrusion protein 1 [MATE1], MATE2-K, multidrug resistance-associated protein 2 [MRP2], MRP4, and breast cancer resistance protein [BCRP], and rat Oct1, Oct2, Octn1, Octn2, Mate1, Mrp2, Mrp4, and Bcrp) showed either ambiguous ability to transport tanshinol or no transport activity. Rats may be a useful model, to investigate the contribution of the renal transporters on the systemic and renal exposure to tanshinol. Probenecid-induced impairment of tubular secretion resulted in a 3- to 5-fold increase in the rat plasma area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of tanshinol. Tanshinol exhibited linear plasma pharmacokinetic properties over a large intravenous dose range (2-200 mg/kg) in rats. The dosage adjustment could result in increases in the plasma AUC0-∞ of tanshinol of about 100-fold. Tanshinol exhibited very little dose-related nephrotoxicity. In summary, renal tubular secretion of tanshinol consists of uptake from blood, primarily by OAT1/Oat1, and the subsequent luminal efflux into urine mainly by passive diffusion. Dosage adjustment appears to be an efficient and safe way to manipulate systemic exposure to tanshinol. Tanshinol shows low propensity to cause renal transporter

  12. Renal handling of terephthalic acid

    SciTech Connect

    Tremaine, L.M.; Quebbemann, A.J.

    1985-01-01

    By use of the Sperber in vivo chicken preparation method, infusion of radiolabeled terephthalic acid ((/sup 14/C)TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of (/sup 14/C)TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the (/sup 14/C)TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of (/sup 14/C)TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion.

  13. The body composition and excretory burden of lean, obese, and severely obese individuals has implications for the assessment of chronic kidney disease.

    PubMed

    Fotheringham, James; Weatherley, Nicholas; Kawar, Bisher; Fogarty, Damian G; Ellam, Timothy

    2014-12-01

    Obesity could affect associations between creatinine generation, estimated body surface area, and excretory burden, with effects on chronic kidney disease assessment. We therefore examined the impact of obesity on the performances of estimated glomerular filtration rate (eGFR), the urine albumin:creatinine ratio (ACR), and excretory burden in 3611 participants of the Chronic Renal Insufficiency Cohort. Urine creatinine excretion significantly increased with body mass index (BMI) (34 and 31% greater at 40 kg/m(2) or more versus the normal of 18.5-25 kg/m(2)) in men and women, respectively, such that patients with a normal BMI and an ACR of 30 mg/g had the same 24-h albuminuria as severely obese patients with ACR 23 mg/g. The bias of eGFR (referenced to body surface area-indexed iothalamate (i-)GFR) had a U-shaped relationship to obesity in men but progressively increased in women. Nevertheless, obesity-associated body surface area increases were accompanied by a greater absolute (non-indexed) iGFR for a given eGFR, particularly in men. Two men with eGFRs of 45 ml/min per 1.73 m(2), height 1.76 m, and BMI 22 or 45 kg/m(2) had absolute iGFRs of 46 and 62 ml/min, respectively. The excretory burden, assessed as urine urea nitrogen and estimated dietary phosphorus, sodium, and potassium intakes, also increased in obesity. However, obese men had lower odds of anemia, hyperkalemia, and hyperphosphatemia. Thus, for a given ACR and eGFR, obese individuals have greater albuminuria, absolute GFR, and excretory burden. This has implications for chronic kidney disease management, screening, and research.

  14. The renal quantitative scintillation camera study for determination of renal function

    SciTech Connect

    Thompson, I.M. Jr.; Boineau, F.G.; Evans, B.B.; Schlegel, J.U.

    1983-03-01

    The renal quantitative scintillation camera study assesses glomerular filtration rate and effective renal plasma flow based upon renal uptake of 99mtechnetium-iron ascorbate and 131iodine-hippuran, respectively. The method was compared to inulin, para-aminohippuric acid and creatinine clearance studies in 7 normal subjects and 9 patients with various degrees of reduced renal function. The reproducibility of the technique was determined in 15 randomly selected pediatric patients. The values of glomerular filtration rate and effective renal plasma flow were not significantly different from those of inulin and para-aminohippuric acid studies. The reproducibility of the technique was comparable to that of inulin and para-aminohippuric acid studies. Patient acceptance of the technique is excellent and the cost is minimal. Renal morphology and excretory dynamics also are demonstrated. The technique is advocated as a clinical measure of renal function.

  15. Imaging in acute renal infection in children

    SciTech Connect

    Sty, J.R.; Wells, R.G.; Starshak, R.J.; Schroeder, B.A.

    1987-03-01

    Infection is the most common disease of the urinary tract in children, and various imaging techniques have been used to verify its presence and location. On retrospective analysis, 50 consecutive children with documented upper urinary tract infection had abnormal findings on renal cortical scintigraphy with 99mTc-glucoheptonate. The infection involved the renal poles only in 38 and the poles plus other renal cortical areas in eight. Four had abnormalities that spared the poles. Renal sonograms were abnormal in 32 of 50 children. Excretory urograms were abnormal in six of 23 children in whom they were obtained. Vesicoureteral reflux was found in 34 of 40 children in whom voiding cystourethrography was performed. These data show the high sensitivity of renal cortical scintigraphy with 99mTc-glucoheptonate in documenting upper urinary tract infection. The location of the abnormalities detected suggests that renal infections spread via an ascending mode and implies that intrarenal reflux is a major contributing factor.

  16. Systemic response to excretory urography: work in progress

    SciTech Connect

    Fischer, H.W.; Katzberg, R.W.; Morris, T.W.; Spataro, R.F.

    1984-04-01

    Ninety-seven patients who were undergoing excretory urography for suspected genitourinary tract abnormalities were continuously monitored for systemic blood pressure and pulse rates before (control) and after rapid intravenous injections of contrast material using a Bard pressure monitor. The authors report the systemic responses observed. Clinically obvious reactions to contrast medium were recorded and compared with the blood pressure and pulse rate responses. The most common response to rapid infusion of contrast medium was a transient hypotension. An increase in systemic pressure had a high association with nausea and vomiting. Significant hypotension was observed in six patients (6%), but no overt clinical manifestations were present.

  17. Excretory urography using dual-energy scanned projection radiography

    SciTech Connect

    Soomer, F.G.; Brody, W.R.; Gross, D.; Macovski, A.; Hall, A.; Pelc, N.

    1981-11-01

    Excretory urograms of 10 patients were obtained using a GE 8800 CT scanner with Scout View which had been modified for dual-kVp scanned projection radiography. Using this system, it is possible to combine images obtained simultaneously at 85 and 135 kVp to create subtraction images from which substances of desired mean atomic number have been removed. This permits improved visualization of the genitourinary system on urograms by (a) eliminating obscuring bowel gas shadows and (b) enhancement of both iodinated contrast media and retroperitoneal fat planes.

  18. [Coupled evolution of digestive, respiratory, circulatory, and excretory systems: a model investigation].

    PubMed

    Menshutkin, V V; Natochin, Iu V

    2007-01-01

    A model is developed of evolution of an organism with digestive, respiratory, circulatory, and excretory systems at the single system. The model is realized on the basis of the language STELLA 8.0. A balance is found between perfection of each individual physiological system and necessary energy expenditures for survival of the organism as a whole. The model is based on a coupled development of several visceral systems. There is analyzed effect of a change of consumption of substances with food and of oxygen amount on their oxidation, a branching of blood flow to organs, specifically to kidneys, to excrete final products of metabolism from blood. The energy expenditures for circulation are believed to be proportional to blood flow in a given organ. An increase of efficiency of renal excretion from blood of final metabolic products and toxic substances has a favorable effect on inner medium and activity of each cell of an individual, but increases of the organism energy expenditures. Interrelation of these factors under conditions of adaptation to changing environmental conditions determines peculiarities of evolution of each physiological system in an individual.

  19. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells

    SciTech Connect

    Siebens, A.W.; Spring, K.R. )

    1989-12-01

    The renal papillary epithelial cell line, GRB-PAP1, accumulates sorbitol when grown in a hypertonic (500 mosmol/kgH2O) bathing medium. When the cells are returned to a 300 mosmol/kgH2O medium, they lose their sorbitol rapidly to the bath. Sorbitol movement across the membranes of these cells was investigated by studying the uptake of radioactive sorbitol and related compounds. Sorbitol uptake increased 71-fold when cells grown in 500 mosmol/kgH2O medium were exposed to a 300 mosmol/kgH2O test solution. The magnitude of the permeability increase was proportional to the size of the change in the osmolality of the bathing medium and not the absolute osmolality. Sorbitol uptake was a linear function of medium sorbitol concentration with no sign of saturation at sorbitol concentrations up to 315 mM. Although the permeability of other polyols was increased when the osmolality was reduced, competition between sorbitol and related sugars and polyols could not be demonstrated. Both the increased sorbitol uptake after a decrease in medium osmolality and the decrease to control permeability after return to the original osmolality were complete within 30 s. A wide variety of transport inhibitors and ion substitutions failed to alter the magnitude of the sorbitol permeability increase. The most effective inhibitor was quinidine, 1 mM reducing sorbitol uptake by 73%. The sorbitol permeability increase could also be blocked by reducing the temperature to 0 degrees C. Nonspecific uptake of sorbitol, such as endocytosis, was shown to be of only minor significance. The large increase in sorbitol permeability and subsequent sorbitol efflux enables these cells to withstand large decreases in osmolality without excessive swelling and consequent damage. A similar compensatory mechanism may operate in vivo in the renal papilla during the onset of diuresis.

  20. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency

    PubMed Central

    Jokihaara, Jarkko; Pörsti, Ilkka H.; Sievänen, Harri; Kööbi, Peeter; Kannus, Pekka; Niemelä, Onni; Turner, Russell T.; Iwaniec, Urszula T.; Järvinen, Teppo L. N.

    2016-01-01

    Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI. PMID:27658028

  1. Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms.

    PubMed

    Blankenstein, K I; Borschewski, A; Labes, R; Paliege, A; Boldt, C; McCormick, J A; Ellison, D H; Bader, M; Bachmann, S; Mutig, K

    2017-03-01

    Calcineurin dephosphorylates nuclear factor of activated T cells transcription factors, thereby facilitating T cell-mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation but may cause side effects, including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA). An involvement of major hormones like angiotensin II or arginine vasopressin (AVP) has been proposed. To resolve this issue, the effects of CsA treatment in normal Wistar rats, AVP-deficient Brattleboro rats, and cultured renal epithelial cells endogenously expressing either NKCC2 or NCC were studied. Acute administration of CsA to Wistar rats rapidly augmented phosphorylation levels of NKCC2, NCC, and their activating kinases suggesting intraepithelial activating effects. Chronic CsA administration caused salt retention and hypertension, along with stimulation of renin and suppression of renal cyclooxygenase 2, pointing to a contribution of endocrine and paracrine mechanisms at long term. In Brattleboro rats, CsA induced activation of NCC, but not NKCC2, and parallel effects were obtained in cultured cells in the absence of AVP. Stimulation of cultured thick ascending limb cells with AVP agonist restored their responsiveness to CsA. Our results suggest that the direct epithelial action of calcineurin inhibition is sufficient for the activation of NCC, whereas its effect on NKCC2 is more complex and requires concomitant stimulation by AVP. Copyright © 2017 the American Physiological Society.

  2. Grape seed proanthocyanidins prevent DOCA-salt hypertension-induced renal injury and its mechanisms in rats.

    PubMed

    Lan, Chao-Zong; Ding, Ling; Su, Yi-Lin; Guo, Kun; Wang, Li; Kan, Hong-Wei; Ou, Yu-Rong; Gao, Shan

    2015-07-01

    Renal dysfunction is one of the major effects of DOCA (deoxycorticosterone acetate)-salt hypertension and there is an increasing amount of evidence that oxidative stress damages the function of the kidney. Grape seed proanthocyanidins (GSPE) have been reported to be potent anti-oxidants and free radical scavengers. The present study sought to investigate the ability of GSPE to prevent renal injury in DOCA-salt hypertensive rats and to explore the molecular mechanisms underlying its protective effects. A total of 54 Sprague Dawley (SD) rats were randomly divided into 7 groups: Sham group (n = 7), UnX-sham group (n = 8), DOCA-salt group (n = 8), GSPE150 group (150 mg kg(-1), n = 7), GSPE240 group (240 mg kg(-1), n = 8), GSPE384 group (384 mg kg(-1), n = 8) and ALM (amlodipine besylate tablets) group (5 mg kg(-1), n = 8), and treated for 4 weeks. Compared to sham group rats, renal injury was observed in DOCA-salt hypertensive group rats as the urine protein, KW/BW (kidney weight/body weight), degree of renal fibrosis, renal MDA (malondialdehyde) and Hyp (hydroxyproline) contents significantly increased (P < 0.01). Moreover, SOD (Superoxide Dismutase) activities decreased in the model group (P < 0.01). In contrast, DOCA-salt hypertensive rats treated with different dose of GSPE or ALM showed a significant improvement of renal injury with decreased urine protein, KW/BW, degree of renal fibrosis, renal total MDA and Hyp contents compared to the untreated group. In addition, SOD activities increased in the treatment group. Since the experimental modeling time was short, kidney damage occurs to a lesser extent. BUN (Blood Urea Nitrogen), Scr (Serum Creatinine) and UA (Uric Acid) contents did not appear significantly changed in all groups. Finally, the activation of JNK and p38 kinases in the kidney was suppressed in rats treated with GSPEs or ALM compared to the untreated group, suggesting that the inhibition of these kinase pathways by GSPE contributes to the improvement

  3. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    SciTech Connect

    el-Din, M.M.; Malik, K.U.

    1987-10-01

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with (/sup 3/H)norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered.

  4. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  5. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  6. Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action.

    PubMed

    Duran, I; Lambea, J; Maroto, P; González-Larriba, J L; Flores, Luis; Granados-Principal, S; Graupera, M; Sáez, B; Vivancos, A; Casanovas, O

    2017-02-01

    Renal cell carcinoma (RCC) is a complex disease characterized by mutations in several genes. Loss of function of the von Hippel-Lindau (VHL) tumour suppressor gene is a very common finding in RCC and leads to up-regulation of hypoxia-inducible factor (HIF)-responsive genes accountable for angiogenesis and cell growth, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Binding of these proteins to their cognate tyrosine kinase receptors on endothelial cells promotes angiogenesis. Promotion of angiogenesis is in part due to the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway. Inhibition of this pathway decreases protein translation and inhibits both angiogenesis and tumour cell proliferation. Although tyrosine kinase inhibitors (TKIs) stand as the main first-line treatment option for advanced RCC, eventually all patients will become resistant to TKIs. Resistance can be overcome by using second-line treatments with different mechanisms of action, such as inhibitors of mTOR, c-MET, programmed death 1 (PD-1) receptor, or the combination of an mTOR inhibitor (mTORi) with a TKI. In this article, we briefly review current evidence regarding mechanisms of resistance in RCC and treatment strategies to overcome resistance with a special focus on the PI3K/AKT/mTOR pathway.

  7. Effects of exercise on renal function in patients with moderate impairment of renal function compared to normal men.

    PubMed

    Taverner, D; Craig, K; Mackay, I; Watson, M L

    1991-01-01

    The renal excretory and haemodynamic responses to sustained moderate exertion were investigated in normotensive humans with impaired renal function and normal volunteers. The heart rate increase with exercise was similar in each group. Subjects with impaired renal function showed a significant fall in glomerular filtration rate on exertion, while normals did not. In the presence of renal disease, urine osmolality did not rise with exertion, although it rose markedly in the normal group. Free water clearance became negative after exercise in the normal group only. The diseased kidney is unable to maintain glomerular filtration rate or conserve water under the stress of exertion as well as the normal kidney.

  8. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

    PubMed

    Lawrence, Michael J; Wright, Patricia A; Wood, Chris M

    2015-07-01

    Relative to the gills, the mechanisms by which the kidney contributes to ammonia and acid-base homeostasis in fish are poorly understood. Goldfish were exposed to a low pH environment (pH 4.0, 48 h), which induced a characteristic metabolic acidosis and an increase in total plasma [ammonia] but reduced plasma ammonia partial pressure (PNH3). In the kidney tissue, total ammonia, lactate and intracellular pH remained unchanged. The urinary excretion rate of net base under control conditions changed to net acid excretion under low pH, with contributions from both the NH4 (+) (∼30%) and titratable acidity minus bicarbonate (∼70%; TA-HCO3 (-)) components. Inorganic phosphate (Pi), urea and Na(+) excretion rates were also elevated while Cl(-) excretion rates were unchanged. Renal alanine aminotransferase activity increased under acidosis. The increase in renal ammonia excretion was due to significant increases in both the glomerular filtration and the tubular secretion rates of ammonia, with the latter accounting for ∼75% of the increase. There was also a 3.5-fold increase in the mRNA expression of renal Rhcg-b (Rhcg1) mRNA. There was no relationship between ammonia secretion and Na(+) reabsorption. These data indicate that increased renal ammonia secretion during acidosis is probably mediated through Rhesus (Rh) glycoproteins and occurs independently of Na(+) transport, in contrast to branchial and epidermal models of Na(+)-dependent ammonia transport in freshwater fish. Rather, we propose a model of parallel H(+)/NH3 transport as the primary mechanism of renal tubular ammonia secretion that is dependent on renal amino acid catabolism.

  9. Neural control of renal function.

    PubMed

    Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F

    2011-04-01

    The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.

  10. Excretory urography and computed tomography in the initial evaluation of patients with cervical cancer: are both examinations necessary

    SciTech Connect

    Goldman, S.M.; Fishman, E.K.; Rosenshein, N.B.; Gatewood, O.M.B.; Siegelman, S.S.

    1984-11-01

    One hundred ten patients with carcinoma of the cervix were studied to determine if both excretory urography and computed tomography are needed for routine evaluation. Computed tomography gave more information in 25 patients and the excretory urogram was more informative in 10 patients. Thirty-five hydroureters were detected by computed tomography, whereas excretory urography identified 21. It was concluded that routine use of both examinations is not indicated. Excretory urography is currently sufficient in evaluation of stage I and IIA lesions, while computed tomography obviates excretory urography in patients with advanced cervical cancer (IIB-IVB).

  11. [Analysis of possible causes activation a stomach and pancreas excretory and incretory function after completion of space flight on the international space station].

    PubMed

    Afonin, B V

    2013-01-01

    The research excretory and incretory of activity of a stomach and pancreas is carried out at astronauts in the early period after completion of space flights of various duration. It is shown, that the increase of the contents of gastric and pancreatic enzymes and hormones (insulin and C-peptide) in blood reflects increased excretory and incretory activity of organs of gastroduodenal area which arises in weightlessness. The complex of countermeasures, which prevent ingress of subjects, infected by Helicobacter pylori in space flight crew, excluded participation of this microorganism in the mechanism of increase of secretory activity of a stomach. The absence of interrelation between increase of secretory activity of gastroduodenal area organs and space flights' duration has allowed to exclude the hypokinetic mechanism which determined by duration of stay in weightlessness. It was shown that after the end of space flights the increase ofbasal excretory activity of organs of gastroduodenal area occurs simultaneously with increase of a fasting insulin secretion. The changes in gastroduodenal area organs revealed after space flights were are compared to similar changes received in ground-based experiments, simulating hemodynamic reorganization in venous system of abdominal cavity, arising in weightlessness. The conclusion is made, that the basic mechanism of changes of a functional condition of digestive system in space flights, is determined by reorganization venous hemodynamic in abdominal cavity organs reproduced in ground experiments. Increase insulin and C-peptide after space flights are considered as hormonal component of this hemodynamic mechanism.

  12. The role of computed tomography in renal trauma

    SciTech Connect

    Federie, M.P.; Kaiser, J.A.; McAninch, J.W.; Jeffery, B.; Mall, J.C.

    1981-11-01

    Computed tomography (CT) and excretory urography were performed in 15 patients thought to have major renal trauma. In 4 cases, CT demonstrated extravasation of urine not detected by urography, and in all cases parenchymal injuries and extrarenal hematomas were depicted more accurately by CT. CT also proved to be superior to excretory urography in distinguishing relatively minor renal injuries (confusion, incomplete laceration, intrarenal hematoma, small extrarenal hematoma) from major or catastrophic injuries (complete laceration, fracture, shattered kidney), which significantly influenced the choice of surgical or medical therapy. CT also detected concurrent injuries of the spleen, liver, and/or pancrease in 4 cases. The authors feel that CT is valuable in the assessment of major renal trauma.

  13. Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

    PubMed Central

    Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica

    2013-01-01

    Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation. PMID:24151593

  14. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators.

    PubMed

    Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica; Tandon, Chanderdeep

    2013-01-01

    Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.

  15. [Effect and mechanism of jianpi qinghua recipe on renal functions of adriamycin-induced nephropathic rats from the angle of inhibiting renal fibrosis].

    PubMed

    Ma, Xiao-hong; He, Li-qun

    2014-06-01

    To explore the effect of Jianpi Qinghua Recipe (JQR) on renal functions of adriamycin-induced focal segmental glomerular sclerosis (FSGS) rats from the angle of activating fibroblasts to myofibroblast (MyoF). Totally 56 rats were randomly divided into the normal control group (n=8), the sham-operation group (n =8), and the model group (n=40). The FSGS rat model was induced by nephrectomy of left kidney plus intravenous injection of adriamycin. Successfully modeled rats were further divided into 5 groups, i.e., the model group, the JQR group, the JPR (Jianpi Recipe) group, the QHR (Qinghua Recipe) group, and the NDQ (Niaoduqing) group, 8 in each group. Corresponding drugs were administered to rats in all groups, 2 mL each time, for 56 days. The effect of JQR on serum creatinine (SCr), urea nitrogen, 24-h urinary protein excretion, a-smooth muscle actin (alpha-SMA) mRNA, collagen type III (Col III) mRNA, fibronectin (FN) mRNA, and collagen type IV (Col IV) mRNA were observed. JQR could significantly lower SCr, urea nitrogen, and 24-h urinary protein excretion levels (P < 0.01), and significantly decrease mRNA levels of alpha-SMA, Col III, FN, and Col IV (P < 0.01). It was advantageous over the NDQ group. Compared with JPR, the relative expression levels of Col III mRNA and FN mRNA of JQR and QHR were significantly lower (P < 0.01). JQR could improve the renal function and renal fibrosis in the adriamycin-induced nephropathic model rats. Its efficacy was superior to that of NDQ. Its mechanisms might be linked with inhibiting activation of fibroblasts.

  16. Description and comparison of excretory urography performed during radiography and computed tomography for evaluation of the urinary system in healthy New Zealand White rabbits (Oryctolagus cuniculus).

    PubMed

    Vilalta, Laura; Altuzarra, Raul; Espada, Yvonne; Dominguez, Elisabet; Novellas, Rosa; Martorell, Jaime

    2017-04-01

    OBJECTIVE To evaluate the usefulness of excretory urography performed during radiography (REU) and CT (CTEU) in healthy rabbits, determine timings of urogram phases, and compare sensitivities of REU and CTEU for detection of these phases. ANIMALS 13 New Zealand White rabbits (Oryctolagus cuniculus). PROCEDURES Rabbits were screened for signs of systemic and urinary tract disease. An REU examination of each was performed, followed ≥ 5 days later by a CTEU examination. Contrast images from each modality were evaluated for quality of opacification and intervals between initiation of contrast medium administration and detection of various urogram phases. RESULTS Excretory urograms of excellent diagnostic quality were achieved with both imaging modalities. For all rabbits, the nephrographic phase of the urogram appeared in the first postcontrast REU image (obtained between 34 and 40 seconds after initiation of contrast medium administration) and at a median interval of 20 seconds in CTEU images. The pyelographic phase began at a median interval of 1.63 minutes with both imaging modalities. Contrast medium was visible within the urinary bladder at a median interval of 2.20 minutes. Median interval to the point at which the nephrogram and pyelogram were no longer visible in REU images was 8 hours and 2.67 hours, respectively. The CTEU technique was better than the REU technique for evaluating renal parenchyma. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that REU and, particularly, CTEU may be valuable tools for the diagnosis of renal and urinary tract disease in rabbits; however, additional evaluation in diseased rabbits is required.

  17. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury

    PubMed Central

    Fakhruddin, Selim; Alanazi, Wael

    2017-01-01

    Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134

  18. Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis.

    PubMed

    Wang, Yi-Fang; Yan, Jia-Jiun; Tseng, Yung-Che; Chen, Ruo-Dong; Hwang, Pung-Pung

    2015-01-01

    The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl(-) homeostasis via Cl(-) transport uptake mechanisms. Previous studies in zebrafish identified Na(+)-Cl(-) cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl(-) uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl(-) channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl(-) environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl(-) content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl(-) uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl(-) homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated

  19. Potential mechanism of fibronectin deposits in acute renal failure induced by mercuric chloride.

    PubMed

    Saball, E; Salvarrey, M; Serra, E; Picó, G; Elías, M M

    2001-10-01

    Many glomerular diseases are associated with changes in the expression and distribution in the components of extracellular matrix. A remarkable feature in acute renal failure induced by mercuric chloride in rats was large fibronectin (Fn) deposits in kidneys 1 h post-HgCl2 injection (5 mg/kg body wt., s.c.). Our study examined some mechanisms as potential explanation of the early Fn deposits in mercuric chloride induced acute renal failure. Total tissue mRNA of livers and kidneys of control and treated rats were used in Northern blot to determine whether accumulation of Fn in kidney is associated with increases in the expression of this protein in the kidney and/or in the liver. Analysis of Fn levels by Western blot were also performed. Northern blot did not show significant difference between control and treated rats, while the abundance of polymerized-Fn in kidney tissue was increased 1 h and 5 h post HgCl2 injection. HgCl2 influence on Fn folding was studied in vitro to detect possible conformational changes that could altered its normal pattern of matrix assembly and/or binding to different ligands. In this context HgCl2 binding to Fn was measured following native tryptophan fluorescence of Fn in the presence of HgCl2 (0.5-250 mM). Binding parameters for the HgCl2-Fn complex formation were Kd = (1.6 +/- 0.2) 10(-4) M; n = 1 +/- 0.3, indicating a low apparent affinity and one type binding site. Thermal denaturation of Fn showed, between 30-60 degrees C, a soft reversible conformational change, while between 75-80 degrees C a highly and irreversible transition is produced suggesting a modification of the tertiary structure. HgCl2 abolished this transition. The kinetic of thermal unfolding of Fn was also measured and the effects observed due to HgCl2 presence reinforced the previous data. Finally, the effect of HgCl2 on Fn binding to denatured collagen (gelatin) was also measured as an index of the effect of this cation on biological properties of Fn. Fn binds

  20. Mechanisms of Endothelial Dysfunction in Resistance Arteries from Patients with End-Stage Renal Disease

    PubMed Central

    Luksha, Leanid; Stenvinkel, Peter; Hammarqvist, Folke; Carrero, Juan Jesús; Davidge, Sandra T.; Kublickiene, Karolina

    2012-01-01

    The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications. PMID:22563439

  1. Cytogenetic effects of contrast material in patients undergoing excretory urography

    SciTech Connect

    Cochran, S.T.; Khodadoust, A.; Norman, A.

    1980-07-01

    Acentric chromosome fragments produced in cells by irradiation or other agents give rise to micronuclei in daughter cells. The micronuclei can be counted readily in large numbers of cells which provides a sensitive measure of chromosome aberrations. Previous studies have shown that the presence of contrast material enhances the radiation-induced yield of micronuclei in vitro. Micronuclei were scored in peripheral blood lymphocytes obtained from 26 patients before and after excretory urography (ExU). The results show a consistent and significant increase in the counts after ExU amounting to about one third of the counts blood samples before the examination. We conclude that the contrast medium contributed significantly to the increase in micronuclei.

  2. Excretory/secretory products from the gastrointestinal nematode Trichuris muris.

    PubMed

    Tritten, Lucienne; Tam, Mifong; Vargas, Mireille; Jardim, Armando; Stevenson, Mary M; Keiser, Jennifer; Geary, Timothy G

    2017-07-01

    To better control gastrointestinal nematode infections in humans and animals, it is important to understand the strategies used by these parasites to modulate the host immune system. In this regard, molecules released by parasites have been attributed crucially important roles in host-parasite negotiations. We characterized the excretory/secretory (E/S) microRNA (miRNA) and protein profiles from the mouse gastrointestinal nematode parasite Trichuris muris. Released miRNAs were subjected to miRNA sequencing and E/S proteins were analysed by mass spectrometry. Fourteen miRNAs were identified in T. muris exosome-like vesicles, as well as 73 proteins of nematode origin, 11 of which were unique to this study. Comparison with published nematode protein secretomes revealed high conservation at the functional level. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  4. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft

  5. Resveratrol promotes regression of renal carcinoma cells via a renin-angiotensin system suppression-dependent mechanism

    PubMed Central

    Li, Jianchang; Qiu, Mingning; Chen, Lieqian; Liu, Lei; Tan, Guobin; Liu, Jianjun

    2017-01-01

    The aim of the present study was to investigate the effect of resveratrol on renal carcinoma cells and explore possible renin-angiotensin system-associated mechanisms. Subsequent to resveratrol treatment, the cell viability, apoptosis rate, cytotoxicity levels, caspase 3/7 activity and the levels of angiotensin II (AngII), AngII type 1 receptor (AT1R), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) were evaluated in renal carcinoma cells. The effects of AngII, AT1R, VEGF and COX-2 on resveratrol-induced cell growth inhibition and apoptosis were also examined. The results indicated that resveratrol treatment may suppress growth, induce apoptosis, and decrease AngII, AT1R, VEGF and COX-2 levels in renal carcinoma ACHN and A498 cells. In addition, resveratrol-induced cell growth suppression and apoptosis were reversed when co-culturing with AT1R or VEGF. Thus, resveratrol may suppress renal carcinoma cell proliferation and induce apoptosis via an AT1R/VEGF pathway. PMID:28356937

  6. Mechanisms of Inflammatory Injury of Renal Tubular Cells in a Cellular Model of Pyelonephritis.

    PubMed

    Morosanova, M A; Plotnikov, E Y; Zorova, L D; Pevzner, I B; Popkov, V A; Silachev, D N; Jankauskas, S S; Babenko, V A; Zorov, D B

    2016-11-01

    Previously, we have assembled a cellular model of pyelonephritis which contains a primary culture of renal tubular epithelial cells, mononuclear leukocytes, and bacterial lysate or lipopolysaccharide. After cocultivation of renal cells with leukocytes and bacterial lysate, proinflammatory changes were observed in the renal cells, followed by nitrosative and oxidative stress and cell death. The interaction of bacterial antigens not only with leukocytes, but also with epithelial cells of the renal tubules, was partially mediated by signaling pathways involving Toll-like receptors (TLR2 and TLR4). Activation of these receptors led to increased levels of oxidative stress and synthesis of proinflammatory cytokines (TNF, IL-6, IL-1α) in the renal epithelium, while TLR4 blockade decreased the severity of these processes. Apart from the fact that activation of inflammatory signaling in response to bacterial antigens is observed directly in the renal cells, the presence of leukocytes significantly amplifies the inflammatory response as measured by the level of cytokines generated in the ensemble. In the presence of activated leukocytes, higher expression of TLR2 on the surface of renal cells was observed in response to exposure to bacterial components, which might explain the increased inflammatory response in the presence of leukocytes. The synthesis of IL-1α in the epithelial cells of the renal tubules in this inflammatory model leads to its accumulation in the nuclei, which has been reduced by the TLR4 antagonist polymyxin. TLR2 agonists also led to increased levels of IL-1α. The elevation in the content of IL-1α in nuclei was accompanied by increased acetylation of nuclear proteins, which has been reduced to control values after exposure to protective agents (Trolox, mitochondria-targeted antioxidant SkQR1 or LiCl). The high level of acetylation of histones is probably regulated by proinflammatory cytokines, and to some extent it is a marker of inflammation, which

  7. Obesity and hypertension: mechanisms, cardio-renal consequences, and therapeutic approaches.

    PubMed

    Reisin, Efrain; Jack, Avanelle V

    2009-05-01

    The increasing prevalence of obesity in the industrialized world is causing an alarming epidemic. Almost 70% of American adults are overweight or obese. The link between increasing body weight and hypertension is well established. Obesity hypertension through metabolic, endocrinic, and systemic hemodynamic alteration causes structural vascular and cardiac adaptations that trigger concentric, eccentric left ventricular hypertrophy and electrophysiological changes, which may increase the risk for congestive heart failure and sudden cardiac death as a result of arrhythmias. The increased renal blood flow in conjunction with a decreased renal vascular resistance causes renal hyperperfusion and hyperfiltration. Such changes lead to glomerulomegaly, focal segmental glomerulosclerosis, tubulointerstitial inflammation, and fibrosis that characterize the renal damage in obese hypertensive subjects. We propose that weight reduction, with the addition of other nonpharmacological approaches that included exercise and reduction in alcohol intake, should be the first choice to treat obesity hypertension. Salt restriction may be helpful only in salt-sensitive patients. The benefits of diet in obese patients include improvement of insulin sensitivity, reduction in sympathetic nervous and renin angiotensin system activities, and restoration of leptin sensitivity. As a consequence of these and other metabolic changes, the previously described systemic and renal hemodynamic alterations improved and the cardiovascular and renal morphological changes induced by obesity were lessened. After reviewing the medications available, we believe that owing to the cardiovascular and renal morbidity and mortality that characterized obesity hypertension, the ACEI or ARBs offer the best cardio-renal protection and should be the pharmacologic treatment of choice. If these alone do not control BP adequately, then a low-dose diuretic should be added as a second approach. Although we strongly believe

  8. On the mechanisms underlying poisoning-induced rhabdomyolysis and acute renal failure.

    PubMed

    Talaie, Haleh; Emam-Hadi, Mohammad; Panahandeh, Reyhaneh; Hassanian-Moghaddam, Hosein; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT The clinical syndrome of rhabdomyolysis is caused by injury of skeletal muscles resulting in release of intracellular muscle constituents. Drug poisoning is one of the causes of severe rhabdomyolysis. Severe electrolyte disorders and acute renal failure may occur in rhabdomyolysis, leading to life-threatening situations. Early initiation of renal replacement therapy can help improve outcome. In the present retrospective study, medical records of 181 patients suspected of rhabdomyolysis from Loghman-Hakim Hospital in the period of 2004 to 2005 were reviewed. A creatinine phosphokinase (CPK) value of greater than five times normal (>/=975 IU/L) was the basis for confirmation of a rhabdomyolysis diagnosis. An increased serum creatinine level of more than 30% was the basis for acute renal failure diagnosis. Out of 156 patients, 100 were male with an age range of 13 to 78 years. One hundred and two (92%) patients had CPK >975 U/L, and 36 patients (28.6%) had a 30% or more increase in their creatinine level during their admission days. Mean fluid intake was the same in patients with renal failure and those without renal failure. In 8.3% of the cases, multiple drug poisoning was observed. The most common compound overdose associated with rhabdomyolysis was opium. It is concluded that fluid therapy alone is not adequate in the management of acute renal failure in rhabdomyolysis. Therefore, other etiological factors are involved that remain to be elucidated by further studies.

  9. Feasibility of low-tube-voltage excretory phase images during CT urography: assessment using a dual-energy CT scanner.

    PubMed

    Shinagare, Atul B; Sahni, V Anik; Sadow, Cheryl A; Erturk, Sukru M; Silverman, Stuart G

    2011-11-01

    The purpose of this study is to assess the feasibility of low-tube-voltage images during excretory phase CT urography. In this retrospective study, we examined 70 consecutive CT urograms (35 men and 35 women; mean age, 58.5 years) performed on a dual-energy CT scanner and compared excretory phase images obtained at 80 kVp and 340 mAs with blended images (0.3 × 140 kVp and 80 mAs; and 0.7 × 80 kVp and 340 mAs). Quantitative measurements of urinary system opacification (Hounsfield units), image noise (Hounsfield units), and effective dose (millisieverts) were compared using Student paired t test. Image noise was correlated with patient thickness. Two independent blinded readers qualitatively assessed opacification, image quality (both compared using Wilcoxon test), overall acceptability (compared using McNemar test), and detectability of urinary and extraurinary findings. The 80-kVp images yielded significantly higher opacification of renal pelvis (p < 0.0001), ureter (p < 0.0001), bladder (p < 0.0001), and aorta (p < 0.0001); higher image noise (p < 0.0001); and lower radiation dose (5.2 vs 11.9 mSv). Image noise increased along with increasing patient thickness (r = 0.86 for 80-kVp images). Qualitative opacification scores were better only in the bladder on 80-kVp images (p = 0.002). Although 80-kVp image quality was lower (p < 0.0001), the overall acceptability was similar. Of 42 urinary findings, 40 were detected on 80-kVp images (< 2-mm calyceal calculus and tiny foci of collecting system gas were missed in one patient each, both large patients). Of 137 extraurinary findings, 130 were detected on 80-kVp images (no findings of high clinical significance were missed). Low tube voltage (80 kVp) during excretory phase CT urography is feasible, with improved urinary system opacification, acceptable image quality, and lower radiation dose.

  10. Radionuclide determination of individual kidney function in the treatment of chronic renal obstruction

    SciTech Connect

    Belis, J.A.; Belis, T.E.; Lai, J.C.; Goodwin, C.A.; Gabriele, O.F.

    1982-04-01

    Differential radionuclide renal scans can be useful in the management of patients with chronic partial obstruction of 1 kidney. The /sup 99m/Tc diethylenetriaminepentaacetic acid perfusion scan can be used to assess glomerular blood flow. The /sup 131/I orthoiodohippurate renal scan provides qualitative functional information from scintigrams and quantitative evaluation of effective renal plasma flow to each kidney, as well as a total excretory index. Sequential /sup 99m/Tc diethylenetriaminepentaacetic acid and /sup 131/I orthoiodohippurate renal scans were used to assess individual renal function before and after surgical correction of unilateral chronic renal obstruction in 31 patients. The preservation of cortical perfusion on /supb 99m/Tc diethylenetriaminepentaacetic acid scans indicated that potential existed for partial recovery of renal function. Effective renal plasma flow and excretory index determined in conjunction with the /sup 131/I orthoiodohippurate scans provided a quantitative assessment of preoperative renal function, an evaluation of the effect of surgery and a sensitive method for long-term evaluation of differential renal function. Correction of ureteropelvic junction obstruction usually resulted in improvement in unilateral renal function. Neither nephrolithotomy nor extended pyelolithotomy diminished renal function in the kidney subjected to an operation and often improved it. Patients with long-standing distal ureteral obstruction had the least improvement in renal function postoperatively.

  11. Radionuclide determination of individual kidney function in the treatment of chronic renal obstruction.

    PubMed

    Belis, J A; Belis, T E; Lai, J C; Goodwin, C A; Gabriele, O F

    1982-04-01

    Differential radionuclide renal scans can be useful in the management of patients with chronic partial obstruction of 1 kidney. The 99mtechnetium diethylenetriaminepentaacetic acid perfusion scan can be used to assess glomerular blood flow. The 131iodine orthoiodohippurate renal scan provides qualitative functional information from scintigrams and quantitative evaluation of effective renal plasma flow to each kidney, as well as a total excretory index. Sequential 99mtechnetium diethylenetriaminepentaacetic acid and 131iodine orthoiodohippurate renal scans were used to assess individual renal function before and after surgical correction of unilateral chronic renal obstruction in 31 patients. The preservation of cortical perfusion on 99mtechnetium diethylenetriaminepentaacetic acid scans indicated that potential existed for partial recovery of renal function. Effective renal plasma flow and excretory index determined in conjunction with the 131iodine orthoiodohippurate scans provided a quantitative assessment of preoperative renal function, an evaluation of the effect of surgery and a sensitive method for long-term evaluation of differential renal function. Correction of ureteropelvic junction obstruction usually resulted in improvement in unilateral renal function. Neither nephrolithotomy nor extended pyelolithotomy diminished renal function in the kidney subjected to an operation and often improved it. Patients with long-standing distal ureteral obstruction had the least improvement in renal function postoperatively.

  12. Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

    PubMed Central

    Yang, Hyun-Jong; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2002-01-01

    The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine proteases were distributed at the linings of excretory bladder and excretory concretions of the metacercariae. It was suggested that the excretory epithelium of P. westermani undertake the secretory function of metacercarial cysteine proteases, in addition to its role as a route for eliminating waste products. PMID:12073734

  13. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia.

    PubMed

    Mandel, L J; Takano, T; Soltoff, S P; Murdaugh, S

    1988-04-01

    When a suspension of rabbit proximal tubules is subjected to anoxia, ATP falls by 80-90% during 40 min of anoxia, and upon reoxygenation (reox) the cells only recover 25-50% of their initial ATP. Addition of Mg-ATP (magnesium chloride-treated ATP), Mg-ADP, or Mg-AMP (five aliquots of 200 nmol/ml added 10 min apart) during anoxia causes complete recovery of ATP levels, and respiratory and transport function after 40 min of reox. Similar additions of adenosine (ADO), or inosine (INO), or Mg-ATP only during reox are less effective. Lactate dehydrogenase (LDH) release after 40 min of anoxia is 30-40% under control conditions, only 10-15% when adenine nucleotides or ADO are added during anoxia, and 20% when INO is added, suggesting that these additions may stabilize the plasma membrane during anoxia and help preserve cellular integrity. During reox, recovery may depend on the entry of ATP precursors and, therefore, we explored the mechanism whereby exogenous ATP increases the intracellular ATP content. Additions of Mg-ATP, Mg-ADP, or Mg-AMP to continuously oxygenated tubules increase cellular ATP content three- to fourfold in 1 h. The added ATP and ADP are rapidly degraded to AMP, and more slowly to ADO, INO, and hypoxanthine. Furthermore, the ATP-induced increase in cellular ATP is abolished by the exogenous addition of adenosine deaminase, which converts extracellular ADO to INO. These results suggest that the increase in cellular ATP requires extracellular ADO. The ADO obtained from the breakdown of AMP may be preferentially transported into the renal cells to be resynthesized into cellular AMP and ATP.

  14. Mechanisms compensating Na and water retention induced by long-term reduction of renal perfusion pressure.

    PubMed

    Seeliger, E; Boemke, W; Corea, M; Encke, T; Reinhardt, H W

    1997-08-01

    Endogenous downregulation of plasma aldosterone (Aldo) concentration, despite increased plasma renin activity (PRA), has been suggested to compensate Na and water retention, which is induced by long-term reduction of renal perfusion pressure (rRPP). To determine whether fixed plasma Aldo concentration would prevent equilibration of 24-h Na and water balances during rRPP, chronically instrumented, freely moving beagle dogs were kept under standardized conditions (daily intake 5.5 mmol Na/kg body wt) and studied for 4 consecutive days under the following conditions: control without rRPP (protocol 1) and rRPP + infusion of Aldo (rRPP + Aldo, protocol 2). Because Aldo administration reduces PRA and, thereby, angiotensin II (ANG II) levels ANG II was additionally infused in protocol 3 (rRPP + ANG II + Aldo). During rRPP + Aldo, 24-h Na balances were never equilibrated. Daily Na retention was approximately 3.5 mmol/kg body wt on day 1 and decreased to approximately 1.6 mmol/kg body wt on day 4; 24-h water balances changed in a similar manner. PRA decreased stepwise. On all rRPP + ANG II + Aldo days, Na and water retentions were more extensive than during rRPP + Aldo. Daily Na retention decreased from approximately 4.4 mmol/kg body wt on day 1 to approximately 3.0 mmol/kg body wt on day 4. Plasma atrial natriuretic peptide increased during both protocols. It is concluded that 1) endogenous downregulation of components of the renin-angiotensin-aldosterone system is a pivotal compensatory mechanism to reduce Na and water retention and 2) natriuretic and diuretic factors seem to be of minor potency, because not even the sum of all could counterbalances the Na- and water-retaining effects of Aldo and ANG II.

  15. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia.

    PubMed Central

    Mandel, L J; Takano, T; Soltoff, S P; Murdaugh, S

    1988-01-01

    When a suspension of rabbit proximal tubules is subjected to anoxia, ATP falls by 80-90% during 40 min of anoxia, and upon reoxygenation (reox) the cells only recover 25-50% of their initial ATP. Addition of Mg-ATP (magnesium chloride-treated ATP), Mg-ADP, or Mg-AMP (five aliquots of 200 nmol/ml added 10 min apart) during anoxia causes complete recovery of ATP levels, and respiratory and transport function after 40 min of reox. Similar additions of adenosine (ADO), or inosine (INO), or Mg-ATP only during reox are less effective. Lactate dehydrogenase (LDH) release after 40 min of anoxia is 30-40% under control conditions, only 10-15% when adenine nucleotides or ADO are added during anoxia, and 20% when INO is added, suggesting that these additions may stabilize the plasma membrane during anoxia and help preserve cellular integrity. During reox, recovery may depend on the entry of ATP precursors and, therefore, we explored the mechanism whereby exogenous ATP increases the intracellular ATP content. Additions of Mg-ATP, Mg-ADP, or Mg-AMP to continuously oxygenated tubules increase cellular ATP content three- to fourfold in 1 h. The added ATP and ADP are rapidly degraded to AMP, and more slowly to ADO, INO, and hypoxanthine. Furthermore, the ATP-induced increase in cellular ATP is abolished by the exogenous addition of adenosine deaminase, which converts extracellular ADO to INO. These results suggest that the increase in cellular ATP requires extracellular ADO. The ADO obtained from the breakdown of AMP may be preferentially transported into the renal cells to be resynthesized into cellular AMP and ATP. PMID:3350972

  16. RENAL RETENTION OF LIPID MICROBUBBLES: A POTENTIAL MECHANISM FOR FLANK DISCOMFORT DURING ULTRASOUND CONTRAST ADMINISTRATION

    PubMed Central

    Liu, Ya Ni; Khangura, Jaspreet; Xie, Aris; Belcik, J. Todd; Qi, Yue; Davidson, Brian P.; Zhao, Yan; Kim, Sajeevani; Inaba, Yoichi; Lindner, Jonathan R.

    2013-01-01

    Background The etiology for flank pain sometimes experienced during administration of ultrasound contrast agents is unknown. We investigated whether microbubble ultrasound contrast agents are retained within the renal microcirculation which could lead to either flow disturbance or local release of vasoactive and pain mediators downstream from complement activation. Methods Retention of lipid-shelled microbubbles in the renal microcirculation of mice was assessed by confocal fluorescent microscopy and contrast-enhanced ultrasound (CEU) imaging with dose-escalating intravenous injection. Studies were performed with size-segregated microbubbles to investigate physical entrapment, after glycocalyx degradation, and in wild-type and C3-deficient mice to investigate complement-mediated retention. Urinary bradykinin was measured before and after microbubbles. Renal CEU in human subjects (n=13) was performed 7–10 min after completion of lipid microbubble administration. Results In both mice and humans, microbubble retention was detected in the renal cortex by persistent CEU signal enhancement. Microbubble retention in mice was linearly related to dose and occurred almost exclusively in cortical glomerular microvessels. Microbubble retention did not affect microsphere-derived renal blood flow. Microbubble retention was not influenced by glycocalyx degradation nor by microbubble size, thereby excluding lodging, but was reduced by 90% (p<0.01) in C3-deficient mice. Urinary bradykinin increased by 65% five minutes after microbubble injection. Conclusion Lipid-shelled microbubbles are retained in the renal cortex due to complement-mediated interactions with glomerular microvascular endothelium. Microbubble retention does not adversely affect renal perfusion but does generate complement-related intermediates that are known to mediate nociception and could be responsible for flank pain. PMID:24035699

  17. Renal retention of lipid microbubbles: a potential mechanism for flank discomfort during ultrasound contrast administration.

    PubMed

    Liu, Ya Ni; Khangura, Jaspreet; Xie, Aris; Belcik, J Todd; Qi, Yue; Davidson, Brian P; Zhao, Yan; Kim, Sajeevani; Inaba, Yoichi; Lindner, Jonathan R

    2013-12-01

    The etiology of flank pain sometimes experienced during the administration of ultrasound contrast agents is unknown. The aim of this study was to investigate whether microbubble ultrasound contrast agents are retained within the renal microcirculation, which could lead to either flow disturbance or local release of vasoactive and pain mediators downstream from complement activation. Retention of lipid-shelled microbubbles in the renal microcirculation of mice was assessed by confocal fluorescent microscopy and contrast-enhanced ultrasound imaging with dose-escalating intravenous injection. Studies were performed with size-segregated microbubbles to investigate physical entrapment, after glycocalyx degradation and in wild-type and C3-deficient mice to investigate complement-mediated retention. Urinary bradykinin was measured before and after microbubble administrations. Renal contrast-enhanced ultrasound in human subjects (n = 13) was performed 7 to 10 min after the completion of lipid microbubble administration. In both mice and humans, microbubble retention was detected in the renal cortex by persistent contrast-enhanced ultrasound signal enhancement. Microbubble retention in mice was linearly related to dose and occurred almost exclusively in cortical glomerular microvessels. Microbubble retention did not affect microsphere-derived renal blood flow. Microbubble retention was not influenced by glycocalyx degradation or by microbubble size, thereby excluding lodging, but was reduced by 90% (P < .01) in C3-deficient mice. Urinary bradykinin increased by 65% 5 min after microbubble injection. Lipid-shelled microbubbles are retained in the renal cortex because of complement-mediated interactions with glomerular microvascular endothelium. Microbubble retention does not adversely affect renal perfusion but does generate complement-related intermediates that are known to mediate nociception and could be responsible for flank pain. Copyright © 2013 American Society of

  18. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  19. Immunomodulatory potential of particular Trichinella spiralis muscle larvae excretory-secretory components.

    PubMed

    Cvetkovic, J; Sofronic-Milosavljevic, Lj; Ilic, N; Gnjatovic, M; Nagano, I; Gruden-Movsesijan, A

    2016-12-01

    Excretory-secretory antigens of Trichinella spiralis muscle larvae can induce the semi-matured status of rat dendritic cells. This may at least partly be the consequence of transient activation of extracellular signal-regulated kinases 1/2 (ERK1/2). Here we investigated the potential of several components of excretory-secretory antigens (native fraction containing 45, 49 and 53kDa proteins and recombinant Tsp53, representing one of the constituents of this fraction) to demonstrate previously observed effects of excretory-secretory antigens on dendritic cells in vitro, characterised by establishment of a particular phenotype (very low MHC II expression, moderate CD86 expression and significant ICAM-1 expression) and functional properties (low production of pro-inflammatory cytokine IL-12p70, and high production of IL-10 and TGF-β). Dendritic cells activated by these components were able to provoke proliferation of naïve T cells and their polarisation towards Th2 and anti-inflammatory responses. The investigated antigens had almost the same capacity to induce IL-4 and IL-10 production from T cells as excretory-secretory antigens, but failed to induce significant TGF-β synthesis. It could be concluded that the investigated excretory-secretory antigens components can largely reproduce the immunomodulatory effects of the complete excretory-secretory antigens and therefore may be considered as molecules important for creation of the anti-inflammatory milieu achieved by the parasite.

  20. Distinct regulatory elements mediate similar expression patterns in the excretory cell of Caenorhabditis elegans.

    PubMed

    Zhao, Zhongying; Fang, Li; Chen, Nansheng; Johnsen, Robert C; Stein, Lincoln; Baillie, David L

    2005-11-18

    Identification of cis-regulatory elements and their binding proteins constitutes an important part of understanding gene function and regulation. It is well accepted that co-expressed genes tend to share transcriptional elements. However, recent findings indicate that co-expression data show poor correlation with co-regulation data even in unicellular yeast. This motivates us to experimentally explore whether it is possible that co-expressed genes are subject to differential regulatory control using the excretory cell of Caenorhabditis elegans as an example. Excretory cell is a functional equivalent of human kidney. Transcriptional regulation of gene expression in the cell is largely unknown. We isolated a 10-bp excretory cell-specific cis-element, Ex-1, from a pgp-12 promoter. The significance of the element has been demonstrated by its capacity of converting an intestine-specific promoter into an excretory cell-specific one. We also isolated a cDNA encoding an Ex-1 binding transcription factor, DCP-66, using a yeast one-hybrid screen. Role of the factor in regulation of pgp-12 expression has been demonstrated both in vitro and in vivo. Search for occurrence of Ex-1 reveals that only a small portion of excretory cell-specific promoters contain Ex-1. Two other distinct cis-elements isolated from two different promoters can also dictate the excretory cell-specific expression but are independent of regulation by DCP-66. The results indicate that distinct regulatory elements are able to mediate the similar expression patterns.

  1. Effects of liposomes with polyisoprenoids, potential drug carriers, on the cardiovascular and excretory system in rats.

    PubMed

    Gawrys, Olga; Polkowska, Marta; Roszkowska-Chojecka, Malwina; Gawarecka, Katarzyna; Chojnacki, Tadeusz; Swiezewska, Ewa; Masnyk, Marek; Chmielewski, Marek; Rafałowska, Janina; Kompanowska-Jezierska, Elżbieta

    2014-04-01

    The unpredictable side effects of a majority currently used drugs are the substantial issue, in which patients and physicians are forced to deal with. Augmenting the therapeutic efficacy of drugs may prove more fruitful than searching for the new ones. Since recent studies show that new cationic derivatives of polyisoprenoid alcohols (APrens) might exhibit augmenting properties, we intend to use them as a component of liposomal drug carriers. In this study we investigate if these compounds do not per se cause untoward effects on the living organism. Male Sprague-Dawley rats received for four weeks daily injections (0.5 ml sc) of liposomes built of dioleoyl phosphatidylethanolamine (DOPE), liposomes built of DOPE and APren-7 (ratio 10:1) or water solvent. Weekly, rats were observed in metabolic cages (24h); blood and urine were sampled for analysis; body weight (BW) and systolic blood pressure (SBP) were determined. After chronic experiment, kidneys and heart were harvested for histological and morphometric analysis. The 4-week BW increments were in the range of 97 ± 4 to 102 ± 4%, intergroup differences were not significant. Microalbuminuria was the lowest in the group receiving liposomes with APren-7 (0.22 ± 0.03 mg/day). Water and food intake, plasma and urine parameters were similar in all groups. Newly designed liposomes containing APren-7 did not affect functions of the excretory and cardiovascular systems, and renal morphology; therefore we find them suitable as a component of liposomal drug carriers. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland.

    PubMed

    Buranajitpirom, Decha; Asuvapongpatana, Somluk; Weerachatyanukul, Wattana; Wongprasert, Kanokpan; Namwong, Wisa; Poltana, Pisit; Withyachumnarnkul, Boonsirm

    2010-06-01

    Black tiger shrimps (Penaeus monodon) are able to survive and can be reared under various salinities, possibly by the cellular adaptation of their excretory system, particularly the antennal gland, which is known to regulate body fluid in crustaceans. We have investigated the morphological and biochemical alterations of the antennal glands in shrimp reared in 7, 15, or 30 ppt seawater. Drastic changes occur in animals reared under 7 ppt conditions. Ultrastructural studies of the antennal gland in shrimps reared in 7 ppt seawater have revealed that podocytic cells in the coelomosacs ramify with more cytoplasmic processes forming the filtration slits, and that the tubular labyrinth cells possess more mitochondria in their basal striation and a wider tubular lumen than those found in the other groups. Many apical cytoplasmic blebs from labyrinth cells have also been seen in the lumen of the labyrinths under 7 ppt conditions, a feature that is not as prominent under the other conditions. The expression and activity of the Na(+)/K(+)-ATPase in the antennal gland are also correlated with the surrounding environment: the lower the salinity, the higher the expression and activity of the enzyme. Immunohistochemistry results have demonstrated the highest staining intensity in the labyrinth cells of shrimps reared under 7 ppt conditions. Our findings thus suggest that one of the adaptation mechanisms of this shrimp to the surrounding salinity is the regulation of Na(+)/K(+)-ATPase expression in the antennal gland, in conjunction with subcellular changes in its excretory cells.

  3. Trichinella spiralis Excretory-Secretory Products Protect against Polymicrobial Sepsis by Suppressing MyD88 via Mannose Receptor

    PubMed Central

    Du, Linlin; Liu, Lihua; Yu, Yang; Shan, Hui; Li, Leiqing

    2014-01-01

    Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis. PMID:25054155

  4. Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor.

    PubMed

    Du, Linlin; Liu, Lihua; Yu, Yang; Shan, Hui; Li, Leiqing

    2014-01-01

    Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis.

  5. Accuracy of radionuclide imaging in distinguishing renal masses from normal variants

    SciTech Connect

    Older, R.A.; Korobkin, M.; Workman, J.; Cleeve, D.M.; Cleeve, L.K.; Sullivan, D.; Webster, G.D.

    1980-08-01

    To determine the accuracy of scintigraphy in distinguishing true renal masses from normal variants, 40 patients with excretory urographic findings indicating a possible, but not definite, mass lesion were studied. Scintigraphy correctly identified 17 true masses and 17 normal variants. Four false positive and two false negative results were obtained.

  6. The diagnostic approach to ectopic ureterocele and the renal duplication complex

    SciTech Connect

    Geringer, A.M.; Berdon, W.E.; Seldin, D.W.; Hensle, T.W.

    1983-03-01

    The child with ectopic ureterocele frequently presents a diagnostic challenge. The use of standard excretory urography combined with newer modalities, such as ultrasonography and radionuclide renal scanning, provides an orderly diagnostic approach to ectopic ureterocele. This integrated approach should ensure the highest yield in a diagnostic sense and aid in assessing upper tract function, thus, helping with the selection of the proper surgical management.

  7. Renal Response to Volume Expansion: Learning the Experimental Approach in the Context of Integrative Physiology.

    ERIC Educational Resources Information Center

    Kline, Robert L.; Dukacz, Stephen A. W.; Stavraky, Thomas

    2000-01-01

    Describes a laboratory experience for upper-level science students that provides a hands-on approach to understanding the basics of experimental physiology. Students design an experiment to determine the relative importance of dilution of plasma proteins in the overall renal excretory response following volume expansion with intravenous saline.…

  8. The Renal Functional Defect of Postobstructive Nephropathy

    PubMed Central

    Jaenike, John R.

    1972-01-01

    This study was designed to examine the pathogenesis of the excretory defect produced by bilateral ureteral obstruction in the rat. After release of obstruction of 24 hr duration glomerular filtration rate was reduced to 20% of normal. Free flow proximal tubular pressure was normal, excluding residual obstruction as a cause of depressed filtration, and indicating that an intrarenal hemodynamic abnormality was primarily responsible for the excretory defect. Total renal blood flow and cortical distribution of flow were normal. Clearance and micropuncture studies indicated the presence of marked heterogeneity of nephron function with residual excretory function residing primarily in vasodilated nephrons in which decreased postglomerular arteriolar resistance effected a reduction in glomerular filtration pressure. Heterogeneity of nephron function was evidenced by a wide scatter of values for single nephron filtration rate and from direct intratubular injection of dye which revealed that at least 28% of surface nephrons were either nonfiltering or had filtration rates too low to measure. The observed decrease in Hippuran extraction and increased ratio of Hippuran to inulin clearance ratio is characteristic of the vasodilated kidney. Further evidence of the vasodilated nature of residual functioning nephrons was demonstrated by the failure of intrarenal papaverine infusion to increase filtration rate in this lesion. The hemodynamic defect produced by bilateral obstruction is contrasted with that seen after release of unilateral ureteral ligation in which depression of filtration rate appears to result primarily from preglomerular vasoconstriction. This difference raises the possibility that a vasodilating substance accumulates during total suppression of renal excretory function. Diuresis and natriuresis were constant features of the postobstructive lesion. The present data support previously published studies which localize the defect in sodium transport to the distal

  9. Microscopic anatomy of pycnogonida: II. Digestive system. III. Excretory system.

    PubMed

    Fahrenbach, W H; Arango, Claudia P

    2007-11-01

    The digestive system of several species of sea spiders (Pycnogonida, Arthropoda) was studied by electron microscopy. It is composed of the foregut inside a long proboscis, a midgut and a hindgut. Lips near the three jaws at the tip of the proboscis receive several hundred ductules originating from salivary glands. These previously undetected glands open on the lips, a fluted, projecting ridge at the external hinge line of the jaws, i.e., to the outside of the mouth. This disposition suggests affinities to the chelicerate line. The trigonal esophagus within the proboscis contains a complex, setose filter device, operated by dedicated muscles, that serves to reduce ingested food to subcellular dimensions. The midgut has diverticula into the bases of all legs. Its cells differentiate from the basal layer and contain a bewildering array of secretion droplets, lysosomes and phagosomes. In the absence of a hepatopancreas, the midgut serves both digestive and absorptive functions. The cuticle-lined hindgut lies in the highly reduced, peg-like abdomen. Traditionally, pycnogonids have been claimed to have no excretory organ at all. Such a structure, however, has been located in at least one ammotheid, Nymphopsis spinosissima, in which a simple, but standard, excretory gland has been found in the scape of the chelifore. It consists of an end sac, a straight proximal tubule, a short distal tubule, and a raised nephropore. The end sac is a thin-walled and polygonal chamber, about 150 microm in cross section, suspended in the hemocoel of the appendage, its edges radially tethered to the cuticle at more than half a dozen locations. This wall consists of a filtration basement membrane, 1-4 microm thick, facing the hemocoel, and internally of a continuous carpet of podocytes and their pedicels. The podocytes, measuring maximally 10 by 15 microm, have complex contents, of which a labyrinthine system of connected intracellular channels stands out. These coated cisternae open into a

  10. Proteomic characterization of the internalization of Opisthorchis viverrini excretory/secretory products in human cells.

    PubMed

    Chaiyadet, Sujittra; Smout, Michael; Laha, Thewarach; Sripa, Banchob; Loukas, Alex; Sotillo, Javier

    2016-02-09

    The association between liver fluke infection caused by Opisthorchis viverrini and cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium) has been well established. Multiple mechanisms play a role in the development of CCA, but the excretory/secretory products released by O. viverrini (OvES) represent the major interface between the parasite and its host, and their uptake by biliary epithelial cells has been suggested to be responsible for proliferation of cholangiocytes, the cells that line the biliary epithelium. Despite recent progress in the study of the molecular basis of O. viverrini-host interactions, little is known about the effects that OvES induces upon internalization by host cells. In the present study we incubated non-cancerous human cholangiocytes (H69) and human colon cancer (CaCo-2) cells with OvES and performed a time-course quantitative proteomic analysis on the cells to determine the early changes induced by the parasite. Different KEGG pathways were altered in H69 cells compared to Caco-2 cells: glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum. In addition, the Reactome pathway analysis showed a predominance of proteins involved in cellular pathways related to apoptosis and apoptotic execution phase in H69 cells after incubation with OvES. The present study provides the first proteomic analysis to address the molecular mechanisms by which OvES products interact with host cells, and Sheds light on the cellular processes involved in O. viverrini-induced CCA.

  11. Metformin Prevents Renal Stone Formation through an Antioxidant Mechanism In Vitro and In Vivo

    PubMed Central

    Ding, Hao; Qin, Zhenbang; Zhang, Changwen; Qi, Shiyong; Yang, Tong; He, Zhen; Yang, Kuo; Liu, Chunyu

    2016-01-01

    Oxidative stress is a causal factor and key promoter of urolithiasis associated with renal tubular epithelium cell injury. The present study was designed to investigate the preventive effects of metformin on renal tubular cell injury induced by oxalate and stone formation in a hyperoxaluric rat model. MTT assays were carried out to determine the protection of metformin from oxalate-induced cytotoxicity. The intracellular superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels were measured in vitro. Male Sprague-Dawley rats were divided into control group, ethylene glycol (EG) treated group, and EG + metformin treated group. Oxidative stress and crystal formations were evaluated in renal tissues after 8-week treatment. Metformin significantly inhibited the decrease of the viability in MDCK cells and HK-2 cells induced by oxalate. Besides, metformin markedly prevented the increased concentration of MDA and the decreased tendency of SOD in oxalate-induced MDCK cells and HK-2 cells. In vivo, the increased MDA levels and the reduction of SOD activity were detected in the EG treated group compared with controls, while these parameters reversed in the EG + metformin treated group. Kidney crystal formation in the EG + metformin treated group was decreased significantly compared with the EG treated group. Metformin suppressed urinary crystal deposit formation through renal tubular cell protection and antioxidative effects. PMID:27781075

  12. [Radionuclide evaluation of renal function in essential hypertensive patients with chronic kidney disease].

    PubMed

    Musina, N S; Semenova, R I

    2012-01-01

    To carry out radionuclide evaluation of renal function in patients with arterial hypertension (AH) and chronic kidney disease (CKD). Thirty-one AH patients with CKD were examined using dynamic nephroscintigraphy. A control group consisted of 8 CKD patients without AH. The scintigraphic findings reflected statistically significant differences in renal secretory and excretory functions depending on the level of glomerular filtration rate (GFR) decrease in AH patients with CKD. If GFR was 30-59 ml/min, there was a deceleration in the secretory phase in the histogram; but when it was lower than 30 ml/min, the secretory function tended to accelerate, which appeared as a 3-fold reduction in achieving the peak radio tracer concentration (p < 0.001). Dynamic nephroscintigraphy can detect early renal secretory and excretory dysfunctions and it is of prognostic value in assessing renal dysfunction, which necessitates early drug correction of revealed disorders.

  13. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells

    PubMed Central

    Wilson, Sean M; Mason, Helen S; Smith, Gregory D; Nicholson, Neil; Johnston, Louise; Janiak, Robert; Hume, Joseph R

    2002-01-01

    Experiments were performed to determine whether capacitative Ca2+ entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca2+] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca2+] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP3)- and ryanodine (RY)-sensitive SR Ca2+ stores. In contrast, the cytosolic [Ca2+] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP3 or RY pathways. The increase in the cytosolic [Ca2+] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca2+-free bathing solution. Rapid quenching of the fura-2 signal by 100 μM Mn2+ following SR store depletion indicated that extracellular Ca2+ entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP3- and RY-sensitive SR Ca2+ stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP3- or RY-sensitive SR stores. Store depletion Ca2+ entry in both pulmonary and renal ASMCs was strongly inhibited by Ni2+ (0.1–10 mM), slightly inhibited by Cd2+ (200–500 μM), but was not significantly affected by the voltage-gated Ca2+ channel (VGCC) blocker nisoldipine (10 μM). The non-selective cation channel blocker Gd3+ (100 μM) inhibited a portion of the Ca2+ entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca2+ store depletion activates CCE in parallel with the organization of intracellular Ca2+ stores in canine pulmonary and renal ASMCs. PMID:12231648

  14. Mechanism of vasodilation induced by alpha-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries.

    PubMed Central

    Fujii, K; Ishimatsu, T; Kuriyama, H

    1986-01-01

    Effects of alpha-human atrial natriuretic polypeptide (alpha-HANP) on electrical and mechanical properties of smooth muscle cells of the guinea-pig and rabbit renal arteries and of the guinea-pig mesenteric artery were investigated. alpha-HANP (up to 10 nM) modified neither the membrane potential nor resistance of smooth muscle cells of the guinea-pig and rabbit renal arteries. In the guinea-pig mesenteric and renal arteries, alpha-HANP (up to 10 nM) had no effect on the amplitude and facilitation (mesenteric artery) or depression (renal artery) of excitatory junction potentials nor on action potentials. In the guinea-pig renal artery, alpha-HANP (up to 10 nM) had no effect on the depolarization induced by noradrenaline (NA) (up to 10 microM) but markedly inhibited NA-induced contraction. alpha-HANP (10 nM) slightly inhibited the K-induced contraction. In the rabbit renal artery, alpha-HANP (10 nM) inhibited the NA-induced contraction and to a lesser extent the K-induced contraction. In the rabbit renal artery, the effects of alpha-HANP on the release of Ca from the cellular storage by two applications of NA, and its re-storage, were investigated in Ca-free solution containing 2 mM-EGTA. When 5 nM-alpha-HANP was applied before and during the first application of 0.5 microM-NA, the contraction was markedly inhibited but the contraction to a second application of 10 microM-NA was potentiated. If the first dose of NA was 10 microM the effect was very small. Under the same experimental procedures, nitroglycerine (10 microM) showed almost the same effects as alpha-HANP on the NA-induced contractions. When both the first (3 mM) and second (10 mM) contractions were evoked by caffeine in Ca-free solution, alpha-HANP (5 nM) and nitroglycerine (10 microM) inhibited both contractions to the same extent. In the rabbit renal artery, applications of alpha-HANP or nitroglycerine increased the amount of guanosine 3',5'-phosphate (cyclic GMP) in a dose-dependent manner. However, a

  15. The effect of an intravenous infusion of hypertonic saline on renal mechanisms and on electrolyte changes in sheep

    PubMed Central

    Potter, B. J.

    1966-01-01

    1. The ability of the sheep to tolerate excess sodium chloride has been investigated by subjecting sheep to an intravenous infusion of a 10% solution of sodium chloride. 2. Inulin and diodrast clearances failed to show any consistent changes in glomerular filtration rate but the effective renal plasma flow was slightly more. Plasma levels of sodium and chloride increased by 20-25% and potassium decreased by 30%. Urinary levels for sodium and chloride showed a corresponding increase and potassium excretion was reduced. 3. The rates of re-absorption of sodium and chloride from the renal tubules were found to be proportional to their rates of filtration at the glomerulus, but this ratio was reduced after the hypertonic saline infusion. No such correlation could be established for potassium. 4. Osmolar clearances indicated that continued re-absorption of osmotically free water from the kidney tubular fluid occurred during and after the hypertonic saline. Excretion of urine, hyperosmotic to plasma, was thus maintained and water conservation supported. 5. Possible renal mechanisms associated with these effects are discussed. PMID:5963734

  16. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins.

    PubMed

    Sperotto, Rita Leal; Kremer, Frederico Schmitt; Aires Berne, Maria Elisabeth; Costa de Avila, Luciana F; da Silva Pinto, Luciano; Monteiro, Karina Mariante; Caumo, Karin Silva; Ferreira, Henrique Bunselmeyer; Berne, Natália; Borsuk, Sibele

    2017-01-01

    Toxocariasis is a neglected disease, and its main etiological agent is the nematode Toxocara canis. Serological diagnosis is performed by an enzyme-linked immunosorbent assay using T. canis excretory and secretory (TES) antigens produced by in vitro cultivation of larvae. Identification of TES proteins can be useful for the development of new diagnostic strategies since few TES components have been described so far. Herein, we report the results obtained by proteomic analysis of TES proteins using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. TES fractions were separated by one-dimensional SDS-PAGE and analyzed by LC-MS/MS. The MS/MS spectra were compared with a database of protein sequences deduced from the genome sequence of T. canis, and a total of 19 proteins were identified. Classification according to the signal peptide prediction using the SignalP server showed that seven of the identified proteins were extracellular, 10 had cytoplasmic or nuclear localization, while the subcellular localization of two proteins was unknown. Analysis of molecular functions by BLAST2GO showed that the majority of the gene ontology (GO) terms associated with the proteins present in the TES sample were associated with binding functions, including but not limited to protein binding (GO:0005515), inorganic ion binding (GO:0043167), and organic cyclic compound binding (GO:0097159). This study provides additional information about the exoproteome of T. canis, which can lead to the development of new strategies for diagnostics or vaccination.

  17. Excretory/secretory proteome of 14-day schistosomula, Schistosoma japonicum.

    PubMed

    Cao, Xiaodan; Fu, Zhiqiang; Zhang, Min; Han, Yanhui; Han, Qian; Lu, Ke; Li, Hao; Zhu, Chuangang; Hong, Yang; Lin, Jiaojiao

    2016-01-01

    Schistosomiasis remains a serious public health problem, with 200 million people infected and 779 million people at risk worldwide. The schistosomulum is the early stage of the complex lifecycle of Schistosoma japonicum in their vertebrate hosts, and is the main target of vaccine-induced protective immunity. Excretory/secretory (ES) proteins play a major role in host-parasite interactions and ES protein compositions of schistosomula of S. japonicum have not been characterized to date. In the present study, the proteome of ES proteins from 14 day schistosomula of S. japonicum was analyzed by liquid chromatography/tandem mass spectrometry and 713 unique proteins were finally identified. Gene ontology and pathway analysis revealed that identified proteins were mainly involved in carbohydrate metabolism, degradation, response to stimulus, oxidation-reduction, biological regulation and binding. Flow cytometry analysis demonstrated that thioredoxin peroxidase identified in this study had the effect on inhibiting MHCII and CD86 expression on LPS-activated macrophages. The present study provides insight into the growth and development of the schistosome in the final host and valuable information for screening vaccine candidates for schistosomiasis.

  18. Indium-111 leukocyte scanning. False-negative study in a renal abscess

    SciTech Connect

    Kumar, R.; Bedi, D.G.; Fawcett, H.D.; Winsett, M.Z.; Fagan, C.J.

    1986-04-01

    A 33-year-old man had clinical features of a right renal abscess. Results of excretory urography and ultrasonography showed a focal complex mass lesion in the right kidney. An In-111 leukocyte scan failed to detect the right renal abscess, which later was aspirated under CT guidance and explored surgically. The role of In-111 leukocyte imaging in the detection of intra-abdominal abscesses, with limitations of the procedure, is discussed.

  19. Determination of renal handling of marbofloxacin in Lohi sheep (Ovis aries) following a single intravenous administration.

    PubMed

    Munawar, Sh H; Iqbal, Z; Manzoor, Z

    2017-01-01

    The objective of present study was to investigate renal clearance, urinary excretion and underlying excretory mechanism of marbofloxacin in Lohi sheep. For this purpose, marbofloxacin was administered intravenously (IV) as single bolus dose (2.5 mg/kg body weight) to eight healthy sheep of Lohi breed. After start of experiment, blood and urine samples were drawn at predetermined time intervals and marbofloxacin concentrations in the samples were measured by reverse phase high performance liquid chromatography (RP-HPLC) using UV/Vis detector. The mean ± SD values of creatinine in plasma and urine were 15.37 ± 0.65 µg/ml and 246.7 ± 48.05 µg/ml, respectively. Glomerular filtration rate was 1.29 ± 0.22 ml/min/kg whereas urinary flow rate was observed to be 0.084 ± 0.016 ml/min/kg. The renal clearance of marbofloxacin in Lohi sheep was 9.45 ± 2.12 ml/min/kg. Cumulative percentage dose excreted was seen to be maximum at 24 h post drug administration. It was concluded that renal handling of marbofloxacin in Lohi sheep involved both glomerular filtration and active tubular secretion.

  20. Renal Function and Hematology in Rats with Congenital Renal Hypoplasia.

    PubMed

    Yasuda, Hidenori; Amakasu, Kohei; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2016-02-01

    Renal hypoplasia due to a congenitally reduced number of nephrons progresses to chronic kidney disease and may cause renal anemia, given that the kidneys are a major source of erythropoietin in adults. Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and develop CKD. This study assessed the renal function and hematologic changes in HPK rats from 70 to 210 d of age. HPK rats demonstrated deterioration of renal excretory function, slightly macrocytic erythropenia at all days examined, age-related increases in splenic hemosiderosis accompanied by a tendency toward increased hemolysis, normal plasma erythropoietin levels associated with increased hepatic and decreased renal erythropoietin production, and maintenance of the response for erythropoietin production to hypoxic conditions, with increased interstitial fibrosis at 140 d of age. These results indicate that increases in splenic hemosiderosis and the membrane fragility of RBC might be associated with erythropenia and that hepatic production of erythropoietin might contribute to maintaining the blood Hgb concentration in HPK rats.

  1. A possible mechanism for the progression of chronic renal disease and congestive heart failure.

    PubMed

    Re, Richard N

    2015-01-01

    Chronic neurologic diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as various forms of chronic renal disease and systolic congestive heart failure, are among the most common progressive degenerative disorders encountered in medicine. Each disease follows a nearly relentless course, albeit at varying rates, driven by progressive cell dysfunction and drop-out. The neurologic diseases are characterized by the progressive spread of disease-causing proteins (prion-like proteins) from cell to cell. Recent evidence indicates that cell autonomous renin angiotensin systems operate in heart and kidney, and it is known that functional intracrine proteins can also spread between cells. This then suggests that certain progressive degenerative cardiovascular disorders such as forms of chronic renal insufficiency and systolic congestive heart failure result from dysfunctional renin angiotensin system intracrine action spreading in kidney or myocardium.

  2. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    PubMed

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection.

  3. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells.

    PubMed

    Falcón, Cristian; Carranza, Franco; Martínez, Fernando F; Knubel, Carolina P; Masih, Diana T; Motrán, Claudia C; Cervi, Laura

    2010-09-15

    Fasciola hepatica is a helminth trematode that migrates through the host tissues until reaching bile ducts where it becomes an adult. During its migration the parasite releases different excretory-secretory products (ESP), which are in contact with the immune system. In this study, we focused on the effect of ESP on the maturation and function of murine bone marrow derived-dendritic cells (DC). We found that the treatment of DC with ESP failed to induce a classical maturation of these cells, since ESP alone did not activate DC to produce any cytokines, although they impaired the ability of DC to be activated by TLR ligands and also their capacity to stimulate an allospecific response. In addition, using an in vitro ovalbumin peptide-restricted priming assay, ESP-treated DC exhibited a capacity to drive Th2 and regulatory T cell (Treg) polarization of CD4(+) cells from DO11.10 transgenic mice. This was characterized by increased IL-4, IL-5, IL-10 and TGF-beta production and the expansion of CD4(+)CD25(+)Foxp3(+) cells. Our results support the hypothesis that ESP from F. hepatica modulate the maturation and function of DC as part of a generalized immunosuppressive mechanism that involves a bias towards a Th2 response and Treg development.

  4. Suppression of dendritic cell maturation by Trichinella spiralis excretory/secretory products.

    PubMed

    Langelaar, M; Aranzamendi, C; Franssen, F; Van Der Giessen, J; Rutten, V; van der Ley, P; Pinelli, E

    2009-10-01

    Evidence from experimental studies indicates that during chronic infections with certain helminth species a regulatory network is induced that can down-modulate not only parasite-induced inflammation but also reduce other immunopathologies such as allergies and autoimmune diseases. The mechanisms however, and the molecules involved in this immunomodulation are unknown. Here, we focus on the effect of Trichinella spiralis excretory/secretory antigens (TspES) on the innate immune response by studying the effect of TspES on DC maturation in vitro. Bone marrow-derived DC from BALB/c mice were incubated with TspES either alone or in combination with LPS derived from two different bacteria. As indicators of DC maturation, the cytokine production (IL-1alpha, IL-6, IL-10, IL-12p70 and TNF-alpha) and the expression of various surface molecules (MHC-II, CD40, CD80 and CD86) were measured. Results indicate that while TspES alone did not change the expression of the different surface molecules or the cytokine production, it completely inhibited DC maturation induced by Escherichia coli LPS (E. coli LPS). In contrast, DC maturation induced by LPS from another bacterium, Neisseria meningitidis, was not affected by TspES. These results were confirmed using TLR4/MD2/CD14 transfected HEK 293 cells. In conclusion, T. spiralis ES antigens lead to suppression of DC maturation but this effect depends on the type of LPS used to activate these cells.

  5. Mechanisms of renal vasodilation after protein feeding: role of the renin-angiotensin system.

    PubMed

    Woods, L L

    1993-03-01

    These studies were designed to determine the importance of the renin-angiotensin system (RAS) in the renal hemodynamic response to acute protein feeding. In chronically instrumented conscious dogs on a normal (80 meq/day) sodium intake, a 10 g/kg meal of raw beef caused glomerular filtration rate (GFR) to increase from 68 +/- 6 to 86 +/- 6 ml/min and effective renal plasma flow (ERPF) to increase from 211 +/- 14 to 263 +/- 15 ml/min. Plasma renin activity (PRA) was 0.44 +/- 0.14 ng ANG I.ml-1 x h-1 and did not change significantly. When the protocol was repeated during infusion of captopril, GFR increased from 67 +/- 11 to 97 +/- 10 ml/min, and ERPF rose from 264 +/- 74 to 392 +/- 82 ml/min after the meat meal. The dogs were then placed on a low-salt diet (approximately 7 meq/day) to physiologically activate the RAS. In sodium-restricted dogs, GFR increased from 71 +/- 7 to 104 +/- 10 ml/min and ERPF increased from 226 +/- 15 to 299 +/- 21 ml/min after the meat meal. PRA was 3.1 +/- 1.0 ng ANG I.ml-1 x h-1 and did not change. Thus neither blockade of the RAS with captopril nor activation of the RAS by salt restriction reduced the renal hemodynamic response to a meat meal. These data indicate that the RAS is relatively unimportant in the renal hemodynamic response to acute protein feeding.

  6. Taenia taeniaeformis: inhibition of rat testosterone production by excretory-secretory product of the cultured metacestode.

    PubMed

    Rikihisa, Y; Lin, Y C; Fukaya, T

    1985-06-01

    In 3- to 5-month-old male Sprague-Dawley rats infected with the hepatic metacestode, Taenia taeniaeformis, the serum testosterone level was significantly lower than in comparable uninfected controls. By transmission electron microscopy, testicular Leydig cells of infected rats had less smooth endoplasmic reticulum than control Leydig cells. Cultured metacestodes isolated from the hepatic cysts secreted or excreted substances into the incubation medium. The effect of the excretory-secretory product on testosterone concentration in the sera and testes of 15-day-old rats was examined. Subcutaneous injection of 50-200 micrograms of excretory-secretory product/0.1 ml saline/rat for 2 days significantly reduced human chorionic gonadotropin-stimulated serum and testicular testosterone concentrations. Furthermore, the effect of the excretory-secretory product on isolated rat Leydig cell testosterone production was examined. Rat Leydig cells produced testosterone in vitro and, in the presence of 50 IU human chorionic gonadotropin/ml incubation medium, they responded with approximately 100% increase in testosterone production. Addition of 2-10 micrograms excretory-secretory product protein/ml of culture medium significantly reduced the testosterone production by rat Leydig cells in vitro. These results indicate that excretory-secretory product of cultured T. taeniaeformis metacestodes has a direct inhibitory effect on Leydig cell testosterone production under stimulation with human chorionic gonadotropin.

  7. Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma.

    PubMed

    Monteiro, Márcia S; Barros, António S; Pinto, Joana; Carvalho, Márcia; Pires-Luís, Ana S; Henrique, Rui; Jerónimo, Carmen; Bastos, Maria de Lourdes; Gil, Ana M; Guedes de Pinho, Paula

    2016-11-18

    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced.

  8. Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma

    PubMed Central

    Monteiro, Márcia S.; Barros, António S.; Pinto, Joana; Carvalho, Márcia; Pires-Luís, Ana S.; Henrique, Rui; Jerónimo, Carmen; Bastos, Maria de Lourdes; Gil, Ana M.; Guedes de Pinho, Paula

    2016-01-01

    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced. PMID:27857216

  9. Excretory/secretory products of Fasciola hepatica but not recombinant phosphoglycerate kinase induce death of human hepatocyte cells.

    PubMed

    Bąska, Piotr; Norbury, Luke J; Wiśniewski, Marcin; Januszkiewicz, Kamil; Wędrychowicz, Halina

    2013-06-01

    The liver fluke Fasciola hepatica infects a wide range of hosts, and has a considerable impact on the agriculture industry, mainly through infections of sheep and cattle. Further, human infection is now considered of public health importance and is hyperendemic in some regions. The fluke infection causes considerable damage to the hosts' liver. However, the mechanisms of liver destruction have not yet been completely elucidated. In the present report we incubated a human liver cell line in the presence of either F. hepatica excretory/secretory material (FhES) or recombinant phosphoglycerate kinase (FhPGK). Dosedependent cytotoxicity in the presence of FhES was observed, indicating that FhES is capable of killing human hepatocytes, supporting a role for FhES in damaging host liver cells during infection; while treatment with a recombinant intracellular protein - FhPGK, had no impact on cell survival.

  10. Mechanism of grape seeds extract protection against paracetamol renal cortical damage in male Albino rats.

    PubMed

    Abdel-Hafez, S M N; Rifaai, R A; Abd Elzaher, W Y

    2017-01-01

    The aim of the study was to assess the possible protective role of grape seeds extract (GSE) in ameliorating the toxic effects of paracetamol overdose on the rat renal cortical tissue. Paracetamol is one of the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Unfortunately, it was reported as the most common cause of toxic ingestion in the world. Grape seeds extract (GSE) is known to have a strong antioxidant and anti-inflammatory properties. The rats were divided into 4 groups; control group, GSE group, paracetamol group and GSE with paracetamol group. Kidney specimens were processed for biochemical, histological and immunohisto-chemical studies. The study showed marked biological changes in the form of significant increase in serum urea and creatinine levels with significant decrease in renal superoxide dismutase with paracetamol group. Furthermore, Proximal (PCT) and distal convoluted tubules showed marked degeneration, dense nuclear staining, cytoplasmic vacuolization, and partial loss of the brush borders. Most tubules were dilated, irregular and were filled with hyaline casts. PCT and DCT showed less PAS reaction and more COX-2 and caspase expression if compared with the control and the GSE groups. Concomitant administration of grape seeds extract with paracetamol revealed a noticeable amelioration of these biochemical and histological changes. Proximal and distal convoluted tubules showed less PAS reaction and more COX2 and caspase expression if compared with the control and the GSE. Concomitant administration of GSE with paracetamol revealed a noticeable amelioration of these biochemical and histological changes. Grape seeds extract provided biochemical and histo-pathological improvement in paracetamol induced renal cortical toxicity. These findings revealed that this improvement was associated with a decrease in oxidative damage and apoptosis (Tab. 1, Fig. 7, Ref. 55).

  11. Efficacy of the excretory urogram in the staging of gynecologic malignancies

    SciTech Connect

    Hillman, B.J.; Clark, R.L.; Babbitt, G.

    1984-11-01

    It is common for patients suspected of having a gynecologic malignancy to be referred for excretory urography as part of their preoperative staging evaluation. This study investigated the efficacy of this practice using prospective and experimental retrospective interpretations of 88 urograms obtained for this clinical indication. The results indicate that excretory urography reliably depicts the ureters in most cases. However, the urogram is quite insensitive in demonstrating the extention of malignancy. The excretory urogram is useful for locating the position of the ureters and demonstrating the presence of obstruction or unsuspected urinary tract abnormalities. Nonetheless, this information also may be obtained by computed tomography, which can more accurately assess the primary mass and indicate the presence of malignant extension.

  12. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology

    PubMed Central

    Xing, Tianying

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC. PMID:27041930

  13. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology.

    PubMed

    Xing, Tianying; He, Huiying

    2016-02-01

    Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC.

  14. Acupuncture and somatic nerve stimulation: mechanism underlying effects on cardiovascular and renal activities.

    PubMed

    Yao, T

    1993-01-01

    Acupuncture and acupuncture-like somatic nerve stimulation exert modulatory effects upon cardiovascular and renal activity under different physiological and pathophysiological conditions. It seems that acupuncture facilitates the physiological reflexes in response to changes in internal or external environment. Thus, acupuncture can lower high blood pressure in hypertensives, elevate low blood pressure in hypotensives, and promote urinary sodium excretion during hyperosmotic challenge, etc. Acupuncture effects are thought to be mediated by activation of the small myelinated fibres coming from muscle receptors. Preliminary studies show that different neurotransmitters and neuropeptides are involved in the effects of acupuncture.

  15. Ketamine Increases Permeability and Alters Epithelial Phenotype of Renal Distal Tubular Cells via a GSK-3β-Dependent Mechanism.

    PubMed

    Shyu, Hsin-Yi; Ko, Chun-Jung; Luo, Yu-Chen; Lin, Hsin-Ying; Wu, Shang-Ru; Lan, Shao-Wei; Cheng, Tai-Shan; Hu, Shih-Hsiung; Lee, Ming-Shyue

    2016-04-01

    Ketamine, a dissociative anesthetic, is misused and abused worldwide as an illegal recreational drug. In addition to its neuropathic toxicity, ketamine abuse has numerous effects, including renal failure; however, the underlying mechanism is poorly understood. The process called epithelial phenotypic changes (EPCs) causes the loss of cell-cell adhesion and cell polarity in renal diseases, as well as the acquisition of migratory and invasive properties. Madin-Darby canine kidney cells, an in vitro cell model, were subjected to experimental manipulation to investigate whether ketamine could promote EPCs. Our data showed that ketamine dramatically decreased transepithelial electrical resistance and increased paracellular permeability and junction disruption, which were coupled to decreased levels of apical junctional proteins (ZO-1, occludin, and E-cadherin). Consistent with the downregulation of epithelial markers, the mesenchymal markers N-cadherin, fibronectin, and vimentin were markedly upregulated following ketamine stimulation. Of the E-cadherin repressor complexes tested, the mRNA levels of Snail, Slug, Twist, and ZEB1 were elevated. Moreover, ketamine significantly enhanced migration and invasion. Ketamine-mediated changes were at least partly caused by the inhibition of GSK-3β activity through Ser-9 phosphorylation by the PI3K/Akt pathway. Inhibiting PI3K/Akt with LY294002 reactivated GSK-3β and suppressed ketamine-enhanced permeability, EPCs, and motility. These findings were recapitulated by the inactivation of GSK-3β using the inhibitor 3F8. Taken together, these results provide evidence that ketamine induces renal distal tubular EPCs through the downregulation of several junction proteins, the upregulation of mesenchymal markers, the activation of Akt, and the inactivation of GSK-3β. © 2015 Wiley Periodicals, Inc.

  16. Different Modulatory Mechanisms of Renal FXYD12 for Na+-K+-ATPase between Two Closely Related Medakas upon Salinity Challenge

    PubMed Central

    Yang, Wen-Kai; Kang, Chao-Kai; Hsu, An-Di; Lin, Chia-Hao; Lee, Tsung-Han

    2016-01-01

    Upon salinity challenge, the Na+-K+-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (brackish water and fresh water). In this study, we investigated the expression and association of renal FXYD12 and NKA α-subunit as well as potential functions of FXYD12 in the two medakas. These findings illustrated and compared the regulatory roles of FXYD12 for NKA in kidneys of the two medakas in response to salinity changes. In this study, at the mRNA and/or protein level, the expression patterns were similar for renal FXYD12 and NKA in the two medakas. However, different patterns of NKA activities and different interaction levels between FXYD12 and NKA were found in the kidneys of these two medakas. The results revealed that different strategies were used in the kidneys of the two medaka species upon salinity challenge. On the other hand, gene knockdown experiments demonstrated that the function of O. dancena FXYD12 allowed maintenance of a high level of NKA activity. The results of the present study indicated that the kidneys of the examined euryhaline medakas originating from brackish water and fresh water exhibited different modulatory mechanisms through which renal FXYD12 enhanced NKA activity to maintain internal homeostasis. Our findings broadened the knowledge of expression and functions of FXYD proteins, the modulators of NKA, in vertebrates. PMID:27194950

  17. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism

    PubMed Central

    Kang, Ki Sung; Ham, Jungyeob; Kim, Young-Joo; Park, Jeong Hill; Cho, Eun-Ju; Yamabe, Noriko

    2013-01-01

    Diabetic nephropathy is one of the serious complications in patients with either type 1 or 2 diabetes mellitus but current treatments remain unsatisfactory. Results of clinical research studies demonstrate that Panax ginseng can help adjust blood pressure and reduce blood sugar and may be advantageous in the treatment of tuberculosis and kidney damage in people with diabetes. The heat-processing method to strengthen the efficacy of P. ginseng has been well-defined based on a long history of ethnopharmacological evidence. The protective effects of P. ginseng on pathological conditions and renal damage associated with diabetic nephropathy in the animal models were markedly improved by heat-processing. The concentrations of less-polar ginsenosides (20(S)-Rg3, 20(R)-Rg3, Rg5, and Rk1) and maltol in P. ginseng were significantly increased in a heat-processing temperature-dependent manner. Based on researches in animal models of diabetes, ginsenoside 20(S)-Rg3 and maltol were evaluated to have therapeutic potential against diabetic renal damage. These effects were achieved through the inhibition of inflammatory pathway activated by oxidative stress and advanced glycation endproducts. These findings indicate that ginsenoside 20(S)-Rg3 and maltol are important bioactive constituents of heat-processed ginseng in the control of pathological conditions associated with diabetic nephropathy. PMID:24233065

  18. [Diagnostic value of HASTE technique and excretory MR urography in urinary system obstructions].

    PubMed

    Erdoğmuş, Beşir; Bozkurt, Mahmut; Bakir, Zeki

    2004-12-01

    To compare the diagnostic value of static-liquid magnetic resonance urography (MRU) in T2-weighted HASTE (half-fourier acquisition single-shot turbo spinecho) sequences and T1-weighted excretory MRU with i.v. diuretic and contrast material injection. The study included 29 patients (15 men, 14 women). Thirty-one urinary obstructions were detected on intravenous urography (IVU) two of which were due to bilateral obstructions. The cases were evaluated by T2 HASTE sequences combined with T1-weighted FLASH 3D sequences after i.v. diuretics and gadolinium DTPA injection. Thirty-one urinary obstructions were detected on IVU. Thirty of which were confirmed by T2-weighted MRU and all were confirmed by excretory MRU. In one nonobstructive case, unilateral grade 1 ureteropelvicaliectasis related to ureteral stone was falsely interpreted by both sequences. There were no statistical differences among IVU, T2-weighted MRU and excretory MRU in detecting the obstruction levels. In 22 cases with ureteral stones, 12 of which were confirmed by T2-weighted MRU and 18 cases were confirmed by excretory MRU. Sensitivity and specificity fo detecting the ureteral stones as a cause of obstruction with T2-weighted MRU were 50%and 89% and with excretory MRU were 77% and 89% respectively. In 9 obstructive cases due to causes other than the stones, 8 of which were detected by T2-weighted MRU and all of which were detected by excretory MRU. Sensitivity and specificity for detecting the causes other than the stones with T2-weighted MRU were 96% and 100% and with excretory MRU were 100% and 100% respectively. MRU is a useful thechnique revealing high-quality images to determine the urinary system obstructions to obtain the causes of obstructions. MRU should be used as an alternative imaging technique in cases which IVU can not be applied. The existence and the causes of obstruction can be detected by HASTE MRU. Excretory MRU can supply additional information in cases with functional kidneys where

  19. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol.

    PubMed

    Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael

    2012-02-03

    Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of

  20. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.

    PubMed

    Pihl, Liselotte; Persson, Patrik; Fasching, Angelica; Hansell, Peter; DiBona, Gerald F; Palm, Fredrik

    2012-07-01

    Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.

  1. A novel U-STAT3-dependent mechanism mediates the deleterious effects of chronic nicotine exposure on renal injury.

    PubMed

    Arany, Istvan; Reed, Dustin K; Grifoni, Samira C; Chandrashekar, Kiran; Booz, George W; Juncos, Luis A

    2012-03-15

    Previous data from our group have demonstrated (Arany I, Grifoni S, Clark JS, Csongradi, Maric C, Juncos LA. Am J Physiol Renal Physiol 301: F125-F133, 2011) that chronic nicotine (NIC) exposure exacerbates acute renal ischemic injury (AKI) in mice that could increase the risk for development and progression of chronic kidney disease (CKD). It has been shown that proximal tubules of the kidney can acquire characteristics that may compromise structural recovery and favor development of inflammation and fibrosis following injury. Chronic NIC exposure can amplify this epithelial process although the mechanism is not identified. Recently, the unphosphorylated form of signal transducer and activator of transcription-3 (U-STAT3) has emerged as a noncanonical mediator of inflammation and fibrosis that may be responsible for the effects of chronic NIC. We found that levels of transforming growth factor β-1 (TGF-β1), α-smooth muscle actin (α-SMA), fibronectin, monocyte chemotactic protein-1 (MCP-1), and expression of U-STAT3 were increased in the ischemic kidneys of NIC-exposed mice. Chronic NIC exposure also increased TGF-β1-dependent F-actin reorganization, vimentin, fibronectin, and α-SMA expression as well as promoter activity of α-SMA and MCP-1 without significant loss of epithelial characteristics (E-cadherin) in cultured renal proximal tubule cells. Importantly, transduction of cells with a U-STAT3 mimetic (Y705F-STAT3) augmented stress fiber formation and also amplified NIC+TGF-β1-induced expression of α-SMA, vimentin, fibronectin, as well as promoter activity of α-SMA and MCP-1. Our results reveal a novel, chronic NIC-exposure-related and U-STAT3-dependent mechanism as mediator of a sustained transcription of genes that are linked to remodeling and inflammation in the kidney during injury. This process may facilitate progression of AKI to CKD. The obtained data may lead to devising therapeutic methods to specifically enhance the protective and/or inhibit

  2. Bilingual Skills Training Program. Barbering/Cosmetology. Module 8.0: Excretory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the excretory system is the eighth (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  3. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.

    PubMed

    Armenti, Stephen T; Chan, Emily; Nance, Jeremy

    2014-10-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the Caenorhabditis elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens.

  4. Spontaneous perforation of the ureter diagnosed on technetium 99m DTPA excretory urography

    SciTech Connect

    Barasch, E.; Kashdan, B.; Rathore, A.

    1988-01-01

    A case of nontraumatic rupture of the ureter secondary to a nonopaque calculus is presented. Because of the inherent high image contrast caused by the leak of technetium 99m-DTPA-labeled urine, the technetium 99m-DTPA excretory urogram is seen as an alternative to the intravenous urogram or contrast-enhanced computed tomography in selected cases of suspected ureteral rupture.

  5. Occurrence of a specific dual symbiosis in the excretory organ of geographically distant Nautiloids populations.

    PubMed

    Pernice, Mathieu; Boucher-Rodoni, Renata

    2012-10-01

    Nautilus is one of the most intriguing of all sea creatures, sharing morphological similarities with the extinct forms of coiled cephalopods that evolved since the Cambrian (542-488 mya). Further, bacterial symbioses found in their excretory organ are of particular interest as they provide a great opportunity to investigate the influence of host-microbe interactions upon the origin and evolution of an innovative nitrogen excretory system. To establish the potential of Nautilus excretory organ as a new symbiotic system, it is, however, necessary to assess the specificity of this symbiosis and whether it is consistent within the different species of present-day Nautiloids. By addressing the phylogeny and distribution of bacterial symbionts in three Nautilus populations separated by more than 6000 km (N. pompilius from Philippines and Vanuatu, and N. macromphalus from New Caledonia), this study confirms the specificity of this dual symbiosis involving the presence of betaproteobacteria and spirochaete symbionts on a very wide geographical area. Overall, this work sheds further light on Nautiloids excretory organ as an innovative system of interaction between bacteria and cephalopods.

  6. [Peculiarities of ultrastructure of excretory system in Bothrioplana semperi (Platyhelminthes, Turbellaria)].

    PubMed

    Kornakova, E E

    2010-01-01

    Ultrastructural study of morphology of cirtocytes and excretory channels was performed in the free living turbellaria Bothrioplana semperi (Turbellaria, Seriata). It has been shown that cirtocytes of this species are formed by two cells--the terminal and the proximal cells of the channel. The fan is composed of two rod rows. The external row goes out from the terminal cell, the internal one is a derivate of the channel proximal cell. Inside each rod of the external row there runs a bundle of microfilaments; it originates in the cytoplasm of the channel proximal cell distal to bases of the external rods. On the internal rod membranes there are noted small electrondense granules disposed separately or fused in the solid layer continuing into a dense "membrane" connecting rods of the external and internal rows. Rare internal leptotrichiae go out from the cirtocyte cavity bottom. External leptotrichiae are absent. The septate desmosome at the level of the terminal cell is absent, but is present in the channel proximal cell at the level of terminal of cilia. The apical surface of the channel cell carries rare short microvilli. The basement membrane of cells of excretory channels forms deep invaginations almost reaching the apical membrane. Epithelium of excretory channels is deprived of cilia. Ultrastructure of cirtocytes and excretory channels of B. semperi is similar to those in representatives of the suborder Proseriata (Seriata). The significance of ultrastructure of the Proseriata cirtocytes, especially of the order of formation of versh, for construction of phylogeny of Platyhelminthes is discussed.

  7. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell

    PubMed Central

    Armenti, Stephen T.; Chan, Emily; Nance, Jeremy

    2015-01-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the C. elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens. PMID:25102190

  8. Bilingual Skills Training Program. Barbering/Cosmetology. Module 8.0: Excretory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the excretory system is the eighth (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  9. [Characterization of the cercaria of Bucephalus polymorphus Baer, 1827 (Trematoda, Bucephalidae): chetotaxy and excretory system].

    PubMed

    Wallet, M; Lambert, A

    1984-01-01

    We describe the excretory system and the chetotaxy of the cercaria of Bucephalus polymorphus Baer, 1827 which develops in Dreissena polymorpha (Lamellibranch, Dreissenidae) in South-East of France. We compare our observations with those realised in Poland and we discuss about the differences observed.

  10. A blueberry-enriched diet improves renal function and reduces oxidative stress in metabolic syndrome animals: potential mechanism of TLR4-MAPK signaling pathway.

    PubMed

    Nair, Anand R; Elks, Carrie M; Vila, Jorge; Del Piero, Fabio; Paulsen, Daniel B; Francis, Joseph

    2014-01-01

    Metabolic syndrome (MetS) is characterized by a cluster of health factors that indicate a higher risk for cardio-renal diseases. Recent evidence indicates that antioxidants from berries are alternative to attenuate oxidative stress and inflammation. We tested the hypothesis that inflammation-induced renal damage is triggered by the activation of TLR4, and subsequent modulation of redox-sensitive molecules and mitogen-activated protein kinase (MAPK) pathway. Five-week old lean and obese Zucker rats (LZR and OZR) were fed a blueberry-enriched diet or an isocaloric control diet for 15 weeks. A glucose tolerance test and acute renal clearance experiments were performed. Gene and protein expression levels for TLR4, cytokines and phosphorylation of ERK and p38MAPK were measured. Kidney redox status and urinary albumin levels were quantified. Renal pathology was evaluated histologically. Control OZR exhibited lower glucose tolerance; exacerbated renal function parameters; increased oxidative stress. Gene and protein expression levels of TLR4 were higher and this was accompanied by increased renal pathology with extensive albuminuria and deterioration in antioxidant levels in OZR. In addition, OZR had increased phosphorylation of ERK and p38MAPK. Blueberry-fed OZR exhibited significant improvements in all these parameters compared to OZR. TLR4-MAPK signaling pathway is a key to the renal structural injury and dysfunction in MetS and blueberry (BB) protect against this damage by inhibiting TLR4. This is the first study to put forth a potential mechanism of TLR4-induced kidney damage in a model of MetS and to elucidate a downstream mechanism by which blueberry exert their reno-protective effects.

  11. Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase

    SciTech Connect

    Cummings, J.; Nguyen, T; Fedorov, A; Kolb, P; Xu, C; Fedorov, E; Shoichet, B; Barondeau, D; Almo, S; Raushel, F

    2010-01-01

    Human renal dipeptidase, an enzyme associated with glutathione metabolism and the hydrolysis of {beta}-lactams, is similar in sequence to a cluster of 400 microbial proteins currently annotated as nonspecific dipeptidases within the amidohydrolase superfamily. The closest homologue to the human renal dipeptidase from a fully sequenced microbe is Sco3058 from Streptomyces coelicolor. Dipeptide substrates of Sco3058 were identified by screening a comprehensive series of L-Xaa-L-Xaa, L-Xaa-D-Xaa, and D-Xaa-L-Xaa dipeptide libraries. The substrate specificity profile shows that Sco3058 hydrolyzes a broad range of dipeptides with a marked preference for an l-amino acid at the N-terminus and a d-amino acid at the C-terminus. The best substrate identified was L-Arg-D-Asp (k{sub cat}/K{sub m} = 7.6 x 10{sup 5} M{sup -1} s{sup -1}). The three-dimensional structure of Sco3058 was determined in the absence and presence of the inhibitors citrate and a phosphinate mimic of L-Ala-D-Asp. The enzyme folds as a ({beta}/{alpha}){sub 8} barrel, and two zinc ions are bound in the active site. Site-directed mutagenesis was used to probe the importance of specific residues that have direct interactions with the substrate analogues in the active site (Asp-22, His-150, Arg-223, and Asp-320). The solvent viscosity and kinetic effects of D{sub 2}O indicate that substrate binding is relatively sticky and that proton transfers do not occurr during the rate-limiting step. A bell-shaped pH-rate profile for k{sub cat} and k{sub cat}/K{sub m} indicated that one group needs to be deprotonated and a second group must be protonated for optimal turnover. Computational docking of high-energy intermediate forms of L/D-Ala-L/D-Ala to the three-dimensional structure of Sco3058 identified the structural determinants for the stereochemical preferences for substrate binding and turnover.

  12. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    SciTech Connect

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.

  13. Stage- and Gender-Specific Proteomic Analysis of Brugia malayi Excretory-Secretory Products

    PubMed Central

    Moreno, Yovany; Geary, Timothy G.

    2008-01-01

    Introduction While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. Methodology/Principal Findings To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. Conclusions/Significance A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host–parasite interaction. PMID:18958170

  14. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin-induced natriuresis

    SciTech Connect

    Caverzasio, J.; Rizzoli, R.; Dayer, J.M.; Bonjour, J.P.

    1987-05-01

    Administration of pyrogen or endotoxins such as Escherichia coli lipopolysaccharide can elicit a marked increase in urinary sodium excretion. This response occurs without any elevation in the filtered load of sodium and it does not appear to be prostaglandin mediated. The various effects produced by endotoxins appear to have interleukin-1 as a common mediator. In the present work, the authors have studied whether human recombinant interleukin-1..beta.. (hrIL-1) could affect the renal handling of sodium and thus, could be implicated in natriuretic response to pyrogens or endotoxins. They observed that hrIL-1 intravenously injected into conscious rats provokes a marked increase in sodium excretion. This natriuretic response was not associated with any increase in glomerular filtration rate (clearance of (/sup 3/H)inulin), nor was it accompanied by significant changes in the urinary excretion of potassium, calcium, or inorganic phosphate. The only concomitant alteration was a decrease in urinary pH. Pretreatment with indomethacin abolished the effect of hrIL-1 on urinary pH but did not modify the natriuretic response. In conclusion, hrIL-1 elicits a selective decrease in tubular sodium reabsorption, which does not appear to involve a change in prostaglandin synthesis. This observation strongly suggests that interleukin-1 could be a key mediator in endotoxin-induced natriuresis.

  15. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin.

    PubMed

    Quiros, Yaremi; Vicente-Vicente, Laura; Morales, Ana I; López-Novoa, José M; López-Hernández, Francisco J

    2011-02-01

    Gentamicin is an aminoglycoside antibiotic widely used against infections by Gram-negative microorganisms. Nephrotoxicity is the main limitation to its therapeutic efficacy. Gentamicin nephrotoxicity occurs in 10-20% of therapeutic regimes. A central aspect of gentamicin nephrotoxicity is its tubular effect, which may range from a mere loss of the brush border in epithelial cells to an overt tubular necrosis. Tubular cytotoxicity is the consequence of many interconnected actions, triggered by drug accumulation in epithelial tubular cells. Accumulation results from the presence of the endocytic receptor complex formed by megalin and cubulin, which transports proteins and organic cations inside the cells. Gentamicin then accesses and accumulates in the endosomal compartment, the Golgi and endoplasmic reticulum (ER), causes ER stress, and unleashes the unfolded protein response. An excessive concentration of the drug over an undetermined threshold destabilizes intracellular membranes and the drug redistributes through the cytosol. It then acts on mitochondria to unleash the intrinsic pathway of apoptosis. In addition, lysosomal cathepsins lose confinement and, depending on their new cytosolic concentration, they contribute to the activation of apoptosis or produce a massive proteolysis. However, other effects of gentamicin have also been linked to cell death, such as phospholipidosis, oxidative stress, extracellular calcium-sensing receptor stimulation, and energetic catastrophe. Besides, indirect effects of gentamicin, such as reduced renal blood flow and inflammation, may also contribute or amplify its cytotoxicity. The purpose of this review was to critically integrate all these effects and discuss their relative contribution to tubular cell death.

  16. Renal Interstitial Fibrosis: Mechanisms and Evaluation In: Current Opinion in Nephrology and Hypertension

    PubMed Central

    Farris, Alton B.; Colvin, Robert B.

    2012-01-01

    Purpose of Review Tubulointerstitial injury in the kidney is complex, involving a number of independent and overlapping cellular and molecular pathways, with renal interstitial fibrosis and tubular atrophy (IF/TA) as the final common pathway. Furthermore, there are multiple ways to assess IFTA. Recent findings Cells involved include tubular epithelial cells, fibroblasts, fibrocytes, myofibroblasts, monocyte/macrophages, and mast cells with complex and still incompletely characterized cell-molecular interactions. Molecular mediators involved are numerous and involve pathways such as transforming growth factor (TGF-β), bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF). Recent genomic approaches have shed insight into some of these cellular and molecular pathways. Pathologic evaluation of IFTA is central in assessing the severity of chronic disease; however, there are a variety of methods used to assess IFTA. Most assessment of IFTA relies on pathologist assessment of special stains such as trichrome, Sirius Red, and collagen III immunohistochemistry. Visual pathologist assessment can be prone to inter- and interobserver variability, but some methods employ computerized morphometery, without a clear consensus as to the best method. Summary IFTA results from on orchestration of cell types and molecular pathways. Opinions vary on the optimal qualitative and quantitative assessment of IFTA. PMID:22449945

  17. Ghrelin Protects against Renal Damages Induced by Angiotensin-II via an Antioxidative Stress Mechanism in Mice

    PubMed Central

    Fujimura, Keiko; Wakino, Shu; Minakuchi, Hitoshi; Hasegawa, Kazuhiro; Hosoya, Koji; Komatsu, Motoaki; Kaneko, Yuka; Shinozuka, Keisuke; Washida, Naoki; Kanda, Takeshi; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2014-01-01

    We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney. PMID:24747517

  18. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury.

  19. A Mechanism for the induction of renal tumours in male Fischer 344 rats by short-chain chlorinated paraffins.

    PubMed

    Warnasuriya, Gayathri D; Elcombe, Barbara M; Foster, John R; Elcombe, Clifford R

    2010-03-01

    Short-chain chlorinated paraffins (SCCPs) cause kidney tumours in male rats, but not in female rats or mice of either sex. Male rat-specific tumours also occur in rats dosed with a range of compounds including 1,4- dichlorobenzene (DCB) and d-limonene (DL). These compounds bind to a male rat-specific hepatic protein, alpha-2-urinary globulin (α2u), and form degradationresistant complexes in the kidney. The resulting accumulation of α2u causes cell death and sustained regenerative cell proliferation, which in turn leads to the formation of renal tumours. To investigate whether the SCCP, Chlorowax 500C (C500C), causes tumours via the accumulation of α2u male rats were orally dosed with either C500C (625 mg/kg of body weight), DCB (300 mg/kg of body weight), or DL (150 mg/kg of body weight) for 28 consecutive days. An increase in renal α2u and cell proliferation was observed in DCB- and DL-treated rats but not in C500C-treated rats. C500C caused peroxisome proliferation and a down-regulation of α2u synthesis in male rat liver. This down-regulation occurred at the transcriptional level. Since less α2u was produced in C500C-treated rats, there was less available for accumulation in the kidney hence a typical α2u nephropathy did not appear. However, the administration of a radiolabelled SCCP, [14C]polychlorotridecane (PCTD), to male rats demonstrated its binding to renal α2u. Thus, it is possible that SCCPs bind to α2u and cause a slow accumulation of the protein in the kidney followed by delayed onset of α2u nephropathy. As a consequence of these findings in the current experiments, while evidence exists implicating α2u-globulin in the molecular mechanism of action of the C500C, the classic profile of a α2u-globulin nephropathy seen with other chemicals such as DCB and DL was not reproduced during this experimental protocol.

  20. Enhanced renal clearance of vancomycin in rats with carcinogen-induced osteosarcoma.

    PubMed

    Shimada, Izumi; Iwata, Chieko; Taga, Shino; Teramachi, Hitomi; Nomura, Masaaki; Miyamoto, Ken-Ichi; Tsuciya, Hiroyuki; Wada, Takashi; Kimura, Kazuko; Matsushita, Ryo

    2012-03-01

    Recently, it has been reported that total clearance (CLtot) of vancomycin is significantly higher in patients with malignancies compared to those without malignancies. In the present study, to clarify the mechanism of this enhancement in malignancy, we adopted rat animal models, using chemical carcinogen-induced osteosarcoma, selected lung metastatic lesions (C-SLM), transplanted into thigh muscles. The CLtot and renal clearance (CLr) of vancomycin in the tumor-bearing rats were increased compared to the ones of the control rats without tumor. However, there was no difference in the glomerular filtration rate. The plasma concentrations of interleukin (IL)-1β and IL-6, were elevated in the tumor-bearing rats. When renal proximal tubular epithelial cells (RPTEC) were exposed to IL-1β, IL-6, and tumor necrosis factor (TNF)-α simultaneously, the excretory ratio increased significantly. These findings suggest that tubular excretion or re-absorption by cytokines might be associated with changes in the vancomycin CLtot enhancement in the tumor-bearing rats.

  1. Renal response to volume expansion: learning the experimental approach in the context of integrative physiology.

    PubMed

    Kline, R L; Dukacz, S A; Stavraky, T

    2000-06-01

    We describe a laboratory experience for upper-level science students that provides a hands-on approach to understanding the basics of experimental physiology. A pre-lab, interactive tutorial develops the rationale for this experiment by reviewing the renal and cardiovascular mechanisms involved in the response to extracellular fluid volume expansion. After a hypothesis is stated, an experiment is designed to determine the relative importance of dilution of plasma proteins to the overall renal excretory response following volume expansion with intravenous saline. In the lab, students collect data from two groups of anesthetized rats. The protocol involves continuous monitoring of arterial pressure and periodic collection of urine and blood samples after volume expansion with either isotonic NaCl or isotonic NaCl plus 5% albumin. A post-lab tutorial is used to analyze, interpret, and discuss the data. Students next prepare an oral presentation, practice it, and finally present their results and answer questions before peers and instructors. This overall experience involves all of the components of doing a "real" experiment, starting with a question that is not answered in general textbooks of physiology and finishing with an oral presentation of the results. Along the way, students gain a better understanding of a complex homeostatic response and learn the care and value of using animals in research and teaching.

  2. Bioprosthetic versus mechanical prostheses for valve replacement in end-stage renal disease patients: systematic review and meta-analysis

    PubMed Central

    Zhao, Dong Fang; Zhou, Jessie J.; Karagaratnam, Aran; Phan, Steven; Yan, Tristan D.

    2016-01-01

    Background Patients with end-stage renal disease (ESRD) indicated for dialysis are increasingly requiring cardiac valve surgery. The choice of bioprosthetic or mechanic valve prosthesis for such patients requires careful risk assessment. A systematic review and meta-analysis was performed to assess current evidence available. Methods A comprehensive search from six electronic databases was performed from their inception to February 2015. Results from patients with ESRD undergoing cardiac surgery for bioprosthetic or mechanical valve replacement were identified. Results Sixteen studies with 8,483 patients with ESRD undergoing cardiac valve replacement surgery were included. No evidence of publication bias was detected. Prior angioplasty by percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery was significantly higher in the bioprosthetic group compared to the mechanical group (16.0% vs. 12.0%, P=0.04); all other preoperative baseline patient characteristics were similar. There was no significant difference in 30-day mortality or all-cause mortality between the two comparisons. Compared with the mechanical group, the frequency of bleeding (5.2% vs. 6.4%, P=0.04) and risk of thromboembolism (2.7% vs. 12.8%, P=0.02) were significantly lower in the bioprosthetic group. There were similar rates of reoperation and valve endocarditis. Conclusions The present study demonstrated that patients with ESRD undergoing bioprosthetic or mechanical valve replacement had similar mid-long term survival. The bioprosthetic group had lower rates of bleeding and thromboembolism. Further studies are required to differentiate the impact of valve location. The presented results may be applicable for ESRD patients requiring prosthetic valve replacement. PMID:27162649

  3. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis

    PubMed Central

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-01-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes—clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma—but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. PMID:23890189

  4. Nitric Oxide Production by Mouse Renal Tubules Can Be Increased by a Sodium-Dependent Mechanism

    PubMed Central

    Kempson, Stephen; Thompson, Nathan; Pezzuto, Laura; Bohlen, H. Glenn

    2007-01-01

    Renal tubules process large amounts of NaCl that other investigators indicate increases tubular generation of nitric oxide. We questioned whether medullary or superficial cortical tubules would have the greater increase in nitric oxide concentration, [NO], when stressed by sodium and if the sodium/calcium exchanger was involved. Sodium stress in proximal tubules is due to the large amount of sodium absorbed and medullary tubules exist in a hypertonic sodium environment. To sodium stress the tissue, mouse kidney slices were exposed to monensin to allow passive entry of sodium ions from isotonic media and in separate studies, 400 and 600 mOsm NaCl was used. [NO] was measured with microelectrodes. Monensin (10 μM) caused a sustained increase in medullary and cortical [NO] to ∼180% of control and 400 mOsm NaCl caused a similar initial increase in [NO] that then subsided. 600 mOsm NaCl caused a more sustained increase in [NO] of >250% of control. L-NAME strongly attenuated the increased [NO] during sodium stress. The increase in [NO] during NaCl elevation was due to sodium ions because mannitol hyperosmolarity caused ∼20% of the increase in [NO]. Entry of sodium during NaCl hyperosmolarity was through bumetanide sensitive channels because the drug suppressed increased [NO]. Blockade of the sodium/calcium ion exchanger strongly suppressed the increased [NO] during monensin, to increase sodium entry into cells, and the elevated NaCl concentration. The data support a sodium - NO linkage that increased NO signaling in proportion to sodium stress by cortical tubules and was highly dependent upon sodium-calcium exchange. PMID:17604190

  5. Mechanisms of Renal Phosphate Loss in Liver Resection-Associated Hypophosphatemia

    PubMed Central

    Nafidi, Otmane; Lapointe, Real W.; Lepage, Raymond; Kumar, Rajiv; D’Amour, Pierre

    2014-01-01

    Objective To determine precisely the role of parathyroid hormone (PTH) and of phosphatonins in the genesis of posthepatectomy hypophosphatemia. Background Posthepatectomy hypophosphatemia has recently been related to increased renal fractional excretion of phosphate (FE P). To address the cause of hypophosphatemia, we measured serum concentrations of PTH, various phosphatonins, and the number of removed hepatic segment in patients with this disorder. Methods Serum phosphate (PO4), ionized calcium (Ca++), HCO3−, pH and FE P, intact PTH (I-PTH), carboxyl-terminal fibroblast growth factor 23 (C-FGF-23) and intact fibroblast growth factor 23 (I-FGF-23), FGF-7, and secreted frizzled related-protein-4 (sFRP-4) were measured before and on postoperative (po) days 1, 2, 3, 5, and 7, in 18 patients undergoing liver resection. The number of removed hepatic segments was also assessed. Results Serum PO4 concentrations decreased within 24 hours, were lowest (0.66 ± 0.03 mmol/L; P < 0.001) at 48 hours, and returned to normal within 5 days of the procedure. FE P peaked at 25.07% ± 2.26% on po day 1 (P < 0.05). Decreased ionized calcium concentrations (1.10 ± 0.01 mmol/L; P < 0.01) were observed on po day 1 and were negatively correlated with increased I-PTH concentrations (8.8 ± 0.9 pmol/L; P < 0.01; correlation: r = −0.062, P = 0.016). FE P was positively related to I-PTH levels on po day 1 (r = 0.52, P = 0.047) and negatively related to PO4 concentrations (r = −0.56, P = 0.024). Severe hypophosphatemia and increased urinary phosphate excretion persisted for 72 hours even when I-PTH concentrations had returned to normal. I-FGF-23 decreased to its nadir of 7.8 ± 6.9 pg/mL (P < 0.001) on po day 3 and was correlated with PO4 levels on po days 0, 3, 5, and 7 (P < 0.001). C-FGF-23, FGF-7 and sFRP-4 levels could not be related to either PO4 concentrations or FE P. Conclusion Posthepatectomy hypophosphatemia is associated with increased FE P unrelated to I-FGF-23 or C-FGF-23

  6. US and MRI in renal obstruction evaluation.

    PubMed

    Budau, Marina; Onu, Mihaela; Jinga, Viorel; Braticevici, Bogdan; Pop, Tiberiu

    2002-06-01

    To explore the renal obstruction using MRI (Magnetic Resonance Imaging) for anatomical evaluation and Doppler US (Ultra Sound) for functional evaluation. Thirty-two patients with renal obstruction were investigated. The presence of renal obstruction was subsequently established by excretory urography or surgery. US studies were performed using a B&K Medical ultrasound system Panther 2002 equipped with 3 Mhz transducer. MR urography was done with a magnetic resonance imaging system 0.28T, Tomikon R28-Bruker, Germany. All 30 patients presented increased renal vascular resistance as determined by US evaluation (Resistive Index = 0.74 +/- 0.02). The MR urography proved dilated urinary collecting system in only 20 patients of the group. Doppler US has a very good sensitivity in detecting the renal obstruction before the dilatation of the collecting system be installed. Used together these methods (US and MR urography) are important for proving anatomical as well as functional changes in renal obstruction. Both methods could be useful mainly in patients with known intolerance to contrast media.

  7. Transcriptional regulation of AQP-8, a Caenorhabditis elegans aquaporin exclusively expressed in the excretory system, by the POU homeobox transcription factor CEH-6.

    PubMed

    Mah, Allan K; Armstrong, Kristin R; Chew, Derek S; Chu, Jeffrey S; Tu, Domena K; Johnsen, Robert C; Chen, Nansheng; Chamberlin, Helen M; Baillie, David L

    2007-09-21

    Due to the ever changing environmental conditions in soil, regulation of osmotic homeostasis in the soil-dwelling nematode Caenorhabditis elegans is critical. AQP-8 is a C. elegans aquaporin that is expressed in the excretory cell, a renal equivalent tissue, where the protein participates in maintaining water balance. To better understand the regulation of AQP-8, we undertook a promoter analysis to identify the aqp-8 cis-regulatory elements. Using progressive 5' deletions of upstream sequence, we have mapped an essential regulatory region to roughly 300 bp upstream of the translational start site of aqp-8. Analysis of this region revealed a sequence corresponding to a known DNA functional element (octamer motif), which interacts with POU homeobox transcription factors. Phylogenetic footprinting showed that this site is perfectly conserved in four nematode species. The octamer site's function was further confirmed by deletion analyses, mutagenesis, functional studies, and electrophoretic mobility shift assays. Of the three POU homeobox proteins encoded in the C. elegans genome, CEH-6 is the only member that is expressed in the excretory cell. We show that expression of AQP-8 is regulated by CEH-6 by performing RNA interference experiments. CEH-6's mammalian ortholog, Brn1, is expressed both in the kidney and the central nervous system and binds to the same octamer consensus binding site to drive gene expression. These parallels in transcriptional control between Brn1 and CEH-6 suggest that C. elegans may well be an appropriate model for determining gene-regulatory networks in the developing vertebrate kidney.

  8. Prospective evaluation of renal allograft dysfunction with 99mtechnetium-diethylenetriaminepentaacetic acid renal scans

    SciTech Connect

    McConnell, J.D.; Sagalowsky, A.I.; Lewis, S.E.; Gailiunas, P.; Helderman, J.H.; Dawidson, I.; Peters, P.C.

    1984-05-01

    A prospective, single-blinded study was done to determine the ability of serial 99mtechnetium-diethylenetriaminepentaacetic acid scans to diagnose renal allograft rejection. Among 28 transplant recipients 111 renal scans were obtained 1 day postoperatively and every 3 to 4 days thereafter for 3 weeks in all patients retaining an allograft. Computer-generated time-activity blood flow curves were analyzed semiquantitatively for the 1) interval between curve peaks of the allograft and iliac artery, 2) renal transit time and 3) renal washout of radionuclide. Excretory function was assessed by degree and interval to appearance of radionuclide in the calices and bladder. Deterioration of renal blood flow and excretion compared to the initial scan was considered rejection. Of 52 scans performed during clinical rejection 47 (90.4 per cent) were interpreted as showing rejection (sensitivity). Of 53 scans interpreted as showing rejection 47 (88.7 per cent) were positive for clinical rejection. The remaining 6 patients (initial false positive results) suffered clinical rejection within 24 to 72 hours. We conclude that 99mtechnetium-diethylenetriaminepentaacetic acid renal scans are useful in the differential diagnosis of renal allograft dysfunction.

  9. Median preoptic nucleus and subfornical organ drive renal sympathetic nerve activity via a glutamatergic mechanism within the paraventricular nucleus.

    PubMed

    Llewellyn, Tamra; Zheng, Hong; Liu, Xuefei; Xu, Bo; Patel, Kaushik P

    2012-02-15

    The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA - ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II - ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.

  10. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.

    PubMed

    Kamenskiy, Alexey V; Dzenis, Yuris A; Kazmi, Syed A Jaffar; Pemberton, Mark A; Pipinos, Iraklis I; Phillips, Nick Y; Herber, Kyle; Woodford, Thomas; Bowen, Robert E; Lomneth, Carol S; MacTaggart, Jason N

    2014-11-01

    The biomechanics of large- and medium-sized arteries influence the pathophysiology of arterial disease and the response to therapeutic interventions. However, a comprehensive comparative analysis of human arterial biaxial mechanical properties has not yet been reported. Planar biaxial extension was used to establish the passive mechanical properties of human thoracic (TA, [Formula: see text]) and abdominal (AA, [Formula: see text]) aorta, common carotid (CCA, [Formula: see text]), subclavian (SA, [Formula: see text]), renal (RA, [Formula: see text]) and common iliac (CIA, [Formula: see text]) arteries from 11 deceased subjects ([Formula: see text] years old). Histological evaluation determined the structure of each specimen. Experimental data were used to determine constitutive parameters for a structurally motivated nonlinear anisotropic constitutive model. All arteries demonstrated appreciable anisotropy and large nonlinear deformations. Most CCA, SA, TA, AA and CIA specimens were stiffer longitudinally, while most RAs were stiffer circumferentially. A switch in anisotropy was occasionally demonstrated for all arteries. The CCA was the most compliant, least anisotropic and least frequently diseased of all arteries, while the CIA and AA were the stiffest and the most diseased. The severity of atherosclerosis correlated with age, but was not affected by laterality. Elastin fibers in the aorta, SA and CCA were uniformly and mostly circumferentially distributed throughout the media, while in the RA and CIA, elastin was primarily axially aligned and concentrated in the external elastic lamina. Constitutive modeling provided good fits to the experimental data for most arteries. Biomechanical and architectural features of major arteries differ depending on location and functional environment. A better understanding of localized arterial mechanical properties may support the development of site-specific treatment modalities for arterial disease.

  11. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage.

    PubMed

    Fan, Yanling; Xia, Jieyu; Jia, Daoyong; Zhang, Mengsi; Zhang, Yanyan; Huang, Guoning; Wang, Yaping

    2016-09-01

    Context Ginseng is a widely used herbal medicine in China but its mechanism of action remains unclear. Objective The objectives of this work were to study the protective effect of ginsenoside Rg1 on subacute murine renal damage induced by d-galactose and its mechanism. Materials and methods C57BL/6J mice were injected with 120 mg/kg/d (sc) d-galactose for 1 week, followed by a combined treatment of Rg1 20 mg/kg/d (ip) and 120 mg/kg/d d-galactose (sc) for 5 weeks. Mice were injected with the 0.9% saline 0.2 mL/d (sc) and 120 mg/kg/d d-galactose (sc) for 6 weeks in the control group and the d-galactose group, respectively. After 6 weeks, urea, creatinine, uric acid, cystatin (Cys-C), senescence-associated β-galactosidase (SA-β-gal) staining positive kidney cells, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), glycation end products (AGEs) and 8-hydroxy-2 deoxyguanosine (8-OH-dG) were measured. Results Treatment with Rg1 ameliorated kidney function and aging state (urea from 17.19 ± 1.09 to 15.77 ± 1.22 mmol·L (-) (1), creatinine from 29.40 ± 5.72 to 22.60 ± 3.97 μmol·L (-) (1), uric acid from 86.80 ± 5.97 to 72.80 ± 10.61 μmol·L (-) (1), Cys-C from 0.23 ± 0.03 to 0.18 ± 0.05 mg·L (-) (1), ROD of SA-β-gal from 56.32 ± 10.48 to 26.78 ± 7.34, SOD from 150.22 ± 19.07 to 190.56 ± 15.83 U·(mg·prot) (-1), MDA from 9.28 ± 1.59 to 3.17 ± 0.82 nmol·(mg·prot) (-1), GSH-PX from 15.68 ± 2.11 to 20.32 ± 2.96 U·(mg·prot) (-1) as well as regulated glomerulus morphology (glomerulus diameter from 775.77 ± 18.41 to 695.04 ± 14.61 μm, renal capsule width from 39.56 ± 3.51 to 31.42 ± 2.70 μm, glomerulus basement membrane from 206.03 ± 16.22 to 157.27 ± 15.70 nm, podocyte slit from 55.21 ± 8.55 to 37.63 ± 6.65 nm). Conclusions Ginsenoside Rg1 can antagonise d

  12. The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling.

    PubMed

    Rink, Jochen C; Vu, Hanh Thi-Kim; Sánchez Alvarado, Alejandro

    2011-09-01

    The maintenance of organs and their regeneration in case of injury are crucial to the survival of all animals. High rates of tissue turnover and nearly unlimited regenerative capabilities make planarian flatworms an ideal system with which to investigate these important processes, yet little is known about the cell biology and anatomy of their organs. Here we focus on the planarian excretory system, which consists of internal protonephridial tubules. We find that these assemble into complex branching patterns with a stereotyped succession of cell types along their length. Organ regeneration is likely to originate from a precursor structure arising in the blastema, which undergoes extensive branching morphogenesis. In an RNAi screen of signaling molecules, we identified an EGF receptor (Smed-EGFR-5) as a crucial regulator of branching morphogenesis and maintenance. Overall, our characterization of the planarian protonephridial system establishes a new paradigm for regenerative organogenesis and provides a platform for exploring its functional and evolutionary homologies with vertebrate excretory systems.

  13. Nephroureterectomy and ureteroneocystostomy in an alpaca with bilateral ectopic ureters diagnosed by computed tomographic excretory urography.

    PubMed

    Polf, Holly D; Smith, Shasta; Simpson, Katharine M; Rochat, Mark C

    2015-01-01

    To report diagnosis and treatment of urinary incontinence in a female Huacaya alpaca. Clinical case report. Female intact Huacaya alpaca (n = 1) METHODS: Computed tomographic (CT) excretory urography and vaginourethrography were performed to diagnose the cause of urinary incontinence. Bilateral ectopic ureters and left hydronephrosis and hydroureter were diagnosed. Left nephroureterectomy and right ureteroneocystostomy were performed with subsequent resolution of clinical signs. Pyelonephritis was identified by culture of the resected left kidney. CT excretory urography was helpful in the diagnosis of bilateral ectopic ureters in an alpaca and provided information for surgical planning. Surgical repair by ureteroneocystostomy and unilateral nephroureterectomy was successful in resolving clinical signs. © Copyright 2014 by The American College of Veterinary Surgeons.

  14. Down-Regulation of Renal Gluconeogenesis in Type II Diabetic Rats Following Roux-en-Y Gastric Bypass Surgery: A Potential Mechanism in Hypoglycemic Effect.

    PubMed

    Wen, Yi; Lin, Ning; Yan, Hong-Tao; Luo, Hao; Chen, Guang-Yu; Cui, Jian-Feng; Shi, Li; Chen, Tao; Wang, Tao; Tang, Li-Jun

    2015-01-01

    This study was initiated to evaluate the effects of Roux-en-Y gastric bypass surgery on renal gluconeogenesis in type 2 diabetic rats and its relationship with hormonal parameters. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ; 35 mg/kg) combined with a high-fat diet. They were then randomly divided into three groups: diabetes model group (DM group, n = 8), sham Roux-en-Y gastric bypass group (SRYGB group, n = 8), and Roux-en-Y gastric bypass group (RYGB group, n = 14). Another 8 normal rats comprised the normal control group (NC group, n = 8). Body weight, glucose, serum lipid, insulin, glucagon-like peptide-1 (GLP-1), leptin, and adiponectin were measured pre- and postoperatively. Glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin receptor-α (IR-α), insulin receptor-β (IR-β), and glycogen synthase kinase 3 beta (Gsk3b) were measured in renal cortex by using RT-PCR and Western immune-blot analyses on the 4th week after operation. Following RYGB surgery, surgery-treated rats showed significantly improved oral glucose tolerance, dyslipidemia and insulin resistance as well as increased post-gavage insulin levels and serum circulating levels of GLP-1 and adiponectin. RT-PCR and Western immune-blot analyses showed PEPCK and G6Pase protein and mRNA to be significantly decreased in the renal cortex in the RYGB group (p < 0.05 vs. DM or SRYGB group); in addition, IR-α and Gsk3b phosphorylation levels increased in the RYGB group (p < 0.05 vs. DM or SRYGB group). Down-regulation of renal gluconeogenic enzymes might be a potential mechanism in hypoglycemia. An improved insulin signal pathway in the renal cortex and increased circulating adiponectin concentrations may contribute to the decline of renal gluconeogenesis following RYGB surgery.

  15. The mechanism of local tumor irradiation combined with interleukin 2 therapy in murine renal carcinoma: histological evaluation of pulmonary metastases.

    PubMed

    Dezso, B; Haas, G P; Hamzavi, F; Kim, S; Montecillo, E J; Benson, P D; Pontes, J E; Maughan, R L; Hillman, G G

    1996-09-01

    We have demonstrated that tumor irradiation enhanced the therapeutic effect of interleukin 2 (IL-2) on pulmonary metastases from a murine renal adenocarcinoma, Renca. To investigate the mechanism of interaction between tumor irradiation and IL-2 therapy, we have histologically evaluated the effects of each therapy alone or in combination on Renca pulmonary metastases. Following treatment of established lung metastases with irradiation and IL-2 therapy, lung sections were processed for H&E or immunohistochemical staining. We found that tumor irradiation or IL-2 therapy locally induced vascular damage, resulting in multifocal hemorrhages and mononuclear cell mobilization in the lung tissue. This effect was amplified in lungs treated with the combined therapy. Immunohistochemistry showed that irradiation produced a macrophage influx into irradiated tumor nodules, and systemic IL-2 therapy induced T-cell infiltration in tumor nodules. Lungs treated with the combined therapy exhibited massive macrophage, T-cell, and natural killer cell mobilization in disintegrating tumor nodules and in the lung tissue. This combined therapy caused a decrease in the number of proliferating tumor cells and an increase in the number of apoptotic cells, which were more marked than with either therapy alone. We suggest that the macrophages mobilized by radiation-induced tissue injury could play a role in phagocytosis of apoptotic tumor cells, processing and presenting of tumor antigens for a systemic immune response activated by IL-2. Tumor destruction may result from the concomitant action of activated T cells, natural killer cells, and macrophages infiltrating the tumor nodules.

  16. Double-Blind Comparison of Iodamide and Diatrizoate for Excretory Urography 1

    PubMed Central

    Rosenfield, Arthur T.; Putman, Charles E.; Ulreich, Sidney; Koss, Neal

    1977-01-01

    A double-blind comparison of meglumine iodamide and Renografin 60 (52% meglumine diatrizoate and 8% sodium diatrizoate) for bolus excretory urography was performed. Doses of 0.8 cc/kg. to a maximum of 55 cc were administered to fifty patients, twenty-five receiving each drug. There is a suggestion that iodamide may be superior to diatrizoate in pyelocalyceal opacification while being equal to diatrizoate in parenchymal opacification and in types and severity of side-effects. PMID:345632

  17. Ultrastructure of the excretory organs of Bombus morio (Hymenoptera: Bombini): bee without rectal pads.

    PubMed

    Gonçalves, Wagner Gonzaga; Fialho, Maria do Carmo Queiroz; Azevedo, Dihego Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2014-02-01

    Bumblebees need to keep bodily homeostasis and for that have an efficient system of excretion formed by the Malpighian tubules, ileum, and rectum. We analyzed the excretory organs of Bombus morio, a bee without rectal pads. In addition, we analyzed the rectal epithelium of Melipona quadrifasciata anthidioides which has rectal pads. The Malpighian tubules exhibited two cell types and the ileum four types. However, comparative analysis of the rectum showed that only cells of the anterior region of the rectal epithelium of B. morio are structurally distinct. We suggest that cells of the Malpighian tubules of B. morio have an excretory feature and that cells of ileum have different functions, such as ion absorption and water, organic compound, and protein secretion. In addition, only the anterior region of the rectum of B. morio showed characteristic absorption. We suggest that Malpighian tubules participate in the excretion of solutes and that the ileum and rectal epithelium are responsible for homeostasis of water and solutes, compensating for the absence of rectal papillae. These results contribute to our understanding of the morphophysiology of the excretory organs of bees without rectal pads.

  18. Regulation of ectodermal and excretory function by the C. elegans POU homeobox gene ceh-6.

    PubMed

    Bürglin, T R; Ruvkun, G

    2001-03-01

    Caenorhabditis elegans has three POU homeobox genes, unc-86, ceh-6 and ceh-18. ceh-6 is the ortholog of vertebrate Brn1, Brn2, SCIP/Oct6 and Brn4 and fly Cf1a/drifter/ventral veinless. Comparison of C. elegans and C. briggsae CEH-6 shows that it is highly conserved. C. elegans has only three POU homeobox genes, while Drosophila has five that fall into four families. Immunofluorescent detection of the CEH-6 protein reveals that it is expressed in particular head and ventral cord neurons, as well as in rectal epithelial cells, and in the excretory cell, which is required for osmoregulation. A deletion of the ceh-6 locus causes 80% embryonic lethality. During morphogenesis, embryos extrude cells in the rectal region of the tail or rupture, indicative of a defect in the rectal epithelial cells that express ceh-6. Those embryos that hatch are sick and develop vacuoles, a phenotype similar to that caused by laser ablation of the excretory cell. A GFP reporter construct expressed in the excretory cell reveals inappropriate canal structures in the ceh-6 null mutant. Members of the POU-III family are expressed in tissues involved in osmoregulation and secretion in a number of species. We propose that one evolutionary conserved function of the POU-III transcription factor class could be the regulation of genes that mediate secretion/osmoregulation.

  19. Enigmatic dual symbiosis in the excretory organ of Nautilus macromphalus (Cephalopoda: Nautiloidea)

    PubMed Central

    Pernice, Mathieu; Wetzel, Silke; Gros, Olivier; Boucher-Rodoni, Renata; Dubilier, Nicole

    2007-01-01

    Symbiosis is an important driving force in metazoan evolution and the study of ancient lineages can provide an insight into the influence of symbiotic associations on morphological and physiological adaptations. In the ‘living fossil’ Nautilus, bacterial associations are found in the highly specialized pericardial appendage. This organ is responsible for most of the excretory processes (ultrafiltration, reabsorption and secretion) and secretes an acidic ammonia-rich excretory fluid. In this study, we show that Nautilus macromphalus pericardial appendages harbour a high density of a β-proteobacterium and a coccoid spirochaete using transmission electron microscopy, comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH). These two bacterial phylotypes are phylogenetically distant from any known bacteria, with ammonia-oxidizing bacteria as the closest relatives of the β-proteobacterium (above or equal to 87.5% sequence similarity) and marine Spirochaeta species as the closest relatives of the spirochaete (above or equal to 89.8% sequence similarity), and appear to be specific to Nautilus. FISH analyses showed that the symbionts occur in the baso-medial region of the pericardial villi where ultrafiltration and reabsorption processes take place, suggesting a symbiotic contribution to the excretory metabolism. PMID:17311780

  20. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: A potential mechanism for the "obesity paradox".

    PubMed

    Ito, Ryuichi; Narita, Shintaro; Huang, Mingguo; Nara, Taketoshi; Numakura, Kazuyuki; Takayama, Koichiro; Tsuruta, Hiroshi; Maeno, Atsushi; Saito, Mitsuru; Inoue, Takamitsu; Tsuchiya, Norihiko; Satoh, Shigeru; Habuchi, Tomonori

    2017-01-01

    Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this "obesity paradox" is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = -0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoR1/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-O and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation- and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the "obesity paradox" of RCC.

  1. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla

    PubMed Central

    Pannabecker, Thomas L.; Dantzler, William H.; Layton, Harold E.; Layton, Anita T.

    2008-01-01

    Recent studies of three-dimensional architecture of rat renal inner medulla (IM) and expression of membrane proteins associated with fluid and solute transport in nephrons and vasculature have revealed structural and transport properties that likely impact the IM urine concentrating mechanism. These studies have shown that 1) IM descending thin limbs (DTLs) have at least two or three functionally distinct subsegments; 2) most ascending thin limbs (ATLs) and about half the ascending vasa recta (AVR) are arranged among clusters of collecting ducts (CDs), which form the organizing motif through the first 3–3.5 mm of the IM, whereas other ATLs and AVR, along with aquaporin-1-positive DTLs and urea transporter B-positive descending vasa recta (DVR), are external to the CD clusters; 3) ATLs, AVR, CDs, and interstitial cells delimit interstitial microdomains within the CD clusters; and 4) many of the longest loops of Henle form bends that include subsegments that run transversely along CDs that lie in the terminal 500 μm of the papilla tip. Based on a more comprehensive understanding of three-dimensional IM architecture, we distinguish two distinct countercurrent systems in the first 3–3.5 mm of the IM (an intra-CD cluster system and an inter-CD cluster system) and a third countercurrent system in the final 1.5–2 mm. Spatial arrangements of loop of Henle subsegments and multiple countercurrent systems throughout four distinct axial IM zones, as well as our initial mathematical model, are consistent with a solute-separation, solute-mixing mechanism for concentrating urine in the IM. PMID:18495796

  2. Excretory transport of xenobiotics by dogfish shark rectal gland tubules.

    PubMed

    Miller, D S; Masereeuw, R; Henson, J; Karnaky, K J

    1998-09-01

    Marine elasmobranch rectal gland is a specialized, osmoregulatory organ composed of numerous blind-ended, branched tubules emptying into a central duct. To date, NaCl excretion has been its only described function. Here we use isolated rectal gland tubule fragments from dogfish shark (Squalus acanthias), fluorescent xenobiotics, and confocal microscopy to describe a second function, xenobiotic excretion. Isolated rectal gland tubules rapidly transported the fluorescent organic anion sulforhodamine 101 from bath to lumen. Luminal accumulation was concentrative, saturable, and inhibited by cyclosporin A (CSA), chlorodinitrobenzene, leukotriene C4, and KCN. Inhibitors of renal organic anion transport (probenecid, p-aminohippurate), organic cation transport (tetraethylammonium and verapamil), and P-glycoprotein (verapamil) were without effect. Cellular accumulation of sulforhodamine 101 was not concentrative, saturable, or inhibitable. Rectal gland tubules did not secrete fluorescein, daunomycin, or a fluorescent CSA derivative. Finally, frozen rectal gland sections stained with an antibody to a hepatic canalicular multispecific organic anion transporter (cMOAT or MRP2) showed heavy and specific staining on the luminal membrane of the epithelial cells. We conclude that rectal gland is capable of active and specific excretion of xenobiotics and that such transport is mediated by a shark analog of MRP2, an ATP-driven xenobiotic transporter, but not by P-glycoprotein.

  3. Mechanisms of alpha-adrenergic regulation of the renal sodium/proton antiporter

    SciTech Connect

    Gesek, F.A.

    1988-01-01

    Some controversy exists concerning the relative roles of the {alpha}-adrenoceptor subtypes which mediate proximal tubular Na reabsorption. We hypothesized both {alpha}{sub 1} and {alpha}{sub 2} adrenoceptors may act to stimulate Na transport. We improved upon existing isolation techniques to obtain a highly enriched fraction of rat proximal tubule segments with which to test our hypothesis. Oxygen consumption measurements were first used to monitor alterations in transcellular transport stimulated by selective {alpha}{sub 1} and {alpha}{sub 2} adrenergic agonists and demonstrated both adrenoceptor subtypes increased transcellular Na transport. To examine if the enhancement of Na transport by {alpha}-adrenergic agonists were through a luminal Na//H exchange mechanism, the uptake of {sup 22}Na which was suppressible by the Na/H inhibitor, ethylisopropyl amiloride was utilized. The final sequence of experiments were designed to examine why {alpha}{sub 2} specific adrenoceptor agonists produced a range of stimulation extending from 22% with guanabenz to 98% with B-HT 933. After inhibition of a guanine nucleotide binding protein with pertussis toxin pretreatment, we were able to attenuate the {alpha}{sub 2} agonists responses. However, when a phorbol ester was used to stimulate Na/H exchange directly by activation of protein kinase C, the uptake of {sup 22}Na was inhibited by guanabenz.

  4. Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats.

    PubMed Central

    Carmignani, M; Boscolo, P; Artese, L; Del Rosso, G; Porcelli, G; Felaco, M; Volpe, A R; Giuliano, G

    1992-01-01

    Male weanling Wistar rats received 200 micrograms/ml of mercury (Hg), as HgCl2, in drinking water for 180 days. At the end of the treatment, systemic arterial blood pressure was augmented, cardiac inotropism was reduced, and heart rate was unchanged. Light and electron microscopical studies of the kidney showed a mesangial proliferative glomerulonephritis in about 80% of the glomeruli. Tubular cells showed reduction of the acid phosphatase activity, which was related to functional abnormalities of the lysosomes. In the 24 hour urine samples of the Hg exposed rats, there was slight reduction of kallikrein activity, but evident proteinuria was not present in all samples. Plasma renin activity was reduced, that of angiotensin I-converting enzyme was augmented, and plasma aldosterone concentrations were unchanged. Mercury was accumulated mostly in the kidney of the Hg treated animals; and the content of Hg in the heart was higher than in the brain. These data show that chronic exposure to Hg acts on the kidney with complex mechanisms of toxicity; these contribute to modify systemic haemodynamics. Images PMID:1571292

  5. Renal function and vasomotor activity in mice lacking the Cyp4a14 gene.

    PubMed

    Fidelis, Paul; Wilson, Leticia; Thomas, Kayama; Villalobos, Mayra; Oyekan, Adebayo O

    2010-11-01

    The production of 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney is thought to be involved in the control of renal vascular tone and tubular sodium and chloride reabsorption. Cytochrome (Cyp) P-450 enzymes of the Cyp4a family in the mouse, namely 4a10, -12 and 14, are involved in 20-HETE synthesis. Recent advances in the molecular genetics of the mouse have produced mice in which Cyp4a isoforms have been disrupted and the consequence of such an approach is examined. This study evaluated the effect of deletion of the Cyp4a14 gene on blood pressure, renal vascular responses and tubular function. When compared with the wild-type (WT) litter mates, systolic blood pressure was greater in Cyp4a14 null (KO) mice as were renal vascular responses to angiotensin II or phenyephrine, G protein-coupled receptor (GPCR) agonists, but not KCl, a non-GPCR agonist. Renal vascular responses to guanosine 5'-O-(gamma-thio)triphosphate, a non-hydrolyzable GTP analog, or NaF(4), an activator of G-proteins, were also enhanced. However, vasodilation to bradykinin or apocynin but not sodium nitroprusside was blunted in Cyp4a14 null (KO) kidneys. These changes in KO mice were accompanied by increased 20-HETE synthesis, reduced renal production of nitric oxide (NO), increased lipid hydroperoxides and increased apocynin-inhibitable vascular NADPH oxidase activity that was prevented by administration of NO synthase (NOS) inhibitor, suggesting endothelial nitric oxide synthase (eNOS) uncoupling. Cyp4a14 KO mice also exhibited a diminished capacity to excrete an acute sodium load (0.9% NaCl, 2.5 mL/kg). These data suggest that deletion of the Cyp4a gene conferred a prohypertensive status via mechanisms involving increased 20-HETE synthesis and eNOS uncoupling leading to increased oxidative stress, enhanced vasoconstriction but diminished vasodilation as well as a defect in the renal excretory capacity in Cyp4a14 KO mice. These mechanisms suggest that the Cyp4a14-deficient mouse may be a

  6. Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules.

    PubMed

    Wang, Yanhua; Zalups, Rudolfs K; Barfuss, Delon W

    2010-03-01

    Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd(2+)) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd(2+) (0.73 microM) or Cys-S-Cd-S-Cys (0.73 microM) was perfused through the lumen of S(2) segments of the proximal tubule, no visual evidence of cellular pathological changes was detected during 30 min of study. Cd(2+)-transport was temperature-dependent and was inhibited by Fe(2+), Zn(2+), and elevated concentrations of Ca(2+). Luminal uptake of Cys-S-Cd-S-Cys was also temperature-dependent and was inhibited by the amino acids L-cystine and L-arginine, while stimulated by L-methionine. Neither L-aspartate, L-glutamate, the synthetic dipeptide, Gly-Sar nor Zn(2+) had any effect on the rate of Cys-S-Cd-S-Cys transport. When delivered to the luminal compartment, Cd(2+) appears to be capable of utilizing certain transporter(s) of Zn(2+) and some transport systems sensitive to Ca(2+) and Fe(2+). In addition, Cys-S-Cd-S-Cys and Hcy-S-Cd-S-Hcy appear to be transportable substrates of one or more amino acid transporters participating in luminal absorption of the amino acid L-cystine (such as system b(0,+)). These findings indicate that multiple mechanisms could be involved in the luminal absorption of cadmium (Cd) in proximal tubular segments depending on its form. These findings provide a focus for future studies of Cd absorption in the proximal tubule. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. POTENTIAL MECHANISMS INVOLVED IN THE ABSORPTIVE TRANSPORT OF CADMIUM IN ISOLATED PERFUSED RABBIT RENAL PROXIMAL TUBULES

    PubMed Central

    Wang, Yanhua; Zalups, Rudolfs K.; Barfuss, Delon W.

    2009-01-01

    Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd2+) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd2+ (0.73μM) or Cys-S-Cd-S-Cys (0.73μM) was perfused through the lumen of S2 segments of the proximal tubule, no visual evidence of cellular pathological changes was detected during 30 min of study. Cd2+-transport was temperature-dependent and was inhibited by Fe2+, Zn2+, and elevated concentrations of Ca2+. Luminal uptake of Cys-S-Cd-S-Cys was also temperature-dependent and was inhibited by the amino acids L-cystine and L-arginine, while stimulated by L-methionine. Neither L-aspartate, L-glutamate, the synthetic dipeptide, Gly-Sar nor Zn2+ had any effect on the rate of Cys-S-Cd-S-Cys transport. Conclusions: When delivered to the luminal compartment, Cd2+ appears to be capable of utilizing certain transporter(s) of Zn2+ and some transport systems sensitive to Ca2+ and Fe2+. In addition, Cys-S-Cd-S-Cys and Hcy-S-Cd-S-Hcy appear to be transportable substrates of one or more amino acid transporters participating in luminal absorption of the amino acid L-cystine (such as system b0,+). These findings indicate that multiple mechanisms could be involved in the luminal absorption of cadmium (Cd) in proximal tubular segments depending on its form. These findings provide a focus for future studies of Cd absorption in the proximal tubule. PMID:20018233

  8. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism

    PubMed Central

    Lei, Tianluo; Zhou, Lei; Layton, Anita T.; Zhou, Hong; Zhao, Xuejian; Bankir, Lise

    2011-01-01

    Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts. PMID:21849488

  9. [Extracorporeal renal replacement therapies in acute renal failure].

    PubMed

    Schaefer, R M; Barenbrock, M; Teschner, M; Bahner, U

    2000-05-15

    The most serious forms of acute renal failure (ARF) are nowadays encountered in the intensive care unit (ICU), where up to 25% of new patients are reported to develop ARF. Lethality rates may reach 50 to 90% when the ARF is part of a multiple organ dysfunction syndrome. A multitude of extracorporeal procedures have been introduced into intensive care medicine. Applied with adequate skills and experience, most of these techniques will suffice to replace excretory renal function. However, because of low efficacy arterio-venous procedures (CAVH and CAVHD) have been abandoned for the veno-venous, pump-driven techniques (CVVH and CVVHD). Up to now, there is no consensus whether continuous or intermittent renal replacement therapy is more advantageous. In many cases, oliguric patients with circulatory instability will be treated by CVVH, even though there is no prospective study to show that in terms of outcome continuous treatment is superior to intermittent hemodialysis. It is equally conceivable to treat such patients with daily, prolonged (intermittent) hemodialysis. Apparently, the dose of replacement therapy, be it continuous filtration (36 to 48 l/24 h) or intermittent hemodialysis (daily 3 to 4 h) with a target BUN of less than 50 mg/dl, is more important than the modality of treatment. Moreover, there is good evidence that the use of biocompatible membranes (no complement- or leukocyte activation) is preferable and that with high-volume hemofiltration bicarbonate-containing replacement fluids should be used. However, despite all the technical advances, we firmly believe that the skills and the experience of those physicians and nurses who actually perform renal replacement therapy in the ICU are more important than the modality of treatment applied.

  10. Median preoptic nucleus and subfornical organ drive renal sympathetic nerve activity via a glutamatergic mechanism within the paraventricular nucleus

    PubMed Central

    Llewellyn, Tamra; Zheng, Hong; Liu, Xuefei; Xu, Bo

    2012-01-01

    The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA − ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% (P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II − ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO. PMID:22160544

  11. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    SciTech Connect

    Fang Cheng; Behr, Melissa; Xie Fang; Lu Shijun; Doret, Meghan; Luo Hongxiu; Yang Weizhu; Aldous, Kenneth; Ding Xinxin; Gu Jun

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dose of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.

  12. Therapeutic effects of renal denervation on renal failure.

    PubMed

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2013-05-01

    Sympathetic nerve activity (SNA) is increased in both patients and experimental animals with renal failure. The kidney is a richly innervated organ and has both efferent and afferent nerves. Renal denervation shows protective effects against renal failure in both animals and humans. The underlying mechanisms include a decrease in blood pressure, a decrease in renal efferent SNA, a decrease in central SNA and sympathetic outflow, and downregulation of the reninangiotensin system. It has been demonstrated that re-innervation occurs within weeks after renal denervation in animals but that no functional re-innervation occurs in humans for over two years after denervation. Renal denervation might not be renal protective in some situations including bile duct ligation-induced renal failure and ischemia/reperfusion-induced acute kidney injury. Catheter-based renal denervation has been applied to patients with both early and end stage renal failure and the published results so far suggest that this procedure is safe and effective at decreasing blood pressure. The effectiveness of renal denervation in improving renal function in patients with renal failure needs to be further investigated.

  13. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings.

  14. Renal lymphoma imaged by ultrasound and Gallium-67

    SciTech Connect

    Shirkhoda, A.; Staab, E.V.; Mittelstaedt, C.A.

    1980-10-01

    Lymphomatous involvement of the kidneys, usually a secondary process, may be seen as single or multiple sonolucent or weakly echogenic masses on ultrasound. The majority of these patients have a known diagnosis of lymphoma and are being evaluated for change in nodal mass size, flank pain, and/or deteriorating renal function. Occasionally, these masses are discovered on an excretory urogram and are further investigated with ultrasound. The ultrasound findings may be confirmed with gallium scanning. Five such cases are presented along with the ultrasonic and gallium scan findings.

  15. The effects of drugs, ions, and poly-l-lysine on the excretory system of Schistosoma mansoni.

    PubMed

    Kusel, J R; Oliveira, F A; Todd, M; Ronketti, F; Lima, S F; Mattos, A C A; Reis, K T; Coelho, P M Z; Thornhill, J A; Ribeiro, F

    2006-09-01

    We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.

  16. Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage

    PubMed Central

    Habib, Samy L.; Yadav, Anamika; Kidane, Dawit; Weiss, Robert H.; Liang, Sitai

    2016-01-01

    ABSTRACT Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser792 and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy. PMID:27611085

  17. Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage.

    PubMed

    Habib, Samy L; Yadav, Anamika; Kidane, Dawit; Weiss, Robert H; Liang, Sitai

    2016-11-16

    Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser(792) and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy.

  18. Renal handling of amino acid /sup 99m/technetium chelates

    SciTech Connect

    Chattopadhyay, M.; Banerjee, S.

    1988-09-01

    Four amino acids--alanine, 2,3-diaminopropionic acid, cystine, and cystein--and also one diamine, ethylenediamine, were chelated with /sup 99m/-technetium (/sup 99m/Tc), and their renal excretion patterns were studied in rabbits in the presence and absence of two renal tubular transport inhibitors, probenecid and 2,4-dinitrophenol. From the depression of renal excretion for the first three amino acid chelates, in the presence of the inhibitors, a renal tubular excretory pathway of elimination was suggested for these compounds. The renal excretions of /sup 99m/Tc-cystein and /sup 99m/Tc-ethylenediamine however, remained undepressed under similar experimental conditions. An explanation of these observations was forwarded from the possible chemical structures of these chelates.

  19. Development of the excretory system in a polyplacophoran mollusc: stages in metanephridial system development

    PubMed Central

    2012-01-01

    Background Two types of excretory systems, protonephridia and metanephridial systems are common among bilaterians. The homology of protonephridia of lophotrochozoan taxa has been widely accepted. In contrast, the homology of metanephridial systems – including coelomic cavities as functional units – among taxa as well as the homology between the two excretory systems is a matter of ongoing discussion. This particularly concerns the molluscan kidneys, which are mostly regarded as being derived convergently to the metanephridia of e.g. annelids because of different ontogenetic origin. A reinvestigation of nephrogenesis in polyplacophorans, which carry many primitive traits within molluscs, could shed light on these questions. Results The metanephridial system of Lepidochitona corrugata develops rapidly in the early juvenile phase. It is formed from a coelomic anlage that soon achieves endothelial organization. The pericardium and heart are formed from the central portion of the anlage. The nephridial components are formed by outgrowth from lateral differentiations of the anlage. Simultaneously with formation of the heart, podocytes appear in the atrial wall of the pericardium. In addition, renopericardial ducts, kidneys and efferent nephroducts, all showing downstream ciliation towards the internal lumen, become differentiated (specimen length: 0.62 mm). Further development consists of elongation of the kidney and reinforcement of filtration and reabsorptive structures. Conclusions During development and in fully formed condition the metanephridial system of Lepidochitona corrugata shares many detailed traits (cellular and overall organization) with the protonephridia of the same species. Accordingly, we suggest a serial homology of various cell types and between the two excretory systems and the organs as a whole. The formation of the metanephridial system varies significantly within Mollusca, thus the mode of formation cannot be used as a homology criterion

  20. In vitro production of Toxocara canis excretory-secretory (TES) antigen.

    PubMed

    Thomas, Divyamol; Jeyathilakan, N; Abdul Basith, S; Senthilkumar, T M A

    2016-09-01

    Toxocara canis is a widespread gastrointestinal nematode parasite of dogs and cause Toxocara larva migrans, an important zoonotic disease in humans on ingestion of infective eggs. Toxocarosis is one of the few human parasitic diseases whose serodiagnosis uses a standardized antigen, T. canis excretory secretory antigen (TES). The present study describes collection of T. canis adult worm, collection and embryonation of T. canis eggs, hatching and separation of T. canis larvae, in vitro maintenance of T. canis second stage larvae for production of TES, concentration of culture fluid TES and yield of TES in correlation with various methods cited in literature.

  1. An ultrastructural study of excretory system development in the cercariae of Prosorhynchoides gracilescens (Rudolphi, 1819) and Prosorhynchus squamatus Odhner, 1905 (Digenea, Bucephalidae).

    PubMed

    Podvyaznaya, I M; Galaktionov, K V; Irwin, S W B

    2004-08-01

    The ultrastructure of the developing excretory system of Prosorhynchoides gracilescens and Prosorhynchus squamatus cercariae is described. The development pattern was similar in both species. In early embryos the two main collecting tubes were composed of a layer of cells which were wrapped around the lumen. Later, the tubes fused and the excretory epithelium of the fusion zone and that of the lateral caudal ducts became a syncytium. The collecting tubes in the cercarial body retained their cellular organization. As the tails grew, additional excretory pores were formed in the tail stem where thickened portions of the caudal duct epithelium contacted the surface tegument. Following this, the distal portions of the lateral caudal ducts lost contact with the primary excretory pores and progressively degenerated. Excretory atrium development started with differentiation of secretory active cytons peripheral to the fusion zone. These cells gave rise to cytoplasmic extensions that penetrated the fusion zone wall to eventually form a continuous cytoplasmic layer. This layer eventually replaced some of the fusion zone excretory epithelium and became the lining of the excretory atrium. The anterior end of the fusion zone differentiated into an excretory bladder and a short posterior portion gave rise to the caudal vesicle.

  2. Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.

    PubMed

    Sindhu, Edakkadath Raghavan; Nithya, Thattaruparambil Raveendran; Binitha, Ponnamparambil Purushothaman; Kuttan, Ramadasan

    2016-01-01

    We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.

  3. Lactulose and renal failure.

    PubMed

    Vogt, B; Frey, F J

    1997-01-01

    The introduction of lactulose as a new therapeutic agent for treatment of hepatic encephalopathy was a major breakthrough in this field. It was hypothesized that lactulose might prevent postoperative renal impairment after biliary surgery in patients with obstructive jaundice. The presumable mechanism purported was the diminished endotoxinemia by lactulose. Unfortunately, such a reno-protective effect has not been shown conclusively until now in clinical studies. In chronic renal failure lactulose is known to promote fecal excretion of water, sodium, potassium, amonium, urea, creatinine and protons. Thus, lactulose could be useful for the treatment of chronic renal failure. However, compliance to the therapy represents a major problem.

  4. Survival, activity and release of antigenic excretory secretory products and microfilariae of Setaria digitata maintained in artificial media.

    PubMed

    Sundar, S T B; D'Souza, Placid E

    2015-03-01

    The survival, activity and release of excretory secretory products from Setaria digitata, the filarial worm of cattle was studied. Adult female worms were maintained in vitro in DMEM and Tyrode solution. Worms incubated in DMEM were alive and very active for 2 days. The activity was moderate for another 2 days and after the fourth day increased mortality was observed. Antigenic excretory secretory products were also released. Worms incubated in Tyrode solution were very active without any mortality up to 4 h of incubation. Copious amount of ova and microfilaria were shed by the incubated worms in a time-dependent manner.

  5. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

    PubMed Central

    Deng, Shi; Jin, Tao; Zhang, Li; Bu, Hong; Zhang, Peng

    2016-01-01

    Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long-term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK-52E, were cultured either with oxidized low-density lipoprotein (ox-LDL), FK506, ox-LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin-like ox-LDL receptor-1 (LOX-1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis-associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague-Dawley rats were divided randomly into four groups, which included a high-fat group, FK506 group, high-fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox-LDL, ROS, and the expression levels of transforming growth factor (TGF)-β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX-1 markedly reduced the levels of TGF-β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation. PMID:27633115

  6. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds.

    PubMed

    Udy, Andrew A; Jarrett, Paul; Stuart, Janine; Lassig-Smith, Melissa; Starr, Therese; Dunlop, Rachel; Wallis, Steven C; Roberts, Jason A; Lipman, Jeffrey

    2014-11-29

    The aim of this study was to explore changes in glomerular filtration (GFR) and renal tubular function in critically ill patients at risk of augmented renal clearance (ARC), using exogenous marker compounds. This prospective, observational pharmacokinetic (PK) study was performed in a university-affiliated, tertiary-level, adult intensive care unit (ICU). Patients aged less than or equal to 60 years, manifesting a systemic inflammatory response, with an expected ICU length of stay more than 24 hours, no evidence of acute renal impairment (plasma creatinine concentration < 120 μmol/L) and no history of chronic kidney disease or renal replacement therapy were eligible for inclusion. The following study markers were administered concurrently: sinistrin 2,500 mg (Inutest; Laevosan, Linz, Austria), p-aminohippuric acid (PAH) 440 mg (4% p-aminohippuric acid sodium salt; CFM Oskar Tropitzsch, Marktredwitz, Germany), rac-pindolol 5 or 15 mg (Barbloc; Alphapharm, Millers Point, NSW, Australia) and fluconazole 100 mg (Diflucan; Pfizer Australia Pty Ltd, West Ryde, NSW, Australia). Plasma concentrations were then measured at 5, 10, 15, 30, 60 and 120 minutes and 4, 6, 12 and 24 hours post-administration. Non-compartmental PK analysis was used to quantify GFR, tubular secretion and tubular reabsorption. Twenty patients were included in the study. Marker administration was well tolerated, with no adverse events reported. Sinistrin clearance as a marker of GFR was significantly elevated (mean, 180 (95% confidence interval (CI), 141 to 219) ml/min) and correlated well with creatinine clearance (r = 0.70, P < 0.01). Net tubular secretion of PAH, a marker of tubular anion secretion, was also elevated (mean, 428 (95% CI, 306 to 550) ml/min), as was net tubular reabsorption of fluconazole (mean, 135 (95% CI, 100 to 169) ml/min). Net tubular secretion of (S)- and (R)-pinodolol, a marker of tubular cation secretion, was impaired. In critically ill patients at risk of ARC, significant

  7. Environmental factors responsible for switching on the SO₄²⁻ excretory system in the kidney of seawater eels.

    PubMed

    Watanabe, Taro; Takei, Yoshio

    2011-08-01

    Eels are unique in that they maintain lower plasma SO(4)(2-) concentration in SO(4)(2-)-rich (∼30 mM) seawater (SW) than in SO(4)(2-)-poor (<0.3 mM) freshwater (FW), showing drastic changes in SO(4)(2-) regulation between FW and SW. We previously showed that the expression of renal SO(4)(2-) transporter genes, FW-specific Slc13a1 and SW-specific Slc26a6a, changes profoundly after transfer of FW eels to SW, which results in the decrease in plasma SO(4)(2-) concentration after 3 days in SW. In this study, we attempted to identify the environmental factor(s) that trigger the switching of SO(4)(2-) regulation using changes in plasma and urine SO(4)(2-) concentrations and expression of the transporter genes as markers. Transfer of FW eels to 30 mM SO(4)(2-) or transfer of SW eels to SO(4)(2-)-free SW did not change the SO(4)(2-) regulation. Major divalent cations in SW, Mg(2+) (50 mM) and Ca(2+) (10 mM), were also ineffective, but 50 mM NaCl was effective for switching the SO(4)(2-) regulation. Further analyses using choline-Cl and Na-gluconate showed that Cl(-) is a primary factor and Na(+) is permissive for the Cl(-) effect. Since plasma SO(4)(2-) and Cl(-) concentrations were inversely correlated, we injected various solutions into the blood and found that Cl(-) alone triggered the switching from FW to SW-type regulation. Furthermore, the inhibitor of Na-Cl cotransporter (NCC) added to media significantly impaired the expression of SW-specific Slc26a6a in 150 mM NaCl. In summary, it appears that Cl(-) ions in SW are taken up into the circulation via the NCC together with Na(+), and the resultant increase in plasma Cl(-) concentration enhances SO(4)(2-) excretion by the kidney through downregulation of absorptive Slc13a1 and upregulation of excretory Slc26a6a, resulting in low plasma SO(4)(2-) concentration in SW.

  8. Immunoprotection in sheep against Haemonchus contortus using its thiol-purified excretory/secretory proteins.

    PubMed

    Arunkumar, Selvarayar

    2012-01-01

    Excretory/Secretory antigen was prepared by culturing live adult worms of Haemonchus contortus in RPMI 1640 medium at a concentration of 50 worms per mL in a culture-flask at 37 ˚C for 24 hr and the culture supernatant was used as antigen. The E/S antigen was purified by thiol-sepharose affinity chromatography. On western blot analysis, it was demonstrated that thiol-purified antigen showed a single reactive band at 66 kDa. In immunization trial, sheep were administered intramuscularly with 500 µg of thiol-purified excretory/secretory antigen along with montanide as adjuvant on day 0, 30 and 60. On ELISA, it was observed that the mean absorbance values were significantly (p ≤ 0.01) higher up to 20 weeks post immunization in Group-I (purified antigen) compared to Group- II (unimmunized control). Further, the mean EPG values was lower in Group I (200.00 ± 40.82 to 400.00 ± 91.29) than Group II (2200.00 ± 108.01 to 5100.00 ± 169.56) and the percentage reduction in mean fecal egg counts was 88.50%. Similarly, the mean abomasal worm counts was lower in Group I (808.33 ± 78.29) than Group II (3280.00 ± 147.19) and the percentage reduction in mean abomasal worm count was 75.40%.

  9. Haemonchus contortus excretory and secretory proteins (HcESPs) suppress functions of goat PBMCs in vitro.

    PubMed

    Gadahi, Javaid Ali; Yongqian, Bu; Ehsan, Muhammad; Zhang, Zhen Chao; Wang, Shuai; Yan, Ruo Feng; Song, Xiao Kai; Xu, Li Xin; Li, Xiang Rui

    2016-06-14

    Excretory and secretory products (ESPs) of nematode contain various proteins which are capable of inducing the instigation or depression of the host immune response and are involved in the pathogenesis of the worms. In the present study, Haemonchus contortus excretory and secretory products (HcESPs) were collected from the adult worms. Binding of HcESPs to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immune-fluorescence assay. Effects of the HcESPs on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production of PBMCs were checked by co-incubation of HcESPs with goat PBMCs. The results indicated that the production of IL-4 and IFN-γ were significantly decreased by HcESPs in dose dependent manner. On the contrary, the production of IL-10 and IL-17 were increased. Cell migration was significantly enhanced by HcESPs, whereas, HcESPs treatment significantly suppressed the cell proliferation and NO production. These results indicated that the HcESPs played important suppressive regulatory roles on PBMCs and provided highlights to the understanding of the host-parasite interactions.

  10. Development of the excretory system in the polyplacophoran mollusc, Lepidochitona corrugata: the protonephridium.

    PubMed

    Baeumler, Natalie; Haszprunar, Gerhard; Ruthensteiner, Bernhard

    2011-08-01

    A single pair of protonephridia is the typical larval excretory organ of molluscs. Their presence in postlarval developmental stages was discovered only recently. We found that the protonephridia of the polyplacophoran mollusc, Lepidochitona corrugata, achieve their most elaborate differentiation and become largest during the postlarval period. This study describes the protonephridia of L. corrugata using light and electron microscopy and interactive three-dimensional visualization. We focus on the postlarval developmental period, in which the protonephridia consist of three parts: the terminal part with the ultrafiltration sites at the distal end, the voluminous protonephridial kidney, and the efferent nephroduct leading to the nephropore. The ultrafiltration sites show filtration slits between regularly arranged thin pedicles. The ciliary flame originates from both the terminal cell and the duct cells of the terminal portion. The efferent duct also shows ciliation. The most conspicuous structures, the protonephridial kidneys, are voluminous swellings composed of reabsorptive cells ("nephrocytes"). These cells exhibit strong vacuolization and an infolding system increasing the basal surface. The protonephridial kidneys, previously not reported at such a level of organization in molluscs, strikingly resemble (metanephridial) kidneys of adult molluscan excretory systems. Copyright © 2011 Wiley-Liss, Inc.

  11. CELLULAR SPECIALIZATION IN THE EXCRETORY EPITHELIA OF AN INSECT, Macrosteles fascifrons STÅL (HOMOPTERA)

    PubMed Central

    Smith, David S.; Littau, Virginia C.

    1960-01-01

    An electron microscopic investigation of the Malpighian tubules of a leaf hopper, Macrosteles fascifrons, shows that these organs comprise three quite distinct cell types, and the structure of these and of the mid- and hindgut epithelial cells is described. In particular, a comparison is made between the organization of the basal and apical surfaces of cells in the Malpighian tubule and in the vertebrate kidney, and it is suggested that similarities between these excretory epithelia reflect functional parallels between them. While the midgut and one region of the Malpighian tubule bear a typical microvillar brush border, elsewhere in the tubule and in the hindgut the apical surface bears cytoplasmic leaflets or lamellae. The sole solid excretory material of these insects consists of the brochosomes, secreted by cells of one region of the Malpighian tubule. The structure, geometry, and development of these unusual bodies, apparently formed within specialized Golgi regions, has been investigated, and histochemical tests indicate that they contain lipid and protein components. PMID:19866568

  12. Characterization of excretory-secretory antigens of adult Toxocara canis by western blotting.

    PubMed

    Sudhakar, N R; Samanta, S; Sahu, Shivani; Raina, O K; Gupta, S C; Goswami, T K; Lokesh, K M; Kumar, Ashok

    2014-06-01

    Toxocara canis is one of the most common helminth worm of dogs which continues to stimulate both public health concern alongside the higher scientific interest. It may cause visceral and ocular damage in humans especially in children. The identification of specific antigens of T. canis is important so as to develop better diagnostic techniques. Excretory-secretory (ES) antigens were prepared by culturing the adult T. canis worms in RPMI 1640 medium without serum supplementation followed by ammonium sulphate precipitation. These antigens were separated using sodium dodecyl sulphate-electrophoresis (SDS-PAGE). Recovered proteins ranged from 30 to 384 kDa. The specific reactivity of the T. canis excretory-secretory (TC-ES) proteins was checked by western blotting. The immuno-reactivity of the naturally infected dog sera with the TC-ES antigens showed five bands at 43, 57,105, 139 and 175 kDa. The immuno-reactivity of the hyper immune serum raised in rabbits against TC-ES antigens was observed with ten polypeptides of 21, 25, 30, 37, 45, 50, 57, 69, 77 and 105 kDa. Common antigens band were observed at 57 and 105 KDa. These antigens merit further evaluation as candidate for use in diagnosis of toxocariasis in humans and adult dogs.

  13. Haemonchus contortus excretory and secretory proteins (HcESPs) suppress functions of goat PBMCs in vitro

    PubMed Central

    Gadahi, Javaid Ali; Yongqian, Bu; Ehsan, Muhammad; Zhang, Zhen Chao; Wang, Shuai; Yan, Ruo Feng; Song, Xiao Kai; Xu, Li Xin; Li, Xiang Rui

    2016-01-01

    Excretory and secretory products (ESPs) of nematode contain various proteins which are capable of inducing the instigation or depression of the host immune response and are involved in the pathogenesis of the worms. In the present study, Haemonchus contortus excretory and secretory products (HcESPs) were collected from the adult worms. Binding of HcESPs to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immune-fluorescence assay. Effects of the HcESPs on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production of PBMCs were checked by co-incubation of HcESPs with goat PBMCs. The results indicated that the production of IL-4 and IFN-γ were significantly decreased by HcESPs in dose dependent manner. On the contrary, the production of IL-10 and IL-17 were increased. Cell migration was significantly enhanced by HcESPs, whereas, HcESPs treatment significantly suppressed the cell proliferation and NO production. These results indicated that the HcESPs played important suppressive regulatory roles on PBMCs and provided highlights to the understanding of the host-parasite interactions. PMID:27229536

  14. Acute renal effects of endothelin-A blockade: interspecies differences.

    PubMed

    Cernacek, P; Strmen, J; Levy, M

    1998-01-01

    The acute renal effects of LU135252 (LU), a selective endothelin-A (ETA) receptor antagonist, were studied in conscious rats after i.p. administration of 1-10 mg/kg LU, and in clearance studies in anesthetized dogs during left intrarenal infusion of 0.01-0.1 mg/kg/min. In the rat (n = 12), LU (10 mg/kg i.p.) decreased diuresis (-36%), excretion of Na (-55%) and Cl (-38%) but not of K and creatinine, as measured in 8-h collections in metabolic cages. Excretion of oral NaCl load (5% of body weight) during 4 h decreased from 68 +/- 2% (vehicle) to 50.5 +/- 5% (LU; n = 12, p < 0.01). Blood pressure was not affected. In contrast, left intrarenal LU infusion at 0.01, 0.03 and 0.1 mg/kg/min in the dog (n = 4) had no effect on renal hemodynamics or excretory function, whereas it mildly decreased blood pressure. In addition, intrarenal LU (0.03 mg/kg/ min; n = 6) had no effect on the renal response to volume expansion (7% bw) by 0.9% NaCl i.v. These markedly different effects of acute ETA blockade were observed at similar systemic plasma levels of LU in the two species. It is concluded that in the rat, but not in the dog, acute blockade of ETA receptors can impair renal excretory function, most likely at the tubule level. This interspecies difference in the role of endogenous ET in the regulation of renal function is probably due to a different ET receptor profile and distribution in rat and dog kidneys.

  15. Cryoglobulinemia and renal disease.

    PubMed

    Alpers, Charles E; Smith, Kelly D

    2008-05-01

    Cryoglobulinemia occurs in a variety of clinical settings including lymphoproliferative disorders, infection and autoimmune disease. The worldwide pandemic of hepatitis C virus infection has resulted in a significant increase in its extrahepatic complications including cryoglobulinemia and renal disease. Here we review the types of cryoglobulins, mechanisms of cryoglobulin formation, links between hepatitis C virus and renal disease, and current approaches to therapy. The prevalence of cryoglobulinemia in hepatitis C virus-infected individuals is surprisingly large and may be found in more than 50% of some infected subpopulations. Most of these patients will not have overt renal disease, but there is a population of unknown size of patients with subclinical glomerular disease that has the potential to become clinically significant. In cases of hepatitis C virus-associated cryoglobulinemia, treatment remains focused on eradication of viremia, but interventions directed at B lymphocytes are increasingly utilized. The mechanisms of cryoglobulin formation and renal injury remain largely obscure, but recent evidence implicates the innate immune system in the initiation of disease. The most common renal injury associated with hepatitis C virus infection, in patients both with and without evidence of cryoglobulinemia, is membranoproliferative glomerulonephritis. There has been increasing focus on defining the mechanisms that link these processes and the evolution of renal injury in all clinical settings of cryoglobulinemia.

  16. Epigenetic Regulation of MicroRNAs Controlling CLDN14 Expression as a Mechanism for Renal Calcium Handling

    PubMed Central

    Gong, Yongfeng; Himmerkus, Nina; Plain, Allein; Bleich, Markus

    2015-01-01

    The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney—claudin-14, -16, and -19—as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases. PMID:25071082

  17. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure

    PubMed Central

    Zhang, Zhi-Hao; Vaziri, Nosratola D.; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-01-01

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF. PMID:26903149

  18. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure.

    PubMed

    Zhang, Zhi-Hao; Vaziri, Nosratola D; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-02-23

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF.

  19. [Effects and mechanisms of Qifu decoction ameliorating renal tubulointerstitial fibrosis through inhibiting ERK1/2 signaling pathway in unilateral ureteral obstruction rats with yang deficiency].

    PubMed

    Sun, Wei; Yin, Xue-Jiao; Tu, Yue; Wan, Yi-Gang; Liu, Hong; Hu, Hao

    2014-11-01

    To demonstrate the effects and mechanisms of Qifu decoction( QFD) on renal interstitial fibrosis (RIF) in model rats with yang-deficiency syndrome. The rats were randomly divided into 3 groups, the Sham group (Group A), the Model group (Group B), the Qifu decoction group (Group C) and the Enalapril group (Group D). The RIF model was established by adenine administrated and unilateral ureteral obstruction (UUO) of the left ureter. After the model was successfully established, the rats in Group C and D were administrated with QFD or the Enalapril suspension,while the rats in Group A and B were administrated with distilled water. All rats were administrated for 3 weeks. Before administration and at the end of week 1, 2 and 3, the rats were weighted, and 24 h urinary protein excretion (Upro), urinary β2-microglobulin (Uβ2-MG) and urinary N-acetyl-D-glucosaminidase (NAG) were examined, respectively. All rats were killed after administration for 3 weeks. Blood and renal tissues were collected, renal morphology and tubulointerstitial morphology were evaluated, respectively. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), blood urea nitrogen (BUN), serum creatinine (Scr) and uric acid (UA) were detected, respectively. The protein expressions of E-cadherin, α-smooth muscle actin(α-SMA), transforming growth factor-β1 (TGF-β1), onnective tissue growth factor (CTGF) extracellular signal-regulated protein kinase 1/2(ERK1/2) and phosphorylated-ERK1/2 (p-ERK1/2) in kidney were evaluated, respectively. QFD ameliorated serum cAMP level and the rate of cAMP/cGMP, attenuated urinary β2-MG level, NAG level and renal tubulointerstitial fibrosis, increased E-cadherin protein expression, and reduced α-SMA, TGF-β1, CTGF and p-ERK1/2 protein expressions in the kidney. However, QFD had no influence on renal function in vivo. In addition, these effects were better than those of the model rats treated by Enalapril. QFD could alleviate yang

  20. [Effects and mechanisms of Shenkang injection promoting extracellular matrix degradation via regulating ERK1/2/MMPs signaling pathway in renal failure rats].

    PubMed

    Yang, Jing-Jing; Mao, Zhi-Min; Wan, Yi-Gang; Wu, Wei; Huang, Yan-Ru; Shi, Ge; Han, Wen-Bei; Yao, Jian

    2016-10-01

    This study aimed to clarify preliminarily the effects and mechanisms of Shenkang injection (SKI) promoting extracellular matrix(ECM)degradation via regulating extracellular-signal regulated protein kinase(ERK)1/2/matrix metalloproteinases(MMPs)signaling pathway in renal failure rats. Twenty rats were randomly divided into 4 groups:the Sham group,the Model group,the SKI group and the Enalapril maleate(EM)group. The model rats with renal failure were induced by intragastric administration of adenine and unilateral ureteral obstruction(UUO). After modeling, the rats in SKI group and EM group were intervened by intraperitoneal injection of SKI or intragastric administration of the EM suspension,while the rats in Sham group and Model group were administrated with distilled water respectively for 3 weeks. The 24 h urinary protein excretion(Upro)and urinary N-acety1-β-D-glucosaminidase(UNAG)in all rats were tested after drug administration. All rats were sacrificed after drug administration for 3 weeks,blood and kidney were collected,renal morphological characteristics were observed. Furthermore,serum biochemical indices and the protein expressions of collagen type IV(CIV),MMP-2,MMP-9,tissue inhibitors of metalloproteinase(TIMP)-1,ERK1/2 and phosphorylated-ERK1/2(p-ERK1/2)in the kidney were evaluated respectively. The results indicated that,after the intervention of SKI,serum creatinine(Scr),blood urea nitrogen(BUN),uric acid(UA),albumin(Alb),Upro,UNAG and renal morphological change in model rats were improved at different levels,respectively. Moreover,these actions were similar to EM. In addition to these,SKI adjusted the protein expressions of MMP-2,MMP-9 and TIMP-1,and down-regulated the protein expressions of p-ERK1/2 in the kidney. Moreover,these actions were different from EM. In conclusion,SKI promotes ECM degradation and delays the progression of renal failure possibly through regulating ERK1/2 signaling pathway activation in the kidney and intervening MMPs

  1. Filterable plasma concentration, glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances in metal workers

    SciTech Connect

    Araki, S.; Aono, H.; Yokoyama, K.; Murata, K.

    1986-07-01

    To estimate filterable plasma concentration (FPx), glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances, the authors examined the regressions of the 24-hr urinary excretion on glomerular filtration rate (GFR, 24-hr endogenous creatinine (Cn) clearance) in 19 gun-metal foundry workers with blood lead (Pb) concentrations of 25-59 micrograms/dl. It was estimated that the proportion of FPx to total plasma concentration was on average 15, 7, 3, 0.6, 0.06, and 0.008% for Pb, cadmium (Cd), manganese (Mn), zinc (Zn), chromium (Cr), and copper (Cu), respectively. The estimated FPx value was 2.8 X 10(2), 4, 0.08, and 2.8 X 10(4) micrograms/dl for hippuric acid (HA), delta-aminolevulinic acid (ALA), coproporphyrin (CP), and total urinary solutes (TUS), respectively. The estimated glomerular filtration was significantly greater than the zero level for all substances but inorganic mercury (Hg). Similarly, the estimated net tubular secretion was significantly greater than the zero level for Cr, Cu, and TUS; the net tubular reabsorption was significantly greater than the zero level for Pb, ALA, and CP. The renal clearance of ''filterable'' plasma substance was significantly greater than GFR for Cr, Cu, and TUS and was significantly smaller for Pb, ALA, and CP. Thus the renal excretory mechanisms of substances were classified into four major categories: glomerular filtration for Cd, Mn, Zn, HA, and Cn; glomerular filtration and net tubular secretion for Cr, Cu, and TUS; glomerular filtration and net tubular reabsorption for Pb, ALA, and CP; and no glomerular filtration, i.e., suspected tubular secretion, for Hg.

  2. Determination of the electrophoretic pattern of somatic and excretory-secretory proteins of Ligula intestinalis parasite in spirlin (Alburnoides bipunctatus).

    PubMed

    Youssefi, M R; Hosseinifard, S M; Halimi, M; Kordafshari, S

    2012-12-01

    Ligula intestinalis parasite is a cestodes that causes remarkable damages to fish. It is also of prime importance in economic and hygienic aspects. SDS-PAGE and western blotting are the methods that can be used to determine the electerophoretic pattern of somatic and excretory-secretory proteins of parasites. In this study, after obtaining the plerocercoidal stage of this parasite from the spirlin (Alburnoides bipunctatus), its somatic proteins were prepared using ultrasonicae, and excretory-secretory proteins were prepared using the PBS solution. After protein assay, which included using the Bradford method and then SDS-PAGE on these two antigenic solutions, 5 protein bands of 26, 33, 38, 58, 70kDa in somatic antigens, and 7 bands of 25, 28, 33, 43, 49, 60, 70kDa in excretory-secretory antigens were observed. After western blotting on both antigens and adding the primary antibody (the sera of infected fish) and then the secondary antibody (Rabbit Anti-fish Polyclonal Antibody Conjugated from Abnova Corporation) no band was seen in excretory-secretory antigen. And only in the 55kDa band of somatic antigen, a positive response, in comparison of fish positive serum was observed.

  3. Renal trauma: radiological studies - comparison of urography, computed tomography, angiography, and radionuclide studies

    SciTech Connect

    Lang, E.K.; Sullivan, J.; Frentz, G.

    1985-01-01

    Excretory urography, computed radionuclide urography, angiography, and both conventional and dynamic computed tomography (CT) were compared with regard to accuracy, sensitivity, and specificity in 388 patients with renal trauma. Used as the triage examination, urography established the absence of significant renal injury with an accuracy of 87%, obviating further evaluation. Dynamic CT proved to be the best methods of assessing parenchymal injuries, establishing the correct diagnosis in 129 out of 130 cases compared to 116/130 for conventional CT. Angiography was the procedure of choice for diagnosis and categorization of renal artery injuries, which were diagnosed correctly in all 43 cases. The choice between dynamic CT and angiography as the second examination rests upon careful evaluation of clinical and urographic findings for signs of renal artery injury which would mandate angiographic assessment.

  4. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    PubMed

    Aggarwal, Kanu Priya; Tandon, Simran; Naik, Pradeep Kumar; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2013-01-01

    The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium

  5. Nuclear renal imaging in acute pyelonephritis

    SciTech Connect

    Handmaker, H.

    1982-07-01

    Patients with acute pyelonephritis may present with a spectrum of clinical signs and symptoms. There are few noninvasive diagnostic studies, however, to confirm or exclude this diagnosis. A small number of patients, generally those with severe disease, will demonstrate radiographic changes on excretory urography, but the lack of sensitivity of the IVP in early, acute pyelonephritis is well documented. Several radionuclide techniques have been proposed to assist in the earlier detection of this clinical problem including imaging with Mercury-197 chlormerodrin, Gallium-67 citrate, Technetium-99m glucoheptonate. Technetium-99m DMSA, and, more recently, Indium-111 labeled white blood cells. The success of the renal cortical imaging agents as well as those which localize in infection are described in this report. There appears to be a complimentary role or the cortical imaging agents and the radiopharmaceuticals which localize in bacterial infection. Cortical agents offer the advantage of specific assessment of functioning renal tissue and a convenient, rapid method for following the response to treatment in a noninvasive manner. A pattern is described which may be diagnostic; correlation with Gallium-67 citrate of Indium-111 WBCs may increase the probability of infection as the cause for the cortical abnormality. The measurement of differential renal function using cortical agents provides additional information to assist the clinician in predicting the late effects of infection. Improved sensitivity and specificity, and a reproducible method for following the response to therapy in patients with acute pyelonephritis are the advantages of the techniques described.

  6. Assessment of the ability of CT urography with low-dose multi-phasic excretory phases for opacification of the urinary system

    PubMed Central

    Juri, Hiroshi; Tsuboyama, Takahiro; Koyama, Mitsuhiro; Yamamoto, Kiyohito; Nakai, Go; Nakamoto, Atsushi; Yamamoto, Kazuhiro; Azuma, Haruhito; Narumi, Yoshifumi

    2017-01-01

    Objective To prospectively evaluate the ability of CT urography with a low-dose multi-phasic excretory phase for opacification of the urinary system. Materials and methods Thirty-two patients underwent CT urography with low-dose multi-phasic s using adaptive iterative dose reduction 3D acquired at 5-, 10-, and 15-minute delays. Opacification scores of the upper urinary tracts and the urinary bladder were assigned for each excretory phase by two radiologists, who recorded whether adequate (>75%) or complete (100%) opacification of the upper urinary tract and urinary bladder was achieved in each patient. Adequate and complete opacification rates of the upper urinary tracts and the urinary bladder were compared among three excretory phases and among combined multi-phasic excretory phases using Cochran's Q test. Results There was no significant difference among three excretory phases with 5-, 10-, and 15-minute delays in adequate (56.3, 43.8, and 63.5%, respectively; P = 0.174) and complete opacification rates (9.3, 15.6, and 18.7%, respectively; P = 0.417) of the upper urinary tracts. Combined tri-phasic excretory phases significantly improved adequate and complete opacification rates to 84.4% and 43.8%, respectively (P = 0.002). In contrast, there were significant differences among three excretory phases for the rate of adequate (31.3, 84.4, and 93.8%, respectively; P<0.001) and complete opacification (21.9, 53.1, and 81.3%, respectively; P<0.001) of the urinary bladder. Multi-phasic excretory phases did not improve these rates because opacification was always better with a longer delay. Conclusion Although multi-phasic acquisition of excretory phases is effective at improving opacification of the upper urinary tracts, complete opacification is difficult even with tri-phasic acquisition. PMID:28384174

  7. Renal Stones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Renal stones are never convenient, but they are a particular concern for astronauts who have limited access to treatment during flight. Researchers are examining how earthbound preventions for renal stone formation work in flight, ensuring missions are not ended prematurely due to this medical condition. The micrograph shows calcium oxalate crystals in urine. These small crystals can develop to form renal stones. Principal Investigator: Dr. Peggy Whitson, NASA Johnson Space Center, Houston, TX.

  8. Nuclear medicine and complementary modalities in renal trauma

    SciTech Connect

    Berg, B.C. Jr.

    1982-07-01

    The diagnosis of renal trauma for many years was achieved through history, clinical findings, the performance of a survey film of the abdomen, urinalysis, excretory urography, aortography, and selective renal artery arteriography. The development of the scintillation camera and the availability of /sup 99m/Tc, as well as /sup 99m/Tc labeled pharmaceuticals, approximately fifteen years ago has widened this diagnostic horizon. Exquisite new imaging modalities have become available recently. As a result of constantly improving technology, these techniques--including computed tomography, sonography, with real time enhancement, and digital video subtraction angiography--are utilized more and more frequently. The full impact of these newest wonders is not yet realized. Cost-effectiveness, radiation exposure, accumulative drug side-effects, availability of facilities and personnel and professional and technical training have become major considerations.

  9. Nuclear medicine and complementary modalities in renal trauma.

    PubMed

    Berg, B C

    1982-07-01

    The diagnosis of renal trauma for many years was achieved through history, clinical findings, the performance of a survey film of the abdomen, urinalysis, excretory urography, aortography, and selective renal artery arteriography. The development of the scintillation camera and the availability of 99mTc, as well as 99mTc labeled pharmaceuticals, approximately fifteen years ago has widened this diagnostic horizon. Exquisite new imaging modalities have become available recently. As a result of constantly improving technology, these techniques--including computed tomography, sonography, with real time enhancement, and digital video subtraction angiography--are utilized more and more frequently. The full impact of these newest wonders is not yet realized. Cost-effectiveness, radiation exposure, accumulative drug side-effects, availability of facilities and personnel and professional and technical training have become major considerations.

  10. Novel mechanism of intra‑renal angiotensin II-induced sodium/proton exchanger 3 expression by losartan in spontaneously hypertensive rats.

    PubMed

    Fan, Xiaoqin; Liu, Kaishan; Cui, Wei; Huang, Jiongmei; Wang, Weina; Gao, Yuan

    2014-11-01

    The present study aimed to investigate the molecular pharmacodynamic mechanisms of losartan used in the treatment of hypertension. A total of 12 spontaneously hypertensive rats (SHR) were divided randomly into an SHR group treated with saline and LOS group treated with losartan. Six Wistar‑kyoto rats (WKY) were enrolled as the WKY group with saline in the study. The LOS group received 30 mg/kg/day losartan by intragastric injection, while the SHR and WKY were fed the same volume of saline. The dosage was modulated according to the weekly weight. Changes in blood pressure were measured by the indirect tail cuff method. Angiotensin (Ang) II production in the plasma and renal tissue was measured by an immunoradiometric method. Na+/H+ exchanger (NHE)3 and serum and glucocorticoid‑inducible kinase (SGK)1 were assessed by quantitative polymerase chain reaction (qPCR) and western blot analysis. When compared with the WKY group, the blood pressure of the SHR and LOS groups were higher prior to treatment with losartan. Following two weeks, blood pressure was reduced and the trend continued to decrease over the following six weeks. The plasma and renal tissue levels of Ang II in the SHR and LOS groups were significantly higher than those in the WKY group. NHE3 and SGK1 were increased at the mRNA and protein level in the SHR group, and losartan reduced the expression of both of them. The results suggested that in hypertensive rats, the circular and tissue renin angiotensin systems were activated, and the increased Ang II stimulated the expression of NHE3 and SGK1, which was reduced by losartan. Therefore, the effects of losartan in hypertension may be associated with the Ang II‑SGK1‑NHE3 of intra‑renal tissue.

  11. Cytogenic effects of diatrizoate and ioxaglate on patients undergoing excretory urography

    SciTech Connect

    Nunez, M.E.; Sinues, B. )

    1990-06-01

    Possible cytogenic alterations due to radiologic contrast medium in patients undergoing a common radiologic examination is studied. Two groups of 20 patients each were used. Group I consisted of patients undergoing excretory urography, using sodium and meglumine diatrizoate as contrast. A different agent, sodium and meglumine ioxaglate, was used with group II. Three blood samples were taken from each patient before urography, immediately after urography, and 1 week later. The frequency of sister chromatid exchanges (SCE) and chromosomal aberrations (CA) were found to increase significantly in the B samples from both groups, that of group I being higher (P less than .01 compared with P less than .05). Furthermore, these alterations were found to persist in the C samples from group I. No modification of the Proliferating Rate Index (PRI) was found. The osmolarity or other components of the contrast media studied could be involved in the process. The results indicate that ioxaglate produces less cytogenic damage than diatrizoate.

  12. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis.

  13. Sandwich enzyme-linked immunosorbent assay for detection of excretory secretory antigens in humans with fascioliasis.

    PubMed Central

    Espino, A M; Finlay, C M

    1994-01-01

    A sandwich enzyme-linked immunosorbent assay has been developed for the detection of Fasciola hepatica excretory secretory (ES) antigens in stool specimens of infected humans. The assay uses antibodies against F. hepatica ES antigens. A monoclonal antibody (ES78, mouse immunoglobulin G2a) was used to capture ES antigens, and a rabbit polyclonal antibody, peroxidase conjugate, was used to identify ES antigens. Thirteen of 14 patients with parasitological evidence of fascioliasis had a detectable concentration of ES antigens (more than 15 ng/ml). None of the stool specimens from controls and from patients with parasites other than F. hepatica showed a positive reaction, suggesting the absence of cross-reactions in this assay. When the 14 patients were retested 2 months after treatment, all of the specimens from the 11 parasitologically cured patients were negative by the antigen detection assay while the specimens from the 3 patients with persisting F. hepatica eggs in their stools remained positive. PMID:8126178

  14. The hepatobiliary-like excretory function of the placenta. A review.

    PubMed

    Marin, J J G; Macias, R I R; Serrano, M A

    2003-05-01

    In the adult, several endogenous compounds, such as bile acids and biliary pigments, as well as many xenobiotics are mainly biotransformed and eliminated by the hepatobiliary system. However, because this function is immature in the foetus, this role is carried out by the placenta during the intrauterine life. This review describes current knowledge of the trophoblastic machinery responsible for this function, which includes transport and metabolic processes, similar in part to those existing in the mature liver. Because many of the studies reviewed here were conducted on human or rat near-term placentae, two aspects should be borne in mind: (i) although both types of placenta are haemochorial, profound species-specific differences at the structural, molecular and functional levels do exist, and (ii) the placenta is an organ undergoing continuous developmental changes, including its hepatobiliary-like excretory function.

  15. The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction.

    PubMed

    Kusel, John R; McVeigh, Paul; Thornhill, Joyce A

    2009-08-01

    There is a gulf between the enormous information content of the various genome projects and the understanding of the life of the parasite in the host. In vitro studies with adult Schistosoma mansoni using several substrates suggest that the excretory system contains both P-glycoproteins and multiresistance proteins. If both these families of protein were active in vivo, they could regulate parasite metabolism and be responsible for the excretion of drugs. During skin penetration, membrane-impermeant molecules of a wide range of molecular weights can be taken into the cercaria and schistosomulum through the nephridiopore, through the surface membrane or through both. We speculate that this uptake process might stimulate novel signalling pathways involved in growth and development.

  16. Renal adaptation during hibernation.

    PubMed

    Jani, Alkesh; Martin, Sandra L; Jain, Swati; Keys, Daniel; Edelstein, Charles L

    2013-12-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.

  17. Renal adaptation during hibernation

    PubMed Central

    Martin, Sandra L.; Jain, Swati; Keys, Daniel; Edelstein, Charles L.

    2013-01-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation. PMID:24049148

  18. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway

    PubMed Central

    Domínguez-Calderón, Alaide; Ávila-Flores, Antonia; Ponce, Arturo; López-Bayghen, Esther; Calderón-Salinas, José-Víctor; Luis Reyes, José; Chávez-Munguía, Bibiana; Segovia, José; Angulo, Carla; Ramírez, Leticia; Gallego-Gutiérrez, Helios; Alarcón, Lourdes; Martín-Tapia, Dolores; Bautista-García, Pablo; González-Mariscal, Lorenza

    2016-01-01

    Renal compensatory hypertrophy (RCH) restores normal kidney function after disease or loss of kidney tissue and is characterized by an increase in organ size due to cell enlargement and not to cell proliferation. In MDCK renal epithelial cells, silencing of the tight junction protein zona occludens 2 (ZO-2 KD) induces cell hypertrophy by two mechanisms: prolonging the time that cells spend at the G1 phase of the cell cycle due to an increase in cyclin D1 level, and augmenting the rate of protein synthesis. The latter is triggered by the nuclear accumulation and increased transcriptional activity of Yes-associated protein (YAP), the main target of the Hippo pathway, which results in decreased expression of phosphatase and tensin homologue. This in turn increased the level of phosphatidylinositol (3,4,5)-triphosphate, which transactivates the Akt/mammalian target of rapamycin pathway, leading to activation of the kinase S6K1 and increased synthesis of proteins and cell size. In agreement, in a rat model of uninephrectomy, RCH is accompanied by decreased expression of ZO-2 and nuclear expression of YAP. Our results reveal a novel role of ZO-2 as a modulator of cell size. PMID:27009203

  19. Neonatal renal vein thrombosis.

    PubMed

    Brandão, Leonardo R; Simpson, Ewurabena A; Lau, Keith K

    2011-12-01

    Neonatal renal vein thrombosis (RVT) continues to pose significant challenges for pediatric hematologists and nephrologists. The precise mechanism for the onset and propagation of renal thrombosis within the neonatal population is unclear, but there is suggestion that acquired and/or inherited thrombophilia traits may increase the risk for renal thromboembolic disease during the newborn period. This review summarizes the most recent studies of neonatal RVT, examining its most common features, the prevalence of acquired and inherited prothrombotic risk factors among these patients, and evaluates their short and long term renal and thrombotic outcomes as they may relate to these risk factors. Although there is some consensus regarding the management of neonatal RVT, the most recent antithrombotic therapy guidelines for the management of childhood thrombosis do not provide a risk-based algorithm for the acute management of RVT among newborns with hereditary prothrombotic disorders. Whereas neonatal RVT is not a condition associated with a high mortality rate, it is associated with significant morbidity due to renal impairment. Recent evidence to evaluate the effects of heparin-based anticoagulation and thrombolytic therapy on the long term renal function of these patients has yielded conflicting results. Long term cohort studies and randomized trials may be helpful to clarify the impact of acute versus prolonged antithrombotic therapy for reducing the morbidity that is associated with neonatal RVT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. ATP protects, by way of receptor-mediated mechanisms, against hypoxia-induced injury in renal proximal tubules.

    PubMed

    Kribben, Andreas; Feldkamp, Thorsten; Horbelt, Markus; Lange, Bettina; Pietruck, Frank; Herget-Rosenthal, Stefan; Heemann, Uwe; Philipp, Thomas

    2003-01-01

    We examined the effect of ATP on hypoxia-induced injury in freshly isolated rat renal proximal tubules and compared it with the effects of stable ATP analogues and ATP degradation products. Extracellular ATP significantly reduced hypoxia-induced structural cell damage (lactate dehydrogenase release). P(2)-receptor agonistic ATP analogues, including 2'-methylthio-ATP (2-Me-S-ATP), were also protective. In contrast, the P(1)-agonistic degradation products AMP and adenosine were not protective. Hypoxia-induced functional cell damage (loss of cellular potassium) was not changed by ATP or 2-Me-S-ATP. We therefore conclude that the protective property of ATP is not based on an effect of the degradation products or on a direct effect on cellular energy metabolism. The data indicate that the protective effect of ATP is mediated by P(2) receptors.

  1. Atherosclerotic renal artery stenosis: Current status

    PubMed Central

    Kwon, Soon Hyo; Lerman, Lilach O.

    2014-01-01

    Atherosclerotic renal artery stenosis (ARAS) remains a major cause of secondary hypertension and renal failure. Randomized, prospective trials show that medical treatment should constitute the main therapeutic approach in ARAS. Regardless of intensive treatment and adequate blood pressure control, however, renal and extra-renal complications are not uncommon. Yet, the precise mechanisms, accurate detection, and optimal treatment in ARAS remain elusive. Strategies oriented to early detection and targeting these pathogenic pathways might prevent development of clinical endpoints. Here, we review the results of recent clinical trials, current understanding of the pathogenic mechanisms, novel imaging techniques to assess renal damage in ARAS, and treatment options. PMID:25908472

  2. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts.

    PubMed

    Bai, X; Wang, X L; Tang, B; Shi, H N; Boireau, P; Rosenthal, B; Wu, X P; Liu, M Y; Liu, X L

    2016-11-15

    The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for skeletal muscle repair, notably, via their actions on myogenic precursor cells. However, these interactions during T. spiralis infection have not been characterized. In the present study, the ability of conditioned medium (CM) from J774A.1 macrophages treated with ML-ESPs to influence the differentiation of murine myoblasts, and the mechanisms of this influence, were investigated in vitro. The results showed that the expression of Myogenic Regulatory Factors (MRFs) MyoD and myogenin, myosin heavy chain (MyHC), and the p21 cyclin-dependent kinase inhibitor were reduced in CM treated cells compared to their expression in the control group. These findings indicated that CM inhibited myoblast differentiation. Conversely, CM promoted myoblast proliferation and increased cyclin D1 levels. Taken together, results of our study suggested that CM can indirectly influence myoblast differentiation and proliferation, which provides a new method for the elucidation of the complex mechanisms involved in cell-parasite and cell-cell interactions during T. spiralis infection.

  3. Responses of the surface membrane and excretory system of Schistosoma mansoni to damage and to treatment with praziquantel and other biomolecules.

    PubMed

    Oliveira, F A; Kusel, J R; Ribeiro, F; Coelho, P M Z

    2006-03-01

    Damage to the surface membrane of adult Schistosoma mansoni, and the activity of the excretory system, as shown by resorufin fluorescence, was observed following treatment with praziquantel and incubation with other molecules. Praziquantel treatment induced damage to the surface membrane as measured by the use of a variety of fluorescent compounds. The excretory system of the male worm was inhibited immediately after praziquantel treatment, but fully recovered after culture for 2 h following removal of praziquantel. The excretory system of the female, observed to be minimally active in untreated worm pairs, was often greatly activated in paired females, as shown by intense resorufin labelling, after praziquantel treatment, and this continued during recovery of the male excretory system. In experiments with normal worm pairs, the female could be activated by inhibiting the metabolic rate of the pair by a cooling procedure. The effects on the excretory system of changes in culture conditions (such as changes in pH, concentrations of bacterial lipopolysaccharide, cytokines, reactive oxygen species, compounds which remove cholesterol, such as beta-methyl cyclodextrin, and damaging basic poly-L-lysine) were also assessed. It is concluded that the extensive excretory system of the adult worm is responsive to drug treatment and to certain changes in environmental conditions. Its activity seems to be strongly linked to the integrity of the surface membrane.

  4. Renal elimination of perfluorocarboxylates (PFCAs).

    PubMed

    Han, Xing; Nabb, Diane L; Russell, Mark H; Kennedy, Gerald L; Rickard, Robert W

    2012-01-13

    Sex-, species-, and chain length-dependent renal elimination is the hallmark of mammalian elimination of perfluorocarboxylates (PFCAs) and has been extensively studied for almost 30 years. In this review, toxicokinetic data of PFCAs (chain lengths ranging from 4 to 10) in different species are compared with an emphasis on their relevance to renal elimination. PFCAs vary in their affinities to bind to serum albumins in plasma, which is an important factor in determining the renal clearance of PFCAs. PFCA-albumin binding has been well characterized and is summarized in this review. The mechanism of the sex-, species-, and chain length-dependent renal PFCA elimination is a research area that has gained continuous interest since the beginning of toxicological studies of PFCAs. It is now recognized that organic anion transport proteins play a key role in PFCA renal tubular reabsorption, a process that is sex-, species-, and chain length-dependent. Recent studies on the identification of PFCA renal transport proteins and characterization of their transport kinetics have greatly improved our understanding of the PFCA renal transport mechanism at the molecular level. A mathematical representation of this renal tubular reabsorption mechanism has been incorporated in physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoate (PFOA). Improvement of PBPK models in the future will require more accurate and quantitative characterization of renal transport pathways of PFCAs. To that end, a basolateral membrane efflux pathway for the reabsorption of PFCAs in the kidney is discussed in this review, which could provide a future research direction toward a better understanding of the mechanisms of PFCA renal elimination.

  5. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging.

    PubMed

    Zhuo, Li; Cai, Guangyan; Liu, Fuyou; Fu, Bo; Liu, Weiping; Hong, Quan; Ma, Qiang; Peng, Youming; Wang, Jianzhong; Chen, Xiangmei

    2009-10-01

    The mammalian target of rapamycin (mTOR) is relevant to cell senescence and organismal aging. This study firstly showed that the level of mTOR expression increased with aging in rat kidneys, rat mesangial cells and WI-38 cells (P < 0.05). The levels of phosphorylated-mTOR (p-mTOR), cyclin D1 and p21(WAF1/CIP1/SDI1) expression were significantly higher in WI-38 cells treated with l-leucine (an activator of mTOR) (P < 0.05). The positive staining ratio of senescence-associated beta-galactosidase, number of cells in G1 phase, and cellular volume were all increased in WI-38 cells treated with l-leucine when the cellular population doubling (PD) number was 34, while the above phenotypes did not appear in control group until its PD number reached 40 (P < 0.05). The levels of p-mTOR, cyclin D1, and p21(WAF1/CIP1/SDI1) as well as the aging-related phenotypes were all reduced in cells treated with rapamycin (an inhibitor of mTOR) than in control cells (P < 0.05). These results demonstrated that the level of mTOR was increased in kidney with aging, and that mTOR may promote cellular senescence by regulating the cell cycle through p21(WAF1/CIP1/SDI1), which might provide a new target for preventing renal aging.

  6. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  7. Ubenimex attenuates acquired sorafenib resistance in renal cell carcinoma by inhibiting Akt signaling in a lipophagy associated mechanism

    PubMed Central

    Liu, Shuai; Gao, Mingwei; Wang, Xiaoqing; Ding, Sentai; Lv, Jiaju; Gao, Dexuan; Wang, Zhiyang; Niu, Zhihong

    2016-01-01

    Sorafenib is used as first line treatment of renal cell carcinoma (RCC) due to the poor sensitivity to radiotherapy and chemotherapy of this malignancy; however, acquired resistance limits the application of sorafenib and its analogues. In this study, we explored a new strategy to overcome acquired resistance to sorafenib. The RCC cell lines 786-O and ACHN were cultured in presence of increasing concentrations of sorafenib to generate sorafenib-resistant cell lines, 786-O-R and ACHN-R. Interestingly, treatment with ubenimex (0.25 mg/ml) and 3-MA (2 mM) restored the sensitivity of resistant cell lines to sorafenib, indicating the involvement of autophagy in acquired resistance. High levels of autophagy flux were observed in resistant cells, and the opposite effects of ubenimex and 3-MA suggested a complex role for autophagy. While 3-MA abolished protection in sorafenib-resistant cells, ubenimex induced uncontrolled autophagy and autophagic cell death. Lipophagy, characterized by a lipid droplet cargo, was observed in RCC tissues and cells. In sorafenib-resistant cells, ubenimex inhibited the Akt signaling pathway that regulates autophagy. In summary, lipophagy participates in sorafenib-resistance of RCC, which could be reversed by interventions targeting the Akt pathway. PMID:27816967

  8. Renal studies in safety pharmacology and toxicology: A survey conducted in the top 15 pharmaceutical companies.

    PubMed

    Benjamin, Amanda; Gallacher, David J; Greiter-Wilke, Andrea; Guillon, Jean-Michel; Kasai, Cheiko; Ledieu, David; Levesque, Paul; Prelle, Katja; Ratcliffe, Sian; Sannajust, Frederick; Valentin, Jean-Pierre

    2015-01-01

    With the recent development of more sensitive biomarkers to assess kidney injury preclinically, a survey was designed i) to investigate what strategies are used to investigate renal toxicity in both ICH S7A compliant Safety Pharmacology (SP) studies after a single dose of a compound and within repeat-dose toxicity studies by large pharmaceutical companies today; ii) to understand whether renal SP studies have impact or utility in drug development and/or if it may be more appropriate to assess renal effects after multiple doses of compounds; iii) to ascertain how much mechanistic work is performed by the top 15 largest pharmaceutical companies (as determined by R&D revenue size); iv) to gain an insight into the impact of the validation of DIKI biomarkers and their introduction in the safety evaluation paradigm; and v) to understand the impact of renal/urinary safety study data on progression of projects. Two short anonymous surveys were submitted to SP leaders of the top 15 pharmaceutical companies, as defined by 2012 R&D portfolio size. Fourteen multiple choice questions were designed to explore the strategies used to investigate renal effects in both ICH S7A compliant SP studies and within toxicology studies. A 67% and 60% response rate was obtained in the first and second surveys, respectively. Nine out of ten respondent companies conduct renal excretory measurements (eg. urine analysis) in toxicology studies whereas only five out of ten conduct specific renal SP studies; and all of those 5 also conduct the renal excretory measurements in toxicology studies. These companies measure and/or calculate a variety of parameters as part of these studies, and also on a case by case basis include regulatory qualified and non-qualified DIKI biomarkers. Finally, only one company has used renal/urinary functional data alone to stop a project, whereas the majority of respondents combine renal data with other target organ assessments to form an integrated decision-making set

  9. Renal Scintigraphy

    MedlinePlus

    ... size with caption Related Articles and Media General Nuclear Medicine Radiation Dose in X-Ray and CT Exams X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Renal Scintigraphy Sponsored by ...

  10. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4.

    PubMed

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana; Anders, Hans-Joachim

    2012-08-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI.

  11. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4

    PubMed Central

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R.; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A.; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana

    2012-01-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI. PMID:22677551

  12. [Mechanisms of cordycepin on improving renal interstitial fibrosis via regulating eIF2α/TGF-β/Smad signaling pathway].

    PubMed

    Gu, Liu-bao; Bian, Rong-wen; Tu, Yue; Hu, Hao; Wan, Yi-gang; Sun, Wei

    2014-11-01

    To investigate the effects and mechanisms of cordycepin,an effective component of cordyceps militaris, on renal interstitial fibrosis (RIF) and its related eIF2α/TGF-β/Smad signaling pathway. Firstly, 15 C57BL/6 mice were randomly divided into 3 groups,the control group (Group A), the model group (Group B) and the cordycepin-treated group (Group C). After renal interstitial fibrotic model was successfully established by unilateral ureteral obstruction (UUO), the mice in Group C were intraperitoneally administrated with cordycepin(5 mg x kg(-1) d(-1)) and the ones in Group A and B were administrated with physiological saline for 5 days. At the end of the study, the obstructed kidneys were collected and detected for the pathological changes of RIF, and the mRNA expressions of collagen type I (Col I) and α-smooth muscle actin (α-SMA) in the kidney by Northern blot. Secondly, after renal tubular epithelial (NRK-52E) cells cultured in vitro were exposed to transforming growth factor (TGF) -β with or without cordycepin, the mRNA expressions of Col I and collagen type IV( Col IV) by Northern blot, and the protein expressions of eukaryotic initiation factor 2α (eIF2α), phosphorylated eIF2α ( p-eIF2α), Smad2/3 and phosphorylated Smad2/3 (p-Smad2/3) were tested by Western blot. In vivo, cordycepin alleviated RIF in model mice, including improving fibrotic pathological characteristics and mRNA expressions of Col I and α-SMA. In vitro, cordycepin induced the high expression of p-elF2α, and inhibited the expressions of p-Smad2/3, Col I and Col IV induced by TGF-β in NRK-52E cells. Cordycepin attenuates RIF in vivo and in vitro, probably by inducing the phosphorylation of eIF2α, suppressing the expression of p-Smad2/3, a key signaling molecule in TGF-β/Smad signaling pathway, and reducing the expressions of collagens and α-SMA in the kidney.

  13. Effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells

    PubMed Central

    Cai, Guoping; Lai, Binbin; Hong, Huaxing; Lin, Peng; Chen, Weifu; Zhu, Zhong; Chen, Haixiao

    2017-01-01

    Cryopreservation is widely used in regenerative medicine for tissue preservation. In the present study, the effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells (HUVECs) were investigated. After 0, 4, 8, 12 or 24 weeks of cryopreservation in liquid nitrogen, the HUVECs were thawed. The excretory functions markers (endothelin-1, prostaglandin E1, von Willebrand factor and nitric oxide) of HUVECs were measured by ELISA assay. The expression of intercellular adhesion molecule-1 (ICAM-1) in HUVECs was analyzed using flow cytometry. An angiogenesis assay was used to determine the angiogeneic capabilities of the thawed HUVECs. The results demonstrated that cryopreserved/thawed and recultivated HUVECs were unsuitable for tissue-engineered microvascular construction. Specifically, the excretory function of the cells was significantly decreased in the post-cryopreserved HUVECs at 24 weeks. In addition, the level of ICAM-1 in HUVECs was significantly upregulated from the fourth week of cryopreservation. Furthermore, the tube-like structure-forming potential was weakened with increasing cryopreservation duration, and the numbers of lumen and the length of the pipeline were decreased in the thawed HUVECs, in a time-dependent manner. In conclusion, the results of the present study revealed that prolonged cryopreservation may lead to HUVEC dysfunction and did not create stable cell lines for tissue-engineered microvascular construction. PMID:28586042

  14. Role of prostaglandins in the renal response to calcium infusion.

    PubMed

    Lahera, V; Fiksen-Olsen, M J; Romero, J C

    1990-04-01

    The effects of intrarenal infusions of calcium gluconate (10 and 100 micrograms Ca.kg-1.min-1) on renal hemodynamics and on renal excretory function were studied in anesthetized mongrel dogs. In one group, the two doses of calcium were infused for 30 min each (1 ml/min). In a second group, the same doses were administered 30 min after the start of an infusion of prostaglandin (PG) inhibitors (intrarenal indomethacin, 10 micrograms.kg-1.min-1, or intravenous bolus injection of meclofenamate, 5 mg/kg). No change with physiological significance was observed during the infusion of 10 micrograms Ca.kg-1.min-1. However, the infusion of 100 micrograms Ca.kg-1.min-1 induced increases (P less than 0.05) in glomerular filtration rate (50%), sodium excretion rate (180%), and fractional excretion of sodium (160%), with respect to control precalcium values. All these changes were prevented by the concurrent administration of PG synthesis inhibitors. Urinary PGE2 and 6-keto-PGF1 alpha increased 220 and 85%, respectively, during the infusion of 100 micrograms Ca.kg-1.min-1, but both decreased (P less than 0.05) below basal levels during the concurrent administration of PG synthesis inhibitors. The infusion of 100 micrograms Ca.kg-1.min-1 decreased (P less than 0.05) renal blood flow by 16% during the administration of PG synthesis inhibitors. These results suggest that PGs are mediating the increase in hemodynamic and excretory factors induced by the intrarenal infusion of 100 micrograms Ca.kg-1.min-1.

  15. Biological function and mechanism of MALAT-1 in renal cell carcinoma proliferation and apoptosis: role of the MALAT-1-Livin protein interaction.

    PubMed

    Chen, Shaoan; Ma, Pengpeng; Zhao, Ying; Li, Bin; Jiang, Shaobo; Xiong, Hui; Wang, Zheng; Wang, Hanbo; Jin, Xunbo; Liu, Chuan

    2017-09-01

    Long noncoding RNAs (lncRNAs) have been shown to play a critical role in cancer development and progression. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is a kidney cancer-associated onco-lncRNA involved in the progression of renal cell carcinoma (RCC). However, the pathological role of lncRNA MALAT-1 in RCC proliferation and metastasis remains poorly understood. This study was designed to investigate the biological role and mechanism of MALAT-1 in RCC proliferation and metastasis. The experiments were performed in human tissues, renal carcinoma cell lines, and nude mice. The expression of lncRNA MALAT-1, Livin mRNA, and the Livin protein was determined by quantitative real-time PCR (qRT-PCR) or a Western blot. The interaction between MALAT-1 and Livin was evaluated by RNA pull-down and RNA binding protein immunoprecipitation (RIP). Cell viability and apoptosis in RCC cell lines were detected using CCK-8 and TUNEL assays. LncRNA MALAT-1 and the Livin protein were highly expressed in RCC tissues, as well as in RCC 786-O and Caki-1 cell lines. MALAT-1 interference contributed to an increase in cell apoptosis and a reduction in the cell viability of 786-O and Caki-1 cells. The increase in apoptosis by si-MALAT-1 was reversed by overexpression of Livin. The RIP results showed that MALAT-1 promoted the expression of the Livin protein in 786-O and Caki-1 cells by enhancing the stability of the protein. Furthermore, the volume of si-MALAT-1-786-O cell xenograft was significantly suppressed. These data indicate that lncRNA MALAT-1-mediated promotion of RCC proliferation and metastasis may be due to the upregulation of the expression of Livin.

  16. Chronic kidney disease impairs renal nerve and haemodynamic reflex responses to vagal afferent input through a central mechanism.

    PubMed

    Salman, Ibrahim M; Hildreth, Cara M; Phillips, Jacqueline K

    2017-05-01

    We investigated age- and sex-related changes in reflex renal sympathetic nerve activity (RSNA) and haemodynamic responses to vagal afferent stimulation in a rodent model of chronic kidney disease (CKD). Using anaesthetised juvenile (7-8weeks) and adult (12-13weeks) Lewis Polycystic Kidney (LPK) and Lewis control rats of either sex (n=63 total), reflex changes in RSNA, heart rate (HR) and mean arterial pressure (MAP) to vagal afferent stimulation (5-s train, 4.0V, 2.0-ms pulses, 1-16Hz) were measured. In all groups, stimulation of the vagal afferents below 16Hz produced frequency-dependent reductions in RSNA, HR and MAP, while a 16Hz stimulus produced an initial sympathoinhibition followed by sympathoexcitation. In juvenile LPK versus age-matched Lewis, sympathoinhibition was reduced when responses were expressed as % baseline (P<0.05), but not as microvolts, while bradycardic responses were greater. Reflex depressor responses were greater (P=0.015) only in juvenile female LPK. In adult LPK, reflex sympathoinhibition (%) was blunted (P<0.05), and an age-related decline apparent (when expressed as microvolts). Reflex reductions in HR and MAP were only diminished (P<0.05) in adult female LPK versus age-matched Lewis. Peak reflex sympathoexcitation at 16Hz did not differ between groups; however, area under the curve values were greater in the LPK versus Lewis (overall, 9±1 versus 19±3μVs, P<0.05) irrespective of age, suggestive of enhanced sympathoexcitatory drive in the LPK. Our data demonstrates a progressive deficit in the central processing of vagal afferent input and a differential sex influence on reflex regulation of autonomic function and blood pressure homeostasis in CKD. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Homocysteine in Renal Injury

    PubMed Central

    Long, Yanjun; Nie, Jing

    2016-01-01

    Background Homocysteine (Hcy) is an intermediate of methionine metabolism. Hyperhomocysteinemia (HHcy) can result from a deficiency in the enzymes or vitamin cofactors required for Hcy metabolism. Patients with renal disease tend to be hyperhomocysteinemic, particularly as renal function declines, although the underlying cause of HHcy in renal disease is not entirely understood. Summary HHcy is considered a risk or pathogenic factor in the progression of chronic kidney disease (CKD) as well as the cardiovascular complications. Key Messages In this review, we summarize both clinical and experimental findings that reveal the contribution of Hcy as a pathogenic factor to the development of CKD. In addition, we discuss several important mechanisms mediating the pathogenic action of Hcy in the kidney, such as local oxidative stress, endoplasmic reticulum stress, inflammation and hypomethylation. PMID:27536696

  18. Hypertension in children. Increased efficacy of technetium Tc/sup 99m/ succimer in screening for renal disease

    SciTech Connect

    Rosen, P.R.; Treves, S.; Ingelfinger, J.

    1985-02-01

    Renal scintigraphy with technetium Tc-99m succimer (DMSA) and technetium Tc-99m pentetate (DTPA) was used to study 80 hypertensive pediatric and adolescent patients. Renal abnormalities such as asymmetry of function, size, or shape were identified in 13 patients. Both excretory urography and technetium Tc-99m pentetate studies were successful in detecting 54% of the abnormalities in patients studied; technetium Tc-99m succimer identified 92%. The accuracy of the latter was 96%, with a specificity of 97%. The ability of technetium Tc-99m succimer renal scintigraphy to identify accurately the presence or absence of renal abnormalities warrants its inclusion in the initial examination of pediatric and adolescent patients with hypertension.

  19. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  20. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.

    PubMed

    Butkytė, Stasė; Čiupas, Laurynas; Jakubauskienė, Eglė; Vilys, Laurynas; Mocevicius, Paulius; Kanopka, Arvydas; Vilkaitis, Giedrius

    2016-01-01

    An abundant class of intronic microRNAs (miRNAs) undergoes atypical Drosha-independent biogenesis in which the spliceosome governs the excision of hairpin miRNA precursors, called mirtrons. Although nearly 500 splicing-dependent miRNA candidates have been recently predicted via bioinformatic analysis of human RNA-Seq datasets, only a few of them have been experimentally validated. The detailed mechanism of miRNA processing by the splicing machinery and the roles of mirtronic miRNAs in cancer are yet to be uncovered. We experimentally examined whether biogenesis of certain miRNAs is under a splicing control by analyzing their expression levels in response to alterations in the 5'- and 3'-splice sites of a series of intron-containing minigenes carrying appropriate miRNAs. The expression levels of the miRNAs processed from mirtrons were determined by quantitative real-time PCR in five digestive tract (pancreas PANC-1, SU.86.86, T3M4, stomach KATOIII, colon HCT116) and two excretory system (kidney CaKi-1, 786-O) carcinoma cell lines as well as in pancreatic, stomach, and colorectal tumors. Transiently expressed SRSF1 and SRSF2 splicing factors were quantified by western blotting in the nuclear fractions of HCT116 cells. We found that biogenesis of the human hsa-miR-1227-3p, hsa-miR-1229-3p, and hsa-miR-1236-3p is splicing-dependent; therefore, these miRNAs can be assigned to the class of miRNAs processed by a non-canonical mirtron pathway. The expression analysis revealed a differential regulation of human mirtronic miRNAs in various cancer cell lines and tumors. In particular, hsa-miR-1229-3p is selectively upregulated in the pancreatic and stomach cancer cell lines derived from metastatic sites. Compared with the healthy controls, the expression of hsa-miR-1226-3p was significantly higher in stomach tumors but extensively downregulated in colorectal tumors. Furthermore, we provided evidence that overexpression of SRSF1 or SRSF2 can upregulate the processing of

  1. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation

    PubMed Central

    Fang, Qilu; Zou, Chunpeng; Zhong, Peng; Lin, Feng; Li, Weixin; Wang, Lintao; Zhang, Yali; Zheng, Chao; Wang, Yi; Li, Xiaokun; Liang, Guang

    2016-01-01

    Previous studies have implicated inflammation, oxidative stress, and fibrosis as key factors in the development of obesity-induced kidney diseases. Epidermal growth factor receptor (EGFR) plays an important role in cancer development. Recently, the EGFR pathway has been increasingly implicated in chronic cardiovascular diseases via regulating inflammation and oxidative stress. However, it is unclear if EGFR is involved in obesity-related kidney injury. Using ApoE−/− and C57BL/6 mice models and two specific EGFR inhibitors, we investigated the potential effects of EGFR inhibition in the treatment of obesity-related nephropathy and found that EGFR inhibition alleviates renal inflammation, oxidative stress and fibrosis. In NRK-52E cells, we also elucidated the mechanism behind hyperlipidemia-induced EGFR activation. We observed that c-Src and EGFR forms a complex, and following PA stimulation, it is the successive phosphorylation, not formation, of the c-Src/EGFR complex that results in the subsequent cascade activation. Second, we found that TLR4 regulates the activation EGFR pathway mainly through the phosphorylation of the c-Src/EGFR complex. These results demonstrate the detrimental role of EGFR in the pathogenesis of obesity-related nephropathy, provide a new understanding of the mechanism behind hyperlipidemia/FFA-induced EGFR activation, and support the use of EGFR inhibitors in the treatment of obesity-induced kidney diseases. PMID:27014908

  2. Development of the renal arterioles.

    PubMed

    Sequeira Lopez, Maria Luisa S; Gomez, R Ariel

    2011-12-01

    The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.

  3. Fetal programming of renal function.

    PubMed

    Dötsch, Jörg; Plank, Christian; Amann, Kerstin

    2012-04-01

    Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.

  4. In vitro culture of Parascaris equorum larvae and initial investigation of parasite excretory-secretory products.

    PubMed

    Burk, Steffanie V; Dangoudoubiyam, Sriveny; Brewster-Barnes, Tammy; Bryant, Uneeda K; Howe, Daniel K; Carter, Craig N; Vanzant, Eric S; Harmon, Robert J; Kazacos, Kevin R; Rossano, Mary G

    2014-11-01

    Currently, diagnosis of Parascaris equorum infection in equids is limited to patent infections. The goals of this study were to culture P. equorum larvae in vitro and identify excretory-secretory (ES) products for prepatent diagnostic testing. Parascaris equorum L2/L3 larvae were hatched and cultured for up to 3 weeks for ES product collection. Fifth stage (L5) P. equorum were also cultured for ES product collection. Examination of ES fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and silver stain revealed L2/L3 products ranging from 12-94 kDa and L5 products ranging from 12-189 kDa. Western blot analyses were conducted using polyclonal antibodies produced against P. equorum or Baylisascaris procyonis L2/L3 ES products, sera from rabbits inoculated with B. procyonis or Toxocara canis eggs, and sera from animals naturally infected with P. equorum or T. canis. Western blot results indicated parasite antigens migrating at 19 and 34 kDa may be useful for specifically detecting P. equorum infections.

  5. Excretory-secretory product of newly excysted metacercariae of Paragonimus westermani directly induces eosinophil apoptosis

    PubMed Central

    2000-01-01

    Eosinophils are important effector cells in host defense against parasites. Excretory-secretory product (ESP) produced by helminthic worms plays important roles in the uptake of nutrients, migration in the host tissue, and in immune modulation. However, little is known about the ability of the ESP to directly trigger eosinophil apoptosis. This study investigated whether the ESP of newly excysted metacercariae of Paragonimus westermani could induce apoptosis in human eosinophils. Apoptosis was assayed by staining the cells with FITC-annexin V, and the cells were analyzed by flow cytometry. It was found that the ESP of newly excysted metacercariae of P. westermani induced a direct time- and concentration-dependent increase in the rate of constitutive apoptosis in mature human eosinophils. Eosinophil apoptosis was first apparent 3 hr after treatment with the ESP and continued to increase after 6 hr of incubation with respect to the cells cultured in the absence of the ESP. While only 2.8% of the eosinophils incubated in the medium for 3 hr were apoptotic, 7.6%, 10.9% and 22.6% of the eosinophils treated with 10, 30 and 100 µg/ml ESP were apoptotic, respectively. This result suggests that the ESP of newly excysted metacercariae of P. westermani directly induce eosinophil apoptosis, which may be important for the survival of the parasites and the reduction of eosinophilic inflammation in vivo. PMID:10743354

  6. Equine antibody response to larval Parascaris equorum excretory-secretory products.

    PubMed

    Burk, Steffanie V; Dangoudoubiyam, Sriveny; Brewster-Barnes, Tammy; Howe, Daniel K; Carter, Craig N; Bryant, Uneeda K; Rossano, Mary G

    2016-08-15

    Parascaris equorum is an intestinal nematode of foals and young horses that can produce mild to severe pathology. Current diagnosis is limited to detection of patent infections, when parasite eggs are identified during fecal examinations. This study examined the use of larval P. equorum excretory-secretory (ES) products in a western blot test for diagnosis of prepatent equine P. equorum infection. Sera from adult mares negative for patent P. equorum infections, foals prior to consuming colostrum, and P. equorum infected foals were used as controls in this study. Study samples included sera from 18 broodmares prior to parturition and sera from their foals throughout the process of natural infection. Sera from study horses were examined for IgG(T) antibody recognition of ES products. Foals naturally infected with P. equorum possessed IgG(T) antibodies against 19kDa, 22kDa, 26kDa, and 34kDa ES products. However, passive transfer of colostral antibodies from mares was shown to preclude the use of the crude larval ES product-based western blot test for diagnosis of prepatent P. equorum infections in foals.

  7. Deglycosylation of Toxocara excretory-secretory antigens improves the specificity of the serodiagnosis for human toxocariasis.

    PubMed

    Roldán, W H; Elefant, G R; Ferreira, A W

    2015-11-01

    Serodiagnosis of human toxocariasis is difficult in tropical areas where other helminthiasis are endemic. Many studies have shown that glycans from helminths may be the responsible for cross-reactions in the immunoassays. In this study, we have evaluated the deglycosylation of the Toxocara canis excretory-secretory (TES) antigens for the detection of IgG antibodies using a panel of 228 serum samples (58 patients with toxocariasis, 75 patients with other helminth infections and 95 healthy individuals) by ELISA and Western blot assays. Our results showed that the deglycosylation of TES antigens resulted in a single fraction of 26 kDa (dTES) and was able to detect IgG antibodies with a sensitivity and specificity of 100% in both above-mentioned assays. The rate of cross-reactions, observed in ELISA with TES (13·3%), was significantly reduced (5·3%) when the dTES antigens were used. Likewise, the cross-reactivity observed with the fractions of 32, 55 and 70 kDa of the TES antigens was totally eliminated when the dTES were used in the Western blot. All these results showed that the deglycosylation of the TES antigens really improves the specificity of the serodiagnosis of human toxocariasis in endemic areas for helminth infections.

  8. Serodiagnosis of fasciolosis by fast protein liquid chromatography-fractionated excretory/secretory antigens.

    PubMed

    Mokhtarian, Kobra; Akhlaghi, Lame; Meamar, Ahmad Reza; Razmjou, Elham; Manouchehri Naeini, Kourosh; Gholami, Samaneh; Najafi Samei, Masoomeh; Falak, Reza

    2016-08-01

    In several studies, different antigenic preparations and diverse immunological tests were applied for serodiagnosis of Fasciola hepatica infections. Most of these preparations showed cross-reactivity with proteins of other parasites. Application of purified antigens might reduce these cross-reactivities. Here, we used fast protein liquid chromatography (FPLC)-fractionated extracts of F. hepatica excretory/secretory antigens (E/S Ags) for serodiagnosis of human and sheep fasciolosis. To develop an improved diagnostic method, we fractionated F. hepatica E/S Ags by anion exchange chromatography on a Sepharose CL-6B column and then tested the serodiagnostic values of the fractions. We used sera from F. hepatica-infected human and sheep as positive controls. Sera from patients with hydatidosis and strongyloidiasis were used for cross-reactivity studies. Enzyme-linked immunosorbent assays (ELISA) of the second FPLC peak, containing 20, 25, and 70 kDa proteins, discriminated between F. hepatica-infected and uninfected human and sheep samples. Fractionation of F. hepatica E/S Ags by FPLC is a fast and reproducible way of obtaining antigens useful for serodiagnosis of human and sheep fasciolosis with acceptable sensitivity and specificity. Graphical abstract ᅟ.

  9. Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by early infection sera.

    PubMed

    Liu, Ruo Dan; Qi, Xin; Sun, Ge Ge; Jiang, Peng; Zhang, Xi; Wang, Li Ang; Liu, Xiao Lin; Wang, Zhong Quan; Cui, Jing

    2016-11-15

    At the intestinal stage of a Trichinella spiralis (T. spiralis) infection, the excretory-secretory (ES) antigens produced by adult worms (AWs) result in an early exposure to the host's immune system and elicit the production of specific antibodies; the AW ES proteins might provide early diagnostic markers of trichinellosis. The aim of this study was to identify early serodiagnostic markers from T. spiralis AW ES antigens. T. spiralis AWs were collected at 72h post infection, and their ES antigens were analysed by SDS-PAGE and Western blot. Then, the immunoreactive bands were subjected to shotgun LC-MS/MS and bioinformatics analyses. Our results showed that only one protein band (33kDa) was recognized by the sera of mice infected with T. spiralis at 8 days after infection. The shotgun LC-MS/MS analysis identified 23 proteins that were then clustered into 10 types; these proteins had molecular weights of 28.13-71.62kDa and pI 5.05-9.20. Certain enzymes (e.g., serine protease, adult-specific deoxyribonuclease [DNase] II, peptidase S1A subfamily, and multi cystatin-like domain protein) were found to be highly represented. The functions of the 10 proteins were further analysed: of the 6 annotated proteins, 3 had serine hydrolase activity and 2 had DNase II activity. These results provide a valuable basis for identifying early diagnostic antigens and vaccine candidates for trichinellosis.

  10. Parasite excretory-secretory products and their effects on metabolic syndrome.

    PubMed

    Crowe, J; Lumb, F E; Harnett, M M; Harnett, W

    2017-01-09

    Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.

  11. In vitro culture of Mesocestoides corti metacestodes and isolation of immunomodulatory excretory-secretory products.

    PubMed

    Vendelova, E; Hrčková, G; Lutz, M B; Brehm, K; Nono Komguep, J

    2016-07-01

    Cestode-mediated diseases hold the interesting feature of persisting metacestode larvae dwelling within the host tissues, in the midst of the immune response. Excretory-secretory (ES) products of the metacestode larval stage modulate the host immune response and modify the outcome of the disease. Therefore, isolation and analysis of axenic metacestode ES products are crucial to study their properties. Here, we report the development of a system for long-term in vitro cultivation of the metacestode of the parasitic cestode Mesocestoides corti (syn. Mesocestoides vogae). Although feeder cells and host serum supported the early growth of the parasite, long-term survival was not dependent on host serum or host-derived factors enabling the collection of parasite released products in serum-free medium. Functionally, these axenic ES products recapitulated M. corti tetrathyridia's ability to inhibit LPS-driven IL-12p70 secretion by dendritic cells. Thus, our new axenic culture system will simplify the identification and characterization of M. corti-derived immunomodulatory factors that will indirectly enable the identification and characterization of corresponding factors in the metacestode larvae of medically relevant cestodes such as Echinococcus multilocularis that are not yet amenable to serum-free cultivation.

  12. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi.

    PubMed

    Moreno, Yovany; Nabhan, Joseph F; Solomon, Jonathan; Mackenzie, Charles D; Geary, Timothy G

    2010-11-16

    Ivermectin (IVM) is a broad-spectrum anthelmintic used in filariasis control programs. By binding to nematode glutamate-gated chloride channels (GluCls), IVM disrupts neurotransmission processes regulated by GluCl activity. IVM treatment of filarial infections is characterized by an initial dramatic drop in the levels of circulating microfilariae, followed by long-term suppression of their production, but the drug has little direct effect on microfilariae in culture at pharmacologically relevant concentrations. We localized Brugia malayi GluCl expression solely in a muscle structure that surrounds the microfilarial excretory-secretory (ES) vesicle, which suggests that protein release from the ES vesicle is regulated by GluCl activity. Consistent with this hypothesis, exposure to IVM in vitro decreased the amount of protein released from microfilariae. To better understand the scope of IVM effects on protein release by the parasite, three different expression patterns were identified from immunolocalization assays on a representative group of five microfilarial ES products. Patterns of expression suggest that the ES apparatus is the main source of regulated ES product release from microfilariae, as it is the only compartment that appears to be under neuromuscular control. Our results show that IVM treatment of microfilariae results in a marked reduction of protein release from the ES apparatus. Under in vivo conditions, the rapid microfilarial clearance induced by IVM treatment is proposed to result from suppression of the ability of the parasite to secrete proteins that enable evasion of the host immune system.

  13. Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system.

    PubMed

    Liao, Qi; Yuan, Xiongying; Xiao, Hui; Liu, Changning; Lv, Zhiyue; Zhao, Yi; Wu, Zhongdao

    2011-01-01

    Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES) proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM) with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome.

  14. Hepatectomy in a hepatocellular carcinoma case with Dubin-Johnson syndrome and indocyanine green excretory defect.

    PubMed

    Aoki, Hideki; Morihiro, Toshiaki; Arata, Takashi; Kanaya, Nobuhiko; Takeda, Shou; Ninomiya, Takayuki; Seita, Masayuki; Katsuda, Kou; Tanakaya, Kohji; Takeuchi, Hitoshi

    2013-02-01

    A 77-year-old male patient with history of jaundice was referred to our hospital for treatment of hepatocellular carcinoma (HCC). He was found to have Dubin-Johnson syndrome (DJS), a clinical feature of constitutional jaundice with conjugated hyperbilirubinemia, and indocyanine green (ICG) excretory defect, both of which are rare conditions. Total bilirubin was 5.1 mg/dl and ICG retention at 15 min (ICGR15) (77.1 %). Converted ICGR15 from GSA scintigraphy was 15.9 %. Resection of the medial segment and ventral region of the anterior segment of the liver as well as cholecystectomy were performed. The background of the liver tissue was blackish yellow and consistent with DJS and chronic hepatitis. Although total bilirubin level increased to 8.2 mg/dl on the 2nd postoperative day, the patient ultimately recovered and he was discharged on the 14th day. His 1- and 2-year medical checkups indicated recurrence of HCC. He underwent transarterial chemoembolization and is presently doing well 39 months after surgery. We report here on evaluation and treatment of patients with such disorders.

  15. Antigenic components of excretory-secretory products of adult Fasciola hepatica recognized in human infections.

    PubMed

    Sampaio-Silva, M L; Da Costa, J M; Da Costa, A M; Pires, M A; Lopes, S A; Castro, A M; Monjour, L

    1996-02-01

    The antigenic components of excretory-secretory products (ESP) of adult worms of Fasciola hepatica were revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using sera from 20 patients infected with F. hepatica. Sera from 184 other parasitic infections and 20 healthy volunteers were also analyzed. It was found that the ESP were composed of more than 11 polypeptides; five components detected in fascioliasis sera had molecular weights of 12.4, 16.4, 19.4, 25, and 27 kilodaltons (kD). Only the 25- and 27-kD components were recognized by all 20 fascioliasis sera. Using the ESP as antigen, it was possible to perform an enzyme-linked immunosorbent assay with a sensitivity of 95% and a specificity of 97%. Sera from other parasitic infections had antibodies to antigenic components with apparent molecular weights of 37, 38.4, 52, 63, 73, 87, 109, and 116 kD that were also found in sera from fascioliasis patients. These findings suggested that the 25- and 27-kD antigenic components may be sensitive and specific for the diagnosis of human fascioliasis.

  16. A Deep Exploration of the Transcriptome and “Excretory/Secretory” Proteome of Adult Fascioloides magna*

    PubMed Central

    Cantacessi, Cinzia; Mulvenna, Jason; Young, Neil D.; Kasny, Martin; Horak, Petr; Aziz, Ammar; Hofmann, Andreas; Loukas, Alex; Gasser, Robin B.

    2012-01-01

    Parasitic liver flukes of the family Fasciolidae are responsible for major socioeconomic losses worldwide. However, at present, knowledge of the fundamental molecular biology of these organisms is scant. Here, we characterize, for the first time, the transcriptome and secreted proteome of the adult stage of the “giant liver fluke,” Fascioloides magna, using Illumina sequencing technology and one-dimensional SDS-PAGE and OFFGEL protein electrophoresis, respectively. A total of ∼54,000,000 reads were generated and assembled into ∼39,000 contiguous sequences (contigs); ∼20,000 peptides were predicted and classified based on homology searches, protein motifs, gene ontology, and biological pathway mapping. From the predicted proteome, 48.1% of proteins could be assigned to 384 biological pathway terms, including “spliceosome,” “RNA transport,” and “endocytosis.” Putative proteins involved in amino acid degradation were most abundant. Of the 835 secreted proteins predicted from the transcriptome of F. magna, 80 were identified in the excretory/secretory products from this parasite. Highly represented were antioxidant proteins, followed by peptidases (particularly cathepsins) and proteins involved in carbohydrate metabolism. The integration of transcriptomic and proteomic datasets generated herein sets the scene for future studies aimed at exploring the potential role(s) that molecules might play at the host–parasite interface and for establishing novel strategies for the treatment or control of parasitic fluke infections. PMID:22899770

  17. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells.

    PubMed Central

    Dudley, A. J.; Brown, C. D.

    1996-01-01

    1. Previous studies have shown that the weak base, cimetidine, is actively secreted by the renal proximal tubule. In this study we have examined the transport of cimetidine by renal LLC-PK1 epithelial cell monolayers. 2. In LLC-PK1 cell monolayers the basal-to-apical flux of cimetidine was significantly greater than the apical-to basal flux, consistent with net secretion of cimetidine in a basal-to-apical direction. 3. Net secretion of cimetidine was significantly (70%) reduced by the addition of either 100 microM verapamil or 100 microM nifedipine to the apical membrane. The reduction in net secretion was the result of an inhibition of basal-to-apical flux; these agents had no effect upon flux in the apical-to-basal direction. These results suggest that cimetidine secretion is mediated primarily by P-glycoprotein located in the apical membrane. In addition we found no evidence of a role for organic cation antiport in the secretion of cimetidine. 4. In the presence of an inwardly directed proton gradient across the apical membrane (pH 6.0), cimetidine secretion was significantly reduced compared to that measured at an apical pH of 7.4. The reduction in net secretion at pH 6.0 was the result of a stimulation of cimetidine uptake across the apical membrane. This pH-dependent uptake mechanism was sensitive to inhibition by DIDS (100 microM). 5. Experiments with BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) loaded monolayers demonstrated that cimetidine influx across the apical membrane was associated with proton flow into the cell and was sensitive to inhibition by DIDS. 6. These results suggest that net secretion of cimetidine across the apical membrane is a function of the relative magnitudes of cimetidine secretion mediated by P-glycoprotein and cimetidine absorption mediated by a novel proton-coupled, DIDS-sensitive transport mechanism. PMID:8882608

  18. Replicative senescence in kidney aging, renal disease, and renal transplantation.

    PubMed

    Naesens, Maarten

    2011-01-01

    Cellular or replicative senescence is classically seen as the key element of aging. In renal disease and after kidney transplantation, there is increasing evidence that replicative senescence pathways (p53 and p16) play a central role in disease progression and graft outcome, independent of chronological age. In this review, we summarize the current concepts in the molecular mechanisms of cellular senescence, and correlate these theories with the available literature on aging of native kidneys, kidney diseases, and outcome of renal allografts. Recent data illustrate the complex biology of senescence in vivo, and disprove the concept that senescence is an intrinsic injury process with immanent deleterious consequences. Senescence acts as a homeostatic mechanism that can even limit renal fibrosis, at least in animal studies. In a human setting, it remains to be investigated whether cellular senescence plays an active or a bystander role in fibrogenesis and atrophy of renal tissue.

  19. [Regulatory mechanism of p38MAPK signaling pathway on renal tissue inflammation in chronic kidney disease and interventional effect of traditional Chinese medicine].

    PubMed

    Zhao, Qing; Wan, Yigang; Wang, Chaojun; Wei, Qingxue; Chen, Haoli; Meng, Xianjie; Yao, Jian

    2012-06-01

    The inflammatory reaction of renal tissues and its relevant tissue damages (such as glomerulosclerosis and renal interstitial fibrosis) are important factors for the development of chronic kidney diseases (CKD) to end-state renal diseases. Of them, p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in regulating expression and bioactivity of multiple nuclear transcription factors, impacting synthesis of downstream inflammatory mediators and activating inflammatory cells. Some monomer traditional Chinese medicines and their extracts (such as emodin and berberine) and some traditional Chinese medicine compound prescriptions (such as Yishen Huoxue decoction) can affect inflammatory reaction of renal tissues by regulating p38MAPK signaling pathway, thas improving reduce glomerulus and renal interstitial inflammatory injury.

  20. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS.

    PubMed

    Liu, Qing; Huang, Si-Yang; Yue, Dong-Mei; Wang, Jin-Lei; Wang, Yujian; Li, Xiangrui; Zhu, Xing-Quan

    2017-02-01

    Fasciola hepatica is a helminth parasite with a worldwide distribution, which can cause chronic liver disease, fasciolosis, leading to economic losses in the livestock and public health in many countries. Control is mostly reliant on the use of drugs, and as a result, drug resistance has now emerged. The identification of F. hepatica genes involved in interaction between the parasite and host immune system is utmost important to elucidate the evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, we aimed to identify molecules in F. hepatica excretory and secretory products (FhESPs) interacting with the host peripheral blood mononuclear cells (PBMCs), Th1-like cytokines (IL2 and IFN-γ), and Th17-like cytokines (IL17) by Co-IP combined with tandem mass spectrometry. The results showed that 14, 16, and 9 proteins in FhESPs could bind with IL2, IL17, and IFN-γ, respectively, which indicated that adult F. hepatica may evade the host immune responses through directly interplaying with cytokines. In addition, nine proteins in FhESPs could adhere to PBMCs. Our findings provided potential targets as immuno-regulators, and will be helpful to elucidate the molecular basis of host-parasite interactions and search for new potential proteins as vaccine and drug target candidates.

  1. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-03-08

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression.

  2. Effects of excretory/secretory products from Clonorchis sinensis and the carcinogen dimethylnitrosamine on the proliferation and cell cycle modulation of human epithelial HEK293T cells.

    PubMed

    Kim, Eun-Min; Kim, June-Sung; Choi, Min-Ho; Hong, Sung-Tae; Bae, Young Mee

    2008-09-01

    Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.

  3. Impact of pregnancy on underlying renal disease.

    PubMed

    Baylis, Chris

    2003-01-01

    Normal pregnancy involves marked renal vasodilation and large increases in glomerular filtration rate (GFR). Studies in rats reveal that the gestational renal vasodilation is achieved by parallel reductions in tone in afferent and efferent arterioles so GFR rises without a change in glomerular blood pressure. There is some evidence from animal studies that increased renal generation of nitric oxide (NO) may be involved. Although chronic renal vasodilation has been implicated in causing progression of renal disease in nonpregnant states by glomerular hypertension, there are no long-term deleterious effects of pregnancies on the kidney when maternal renal function is normal because glomerular blood pressure remains normal. When maternal renal function is compromised before conception, there are no long-term adverse effects on renal function in most types of renal disease, providing that the GFR is well maintained before conception. When serum creatinine exceeds approximately 1.4 mg/dL, pregnancy may accelerate the renal disease increases and when serum creatinine >2 mg/dL, the chances are greater than 1 in 3 that pregnancy will hasten the progression of the renal disease. The available animal studies suggest that glomerular hypertension does not occur despite diverse injuries. Thus, the mechanisms of the adverse interaction between pregnancy and underlying renal disease remain unknown.

  4. The innervation of the kidney in renal injury and inflammation: A cause and consequence of deranged cardiovascular control.

    PubMed

    Abdulla, Mohammed H; Johns, Edward J

    2017-02-09

    Extensive investigations have revealed that renal sympathetic nerves regulate renin secretion, tubular fluid reabsorption and renal haemodynamics which can impact on cardiovascular homoeostasis normally and in pathophysiological states. The significance of the renal afferent innervation and its role in determining the autonomic control of the cardiovascular system is uncertain. The transduction pathways at the renal afferent nerves have been shown to require pro-inflammatory mediators and TRPV1 channels. Reno-renal reflexes have been described, both inhibitory and excitatory, demonstrating that a neural link exists between kidneys and may determine the distribution of excretory and haemodynamic function between the two kidneys. The impact of renal afferent nerve activity on basal and reflex regulation of global sympathetic drive remains opaque. There is clinical and experimental evidence that in states of chronic kidney disease and renal injury there is infiltration of T-helper cells with a sympatho-excitation and blunting of the high and low pressure baroreceptor reflexes regulating renal sympathetic nerve activity. The baroreceptor deficits are renal nerve-dependent as the dysregulation can be relieved by renal denervation. There is also experimental evidence that in obese states there is a sympatho-excitation and disrupted baroreflex regulation of renal sympathetic nerve activity which is mediated by the renal innervation. This body of information provides an important basis for directing greater attention to the role of renal injury/inflammation causing an inappropriate activation of the renal afferent nerves as an important initiator of aberrant autonomic cardiovascular control. This article is protected by copyright. All rights reserved.

  5. The uptake of Texas Red-BSA in the excretory system of schistosomes and its colocalisation with ER60 promoter-induced GFP in transiently transformed adult males.

    PubMed

    Wippersteg, Volker; Ribeiro, Fabio; Liedtke, Stefanie; Kusel, John R; Grevelding, Christoph G

    2003-09-30

    The excretory system of schistosomes has focused some attention during the last years since accumulating evidence suggests that it plays an important role in the host-parasite interaction. Signalling molecules such as phosphatases, but also proteases have been localised in the excretory system. To some extent, however, localisation studies are limited by the fact that sections of fixed specimens are used. In this study, we tested the fluorescent molecules FITC-dextran and Texas Red-BSA for their ability to enter the excretory system of living Schistosoma mansoni males. It is demonstrated that the dyes selectively stain the excretory tubules which are widely distributed along the worm body. This finding was used to investigate whether the staining of worms with Texas Red-BSA can help to localise transgene activity in worms which were transiently transformed by particle bombardment. A vector was used for transformation which contained the green fluorescent protein gene, under the control of the regulatory elements of the cysteine protease ER60 gene. After transformation and staining, confocal laser scanning microscopy revealed that ER60-induced green fluorescent protein activity colocalises with Texas Red-BSA in the excretory tubules. The results suggest a role for ER60 during the host-parasite interaction. Furthermore, the colocalisation approach introduced here opens further perspectives to characterise gene-expression profiles in this parasite.

  6. Cellular Responses to Mechanical Stress Selected Contribution: A Three-Dimensional Model for Assessment of in Vitro Toxicity in Balaena Mysticetus Renal Tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  7. Ego mechanisms of defense are associated with patients' preference of treatment modality independent of psychological distress in end-stage renal disease.

    PubMed

    Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia

    2010-03-24

    Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients' treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804-0.988), had received more education (OR, 8.84; 95% CI: 1.301-60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033). On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038) and passive-aggressive defenses (OR, 0.73: 95% CI: 0.504-1.006). These results were independent of psychological distress. Our findings indicate that the patient's personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive-aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.

  8. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  9. Renal Cysts

    MedlinePlus

    ... as “simple” cysts, meaning they have a thin wall and contain water-like fluid. Renal cysts are fairly common in ... simple kidney cysts, meaning they have a thin wall and only water-like fluid inside. They are fairly common in ...

  10. Inhibition of murine renal carcinoma pulmonary metastases by systemic administration of interferon gamma: mechanism of action and potential for combination with interleukin 4.

    PubMed

    Hillman, G G; Younes, E; Visscher, D; Hamzavi, F; Kim, S; Lam, J S; Montecillo, E J; Ali, E; Pontes, J E; Puri, R K; Haas, G P

    1997-10-01

    We have previously demonstrated that IFN-gamma causes cell growth inhibition and up-regulation of MHC antigens in human renal cell carcinoma cell lines. In this study, we have investigated the therapeutic potential of IFN-gamma for the treatment of 5-day established pulmonary metastases induced by i.v. injection of Renca cells, a murine renal adenocarcinoma. We found that systemic injections of IFN-gamma significantly reduced the number of lung metastases in a dose-dependent manner and increased mouse survival. Histological evaluation of IFN-gamma-treated lungs showed residual small tumor nodules containing extensive necrosis and mononuclear infiltrates. Immunohistochemistry studies on lung sections showed macrophage infiltration into tumor nodules, and in vivo depletion of macrophages partially inhibited IFN-gamma antitumor effect, suggesting a role for the macrophages in tumor destruction. Lymphocyte depletion of either natural killer (NK) cells or CD4+ or CD8+ T-cell subsets or both T-cell subsets did not affect the IFN-gamma effect, whereas depletion of both NK and T cells decreased the antitumor activity of IFN-gamma. These data indicate that neither T cells nor NK cells are essential for this activity but that either lymphocyte population can contribute to the IFN-gamma effect. An optimal dose of IFN-gamma inhibited by 60% the growth of Renca cells treated for 3 days in vitro, but this effect was transient and less pronounced in a long-term colony assay, suggesting that IFN-gamma direct growth inhibition may play a role but may not be sufficient to mediate its antitumor effect in vivo. In vitro, IFN-gamma caused up-regulation of class I MHC antigens and induction of class II antigen expression in Renca cells, an effect that may enhance Renca immunogenicity but may be relevant only when a T-cell response is elicited. A sequential administration of IFN-gamma followed by interleukin 4 was therapeutically better than IFN-gamma alone for the treatment of advanced

  11. The harderian gland and its excretory duct in the Wistar rat. A histological and ultrastructural study.

    PubMed Central

    Djeridane, Y

    1994-01-01

    The harderian gland in the Wistar rat consists of tubules with wide lumina lined by a single layer of columnar epithelial cells possessing myoepithelial cells within their basal laminae. The gland contains porphyrin pigment which is stored as solid intraluminal deposits. The glandular epithelium possesses 2 cell types, termed A and B. These are characterised by an extraordinarily well-developed tubular smooth endoplasmic reticulum and numerous lipid vacuoles. Type A cells can be distinguished from type B by the number, size and content of the lipid vacuoles. Type A cells are more numerous. They contain large lipid vacuoles with dense ribbon-like material identical in form to the material in the luminal masses of porphyrin pigment, whereas those of type B cells are small with crescentic dense lamellar material. The content of the vacuoles is essentially released by exocytosis, but holocrine secretion also occurs. The lipids and the ribbon-like material represent the bulk of the intraluminal secretory product. The secretion of porphyrins seems to be associated with type A cells. The single excretory duct is lined by a stratified epithelium. The duct epithelium comprises serous cell types, designated C1 and C2 and scarce mucus-secreting cells. Type C1 cells are characterised by numerous dense granules, whereas type C2 cells are distinguished by lysosomal structures. Fibroblasts, macrophages, mast cells, plasma cells, fenestrated capillaries and unmyelinated axons are frequently observed in the connective tissue. The gland is surrounded by a collagenous capsule and an outer layer of endothelial cells of the orbital venous sinus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 PMID:7928644

  12. Are the unenhanced and excretory CT phases necessary for the evaluation of acute pyelonephritis?

    PubMed

    Taniguchi, Lincoln S; Torres, Ulysses S; Souza, Saulo M; Torres, Lucas R; D'Ippolito, Giuseppe

    2017-05-01

    Background The most widely accepted computed tomography (CT) protocol for diagnosis of acute pyelonephritis (APN) includes at least a pre- and post-contrast scan, which may expose patients to higher doses of ionizing radiation. Purpose To establish the accuracy, reproducibility, and degree of confidence in CT diagnosis of acute pyelonephritis (APN) and urolithiasis using only images obtained during the nephrographic phase. Material and Methods A retrospective study of 100 consecutive patients (88 women; age range, 19-70 years) with clinical and laboratory suspicion of APN and who underwent triphasic abdominal CT scans (non-contrast, nephrographic, and excretory phases) was performed. Two readers first evaluated independently only the nephrographic phase of scans, and, in a second session, the entire study. The diagnostic reference standard was settled by a third experienced radiologist who reviewed all triphasic scans and clinical data. Results The accuracy of only nephrographic phase for diagnosis of APN and urolithiasis was in the range of 90.3-91.78% and 96.27-99.25%, respectively. There was no significant difference in comparison with the triphasic reading (z: -0.4 - 0.2; P = 0.34-0.83). The average degree of confidence for APN also showed no significant variation for both readers ( P = 0.4 and 0.08). Almost perfect inter-observer agreements for the diagnosis of APN (k = 0.86, P < 0.001) and for urolithiasis (k = 0.84, P < 0.001) were observed when considering only the nephrographic phase. Conclusion CT assessment of APN and urolithiasis can be accurately performed using only the late nephrographic phase, with consequent dose reduction.

  13. Immunomodulatory effect of diethylcarbamazine citrate plus filarial excretory-secretory product on rat hepatocarcinogenesis.

    PubMed

    Abdel-Latif, Mahmoud; Sakran, Thabet; El-Shahawi, Gamal; El-Fayoumi, Hoda; El-Mallah, Al-Mahy

    2015-02-01

    Diethylcarbamazine citrate (DEC) had a significance in anti-filarial chemotherapy, while excretory-secretory product (ES) is released from adult filarial females. The target of the current study was to examine the immunomodulatory effect of DEC, Setaria equina ES or a combination of them on rat hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN). In vitro effect of combined DEC and ES or ES alone on lipopolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs) was tested through IFN-γ assay in culture supernatants. In addition, single or repeated doses of DEC, ES or DEC+ES have been applied in white albino rats to test the effect on HCC. Levels of IFN-γ and anti-ES IgG antibodies in rat serum were assayed using ELISA. Hemolytic complement activity (CH50) was determined in serum while the concentration of nitric oxide (NO) was assayed in liver tissue. The infiltration of NK cells as well as the expression of MHC Iproliferating cell nuclear antigen (PCNA), inducible NO synthase (iNOS), Bcl2 and p53 were determined using immunohistochemistry. There was a dose-dependent increase in IFN-γ after in vitro exposure to DEC+ES. Repeated ES doses increased NO concentration (p<0.05) and expression of iNOS but reduced CH50 (p<0.001), while repeated DEC+ES doses could increase anti-ES IgG (p<0.01), IFN-γ level (p<0.05) and NK cell infiltration. The same treatments could also reduce the expression of MHC I expression, PCNA, Bcl2 and p53. This study has shown immunomodulatory and protective effects of DEC+ES repeated doses on rat HCC.

  14. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites.

    PubMed

    Wang, Wendy WeiWei; Khetani, Salman R; Krzyzewski, Stacy; Duignan, David B; Obach, R Scott

    2010-10-01

    Metabolism is one of the important determinants of the overall disposition of drugs, and the profile of metabolites can have an impact on efficacy and safety. Predicting which drug metabolites will be quantitatively predominant in humans has become increasingly important in the research and development of new drugs. In this study, a novel micropatterned hepatocyte coculture system was evaluated for its ability to generate human in vivo metabolites. Twenty-seven compounds of diverse chemical structure and subject to a range of drug biotransformation reactions were assessed for metabolite profiles in the micropatterned coculture system using pooled cryopreserved human hepatocytes. The ability of this system to generate metabolites that are >10% of dose in excreta or >10% of total drug-related material in circulation was assessed and compared to previously reported data obtained in human hepatocyte suspensions, liver S-9 fraction, and liver microsomes. The micropatterned coculture system was incubated for up to 7 days without a change in medium, which offered an ability to generate metabolites for slowly metabolized compounds. The micropatterned coculture system generated 82% of the excretory metabolites that exceed 10% of dose and 75% of the circulating metabolites that exceed 10% of total circulating drug-related material, exceeds the performance of hepatocyte suspension incubations and other in vitro systems. Phase 1 and phase 2 metabolites were generated, as well as metabolites that arise via two or more sequential reactions. These results suggest that this in vitro system offers the highest performance among in vitro metabolism systems to predict major human in vivo metabolites.

  15. Application of dendritic cells stimulated with Trichinella spiralis excretory-secretory antigens alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Sofronic-Milosavljevic, L J; Radovic, I; Ilic, N; Majstorovic, I; Cvetkovic, J; Gruden-Movsesijan, A

    2013-06-01

    The parasitic nematode, Trichinella spiralis (T. spiralis), exerts an immunomodulatory effect on the host immune response through excretory-secretory products (ES L1) released from encysted muscle larvae. Our model of combined T. spiralis infection and experimental autoimmune encephalomyelitis (EAE) in Dark Agouti (DA) rats demonstrated a significant reduction in EAE severity in infected animals. Recently, we have created an immune status characteristic for the live infection by in vivo application of dendritic cells (DCs) stimulated with ES L1 products of T. spiralis muscle larvae. Moreover, these cells were able to ameliorate EAE when applied 7 days before EAE induction. ES L1-stimulated DCs increased production of IL-4, IL-10 and TGF-β, and decreased production of IFN-γ and IL-17, both at the systemic level and in target organs. A significant increase in the proportion of CD4+CD25+Foxp3+ T cells was found among spleen cells, and CNS infiltrates from DA rats treated with ES L1-stimulated DCs before EAE induction, compared to controls injected with unstimulated DCs. Regulatory T cells, together with elevated levels of IL-10 and TGF-β, are most likely involved in restraining the production of Th1 and Th17 cytokines responsible for autoimmunity and thus are responsible for the beneficial effect of ES L1-educated DCs on the course of EAE. Our results show that ES L1 antigen-stimulated DCs are able not only to provoke, but also to sustain anti-inflammatory and regulatory responses regardless of EAE induction, with subsequent amelioration of EAE, or even protection from the disease.

  16. Excretory/Secretory Products from Trichinella spiralis Adult Worms Ameliorate DSS-Induced Colitis in Mice

    PubMed Central

    Wang, Yunyun; Zhan, Bin; Gu, Yuan; Cheng, Yuli; Zhu, Xinping

    2014-01-01

    Background Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. Methods and Findings Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES) intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN), and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells) and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17) in the spleens, MLN and colon of treated mice. Conclusions Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines. PMID:24788117

  17. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice.

    PubMed

    Yang, Xiaodi; Yang, Yaping; Wang, Yunyun; Zhan, Bin; Gu, Yuan; Cheng, Yuli; Zhu, Xinping

    2014-01-01

    Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES) intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN), and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells) and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17) in the spleens, MLN and colon of treated mice. Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.

  18. Excretory-secretory and somatic antigens in the diagnosis of human filariasis.

    PubMed

    Kaushal, N A; Hussain, R; Ottesen, E A

    1984-06-01

    In order to compare the immunodiagnostic value of excretory-secretory (E-S) antigens derived from adult Brugia malayi worms with somatic antigens derived from adults, microfilariae (Mf) and infective larvae (L3) of these parasites, well defined serum pools from patients with filarial (brugia, bancrofti, loa and perstans) and non-filarial (ascaris, stronglyoides, toxocara, echinococcus, cysticercus and schistosoma) helminth infections were tested against antigens derived from these different life cycle stages of B. malayi in a Staphylococcus aureus radioimmunoprecipitation assay (S. aureus RIA). The adult brugia antigens proved significantly more discriminatory than those of the other parasite stages, with the homologous brugia serum pool also showing greater reactivity to adult than to L3 and Mf antigens. Similar results were obtained when individual sera from patients (rather than serum pools) were tested in the same assay. The most surprising finding was the minimal reactivity seen between the adult filarial antigens and the non-filarial serum pools despite the presence in these pools of strong antibody reactivity with their homologous antigens. The reasons underlying the unexpected specificity of this S. aureus RIA for discriminating among sera from filarial and non-filarial infections were analysed qualitatively by immunoprecipitation techniques. It was found that use of the chloramine-T method for radioiodination resulted in preferential labelling of the low molecular weight (mol. wt) proteins (10-70,000 daltons) in the B. malayi adult somatic antigen and that these antigens were bound primarily by the filarial and not the non-filarial serum pools. These findings suggest that lower mol. wt helminth antigens may show greater species specificity than those with higher mol. wt, and those with higher mol. wt, greater cross-reactivity. If substantiated by further analysis, such results would have important implications for the subsequent isolation of diagnostically

  19. Effect of diethylcarbamazine citrate and Setaria equina excretory-secretory material on rat hepatocellular carcinoma.

    PubMed

    Abdel-Latif, Mahmoud; Sakran, Thabet; El-Shahawi, Gamal; El-Fayoumi, Hoda; El-Mallah, Al-Mahy

    2014-12-01

    Diethylcarbamazine citrate (DEC) has been known for its efficacy to eradicate bancroftian filariasis in Egypt and other countries in the world. One of the known effects was to decrease the level of circulating filarial antigen in the patient's serum. The target of this study was to examine the effect of DEC, excretory-secretory (ES) material from the filarial parasite Setaria equina or a combination of both on the status of oxidative stress and pathogenesis of rat hepatocellular carcinoma (HCC) induced by diethylnitrosamine and 2-acetylaminofluorene. This could be tested in vitro using nitroblue tetrazolium reduction test for measuring the level of superoxide anion (O₂(•-)) released from rat peritoneal macrophages. For in vivo test, a single dose before induction of carcinogenesis or continually repeated doses with DEC, ES or DEC + ES was used. Exposure of macrophages to ES could lead to a significant decrease (p < 0.01) in O₂(•-) release, while DEC (200 μM) could modulate such effect with significant increase (p < 0.05). Pathogenesis of liver cancer and treatment were evaluated using histological investigation, level of antioxidant and liver function enzymes. Repeated ES doses could increase the activity of antioxidant enzymes, especially the catalase enzyme and show a protective effect on liver architecture. DEC could modulate the later effects when combined with ES. No significant effect on the liver function enzymes after treatment was observed. Nuclear factor κB was found to be localized only in the cytoplasm after single and repeated treatments with ES. This study could indicate the effect of S. equina ES as antioxidant against rat HCC, while DEC could modulate such effect when combined with it.

  20. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: A potential mechanism for the “obesity paradox”

    PubMed Central

    Ito, Ryuichi; Narita, Shintaro; Huang, Mingguo; Nara, Taketoshi; Numakura, Kazuyuki; Takayama, Koichiro; Tsuruta, Hiroshi; Maeno, Atsushi; Saito, Mitsuru; Inoue, Takamitsu; Tsuchiya, Norihiko; Satoh, Shigeru; Habuchi, Tomonori

    2017-01-01

    Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this “obesity paradox” is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = −0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoR1/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-O and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation- and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the “obesity paradox” of RCC. PMID:28178338

  1. Comprehensive Immunophenotypic Characterization of Adult and Fetal Testes, the Excretory Duct System, and Testicular and Epididymal Appendages.

    PubMed

    Magers, Martin J; Udager, Aaron M; Chinnaiyan, Arul M; French, Diana; Myers, Jeffrey L; Jentzen, Jeffrey M; McHugh, Jonathan B; Heider, Amer; Mehra, Rohit

    2016-08-01

    The immunophenotype of a normal testis and the excretory duct system has not been studied comprehensively in fetal and adult patients without testicular disease or hormonal manipulation so far. In addition, testicular (TA) and epididymal (EA) appendages are frequent paratesticular structures without previously reported comprehensive immunophenotypic studies. Immunohistochemistry for multiple markers, including the androgen receptor (AR), the estrogen receptor (ER), the progesterone receptor (PR), the prostate-specific antigen, the prostate-specific membrane antigen, PAX8, WT1, calretinin, CK7, CK20, OCT4, SALL4, and CD117, was performed on full sections of testicular/paratesticular tissue from a large cohort of adult and fetal autopsy patients. In contrast to adult germ cells (GC), fetal GC strongly express OCT4 and CD117, although the expression of these proteins is lost in the early postnatal period; SALL4, in contrast, is expressed in both fetal and adult GC, with only weak and focal expression in adult patients. Fetal Sertoli cells (SC) express WT1 and calretinin strongly and diffusely, in contrast to adult SC. Both fetal and adult excretory duct systems express CK7 and PAX8 with frequent AR coexpression, and all 3 main segments of the excretory duct system (ductuli efferentes, epididymis, and vas deferens) have unique immunophenotypes. The rete testis also has a unique immunohistochemical expression pattern, which includes strong expression of CK7, PAX8, WT1, calretinin, and AR. Finally, of the adult autopsy patients examined, 80% had a TA, and 60% had an EA; these paratesticular structures occurred at stereotypical locations, demonstrated reproducible morphologic features, and had a unique immunophenotype relative to other studied structures, with strong CK7, PAX8, WT1, AR, ER, and PR coexpression. The testis and the paratestis may be involved by diverse neoplastic and non-neoplastic processes, and knowledge of the immunophenotypic expression spectrum of

  2. Evaluation of Toxoplasma gondii soluble, whole and excretory/secretary antigens for diagnosis of toxoplasmosis by ELISA test.

    PubMed

    Pishkari, S; Shojaee, S; Keshavarz, H; Salimi, M; Mohebali, M

    2017-03-01

    The present study was performed to compare the soluble, whole and excretory/secretary antigens of Toxoplasma gondii (RH strain) in diagnosis of toxoplasmosis by ELISA method. Tachyzoites of T. gondii, RH strain were injected in intra-peritoneal cavity of BALB/c mice, after 4 days tachyzoites were harvested by peritoneal washing of the mice. For soluble antigen, exudates were centrifuged and sediment sonicated and then centrifuged at 4 °C, 1 h, supernatant collected and density of protein determined by Bradford method. For whole antigen after collecting, washing and centrifuging of peritoneal fluid the tachyzoites sediment was counted. In excretory/secretary antigen 1.5 × 10(8) tachyzoites were transferred in 1 ml tube of saline and incubated under mild agitation and after centrifuging, supernatant was collected and protein density determined by Bradford method. 176 human serum samples were evaluated for T. gondii IgG antibody with prepared antigens, and finally serum samples were evaluated by commercial ELISA kit (Trinity, USA) which was considered as gold standard method. In this study sensitivity and specificity of prepared antigens compared with commercial kit in ELISA method. Sensitivity and specificity of soluble antigen was 91.4 and 74.5 %, in whole antigen these parameters were 77.1 and 77.3 % and in excretory/secretary antigen were 28.5 and 74.5 % respectively. Soluble antigen had high levels of sensitivity and specificity in ELISA method and the results were rather resemble to commercial kit (Trinity, USA).

  3. [Topography and mechanisms of adhesion of uropathogenic Escherichia coli bacteria in the human kidney and renal pelvis].

    PubMed

    Vierbuchen, M; Peters, G; Ortmann, M; Pulverer, G; Fischer, R

    1989-01-01

    The occurrence and significance of bacterial carbohydrate recognition proteins (bacterial lectins) and endogenous carbohydrate binding proteins (endogenous lectins) of human urothelium as well as kidney tubulus epithelium was analyzed with respect to the adhesion of urotoxogenic Escherichia coli bacteria. Using biotinylated neoglycoproteins, we demonstrated a wide spectrum of endogenous lectins with Galactose-, Mannose-, Fucose-, N-Acetylgalactosamine-, and N-Acetylglucosamine binding activities in the urothelium. In the kidney the distal nephron and especially the medullar collecting ducts exhibited a similar spectrum of endogenous carbohydrate binding activities as detected for the urothelium. Adhesion- as well as inhibition-experiments with selective blocking of either bacterial lectins or endogenous lectins of the target cells by different carbohydrates both reduced the bacterial adhesion. However, maximal inhibition of bacterial adhesion was achieved by simultanous blocking of microbial and target cell lectins with mannose or mannan. From these results it is reasonable to conclude that specific adhesion which may result in an organotropism (urotropism) of E. coli infection is due to a dual recognition mechanism which is accomplished by the combined interaction of the bachterial and host cell lectins with the corresponding carbohydrates of E. coli and that of the target cells respectively. Further studies showed that normal human serum possesses natural antiadhesins which are represented by the glycan parts of the serum-glycoproteins.

  4. Renal papillary necrosis and pyelonephritis accompanying fenoprofen therapy.

    PubMed

    Husserl, F E; Lange, R K; Kantrow, C M

    1979-10-26

    Renal papillary necrosis occurred after fenoprofen calcium administration in a patient with systemic lupus erythematosus and urinary tract infection. Possible mechanisms of renal damage may be hypersensitivity, decreased blood flow, and decreased production of a prostaglandin E-like substance.

  5. Free radicals enzymatically triggered by Clonorchis sinensis excretory-secretory products cause NF-κB-mediated inflammation in human cholangiocarcinoma cells.

    PubMed

    Nam, Joo-Hyun; Moon, Ju Hyun; Kim, In Ki; Lee, Myoung-Ro; Hong, Sung-Jong; Ahn, Joong Ho; Chung, Jong Woo; Pak, Jhang Ho

    2012-01-01

    Chronic clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis worms and their excretory-secretory products, is associated with hepatobiliary damage, inflammation, periductal fibrosis and even development of cholangiocarcinoma. Our previous report revealed that intracellular reactive oxygen species were generated in C. sinensis excretory-secretory product-treated human cholangiocarcinoma cells; however, their endogenous sources and pathophysiological roles in host cells were not determined. In the present study, we found that treatment of human cholangiocarcinoma cells with excretory-secretory products triggered increases in free radicals via a time-dependent activation of NADPH oxidase, xanthine oxidase and inducible nitric oxide synthase. This increase in free radicals substantially promoted the degradation of cytosolic IκB-α, nuclear translocation of nuclear factor-κB subunits (RelA and p50), and increased κB consensus DNA-binding activity. Excretory-secretory product-induced nuclear factor-κB activation was markedly attenuated by preincubation with specific inhibitors of each free radical-producing enzyme or the antioxidant, N-acetylcysteine. Moreover, excretory-secretory products induced an increase in the mRNA and protein expression of the proinflammatory cytokines, IL-1β and IL-6, in an nuclear factor-κB-dependent manner, indicating that enzymatic production of free radicals in ESP-treated cells participates in nuclear factor-κB-mediated inflammation. These findings provide new insights into the pathophysiological role of C. sinensis excretory-secretory products in host chronic inflammatory processes, which are initial events in hepatobiliary diseases.

  6. Renal dysfunction in liver cirrhosis: renal duplex Doppler US vs. scintigraphy for early identification.

    PubMed

    Al-Kareemy, E A; Sobh, M A; Muhammad, A M; Mostafa, M M; Saber, R A

    1998-01-01

    A diagnostic tool to detect early renal dysfunction before it becomes irreversible would be useful in cirrhosis. This study was carried out to evaluate the role of Doppler sonography and Tc-99m DTPA renography in the detection of early renal dysfunction in patients with different grades of liver cirrhosis. Renal arteries of 43 patients with cirrhosis and normal renal function tests were compared with 15 age and gender matched normal subjects as a control group using colour Doppler sonography and Tc-99m DTPA scintigraphy. The patients were categorized into three groups, A (14), B (14) and C (15), according to a modified Child's classification that assesses the severity of liver cirrhosis. Doppler results revealed a highly significant increase in both the pulsatility and resistive indices in groups B and C compared with either group A patients or control subjects and in group C compared with group B (P < 0.001) in the main renal arteries as well as in the interlobar and arcuate arteries. Insignificant differences were observed between group A and controls (PI: control 0.96+/-0.08, group A 0.95+/-0.07, group B 1.26+/-0.06, group C 1.48+/-0.06; RI: control 0.57+/-0.02, group A 0.58+/-0.02, group B 0.66+/-0.01, group C 0.72+/-0.02). Abnormal renograms in the form of delayed appearance (34+/-14.6 s), diminished blood flow bilaterally with prolonged secretory (12+/-4.5 min) and excretory phases (> 30 min) and poor response to intravenous frusemide were only observed in group C patients. Radionuclide computed glomerular filtration rate was within the normal range in patients of group A (81+/-9.5 ml/min) and group B (78+/-8.4 ml/min) and reduced only in patients of group C (34+/-14.5 ml/min). Thus Doppler sonography can detect an increase in renal vascular resistance in patients with moderately severe cirrhosis (Child grade B) when renography was normal. We conclude that Doppler sonography can be used for earlier identification of cirrhotic patients with a higher risk of

  7. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy

    SciTech Connect

    Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B.

    1985-08-01

    The acute effects of extracorporeal shock-wave lithotripsy (ESWL) on morphology and function of the kidney were evaluated by excretory urography, quantitative radionuclide renography (QRR), and magnetic resonance imaging (MRI) in 33 consecutive patients. Excretory urograms demonstrated an enlarged kidney in seven (18%) of 41 treatments and partial or complete obstruction of the ureter by stone fragments after 15 (37%) of 41 treatments. Total effective renal plasma flow (ERPF) was not changed after ESWL, but the percentage ERPF of the treated kidney was decreased by more than 5% in 10 (30%) of 33 cases. QRR images showed partial parenchymal obstruction in 10 (25%) of 41 teated kidneys and total parenchymal obstruction in 9 (22%). MRI disclosed one or more abnormalities in 24 (63%) of 38 treated kidneys. Treated kidneys were normal by all three imaging methods in 26% and abnormal by one or more tests in 74% of cases. The morphologic and functional changes are attributed to renal contusion resulting in edema and extravasation of urine and blood into the interstitial, subcapsular, and perirenal spaces.

  8. Renal Calculi

    PubMed Central

    Yendt, E. R.

    1970-01-01

    The pathogenesis of renal calculi is reviewed in general terms followed by the results of investigation of 439 patients with renal calculi studied by the author at Toronto General Hospital over a 13-year period. Abnormalities of probable pathogenetic significance were encountered in 76% of patients. Idiopathic hypercalciuria was encountered in 42% of patients, primary hyperparathyroidism in 11%, urinary infection in 8% and miscellaneous disorders in 8%. The incidence of uric acid stones and cystinuria was 5% and 2% respectively. In the remaining 24% of patients in whom no definite abnormalities were encountered the mean urinary magnesium excretion was less than normal. Of 180 patients with idiopathic hypercalciuria, only 24 were females. In the diagnosis of hyperparathyroidism, the importance of detecting minimal degrees of hypercalcemia is stressed; attention is also drawn to the new observation that the upper limit of normal for serum calcium is slightly lower in females than in males. The efficacy of various measures advocated for the prevention of renal calculi is also reviewed. In the author's experience the administration of thiazides has been particularly effective in the prevention of calcium stones. Thiazides cause a sustained reduction in urinary calcium excretion and increase in urinary magnesium excretion. These agents also appear to affect the skeleton by diminishing bone resorption and slowing down bone turnover. PMID:5438766

  9. Assessing renal function in children with hydronephrosis - additional feature of MR urography.

    PubMed

    Hadjidekov, George; Hadjidekova, Savina; Tonchev, Zahari; Bakalova, Rumiana; Aoki, Ichio

    2011-12-01

    Magnetic resonance urography (MRU) is one of the most attractive imaging modalities in paediatric urology, providing largest diagnostic information in a single protocol. Therefore, the aim of our study was to assess the diagnostic value of MRU in children with urogenital anomalies (especially anomalies of the renal pelvis and ureter) and the renal function using different post-processing functional software. Ninety six children (7 days - 18 years old) were examined. In 54 patients of them, a static T(2) MRU was completed by excretory T(1) MRU after gadolinium administration and functional analysis has been performed using two functional analysis softwares "CHOP-fMRU" and "ImageJ" software. MRU showed suspicious renal and the whole urinary tract anomalies with excellent image quality in all children. In ureteropelvic obstruction, MRU was confirmatory to the other imaging techniques, but it was superior modality concerning the evaluation of end-ureteral anomalies. There was an excellent correlation between the MRU data and diagnosis, determined by surgery. The renal transit times, renal volumes and volumetric differential renal function were assessed separately by "CHOP-fMRU" and "ImageJ" with excellent agreement with 99(m)Tc-DTPA and among them. MRU overcomes a lot of limitations of conventional imaging modalities and has a potential to become a leading modality in paediatric uroradiology. Synthesis of both anatomical and functional criteria in MR urography enables to select the best candidates for surgical treatment. Even small kidney dysfunction can be detected by functional analysis software.

  10. Mechanisms Involving Ang II and MAPK/ERK1/2 Signaling Pathways Underlie Cardiac and Renal Alterations during Chronic Undernutrition

    PubMed Central

    Pereira-Acácio, Amaury; Luzardo, Ricardo; Sampaio, Luzia S.; Luna-Leite, Marcia A.; Lara, Lucienne S.; Einicker-Lamas, Marcelo; Panizzutti, Rogério; Madeira, Caroline; Vieira-Filho, Leucio D.; Castro-Chaves, Carmen; Ribeiro, Valdilene S.; Paixão, Ana D. O.; Medei, Emiliano; Vieyra, Adalberto

    2014-01-01

    Background Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. Methodology/Principal Findings Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. Conclusion/Significance The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood. PMID:24983243

  11. Ego mechanisms of defense are associated with patients’ preference of treatment modality independent of psychological distress in end-stage renal disease

    PubMed Central

    Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia

    2010-01-01

    Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients’ treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804–0.988), had received more education (OR, 8.84; 95% CI: 1.301–60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033). On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038) and passive–aggressive defenses (OR, 0.73: 95% CI: 0.504–1.006). These results were independent of psychological distress. Our findings indicate that the patient’s personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive–aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis. PMID:20361063

  12. Molecular Mechanism for Hypertensive Renal Disease: Differential Regulation of Chromogranin A Expression at 3'-Untranslated Region Polymorphism C+87T by MicroRNA-107.

    PubMed

    Zhang, Kuixing; Mir, Saiful A; Hightower, C Makena; Miramontes-Gonzalez, Jose Pablo; Maihofer, Adam X; Chen, Yuqing; Mahata, Sushil K; Nievergelt, Caroline M; Schork, Nicholas J; Freedman, Barry I; Vaingankar, Sucheta M; O'Connor, Daniel T

    2015-08-01

    Chromogranin A (CHGA) is coreleased with catecholamines from secretory vesicles in adrenal medulla and sympathetic axons. Genetic variation in the CHGA 3'-region has been associated with autonomic control of circulation, hypertension, and hypertensive nephropathy, and the CHGA 3'-untranslated region (3'-UTR) variant C+87T (rs7610) displayed peak associations with these traits in humans. Here, we explored the molecular mechanisms underlying these associations. C+87T occurred in a microRNA-107 (miR-107) motif (match: T>C), and CHGA mRNA expression varied inversely with miR-107 abundance. In cells transfected with chimeric luciferase/CHGA 3'-UTR reporters encoding either the T allele or the C allele, changes in miR-107 expression levels had much greater effects on expression of the T allele. Cotransfection experiments with hsa-miR-107 oligonucleotides and eukaryotic CHGA plasmids produced similar results. Notably, an in vitro CHGA transcription/translation experiment revealed that changes in hsa-miR-107 expression altered expression of the T allele variant only. Mice with targeted ablation of Chga exhibited greater eGFR. Using BAC transgenesis, we created a mouse model with a humanized CHGA locus (T/T genotype at C+87T), in which treatment with a hsa-miR-107 inhibitor yielded prolonged falls in SBP/DBP compared with wild-type mice. We conclude that the CHGA 3'-UTR C+87T disrupts an miR-107 motif, with differential effects on CHGA expression, and that a cis:trans (mRNA:miR) interaction regulates the association of CHGA with BP and hypertensive nephropathy. These results indicate new strategies for probing autonomic circulatory control and ultimately, susceptibility to hypertensive renal sequelae.

  13. Inhibitory mechanism of the nucleus of the solitary tract involved in the control of cardiovascular, dipsogenic, hormonal, and renal responses to hyperosmolality.

    PubMed

    Blanch, Graziela T; Freiria-Oliveira, André H; Murphy, David; Paulin, Renata F; Antunes-Rodrigues, José; Colombari, Eduardo; Menani, José V; Colombari, Débora S A

    2013-04-01

    The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality.

  14. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis.

    PubMed

    Deng, Chuanhuan; Sun, Jiufeng; Li, Xuerong; Wang, Lexun; Hu, Xuchu; Wang, Xiaoyun; Chen, Wenjun; Lv, Xiaoli; Liang, Chi; Li, Wenfang; Huang, Yan; Li, Ran; Wu, Zhongdao; Yu, Xinbing; Xu, Jin

    2012-10-01

    Aminopeptidases serve vital roles in metabolism of hormones, neurotransmission, turnover of proteins and immunological regulations. Leucine aminopeptidases catalyze the hydrolysis of amino-acid residues from the N-terminus of proteins and peptides. In the present study, leucine aminopeptidase 2 (LAP2) gene of Clonorchis sinensis (C. sinensis) was isolated and identified from an adult cDNA library of C. sinensis. Recombinant CsLAP2 was expressed and purified in Escherichia coli BL21. The open reading frame of LAP2 contains 1,560 bp equivalent to 519 amino acids, a similarity analysis showed a relatively low homology with Homo sapiens (19.0 %), Trypanosoma cruzi (18.0 %), Mus musculus (19.3 %), and relatively high homology with Schistosoma mansoni (65.6 %). The optimum condition of rCsLAP2 enzyme activity was investigated using a fluorescent substrate of Leu-MCA at 37 °C and pH 7.5. The K (m) and V (max) values of rCsLAP2 were 18.2 μM and 10.7 μM/min, respectively. CsLAP2 gene expression can be detected at the stages of the adult worm, metacercaria, excysted metacercaria and egg of C. sinensis using real-time PCR, no difference was observed at the stages of the adult worm, metacercaria and egg. However, CsLAP2 showed a higher expression level at the stage of excysted metacercaria than the adult worm (3.90-fold), metacercaria (4.60-fold) and egg (4.59-fold). Histochemistry analysis showed that CsLAP2 was located at the tegument and excretory vesicle of metacercaria, and the tegument and intestine of adult worm. The immune response specific to rCsLAP2 was characterized by a mixed response patterns of Th1 and Th2, indicating a compounded humoral and cellular immune response. The combined results from the present study indicate that CsLAP2 was an important antigen exposed to host immune system, and probably implicated as potential role in interaction with host cells in clonorchiasis.

  16. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.

    PubMed

    Gill, Hasreet K; Cohen, Jennifer D; Ayala-Figueroa, Jesus; Forman-Rubinsky, Rachel; Poggioli, Corey; Bickard, Kevin; Parry, Jean M; Pu, Pu; Hall, David H; Sundaram, Meera V

    2016-08-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  17. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix

    PubMed Central

    Ayala-Figueroa, Jesus; Parry, Jean M.; Pu, Pu; Hall, David H.

    2016-01-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  18. Excretory-secretory product of Paragonimus westermani newly excysted metacercariae inhibits superoxide production of granulocytes stimulated with IgG

    PubMed Central

    2000-01-01

    It is well known that the cysteine proteases in excretory-secretory product (ESP) of Paragonimus westermani newly excysted metacercariae (PwNEM) are capable of degrading IgG in vitro. Recent evidence suggests that the IgG-coated surface, such as found on parasites, is one of the most effective physiologic stimuli for granulocyte activation. Therefore, this study was designed to investigate the effect of excretory-secretory product (ESP) of PwNEM on superoxide production of granulocytes stimulated with IgG. The 96-well plates were coated with human IgG (0, 10, 30, 100 µg/ml) in the absence or presence of ESP. When granulocytes were incubated in the wells coated with human IgG in the presence of ESP, the level of superoxide production of granulocytes was reduced to about 90% when compared to the cells incubated in the wells coated with IgG alone. This inhibitory effect of the ESP on IgG-induced superoxide production of granulocytes was concentration-dependent. These results suggest that ESP secreted by PwNEM may be important in the control of effector functions of granulocytes stimulated with IgG in human paragonimiasis. PMID:10905073

  19. Protein disulphide isomerase of Ostertagia ostertagi: an excretory-secretory product of L4 and adult worms?

    PubMed

    Geldhof, P; Vercauteren, I; Knox, D; Demaere, V; Van Zeveren, A; Berx, G; Vercruysse, J; Claerebout, E

    2003-02-01

    A pepstatin A-agarose column was used in an attempt to purify a previously described antibody-degrading aspartyl proteinase from excretory-secretory material from the L4 and the adult stages of the bovine abomasal nematode Ostertagia ostertagi. However, no aspartyl proteinase activity was detected in the eluted fractions (L4Pepst and AdPepst). Screening of cDNA libraries with polyclonal antibodies raised against L4Pepst and AdPepst showed that a protein disulphide isomerase (Ost-PDI2) was present in both antigen fractions. This multifunctional enzyme was detected in extracts of L3, L4 and adult parasites and, interestingly, also in excretory-secretory material of L4 and adult O. ostertagi. By immunohistochemistry, the Ost-PDI2 enzyme was localised in some parts of the hypodermis of L4 and adult worms and in the intestinal cells of all three parasitic life stages. Two-dimensional Western blot analysis indicated that Ost-PDI2 is recognised by calves during a natural O. ostertagi infection, which suggests that Ost-PDI2 could be used for immunological control of ostertagiosis.

  20. [Western blot technique standardization for specific diagnosis of Chagas disease using excretory-secretory antigens of Trypanosoma cruzi epimastigotes].

    PubMed

    Escalante, Hermes; Jara, César; Davelois, Kelly; Iglesias, Miguel; Benites, Adderly; Espinoza, Renzo

    2014-01-01

    Evaluate the effectiveness of Western Blot for the specific diagnosis of Chagas disease using excretory-secretory antigens of Trypanosoma cruzi epimastigotes. Antigens were obtained after twenty hours of incubation in Eagle’s Minimum Essential Medium, which were prepared at a protein concentration of 0.2 ug/uL to be faced with 10 mL pool of serum from patients with Chagas disease and a conjugated anti-IgG labeled with peroxidase. The presence of the following antigens was observed: 10, 12, 14, 15, 19, 20, 23, 26, 30, 33, 36, 40, 42, 46, 58, 63, 69, 91, 100, and 112 kDa; of which antigens of 10, 12, 14, 15, 19, 20, 23, and 26 kDa were considered to be specific using pools of serum from patients with other parasitosis and serum from people with no parasites. The sensitivity of the technique was assessed using individual serum from 65 patients with Chagas disease; and the specificity with serum from 40 patients with other parasitosis, and serums from five people who did not have parasites. The technique has a sensitivity of 95.4% in the detection of one to eight specific bands, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 93.7%. Western Blot technique with excretory-secretory antigens of T. cruzi epimastigotes is effective in the diagnosis of Chagas disease in Peru; therefore, it can be used as a confirmatory test.

  1. Should excretory urography be used as a routine diagnostic procedure in patients with acute ureteric colic: a single center study.

    PubMed

    Samara, Osama A; Haroun, Dina A; Ashour, Do'a Z; Tarawneh, Emad S; Haroun, Azmi A

    2011-05-01

    The aim of this study was to find an accurate, easily available and safe imaging modality as an alternative to intravenous urography for the diagnosis of acute urinary obstruction. This retrospective study included 332 patients, who underwent both excretory urography (EU) preceeded by plain radiograph as well as ultrasonography for evaluation of acute flank pain. There were 198 male and 134 female patients. The presence or absence of urinary stones, level of obstruction, excretion delay on EU and dilated excretory system on either or both techniques were recorded. The sensitivity, specificity, predictive values, and accuracy for plain radiograph, ultrasonography, and for both modalities together were measured considering EU as a standard reference. The sensitivity and specificity of combined plain radiograph and ultrasound were 97% and 67%, respectively, with positive and negative predictive values and accuracy rates of 92%, 99%, and 97%, respectively. Our study suggests that the combination of plain radiograph and ultrasonography yields a high sensitivity, negative predictive value, and accuracy in depiction of urinary stones. Thus, EU need not be used as a routine diagnostic procedure in patients with acute obstructive uropathy.

  2. Renal Denervation

    PubMed Central

    Persu, Alexandre; Renkin, Jean; Thijs, Lutgarde; Staessen, Jan A.

    2013-01-01

    The term “ultima ratio” has multiple, though related, meanings. The motto “ultima ratio regum,” cast on the cannons of the French army of King Louis XIV, meant that war is the last argument of kings, that is, the one to be used after all diplomatic arguments have failed. Along similar lines, we propose that, given the current evidence, renal denervation should be used as a last resort, after state-of-the-art drug treatment optimized at expert centers failed to control blood pressure. PMID:22851728

  3. Focus on renal congestion in heart failure.

    PubMed

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-02-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure.

  4. Focus on renal congestion in heart failure

    PubMed Central

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-01-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure. PMID:26798459

  5. Renal disease in pregnancy.

    PubMed

    Thorsen, Martha S; Poole, Judith H

    2002-03-01

    Anatomic and physiologic adaptations within the renal system during pregnancy are significant. Alterations are seen in renal blood flow and glomerular filtration, resulting in changes in normal renal laboratory values. When these normal renal adaptations are coupled with pregnancy-induced complications or preexisting renal dysfunction, the woman may demonstrate a reduction of renal function leading to an increased risk of perinatal morbidity and mortality. This article will review normal pregnancy adaptations of the renal system and discuss common pregnancy-related renal complications.

  6. [Inhibitory Effect of the Excretory/Scretory Proteins of Trichinella spiralis on Proliferation of Human Hepatocellular Carcinoma HepG2 Cell line].

    PubMed

    Liu, Ying-jie; Xu, Jing; Huang, Hong-ying; Xu, Guo-qiang

    2015-08-01

    Human hepatocellular carcinoma HepG2 Cell line were cultured with different concentrations of excretory/secretory proteins from Trichinella spiralis, and MTT assay was used to evaluate the cell inhibition rate. After co-cultured with 300 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were observed under a fluorescence microscope with AO and EB staining. When co-cultured with 75 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were quantified by flow cytometry using Annexin V-FITC/PI stain, and the expression of cleaved-caspase 9 was detected by immunofluorescence assay. The proliferation of HepG2 cells was inhibited significantly by excretory/secretory proteins in a dosage dependant manner. Under fluorescence microscope, some HepG2 cells presented typical apoptotic morphologic changes and the cleaved-caspase 9 protein expression was higher than that of the control. The early and late apoptotic cells and necrotic ones occupied 17.9%, 7.3%, and 6.6%, respectively.

  7. The cooperation of FGF receptor and Klotho is involved in excretory canal development and regulation of metabolic homeostasis in Caenorhabditis elegans.

    PubMed

    Polanska, Urszula M; Edwards, Elisabeth; Fernig, David G; Kinnunen, Tarja K

    2011-02-18

    FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation.

  8. De novo transcriptome analysis of the excretory tubules of Carausius morosus (Phasmatodea) and possible functions of the midgut ‘appendices’

    PubMed Central

    2017-01-01

    The Malpighian tubules are the insect excretory organs, responsible for ion and water homeostasis and elimination of nitrogenous wastes. Post-genomic assays suggest they also metabolize and detoxify xenobiotic compounds and have antimicrobial properties. The Phasmatodea have an additional, unique set of excretory organs referred to predominantly as midgut appendices. Their function and how it compares to phasmid and other insect Malpighian tubules is unknown. Hypotheses include carbonic anhydrase activity, calcium and metal cation sequestration, and xenobiotic transport. This work presents the first comparative transcriptomic analysis of the Phasmatodean excretory organs, using the model insect Carausius morosus. I produced de novo transcriptomes of the midgut appendices, midgut wall, and Malpighian tubules, and looked for differentially expressed genes associated with putative organ functions. The appendices differentially and highly express lipid transport and metabolism proteins, and the biomineralization gene otopetrin. The Malpighian tubules differentially and highly express acid phosphatases and multiple transporter types, while appendices express fat-soluble vitamin and peptide transporters. Many defense proteins such as multidrug resistance proteins, ABC transporters, cytochrome P450’s, and glutathione-S-transferases were differentially expressed in specific excretory organs. I hypothesize that the appendices and Malpighian tubules both have defensive / xenobiotic metabolism functions, but each likely target different substrates. Phasmid Malpighian tubules excrete as in other insects, while the appendices may predominantly regulate amino acids, fats, and fat-soluble compounds. Lipid metabolism in insects is poorly understood, and the Phasmatodea may thus serve as a model for studying this further. PMID:28384348

  9. The Cooperation of FGF Receptor and Klotho Is Involved in Excretory Canal Development and Regulation of Metabolic Homeostasis in Caenorhabditis elegans*

    PubMed Central

    Polanska, Urszula M.; Edwards, Elisabeth; Fernig, David G.; Kinnunen, Tarja K.

    2011-01-01

    FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation. PMID:21177529

  10. Angiotensin type 2 receptor stimulation increases renal function in female, but not male, spontaneously hypertensive rats.

    PubMed

    Hilliard, Lucinda M; Chow, Charis L E; Mirabito, Katrina M; Steckelings, U Muscha; Unger, Thomas; Widdop, Robert E; Denton, Kate M

    2014-08-01

    Accumulating evidence suggests that the protective pathways of the renin-angiotensin system are enhanced in women, including the angiotensin type 2 receptor (AT2R), which mediates vasodilatory and natriuretic effects. To provide insight into the sex-specific ability of pharmacological AT2R stimulation to modulate renal function in hypertension, we examined the influence of the AT2R agonist, compound 21 (100-300 ng/kg per minute), on renal function in 18- to 19-week-old anesthetized male and female spontaneously hypertensive rats. AT2R stimulation significantly increased renal blood flow in female hypertensive rats (PTreatment<0.001), without influencing arterial pressure. For example, at 300 ng/kg per minute of compound 21, renal blood flow increased by 14.3±1.8% from baseline. Furthermore, at 300 ng/kg per minute of compound 21, a significant increase in urinary sodium excretion was observed in female hypertensive rats (+180±59% from baseline; P<0.05 versus vehicle-treated rats). This was seen in the absence of any major change in glomerular filtration rate, indicating that the natriuretic effects of AT2R stimulation were likely the result of altered renal tubular function. Conversely, we did not observe any significant effect of AT2R stimulation on renal hemodynamic or excretory function in male hypertensive rats. Finally, gene expression studies confirmed greater renal AT2R expression in female than in male hypertensive rats. Taken together, acute AT2R stimulation enhanced renal vasodilatation and sodium excretion without concomitant alterations in glomerular filtration rate in female hypertensive rats. Chronic studies of AT2R agonist therapy on renal function and arterial pressure in hypertensive states are now required to establish the suitability of AT2R as a therapeutic target for cardiovascular disease, particularly in women. © 2014 American Heart Association, Inc.

  11. Acute effects of percutaneous tract dilation on renal function and structure.

    PubMed

    Handa, Rajash K; Matlaga, Brian R; Connors, Bret A; Ying, Jun; Paterson, Ryan F; Kuo, Ramsay L; Kim, Samuel C; Lingeman, James E; Evan, Andrew P; Willis, Lynn R

    2006-12-01

    Percutaneous nephrolithotomy (PCNL) is performed on a routine basis for the rapid and efficient removal of large caliceal stones. After percutaneous puncture, rigid dilators or an inflatable balloon are used to dilate the nephrostomy tract to allow access to the collecting system for stone removal. Little is known of the acute impact of tract dilation procedures on renal function. We compared renal hemodynamic and excretory function in female pigs immediately before and up to 5 hours after percutaneous nephrostomy (PCN) using sequential Amplatz dilators (N = 8) or Nephromax balloon inflation (N = 7) and control pigs with no PCN access (N = 8). We also examined renal function in patients undergoing PCNL. The two PCN procedures produced a renal lesion of comparable size and morphology, as well as similar changes in renal function. Glomerular filtration rate (GFR), renal plasma flow (RPF), and urinary sodium excretion (U(Na)V) were significantly reduced in Amplatz- and Nephromax-treated kidneys throughout the 5-hour observation period, by about 50%, 60%, and 80%, respectively. In control pigs, GFR and RPF remained stable and U(Na)V declined progressively to about 50% of baseline over the course of the experiment. The contralateral kidney showed changes in renal function similar to those in the PCN-treated or control kidney in all three groups. A retrospective analysis of 196 adults with normal renal function who underwent unilateral PCNL using the Nephromax balloon dilator revealed a significant increase in serum creatinine of 0.14 mg/dL at 1 day. Both animal and human studies show that PCN is associated with an acute decline in renal function.

  12. Production and Actions of the Anandamide Metabolite Prostamide E2 in the Renal Medulla

    PubMed Central

    Li, Cao; Xia, Min; Poklis, Justin L.; Lichtman, Aron H.; Abdullah, Rehab A.; Dewey, William L.; Li, Pin-Lan

    2012-01-01

    Medullipin has been proposed to be an antihypertensive lipid hormone released from the renal medulla in response to increased arterial pressure and renal medullary blood flow. Because anandamide (AEA) possesses characteristics of this purported hormone, the present study tested the hypothesis that AEA or one of its metabolites represents medullipin. AEA was demonstrated to be enriched in the kidney medulla compared with cortex. Western blotting and enzymatic analyses of renal cortical and medullary microsomes revealed opposite patterns of enrichment of two AEA-metabolizing enzymes, with fatty acid amide hydrolase higher in the renal cortex and cyclooxygenase-2 (COX-2) higher in the renal medulla. In COX-2 reactions with renal medullary microsomes, prostamide E2, the ethanolamide of prostaglandin E2, was the major product detected. Intramedullarily infused AEA dose-dependently increased urine volume and sodium and potassium excretion (15–60 nmol/kg/min) but had little effect on mean arterial pressure (MAP). The renal excretory effects of AEA were blocked by intravenous infusion of celecoxib (0.1 μg/kg/min), a selective COX-2 inhibitor, suggesting the involvement of a prostamide intermediate. Plasma kinetic analysis revealed longer elimination half-lives for AEA and prostamide E2 compared with prostaglandin E2. Intravenous prostamide E2 reduced MAP and increased renal blood flow (RBF), actions opposite to those of angiotensin II. Coinfusion of prostamide E2 inhibited angiotensin II effects on MAP and RBF. These results suggest that AEA and/or its prostamide metabolites in the renal medulla may represent medullipin and function as a regulator of body fluid and MAP. PMID:22685343

  13. Glyoxalase I retards renal senescence.

    PubMed

    Ikeda, Yoichiro; Inagi, Reiko; Miyata, Toshio; Nagai, Ryoji; Arai, Makoto; Miyashita, Mitsuhiro; Itokawa, Masanari; Fujita, Toshiro; Nangaku, Masaomi

    2011-12-01

    Although kidney functions deteriorate with age, little is known about the general morphological alterations and mechanisms of renal senescence. We hypothesized that carbonyl stress causes senescence and investigated the possible role of glyoxalase I (GLO1), which detoxifies precursors of advanced glycation end products in the aging process of the kidney. We observed amelioration of senescence in GLO1-transgenic aged rats (assessed by expression levels of senescence markers such as p53, p21(WAF1/CIP1), and p16(INK4A)) and a positive rate of senescence-associated β-galactosidase (SABG) staining, associated with reduction of renal advanced glycation end product accumulation (estimated by the amount of carboxyethyl lysine). GLO1-transgenic rats showed amelioration of interstitial thickening (observed as an age-related presentation in human renal biopsy specimens) and were protected against age-dependent decline of renal functions. We used GLO1 overexpression or knockdown in primary renal proximal tubular epithelial cells to investigate the effect of GLO1 on cellular senescence. Senescence markers were significantly up-regulated in renal proximal tubular epithelial cells at late passage and in those treated with etoposide, a chemical inducer of senescence. GLO1 cellular overexpression ameliorated and knockdown enhanced the cellular senescence phenotypes. Furthermore, we confirmed the association of decreased GLO1 enzymatic activity and age-dependent deterioration of renal function in aged humans with GLO1 mutation. These findings indicate that GLO1 ameliorates carbonyl stress to retard renal senescence. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. [Primary renal angiosarcoma].

    PubMed

    Costero-Barrios, Cesáreo B; Oros-Ovalle, Cuauhtémoc

    2004-01-01

    The twenty-fourth case of primary renal angiosarcoma is described, according to the available international literature, this present in a 71-year-old male, a mechanic by trade, without carcinogenic antecedents. Hematuria, pain in flank, and left-side tumoral mass of approximately 20 cm in diameter located in kidney by computerized axial tomography (CT) constituted manifestations. A left nefrectomy was performed. No metastasis was found. The tumor replaced 4/5 of the organ and weighed 1145 g. It showed angiomatous structure with atypical proliferation of endothelial cells in a sinusoldal trauma and anastomosatic vascular channels that invaded neighboring parenchymal and capsule. Tymorous cells were positive for CD31 and CD34 and negative for cytokeratins, S100 and HMB 45 proteins. The patient was subjected to treatment with chemotherapy and radiotherapy (lineal accelerator), but 12 months after surgery he presented retroperitonal tumoral relapse and hepatic metastasis. Diagnostic differentiation with benign vascular tumors is pointed out, as well as carcinomas and sarcomas that showed an outstanding angiomatous component, both primary and/or secondary. Primary renal angiosarcoma exposes the multiplicity of localizations that it is capable of with a tumor of this type, as well as renal parenquimatous capacity to be the seat of a great variety of neoplasias.

  15. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  16. A recurrent EYA1 mutation causing alternative RNA splicing in branchio-oto-renal syndrome: implications for molecular diagnostics and disease mechanism.

    PubMed

    Stockley, Tracy L; Mendoza-Londono, Roberto; Propst, Evan J; Sodhi, Sandi; Dupuis, Lucie; Papsin, Blake C

    2009-03-01

    Branchio-oto-renal syndrome is a heterogeneous disorder inherited in an autosomal dominant pattern, characterized by branchial arch abnormalities, hearing loss and renal abnormalities, with mutations in EYA1 reported in 30-70% of patients. We have applied a molecular testing strategy of sequencing of the complete coding region/flanking intronic regions and multiple ligation probe amplification analysis of EYA1 to a pediatric branchio-oto-renal proband cohort. EYA1 mutations were identified in 82% (14/17) of the probands. We also describe a novel recurrent EYA1 mutation c.867 + 5G > A found in five unrelated affected patients. RNA analysis showed that c.867 + 5G > A affects EYA1 splicing, producing an aberrant mRNA transcript lacking exon 8 and resulting in premature termination in exon 9. The aberrant transcript was present at approximately 50% level of wild-type EYA1 mRNA in fibroblasts, and is predicted to encode an EYA1 protein retaining the amino terminal transcriptional coactivator region but lacking the conserved carboxy terminal Eya phosphatase domain. Patients with the c.867 + 5G > A mutation were found to have more severe renal abnormalities than probands with other mutations in this cohort. Analysis of the c.867 + 5G > A mutation suggests that certain transcripts of EYA1 escape nonsense-mediated decay and encode truncated EYA proteins that may be capable of dominant-negative interactions producing distinct phenotypic features within the branchio-oto-renal spectrum. 2009 Wiley-Liss, Inc.

  17. Renal Vascular Structure and Rarefaction

    PubMed Central

    Chade, Alejandro R.

    2014-01-01

    An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation. PMID:23720331

  18. Acute renal failure in the newborn.

    PubMed

    Andreoli, Sharon Phillips

    2004-04-01

    , intermittent hemodialysis, or hemofiltration with or without a dialysis circuit. The preferential use of hemofiltration by pediatric nephrologists is increasing while the use of peritoneal dialysis is decreasing except for neonates and small infants. Peritoneal dialysis has been a major modality of therapy for acute renal failure in the neonate when vascular access may be difficult to maintain. In the newborn, the prognosis and recovery from acute renal failure is highly dependent upon the underlying etiology of the acute renal failure. Factors that are associated with mortality include multiorgan failure, hypotension, need for pressors, hemodynamic instability, and need for mechanical ventilation and dialysis. The mortality and morbidity of newborns with acute renal failure is much worse in neonates with multiorgan failure. Newborns who have suffered substantial loss of nephrons as may occur in cortical necrosis are at risk for late development of renal failure after apparent recovery from the initial insult. Similarly, hypoxic/ischemic and nephrotoxic injury to the developing kidney can result is decreased nephron number. Newborns with acute renal failure need life-long monitoring of their renal function, blood pressure, and urinalysis. Typically, the late development of chronic renal failure will first becomes apparent with the development of hypertension, proteinuria, and eventually an elevated blood urea nitrogen and creatinine.

  19. [Pulmonary-renal syndrome].

    PubMed

    Risso, Jorge A; Mazzocchi, Octavio; De All, Jorge; Gnocchi, César A

    2009-01-01

    The pulmonary-renal syndrome is defined as a combination of diffuse alveolar hemorrhage and glomerulonephritis. The coexistence of these two clinical conditions is due to diseases with different pathogenic mechanisms. Primary systemic vasculitis and Goodpasture syndrome are the most frequent etiologies. Systemic lupus erythematosus, connective tissue diseases, negative anti neutrophil cytoplasmic antibody vasculitis and those secondary to drugs are far less common causes. An early diagnosis based on clinical, radiologic, laboratory and histologic criteria enables early treatment, thus diminishing its high morbidity-mortality rate. Therapy is based on high doses of corticosteroids, immunosuppressants, tumor necrosis factor inhibitors and plasmapheresis.

  20. Effect of a 30-day isolation stress on calcium, phosphorus and other excretory products in an unrestrained chimpanzee.

    NASA Technical Reports Server (NTRS)

    Sabbot, I. M.; Mcnew, J. J.; Hoshizaki, T.; Sedgwick, C. J.; Adey, W. R.

    1972-01-01

    An unrestrained chimpanzee was studied in an isolation chamber and in his home cage environment. The study consisted of 49 urine collection days (14 days pre-, 5 days post- and 30 days of isolation), and then of 10 days in the home cage. Dietary intake, urine and fecal data were obtained. The effect of isolation on various excretory parameters was studied. Urine samples were analyzed for volume, osmolarity, creatinine, creatine, urea-N, 17-hydroxy corticosteroids, VMA, calcium and inorganic phosphorus. One way analyses of variance performed on the urinary excretion parameters showed all except creatinine excretion to vary significantly during periods of the study. The changes observed in calcium and phosphorus were highly significant. The data suggests that the calcium to phosphorus excretion ratio might serve as a physiological stress indicator of Selye's adaptation syndrome (period of resistance).

  1. Effect of a 30-day isolation stress on calcium, phosphorus and other excretory products in an unrestrained chimpanzee.

    NASA Technical Reports Server (NTRS)

    Sabbot, I. M.; Mcnew, J. J.; Hoshizaki, T.; Sedgwick, C. J.; Adey, W. R.

    1972-01-01

    An unrestrained chimpanzee was studied in an isolation chamber and in his home cage environment. The study consisted of 49 urine collection days (14 days pre-, 5 days post- and 30 days of isolation), and then of 10 days in the home cage. Dietary intake, urine and fecal data were obtained. The effect of isolation on various excretory parameters was studied. Urine samples were analyzed for volume, osmolarity, creatinine, creatine, urea-N, 17-hydroxy corticosteroids, VMA, calcium and inorganic phosphorus. One way analyses of variance performed on the urinary excretion parameters showed all except creatinine excretion to vary significantly during periods of the study. The changes observed in calcium and phosphorus were highly significant. The data suggests that the calcium to phosphorus excretion ratio might serve as a physiological stress indicator of Selye's adaptation syndrome (period of resistance).

  2. A comparative study between excretory/secretory and autoclaved vaccines against RH strain of Toxoplasma gondii in murine models.

    PubMed

    Ezz Eldin, Hayam Mohamed; Kamel, Hanan Hussein; Badawy, Abeer Fathy; Shash, Lobna Sadek

    2015-09-01

    Toxoplasma gondii is an obligate intracellular protozoan that has a major importance in public health, in addition to veterinary medicine. Therefore, the development of an effective vaccine for controlling toxoplasmosis is an important goal. Excretory/secretory antigens (ESA), were previously identified as potential vaccine candidates, proved to play important roles in the pathogenesis and immune escape of the parasite. In addition, autoclaved Toxoplasma vaccine (ATV) is a special type of killed vaccine, recently characterized. The aim of the present work was, to compare between excretory/secretory and ATV against RH strain of T. gondii in mice based on; parasitological and histopathological levels. Tachyzoites were harvested from peritoneal exudates of infected mice and were used for challenge infection and vaccine preparation. BCG was used as an adjuvant. Mice were allocated equally into five groups; they were vaccinated intradermally over the sternum. The results of this study showed that the survival time after challenge, extended up to 16 days in ESA vaccinated group and up to 15 days in autoclaved Toxoplasma vaccinated group. ESA vaccinated group exhibited a profound decrease in parasite load following parasite challenge with a higher percentage of reduction in parasite count in all examined organs than the autoclaved Toxoplasma vaccinated group. The histopathological picture of the liver in both immunized groups, revealed marked reduction in the pathological changes observed as compared to controls, especially in ESA vaccinated group. It was concluded that vaccination with ESA showed more promising results versus ATV, as demonstrated by the survival rate of vaccinated mice, tachyzoites count and histopathological examination.

  3. Antibody and cytokine responses to Giardia excretory/secretory proteins in Giardia intestinalis-infected BALB/c mice.

    PubMed

    Jiménez, Juan C; Fontaine, Josette; Creusy, Colette; Fleurisse, Laurence; Grzych, Jean-Marie; Capron, Monique; Dei-Cas, Eduardo

    2014-07-01

    The humoral and cellular responses against excretory/secretory proteins and soluble extracts of Giardia intestinalis were evaluated in the course of experimental G. intestinalis infection in BALB/c mice. Production of IgG1, IgG2a, IgA, and IgE antibodies against excreted/secreted proteins and soluble extract was detected after infection by G. intestinalis. Specific IgA antibody against E/S proteins and soluble extract form intestinal fluids in infected mice was detected by ELISA. The Western blotting identified proteins of 30, 58, 63, and 83 kDa for IgA and IgG, respectively. High proliferation rate in vitro of spleen cell and secretion of interleukin-4 (IL-4) at 21 days p.i. after stimulation with excreted/secreted proteins and low proliferative response in the presence of soluble extract in infected BALB/c mice was observed. High production of interferon gamma (IFN-γ) and interleukin-5 (IL-5) at the time of decreasing cyst output (14-21 days p.i.) in infected mice was recorded, suggesting the important role of these cytokines in the control of the infection. Interestingly, progressive and gradual increase of the interleukin-10 after stimulation with both preparations was recorded from 7 days until 28 days after infection, indicating the possible regulatory effect of these antigens on the immune response during Giardia infection. Therefore, the infection by Giardia duodenalis stimulates a mixed response Th1 and Th2, mainly stimulated by excretory/secretory antigens. The immunogenicity of these antigens may be a suitable for identification of the proteins related with the effective immune response in the course of infection by G. duodenalsis.

  4. Enhancement of excretory production of an exoglucanase from Escherichia coli with phage shock protein A (PspA) overexpression.

    PubMed

    Wang, Y Y; Fu, Z B; Ng, K L; Lam, C C; Chan, A K N; Sze, K F; Wong, W K R

    2011-06-01

    Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.

  5. Identification of early diagnostic antigens from major excretory-secretory proteins of Trichinella spiralis muscle larvae using immunoproteomics.

    PubMed

    Wang, Li; Cui, Jing; Hu, Dan Dan; Liu, Ruo Dan; Wang, Zhong Quan

    2014-01-22

    The excretory-secretory (ES) proteins of Trichinella spiralis muscle larvae (ML) come mainly from the excretory granules of the stichosome and the cuticles (membrane proteins), are directly exposed to the host's immune system, and are the main target antigens, which induce the immune responses. Although the ES proteins are the most commonly used diagnostic antigens for trichinellosis, their main disadvantage are the false negative results during the early stage of infection. The aim of this study was to identify early specific diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. Two-dimensional electrophoresis (2-DE) combined with Western blot were used to screen the early diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The protein spots recognized by the sera from BALB/c mice infected with T. spiralis at 18 days post-infection (dpi) were identified by MALDI-TOF/TOF-MS and putatively annotated using GO terms obtained from the InterPro databases. The ES proteins were analyzed by 2-DE, and more than 33 protein spots were detected with molecular weight varying from 40 to 60 kDa and isoelectric point (pI) from 4 to 7. When probed with the sera from infected mice at 18 dpi, 21 protein spots were recognized and then identified, and they were characterized to correlate with five different proteins of T. spiralis, including two serine proteases, one deoxyribonuclease (DNase) II, and two kinds of trypsin. The five proteins were functionally categorized into molecular function and biological process according to GO hierarchy. 2-DE and Western blot combined with MALDI-TOF/TOF-MS were used to screen the diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The five proteins of T. spiralis identified (two serine proteases, DNase II and two kinds of trypsin) might be the early specific diagnostic antigens of trichinellosis.