Science.gov

Sample records for renal excretory mechanisms

  1. Relative roles of metabolism and renal excretory mechanisms in xenobiotic elimination by fish

    SciTech Connect

    Pritchard, J.B. Univ. of Florida, St. Augustine ); Bend, J.R. )

    1991-01-01

    Renal clearance techniques were used to examine the relative contributions of metabolism and renal tubular transport in determining the rates of excretion of benzo(a)pyrene (BaP) and several of its phase I metabolites by southern flounder, Paralichthys lethostigma. Each compound ({sup 3}H-labeled) was injected at a dose of 2.5 {mu}mole/kg, producing plasma concentrations of 1 to 5 {mu}M. Despite extensive plasma binding, the uncorrected renal clearance of BaP-7,8-dihydrodiol exceeded the glomerular filtration rate (GFR) by more than 20-fold. Phenolic BaP metabolites also showed net secretion. Clearances of all four compounds studied were reduced by probenecid and other organic anion, including the herbicide 2,4-dichlorophenoxyacetic acid. HPLC analysis demonstrated that the bulk of the material excreted in the urine was not the parent compound, but sulfate or glucuronide conjugates of its phenolic or dihydrodiol metabolites. Excretion of sulfate conjugates predominated over the first 24 hr, whereas the glucuronide conjugates were the primary excretory products in succeeding days. In vitro, isolated renal tubules transported both glucuronide and sulfate conjugates, but sulfates were the preferred substrates. Isolated tubules were shown to be capable of catalyzing conjugation reactions, producing predominantly glucuronide conjugates. Liver slices produced both types of conjugates. Thus, the rapid excretion of BaP-7,8-dihydrodiol reflected a combination of two processes. First, this metabolite was rapidly converted to its sulfate conjugate, primarily via extrarenal tissues. Second, the sulfate conjugate was preferentially transported to the urine via secretion on the organic anion transport system.

  2. Renal malignancies with normal excretory urograms

    SciTech Connect

    Kass, D.A.; Hricak, H.; Davidson, A.J.

    1983-10-01

    Four patients with malignant renal masses showed no abnormality of excretory urograms with tomography. Of the four lesions, two were primary renal cell carcinomas, one was a metastatic focus from a contralateral renal cell carcinoma, and one was a metastatic lesion from rectal adenocarcinoma. A normal excretory urogram should not be considered sufficient to exclude a clinically suspected malignant renal mass. In such an instance, diagnostic evaluation should be pursued using a method capable of topographic anatomic display, such as computed tomography or sonography.

  3. Functional consequences of prenatal methylmercury exposure: effects on renal and hepatic responses to trophic stimuli and on renal excretory mechanisms

    SciTech Connect

    Slotkin, T.A.; Kavlock, R.J.; Cowdery, T.; Orband, L.; Bartolome, M.

    1986-01-01

    The effects of prenatal exposure to methylmercury on the functional development of renal and hepatic response systems was examined in the developing rat. Methylmercury produced an elevation of basal activity of renal ornithine decarboxylase (ODC, an enzyme involved in regulation of cellular maturation) and an eventual relative hypertrophy; liver ODC was reduced and hypertrophy was not evident. In contrast, the reactivity of liver ODC to trophic stimulants (vasopressin, isoproterenol) was markedly enhanced by prenatal methylmercury exposure, whereas renal ODC responses were much less affected (vasopressin) or actually reduced (isoproterenol). Targeted actions of methylmercury on renal excretory function were also prominent, with increased fractional excretions urea and electrolytes and an eventual reduction in glomerular filtration as assessed by creatinine clearance. These studies show that doses of methylmercury ordinarily associated with selective actions on development of neurobehavioral patterns also influence the functional ontogeny of other organ systems; furthermore, the fact that the target tissues are different for prenatal vs postnatal methylmercury exposure, indicates that the functional teratology of methylmercury exhibits critical periods of sensitivity.

  4. Competition by meperidine for the organic cation renal excretory system.

    PubMed

    Acara, M; Gessner, T; Trudnowski, R J

    1981-07-01

    Renal tubular excretory transport of meperidine was studied using the Sperber preparation in chickens. When urine samples from infused and uninfused kidneys were analyzed for meperidine by gas chromatography, meperidine was always present in greater amounts in the urine from the infused kidney, demonstrating active tubular excretion. Meperidine at an infusion rate of 1 mumole/min, also inhibited the excretion of the organic cations choline and acetylcholine, indicating occupation of the renal organic cation excretory system in the chicken.

  5. Comprehensive renal scintillation procedures in spinal cord injury: comparison with excretory urography

    SciTech Connect

    Lloyd, L.K.; Dubovsky, E.V.; Bueschen, A.J.; Witten, D.M.; Scott, J.W.; Kuhlemeier, K.; Stover, S.L.

    1981-07-01

    A /sup 131/iodine orthoiodohippurate comprehensive renal scintillation procedure was performed and compared to results of excretory urography in 200 spinal cord injury patients. No severe urographic abnormalities were undetected by the comprehensive renal scintillation procedure. Only 1.4 per cent of renal units had greater than minimal pyelocaliectasis or ureterectasis in the presence of a normal radionuclide examination. A relatively large number of abnormalities were detected on the renal scintillation procedure when the excretory urogram was normal. Serial followup will be required to determine the significance of these findings but present data suggest that a comprehensive renal scintillation procedure and a plain film of the kidneys, ureters and bladder may be used for screening upper urinary tract abnormalities in lieu of an excretory urogram. This is particularly advantageous for the spinal cord injury population, since there have been no toxic or allergic reactions reported, no bowel preparation or dehydration is required and there is relatively low radiation exposure.

  6. 99mtechnetium-dimercapto-succinic acid renal scanning and excretory urography in diagnosis of renal scars in children

    SciTech Connect

    McLorie, G.A.; Aliabadi, H.; Churchill, B.M.; Ash, J.M.; Gilday, D.L. )

    1989-09-01

    We compared the ability of excretory urography (without tomography) and 99mtechnetium-dimercapto-succinic acid renal scanning to detect renal scars in 32 children with primary vesicoureteral reflux. These children did not have hydronephrosis, renal failure or urinary tract obstruction. In all cases both studies were conducted within a 10-month period. The findings from both modalities were in agreement for 51 of the 64 renal units evaluated (80%). Evaluation of the excretory urogram indicated 6 cases of diffuse and 2 of focal scarring that were not detected by evaluation of the renal scan. The sensitivity of excretory urography to detect renal scars was 84% and the specificity was 83%. The 99mtechnetium-dimercapto-succinic acid renal scan showed 5 cases of focal renal scarring not detected by excretory urography. The sensitivity of the renal scan to detect renal scars was 77% and the specificity was 75%. We conclude that neither study alone could effectively replace the other for the detection of renal scars, and recommend that both be included in the initial evaluation and followup of patients with renal scars.

  7. Renal parenchymal appearance on /sup 123/iodine-hippurate renoscintigrams and excretory urograms

    SciTech Connect

    Nielsen, J.B.; Taagehoj-Jensen, F.; Andresen, J.H.; Jorgensen, T.M.; Djurhuus, J.C.; Sorensen, S.S.; Charles, P.

    1985-02-01

    In 61 patients with vesicoureteral reflux renal scar formation was diagnosed by excretory urography and /sup 123/iodine-hippurate scintigrams. Scar formation on the nephrograms was detected in the upper, middle and lower zones of the kidneys on tomography exposures. Scintigraphic detection of scars was performed on the computerized uptake of the parenchymal phase. Maximal time elapse between the 2 investigations was 1 year. Excretory urography revealed 37 kidneys with a total of 74 regional scars. On scintigraphy 57 kidneys were judged to have 102 scars. There were 281 regions judged to be identical on the scintigram and the nephrogram. A true positive ratio (sensitivity) of 0.46 and a true negative ratio (specificity) of 0.90 were noted for the excretory urogram, compared to a sensitivity of 0.64 and a specificity of 0.81 for renography. The study confirms an over-representation of scars judged from scintigrams, which calls for further investigation of scar formation detection.

  8. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats.

    PubMed

    O'Neill, Julie; Corbett, Alan; Johns, Edward J

    2013-02-01

    Angiotensin II at the kidney regulates renal hemodynamic and excretory function, but the actions of an alternative metabolite, angiotensin (1-7), are less clear. This study investigated how manipulation of dietary sodium intake influenced the renal hemodynamic and excretory responses to intrarenal administration of angiotensin (1-7). Renal interstitial infusion of angiotensin (1-7) in anesthetized rats fed a normal salt intake had minimal effects on glomerular filtration rate but caused dose-related increases in urine flow and absolute and fractional sodium excretions ranging from 150 to 200%. In rats maintained for 2 wk on a low-sodium diet angiotensin (1-7) increased glomerular filtration rate by some 45%, but the diuretic and natriuretic responses were enhanced compared with those in rats on a normal sodium intake. By contrast, renal interstitial infusion of angiotensin (1-7) in rats maintained on a high-sodium intake had no effect on glomerular filtration rate, whereas the diuresis and natriuresis was markedly attenuated compared with those in rats fed either a normal or low-sodium diet. Plasma renin and angiotensin (1-7) were highest in the rats on the low-sodium diet and depressed in the rats on a high-sodium diet. These findings demonstrate that the renal hemodynamic and excretory responses to locally administered angiotensin (1-7) is dependent on the level of sodium intake and indirectly on the degree of activation of the renin-angiotensin system. The exact way in which angiotensin (1-7) exerts its effects may be dependent on the prevailing levels of angiotensin II and its receptor expression.

  9. Renal transplantation promptly restores excretory function but disturbed L-arginine metabolism persists in patients during the early period after surgery.

    PubMed

    Žunić, Gordana; Vučević, Dragana; Tomić, Aleksandar; Drašković-Pavlović, Biljana; Majstorović, Ivana; Spasić, Slavica

    2015-01-30

    The synthesis and whole body metabolism of L-arginine (Arg) are disturbed in renal diseases. Renal transplantation represents the best therapy in the end-stage of these diseases. In the present we compared alterations of plasma Arg and related compounds with renal excretory function in patients with end-stage renal disease, before and after kidney transplantation. Arg, asymmetric dimethylarginine (ADMA), citrulline (Cit), glutamine (Gln), ornithine (Orn), phenylalanine (Phe), tyrosine (Tyr), urea, creatinine, albumin, and nitrate were analyzed in patients before, immediately after (0-time) and 1, 2, 3, 7 and 14 days following living donors kidney transplantation. Healthy subjects were controls. Glomerular filtration rate (GFR) and amino acid molar ratios were calculated. Before transplantation creatinine, urea, Cit, Gln, ADMA, and nitrate were above, while GFR and Arg were below controls, confirming disturbed excretory and metabolic renal functions in patients with renal disease. Renal transplantation promptly normalized creatinine, urea, GFR, Cit, and nitrate. However, regardless of increased molar Phe/Tyr ratios, indicating increased net protein catabolism in peripheral tissues, low Arg and elevated ADMA concentrations persisted throughout the examined period. Alterations of other amino acids also suggest similarly disturbed Arg metabolism in patients after kidney transplantation. In conclusion, renal transplant promptly restored its excretory function, but increased net protein catabolism, disturbed Arg metabolism and endothelial dysfunction in entire body of these patients were not improved throughout the early period after the operation. That has to be considered in their therapy.

  10. Modification of the relationship between blood pressure and renal albumin permeability by impaired excretory function and diabetes.

    PubMed

    Fotheringham, James; Odudu, Aghogho; McKane, William; Ellam, Timothy

    2015-03-01

    In animal models, reduced nephron mass impairs renal arteriolar autoregulation, increasing vulnerability of the remaining nephrons to elevated systemic blood pressure (BP). A feature of the resulting glomerular capillary hypertension is an increase in glomerular permeability. We sought evidence of a similar remnant nephron effect in human chronic kidney disease. In participants from the United States National Health and Nutrition Examination Surveys 1999 to 2010 (N=23 710), we examined the effect of reduced estimated glomerular filtration rate (eGFR) on the relationship between brachial artery BP and albumin permeability. Renal albumin permeability increased exponentially with systolic BP >110 mm Hg, and this association was modified by independent interactions with both excretory impairment and diabetes mellitus. Each 10 mm Hg increase in systolic BP was accompanied by an increase in fractional albumin excretion of 1.10-, 1.11-, 1.17-, 1.22-, and 1.38-fold for participants with eGFR≥90, 90>eGFR≥60, 60>eGFR≥45, 45>eGFR≥30, and eGFR<30 mL/min/1.73 m(2), respectively, adjusted for age, sex, race, antihypertensive use, eGFR category, diabetes mellitus, smoking, history of cardiovascular disease, body mass index, and C-reactive protein. A 10 mm Hg systolic BP increment was associated with increases in fractional albumin excretion of 1.10- and 1.21-fold in nondiabetic and diabetic participants, respectively. Using urine albumin creatinine ratio as an alternative measure of albumin leak in eGFR-adjusted analyses gave the same conclusions. Our findings are consistent with the presence of a remnant nephron effect in human kidney disease. Future trials should consider the nephroprotective benefits of systolic BP lowering in kidney disease populations stratified by eGFR.

  11. Histological alterations on the structure of the excretory renal system in tench (Tinca tinca) after exposure to 17-alpha-ethynylestradiol.

    PubMed

    Oropesa, A L; Jiménez, B; Fallola, C; Pula, H J; Cuesta, J M; Gómez, L

    2013-12-01

    This study describes the effects of 17-alpha-ethynylestradiol (EE2) on the structure of the excretory system of the kidney in tench. Adult male tench were exposed to sub-lethal doses of EE2 (50, 100 and 500 μg/kg b.w.) under semistatic conditions for a period of 30 days. The nephrosomatic index and histology (including a morphometric analysis) of the kidney were examined. Histopathological lesions in the kidney of exposed tench were: dilation of glomerular capillaries and increase in the area of the renal corpuscle, hyaline degeneration in the epithelial cells of the proximal tubules leading to necrotic changes, hemorrhages in the interstitial tissue and deposits of eosinophilic material. These lesions were observed with a greater degree of severity as the exposure doses were increased. These results indicate that long-term exposure to EE2 could produce clear negative effects on the excretory system of the kidney in tench and consequently on their physiological functions.

  12. Changing indications for excretory urography

    SciTech Connect

    Kumar, R.; Schreiber, M.H.

    1985-07-19

    Most individuals suspected of having renovascular hypertension, men with benign prostatic enlargement, women with recurrent infections of the urinary tract or urinary stress incontinence, women undergoing hysterectomy, uremic and diabetic patients, and patients with renal transplant or adult polycystic kidney disease should not, as a rule, undergo routine excretory urography (EU). Possible morbidity and mortality and unwarranted cost do not justify the study, since the majority of individuals in any of these situations do not benefit from the information obtained from the study. Excretory urography must be performed selectively, rather than routinely, in such persons. As the authors emphasize, modified EU, often using only two to three films, may be performed under many clinical situations to reduce radiation exposure, toxic effects, and cost to the patient.

  13. Immediate renal imaging and renography with /sup 99m/Tc methylene diphosphonate to assess renal blood flow, excretory function, and anatomy

    SciTech Connect

    Glass, E.C.; DeNardo, G.L.; Hines, H.H.

    1980-04-01

    /sup 99m/Tc methylene diphosphonate (/sup 99m/Tc MDP) was evaluated as a clinical renal imaging agent in 20 patients referred for bone scintigraphy. Sequential scintigraphy, which was started immediately after injection, yielded blood flow studies of high quality, and subsequent images accurately delineated renal anatomy and excretion in nonazotemic patients. In comparison with delayed images, early images were vastly superior in quality and demonstrated improved target-to-nontarget activity ratios (p < 0.001) and improved lesion detectability (p < 0.01). Renal imaging performed incidental to bone scintigraphy with MDP can be greatly enhanced by initiating sequential scintigraphy immediately after injection.

  14. A single mechanism to explain the effect of calcium on renal function.

    PubMed

    Lahera, V; Ruilope, L M; Romero, J C

    1991-07-01

    It is known that calcium induces the formation of potent vasodilators in endothelial cells and vasoconstriction in smooth muscle cells, whereas in the renal parenchyma, it modulates sodium excretion through vascular and tubular mechanisms. Consequently, an increased concentration of calcium in renal circulation may induce a sequence of contrasting hemodynamics and excretory effects depending on the threshold of a particular mechanism that is first being stimulated. In order to identify this sequence of responses and their respective thresholds, we infused into the renal artery of anesthetized dogs progressively increasing doses of calcium gluconate that ranged from 1 to 400 micrograms/kg/min. The administration of 1, 10, and 100 micrograms/kg/min of calcium gluconate was followed by a significant increase in urinary excretion of PGE2 and 6-keto-PGF1 alpha and by a marked diuresis and natriuresis without altering renal blood flow (RBF) or glomerular filtration rate (GFR). Renin release was increased by 80% only during the infusion of the 10 micrograms/kg/min dose. The intrarenal infusion of a 400 micrograms/kg/min dose of calcium produced marked decreases in RBF and GFR, while urine sodium excretion (UNaV), UPGE2V, and U6-keto-PGF1 alpha V continued and were markedly elevated. During all these maneuvers, mean arterial pressure remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  16. Multiphoton imaging of renal regulatory mechanisms.

    PubMed

    Peti-Peterdi, János; Toma, Ildikó; Sipos, Arnold; Vargas, Sarah L

    2009-04-01

    Most physiological functions of the kidneys, including the clearance of metabolic waste products, maintenance of body fluid, electrolyte homeostasis, and blood pressure, are achieved by complex interactions between multiple renal cell types and previously inaccessible structures in many organ parts that have been difficult to study. Multiphoton fluorescence microscopy offers a state-of-the-art imaging technique for deep optical sectioning of living tissues and organs with minimal deleterious effects. Dynamic regulatory processes and multiple functions in the intact kidney can be quantitatively visualized in real time, noninvasively, and with submicron resolution. This article reviews innovative multiphoton imaging technologies and their applications that provided the most complex, immediate, and dynamic portrayal of renal function-clearly depicting as well as analyzing the components and mechanisms involved in renal (patho)physiology.

  17. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system.

    PubMed

    Stone, Craig E; Hall, David H; Sundaram, Meera V

    2009-05-15

    Unicellular tubes or capillaries composed of individual cells with a hollow lumen perform important physiological functions including fluid or gas transport and exchange. These tubes are thought to build intracellular lumina by polarized trafficking of apical membrane components, but the molecular signals that promote luminal growth and luminal connectivity between cells are poorly understood. Here we show that the lipocalin LPR-1 is required for luminal connectivity between two unicellular tubes in the Caenorhabditis elegans excretory (renal) system, the excretory duct cell and pore cell. Lipocalins are a large family of secreted proteins that transport lipophilic cargos and participate in intercellular signaling. lpr-1 is required at a time of rapid luminal growth, it is expressed by the duct, pore and surrounding cells, and it can function cell non-autonomously. These results reveal a novel signaling mechanism that controls unicellular tube formation, and provide a genetic model system for dissecting lipocalin signaling pathways.

  18. Bringing together components of the fly renal system.

    PubMed

    Denholm, Barry; Skaer, Helen

    2009-10-01

    The function of all animal excretory systems is to rid the body of toxins and to maintain homeostatic balance. Although excretory organs in diverse animal species appear superficially different they are often built on two common principals: filtration and tubular secretion/reabsorbtion. The Drosophila excretory system is composed of filtration nephrocytes and Malpighian (renal) tubules. Here we review recent molecular genetic data on the development and differentiation of nephrocytes and renal tubules. We focus in particular on the molecular mechanisms that underpin key cell and tissue behaviours during morphogenesis, drawing parallels with other species where they exist. Finally we assess the implications of patterned tissue differentiation for the subsequent regulation of renal function. These studies highlight the continuing usefulness of the fly to provide fundamental insights into the complexities of organ formation.

  19. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  20. Renal cirsoid arteriovenous malformation masquerading as neoplasia.

    PubMed

    Silverthorn, K; George, D

    1988-12-01

    A woman with renal colic and microscopic hematuria had filling defects in the left renal collecting system detected on excretory urography. A nephrectomy, performed because of suspected malignancy, might have been averted by renal angiography.

  1. Theoretical assessment of renal autoregulatory mechanisms.

    PubMed

    Sgouralis, Ioannis; Layton, Anita T

    2014-06-01

    A mathematical model of renal hemodynamics was used to assess the individual contributions of the tubuloglomerular feedback (TGF) mechanism and the myogenic response to glomerular filtration rate regulation in the rat kidney. The model represents an afferent arteriole segment, glomerular filtration, and a short loop of Henle. The afferent arteriole model exhibits myogenic response, which is activated by hydrostatic pressure variations to induce changes in membrane potential and vascular muscle tone. The tubule model predicts tubular fluid and Cl(-) transport. Macula densa Cl(-) concentration is sensed as the signal for TGF, which acts to constrict or dilate the afferent arteriole. With this configuration, the model afferent arteriole maintains stable glomerular filtration rate within a physiologic range of perfusion pressure (80-180 mmHg). The contribution of TGF to overall autoregulation is significant only within a narrow band of perfusion pressure values (80-110 mmHg). Model simulations of ramp-like perfusion pressure perturbations agree well with findings by Flemming et al. (Flemming B, Arenz N, Seeliger E, Wronski T, Steer K, Persson PB. J Am Soc Nephrol 12: 2253-2262, 2001), which indicate that changes in vascular conductance are markedly sensitive to pressure velocity. That asymmetric response is attributed to the rate-dependent kinetics of the myogenic mechanism. Moreover, simulations of renal autoregulation in diabetes mellitus predict that, due to the impairment of the voltage-gated Ca(2+) channels of the afferent arteriole smooth muscle cells, the perfusion pressure range in which single-nephron glomerular filtration rate remains stable is reduced by ~70% and that TGF gain is reduced by nearly 40%, consistent with experimental findings.

  2. Mechanism of glucocorticoid effect on renal transport of phosphate.

    PubMed

    Turner, S T; Kiebzak, G M; Dousa, T P

    1982-11-01

    We explored whether glucocorticoid administration, a known stimulus of renal gluconeogenesis (GNG), could decrease avid inorganic phosphate (Pi) reabsorption in rats stabilized on low-phosphorus diet (LPD). Rats adapted to LPD were injected with the glucocorticoid (GCD) triamcinolone acetonide (1.25 or 2.5 mg.100 g body wt-1.day-1 ip) for 2 days; they showed a profound increase in urinary excretion of Pi during the injection period. In clearance studies GCD increased the clearance and fractional excretion of Pi but did not change the filtered load of Pi. Initial "uphill" Na+-gradient (Nao+ greater than Nai+)-dependent uptake of 32Pi by luminal brush-border membrane (BBM) vesicles prepared from renal cortex of rats treated with GCD was markedly (greater than 40%) decreased compared with control rats; Na+-gradient-dependent uptake of D-[3H]glucose was not diminished. At the "equilibrium" time interval, measured at 120 min, BBM vesicles from control and GCD-treated rats did not differ in the uptake of 32Pi or D-[3H]glucose. With kinetic analysis, BBM from GCD-treated rats showed a marked decrease (-40%) in the maximum velocity (Vmax) of initial Na+-dependent 32Pi uptake, but the apparent affinity of the BBM transport system for Pi (apparent Km = 0.078 mM Pi) was not different from that of controls. Alkaline phosphatase specific activity was much lower (-40%) in BBM from GCD-treated rats compared with controls, but the activities of three other BBM enzymes (maltase, leucine aminopeptidase, and gamma-glutamyl transferase) were not different. The addition of triamcinolone to BBM in vitro had no effect on either Na+-dependent uptake of 32Pi or alkaline phosphatase activity. The rate of GNG from alpha-ketoglutarate was significantly increased in cortical slices from GCD-treated rats adapted to LPD. Also, the NAD+-to-NADH ratio was higher in the renal cortex of GCD-treated rats, although the total content of NAD [NAD+ + NADH] was not different from controls. Renal excretory

  3. Mechanism of postarrhythmic renal vasoconstriction in the anesthetized dog.

    PubMed Central

    Katholi, R E; Oparil, S; Urthaler, F; James, T N

    1979-01-01

    The mechanism of postarrhythmic renal vasoconstriction was studied in 28 dogs anesthetized with pentobarbital sodium (30 mg/kg i.v.). Rapid atrial or ventricular pacing or induction of atrial fibrilation were used to produce at least 20% prompt decrease in cardiac output and mean arterial blood pressure. Return to control cardiac output and blood pressure occurred within 3 minutes after cessation of the arrhythmia, but renal blood flow remained significantly decreased (26%) with gradual recovery by 17.7 +/- 6.6 min. Infusion of phentolamine (0.25 mg/min) into the renal artery, intravenous hexamethonium (l mg/kg), adrenal demedullation, or cooling the cervical vagi prevented postarrhythmic renal vasoconstriction. In contrast, renal denervation, intravenous bretylium (10 mg/kg), intravenous atropine (0.5 mg/kg) or intrarenal SQ 20881 (0.20 mg/min) has no effect on postarrhythmic renal vasoconstriction. Intravenous propranolol (0.5 mg/kg) intensified postarrhythmic renal vasoconstriction. These data suggested that the postarrhythmic renal vasoconstrictive response required intact vagi and was due to alpha adrenergic stimulation by adrenal catecholamines. However, femoral arterial catecholamine levels were not elevated above control during postarrhythmic renal vasoconstriction. We therefore sought local vascular pathways by which catecholamines might reach the kidneys. An adrenorenal vascular network was found in each dog. Collection of catecholamines from these vessels during postarrhythmic renal vasoconstriction in six dogs revealed catecholamine concentrations threefold higher than simultaneously collected femoral arterial catecholamines levels. Because ligation of these vessels abolished postarrhythmic renal vasoconstriction in each dog, we conclude that postarrhythmic renal vasconstriction is due to adrenal catecholamines reaching the kidneys through an adreno-renal vascular network and that the response requires intact vagi. Images PMID:447852

  4. Ultrastructure of the excretory system of Brachylaimus aequans (Trematoda: Brachylaimoidea).

    PubMed

    Soboleva, T N; Zdárská, Z; Stĕrba, J; Valkounová, J

    1988-01-01

    The ultrastructure of the flame cell, excretory capillaries, ducts, collecting ducts, excretory bladder, and excretory pore of Brachylaimus aequans was studied 6-8 days p.i. The excretory ducts, collecting ducts and excretory bladder are provided with numerous lamellae on the luminal side. The cilia of lateral flames in the excretory ducts have a triated rootlet. The excretory pore is covered by a tegument identical with the body tegument. The syncytium of the excretory bladder is connected with the tegument of the excretory pore by means of a septate desmosome. No lipid or excretory corpuscles have been demonstrated in the excretory system.

  5. A regulatory program for excretory system regeneration in planarians.

    PubMed

    Scimone, M Lucila; Srivastava, Mansi; Bell, George W; Reddien, Peter W

    2011-10-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin.

  6. A regulatory program for excretory system regeneration in planarians

    PubMed Central

    Scimone, M. Lucila; Srivastava, Mansi; Bell, George W.; Reddien, Peter W.

    2011-01-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin. PMID:21937596

  7. Mechanisms in hyperkalemic renal tubular acidosis.

    PubMed

    Karet, Fiona E

    2009-02-01

    The form of renal tubular acidosis associated with hyperkalemia is usually attributable to real or apparent hypoaldosteronism. It is therefore a common feature in diabetes and a number of other conditions associated with underproduction of renin or aldosterone. In addition, the close relationship between potassium levels and ammonia production dictates that hyperkalemia per se can lead to acidosis. Here I describe the modern relationship between molecular function of the distal portion of the nephron, pathways of ammoniagenesis, and hyperkalemia.

  8. Mechanisms of hypertension in renal radiation

    SciTech Connect

    Juncos, L.; Cornejo, J.C.; Cejas, H.; Broglia, C. )

    1990-02-01

    This study was undertaken to investigate the role played by renal functional and structural changes in the development of radiation-induced hypertension. Four groups of rats were studied: (1) left kidney radiated, (2) sham procedure, (3) uninephrectomy followed 3 weeks later by radiation of the contralateral kidney, and (4) uninephrectomy followed by sham procedure 3 weeks later. All radiated rats became hypertensive at 12 weeks (p less than 0.05) and had higher protein excretion (p less than 0.05). In the presence of an intact contralateral kidney, radiation causes mild-to-moderate histological abnormalities, and therefore, creatinine clearance and water and sodium handling do not change. Plasma renin activity increased in this group (p less than 0.05). Radiated uninephrectomized rats showed decreased creatinine clearance (p less than 0.05), but renin activity remained unchanged. These rats developed severe histological abnormalities in glomeruli, interstitia, tubuli, and vessels resulting in increased sodium and water output. The average of individual tubular and interstitial scores correlated significantly with both water intake and output but not with sodium excretion. These studies suggest that in the presence of an intact kidney, renin is an important determinant in the development or maintenance of radiation hypertension, whereas in the absence of the contralateral kidney, severe histological changes and renal failure are prominent despite increased water intake and output. The more severe glomerular sclerosis and proteinuria in the latter model could be related to diminished renal mass.

  9. Mechanisms of renal hyporesponsiveness to BNP in heart failure.

    PubMed

    Egom, Emmanuel E; Feridooni, Tiam; Hotchkiss, Adam; Kruzliak, Peter; Pasumarthi, Kishore B S

    2015-06-01

    The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.

  10. Hyponatremia due to hypothyroidism: a pure renal mechanism.

    PubMed

    Schmitz, P H; de Meijer, P H; Meinders, A E

    2001-03-01

    Hyponatremia is a common disorder. When hyponatremia is the result of hypothyroidism it can be successfully treated with thyroid hormone substitution. We followed cumulative sodium- and fluid balances of a patient with hyponatremia, resulting from hypothyroidism. We concluded that hyponatremia in hypothyroidism is due to a pure renal mechanism, and cannot be ascribed to inappropriate secretion of antidiuretic hormone.

  11. Comparative physiology of renal tubular transport mechanisms.

    PubMed Central

    Long, S.; Giebisch, G.

    1979-01-01

    This manuscript discusses current concepts of glomerular filtration and tubular transport of sodium, water, potassium, and urinary acidification by vertebrate kidneys in a comparative context. Work in mammalian and amphibian nephrons receives major emphasis due to our interest in application of new techniques for investigation of cellular mechanisms; when available, data from other vertebrate classes are discussed. Images FIG. 3 PMID:395765

  12. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  13. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.

    PubMed

    Hall, John E; do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Hall, Michael E

    2015-03-13

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.

  14. The insect excretory system as a target for novel pest control strategies.

    PubMed

    Ruiz-Sanchez, Esau; O'Donnell, Michael J

    2015-10-01

    The insect excretory system plays essential roles in osmoregulation, ionoregulation and toxin elimination. Understanding the mechanisms of fluid and ion transport by the epithelial cells of the excretory system provides a foundation for development of novel pest management strategies. In the present review, we focus on two such strategies: first, impairment of osmoregulation by manipulation of diuretic or antidiuretic signaling pathways and second, interference with toxin elimination by inhibition of toxin transport systems.

  15. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces.

    PubMed

    Virginio, Veridiana G; Monteiro, Karina M; Drumond, Fernanda; de Carvalho, Marcos O; Vargas, Daiani M; Zaha, Arnaldo; Ferreira, Henrique B

    2012-05-01

    Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.

  16. Molecular Mechanisms of Renal Cellular Nephrotoxicity due to Radiocontrast Media

    PubMed Central

    Michael, Ashour; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Navarra, Michele

    2014-01-01

    Modern iodinated radiocontrast media are all based on the triiodinated benzene ring with various chemical modifications having been made over the last few decades in order to reduce their toxicity. However, CIN remains a problem especially in patients with pre-existing renal failure. In vitro studies have demonstrated that all RCM are cytotoxic. RCM administration in vivo may lead to a decrease in renal medullary oxygenation leading to the generation of reactive oxygen species that may cause harmful effects to renal tissue. In addition, endothelin and adenosine release and decreased nitric oxide levels may worsen the hypoxic milieu. In vitro cell culture studies together with sparse in vivo rat model data have shown that important cell signalling pathways are affected by RCM. In particular, the prosurvival and proproliferative kinases Akt and ERK1/2 have been shown to be dephosphorylated (deactivated), whilst proinflammatory/cell death molecules such as the p38 and JNK kinases and the transcription factor NF-κB may be activated by RCM, accompanied by activation of apoptotic mediators such as caspases. Increasing our knowledge of the mechanisms of RCM action may help to develop future therapies for CIN. PMID:24745009

  17. Mechanism of renal concentration of technetium-99m glucoheptonate

    SciTech Connect

    Lee, H.B.; Blaufox, M.D.

    1985-11-01

    Seventy female Sprague-Dawley rats were studied to determine the mechanism of tubular localization and the effects of commonly encountered changes in hydration and acid-base balance on renal uptake and urinary excretion of technetium-99m glucoheptonate ((/sup 99m/Tc)GHA). The in-vivo protein binding and protein-free plasma clearance of (/sup 99m/Tc)GHA also were quantitated. Kidney uptake of (/sup 99m/Tc)GHA averaged 11% of the injected dose in control animals. This varied slightly among groups but was significantly reduced by probenecid blockade and para-aminohippuric acid (PAH) competition to 4 and 2, respectively. Technetium-99m DMSA was not affected in its renal accumulation by these maneuvers. The total plasma clearance of (/sup 99m/Tc)GHA was lower than iodine-125( SVI)iothalamate but the clearance of the protein free supernate was higher, raising a possibility of some tubular secretion. Hepatic uptake was minimal in all groups averaging less than 1% injected dose. These data demonstrate that renal accumulation of (/sup 99m/Tc)GHA is blocked by probenecid and PAH suggesting that it is actively concentrated in the proximal tubule by enzyme systems similar to those involved in PAH and hippuran transport. It appears that (/sup 99m/Tc)GHA uptake measures a different aspect of kidney function than (/sup 99m/Tc)DMSA.

  18. Mechanism of renal effects of intracerebroventricular histamine in rabbits.

    PubMed

    Kook, Y J; Kim, K K; Yang, D K; Ahn, D S; Choi, B K

    1988-01-01

    Histamine, when given intracerebroventricularly (i.c.v.), has been reported to produce antidiuresis in the rabbit. In this study it was attempted to elucidate the mechanism involved in the effect. Histamine (H), 100 micrograms/kg i.c.v., produced antidiuresis with decreases in renal plasma flow and glomerular filtration rate in urethane-anesthetized rabbits. With larger doses, a tendency towards increased electrolyte excretion was noted in spite of decreased filtration. In the denervated kidney, marked diuresis and natriuresis were observed following i.c.v. H, whereas the contralateral innervated kidney responded with typical antidiuresis. Reserpinized rabbits also responded with marked natriuresis to i.c.v. H. Diphenhydramine (D), 250 micrograms/kg i.c.v., increased urine flow rate, sodium and potassium excretion, along with increase in renal perfusion. With 750 micrograms/kg i.c.v., marked natriuresis was observed in spite of decreased filtration. When H was given after D (250 micrograms/kg) the antidiuresis was completely abolished, and diuresis became more prominent. Cimetidine, 250 micrograms/kg i.c.v., elicited antidiuresis with decreases in renal hemodynamics, the pretreatment with cimetidine did not influence the antidiuresis by H and no natriuresis was noted. The present study suggests that histamine, given i.c.v., influences renal function in dual ways, i.e., antidiuresis by increasing the sympathetic tone to the kidney and diuresis due to some humoral natriuretic factor, the latter becoming apparent only when the former influence has been removed, and further suggests that H1-receptors might be involved in the nerve-mediated antidiuresis, whereas H2-receptors might mediate the humorally induced natriuresis and diuresis.

  19. Functional visualization of the excretory system of adult Schistosoma mansoni by the fluorescent marker resorufin.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2002-12-01

    Excretion of metabolic wastes as well as xenobiotics is a major concern of all living organisms, and the Platyhelminthes including Schistosoma mansoni possess the protonephridial excretory system for their survival. Except for some ultra-structural and biochemical information, little is known about the protonephridium of platyhelminths due to a lack of established techniques for exploring the excretory activity. This study describes a new technique to assess the excretory activity of S. mansoni by use of the fluorescent marker resorufin, which is a potential substrate of the drug efflux pump, P-glycoprotein. After simple diffusion into the schistosome body, fluorescent resorufin was concentrated in the excretory tubules by an energy-dependent mechanism and excreted via the nephridiopore. The present technique of labelling functionally the excretory system was applicable to adult worms, but not schistosomula or cercariae. A variety of modulators known to interfere with mammalian P-glycoprotein function perturbed resorufin excretion from male adult schistosomes, including cyclosporin A, Ro11-2933, verapamil, or nifedipine. This technique of labelling the excretory system with fluorescent resorufin has enabled us to study aspects of the physiological function, hitherto unknown, of the protonephridial system of S. mansoni.

  20. Renal mechanisms of calcium homeostasis in sheep and goats.

    PubMed

    Herm, G; Muscher-Banse, A S; Breves, G; Schröder, B; Wilkens, M R

    2015-04-01

    In small ruminants, the renal excretion of calcium (Ca) and phosphate (Pi) is not modulated in response to dietary Ca restriction. Although this lack of adaptation was observed in both sheep and goats, differences in renal function between these species cannot be excluded. Recent studies demonstrated that compared with sheep, goats have a greater ability to compensate for challenges to Ca homeostasis, probably due to a more pronounced increase in calcitriol production. Therefore, the aim of the present study was to examine the effect of 1) dietary Ca restriction, 2) administration of calcitriol, and 3) lactation on Ca and Pi transport mechanisms and receptors as well as enzymes involved in vitamin D metabolism in renal tissues of sheep and goats. Whereas RNA expression of renal transient receptor potential vanilloid channel type 5 was unaffected by changes in dietary Ca content, a significant stimulation was observed with administration of calcitriol in both sheep (P < 0.001) and goats (P < 0.01). Calbindin-D28K was downregulated during dietary Ca restriction in goats (P < 0.05). Expression of the sodium/Ca exchanger type 1 was decreased by low Ca intake in sheep (P < 0.05) and upregulated by calcitriol treatment in goats (P < 0.05). A significant reduction in RNA expression of the cytosolic and the basolateral Ca transporting proteins was also demonstrated for lactating goats in comparison to dried-off animals. Species differences were found for vitamin D receptor expression, which was stimulated by calcitriol treatment in sheep (P < 0.01) but not in goats. As expected, expression of 1α-hydroxylase was upregulated by dietary Ca restriction (P < 0.001; P < 0.05) and inhibited by exogenous calcitriol (P < 001; P < 0.05) in both sheep and goats. However, whereas 24-hydroxylase expression was stimulated to the same extent by calcitriol treatment in sheep, irrespective of the diet (P < 0.001), a modulatory effect of dietary Ca supply on 24-hydroxylase induction was

  1. Morphogenesis of the human excretory lacrimal system

    PubMed Central

    de la Cuadra-Blanco, C; Peces-Peña, M D; Jáñez-Escalada, L; Mérida-Velasco, J R

    2006-01-01

    The aim of this study was to determine the principal developmental stages in the formation of the excretory lacrimal system in humans and to establish its morphogenetic period. The study was performed using light microscopy on serial sections of 51 human specimens: 33 embryos and 18 fetuses ranging from 8 to 137 mm crown–rump length (CR; 5–16 weeks of development). Three stages were identified in the morphogenesis of the excretory lacrimal system: (1) the formative stage of the lacrimal lamina (Carnegie stages 16–18); (2) the formative stage of the lacrimal cord (Carnegie stages 19–23); and (3) the maturative stage of the excretory lacrimal system, from the 9th week of development onward. A three-dimensional reconstruction of the excretory lacrimal system was performed from serial sections of an embryo at the end of the embryonic period (27 mm CR). PMID:16879594

  2. The renal nerves in chronic heart failure: efferent and afferent mechanisms.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

  3. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  4. Coordinate regulation of gene expression in the C. elegans excretory cell by the POU domain protein CEH-6.

    PubMed

    Armstrong, Kristin R; Chamberlin, Helen M

    2010-01-01

    Excretory renal organs are critical in animals for osmoregulation and the elimination of waste. Renal organs across a range of species exhibit cellular and molecular similarities. For example, class III POU-homeodomain transcription factors are expressed in the renal organs of many invertebrates and vertebrates. However, the functional role for these factors is not well characterized. To better understand the role of class III POU-homeodomain proteins in animal excretory systems, we have characterized a set of genes expressed in the Caenorhabditis elegans excretory cell, and determined their regulation by the POU-III transcription factor CEH-6. Our molecular and biochemical studies show that CEH-6 regulates a subset of genes expressed in the excretory cell. Additionally, we find that the CEH-6-dependent genes share two molecular features: they contain at least one octamer regulatory element and they encode for transport and channel proteins. This work suggests that a role for POU-III factors in renal organs is to coordinate the expression of a set of functionally related genes.

  5. [Nle3,d-Phe6 ]-γ2 -melanocyte-stimulating hormone possesses the renal excretory but not the cardiovascular actions of the native γ2 -melanocyte-stimulating hormone in anaesthetized rats.

    PubMed

    Cope, Georgina; Flanagan, Evelyn T; Houghton, Belinda L; Walsh, Sarah A; Johns, Edward J; Healy, Vincent

    2013-01-01

    The present study compared the cardiovascular and renal actions of γ(2) -melanocyte-stimulating hormone (γ(2) MSH) with those of the synthetic analogue [Nle(3) ,d-Phe(6) ]-γ(2) MSH (NDP-γ(2) MSH) and explored the effects of high dietary salt intake on the renal actions of NDP-γ(2) MSH. Both peptides were infused systemically (3-1000 nmol/kg) and intrarenally (500 fmol/min) into innervated and renally denervated rats fed either a normal (0.4% NaCl) or high-salt (4% NaCl; HS) diet. Mean arterial pressure (MAP), glomerular filtration rate (GFR), urinary sodium excretion (U(N) (a) V), urinary output (UV) and fractional sodium excretion were determined, as was expression of the melanocortin MC(3) receptor in inner medullary collecting duct (IMCD) epithelial cells. Both renal and systemic infusion of γ(2) MSH increased MAP by 23 ± 2% and 54 ± 4%, respectively, but equivalent doses of NDP-γ(2) MSH had no significant pressor effects. Both peptides had similar natriuretic and diuretic effects in rats fed a normal salt diet. However, NDP-γ(2) MSH increased U(N) (a) V and UV by two- to threefold in rats fed the normal salt diet and by six- to sevenfold in rats fed the HS diet. Furthermore, NDP-γ(2) MSH induced a 3.5-fold increase in GFR only in rats fed the HS diet. These renal effects of NDP-γ(2) MSH were not abolished by prior renal denervation. Rats fed the HS diet also exhibited a 4.5-fold increase in MC(3) receptor expression in IMCD epithelial cells. Intrarenal infusion of NDP-γ(2) MSH induced the natriuretic but not the cardiovascular effects exhibited by γ(2) MSH. The renal activities may be attributed to a direct binding of NDP-γ(2) MSH to MC(3) receptors expressed in IMCD cells, leading to a potent natriuretic effect that is independent of renal innervation.

  6. The role of GDNF in patterning the excretory system.

    PubMed

    Shakya, Reena; Jho, Eek-hoon; Kotka, Pille; Wu, Zaiqi; Kholodilov, Nikolai; Burke, Robert; D'Agati, Vivette; Costantini, Frank

    2005-07-01

    Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.

  7. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  8. Obstructive renal injury: from fluid mechanics to molecular cell biology

    PubMed Central

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  9. Diagnostic value of combined static-excretory MR Urography in children with hydronephrosis.

    PubMed

    Emad-Eldin, Sally; Abdelaziz, Omar; El-Diasty, Tarek A

    2015-03-01

    The aim of this study was to determine the feasibility, accuracy and diagnostic potential of combined static-excretory MR Urography in children with sonographically detected hydronephrosis. We prospectively evaluated 28 children (11 girls and 17 boys), mean age 8.3 years (range 2 months-16 years). Static-excretory MR Urography was performed in all cases. The results of MR Urography were compared with the results of other imaging modalities, cystoscopy and surgery. In 28 children, 61 renal units were evaluated by MR Urography (the renal unit is the kidney and its draining ureter). The final diagnoses included: normal renal units (n = 23); uretropelvic junction obstruction (n = 14); megaureter (n = 8); midureteric stricture (n = 1), complicated duplicated systems (n = 5), post ESWL non-obstructive dilation (n = 2), extrarenal pelvis (n = 4), dysplastic kidney (n = 4). Complex pathology and more than one disease entity in were found in 7 children. The MRI diagnosis correlated with the final diagnosis in 57 units, with diagnostic accuracy 93.4%. In conclusions static and excretory MRU give both morphological and functional information in a single examination without exposure to ionizing radiation and iodinated contrast agent. It is a valuable imaging technique for children with upper urinary tract dilatation; especially in cases of complex congenital pathologies and severely hydronephrotic kidney.

  10. Mechanisms of renal tubular defects in old age.

    PubMed Central

    Dontas, A. S.; Marketos, S. G.; Papanayiotou, P.

    1972-01-01

    The mechanisms of renal tubular dysfunction in old age have been examined in twenty-eight clinically healthy elderly subjects without infection, and in fourteen subjects of similar age with laboratory evidence of intrarenal infection. The data were compared with those from thirteen clinically healthy young subjects. Studied were: proximal tubular (Tm(PAH)) and distal tubular (CH2O) activity, minimal and maximal osmolal U/P ratios, maximal osmolal excretion in hydropenia, and GFR levels under standard hydration and under water-loading. The reduction of GFR in old age is evident particularly in men under conditions of standard hydration: it is accentuated in the presence of renal infection. Proximal tubular activity is also significantly lower in elderly men, especially if they have chronic bacteriuria. The reduction is closely related to GFR levels, with identical Tm(PAH):C(in) ratios in all groups. This supports the intact nephron hypothesis for this part of the nephron. Distal tubular activity is depressed in old age in both sexes proportionately more than proximal tubular activity or the GFR. The lower CH2O: GFR ratios imply a selective distal tubular damage. Maximal osmolal U/P ratios in hydropenia are significantly higher in the young (mean 367) than in either the elderly non-infected (mean 279) or the elderly infected subjects (mean 212). Conversely, minimal U/P ratios in water-loading are lower in the young (mean 0.247) than in either elderly group (means 0.418 and 0.668). Osmolal excretion in hydropenia is not different between the groups, but urine flows in water-loading clearly separate them. The data indicate that simple functions of the distal-collecting tubule (e.g. the CH2O), are less affected in old age than are functions involving several medullary structures (as is the maximal U(osm) or U/P ratio). They suggest that the main impairment of the distal tubular cell involves the failure to achieve a proper osmotic gradient between tubular fluid and

  11. Radionuclide evaluation of renal function.

    PubMed

    Bueschen, A J; Witten, D M

    1979-06-01

    The renal scintillation camera study and the excretory urogram should be considered to be complementary studies. The renal scintillation camera study provides an accurate evaluation of changes in total, differential, and segmental renal function but affords only a gross assessment of anatomic changes. The excretory urogram provides superior information about renal anatomic changes but only inferior information about functional changes of the kidney. The advantages of a renal scintillation camera study with regard to the patient are that it is done in a state of normal hydration, it requires no bowel preparation, it is not associated with allergic reactions, it provides a low radiation exposure, and it is a noninvasive procedure for differential renal function which requires no ureteral catheters.

  12. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity.

    PubMed

    Sundaram, Meera V; Buechner, Matthew

    2016-05-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.

  13. Mechanism underlying renal failure caused by pathogenic Candida albicans infection.

    PubMed

    Jae-Chen, Shin; Young-Joo, Jeon; Seon-Min, Park; Kang Seok, Seo; Jung-Hyun, Shim; Jung-Il, Chae

    2015-03-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen that commonly causes nosocomial infections. Systemic candidiasis is encountered with increasing frequency in immunocompromised hosts, leading to renal failure that results in severe morbidity and mortality. The present study investigated the mechanisms underlying kidney susceptibility following infection with several C. albicans strains, such as B311 and SC5314. Fungal growth of the highly virulent SC5314 strain was 10(3)-fold higher compared to the nonpathogenic B311 strain in the kidneys. An intravenous challenge of SC5314 in mice, elevated blood urea nitrogen (BUN) and creatine levels, which resulted in mortality at 8 or 35 days after infection in a dose- and time-dependent manner, whereas all the B311-infected mice had BUN and creatinine levels in the normal range and survived. Whether virulent C. albicans may escape clearance by activating signaling pathways that lead to the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was investigated. B311 infections significantly elevated TNF-α and IL-1β mRNA expression in the kidneys, whereas the expression in SC5314-infected mice remained unchanged. Furthermore, B311 infection significantly elevated the plasma levels of TNF-α and IL-1β. These results indicated that the less virulent strains of C. albicans induced pro-inflammatory cytokines in mice. These results determined that an impairment of the protective mechanisms occurred in the kidneys with virulent C. albicans infection.

  14. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    PubMed

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-06-09

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.

  15. Integrated imaging of neonatal renal masses.

    PubMed

    Kirks, D R; Rosenberg, E R; Johnson, D G; King, L R

    1985-01-01

    Thirty-three neonatal renal masses were evaluated during a 2-year interval. The final diagnoses in these 33 patients were hydronephrosis [14], multicystic dysplastic kidney [10], renal vein thrombosis [3], obstructed upper pole duplication [2], polycystic kidney disease [2], nephroblastomatosis [1], and mesoblastic nephroma [1]. We recommend an integrated imaging approach that utilizes sonography to clarify anatomy and renal scintigraphy or excretory urography to determine renal function.

  16. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  17. Epidemic keratoconjunctivitis and lacrimal excretory system obstruction.

    PubMed

    Hyde, K J; Berger, S T

    1988-10-01

    Epiphora is a common symptom associated with the acute phase of epidemic keratoconjunctivitis (EKC). Reflex lacrimal secretion occurs secondary to conjunctival or corneal inflammation. Acquired obstruction of the lacrimal excretory system may account for persistence of tearing after resolution of the acute inflammatory phase of the viral infection. Three cases of lacrimal excretory system obstruction after EKC are reported. Multifocal obstruction of the canaliculi and nasolacrimal duct is characteristic. Dacryocystorhinostomy (DCR) was required to relieve obstruction in all cases. Probing and corticosteroid irrigation may avoid the need for silicone intubation or conjunctivodacryocystorhinostomy in the management of canalicular obstruction. Persistent epiphora after EKC should raise clinical suspicion of acquired dacryostenosis. Early recognition may allow for optimal management.

  18. A structure-function analysis of ion transport in crustacean gills and excretory organs.

    PubMed

    Freire, Carolina A; Onken, Horst; McNamara, John C

    2008-11-01

    Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.

  19. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion.

    PubMed Central

    Anderson, R J; Cronin, R E; McDonald, K M; Schrier, R W

    1976-01-01

    Clinical states with portal venous hypertension are frequently associated with impairment in renal hemodynamics and water excretion, as well as increased renin secretion. In the present investigation, portal venous pressure (PVP) was increased in anesthetized dogs undergoing a water diuresis. Renal arterial pressure was maintained constant in all studies. As PVP was increased from 6 to 20 mm Hg, decreases in cardiac output (2.5-2.0 liter/min, P less than 0.05) and mean arterial pressure (140-131 mm Hg, P less than 0.05) were observed. Increases in PVP were also associated with decreases in glomerular filtration rate (GFR, 40-31 ml/min, P less than 0.001), renal blood flow (RBF, 276-193 ml/min, P less than 0.001), and increases in renin secretion (232-939 U/min, P less than 0.025) in innervated kidneys. No significant change in either GFR or RBF and a decrease in renin secretion occurred with increases in PVP in denervated kidneys. To dissociate the changes in cardiac output and mean arterial pressure induced by increase PVP from the observed decreases in GFR and RBF, studies were performed on animals undergoing constriction of the thoracic inferior vena cava. In these studies, similar decreases in cardiac output and mean arterial pressure were not associated with significant changes in GFR or RBF. Increases in PVP also were associated with an antidiuresis as urine osmolality increased from 101 to 446 mosmol/kg H2O (P less than 0.001). This antidiuresis was significantly blunted but not abolished by acute hypophysectomy. In hypophysectomized animals, changes in free water clearance and urine flow were linearly correlated as PVP was increased. These studies indicate that increases in PVP result in decreases in GFR and RBF and increases in renin secretion mediated by increased renal adrenergic tone. Increased PVP is also associated with antidiuresis; this antidiuresis is mediated both by vasopressin release and by diminished tubular fluid delivery to the distal

  20. Renal tubular receptor imaging with iodine-131-labeled peanut lectin: pharmacokinetics and renal clearance mechanism in animals

    SciTech Connect

    Boniface, G.R.; Suresh, M.R.; Willans, D.J.; Tam, Y.K.; Shysh, A.; Longenecker, B.M.; Noujaim, A.A.

    1986-05-01

    Intravenously administered peanut lectin (PNA), iodinated with /sup 131/I ((/sup 131/I)PNA), is rapidly cleared from the plasma by the kidneys in dogs (clearance (total body) = 17.52 +/- 8.74 ml/min). Dynamic gamma camera renal scintigraphy demonstrated renal accumulation and excretion phases of the (/sup 131/I)PNA renogram in dogs and rabbits (% injection dose-at-peak = 21.8 +/- 3.3% and 19.6 +/- 4.3%, time-to-peak = 44.6 +/- 4.8 min and 37.2 +/- 6.9 min, respectively). Immunoperoxidase staining of kidney sections, following i.v. administered PNA, demonstrated predominant accumulation by the proximal tubules of mice, rabbits, and dogs. The basement membrane was intensely stained at early times p.i. while intracellular and luminal PNA was evident within 1 hr. Urine analysis confirmed the presence of intact (/sup 131/I)PNA in the bladder contents, while protein degradation products, and a small percentage of the free iodide (less than 5%) were noted within 1 hr p.i. The relative proportion of free iodide increased at later times p.i. (greater than 6 hr). A receptor mediated excretion mechanism is proposed for the clearance of PNA and may be useful for the study of renal tubular function.

  1. The renal concentrating mechanism and the clinical consequences of its loss

    PubMed Central

    Agaba, Emmanuel I.; Rohrscheib, Mark; Tzamaloukas, Antonios H.

    2012-01-01

    The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions. PMID:23293407

  2. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury

    SciTech Connect

    Zalups, R.K.; Minor, K.H.

    1995-09-01

    The present study provides evidence for the existence of both a luminal and a basolateral mechanism involved in the renal tubular uptake of inorganic mercury. The researchers compared the disposition of inorganic mercury in groups of surgical control rats, rats that underwent a unilateral ureteral ligation, and rats that underwent a bilateral ureteral ligation that were pretreated with either normal saline or a 7.5 mmol/kg intravenous dose of PAH 5 min prior to receiving a nontoxic 0.5-{mu}mol/kg intravenous dose of mercuric chloride. The {open_quotes}stop-flow{close_quotes} conditions induced by either unilateral or bilateral ureteral ligation caused a significant reduction in the uptake and content of mercury in the kidneys (whose ureter was ligated) both at 1 h and 24 h after the intravenous injection of the nontoxic dose of mercuric chloride. This decreased renal uptake of mercury was due specifically to decreased uptake of mercury in the renal cortex and outer stripe of the outer medulla. The amount of mercury has not taken up during ureteral ligation represents the portion of mercury that is presumably taken up by a luminal mechanism. Pretreatment with PAH also caused a significant reduction in the renal uptake of mercury in the cortex and outer stripe of the outer medulla. When either unilateral or bilateral ureteral ligation was combined with PAH pretreatment, an additive inhibitory effect occurred with respect to the renal uptake of mercury. In fact, the renal uptake of mercury was reduced by approximately 85% at 1 h after the injection of mercuric chloride. Since the luminal uptake of mercury was blocked by ureteral ligation, the effect of PAH on the renal uptake of mercury must have occurred at the basolateral membrane. Two distinct mechanisms are involved in mercury uptake, with one mechanism located on the luminal membrane and another located on the basolateral membrane. 22 refs., 11 figs., 2 tabs.

  3. Mechanisms of the renal vasodilation caused by insulin in anesthetized pigs.

    PubMed

    Molinari, C; Battaglia, A; Bona, G; Grossini, E; Mary, D A; Ruggeri, P; Stoker, J B; Vacca, G

    2001-08-24

    The present study was planned to determine the mechanisms involved in the renal vasodilation caused by insulin. Changes in flow caused by the intravenous infusion of 0.004 IU/kg/min of insulin at constant heart rate, aortic blood pressure, left ventricular contractility and blood levels of glucose and potassium in the left renal artery were assessed using an electromagnetic flowmeter. In ten pigs, infusion of insulin caused an increase in renal blood flow which averaged 12.8% of the control values. After hemodynamic variables had returned to control values, insulin infusion was repeated in five pigs following blockade of alpha-adrenergic receptors with injection of phentolamine into the renal artery and in the other five pigs following blockade of nitric oxide formation with injection in the same artery of Nomega-nitro-L-arginine methyl ester (L-NAME). After blockade of alpha-adrenergic receptors, insulin infusion caused an increase in renal blood flow which averaged 18.1% of the control values, being significantly enhanced with respect to the increase previously obtained in the same pigs. On the contrary, after blockade of nitric oxide formation insulin infusion caused a decrease in renal blood flow which averaged 6.5% of the control values. These responses were respectively abolished by the subsequent injection into the renal artery of L-NAME and phentolamine. The present study showed that the renal vasodilation caused by insulin in the anesthetized pig was the result of two opposite effects which involved a predominant vasodilation mediated by the release of nitric oxide from the endothelium and a sympathetic vasoconstrictor mechanism mediated by alpha-adrenergic receptors.

  4. Excretion of fluorescent substrates of mammalian multidrug resistance-associated protein (MRP) in the Schistosoma mansoni excretory system.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2004-01-01

    The protonephridium of platyhelminths including Schistosoma mansoni plays a pivotal role in their survival by excretion of metabolic wastes as well as xenobiotics, and can be revealed in the living adult parasite by certain fluorescent compounds which are concentrated in excretory tubules and collecting ducts. To determine the presence of the multidrug resistance-associated protein (MRP) as a possible transporter in protonephridial epithelium, adult schistosomes were exposed to a fluorescent Ca2+ indicator, fluo-3 acetyloxymethyl ester, which is a potential substrate of mammalian MRP. Specific fluorescence related to fluo-3/Ca2+ chelate delineated the whole length of the protonephridial system. Simultaneously, a fluorescent substance was accumulated in the posterior part of collecting ducts and the excretory bladder. Similarly, when other fluorogenic substrates for mammalian MRP such as monoclorobimane, fluorescein diacetate, and 5(6)-carboxyfluorescein diacetate were applied to adult schistosomes, these fluorescent markers were observed in the excretory tubules through to the excretory bladder. The excretory system of mechanically-transformed schistosomula was not labelled with any of these 4 fluorescent markers. These findings suggest that the protonephridial epithelium of adult schistosomes, but not schistosomula, might express the homologue of the mammalian MRP transporting organic anionic conjugates with glutathione, glucuronate or sulphate as well as unconjugated amphiphilic organic anions.

  5. Asymmetric horseshoe kidney in the infant: value of renal nuclear scanning

    SciTech Connect

    Grandone, C.H.; Haller, J.O.; Berdon, W.E.; Friedman, A.P.

    1985-02-01

    Five infants with an abdominal mass were found to have asymmetric horseshoe kidney. In all five, ultrasound and excretory urography were inconclusive; only after renal nuclear imaging was the diagnosis confirmed and planned surgery cancelled.

  6. Fine structure of the Caenorhabditis elegans secretory-excretory system.

    PubMed

    Nelson, F K; Albert, P S; Riddle, D L

    1983-02-01

    The secretory-excretory system of C. elegans, reconstructed from serial-section electron micrographs of larvae, is composed of four cells, the nuclei of which are located on the ventral side of the pharynx and adjacent intestine. (1) The pore cell encloses the terminal one-third of the excretory duct which leads to an excretory pore at the ventral midline. (2) The duct cell surrounds the excretory duct with a lamellar membrane from the origin of the duct at the excretory sinus to the pore cell boundary. (3) A large H-shaped excretory cell extends bilateral canals anteriorly and posteriorly nearly the entire length of the worm. The excretory sinus within the cell body joins the lumena of the canals with the origin of the duct. (4) A binucleate, A-shaped gland cell extends bilateral processes anteriorly from cell bodies located just behind the pharynx. These processes are fused at the anterior tip of the cell, where the cell enters the circumpharyngeal nerve ring. The processes are also joined at the anterior edge of the excretory cell body, where the excretory cell and gland are joined to the duct cell at the origin of the duct. Secretory granules may be concentrated in the gland near this secretory-excretory junction. Although the gland cells of all growing developmental stages stain positively with paraldehyde-fuchsin, the gland of the dauer larva stage (a developmentally arrested third-stage larva) does not stain, nor do glands of starved worms of other stages. Dauer larvae uniquely lack secretory granules, and the gland cytoplasm is displaced by a labyrinth of large, transparent spaces. Exit from the dauer stage results in the return of active secretory morphology in fourth-stage larvae.

  7. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies

    PubMed Central

    NOGUEIRA, ANTÓNIO; JOÃO PIRES, MARIA; ALEXANDRA OLIVEIRA, PAULA

    2017-01-01

    Chronic kidney disease (CKD) is a long-term condition in which the kidneys do not work correctly. It has a high prevalence and represents a serious hazard to human health and estimated to affects hundreds of millions of people. Diabetes and hypertension are the two principal causes of CKD. The progression of CKD is characterized by the loss of renal cells and their replacement by extracellular matrix (ECM), independently of the associated disease. Thus, one of the consequences of CKD is glomerulosclerosis and tubulointerstitial fibrosis caused by an imbalance between excessive synthesis and reduced breakdown of the ECM. There are many molecules and cells that are associated with progression of renal fibrosis e.g. angiotensin II (Ang II). Therefore, in order to understand the biopathology of renal fibrosis and for the evaluation of new treatments, the use of animal models is crucial such as: surgical, chemical and physical models, spontaneous models, genetic models and in vitro models. However, there are currently no effective treatments for preventing the progression of renal fibrosis. Therefore it is essential to improve our knowledge of the cellular and molecular mechanisms of the progress of renal fibrosis in order to achieve a reversion/elimination of renal fibrosis. PMID:28064215

  8. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA)

    PubMed Central

    Sebastian, Anthony; McSherry, Elisabeth; Morris, R. Curtis

    1971-01-01

    The mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA) was investigated in 10 patients, each of whom had impaired proximal renal tubular reabsorption of bicarbonate as judged from a greater than 15-20% reduction of renal tubular bicarbonate reabsorption (THCO3-) at normal plasma bicarbonate concentrations. When the plasma bicarbonate concentration ([HCO3-]p) was experimentally increased to normal levels in three patients with a fractional potassium excretion (CK/Cin) of less than 1.0 during acidosis, CK/Cin and urinary potassium excretion (UKV/Cin) increased strikingly and concurrently with a striking increase in urinary sodium (UNaV/Cin) and bicarbonate (UHCO3-V/Cin) excretion. When [HCO3-]p was increased to normal levels in two patients with a CK/Cin of greater than 1.0 during acidosis and in whom UNaV/Cin and UHCO3-V/Cin were already markedly increased, CK/Cin did not increase further. When [HCO3-]p was decreased to subnormal levels in a patient given ammonium chloride, UKV/Cin, CK/Cin, and UHCO3-V/Cin decreased concurrently. In the six patients in whom [HCO3-]p was maintained at normal levels (oral alkali therapy) for 2 months or longer, CK/Cin was directly related to the urinary excretion rates of sodium and bicarbonate, hence was directly related to the magnitude of reduction of THCO3- at normal [HCO3-]p; CK/Cin was greater than 0.55 in all six patients and greater than 1.0 in four. In eight patients with classic RTA (type 1 RTA), proximal renal tubular reabsorption of bicarbonate was largely intact as judged from a trivial reduction of THCO3- at normal [HCO3-]p. When [HCO3-]p was either increased from subnormal to normal levels, or decreased from normal to subnormal levels, UHCO3-V/Cin remained essentially constant, and UKV/Cin did not change significantly. When correction of acidosis was sustained, UHCO3-V/Cin remained a trivial fraction of that filtered, and CK/Cin was consistently less than 0

  9. Long-term course and mechanisms of progression of renal disease in hemolytic uremic syndrome.

    PubMed

    Repetto, Horatio A

    2005-08-01

    In the classic form of hemolytic uremic syndrome associated with toxins of gram-negative enterobacteria, mortality in the acute stage has been lower than 5% since 1978 (data from the Nephrology Committee, Argentine Society of Pediatrics). Children usually die because of severe involvement of the central nervous system, intestine, or myocardium and its complications, or because of intercurrent infection. Treatment in this phase is supportive, and efforts should be put into prevention of infection by Shiga-like toxin-producing enterohemorrhagic Escherichia coli. Of the 95% who survive, approximately one third is at risk for having chronic sequelae. Motor, sensory, or intellectual deficits, intestinal strictures, myocardial infarctions, or diabetes are infrequent. The more-frequent chronic renal lesion is characterized by the hyperfunction of nephrons remaining after the acute necrotizing lesion, which leads to progressive scarring, and not by persistence or recurrence of the microangiopathic process. Three courses of progression to end-stage renal failure have been described. Children with most severe forms do not recover from acute renal failure and enter directly into a dialysis and transplantation program. A second group recovers renal function partially, with persistent proteinuria and frequently hypertension; progression to end-stage renal failure occurs in 2 to 5 years. The third group may recover normal serum creatinine and creatinine clearance, with persistent proteinuria. They are at risk of progressing to chronic renal failure and end-stage renal disease after more than 5 years, and sometimes as late as 20 years, after the acute disease. Treatment should aim at preventing the mechanisms associated with progressive renal scarring. Transplantation is indicated in this form of hemolytic uremic syndrome, because there is little, if any, risk of recurrence, and the prognosis is similar to that of transplantation for other diseases.

  10. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    PubMed

    Hahn-Windgassen, Annett; Van Gilst, Marc R

    2009-07-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  11. Interspecies scaling of urinary excretory amounts of nine drugs belonging to different therapeutic areas with diverse chemical structures - accurate prediction of the human urinary excretory amounts.

    PubMed

    Bhamidipati, Ravi Kanth; Mullangi, Ramesh; Srinivas, Nuggehally R

    2017-02-01

    1. The human urinary excretory amounts of total drug (parent + metabolites) were predicted for nine drugs with diverse chemical structures using simple allometry. The drugs used for scaling were cephapirin, olanzapine, labetolol, carisbamate, voriconazole, tofacitinib, nevirapine, ropinirole, and cyclindole. 2. The traditional allometric scaling was attempted using Y = aW(b) relationship. The corresponding predicted urinary amounts were converted into % recovery by using appropriate human dose. Appropriate statistical tests comprising of fold-difference (predicted/observed values) and error calculations (MAE and RMSE) were performed. 3. The interspecies scaling of all nine drugs tested showed excellent correlation (r > 0.9672). The predictions for eight out of nine drugs (exception was cephaphirin) were contained within 0.80-1.25 fold-differences. The MAE and RMSE were within ± 18% and 14.64%, respectively. 4. The present work supported the potential application of prospective allometry scaling to predict the urinary excretory amounts of the total drug and gauge any issues for the renal handling of the total drug.

  12. Traumatic amputation of the left lower renal pole in children

    SciTech Connect

    Waxman, J.; Belman, A.B.; Kass, E.J.

    1985-07-01

    Four children between 5 and 10 years old suffered traumatic amputation of the left lower renal pole following flank trauma. All patients were evaluated with excretory urography and isotope renography. The renal scan clearly demonstrated failure of perfusion of the lower renal pole and urinary extravasation, and was believed to be more valuable than the standard excretory urogram as a diagnostic tool. All children were managed similarly: delayed (72 to 96 hours) exploration, simple removal of the amputated segment and insertion of a Penrose drain. They all have done well. The patients were normotensive at followup and had excellent function of the remaining portion of the kidney.

  13. Renal function in congenital anomalies of the kidney and urinary tract.

    PubMed

    Kemper, M J; Müller-Wiefel, D E

    2001-11-01

    Congenital anomalies of the kidneys and urinary tract are a major cause of chronic and end-stage renal failure in children. The molecular mechanisms having been elaborated, there is now growing evidence that kidney function is to a large extent determined genetically at an early stage. Assessment of kidney function is an important tool in clinical medicine and is feasible in utero. Postnatally, determination of absolute glomerular filtration rate and also of split and excretory renal function play an important role in the determination of treatment and prognosis. This is supplemented by other biochemical, molecular and interventional prognostic factors, which are of help in preservation of kidney survival by minimizing modulating factors. If chronic or terminal renal failure ensues in childhood or even in early infancy, however, improved medical care has led to encouraging results, ultimately influencing the motivation in the care of children with congenital anomalies of the kidney and urinary tract.

  14. The Role of Hydrogen Sulfide in Renal System

    PubMed Central

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases. PMID:27803669

  15. Morphology of the excretory system of Hysterothylacium haze (Nematoda: Anisakidae: Raphidascaridinae).

    PubMed

    Yoshinaga, T; Ogawa, K; Wakabayashi, H

    1989-10-01

    The morphology of the excretory system of Hysterothylacium haze was examined by serial histological sections. The excretory system was H-shaped and glandular, consisting of lateral filaments and a commissure, with the exretory pore opening posterior to the nerve ring. A large excretory nucleus was present in the left filament. The cuticularized excretory duct was confined to the left side of the commissure. The glandular excretory system is rare among the Raphidascaridinae.

  16. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency.

    PubMed

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A; Loffing, Johannes

    2015-02-01

    Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted.

  17. Mechanisms of Renal Control of Potassium Homeostasis in Complete Aldosterone Deficiency

    PubMed Central

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V.; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A.

    2015-01-01

    Aldosterone-independent mechanisms may contribute to K+ homeostasis. We studied aldosterone synthase knockout (AS−/−) mice to define renal control mechanisms of K+ homeostasis in complete aldosterone deficiency. AS−/− mice were normokalemic and tolerated a physiologic dietary K+ load (2% K+, 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K+ intake (5% K+), AS−/− mice decompensated and became hyperkalemic. High-K+ diets induced upregulation of the renal outer medullary K+ channel in AS−/− mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K+ excretion was detected only with a 2% K+ diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS−/− mice than in AS+/+ mice and was downregulated in mice of both genotypes in response to increased K+ intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS−/− mice. In contrast with the kidney, the distal colon of AS−/− mice did not respond to dietary K+ loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K+ load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K+ channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K+ secretion and increased intratubular availability of Na+ that can be reabsorbed in exchange for K+ secreted. PMID:25071088

  18. Renal Protective Effect of Probucol in Rats with Contrast-Induced Nephropathy and its Underlying Mechanism

    PubMed Central

    Wang, Na; Wei, Ri-bao; Li, Qing-ping; Yang, Xi; Li, Ping; Huang, Meng-jie; Wang, Rui; Cai, Guang-yan; Chen, Xiang-mei

    2015-01-01

    Background Contrast-induced nephropathy (CIN) refers to acute renal damage that occurs after the use of contrast agents. This study investigated the renal protective effect of probucol in a rat model of contrast-induced nephropathy and the mechanism of its effect. Material/Methods Twenty-eight Wistar rats were randomly divided into the control group, model group, N-acetylcysteine(NAC) group, and probucol group. We used a rat model of iopromide-induced CIN. One day prior to modeling, the rats received gavage. At 24 h after the modeling, blood biochemistry and urine protein were assessed. Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in renal tissue. Kidney sections were created for histopathological examination. Results The model group of rats showed significantly elevated levels of blood creatinine, urea nitrogen, 24-h urine protein, histopathological scores, and parameters of oxidative stress (P<0.05). Both the NAC and probucol groups demonstrated significantly lower Scr, BUN, and urine protein levels compared to the model group (P<0.05), with no significant difference between these 2 groups. The NAC group and the probucol group had significantly lower MDA and higher SOD than the model group at 24 h after modeling (P<0.05). The 8-OHdG-positive tubule of the probucol group and NAC group were significantly lower than those of the model group (p=0.046, P=0.0008), with significant difference between these 2 groups (P=0.024). Conclusions Probucol can effectively reduce kidney damage caused by contrast agent. The underlying mechanism may be that probucol accelerates the recovery of renal function and renal pathology by reducing local renal oxidative stress. PMID:26408630

  19. The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the 'excretory glands'.

    PubMed

    Lee, D L

    1970-01-01

    The ultrastructure of the excretory system, including the subventral glands, of the nematode Nippostrongylus brasiliensis has been described. The walls of the lateral excretory canals contain canaliculi which open into the lumen of the canal. It is suggested that these canals play a role in osmoregulation and excretion. The sub-ventral glands contain two types of secretory granule and contain non-specific esterase, cholinesterase and aminopeptidase. It is suggested that these glands are not excretory but play an important role in feeding.

  20. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  1. Excretory system of representatives from family Diplozoidae (Monogenea).

    PubMed

    Konstanzová, V; Koubková, B; Kašný, M; Ilgová, J; Dzika, E; Gelnar, M

    2016-04-01

    Diplozoons are representatives of blood-feeding ectoparasites from the family Diplozoidae (Polyopisthocotylea, Monogenea). Although these worms have been the subject of numerous taxonomical, phylogenetic, and ecological studies, the detailed study of their excretory system has remained relatively neglected. Our observations focused on the morphological and ultrastructural features of the excretory apparatus of four diplozoid species: Diplozoon paradoxum, Eudiplozoon nipponicum, Paradiplozoon bliccae, and Paradiplozoon homoion. Observations were obtained using two microscope methods: light microscopy, equipped with differential interference contrast (Nomarski DIC) and transmission electron microscopy (TEM). The ultrastructure of two basic compartments which forms the excretory apparatus, flame cells with filtration apparatus, and canal cells forming the protonephridial ducts is revealed in this study. A unique consecutive sequence of longitudinal semi-thin sections of the excretory pore of E. nipponicum is visualized there for the first time.

  2. Molecular mechanisms of membrane polarity in renal epithelial cells.

    PubMed

    Campo, C; Mason, A; Maouyo, D; Olsen, O; Yoo, D; Welling, P A

    2005-01-01

    Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.

  3. On the excretory system of the rotifer Habrotrocha rosa Donner.

    PubMed

    Schramm, U

    1978-06-08

    The excretory system of Habrotrocha rosa consists of two protonephridia. From each of them seven tubules lead to a terminal organ, also called cyrtocyte. Its weir basket contains structures which resemble ciliary rootlets. The lumen of the excretory system is bordered by a syncytial layer of cytoplasm. Cells are only found in the upper region of the trunk, where the channel is twisted several times.

  4. Notch and Ras promote sequential steps of excretory tube development in C. elegans.

    PubMed

    Abdus-Saboor, Ishmail; Mancuso, Vincent P; Murray, John I; Palozola, Katherine; Norris, Carolyn; Hall, David H; Howell, Kelly; Huang, Kai; Sundaram, Meera V

    2011-08-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.

  5. Notch and Ras promote sequential steps of excretory tube development in C. elegans

    PubMed Central

    Abdus-Saboor, Ishmail; Mancuso, Vincent P.; Murray, John I.; Palozola, Katherine; Norris, Carolyn; Hall, David H.; Howell, Kelly; Huang, Kai; Sundaram, Meera V.

    2011-01-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks. PMID:21771815

  6. Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats.

    PubMed

    Zhu, Yi; Wang, Youping; Wang, Donna H

    2005-10-01

    To test the hypothesis that activation of the vanilloid receptor 1 (VR1) expressed in sensory nerves innervating the renal pelvis leads to diuresis and natriuresis, a selective VR1 receptor agonist, capsaicin (2.4 nmol), or vehicle was perfused intravenously or into the left renal pelvis of anesthetized rats at a rate without changing renal perfusion pressure. Mean arterial pressure was not altered by capsaicin administered intravenously or into the renal pelvis. Capsaicin perfusion into the left renal pelvis but not intravenously caused significant increases in urine flow rate and urinary sodium excretion bilaterally in a dose-dependent manner, which were abolished by capsazepine, a selective VR1 receptor antagonist, given ipsilaterally to the renal pelvis or by ipsilateral renal denervation. Capsaicin given intravenously or into the left renal pelvis increased plasma calcitonin gene-related peptide levels to the same extent. Increased plasma calcitonin gene-related peptide levels induced by capsaicin (68.9+/-2.8 pg/mL) perfusion into the renal pelvis was prevented either by capsazepine (22.5+/-10.1 pg/mL) given ipsilaterally into the renal pelvis or by ipsilateral renal denervation (25.9+/-2.3 pg/mL). Taken together, our data show that unilateral activation of VR1-positive sensory nerves innervating the renal pelvis leads to bilateral diuresis and natriuresis via a mechanism that is independent of plasma calcitonin gene-related peptide levels. These data suggest that VR1-positive sensory nerves in the kidney enhance renal excretory function, a mechanism that may be critically involved in sodium and fluid homeostasis.

  7. Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development.

    PubMed

    Marcorelles, Pascale; Gillet, Danièle; Friocourt, Gaëlle; Ledé, Françoise; Samaison, Laura; Huguen, Geneviève; Ferec, Claude

    2012-03-01

    Sterility due to bilateral destruction in utero or in early infancy resulting in congenital absence of the vas deferens is the rule in male patients with cystic fibrosis. To understand the developmental pattern of this anomaly, the microscopic morphology of the male excretory system was analyzed during development and the expression of the cystic fibrosis transmembrane conductance regulator protein was explored by immunohistochemistry. We observed that cystic fibrosis fetuses had no excretory ducts agenesis or obstruction until 22 weeks of gestation. However, a focal inflammatory pattern and mucinous plugs in the oldest cystic fibrosis case suggested a disruptive mechanism. Immunolabeling of cytoplasmic epithelial cystic fibrosis transmembrane conductance regulator protein was demonstrated in all cystic fibrosis and control cases with a similar pattern of expression of the protein between age-matched controls and cystic fibrosis cases. At midgestation, an apical intensification appeared in both cystic fibrosis and control cases and was stable during the remainder of fetal life. No gradient of intensity could be detected between the different segments of the excretory tract. These findings are different from those reported in adults. The absence of any morphologic anomaly until 22 weeks of gestation, the focal destruction of the epithelial structures during the second trimester, and the chronological pattern of expression of cystic fibrosis transmembrane conductance regulator are of interest for a better understanding of the pathophysiology of this disease.

  8. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ

    PubMed Central

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-01-01

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. DOI: http://dx.doi.org/10.7554/eLife.07405.001 PMID:26057828

  9. Anatrophic nephrolithotomy: preservation of renal function demonstrated by differential quantitative radionuclide renal scans.

    PubMed

    Belis, J A; Morabito, R A; Kandzari, S J; Lai, J C; Gabriele, O F

    1981-06-01

    Differential quantitative radionuclide renal scans have been used to confirm that early removal of staghorn calculi by anatrophic nephrolithotomy preserves renal parenchyma without significant renal damage by the surgical procedure. The 99mtechnetium diethylenetriaminepentaacetic acid scan was useful in predicting recovery of function in the involved kidney, while the 131iodine orthoiodohippurate scan provided a quantitative evaluation of the effect of the surgical procedure on individual kidney function. All of 13 consecutive patients evaluated by 131iodine orthoiodohippurate renal scans had stable or improved effective renal plasma flow to the involved kidney and an unchanged or improved total excretory index 6 months after nephrolithotomy.

  10. Anatrophic nephrolithotomy: preservation of renal function demonstrated by differential quantitative radionuclide renal scans

    SciTech Connect

    Belis, J.A.; Morabito, R.A.; Kandzari, S.J.; Lai, J.C.; Gabriele, O.F.

    1981-06-01

    Differential quantitative radionuclide renal scans have been used to confirm that early removal of staghorn calculi by anatrophic nephrolithotomy preserves renal parenchyma without significant renal damage by the surgical procedure. The /sup 99m/technetium diethylenetriaminepentaacetic acid scan was useful in predicting recovery of function in the involved kidney, while the /sup 131/iodine orthoiodohippurate scan provided a quantitative evaluation of the effect of the surgical procedure on individual kidney function. All of 13 consecutive patients evaluated by /sup 131/iodine orthoiodohippurate renal scans had stable or improved effective renal plasma flow to the involved kidney and an unchanged or improved total excretory index 6 months after nephrolithotomy.

  11. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production.

    PubMed

    Chaiyadet, Sujittra; Smout, Michael; Johnson, Michael; Whitchurch, Cynthia; Turnbull, Lynne; Kaewkes, Sasithorn; Sotillo, Javier; Loukas, Alex; Sripa, Banchob

    2015-10-01

    Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south

  12. Renal and extrarenal mechanisms of perinatal programming after intrauterine growth restriction.

    PubMed

    Dötsch, Jörg

    2009-04-01

    The concept of fetal programming of disease in later life after intrauterine growth restriction (IUGR) has opened a potential new perspective on the treatment and prevention of arterial hypertension. Numerous large studies have recently confirmed the relationship between low birth weight and raised blood pressure. Hyperalimentation after birth appears to add to the risk of higher blood pressure later in life. However, there is still a controversy and clear intervention studies have not yet been possible. Therefore, the gain of knowledge about the underlying mechanisms of fetal programming is of utmost importance.Two major groups of mechanisms may be identified: renal and extrarenal mechanisms. Renal mechanisms include the reduction of nephron number, which is encountered in patients and animals with low birth weight. According to the so-called Brenner hypothesis, this may lead to increased arterial blood pressure. Another important renal system is the renin-angiotensin-aldosterone system, which appears to be more active on a number of levels in low birth weight individuals. Finally, there is the conversion of cortisol to inactive cortisone by the 11beta-hydroxysteroid dehydrogenase in distal tubule cells, which is reduced after intrauterine growth restriction. This enables a more powerful activation of mineralocorticoid receptors by cortisol. Extrarenal mechanisms include alterations in vascular structure (primary and secondary), increased activity of the sympathetic nerve system, and maybe most interestingly, an impairment of endothelial function. The latter is at least partially caused by an inactivation of nitric oxide by an excess of free oxygen radicals. In summary, mechanisms of fetal programming are only in the process of being revealed, and research has to focus on finding the key mechanism that might allow for successful intervention.

  13. [Congenital anomalies of the excretory system and their relationship to endemic nephropathy].

    PubMed

    Tanchev, I

    1975-01-01

    The author has studied the congenital anomalies of the urogenital system according to the clinical data of the Nephrology Ward, District Hospital--Vratza, by means of urography, ascending pyelography and reno-vasography. A total of 1960 patients were examined and congenital anomalies of the urogenital system established in 167 (8, 5%). Congenital anomalies of the excretory system, according to the author, are more often met in females (59, 9%) as compated with males (40, 1%) and in left kidney (58, 6%) as compared with the right one (35, 9%). At the same time, the most frequent complication of renal embryopathies was established to be the inflammation process of urinary ducts and kidneys (41, 9%) urinary-calculus disease (19.1%) and endemic nephropathy (8, 9%). The combination of endemic nephropathy and congenital anomalies of the urogenital system is rare (1, 1%) and most likely by chance. The author admits that endemic nephropathy most probably is not causality with the congenital anomalies of the excretory system.

  14. Ultrasound strain elastography in assessment of cortical mechanical behavior in acute renal vein occlusion: in vivo animal model.

    PubMed

    Gao, Jing; He, Wen; Cheng, Ling-Gang; Li, Xiao-Ya; Zhang, Xiou-Ru; Juluru, Krishna; Al Khori, Noor; Coya, Adrienne; Min, Robert

    2015-01-01

    To assess the correlation of quantitative ultrasound strain parameters with the severity of cortical edema in renal vein occlusion, we prospectively performed ultrasound strain elastography on a canine acute renal vein occlusion model prior to and following 10, 20, and 40min of renal vein ligation. Strain and strain relaxation time representing the deformation and relaxation of the renal cortices and reference soft tissue were produced by the external compression with the ultrasound transducer and estimated using commercially available 2-D speckle tracking software. Cortical thickness was additionally measured. Repeated-measures analysis of variance was used to examine the difference in cortical thickness, strain ratio (mean cortical strain divided by mean reference tissue strain), and strain relaxation time ratio (cortical relaxation time divided by reference tissue relaxation time) prior to and after renal vein ligation. Pearson's correlation coefficient was applied to test the relationship between strain parameters and the time of the renal vein ligation. There was a strong positive correlation between the duration of renal vein ligation and strain (R(2)=0.97) and strain relaxation time (R(2)=0.98) ratios. Significant differences in strain and strain relaxation time ratios were found at all measured timepoints (all P≪.001). Cortical thickness, however, showed no significant difference between timepoints (P=.065). Our result suggest that strain and strain relaxation time ratios may be used as quantitative markers for the assessment of the renal cortical mechanical behavior in subclinical acute renal vein occlusion.

  15. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis.

    PubMed

    Xia, Jia; He, Li-qun; Su, Xiao

    2016-05-01

    Renal interstitial fibrosis (RIF) is a common development in chronic renal diseases that can lead to uremia and be life-threatening. The RIF pathology has complicated extracellular and intercellular mechanisms, involving many cells and cytokines, resulting in an incomplete mechanistic understanding of the disease. Finding effective herbs or herbal extracts for prevention and treatment of RIF is crucial because current medical approaches do not reliably slow or reverse RIF. In recent years, many experts have worked to identify herbs or herbal extracts to combat RIF both in vivo and in vitro, with some success. This review attempts to summarize the possible interventional mechanisms of herbs or herbal extracts involved in protecting and reversing RIF. The authors found some herbs and their extracts that may ameliorate renal impairments through anti-inflammation, anti-fibrogenesis and stabilization of extra cellular matrix. Among them, tetramethylpyrazine/ligustrazine, curcumin and polyglucoside of Tripterygium have experimentally shown good potential for improving RIF. However, conclusive evidence is still needed, especially in randomized controlled clinical trials. We expect that herbs or herbal extracts will play an important role in RIF treatment and reversal in the future.

  16. Use of radionuclide renal imaging for clinical followup after extracorporeal shock wave lithotripsy of renal stones.

    PubMed

    Michaels, E K; Pavel, D G; Orellana, P; Montes, A; Olea, E

    1992-09-01

    Patients treated by extracorporeal shock wave lithotripsy (ESWL) are usually evaluated by excretory urography within 1 month after treatment to determine the clearance of stone debris and rule out asymptomatic obstruction. In an attempt to obtain more precise functional information, we used 99mtechnetium-diethylenetriaminepentaacetic acid and 131iodine-hippurate radionuclide renal imaging studies, and a plain abdominal radiograph as the initial followup study after ESWL of 64 kidneys in 55 patients. Of 53 kidneys studied within 60 days after ESWL 42 had abnormal radionuclide renal imaging studies demonstrating pelviocaliceal stasis, excretory delay or poor function, 8 of which required subsequent interventions for obstructing stone debris. Five patients had excretory delay after ESWL that was unexpected based on a pre-ESWL excretory urogram showing normal function without dilation. A subset of 23 patients with large stone burden or anatomical deformity from a prior operation had baseline radionuclide renal imaging studies before ESWL; function improved in 4 and worsened in 5 by radionuclide renal imaging studies after completion of treatment. A total of 19 patients had radionuclide renal imaging studies earlier (within 17 days) after ESWL because of poor function and/or large stone burden, and as expected they had evidence of obstruction from stone debris, which necessitated further followup. Our experience suggests that followup of ESWL by radionuclide renal imaging studies provides specific functional information that is of particular value in the management of patients with obstructing stone debris and/or diminished renal function. Radionuclide renal imaging studies may also reveal unsuspected obstruction or functional impairment after ESWL of uncomplicated stones, and is recommended as routine followup after ESWL.

  17. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms.

    PubMed

    Dworkin, L D; Benstein, J A; Parker, M; Tolbert, E; Feiner, H D

    1993-04-01

    Both glomerular hypertension and hypertrophy have been associated with the development of glomerular injury in models of hypertension and reduced renal mass. The purpose of this study was to examine the effects of antihypertensive therapy on these parameters in the remnant kidney model of progressive glomerular sclerosis. Rats underwent 5/6 nephrectomy and were randomly assigned to receive either no therapy, the calcium entry blocker (CEB), nifedipine, or the angiotensin converting enzyme inhibitor (CEI), enalapril. Administration of either drug was associated with a reduction in systemic blood pressure and in the severity of glomerular injury assessed eight weeks after renal ablation. Micropuncture studies four weeks after ablation revealed that systemic and glomerular capillary pressure were high in untreated remnant kidney rats and reduced by enalapril. Administration of nifedipine was associated with a decline in systemic pressure, however, plasma renin levels increased, causing efferent arteriolar vasoconstriction and persistence of glomerular hypertension. Morphometric analysis showed that kidney weight, glomerular volume and glomerular capillary radius were lower in nifedipine treated rats than in the other two groups, indicating that the CEB, but not enalapril, inhibited the hypertrophic response to ablation of renal mass. Therefore, both CEIs and CEBs reduce glomerular injury in rats with remnant kidneys but they may act by different mechanisms. CEI reduce glomerular capillary pressure while CEBs inhibit compensatory kidney growth.

  18. Ultrastructure of the excretory system of Trilocularia acanthiaevulgaris (Cestoda, Tetraphyllidea).

    PubMed

    McCullough, J S; Fairweather, I

    1991-01-01

    The fine structure of the excretory system in the juvenile (plerocercoid-like) form of Trilocularia acanthiaevulgaris is described. The flame cell bears a bunch of 50-70 cilia, which are anchored in the cytoplasm by means of basal bodies possessing striated rootlets. All the cilia in the "flame" are aligned in the same direction. The flame and duct cells are connected by interdigitating ribs of cytoplasm separated by a fibrous sheet. Both internal and external leptotriches are also present. The lumen of the excretory ducts is intracellular in origin. The apical surface of the cytoplasm lining the duct is convoluted and its surface area is further amplified by means of microvilli. The fine structure of the excretory system in this primitive tapeworm is compared with that described for other parasitic and free-living flatworms.

  19. The effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall.

    PubMed

    Hopkins, Alan A; Sheridan, William S; Sharif, Faisal; Murphy, Bruce P

    2014-11-28

    The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70°C for 120s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.

  20. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

    PubMed

    Watanabe, Hiroshi

    2013-01-01

    Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

  1. Immunohistochemical localization of atrial natriuretic factor (ANF) in the excretory system of the rabbit parotid gland.

    PubMed

    Valentino, B; Farina Lipari, E; Carini, F; Valenza, V

    1999-01-01

    The immunohistochemical localization of atrial natriuretic factor (ANF) in the rabbit parotid gland was performed using an antibody against rabbit ANF and avidin-biotin or streptoavidin as detector. Results showed positivity in cuboidal and columnar cells of intralobular ducts and in basal cells of extralobular and main excretory duct. These data support the hypothesis that ANF produced by intralobular ducts could act through a paracrine mechanism; ANF produced by extralobular and main ducts may play a role in the regulation of salivary composition.

  2. [Effects and underlying mechanism of berberine on renal tubulointerstitial injury in diabetic rats].

    PubMed

    Ma, Z J; Hu, S L; Wang, S S; Guo, X; Zhang, X N; Sun, B; Chen, L M

    2016-10-18

    Objective: To investigate the effect of Berberine on renal tubulointerstitial injury and its potential mechanism in rats with type 2 diabetes mellitus (T2DM). Methods: Thirty Sprague-Dawley rats were randomly divided into 3 groups: normal control rats (NC group), diabetic rats without drug treatment (DM group), diabetic rats treated with Berberine (BBR group) for 8 weeks. At the end of the study, blood and urine samples were collected for biochemical examination, and tubulointerstitial fibrosis was quantified by Hematoxylin and Eosin (HE) and Masson staining. The expressions of E-cadherin (E-cad), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB) and monocyte chemoattractant protein 1 (MCP-1) were detected by immunohistochemistry analysis, real-time polymerase chain reaction (RT-PCR) and Western blot analysis. Results: 24 h urinary microalbumin (mAlb)[(170.5±58.1) vs (253.7±53.0) mg]and urinary N-acetyl-glucosaminidase (NAG)[(33.5±7.2) vs (49.5±9.3)U/L]in diabetic rats were significantly decreased by BBR treatment(both P<0.05). The apparent renal tubulointerstitial injury was found in the DM group, which was ameliorated by BBR treatment. The expression of α-SMA, NF-κB and MCP-1 were significantly decreased, accompanied by increased expression of E-cad in BBR-treated DM rats (all P<0.05). Conclusion: BBR could ameliorate renal tubulointerstitial injury in diabetic rats, the mechanism of which may be associated with the amelioration of epithelial-mesenchymal transition (EMT) through suppressing the expression of the NF-κB and MCP-1.

  3. [Renoprotective effects of statins under the conditions of acute renal failure, caused by rhabdomyolysis].

    PubMed

    Zamorskiĭ, I I; Zeleniuk, V G

    2014-01-01

    The experiment on white rats was targeted at the examination of influence of statins (atorvastatin, lovastatin, simvastatin) under the conditions of acute renal failure, caused by rhabdomyolysis. Renoprotective effects of statins were demonstrated by reduction of hyperazotemia and proteinuria and improvement of renal excretory function, which correlated with antioxidant properties of drugs.

  4. Evolutionary innovation of the excretory system in Caenorhabditis elegans.

    PubMed

    Wang, Xiaodong; Chamberlin, Helen M

    2004-03-01

    The evolution of complexity relies on changes that result in new gene functions. Here we show that the unique morphological and functional features of the excretory duct cell in C. elegans result from the gain of expression of a single gene. Our results show that innovation can be achieved by altered expression of a transcription factor without coevolution of all target genes.

  5. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  6. Nondisjunction reduplication of chromosome 3 is not a common mechanism in the development of human renal cell tumors.

    PubMed

    Kovacs, G; Wilkens, L; Papp, T

    1988-01-01

    Because of the recurrent loss of regions of the chromosome 3 short arm in renal cell carcinomas, a chromosomal mechanism for the expression of recessive cancer genes has been implicated in the development of this type of tumor. Nondisjunction and subsequent reduplication of a mutant chromosome is one of the presumed mitotic mechanisms leading to the expression of recessive cancer genes. Using variant fluorescence at the centromeric region of chromosome 3 and a restriction fragment length polymorphism on chromosome 3p, we found chromosome 3 heteromorphism in the constitutional cells of 14 of 15 patients with renal tumors showing two normal chromosomes 3. This heteromorphism was maintained in each tumor. Therefore, the mechanism of nondisjunction and reduplication in the development of homozygosity for a mutant chromosome 3 in renal tumors remains questionable.

  7. Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions.

    PubMed

    Jia, Weiwei; Du, Feifei; Liu, Xinwei; Jiang, Rongrong; Xu, Fang; Yang, Junling; Li, Li; Wang, Fengqing; Olaleye, Olajide E; Dong, Jiajia; Li, Chuan

    2015-05-01

    Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by human organic anion transporter 1 (OAT1) (Km, 121 μM), OAT2 (859 μM), OAT3 (1888 μM), and OAT4 (1880 μM) and rat Oat1 (117 µM), Oat2 (1207 μM), and Oat3 (1498 μM). Other renal transporters (human organic anion-transporting polypeptide 4C1 [OATP4C1], organic cation transporter 2 [OCT2], carnitine/organic cation transporter 1 [OCTN1], multidrug and toxin extrusion protein 1 [MATE1], MATE2-K, multidrug resistance-associated protein 2 [MRP2], MRP4, and breast cancer resistance protein [BCRP], and rat Oct1, Oct2, Octn1, Octn2, Mate1, Mrp2, Mrp4, and Bcrp) showed either ambiguous ability to transport tanshinol or no transport activity. Rats may be a useful model, to investigate the contribution of the renal transporters on the systemic and renal exposure to tanshinol. Probenecid-induced impairment of tubular secretion resulted in a 3- to 5-fold increase in the rat plasma area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of tanshinol. Tanshinol exhibited linear plasma pharmacokinetic properties over a large intravenous dose range (2-200 mg/kg) in rats. The dosage adjustment could result in increases in the plasma AUC0-∞ of tanshinol of about 100-fold. Tanshinol exhibited very little dose-related nephrotoxicity. In summary, renal tubular secretion of tanshinol consists of uptake from blood, primarily by OAT1/Oat1, and the subsequent luminal efflux into urine mainly by passive diffusion. Dosage adjustment appears to be an efficient and safe way to manipulate systemic exposure to tanshinol. Tanshinol shows low propensity to cause renal transporter

  8. Renal handling of terephthalic acid

    SciTech Connect

    Tremaine, L.M.; Quebbemann, A.J.

    1985-01-01

    By use of the Sperber in vivo chicken preparation method, infusion of radiolabeled terephthalic acid ((/sup 14/C)TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of (/sup 14/C)TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the (/sup 14/C)TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of (/sup 14/C)TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion.

  9. Lymphangioma communicating with the excretory system.

    PubMed

    Pancione, L; Giacomelli, G; Moroni, M; Taraglio, G; Mecozzi, B

    2008-03-01

    Lymphangioma is a rare benign tumor caused by failure in the development of the lymphatic communicating system. The corresponding nomenclature is confusing. In recent years ''renal lymphangiectasia'' is the preferred name. Although this disease may occur in any site of the body, the neck (75%) and axillary area (20%) are the most common sites, and the kidney is occasionally involved. We report a case of lymphangioma communicating with the urinary system in a 61-year-old man diagnosed by CT scan treated with nephrectomy and histological confirmation.

  10. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma.

  11. Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine

    PubMed Central

    Yun, Yu; Gao, Tao; Li, Yue; Gao, Zhiyi; Duan, Jinlian; Yin, Hua

    2016-01-01

    The main aim of the study was to prove the compensative effect of intestine for renal function. Rat kidney was impaired by intragastrically administrating adenine (400 mg per day for 5 days). Intestinal tract was harvested and equally divided into 20 segments except cecum. Kidneys were harvested and histologically examined with hematoxylin-eosin staining kits. Uric acid, urea (BUN), and creatinine in serum were determined with assay kits, and BUN and creatinine in every intestinal segment were also determined. The results showed that adenine was able to increase uric acid level in serum from 20.98 ± 6.98 μg/mL to 40.77 ± 7.52 μg/mL and cause renal function damage with BUN (from 3.87 ± 0.62 mM to 12.33 ± 3.27 mM) and creatinine (from 51.48 ± 6.98 μM to 118.25 ± 28.63 μM) increasing in serum and with abnormally micromorphological changes in kidney. The amount of BUN and creatinine distributed in intestinal tract was positively correlated with those in blood. In impaired renal function rats, the amount of BUN (from 4.26 ± 0.21 μMole to 10.72 ± 0.55 μMole) and creatinine (from 681.4 ± 23.3 nMole to 928.7 ± 21.3 nMole) distributed in intestinal tract significantly increased. All the results proved that intestinal tract had excretory function compensative for renal function. PMID:27975080

  12. An ultrastructural study of the cercarial excretory system in Bucephaloides gracilescens and Prosorhynchus squamatus.

    PubMed

    Podvyaznaya, I M; Galaktionov, K V

    2004-06-01

    The ultrastructure of the flame cells, capillaries, collecting tubes, excretory bladder, excretory atrium, caudal vesicle, lateral caudal ducts and excretory pores of cercariae of Bucephaloides gracilescens (Rudolphi, 1819) Hopkins, 1954 and Prosorhynchus squamatus Odhner, 1905 (Digenea: Bucephalidae) is described. Both species are essentially similar except for some details. The terminal parts of the protonephridia have all the structural features that are typical of trematodes. The collecting tubes in the cercarial body are composed of cells that are wrapped around the lumen. The main collecting tubes are joined to the excretory bladder syncytium by septate junctions. Features of P. squamatus excretory bladder epithelium indicate that it is involved in secretory activity, but this is not the case in B. gracilescens. In both species the luminal surface of the excretory bladder epithelium is increased by lamellae, and the basal plasma membrane forms invaginations. In the bladder syncytium of P. squamatus both apical lamellae and basal invaginations are more developed and mitochondria are also more numerous. The excretory atrium is lined by a syncytium with nucleated cytons located in the surrounding parenchyma. The atrium lining is not continuous with the body tegument and possesses specific secretory inclusions and a thick glycocalyx. Septate junctions connect the atrium syncytium to the excretory bladder epithelium at its anterior end and to the syncytial excretory epithelium lining the caudal vesicle and the lateral caudal ducts at its posterior. In the excretory pores the caudal duct syncytium is joined to the tegument by septate desmosomes.

  13. The renal quantitative scintillation camera study for determination of renal function

    SciTech Connect

    Thompson, I.M. Jr.; Boineau, F.G.; Evans, B.B.; Schlegel, J.U.

    1983-03-01

    The renal quantitative scintillation camera study assesses glomerular filtration rate and effective renal plasma flow based upon renal uptake of 99mtechnetium-iron ascorbate and 131iodine-hippuran, respectively. The method was compared to inulin, para-aminohippuric acid and creatinine clearance studies in 7 normal subjects and 9 patients with various degrees of reduced renal function. The reproducibility of the technique was determined in 15 randomly selected pediatric patients. The values of glomerular filtration rate and effective renal plasma flow were not significantly different from those of inulin and para-aminohippuric acid studies. The reproducibility of the technique was comparable to that of inulin and para-aminohippuric acid studies. Patient acceptance of the technique is excellent and the cost is minimal. Renal morphology and excretory dynamics also are demonstrated. The technique is advocated as a clinical measure of renal function.

  14. Imaging in acute renal infection in children

    SciTech Connect

    Sty, J.R.; Wells, R.G.; Starshak, R.J.; Schroeder, B.A.

    1987-03-01

    Infection is the most common disease of the urinary tract in children, and various imaging techniques have been used to verify its presence and location. On retrospective analysis, 50 consecutive children with documented upper urinary tract infection had abnormal findings on renal cortical scintigraphy with 99mTc-glucoheptonate. The infection involved the renal poles only in 38 and the poles plus other renal cortical areas in eight. Four had abnormalities that spared the poles. Renal sonograms were abnormal in 32 of 50 children. Excretory urograms were abnormal in six of 23 children in whom they were obtained. Vesicoureteral reflux was found in 34 of 40 children in whom voiding cystourethrography was performed. These data show the high sensitivity of renal cortical scintigraphy with 99mTc-glucoheptonate in documenting upper urinary tract infection. The location of the abnormalities detected suggests that renal infections spread via an ascending mode and implies that intrarenal reflux is a major contributing factor.

  15. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  16. Characterization of the effects of erythromycin estolate and erythromycin base on the excretory function of the isolated rat liver

    SciTech Connect

    Gaeta, G.B.; Utili, R.; Adinolfi, L.E.; Abernathy, C.O.; Giusti, G.

    1985-09-15

    To investigate the mechanisms of erythromycin cholestasis, the effects of erythromycin estolate (EE) on the excretory function of the isolated perfused rat liver and on liver plasma membrane (LM) preparations were studied and compared to those of erythromycin base (EB) and lauryl sulfate (LS), added alone or in combination. EE (at 125 to 200 microM) caused dose-dependent reductions of bile and perfusate flows, bile acid (BA) excretion, and biliary BA concentration. The alterations of the excretory function were only in part due to the decreased perfusate flow. In contrast, both 200 and 300 microM concentrations of EB elicited similar choleretic responses, which were presumably related to the osmotic activity of the drug excreted in the bile. LS did not affect hepatic excretory functions. However, the simultaneous addition of EB and LS resulted in a rate of bile flow lower than that observed with EB alone. EE, but not EB, increased canalicular permeability to (/sup 14/C)sucrose as measured by bile to plasma (B:P) ratio. Neither drugs altered (/sup 14/C)erythritol B:P ratio. In LM preparations both Na+,K+- and Mg2+-ATPase activities were inhibited in a dose-dependent manner by EE, but not by EB. The data suggest that EE could affect bile flow by inhibiting cotransport of Na+ and BA and by altering LM permeability and support the view that the effect of erythromycins on the liver may be related to their surface activity.

  17. Grape seed proanthocyanidins prevent DOCA-salt hypertension-induced renal injury and its mechanisms in rats.

    PubMed

    Lan, Chao-Zong; Ding, Ling; Su, Yi-Lin; Guo, Kun; Wang, Li; Kan, Hong-Wei; Ou, Yu-Rong; Gao, Shan

    2015-07-01

    Renal dysfunction is one of the major effects of DOCA (deoxycorticosterone acetate)-salt hypertension and there is an increasing amount of evidence that oxidative stress damages the function of the kidney. Grape seed proanthocyanidins (GSPE) have been reported to be potent anti-oxidants and free radical scavengers. The present study sought to investigate the ability of GSPE to prevent renal injury in DOCA-salt hypertensive rats and to explore the molecular mechanisms underlying its protective effects. A total of 54 Sprague Dawley (SD) rats were randomly divided into 7 groups: Sham group (n = 7), UnX-sham group (n = 8), DOCA-salt group (n = 8), GSPE150 group (150 mg kg(-1), n = 7), GSPE240 group (240 mg kg(-1), n = 8), GSPE384 group (384 mg kg(-1), n = 8) and ALM (amlodipine besylate tablets) group (5 mg kg(-1), n = 8), and treated for 4 weeks. Compared to sham group rats, renal injury was observed in DOCA-salt hypertensive group rats as the urine protein, KW/BW (kidney weight/body weight), degree of renal fibrosis, renal MDA (malondialdehyde) and Hyp (hydroxyproline) contents significantly increased (P < 0.01). Moreover, SOD (Superoxide Dismutase) activities decreased in the model group (P < 0.01). In contrast, DOCA-salt hypertensive rats treated with different dose of GSPE or ALM showed a significant improvement of renal injury with decreased urine protein, KW/BW, degree of renal fibrosis, renal total MDA and Hyp contents compared to the untreated group. In addition, SOD activities increased in the treatment group. Since the experimental modeling time was short, kidney damage occurs to a lesser extent. BUN (Blood Urea Nitrogen), Scr (Serum Creatinine) and UA (Uric Acid) contents did not appear significantly changed in all groups. Finally, the activation of JNK and p38 kinases in the kidney was suppressed in rats treated with GSPEs or ALM compared to the untreated group, suggesting that the inhibition of these kinase pathways by GSPE contributes to the improvement

  18. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    SciTech Connect

    el-Din, M.M.; Malik, K.U.

    1987-10-01

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with (/sup 3/H)norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered.

  19. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  20. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells

    SciTech Connect

    Siebens, A.W.; Spring, K.R. )

    1989-12-01

    The renal papillary epithelial cell line, GRB-PAP1, accumulates sorbitol when grown in a hypertonic (500 mosmol/kgH2O) bathing medium. When the cells are returned to a 300 mosmol/kgH2O medium, they lose their sorbitol rapidly to the bath. Sorbitol movement across the membranes of these cells was investigated by studying the uptake of radioactive sorbitol and related compounds. Sorbitol uptake increased 71-fold when cells grown in 500 mosmol/kgH2O medium were exposed to a 300 mosmol/kgH2O test solution. The magnitude of the permeability increase was proportional to the size of the change in the osmolality of the bathing medium and not the absolute osmolality. Sorbitol uptake was a linear function of medium sorbitol concentration with no sign of saturation at sorbitol concentrations up to 315 mM. Although the permeability of other polyols was increased when the osmolality was reduced, competition between sorbitol and related sugars and polyols could not be demonstrated. Both the increased sorbitol uptake after a decrease in medium osmolality and the decrease to control permeability after return to the original osmolality were complete within 30 s. A wide variety of transport inhibitors and ion substitutions failed to alter the magnitude of the sorbitol permeability increase. The most effective inhibitor was quinidine, 1 mM reducing sorbitol uptake by 73%. The sorbitol permeability increase could also be blocked by reducing the temperature to 0 degrees C. Nonspecific uptake of sorbitol, such as endocytosis, was shown to be of only minor significance. The large increase in sorbitol permeability and subsequent sorbitol efflux enables these cells to withstand large decreases in osmolality without excessive swelling and consequent damage. A similar compensatory mechanism may operate in vivo in the renal papilla during the onset of diuresis.

  1. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency

    PubMed Central

    Jokihaara, Jarkko; Pörsti, Ilkka H.; Sievänen, Harri; Kööbi, Peeter; Kannus, Pekka; Niemelä, Onni; Turner, Russell T.; Iwaniec, Urszula T.; Järvinen, Teppo L. N.

    2016-01-01

    Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI. PMID:27658028

  2. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  3. Effects of exercise on renal function in patients with moderate impairment of renal function compared to normal men.

    PubMed

    Taverner, D; Craig, K; Mackay, I; Watson, M L

    1991-01-01

    The renal excretory and haemodynamic responses to sustained moderate exertion were investigated in normotensive humans with impaired renal function and normal volunteers. The heart rate increase with exercise was similar in each group. Subjects with impaired renal function showed a significant fall in glomerular filtration rate on exertion, while normals did not. In the presence of renal disease, urine osmolality did not rise with exertion, although it rose markedly in the normal group. Free water clearance became negative after exercise in the normal group only. The diseased kidney is unable to maintain glomerular filtration rate or conserve water under the stress of exertion as well as the normal kidney.

  4. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

    PubMed

    Lawrence, Michael J; Wright, Patricia A; Wood, Chris M

    2015-07-01

    Relative to the gills, the mechanisms by which the kidney contributes to ammonia and acid-base homeostasis in fish are poorly understood. Goldfish were exposed to a low pH environment (pH 4.0, 48 h), which induced a characteristic metabolic acidosis and an increase in total plasma [ammonia] but reduced plasma ammonia partial pressure (PNH3). In the kidney tissue, total ammonia, lactate and intracellular pH remained unchanged. The urinary excretion rate of net base under control conditions changed to net acid excretion under low pH, with contributions from both the NH4 (+) (∼30%) and titratable acidity minus bicarbonate (∼70%; TA-HCO3 (-)) components. Inorganic phosphate (Pi), urea and Na(+) excretion rates were also elevated while Cl(-) excretion rates were unchanged. Renal alanine aminotransferase activity increased under acidosis. The increase in renal ammonia excretion was due to significant increases in both the glomerular filtration and the tubular secretion rates of ammonia, with the latter accounting for ∼75% of the increase. There was also a 3.5-fold increase in the mRNA expression of renal Rhcg-b (Rhcg1) mRNA. There was no relationship between ammonia secretion and Na(+) reabsorption. These data indicate that increased renal ammonia secretion during acidosis is probably mediated through Rhesus (Rh) glycoproteins and occurs independently of Na(+) transport, in contrast to branchial and epidermal models of Na(+)-dependent ammonia transport in freshwater fish. Rather, we propose a model of parallel H(+)/NH3 transport as the primary mechanism of renal tubular ammonia secretion that is dependent on renal amino acid catabolism.

  5. Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action.

    PubMed

    Duran, I; Lambea, J; Maroto, P; González-Larriba, J L; Flores, Luis; Granados-Principal, S; Graupera, M; Sáez, B; Vivancos, A; Casanovas, O

    2017-02-01

    Renal cell carcinoma (RCC) is a complex disease characterized by mutations in several genes. Loss of function of the von Hippel-Lindau (VHL) tumour suppressor gene is a very common finding in RCC and leads to up-regulation of hypoxia-inducible factor (HIF)-responsive genes accountable for angiogenesis and cell growth, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Binding of these proteins to their cognate tyrosine kinase receptors on endothelial cells promotes angiogenesis. Promotion of angiogenesis is in part due to the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway. Inhibition of this pathway decreases protein translation and inhibits both angiogenesis and tumour cell proliferation. Although tyrosine kinase inhibitors (TKIs) stand as the main first-line treatment option for advanced RCC, eventually all patients will become resistant to TKIs. Resistance can be overcome by using second-line treatments with different mechanisms of action, such as inhibitors of mTOR, c-MET, programmed death 1 (PD-1) receptor, or the combination of an mTOR inhibitor (mTORi) with a TKI. In this article, we briefly review current evidence regarding mechanisms of resistance in RCC and treatment strategies to overcome resistance with a special focus on the PI3K/AKT/mTOR pathway.

  6. Immunomodulatory effects of Trichinella spiralis-derived excretory-secretory antigens.

    PubMed

    Radovic, Ivana; Gruden-Movsesijan, Alisa; Ilic, Natasa; Cvetkovic, Jelena; Mojsilovic, Slavko; Devic, Marija; Sofronic-Milosavljevic, Ljiljana

    2015-03-01

    Helminth-derived products, either released into the circulation during the course of the infection or isolated after in vitro cultivation of the parasite and applied by the injection, are able to suppress the host immune response to autoantigens and allergens, but mechanisms could differ. Prophylactic application of Trichinella spiralis excretory-secretory muscle larvae (ES L1) products ameliorates experimental autoimmune encephalomyelitis (EAE) with the same success as infection did. However, a shift to the Th2-type response in the periphery and in the central nervous system, accompanied by activation of regulatory mechanisms, had a striking, new feature of increased proportion of unconventional CD4(+)CD25(-)Foxp3(+) regulatory cells both in the periphery and in the central nervous system of animals treated with ES L1 before the induction of EAE.

  7. The body composition and excretory burden of lean, obese, and severely obese individuals has implications for the assessment of chronic kidney disease.

    PubMed

    Fotheringham, James; Weatherley, Nicholas; Kawar, Bisher; Fogarty, Damian G; Ellam, Timothy

    2014-12-01

    Obesity could affect associations between creatinine generation, estimated body surface area, and excretory burden, with effects on chronic kidney disease assessment. We therefore examined the impact of obesity on the performances of estimated glomerular filtration rate (eGFR), the urine albumin:creatinine ratio (ACR), and excretory burden in 3611 participants of the Chronic Renal Insufficiency Cohort. Urine creatinine excretion significantly increased with body mass index (BMI) (34 and 31% greater at 40 kg/m(2) or more versus the normal of 18.5-25 kg/m(2)) in men and women, respectively, such that patients with a normal BMI and an ACR of 30 mg/g had the same 24-h albuminuria as severely obese patients with ACR 23 mg/g. The bias of eGFR (referenced to body surface area-indexed iothalamate (i-)GFR) had a U-shaped relationship to obesity in men but progressively increased in women. Nevertheless, obesity-associated body surface area increases were accompanied by a greater absolute (non-indexed) iGFR for a given eGFR, particularly in men. Two men with eGFRs of 45 ml/min per 1.73 m(2), height 1.76 m, and BMI 22 or 45 kg/m(2) had absolute iGFRs of 46 and 62 ml/min, respectively. The excretory burden, assessed as urine urea nitrogen and estimated dietary phosphorus, sodium, and potassium intakes, also increased in obesity. However, obese men had lower odds of anemia, hyperkalemia, and hyperphosphatemia. Thus, for a given ACR and eGFR, obese individuals have greater albuminuria, absolute GFR, and excretory burden. This has implications for chronic kidney disease management, screening, and research.

  8. The role of computed tomography in renal trauma

    SciTech Connect

    Federie, M.P.; Kaiser, J.A.; McAninch, J.W.; Jeffery, B.; Mall, J.C.

    1981-11-01

    Computed tomography (CT) and excretory urography were performed in 15 patients thought to have major renal trauma. In 4 cases, CT demonstrated extravasation of urine not detected by urography, and in all cases parenchymal injuries and extrarenal hematomas were depicted more accurately by CT. CT also proved to be superior to excretory urography in distinguishing relatively minor renal injuries (confusion, incomplete laceration, intrarenal hematoma, small extrarenal hematoma) from major or catastrophic injuries (complete laceration, fracture, shattered kidney), which significantly influenced the choice of surgical or medical therapy. CT also detected concurrent injuries of the spleen, liver, and/or pancrease in 4 cases. The authors feel that CT is valuable in the assessment of major renal trauma.

  9. Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

    PubMed Central

    Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica

    2013-01-01

    Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation. PMID:24151593

  10. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators.

    PubMed

    Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica; Tandon, Chanderdeep

    2013-01-01

    Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.

  11. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury

    PubMed Central

    Fakhruddin, Selim; Alanazi, Wael

    2017-01-01

    Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134

  12. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system.

    PubMed

    Fujii, T; Pichel, J G; Taira, M; Toyama, R; Dawid, I B; Westphal, H

    1994-01-01

    We report the cloning, sequence analysis, and developmental expression pattern of lim1, a member of the LIM class homeobox gene family in the mouse. lim1 cDNA encodes a predicted 406 amino acid protein that is 93% identical with the product of the Xenopus LIM class homeobox gene Xlim1. We have characterized lim1 expression from day 8.5 post coitum onward. Northern blot analysis of RNA transcripts indicates that lim1 is expressed both during embryogenesis and in the adult brain. Analysis by whole-mount and section in situ hybridization shows lim1 expression in the central nervous system from the telencephalon through the spinal cord and in the developing excretory system including pronephric region, mesonephros, nephric duct, and metanephros. In the metanephros, lim1 is strongly expressed in renal vesicles and S-shaped bodies, and transcripts are also detected in the ureteric branches.

  13. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  14. Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis.

    PubMed

    Wang, Yi-Fang; Yan, Jia-Jiun; Tseng, Yung-Che; Chen, Ruo-Dong; Hwang, Pung-Pung

    2015-01-01

    The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl(-) homeostasis via Cl(-) transport uptake mechanisms. Previous studies in zebrafish identified Na(+)-Cl(-) cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl(-) uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl(-) channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl(-) environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl(-) content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl(-) uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl(-) homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated

  15. Mechanisms of Endothelial Dysfunction in Resistance Arteries from Patients with End-Stage Renal Disease

    PubMed Central

    Luksha, Leanid; Stenvinkel, Peter; Hammarqvist, Folke; Carrero, Juan Jesús; Davidge, Sandra T.; Kublickiene, Karolina

    2012-01-01

    The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications. PMID:22563439

  16. [The distribution of Phyllodistomum umblae and Phyllodistomum folium (Trematoda: Gorgoderidae) in the excretory system of fishes].

    PubMed

    Dugarov, Zh N

    2000-01-01

    It is shown, that the distribution of Phyllodistomum umblae in the excretory system of all investigated species of salmonids has a principal similarity. The distribution of P. umblae in the excretory system of the Siberian dace and the Siberian roach is distinguished from that of P. folium.

  17. Immunoelectron microscopical localization of a circulating antigen in the excretory system of Schistosoma mansoni. Ultrastructural localization studies of the excretory system of S. mansoni.

    PubMed

    Bogers, J J; Nibbeling, H A; Van Marck, E A; Deelder, A M

    1995-01-01

    In this study the excretory system of Schistosoma mansoni was ultrastructurally examined with a recently described monoclonal antibody (mAb) against a circulating antigen. In previous studies this mAb was found to have affinity for the excretory system. Strong immunoreactivity was found on the flagella of the flame cells and of the collecting ducts throughout the worm. The eggshell and the space between the miracidium and the eggshell showed strong reactivity with a declining gradient towards the exterior, suggesting a secretion process. In cercariae, immunoreactivity was restricted to the tegument, whereas in schistosomula the labeling pattern resembled that of the adult worm, demonstrating positive reactivity of the flame cells and no immunostaining of the tegument. This stage-dependent differential expression of different antigens in the excretory system and in the tegument could suggest a maturation process of the excretory system.

  18. Radionuclide determination of individual kidney function in the treatment of chronic renal obstruction.

    PubMed

    Belis, J A; Belis, T E; Lai, J C; Goodwin, C A; Gabriele, O F

    1982-04-01

    Differential radionuclide renal scans can be useful in the management of patients with chronic partial obstruction of 1 kidney. The 99mtechnetium diethylenetriaminepentaacetic acid perfusion scan can be used to assess glomerular blood flow. The 131iodine orthoiodohippurate renal scan provides qualitative functional information from scintigrams and quantitative evaluation of effective renal plasma flow to each kidney, as well as a total excretory index. Sequential 99mtechnetium diethylenetriaminepentaacetic acid and 131iodine orthoiodohippurate renal scans were used to assess individual renal function before and after surgical correction of unilateral chronic renal obstruction in 31 patients. The preservation of cortical perfusion on 99mtechnetium diethylenetriaminepentaacetic acid scans indicated that potential existed for partial recovery of renal function. Effective renal plasma flow and excretory index determined in conjunction with the 131iodine orthoiodohippurate scans provided a quantitative assessment of preoperative renal function, an evaluation of the effect of surgery and a sensitive method for long-term evaluation of differential renal function. Correction of ureteropelvic junction obstruction usually resulted in improvement in unilateral renal function. Neither nephrolithotomy nor extended pyelolithotomy diminished renal function in the kidney subjected to an operation and often improved it. Patients with long-standing distal ureteral obstruction had the least improvement in renal function postoperatively.

  19. Radionuclide determination of individual kidney function in the treatment of chronic renal obstruction

    SciTech Connect

    Belis, J.A.; Belis, T.E.; Lai, J.C.; Goodwin, C.A.; Gabriele, O.F.

    1982-04-01

    Differential radionuclide renal scans can be useful in the management of patients with chronic partial obstruction of 1 kidney. The /sup 99m/Tc diethylenetriaminepentaacetic acid perfusion scan can be used to assess glomerular blood flow. The /sup 131/I orthoiodohippurate renal scan provides qualitative functional information from scintigrams and quantitative evaluation of effective renal plasma flow to each kidney, as well as a total excretory index. Sequential /sup 99m/Tc diethylenetriaminepentaacetic acid and /sup 131/I orthoiodohippurate renal scans were used to assess individual renal function before and after surgical correction of unilateral chronic renal obstruction in 31 patients. The preservation of cortical perfusion on /supb 99m/Tc diethylenetriaminepentaacetic acid scans indicated that potential existed for partial recovery of renal function. Effective renal plasma flow and excretory index determined in conjunction with the /sup 131/I orthoiodohippurate scans provided a quantitative assessment of preoperative renal function, an evaluation of the effect of surgery and a sensitive method for long-term evaluation of differential renal function. Correction of ureteropelvic junction obstruction usually resulted in improvement in unilateral renal function. Neither nephrolithotomy nor extended pyelolithotomy diminished renal function in the kidney subjected to an operation and often improved it. Patients with long-standing distal ureteral obstruction had the least improvement in renal function postoperatively.

  20. Mechanisms of Inflammatory Injury of Renal Tubular Cells in a Cellular Model of Pyelonephritis.

    PubMed

    Morosanova, M A; Plotnikov, E Y; Zorova, L D; Pevzner, I B; Popkov, V A; Silachev, D N; Jankauskas, S S; Babenko, V A; Zorov, D B

    2016-11-01

    Previously, we have assembled a cellular model of pyelonephritis which contains a primary culture of renal tubular epithelial cells, mononuclear leukocytes, and bacterial lysate or lipopolysaccharide. After cocultivation of renal cells with leukocytes and bacterial lysate, proinflammatory changes were observed in the renal cells, followed by nitrosative and oxidative stress and cell death. The interaction of bacterial antigens not only with leukocytes, but also with epithelial cells of the renal tubules, was partially mediated by signaling pathways involving Toll-like receptors (TLR2 and TLR4). Activation of these receptors led to increased levels of oxidative stress and synthesis of proinflammatory cytokines (TNF, IL-6, IL-1α) in the renal epithelium, while TLR4 blockade decreased the severity of these processes. Apart from the fact that activation of inflammatory signaling in response to bacterial antigens is observed directly in the renal cells, the presence of leukocytes significantly amplifies the inflammatory response as measured by the level of cytokines generated in the ensemble. In the presence of activated leukocytes, higher expression of TLR2 on the surface of renal cells was observed in response to exposure to bacterial components, which might explain the increased inflammatory response in the presence of leukocytes. The synthesis of IL-1α in the epithelial cells of the renal tubules in this inflammatory model leads to its accumulation in the nuclei, which has been reduced by the TLR4 antagonist polymyxin. TLR2 agonists also led to increased levels of IL-1α. The elevation in the content of IL-1α in nuclei was accompanied by increased acetylation of nuclear proteins, which has been reduced to control values after exposure to protective agents (Trolox, mitochondria-targeted antioxidant SkQR1 or LiCl). The high level of acetylation of histones is probably regulated by proinflammatory cytokines, and to some extent it is a marker of inflammation, which

  1. Systemic response to excretory urography: work in progress

    SciTech Connect

    Fischer, H.W.; Katzberg, R.W.; Morris, T.W.; Spataro, R.F.

    1984-04-01

    Ninety-seven patients who were undergoing excretory urography for suspected genitourinary tract abnormalities were continuously monitored for systemic blood pressure and pulse rates before (control) and after rapid intravenous injections of contrast material using a Bard pressure monitor. The authors report the systemic responses observed. Clinically obvious reactions to contrast medium were recorded and compared with the blood pressure and pulse rate responses. The most common response to rapid infusion of contrast medium was a transient hypotension. An increase in systemic pressure had a high association with nausea and vomiting. Significant hypotension was observed in six patients (6%), but no overt clinical manifestations were present.

  2. Excretory urography using dual-energy scanned projection radiography

    SciTech Connect

    Soomer, F.G.; Brody, W.R.; Gross, D.; Macovski, A.; Hall, A.; Pelc, N.

    1981-11-01

    Excretory urograms of 10 patients were obtained using a GE 8800 CT scanner with Scout View which had been modified for dual-kVp scanned projection radiography. Using this system, it is possible to combine images obtained simultaneously at 85 and 135 kVp to create subtraction images from which substances of desired mean atomic number have been removed. This permits improved visualization of the genitourinary system on urograms by (a) eliminating obscuring bowel gas shadows and (b) enhancement of both iodinated contrast media and retroperitoneal fat planes.

  3. On the mechanisms underlying poisoning-induced rhabdomyolysis and acute renal failure.

    PubMed

    Talaie, Haleh; Emam-Hadi, Mohammad; Panahandeh, Reyhaneh; Hassanian-Moghaddam, Hosein; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT The clinical syndrome of rhabdomyolysis is caused by injury of skeletal muscles resulting in release of intracellular muscle constituents. Drug poisoning is one of the causes of severe rhabdomyolysis. Severe electrolyte disorders and acute renal failure may occur in rhabdomyolysis, leading to life-threatening situations. Early initiation of renal replacement therapy can help improve outcome. In the present retrospective study, medical records of 181 patients suspected of rhabdomyolysis from Loghman-Hakim Hospital in the period of 2004 to 2005 were reviewed. A creatinine phosphokinase (CPK) value of greater than five times normal (>/=975 IU/L) was the basis for confirmation of a rhabdomyolysis diagnosis. An increased serum creatinine level of more than 30% was the basis for acute renal failure diagnosis. Out of 156 patients, 100 were male with an age range of 13 to 78 years. One hundred and two (92%) patients had CPK >975 U/L, and 36 patients (28.6%) had a 30% or more increase in their creatinine level during their admission days. Mean fluid intake was the same in patients with renal failure and those without renal failure. In 8.3% of the cases, multiple drug poisoning was observed. The most common compound overdose associated with rhabdomyolysis was opium. It is concluded that fluid therapy alone is not adequate in the management of acute renal failure in rhabdomyolysis. Therefore, other etiological factors are involved that remain to be elucidated by further studies.

  4. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  5. RENAL RETENTION OF LIPID MICROBUBBLES: A POTENTIAL MECHANISM FOR FLANK DISCOMFORT DURING ULTRASOUND CONTRAST ADMINISTRATION

    PubMed Central

    Liu, Ya Ni; Khangura, Jaspreet; Xie, Aris; Belcik, J. Todd; Qi, Yue; Davidson, Brian P.; Zhao, Yan; Kim, Sajeevani; Inaba, Yoichi; Lindner, Jonathan R.

    2013-01-01

    Background The etiology for flank pain sometimes experienced during administration of ultrasound contrast agents is unknown. We investigated whether microbubble ultrasound contrast agents are retained within the renal microcirculation which could lead to either flow disturbance or local release of vasoactive and pain mediators downstream from complement activation. Methods Retention of lipid-shelled microbubbles in the renal microcirculation of mice was assessed by confocal fluorescent microscopy and contrast-enhanced ultrasound (CEU) imaging with dose-escalating intravenous injection. Studies were performed with size-segregated microbubbles to investigate physical entrapment, after glycocalyx degradation, and in wild-type and C3-deficient mice to investigate complement-mediated retention. Urinary bradykinin was measured before and after microbubbles. Renal CEU in human subjects (n=13) was performed 7–10 min after completion of lipid microbubble administration. Results In both mice and humans, microbubble retention was detected in the renal cortex by persistent CEU signal enhancement. Microbubble retention in mice was linearly related to dose and occurred almost exclusively in cortical glomerular microvessels. Microbubble retention did not affect microsphere-derived renal blood flow. Microbubble retention was not influenced by glycocalyx degradation nor by microbubble size, thereby excluding lodging, but was reduced by 90% (p<0.01) in C3-deficient mice. Urinary bradykinin increased by 65% five minutes after microbubble injection. Conclusion Lipid-shelled microbubbles are retained in the renal cortex due to complement-mediated interactions with glomerular microvascular endothelium. Microbubble retention does not adversely affect renal perfusion but does generate complement-related intermediates that are known to mediate nociception and could be responsible for flank pain. PMID:24035699

  6. Excretory urography and computed tomography in the initial evaluation of patients with cervical cancer: are both examinations necessary

    SciTech Connect

    Goldman, S.M.; Fishman, E.K.; Rosenshein, N.B.; Gatewood, O.M.B.; Siegelman, S.S.

    1984-11-01

    One hundred ten patients with carcinoma of the cervix were studied to determine if both excretory urography and computed tomography are needed for routine evaluation. Computed tomography gave more information in 25 patients and the excretory urogram was more informative in 10 patients. Thirty-five hydroureters were detected by computed tomography, whereas excretory urography identified 21. It was concluded that routine use of both examinations is not indicated. Excretory urography is currently sufficient in evaluation of stage I and IIA lesions, while computed tomography obviates excretory urography in patients with advanced cervical cancer (IIB-IVB).

  7. [Analysis of possible causes activation a stomach and pancreas excretory and incretory function after completion of space flight on the international space station].

    PubMed

    Afonin, B V

    2013-01-01

    The research excretory and incretory of activity of a stomach and pancreas is carried out at astronauts in the early period after completion of space flights of various duration. It is shown, that the increase of the contents of gastric and pancreatic enzymes and hormones (insulin and C-peptide) in blood reflects increased excretory and incretory activity of organs of gastroduodenal area which arises in weightlessness. The complex of countermeasures, which prevent ingress of subjects, infected by Helicobacter pylori in space flight crew, excluded participation of this microorganism in the mechanism of increase of secretory activity of a stomach. The absence of interrelation between increase of secretory activity of gastroduodenal area organs and space flights' duration has allowed to exclude the hypokinetic mechanism which determined by duration of stay in weightlessness. It was shown that after the end of space flights the increase ofbasal excretory activity of organs of gastroduodenal area occurs simultaneously with increase of a fasting insulin secretion. The changes in gastroduodenal area organs revealed after space flights were are compared to similar changes received in ground-based experiments, simulating hemodynamic reorganization in venous system of abdominal cavity, arising in weightlessness. The conclusion is made, that the basic mechanism of changes of a functional condition of digestive system in space flights, is determined by reorganization venous hemodynamic in abdominal cavity organs reproduced in ground experiments. Increase insulin and C-peptide after space flights are considered as hormonal component of this hemodynamic mechanism.

  8. Description and comparison of excretory urography performed during radiography and computed tomography for evaluation of the urinary system in healthy New Zealand White rabbits (Oryctolagus cuniculus).

    PubMed

    Vilalta, Laura; Altuzarra, Raul; Espada, Yvonne; Dominguez, Elisabet; Novellas, Rosa; Martorell, Jaime

    2017-04-01

    OBJECTIVE To evaluate the usefulness of excretory urography performed during radiography (REU) and CT (CTEU) in healthy rabbits, determine timings of urogram phases, and compare sensitivities of REU and CTEU for detection of these phases. ANIMALS 13 New Zealand White rabbits (Oryctolagus cuniculus). PROCEDURES Rabbits were screened for signs of systemic and urinary tract disease. An REU examination of each was performed, followed ≥ 5 days later by a CTEU examination. Contrast images from each modality were evaluated for quality of opacification and intervals between initiation of contrast medium administration and detection of various urogram phases. RESULTS Excretory urograms of excellent diagnostic quality were achieved with both imaging modalities. For all rabbits, the nephrographic phase of the urogram appeared in the first postcontrast REU image (obtained between 34 and 40 seconds after initiation of contrast medium administration) and at a median interval of 20 seconds in CTEU images. The pyelographic phase began at a median interval of 1.63 minutes with both imaging modalities. Contrast medium was visible within the urinary bladder at a median interval of 2.20 minutes. Median interval to the point at which the nephrogram and pyelogram were no longer visible in REU images was 8 hours and 2.67 hours, respectively. The CTEU technique was better than the REU technique for evaluating renal parenchyma. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that REU and, particularly, CTEU may be valuable tools for the diagnosis of renal and urinary tract disease in rabbits; however, additional evaluation in diseased rabbits is required.

  9. Mechanisms involved in the relaxant action of testosterone in the renal artery from male normoglycemic and diabetic rabbits.

    PubMed

    Marrachelli, Vannina G; Miranda, Francisco J; Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Jover-Mengual, Teresa; Pérez, Antonio M; Salom, Juan B; Torregrosa, Germán; Alborch, Enrique

    2010-02-01

    Kidney disease is a frequent complication in diabetes, and significant differences have been reported between male and female patients. Our working hypothesis was that diabetes might modify the vascular actions of testosterone in isolated rabbit renal arteries and the mechanisms involved in these actions. Testosterone (10(-8) to 10(-4)M) induced relaxation of precontracted arteries, without significant differences between control and diabetic rabbits. Both in control and diabetic rabbits endothelium removal inhibited testosterone relaxant action. In arteries with endothelium, incubation with indomethacin (10(-5)M), N(G)-nitro-l-arginine (10(-5)M) or tetraethylammonium (10(-5)M) did not modify relaxations to testosterone neither in control nor in diabetic rabbits. In endothelium-denuded arteries indomethacin enhanced the relaxant action of testosterone, both in control and diabetic rabbits. In arteries from diabetic rabbits, eNOS, iNOS and COX-1 expression and testosterone-induced release of thromboxane A(2) and prostacyclin were not significantly different from those observed in control rabbits. However, COX-2 expression was significantly lower in diabetic rabbits that in control rabbits. In nominally Ca(2+)-free medium, cumulative addition of CaCl2 (10(-5) to 3x10(-2)M) contracted previously depolarized arteries. Testosterone (10(-4)M) inhibited CaCl2 contractions of the renal artery both in control and diabetic rabbits. These results show that testosterone relaxes the renal artery both in control and diabetic rabbits. This relaxation is modulated by muscular thromboxane A(2), it is partially mediated by endothelial prostacyclin, and it involves the blocking of extracellular Ca2+ entry. Diabetes does not modify the mechanisms involved in the relaxant action of testosterone in the rabbit renal artery.

  10. Accuracy of radionuclide imaging in distinguishing renal masses from normal variants

    SciTech Connect

    Older, R.A.; Korobkin, M.; Workman, J.; Cleeve, D.M.; Cleeve, L.K.; Sullivan, D.; Webster, G.D.

    1980-08-01

    To determine the accuracy of scintigraphy in distinguishing true renal masses from normal variants, 40 patients with excretory urographic findings indicating a possible, but not definite, mass lesion were studied. Scintigraphy correctly identified 17 true masses and 17 normal variants. Four false positive and two false negative results were obtained.

  11. The diagnostic approach to ectopic ureterocele and the renal duplication complex

    SciTech Connect

    Geringer, A.M.; Berdon, W.E.; Seldin, D.W.; Hensle, T.W.

    1983-03-01

    The child with ectopic ureterocele frequently presents a diagnostic challenge. The use of standard excretory urography combined with newer modalities, such as ultrasonography and radionuclide renal scanning, provides an orderly diagnostic approach to ectopic ureterocele. This integrated approach should ensure the highest yield in a diagnostic sense and aid in assessing upper tract function, thus, helping with the selection of the proper surgical management.

  12. Renal Response to Volume Expansion: Learning the Experimental Approach in the Context of Integrative Physiology.

    ERIC Educational Resources Information Center

    Kline, Robert L.; Dukacz, Stephen A. W.; Stavraky, Thomas

    2000-01-01

    Describes a laboratory experience for upper-level science students that provides a hands-on approach to understanding the basics of experimental physiology. Students design an experiment to determine the relative importance of dilution of plasma proteins in the overall renal excretory response following volume expansion with intravenous saline.…

  13. Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery.

    PubMed

    Nelson, F K; Riddle, D L

    1984-07-01

    Individual cells of the Caenorhabditis elegans secretory-excretory system were ablated by laser microbeam in various larval stages. Effects on growth, molting, osmoregulation, fertility, longevity, and dauer larva formation were tested. Single-cell ablations did not prevent subsequent molting, but ablation of the pore cell or the duct cell resulted in the absence of the normal cuticular lining of the excretory duct following a molt. When the pore cell, duct cell, or excretory cell was ablated, the animals filled with fluid within 12-24 hr and died within a few days, producing very few progeny. Ablation of the excretory gland cell, on the other hand, had no obvious developmental or behavioral effects. Excretory activity was monitored in dauer larvae by observing pulsation of the excretory duct in conditions of differing osmolarity. The rate of pulsation was quite variable over time in conditions of low osmotic strength, but average five- to six-fold higher than that observed in buffered saline. These observations, combined with the effects of laser ablation, lead to the conclusion that one function of the excretory system is osmoregulation.

  14. Mechanism of vasodilation induced by alpha-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries.

    PubMed Central

    Fujii, K; Ishimatsu, T; Kuriyama, H

    1986-01-01

    Effects of alpha-human atrial natriuretic polypeptide (alpha-HANP) on electrical and mechanical properties of smooth muscle cells of the guinea-pig and rabbit renal arteries and of the guinea-pig mesenteric artery were investigated. alpha-HANP (up to 10 nM) modified neither the membrane potential nor resistance of smooth muscle cells of the guinea-pig and rabbit renal arteries. In the guinea-pig mesenteric and renal arteries, alpha-HANP (up to 10 nM) had no effect on the amplitude and facilitation (mesenteric artery) or depression (renal artery) of excitatory junction potentials nor on action potentials. In the guinea-pig renal artery, alpha-HANP (up to 10 nM) had no effect on the depolarization induced by noradrenaline (NA) (up to 10 microM) but markedly inhibited NA-induced contraction. alpha-HANP (10 nM) slightly inhibited the K-induced contraction. In the rabbit renal artery, alpha-HANP (10 nM) inhibited the NA-induced contraction and to a lesser extent the K-induced contraction. In the rabbit renal artery, the effects of alpha-HANP on the release of Ca from the cellular storage by two applications of NA, and its re-storage, were investigated in Ca-free solution containing 2 mM-EGTA. When 5 nM-alpha-HANP was applied before and during the first application of 0.5 microM-NA, the contraction was markedly inhibited but the contraction to a second application of 10 microM-NA was potentiated. If the first dose of NA was 10 microM the effect was very small. Under the same experimental procedures, nitroglycerine (10 microM) showed almost the same effects as alpha-HANP on the NA-induced contractions. When both the first (3 mM) and second (10 mM) contractions were evoked by caffeine in Ca-free solution, alpha-HANP (5 nM) and nitroglycerine (10 microM) inhibited both contractions to the same extent. In the rabbit renal artery, applications of alpha-HANP or nitroglycerine increased the amount of guanosine 3',5'-phosphate (cyclic GMP) in a dose-dependent manner. However, a

  15. Metformin Prevents Renal Stone Formation through an Antioxidant Mechanism In Vitro and In Vivo

    PubMed Central

    Ding, Hao; Qin, Zhenbang; Zhang, Changwen; Qi, Shiyong; Yang, Tong; He, Zhen; Yang, Kuo; Liu, Chunyu

    2016-01-01

    Oxidative stress is a causal factor and key promoter of urolithiasis associated with renal tubular epithelium cell injury. The present study was designed to investigate the preventive effects of metformin on renal tubular cell injury induced by oxalate and stone formation in a hyperoxaluric rat model. MTT assays were carried out to determine the protection of metformin from oxalate-induced cytotoxicity. The intracellular superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels were measured in vitro. Male Sprague-Dawley rats were divided into control group, ethylene glycol (EG) treated group, and EG + metformin treated group. Oxidative stress and crystal formations were evaluated in renal tissues after 8-week treatment. Metformin significantly inhibited the decrease of the viability in MDCK cells and HK-2 cells induced by oxalate. Besides, metformin markedly prevented the increased concentration of MDA and the decreased tendency of SOD in oxalate-induced MDCK cells and HK-2 cells. In vivo, the increased MDA levels and the reduction of SOD activity were detected in the EG treated group compared with controls, while these parameters reversed in the EG + metformin treated group. Kidney crystal formation in the EG + metformin treated group was decreased significantly compared with the EG treated group. Metformin suppressed urinary crystal deposit formation through renal tubular cell protection and antioxidative effects. PMID:27781075

  16. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells

    PubMed Central

    Wilson, Sean M; Mason, Helen S; Smith, Gregory D; Nicholson, Neil; Johnston, Louise; Janiak, Robert; Hume, Joseph R

    2002-01-01

    Experiments were performed to determine whether capacitative Ca2+ entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca2+] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca2+] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP3)- and ryanodine (RY)-sensitive SR Ca2+ stores. In contrast, the cytosolic [Ca2+] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP3 or RY pathways. The increase in the cytosolic [Ca2+] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca2+-free bathing solution. Rapid quenching of the fura-2 signal by 100 μM Mn2+ following SR store depletion indicated that extracellular Ca2+ entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP3- and RY-sensitive SR Ca2+ stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP3- or RY-sensitive SR stores. Store depletion Ca2+ entry in both pulmonary and renal ASMCs was strongly inhibited by Ni2+ (0.1–10 mM), slightly inhibited by Cd2+ (200–500 μM), but was not significantly affected by the voltage-gated Ca2+ channel (VGCC) blocker nisoldipine (10 μM). The non-selective cation channel blocker Gd3+ (100 μM) inhibited a portion of the Ca2+ entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca2+ store depletion activates CCE in parallel with the organization of intracellular Ca2+ stores in canine pulmonary and renal ASMCs. PMID:12231648

  17. Renal Function and Hematology in Rats with Congenital Renal Hypoplasia.

    PubMed

    Yasuda, Hidenori; Amakasu, Kohei; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2016-02-01

    Renal hypoplasia due to a congenitally reduced number of nephrons progresses to chronic kidney disease and may cause renal anemia, given that the kidneys are a major source of erythropoietin in adults. Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and develop CKD. This study assessed the renal function and hematologic changes in HPK rats from 70 to 210 d of age. HPK rats demonstrated deterioration of renal excretory function, slightly macrocytic erythropenia at all days examined, age-related increases in splenic hemosiderosis accompanied by a tendency toward increased hemolysis, normal plasma erythropoietin levels associated with increased hepatic and decreased renal erythropoietin production, and maintenance of the response for erythropoietin production to hypoxic conditions, with increased interstitial fibrosis at 140 d of age. These results indicate that increases in splenic hemosiderosis and the membrane fragility of RBC might be associated with erythropenia and that hepatic production of erythropoietin might contribute to maintaining the blood Hgb concentration in HPK rats.

  18. Indium-111 leukocyte scanning. False-negative study in a renal abscess

    SciTech Connect

    Kumar, R.; Bedi, D.G.; Fawcett, H.D.; Winsett, M.Z.; Fagan, C.J.

    1986-04-01

    A 33-year-old man had clinical features of a right renal abscess. Results of excretory urography and ultrasonography showed a focal complex mass lesion in the right kidney. An In-111 leukocyte scan failed to detect the right renal abscess, which later was aspirated under CT guidance and explored surgically. The role of In-111 leukocyte imaging in the detection of intra-abdominal abscesses, with limitations of the procedure, is discussed.

  19. Cytogenetic effects of contrast material in patients undergoing excretory urography

    SciTech Connect

    Cochran, S.T.; Khodadoust, A.; Norman, A.

    1980-07-01

    Acentric chromosome fragments produced in cells by irradiation or other agents give rise to micronuclei in daughter cells. The micronuclei can be counted readily in large numbers of cells which provides a sensitive measure of chromosome aberrations. Previous studies have shown that the presence of contrast material enhances the radiation-induced yield of micronuclei in vitro. Micronuclei were scored in peripheral blood lymphocytes obtained from 26 patients before and after excretory urography (ExU). The results show a consistent and significant increase in the counts after ExU amounting to about one third of the counts blood samples before the examination. We conclude that the contrast medium contributed significantly to the increase in micronuclei.

  20. [Haematuria as the presentation of a vascular abnormality of the kidney or its excretory system (author's transl)].

    PubMed

    Beurton, D; Pascal, B; Moreau, J F; Michel, J R; Cukier, J

    1980-01-01

    The authors report 18 cases of a vascular pathology of the kidney or of its excretory system presenting with heavy and recurrent haematuria. In contrast to data in the literature, their series includes a majority of capillary angiomas (8 cases), as against 6 aneurysms, 2 arteriovenous fistulae and 2 peripyelo-ureteric varices. Of the six arterial aneurysms, all recognised by arteriography, 4 underwent surgery: 2 endo-aneurysmorrhaphies with success, 1 nephrectomy for rupture of the aneurysm and 1 nephrectomy made necessary by the multiplicity of aneurysms inaccessible in situ. Both cases of arteriovenous fistula were recognised by arteriography. One was treated by polar nephrectomy (success) whilst the other underwent nephrectomy after failure of an attempt at embolisation. Of the two cases of peri-uretero-pelvic varices identified by selective phlebography under cover of an intra-renal-artery injection of angiotensin, only one was treated successfully by excision of the varicosities. The eight cases of capillary angioma were divided into two groups: one, of 4 cases where the diagnosis was made by selective renal phlebography without angiotensin and renal arteriography; and another of 4 cases not identified by these vascular investigations. In these 4 cases, after elimination of Berger's disease by a surgical renal biopsy, the authors exposed the kidney, performed a pyelocalyscopy during a period of haematuria, localised the haemorrhagic segment of the kidney and treated the lesion by partial nephrectomy in the presence of a pathologist to immediately identify the haemorrhagic lesion and examine it histologically. Amongst the 7 angiomas treated, 5 partial nephrectomies gave successful results whilst two nephrectomies were necessary: one because of a diagnostic error and the other following failure of an attempt at hyperselective arterial embolisation.

  1. A possible mechanism for the progression of chronic renal disease and congestive heart failure.

    PubMed

    Re, Richard N

    2015-01-01

    Chronic neurologic diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as various forms of chronic renal disease and systolic congestive heart failure, are among the most common progressive degenerative disorders encountered in medicine. Each disease follows a nearly relentless course, albeit at varying rates, driven by progressive cell dysfunction and drop-out. The neurologic diseases are characterized by the progressive spread of disease-causing proteins (prion-like proteins) from cell to cell. Recent evidence indicates that cell autonomous renin angiotensin systems operate in heart and kidney, and it is known that functional intracrine proteins can also spread between cells. This then suggests that certain progressive degenerative cardiovascular disorders such as forms of chronic renal insufficiency and systolic congestive heart failure result from dysfunctional renin angiotensin system intracrine action spreading in kidney or myocardium.

  2. Immunomodulatory potential of particular Trichinella spiralis muscle larvae excretory-secretory components.

    PubMed

    Cvetkovic, J; Sofronic-Milosavljevic, Lj; Ilic, N; Gnjatovic, M; Nagano, I; Gruden-Movsesijan, A

    2016-12-01

    Excretory-secretory antigens of Trichinella spiralis muscle larvae can induce the semi-matured status of rat dendritic cells. This may at least partly be the consequence of transient activation of extracellular signal-regulated kinases 1/2 (ERK1/2). Here we investigated the potential of several components of excretory-secretory antigens (native fraction containing 45, 49 and 53kDa proteins and recombinant Tsp53, representing one of the constituents of this fraction) to demonstrate previously observed effects of excretory-secretory antigens on dendritic cells in vitro, characterised by establishment of a particular phenotype (very low MHC II expression, moderate CD86 expression and significant ICAM-1 expression) and functional properties (low production of pro-inflammatory cytokine IL-12p70, and high production of IL-10 and TGF-β). Dendritic cells activated by these components were able to provoke proliferation of naïve T cells and their polarisation towards Th2 and anti-inflammatory responses. The investigated antigens had almost the same capacity to induce IL-4 and IL-10 production from T cells as excretory-secretory antigens, but failed to induce significant TGF-β synthesis. It could be concluded that the investigated excretory-secretory antigens components can largely reproduce the immunomodulatory effects of the complete excretory-secretory antigens and therefore may be considered as molecules important for creation of the anti-inflammatory milieu achieved by the parasite.

  3. Metamorphosis of the excretory system of Paragonimus ohirai (Trematoda), with special reference to its functional significance.

    PubMed

    Orido, Y

    1987-12-01

    The fine structure of the excretory system was studied in metacercariae and juveniles of Paragonimus ohirai. The former were in vitro excysted, and the latter were collected from the abdominal cavity of a rat 24 hours postinfection. The terminal organs of the excretory system were composed of a flame cell and the first cell of a tubule. In the excysted metacercaria, there was no space between these cells to allow the passage of fluid. This suggests that the terminal organs of P. ohirai may be inactive in this stage. The excretory bladder was formed of epithelial cells which contained numerous lipid droplets and a large amount of glycogen in the cytoplasm. The bladder of the metacercaria seems to function as a storage area for nutrients and other materials. These characteristics of the metacercaria are considered to be related to the enclosed conditions created by encystment. Excretory organs had undergone cytomorphosis in the juveniles and appear to possess active excretory function. The periflagellar space in the terminal organs was formed, and lipids and concretions were excreted from a thin layer of the excretory epithelia into the lumen.

  4. Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor.

    PubMed

    Du, Linlin; Liu, Lihua; Yu, Yang; Shan, Hui; Li, Leiqing

    2014-01-01

    Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis.

  5. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology.

    PubMed

    Xing, Tianying; He, Huiying

    2016-02-01

    Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC.

  6. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology

    PubMed Central

    Xing, Tianying

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC. PMID:27041930

  7. Acupuncture and somatic nerve stimulation: mechanism underlying effects on cardiovascular and renal activities.

    PubMed

    Yao, T

    1993-01-01

    Acupuncture and acupuncture-like somatic nerve stimulation exert modulatory effects upon cardiovascular and renal activity under different physiological and pathophysiological conditions. It seems that acupuncture facilitates the physiological reflexes in response to changes in internal or external environment. Thus, acupuncture can lower high blood pressure in hypertensives, elevate low blood pressure in hypotensives, and promote urinary sodium excretion during hyperosmotic challenge, etc. Acupuncture effects are thought to be mediated by activation of the small myelinated fibres coming from muscle receptors. Preliminary studies show that different neurotransmitters and neuropeptides are involved in the effects of acupuncture.

  8. Different Modulatory Mechanisms of Renal FXYD12 for Na+-K+-ATPase between Two Closely Related Medakas upon Salinity Challenge

    PubMed Central

    Yang, Wen-Kai; Kang, Chao-Kai; Hsu, An-Di; Lin, Chia-Hao; Lee, Tsung-Han

    2016-01-01

    Upon salinity challenge, the Na+-K+-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (brackish water and fresh water). In this study, we investigated the expression and association of renal FXYD12 and NKA α-subunit as well as potential functions of FXYD12 in the two medakas. These findings illustrated and compared the regulatory roles of FXYD12 for NKA in kidneys of the two medakas in response to salinity changes. In this study, at the mRNA and/or protein level, the expression patterns were similar for renal FXYD12 and NKA in the two medakas. However, different patterns of NKA activities and different interaction levels between FXYD12 and NKA were found in the kidneys of these two medakas. The results revealed that different strategies were used in the kidneys of the two medaka species upon salinity challenge. On the other hand, gene knockdown experiments demonstrated that the function of O. dancena FXYD12 allowed maintenance of a high level of NKA activity. The results of the present study indicated that the kidneys of the examined euryhaline medakas originating from brackish water and fresh water exhibited different modulatory mechanisms through which renal FXYD12 enhanced NKA activity to maintain internal homeostasis. Our findings broadened the knowledge of expression and functions of FXYD proteins, the modulators of NKA, in vertebrates. PMID:27194950

  9. Proteomic characterization of the internalization of Opisthorchis viverrini excretory/secretory products in human cells.

    PubMed

    Chaiyadet, Sujittra; Smout, Michael; Laha, Thewarach; Sripa, Banchob; Loukas, Alex; Sotillo, Javier

    2016-02-09

    The association between liver fluke infection caused by Opisthorchis viverrini and cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium) has been well established. Multiple mechanisms play a role in the development of CCA, but the excretory/secretory products released by O. viverrini (OvES) represent the major interface between the parasite and its host, and their uptake by biliary epithelial cells has been suggested to be responsible for proliferation of cholangiocytes, the cells that line the biliary epithelium. Despite recent progress in the study of the molecular basis of O. viverrini-host interactions, little is known about the effects that OvES induces upon internalization by host cells. In the present study we incubated non-cancerous human cholangiocytes (H69) and human colon cancer (CaCo-2) cells with OvES and performed a time-course quantitative proteomic analysis on the cells to determine the early changes induced by the parasite. Different KEGG pathways were altered in H69 cells compared to Caco-2 cells: glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum. In addition, the Reactome pathway analysis showed a predominance of proteins involved in cellular pathways related to apoptosis and apoptotic execution phase in H69 cells after incubation with OvES. The present study provides the first proteomic analysis to address the molecular mechanisms by which OvES products interact with host cells, and Sheds light on the cellular processes involved in O. viverrini-induced CCA.

  10. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism

    PubMed Central

    Kang, Ki Sung; Ham, Jungyeob; Kim, Young-Joo; Park, Jeong Hill; Cho, Eun-Ju; Yamabe, Noriko

    2013-01-01

    Diabetic nephropathy is one of the serious complications in patients with either type 1 or 2 diabetes mellitus but current treatments remain unsatisfactory. Results of clinical research studies demonstrate that Panax ginseng can help adjust blood pressure and reduce blood sugar and may be advantageous in the treatment of tuberculosis and kidney damage in people with diabetes. The heat-processing method to strengthen the efficacy of P. ginseng has been well-defined based on a long history of ethnopharmacological evidence. The protective effects of P. ginseng on pathological conditions and renal damage associated with diabetic nephropathy in the animal models were markedly improved by heat-processing. The concentrations of less-polar ginsenosides (20(S)-Rg3, 20(R)-Rg3, Rg5, and Rk1) and maltol in P. ginseng were significantly increased in a heat-processing temperature-dependent manner. Based on researches in animal models of diabetes, ginsenoside 20(S)-Rg3 and maltol were evaluated to have therapeutic potential against diabetic renal damage. These effects were achieved through the inhibition of inflammatory pathway activated by oxidative stress and advanced glycation endproducts. These findings indicate that ginsenoside 20(S)-Rg3 and maltol are important bioactive constituents of heat-processed ginseng in the control of pathological conditions associated with diabetic nephropathy. PMID:24233065

  11. Microscopic anatomy of pycnogonida: II. Digestive system. III. Excretory system.

    PubMed

    Fahrenbach, W H; Arango, Claudia P

    2007-11-01

    The digestive system of several species of sea spiders (Pycnogonida, Arthropoda) was studied by electron microscopy. It is composed of the foregut inside a long proboscis, a midgut and a hindgut. Lips near the three jaws at the tip of the proboscis receive several hundred ductules originating from salivary glands. These previously undetected glands open on the lips, a fluted, projecting ridge at the external hinge line of the jaws, i.e., to the outside of the mouth. This disposition suggests affinities to the chelicerate line. The trigonal esophagus within the proboscis contains a complex, setose filter device, operated by dedicated muscles, that serves to reduce ingested food to subcellular dimensions. The midgut has diverticula into the bases of all legs. Its cells differentiate from the basal layer and contain a bewildering array of secretion droplets, lysosomes and phagosomes. In the absence of a hepatopancreas, the midgut serves both digestive and absorptive functions. The cuticle-lined hindgut lies in the highly reduced, peg-like abdomen. Traditionally, pycnogonids have been claimed to have no excretory organ at all. Such a structure, however, has been located in at least one ammotheid, Nymphopsis spinosissima, in which a simple, but standard, excretory gland has been found in the scape of the chelifore. It consists of an end sac, a straight proximal tubule, a short distal tubule, and a raised nephropore. The end sac is a thin-walled and polygonal chamber, about 150 microm in cross section, suspended in the hemocoel of the appendage, its edges radially tethered to the cuticle at more than half a dozen locations. This wall consists of a filtration basement membrane, 1-4 microm thick, facing the hemocoel, and internally of a continuous carpet of podocytes and their pedicels. The podocytes, measuring maximally 10 by 15 microm, have complex contents, of which a labyrinthine system of connected intracellular channels stands out. These coated cisternae open into a

  12. Ultrastructural investigation of the secondary excretory system in different stages of the procercoid of Triaenophorus nodulosus (Cestoda, Pseudophyllidea, Triaenophoridae).

    PubMed

    Korneva, J V; Kuperman, B I; Davydov, V G

    1998-04-01

    The formation of the definitive procercoid excretory system of the pseudophyllidean cestode Triaenophorus nodulosus has been investigated. This process can be divided into 3 main stages. In the first stage, active autophagic processes lead to the formation of intracellular excretory canals. In the second stage, the process of the autolysis is enhanced and the system of intercellular lacunae functioning as an excretory system is formed. A definitive excretory system of the procercoid forms at the next stage, by means of the migration and proliferation of undifferentiated cells replacing the lacunar system.

  13. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.

    PubMed

    Pihl, Liselotte; Persson, Patrik; Fasching, Angelica; Hansell, Peter; DiBona, Gerald F; Palm, Fredrik

    2012-07-01

    Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.

  14. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins.

    PubMed

    Sperotto, Rita Leal; Kremer, Frederico Schmitt; Aires Berne, Maria Elisabeth; Costa de Avila, Luciana F; da Silva Pinto, Luciano; Monteiro, Karina Mariante; Caumo, Karin Silva; Ferreira, Henrique Bunselmeyer; Berne, Natália; Borsuk, Sibele

    2017-01-01

    Toxocariasis is a neglected disease, and its main etiological agent is the nematode Toxocara canis. Serological diagnosis is performed by an enzyme-linked immunosorbent assay using T. canis excretory and secretory (TES) antigens produced by in vitro cultivation of larvae. Identification of TES proteins can be useful for the development of new diagnostic strategies since few TES components have been described so far. Herein, we report the results obtained by proteomic analysis of TES proteins using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. TES fractions were separated by one-dimensional SDS-PAGE and analyzed by LC-MS/MS. The MS/MS spectra were compared with a database of protein sequences deduced from the genome sequence of T. canis, and a total of 19 proteins were identified. Classification according to the signal peptide prediction using the SignalP server showed that seven of the identified proteins were extracellular, 10 had cytoplasmic or nuclear localization, while the subcellular localization of two proteins was unknown. Analysis of molecular functions by BLAST2GO showed that the majority of the gene ontology (GO) terms associated with the proteins present in the TES sample were associated with binding functions, including but not limited to protein binding (GO:0005515), inorganic ion binding (GO:0043167), and organic cyclic compound binding (GO:0097159). This study provides additional information about the exoproteome of T. canis, which can lead to the development of new strategies for diagnostics or vaccination.

  15. Excretory/secretory proteome of 14-day schistosomula, Schistosoma japonicum.

    PubMed

    Cao, Xiaodan; Fu, Zhiqiang; Zhang, Min; Han, Yanhui; Han, Qian; Lu, Ke; Li, Hao; Zhu, Chuangang; Hong, Yang; Lin, Jiaojiao

    2016-01-01

    Schistosomiasis remains a serious public health problem, with 200 million people infected and 779 million people at risk worldwide. The schistosomulum is the early stage of the complex lifecycle of Schistosoma japonicum in their vertebrate hosts, and is the main target of vaccine-induced protective immunity. Excretory/secretory (ES) proteins play a major role in host-parasite interactions and ES protein compositions of schistosomula of S. japonicum have not been characterized to date. In the present study, the proteome of ES proteins from 14 day schistosomula of S. japonicum was analyzed by liquid chromatography/tandem mass spectrometry and 713 unique proteins were finally identified. Gene ontology and pathway analysis revealed that identified proteins were mainly involved in carbohydrate metabolism, degradation, response to stimulus, oxidation-reduction, biological regulation and binding. Flow cytometry analysis demonstrated that thioredoxin peroxidase identified in this study had the effect on inhibiting MHCII and CD86 expression on LPS-activated macrophages. The present study provides insight into the growth and development of the schistosome in the final host and valuable information for screening vaccine candidates for schistosomiasis.

  16. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    PubMed

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection.

  17. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells.

    PubMed

    Falcón, Cristian; Carranza, Franco; Martínez, Fernando F; Knubel, Carolina P; Masih, Diana T; Motrán, Claudia C; Cervi, Laura

    2010-09-15

    Fasciola hepatica is a helminth trematode that migrates through the host tissues until reaching bile ducts where it becomes an adult. During its migration the parasite releases different excretory-secretory products (ESP), which are in contact with the immune system. In this study, we focused on the effect of ESP on the maturation and function of murine bone marrow derived-dendritic cells (DC). We found that the treatment of DC with ESP failed to induce a classical maturation of these cells, since ESP alone did not activate DC to produce any cytokines, although they impaired the ability of DC to be activated by TLR ligands and also their capacity to stimulate an allospecific response. In addition, using an in vitro ovalbumin peptide-restricted priming assay, ESP-treated DC exhibited a capacity to drive Th2 and regulatory T cell (Treg) polarization of CD4(+) cells from DO11.10 transgenic mice. This was characterized by increased IL-4, IL-5, IL-10 and TGF-beta production and the expansion of CD4(+)CD25(+)Foxp3(+) cells. Our results support the hypothesis that ESP from F. hepatica modulate the maturation and function of DC as part of a generalized immunosuppressive mechanism that involves a bias towards a Th2 response and Treg development.

  18. Ultrastructure study of the excretory system and the genital primordium of the infective stage of Onchocerca volvulus (Nematoda:Filarioidea).

    PubMed

    Strote, G; Bonow, I

    1995-01-01

    The electron microscopic investigation of the anterior part of the infective third-stage juvenile of Onchocerca volvulus provides first insights into the structure of the excretory system of this developmental stage of the parasite. The most anterior part of this system consists of a cell process of the syncytial excretory cells. At this height the excretory cells enclose the cuticle-lined excretory channel. The channel is in the process of elongation in the anterior-posterior direction, indicated by cell division in this region. More posteriad an ampulla-like structure is forming in the cytoplasm of the excretory cells. The inner surface of this ampulla is lined with a small number of single microvilli. In this part of the system the cytoplasm of the excretory cells is rich in Golgi bodies and endocytic vesicles. The ampulla has direct access to the exterior by the excretory duct. The excretory duct is a cuticle-lined structure surrounded by supporting fibres of an additional cell. This duct cell connects the excretory duct to the body-wall cuticle at the excretory pore. Adjacent to the region of the excretory system a cell is found that resembles a gland cell. This cell is in close contact to the ventral nerve cord. The genital primordia of the third-stage juvenile consist of several dividing cells. The female genital primordium is seen at the junction of the muscular with the glandular oesophagus and the male primordium can be found at the junction of the glandular oesophagus with the gut.

  19. Taenia taeniaeformis: inhibition of rat testosterone production by excretory-secretory product of the cultured metacestode.

    PubMed

    Rikihisa, Y; Lin, Y C; Fukaya, T

    1985-06-01

    In 3- to 5-month-old male Sprague-Dawley rats infected with the hepatic metacestode, Taenia taeniaeformis, the serum testosterone level was significantly lower than in comparable uninfected controls. By transmission electron microscopy, testicular Leydig cells of infected rats had less smooth endoplasmic reticulum than control Leydig cells. Cultured metacestodes isolated from the hepatic cysts secreted or excreted substances into the incubation medium. The effect of the excretory-secretory product on testosterone concentration in the sera and testes of 15-day-old rats was examined. Subcutaneous injection of 50-200 micrograms of excretory-secretory product/0.1 ml saline/rat for 2 days significantly reduced human chorionic gonadotropin-stimulated serum and testicular testosterone concentrations. Furthermore, the effect of the excretory-secretory product on isolated rat Leydig cell testosterone production was examined. Rat Leydig cells produced testosterone in vitro and, in the presence of 50 IU human chorionic gonadotropin/ml incubation medium, they responded with approximately 100% increase in testosterone production. Addition of 2-10 micrograms excretory-secretory product protein/ml of culture medium significantly reduced the testosterone production by rat Leydig cells in vitro. These results indicate that excretory-secretory product of cultured T. taeniaeformis metacestodes has a direct inhibitory effect on Leydig cell testosterone production under stimulation with human chorionic gonadotropin.

  20. Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma

    PubMed Central

    Monteiro, Márcia S.; Barros, António S.; Pinto, Joana; Carvalho, Márcia; Pires-Luís, Ana S.; Henrique, Rui; Jerónimo, Carmen; Bastos, Maria de Lourdes; Gil, Ana M.; Guedes de Pinho, Paula

    2016-01-01

    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced. PMID:27857216

  1. Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma.

    PubMed

    Monteiro, Márcia S; Barros, António S; Pinto, Joana; Carvalho, Márcia; Pires-Luís, Ana S; Henrique, Rui; Jerónimo, Carmen; Bastos, Maria de Lourdes; Gil, Ana M; Guedes de Pinho, Paula

    2016-11-18

    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced.

  2. Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase

    SciTech Connect

    Cummings, J.; Nguyen, T; Fedorov, A; Kolb, P; Xu, C; Fedorov, E; Shoichet, B; Barondeau, D; Almo, S; Raushel, F

    2010-01-01

    Human renal dipeptidase, an enzyme associated with glutathione metabolism and the hydrolysis of {beta}-lactams, is similar in sequence to a cluster of 400 microbial proteins currently annotated as nonspecific dipeptidases within the amidohydrolase superfamily. The closest homologue to the human renal dipeptidase from a fully sequenced microbe is Sco3058 from Streptomyces coelicolor. Dipeptide substrates of Sco3058 were identified by screening a comprehensive series of L-Xaa-L-Xaa, L-Xaa-D-Xaa, and D-Xaa-L-Xaa dipeptide libraries. The substrate specificity profile shows that Sco3058 hydrolyzes a broad range of dipeptides with a marked preference for an l-amino acid at the N-terminus and a d-amino acid at the C-terminus. The best substrate identified was L-Arg-D-Asp (k{sub cat}/K{sub m} = 7.6 x 10{sup 5} M{sup -1} s{sup -1}). The three-dimensional structure of Sco3058 was determined in the absence and presence of the inhibitors citrate and a phosphinate mimic of L-Ala-D-Asp. The enzyme folds as a ({beta}/{alpha}){sub 8} barrel, and two zinc ions are bound in the active site. Site-directed mutagenesis was used to probe the importance of specific residues that have direct interactions with the substrate analogues in the active site (Asp-22, His-150, Arg-223, and Asp-320). The solvent viscosity and kinetic effects of D{sub 2}O indicate that substrate binding is relatively sticky and that proton transfers do not occurr during the rate-limiting step. A bell-shaped pH-rate profile for k{sub cat} and k{sub cat}/K{sub m} indicated that one group needs to be deprotonated and a second group must be protonated for optimal turnover. Computational docking of high-energy intermediate forms of L/D-Ala-L/D-Ala to the three-dimensional structure of Sco3058 identified the structural determinants for the stereochemical preferences for substrate binding and turnover.

  3. Ghrelin Protects against Renal Damages Induced by Angiotensin-II via an Antioxidative Stress Mechanism in Mice

    PubMed Central

    Fujimura, Keiko; Wakino, Shu; Minakuchi, Hitoshi; Hasegawa, Kazuhiro; Hosoya, Koji; Komatsu, Motoaki; Kaneko, Yuka; Shinozuka, Keisuke; Washida, Naoki; Kanda, Takeshi; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2014-01-01

    We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney. PMID:24747517

  4. Renal Interstitial Fibrosis: Mechanisms and Evaluation In: Current Opinion in Nephrology and Hypertension

    PubMed Central

    Farris, Alton B.; Colvin, Robert B.

    2012-01-01

    Purpose of Review Tubulointerstitial injury in the kidney is complex, involving a number of independent and overlapping cellular and molecular pathways, with renal interstitial fibrosis and tubular atrophy (IF/TA) as the final common pathway. Furthermore, there are multiple ways to assess IFTA. Recent findings Cells involved include tubular epithelial cells, fibroblasts, fibrocytes, myofibroblasts, monocyte/macrophages, and mast cells with complex and still incompletely characterized cell-molecular interactions. Molecular mediators involved are numerous and involve pathways such as transforming growth factor (TGF-β), bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF). Recent genomic approaches have shed insight into some of these cellular and molecular pathways. Pathologic evaluation of IFTA is central in assessing the severity of chronic disease; however, there are a variety of methods used to assess IFTA. Most assessment of IFTA relies on pathologist assessment of special stains such as trichrome, Sirius Red, and collagen III immunohistochemistry. Visual pathologist assessment can be prone to inter- and interobserver variability, but some methods employ computerized morphometery, without a clear consensus as to the best method. Summary IFTA results from on orchestration of cell types and molecular pathways. Opinions vary on the optimal qualitative and quantitative assessment of IFTA. PMID:22449945

  5. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin-induced natriuresis

    SciTech Connect

    Caverzasio, J.; Rizzoli, R.; Dayer, J.M.; Bonjour, J.P.

    1987-05-01

    Administration of pyrogen or endotoxins such as Escherichia coli lipopolysaccharide can elicit a marked increase in urinary sodium excretion. This response occurs without any elevation in the filtered load of sodium and it does not appear to be prostaglandin mediated. The various effects produced by endotoxins appear to have interleukin-1 as a common mediator. In the present work, the authors have studied whether human recombinant interleukin-1..beta.. (hrIL-1) could affect the renal handling of sodium and thus, could be implicated in natriuretic response to pyrogens or endotoxins. They observed that hrIL-1 intravenously injected into conscious rats provokes a marked increase in sodium excretion. This natriuretic response was not associated with any increase in glomerular filtration rate (clearance of (/sup 3/H)inulin), nor was it accompanied by significant changes in the urinary excretion of potassium, calcium, or inorganic phosphate. The only concomitant alteration was a decrease in urinary pH. Pretreatment with indomethacin abolished the effect of hrIL-1 on urinary pH but did not modify the natriuretic response. In conclusion, hrIL-1 elicits a selective decrease in tubular sodium reabsorption, which does not appear to involve a change in prostaglandin synthesis. This observation strongly suggests that interleukin-1 could be a key mediator in endotoxin-induced natriuresis.

  6. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury.

  7. A Mechanism for the induction of renal tumours in male Fischer 344 rats by short-chain chlorinated paraffins.

    PubMed

    Warnasuriya, Gayathri D; Elcombe, Barbara M; Foster, John R; Elcombe, Clifford R

    2010-03-01

    Short-chain chlorinated paraffins (SCCPs) cause kidney tumours in male rats, but not in female rats or mice of either sex. Male rat-specific tumours also occur in rats dosed with a range of compounds including 1,4- dichlorobenzene (DCB) and d-limonene (DL). These compounds bind to a male rat-specific hepatic protein, alpha-2-urinary globulin (α2u), and form degradationresistant complexes in the kidney. The resulting accumulation of α2u causes cell death and sustained regenerative cell proliferation, which in turn leads to the formation of renal tumours. To investigate whether the SCCP, Chlorowax 500C (C500C), causes tumours via the accumulation of α2u male rats were orally dosed with either C500C (625 mg/kg of body weight), DCB (300 mg/kg of body weight), or DL (150 mg/kg of body weight) for 28 consecutive days. An increase in renal α2u and cell proliferation was observed in DCB- and DL-treated rats but not in C500C-treated rats. C500C caused peroxisome proliferation and a down-regulation of α2u synthesis in male rat liver. This down-regulation occurred at the transcriptional level. Since less α2u was produced in C500C-treated rats, there was less available for accumulation in the kidney hence a typical α2u nephropathy did not appear. However, the administration of a radiolabelled SCCP, [14C]polychlorotridecane (PCTD), to male rats demonstrated its binding to renal α2u. Thus, it is possible that SCCPs bind to α2u and cause a slow accumulation of the protein in the kidney followed by delayed onset of α2u nephropathy. As a consequence of these findings in the current experiments, while evidence exists implicating α2u-globulin in the molecular mechanism of action of the C500C, the classic profile of a α2u-globulin nephropathy seen with other chemicals such as DCB and DL was not reproduced during this experimental protocol.

  8. Excretory/secretory products of Fasciola hepatica but not recombinant phosphoglycerate kinase induce death of human hepatocyte cells.

    PubMed

    Bąska, Piotr; Norbury, Luke J; Wiśniewski, Marcin; Januszkiewicz, Kamil; Wędrychowicz, Halina

    2013-06-01

    The liver fluke Fasciola hepatica infects a wide range of hosts, and has a considerable impact on the agriculture industry, mainly through infections of sheep and cattle. Further, human infection is now considered of public health importance and is hyperendemic in some regions. The fluke infection causes considerable damage to the hosts' liver. However, the mechanisms of liver destruction have not yet been completely elucidated. In the present report we incubated a human liver cell line in the presence of either F. hepatica excretory/secretory material (FhES) or recombinant phosphoglycerate kinase (FhPGK). Dosedependent cytotoxicity in the presence of FhES was observed, indicating that FhES is capable of killing human hepatocytes, supporting a role for FhES in damaging host liver cells during infection; while treatment with a recombinant intracellular protein - FhPGK, had no impact on cell survival.

  9. Efficacy of the excretory urogram in the staging of gynecologic malignancies

    SciTech Connect

    Hillman, B.J.; Clark, R.L.; Babbitt, G.

    1984-11-01

    It is common for patients suspected of having a gynecologic malignancy to be referred for excretory urography as part of their preoperative staging evaluation. This study investigated the efficacy of this practice using prospective and experimental retrospective interpretations of 88 urograms obtained for this clinical indication. The results indicate that excretory urography reliably depicts the ureters in most cases. However, the urogram is quite insensitive in demonstrating the extention of malignancy. The excretory urogram is useful for locating the position of the ureters and demonstrating the presence of obstruction or unsuspected urinary tract abnormalities. Nonetheless, this information also may be obtained by computed tomography, which can more accurately assess the primary mass and indicate the presence of malignant extension.

  10. Bioprosthetic versus mechanical prostheses for valve replacement in end-stage renal disease patients: systematic review and meta-analysis

    PubMed Central

    Zhao, Dong Fang; Zhou, Jessie J.; Karagaratnam, Aran; Phan, Steven; Yan, Tristan D.

    2016-01-01

    Background Patients with end-stage renal disease (ESRD) indicated for dialysis are increasingly requiring cardiac valve surgery. The choice of bioprosthetic or mechanic valve prosthesis for such patients requires careful risk assessment. A systematic review and meta-analysis was performed to assess current evidence available. Methods A comprehensive search from six electronic databases was performed from their inception to February 2015. Results from patients with ESRD undergoing cardiac surgery for bioprosthetic or mechanical valve replacement were identified. Results Sixteen studies with 8,483 patients with ESRD undergoing cardiac valve replacement surgery were included. No evidence of publication bias was detected. Prior angioplasty by percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery was significantly higher in the bioprosthetic group compared to the mechanical group (16.0% vs. 12.0%, P=0.04); all other preoperative baseline patient characteristics were similar. There was no significant difference in 30-day mortality or all-cause mortality between the two comparisons. Compared with the mechanical group, the frequency of bleeding (5.2% vs. 6.4%, P=0.04) and risk of thromboembolism (2.7% vs. 12.8%, P=0.02) were significantly lower in the bioprosthetic group. There were similar rates of reoperation and valve endocarditis. Conclusions The present study demonstrated that patients with ESRD undergoing bioprosthetic or mechanical valve replacement had similar mid-long term survival. The bioprosthetic group had lower rates of bleeding and thromboembolism. Further studies are required to differentiate the impact of valve location. The presented results may be applicable for ESRD patients requiring prosthetic valve replacement. PMID:27162649

  11. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis

    PubMed Central

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-01-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes—clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma—but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. PMID:23890189

  12. Treatment of the lacrimal excretory system after resection of medial canthal and eyelid tumors.

    PubMed

    Older, J J

    1979-06-01

    A simplified method of lacrimal excretory system repair is presented. If part of a canaliculus is resected during removal of an eyelid tumor, the remaining section of the canaliculus can be exteriorized to the lacrimal lake. A silicone tube is threaded into the canaliculus and allowed to remain in place for one to two weeks. If both canaliculi and the common canaliculus are removed during resection for a medial canthal tumor, a silicone tube can be threaded into the nasolacrimal duct and brought out the area of the medial canthal angle. Conjunctiva which is wrapped around the tube can then form a new drainage canal into the remainder of the lacrimal excretory system.

  13. Prospective evaluation of renal allograft dysfunction with 99mtechnetium-diethylenetriaminepentaacetic acid renal scans

    SciTech Connect

    McConnell, J.D.; Sagalowsky, A.I.; Lewis, S.E.; Gailiunas, P.; Helderman, J.H.; Dawidson, I.; Peters, P.C.

    1984-05-01

    A prospective, single-blinded study was done to determine the ability of serial 99mtechnetium-diethylenetriaminepentaacetic acid scans to diagnose renal allograft rejection. Among 28 transplant recipients 111 renal scans were obtained 1 day postoperatively and every 3 to 4 days thereafter for 3 weeks in all patients retaining an allograft. Computer-generated time-activity blood flow curves were analyzed semiquantitatively for the 1) interval between curve peaks of the allograft and iliac artery, 2) renal transit time and 3) renal washout of radionuclide. Excretory function was assessed by degree and interval to appearance of radionuclide in the calices and bladder. Deterioration of renal blood flow and excretion compared to the initial scan was considered rejection. Of 52 scans performed during clinical rejection 47 (90.4 per cent) were interpreted as showing rejection (sensitivity). Of 53 scans interpreted as showing rejection 47 (88.7 per cent) were positive for clinical rejection. The remaining 6 patients (initial false positive results) suffered clinical rejection within 24 to 72 hours. We conclude that 99mtechnetium-diethylenetriaminepentaacetic acid renal scans are useful in the differential diagnosis of renal allograft dysfunction.

  14. Mechanisms of Renal Phosphate Loss in Liver Resection-Associated Hypophosphatemia

    PubMed Central

    Nafidi, Otmane; Lapointe, Real W.; Lepage, Raymond; Kumar, Rajiv; D’Amour, Pierre

    2014-01-01

    Objective To determine precisely the role of parathyroid hormone (PTH) and of phosphatonins in the genesis of posthepatectomy hypophosphatemia. Background Posthepatectomy hypophosphatemia has recently been related to increased renal fractional excretion of phosphate (FE P). To address the cause of hypophosphatemia, we measured serum concentrations of PTH, various phosphatonins, and the number of removed hepatic segment in patients with this disorder. Methods Serum phosphate (PO4), ionized calcium (Ca++), HCO3−, pH and FE P, intact PTH (I-PTH), carboxyl-terminal fibroblast growth factor 23 (C-FGF-23) and intact fibroblast growth factor 23 (I-FGF-23), FGF-7, and secreted frizzled related-protein-4 (sFRP-4) were measured before and on postoperative (po) days 1, 2, 3, 5, and 7, in 18 patients undergoing liver resection. The number of removed hepatic segments was also assessed. Results Serum PO4 concentrations decreased within 24 hours, were lowest (0.66 ± 0.03 mmol/L; P < 0.001) at 48 hours, and returned to normal within 5 days of the procedure. FE P peaked at 25.07% ± 2.26% on po day 1 (P < 0.05). Decreased ionized calcium concentrations (1.10 ± 0.01 mmol/L; P < 0.01) were observed on po day 1 and were negatively correlated with increased I-PTH concentrations (8.8 ± 0.9 pmol/L; P < 0.01; correlation: r = −0.062, P = 0.016). FE P was positively related to I-PTH levels on po day 1 (r = 0.52, P = 0.047) and negatively related to PO4 concentrations (r = −0.56, P = 0.024). Severe hypophosphatemia and increased urinary phosphate excretion persisted for 72 hours even when I-PTH concentrations had returned to normal. I-FGF-23 decreased to its nadir of 7.8 ± 6.9 pg/mL (P < 0.001) on po day 3 and was correlated with PO4 levels on po days 0, 3, 5, and 7 (P < 0.001). C-FGF-23, FGF-7 and sFRP-4 levels could not be related to either PO4 concentrations or FE P. Conclusion Posthepatectomy hypophosphatemia is associated with increased FE P unrelated to I-FGF-23 or C-FGF-23

  15. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation

    PubMed Central

    Chou, Hsiu-Chu; Chang, Chih-Cheng; Lo, Hau-Yin; Juan, Shu-Hui

    2016-01-01

    Perfluorinated chemicals (PFCs) are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS) caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs). In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1) by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP) assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α) by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE) in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation. PMID:27171144

  16. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage.

    PubMed

    Fan, Yanling; Xia, Jieyu; Jia, Daoyong; Zhang, Mengsi; Zhang, Yanyan; Huang, Guoning; Wang, Yaping

    2016-09-01

    Context Ginseng is a widely used herbal medicine in China but its mechanism of action remains unclear. Objective The objectives of this work were to study the protective effect of ginsenoside Rg1 on subacute murine renal damage induced by d-galactose and its mechanism. Materials and methods C57BL/6J mice were injected with 120 mg/kg/d (sc) d-galactose for 1 week, followed by a combined treatment of Rg1 20 mg/kg/d (ip) and 120 mg/kg/d d-galactose (sc) for 5 weeks. Mice were injected with the 0.9% saline 0.2 mL/d (sc) and 120 mg/kg/d d-galactose (sc) for 6 weeks in the control group and the d-galactose group, respectively. After 6 weeks, urea, creatinine, uric acid, cystatin (Cys-C), senescence-associated β-galactosidase (SA-β-gal) staining positive kidney cells, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), glycation end products (AGEs) and 8-hydroxy-2 deoxyguanosine (8-OH-dG) were measured. Results Treatment with Rg1 ameliorated kidney function and aging state (urea from 17.19 ± 1.09 to 15.77 ± 1.22 mmol·L (-) (1), creatinine from 29.40 ± 5.72 to 22.60 ± 3.97 μmol·L (-) (1), uric acid from 86.80 ± 5.97 to 72.80 ± 10.61 μmol·L (-) (1), Cys-C from 0.23 ± 0.03 to 0.18 ± 0.05 mg·L (-) (1), ROD of SA-β-gal from 56.32 ± 10.48 to 26.78 ± 7.34, SOD from 150.22 ± 19.07 to 190.56 ± 15.83 U·(mg·prot) (-1), MDA from 9.28 ± 1.59 to 3.17 ± 0.82 nmol·(mg·prot) (-1), GSH-PX from 15.68 ± 2.11 to 20.32 ± 2.96 U·(mg·prot) (-1) as well as regulated glomerulus morphology (glomerulus diameter from 775.77 ± 18.41 to 695.04 ± 14.61 μm, renal capsule width from 39.56 ± 3.51 to 31.42 ± 2.70 μm, glomerulus basement membrane from 206.03 ± 16.22 to 157.27 ± 15.70 nm, podocyte slit from 55.21 ± 8.55 to 37.63 ± 6.65 nm). Conclusions Ginsenoside Rg1 can antagonise d

  17. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.

    PubMed

    Kamenskiy, Alexey V; Dzenis, Yuris A; Kazmi, Syed A Jaffar; Pemberton, Mark A; Pipinos, Iraklis I; Phillips, Nick Y; Herber, Kyle; Woodford, Thomas; Bowen, Robert E; Lomneth, Carol S; MacTaggart, Jason N

    2014-11-01

    The biomechanics of large- and medium-sized arteries influence the pathophysiology of arterial disease and the response to therapeutic interventions. However, a comprehensive comparative analysis of human arterial biaxial mechanical properties has not yet been reported. Planar biaxial extension was used to establish the passive mechanical properties of human thoracic (TA, [Formula: see text]) and abdominal (AA, [Formula: see text]) aorta, common carotid (CCA, [Formula: see text]), subclavian (SA, [Formula: see text]), renal (RA, [Formula: see text]) and common iliac (CIA, [Formula: see text]) arteries from 11 deceased subjects ([Formula: see text] years old). Histological evaluation determined the structure of each specimen. Experimental data were used to determine constitutive parameters for a structurally motivated nonlinear anisotropic constitutive model. All arteries demonstrated appreciable anisotropy and large nonlinear deformations. Most CCA, SA, TA, AA and CIA specimens were stiffer longitudinally, while most RAs were stiffer circumferentially. A switch in anisotropy was occasionally demonstrated for all arteries. The CCA was the most compliant, least anisotropic and least frequently diseased of all arteries, while the CIA and AA were the stiffest and the most diseased. The severity of atherosclerosis correlated with age, but was not affected by laterality. Elastin fibers in the aorta, SA and CCA were uniformly and mostly circumferentially distributed throughout the media, while in the RA and CIA, elastin was primarily axially aligned and concentrated in the external elastic lamina. Constitutive modeling provided good fits to the experimental data for most arteries. Biomechanical and architectural features of major arteries differ depending on location and functional environment. A better understanding of localized arterial mechanical properties may support the development of site-specific treatment modalities for arterial disease.

  18. The mechanism of local tumor irradiation combined with interleukin 2 therapy in murine renal carcinoma: histological evaluation of pulmonary metastases.

    PubMed

    Dezso, B; Haas, G P; Hamzavi, F; Kim, S; Montecillo, E J; Benson, P D; Pontes, J E; Maughan, R L; Hillman, G G

    1996-09-01

    We have demonstrated that tumor irradiation enhanced the therapeutic effect of interleukin 2 (IL-2) on pulmonary metastases from a murine renal adenocarcinoma, Renca. To investigate the mechanism of interaction between tumor irradiation and IL-2 therapy, we have histologically evaluated the effects of each therapy alone or in combination on Renca pulmonary metastases. Following treatment of established lung metastases with irradiation and IL-2 therapy, lung sections were processed for H&E or immunohistochemical staining. We found that tumor irradiation or IL-2 therapy locally induced vascular damage, resulting in multifocal hemorrhages and mononuclear cell mobilization in the lung tissue. This effect was amplified in lungs treated with the combined therapy. Immunohistochemistry showed that irradiation produced a macrophage influx into irradiated tumor nodules, and systemic IL-2 therapy induced T-cell infiltration in tumor nodules. Lungs treated with the combined therapy exhibited massive macrophage, T-cell, and natural killer cell mobilization in disintegrating tumor nodules and in the lung tissue. This combined therapy caused a decrease in the number of proliferating tumor cells and an increase in the number of apoptotic cells, which were more marked than with either therapy alone. We suggest that the macrophages mobilized by radiation-induced tissue injury could play a role in phagocytosis of apoptotic tumor cells, processing and presenting of tumor antigens for a systemic immune response activated by IL-2. Tumor destruction may result from the concomitant action of activated T cells, natural killer cells, and macrophages infiltrating the tumor nodules.

  19. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.

    PubMed

    Armenti, Stephen T; Chan, Emily; Nance, Jeremy

    2014-10-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the Caenorhabditis elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens.

  20. Spontaneous perforation of the ureter diagnosed on technetium 99m DTPA excretory urography

    SciTech Connect

    Barasch, E.; Kashdan, B.; Rathore, A.

    1988-01-01

    A case of nontraumatic rupture of the ureter secondary to a nonopaque calculus is presented. Because of the inherent high image contrast caused by the leak of technetium 99m-DTPA-labeled urine, the technetium 99m-DTPA excretory urogram is seen as an alternative to the intravenous urogram or contrast-enhanced computed tomography in selected cases of suspected ureteral rupture.

  1. Occurrence of a specific dual symbiosis in the excretory organ of geographically distant Nautiloids populations.

    PubMed

    Pernice, Mathieu; Boucher-Rodoni, Renata

    2012-10-01

    Nautilus is one of the most intriguing of all sea creatures, sharing morphological similarities with the extinct forms of coiled cephalopods that evolved since the Cambrian (542-488 mya). Further, bacterial symbioses found in their excretory organ are of particular interest as they provide a great opportunity to investigate the influence of host-microbe interactions upon the origin and evolution of an innovative nitrogen excretory system. To establish the potential of Nautilus excretory organ as a new symbiotic system, it is, however, necessary to assess the specificity of this symbiosis and whether it is consistent within the different species of present-day Nautiloids. By addressing the phylogeny and distribution of bacterial symbionts in three Nautilus populations separated by more than 6000 km (N. pompilius from Philippines and Vanuatu, and N. macromphalus from New Caledonia), this study confirms the specificity of this dual symbiosis involving the presence of betaproteobacteria and spirochaete symbionts on a very wide geographical area. Overall, this work sheds further light on Nautiloids excretory organ as an innovative system of interaction between bacteria and cephalopods.

  2. [Peculiarities of ultrastructure of excretory system in Bothrioplana semperi (Platyhelminthes, Turbellaria)].

    PubMed

    Kornakova, E E

    2010-01-01

    Ultrastructural study of morphology of cirtocytes and excretory channels was performed in the free living turbellaria Bothrioplana semperi (Turbellaria, Seriata). It has been shown that cirtocytes of this species are formed by two cells--the terminal and the proximal cells of the channel. The fan is composed of two rod rows. The external row goes out from the terminal cell, the internal one is a derivate of the channel proximal cell. Inside each rod of the external row there runs a bundle of microfilaments; it originates in the cytoplasm of the channel proximal cell distal to bases of the external rods. On the internal rod membranes there are noted small electrondense granules disposed separately or fused in the solid layer continuing into a dense "membrane" connecting rods of the external and internal rows. Rare internal leptotrichiae go out from the cirtocyte cavity bottom. External leptotrichiae are absent. The septate desmosome at the level of the terminal cell is absent, but is present in the channel proximal cell at the level of terminal of cilia. The apical surface of the channel cell carries rare short microvilli. The basement membrane of cells of excretory channels forms deep invaginations almost reaching the apical membrane. Epithelium of excretory channels is deprived of cilia. Ultrastructure of cirtocytes and excretory channels of B. semperi is similar to those in representatives of the suborder Proseriata (Seriata). The significance of ultrastructure of the Proseriata cirtocytes, especially of the order of formation of versh, for construction of phylogeny of Platyhelminthes is discussed.

  3. [Characterization of the cercaria of Bucephalus polymorphus Baer, 1827 (Trematoda, Bucephalidae): chetotaxy and excretory system].

    PubMed

    Wallet, M; Lambert, A

    1984-01-01

    We describe the excretory system and the chetotaxy of the cercaria of Bucephalus polymorphus Baer, 1827 which develops in Dreissena polymorpha (Lamellibranch, Dreissenidae) in South-East of France. We compare our observations with those realised in Poland and we discuss about the differences observed.

  4. Light and electron microscopic studies on the excretory system of Macrobiotus richtersi Murray, 1911 (Eutardigrada).

    PubMed

    Weglarska, B

    1980-01-01

    The excretory system of Macrobiotus richtersi consists of one dorsal and two lateral components and shows a high degree of structural complexity. In each of these a tricellular external lobe and a column can be distinguished, the two parts being connected distally. The surface of the lobe cells is increased by deep basal infoldings and fingerlike processes which form a labyrinth next to the basal lamina. Their cytoplasm contains numerous mitochondria, a well developed rough endoplasmic reticulum, dictyosomes, and granules in amounts depending on the physiological state of the animal. Excretory crystals occur in caveolae located in the lobe: between the fingershaped processes of the cell and in the space enclosed by the basal lamina on one side and the column on the other. The column faces an extracellular channel meandering along its whole length which is surrounded on the outside by a basal lamina. Morphologically the column is similar to the protonephridial channel of Rotifera. At the ultrastructural level, the cytoplasm of the column shows numerous mitochondria, rough endoplasmic reticulum, lysosomes, and a well developed Golgi apparatus. The lumen of the channel is coated by glycocalyx. At the base of the column several small cells form the proximal part of a duct that communicates with the gut. The morphology and ultrastructure of the excretory system of M. richtersi have been compared with similar a system in Isohypsibius megalonyx (Greven, 1979), and on these grounds a proposal is put forward to call the excretory organs of Tardigrada "nephridia" instead of "Malpighian tubules" .

  5. Bilingual Skills Training Program. Barbering/Cosmetology. Module 8.0: Excretory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the excretory system is the eighth (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  6. Stage- and Gender-Specific Proteomic Analysis of Brugia malayi Excretory-Secretory Products

    PubMed Central

    Moreno, Yovany; Geary, Timothy G.

    2008-01-01

    Introduction While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. Methodology/Principal Findings To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. Conclusions/Significance A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host–parasite interaction. PMID:18958170

  7. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    SciTech Connect

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.

  8. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla

    PubMed Central

    Pannabecker, Thomas L.; Dantzler, William H.; Layton, Harold E.; Layton, Anita T.

    2008-01-01

    Recent studies of three-dimensional architecture of rat renal inner medulla (IM) and expression of membrane proteins associated with fluid and solute transport in nephrons and vasculature have revealed structural and transport properties that likely impact the IM urine concentrating mechanism. These studies have shown that 1) IM descending thin limbs (DTLs) have at least two or three functionally distinct subsegments; 2) most ascending thin limbs (ATLs) and about half the ascending vasa recta (AVR) are arranged among clusters of collecting ducts (CDs), which form the organizing motif through the first 3–3.5 mm of the IM, whereas other ATLs and AVR, along with aquaporin-1-positive DTLs and urea transporter B-positive descending vasa recta (DVR), are external to the CD clusters; 3) ATLs, AVR, CDs, and interstitial cells delimit interstitial microdomains within the CD clusters; and 4) many of the longest loops of Henle form bends that include subsegments that run transversely along CDs that lie in the terminal 500 μm of the papilla tip. Based on a more comprehensive understanding of three-dimensional IM architecture, we distinguish two distinct countercurrent systems in the first 3–3.5 mm of the IM (an intra-CD cluster system and an inter-CD cluster system) and a third countercurrent system in the final 1.5–2 mm. Spatial arrangements of loop of Henle subsegments and multiple countercurrent systems throughout four distinct axial IM zones, as well as our initial mathematical model, are consistent with a solute-separation, solute-mixing mechanism for concentrating urine in the IM. PMID:18495796

  9. Therapeutic effects of renal denervation on renal failure.

    PubMed

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2013-05-01

    Sympathetic nerve activity (SNA) is increased in both patients and experimental animals with renal failure. The kidney is a richly innervated organ and has both efferent and afferent nerves. Renal denervation shows protective effects against renal failure in both animals and humans. The underlying mechanisms include a decrease in blood pressure, a decrease in renal efferent SNA, a decrease in central SNA and sympathetic outflow, and downregulation of the reninangiotensin system. It has been demonstrated that re-innervation occurs within weeks after renal denervation in animals but that no functional re-innervation occurs in humans for over two years after denervation. Renal denervation might not be renal protective in some situations including bile duct ligation-induced renal failure and ischemia/reperfusion-induced acute kidney injury. Catheter-based renal denervation has been applied to patients with both early and end stage renal failure and the published results so far suggest that this procedure is safe and effective at decreasing blood pressure. The effectiveness of renal denervation in improving renal function in patients with renal failure needs to be further investigated.

  10. Mechanisms of alpha-adrenergic regulation of the renal sodium/proton antiporter

    SciTech Connect

    Gesek, F.A.

    1988-01-01

    Some controversy exists concerning the relative roles of the {alpha}-adrenoceptor subtypes which mediate proximal tubular Na reabsorption. We hypothesized both {alpha}{sub 1} and {alpha}{sub 2} adrenoceptors may act to stimulate Na transport. We improved upon existing isolation techniques to obtain a highly enriched fraction of rat proximal tubule segments with which to test our hypothesis. Oxygen consumption measurements were first used to monitor alterations in transcellular transport stimulated by selective {alpha}{sub 1} and {alpha}{sub 2} adrenergic agonists and demonstrated both adrenoceptor subtypes increased transcellular Na transport. To examine if the enhancement of Na transport by {alpha}-adrenergic agonists were through a luminal Na//H exchange mechanism, the uptake of {sup 22}Na which was suppressible by the Na/H inhibitor, ethylisopropyl amiloride was utilized. The final sequence of experiments were designed to examine why {alpha}{sub 2} specific adrenoceptor agonists produced a range of stimulation extending from 22% with guanabenz to 98% with B-HT 933. After inhibition of a guanine nucleotide binding protein with pertussis toxin pretreatment, we were able to attenuate the {alpha}{sub 2} agonists responses. However, when a phorbol ester was used to stimulate Na/H exchange directly by activation of protein kinase C, the uptake of {sup 22}Na was inhibited by guanabenz.

  11. Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats.

    PubMed Central

    Carmignani, M; Boscolo, P; Artese, L; Del Rosso, G; Porcelli, G; Felaco, M; Volpe, A R; Giuliano, G

    1992-01-01

    Male weanling Wistar rats received 200 micrograms/ml of mercury (Hg), as HgCl2, in drinking water for 180 days. At the end of the treatment, systemic arterial blood pressure was augmented, cardiac inotropism was reduced, and heart rate was unchanged. Light and electron microscopical studies of the kidney showed a mesangial proliferative glomerulonephritis in about 80% of the glomeruli. Tubular cells showed reduction of the acid phosphatase activity, which was related to functional abnormalities of the lysosomes. In the 24 hour urine samples of the Hg exposed rats, there was slight reduction of kallikrein activity, but evident proteinuria was not present in all samples. Plasma renin activity was reduced, that of angiotensin I-converting enzyme was augmented, and plasma aldosterone concentrations were unchanged. Mercury was accumulated mostly in the kidney of the Hg treated animals; and the content of Hg in the heart was higher than in the brain. These data show that chronic exposure to Hg acts on the kidney with complex mechanisms of toxicity; these contribute to modify systemic haemodynamics. Images PMID:1571292

  12. [Extracorporeal renal replacement therapies in acute renal failure].

    PubMed

    Schaefer, R M; Barenbrock, M; Teschner, M; Bahner, U

    2000-05-15

    The most serious forms of acute renal failure (ARF) are nowadays encountered in the intensive care unit (ICU), where up to 25% of new patients are reported to develop ARF. Lethality rates may reach 50 to 90% when the ARF is part of a multiple organ dysfunction syndrome. A multitude of extracorporeal procedures have been introduced into intensive care medicine. Applied with adequate skills and experience, most of these techniques will suffice to replace excretory renal function. However, because of low efficacy arterio-venous procedures (CAVH and CAVHD) have been abandoned for the veno-venous, pump-driven techniques (CVVH and CVVHD). Up to now, there is no consensus whether continuous or intermittent renal replacement therapy is more advantageous. In many cases, oliguric patients with circulatory instability will be treated by CVVH, even though there is no prospective study to show that in terms of outcome continuous treatment is superior to intermittent hemodialysis. It is equally conceivable to treat such patients with daily, prolonged (intermittent) hemodialysis. Apparently, the dose of replacement therapy, be it continuous filtration (36 to 48 l/24 h) or intermittent hemodialysis (daily 3 to 4 h) with a target BUN of less than 50 mg/dl, is more important than the modality of treatment. Moreover, there is good evidence that the use of biocompatible membranes (no complement- or leukocyte activation) is preferable and that with high-volume hemofiltration bicarbonate-containing replacement fluids should be used. However, despite all the technical advances, we firmly believe that the skills and the experience of those physicians and nurses who actually perform renal replacement therapy in the ICU are more important than the modality of treatment applied.

  13. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens.

    PubMed

    Yang, Liu; Denlinger, David L; Piermarini, Peter M

    2016-12-27

    Adult females of the mosquito Culex pipiens entering diapause increase sugar water ingestion and reduce evaporative water loss, but how these attributes of the diapause program impact activity of the renal excretory system remains unknown. Here we compared the renal excretory capacity of diapausing and non-diapausing females, as well as the molecular expression of aquaporin (AQP) genes that encode channels involved in transporting water and/or small metabolites. Baseline urine excretion rates in diapausing mosquitoes were higher than in those of their non-diapausing counterparts, possibly a consequence of the intense sugar feeding associated with diapause. But, diapausing mosquitoes exhibited a much lower capacity for diuresis than non-diapausing mosquitoes. The suppressed diuretic capacity likely reflects reduced investment in the energetically-expensive post-prandial diuresis, an event not observed in diapausing mosquitoes. The mRNA expression levels of two genes encoding AQPs, Eglp1 and Aqp12L, in diapausing mosquitoes were down-regulated (on day 14) and up-regulated (on both days 3 and 14), respectively, in whole body samples. These changes were not evident in the excretory system (i.e., Malpighian tubules and hindgut), which showed no differential expression of AQPs as a function of diapause. Several AQP mRNAs were, however, differentially expressed in the midgut, ovaries, and abdominal body wall of diapausing mosquitoes, suggesting that AQPs in these tissues may be playing important non-excretory roles that are unique to diapause physiology.

  14. Management of renal arterial injuries secondary to penetrating abdominal trauma.

    PubMed

    Dart, C H; Braitman, H E; Larlarb, S

    1979-07-01

    Renal vascular injuries are found relatively frequently after non-penetrating abdominal trauma. Penetrating renal arterial lesions occur much less frequently, involving less than 5 per cent of all penetrating arterial injuries. The association of bowel and other organ injuries makes diagnosis and treatment somewhat complex. Four cases of penetrating renal arterial injuries were seen from January 1972 to June 1976. All patients had multiple bowel lacerations. All arrived in the emergency room in hypovolemic shock. Two patients were resuscitated and successfully treated. Three patients had complete transections and 1 had major branch transection. Two patients had an associated parenchymal lesion. One patient had a through-and-through ureteropelvic injury. Preoperative arteriography was not done because of vascular instability. Renal arterial injuries were suspected by loss of psoas shadow on abdominal x-rays and by retroperitoneal hematomas. Retroperitoneal hematomas were explored to eliminate the possibility of renal injury. Both of the patients operated upon attained good renal function after surgical repairs. Postoperative renal scans and arteriograms showed initially decreased function, which returned toward normal. Repair of renal arterial lesions is possible with good functional result. Preoperative arteriography, renographic scan or excretory urography is not justified routinely because of the seriousness of commonly associated injuries.

  15. Transcriptional regulation of AQP-8, a Caenorhabditis elegans aquaporin exclusively expressed in the excretory system, by the POU homeobox transcription factor CEH-6.

    PubMed

    Mah, Allan K; Armstrong, Kristin R; Chew, Derek S; Chu, Jeffrey S; Tu, Domena K; Johnsen, Robert C; Chen, Nansheng; Chamberlin, Helen M; Baillie, David L

    2007-09-21

    Due to the ever changing environmental conditions in soil, regulation of osmotic homeostasis in the soil-dwelling nematode Caenorhabditis elegans is critical. AQP-8 is a C. elegans aquaporin that is expressed in the excretory cell, a renal equivalent tissue, where the protein participates in maintaining water balance. To better understand the regulation of AQP-8, we undertook a promoter analysis to identify the aqp-8 cis-regulatory elements. Using progressive 5' deletions of upstream sequence, we have mapped an essential regulatory region to roughly 300 bp upstream of the translational start site of aqp-8. Analysis of this region revealed a sequence corresponding to a known DNA functional element (octamer motif), which interacts with POU homeobox transcription factors. Phylogenetic footprinting showed that this site is perfectly conserved in four nematode species. The octamer site's function was further confirmed by deletion analyses, mutagenesis, functional studies, and electrophoretic mobility shift assays. Of the three POU homeobox proteins encoded in the C. elegans genome, CEH-6 is the only member that is expressed in the excretory cell. We show that expression of AQP-8 is regulated by CEH-6 by performing RNA interference experiments. CEH-6's mammalian ortholog, Brn1, is expressed both in the kidney and the central nervous system and binds to the same octamer consensus binding site to drive gene expression. These parallels in transcriptional control between Brn1 and CEH-6 suggest that C. elegans may well be an appropriate model for determining gene-regulatory networks in the developing vertebrate kidney.

  16. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings.

  17. Renal handling of amino acid /sup 99m/technetium chelates

    SciTech Connect

    Chattopadhyay, M.; Banerjee, S.

    1988-09-01

    Four amino acids--alanine, 2,3-diaminopropionic acid, cystine, and cystein--and also one diamine, ethylenediamine, were chelated with /sup 99m/-technetium (/sup 99m/Tc), and their renal excretion patterns were studied in rabbits in the presence and absence of two renal tubular transport inhibitors, probenecid and 2,4-dinitrophenol. From the depression of renal excretion for the first three amino acid chelates, in the presence of the inhibitors, a renal tubular excretory pathway of elimination was suggested for these compounds. The renal excretions of /sup 99m/Tc-cystein and /sup 99m/Tc-ethylenediamine however, remained undepressed under similar experimental conditions. An explanation of these observations was forwarded from the possible chemical structures of these chelates.

  18. Renal lymphoma imaged by ultrasound and Gallium-67

    SciTech Connect

    Shirkhoda, A.; Staab, E.V.; Mittelstaedt, C.A.

    1980-10-01

    Lymphomatous involvement of the kidneys, usually a secondary process, may be seen as single or multiple sonolucent or weakly echogenic masses on ultrasound. The majority of these patients have a known diagnosis of lymphoma and are being evaluated for change in nodal mass size, flank pain, and/or deteriorating renal function. Occasionally, these masses are discovered on an excretory urogram and are further investigated with ultrasound. The ultrasound findings may be confirmed with gallium scanning. Five such cases are presented along with the ultrasonic and gallium scan findings.

  19. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  20. [Cryptobia udonellae sp. n. (Kinetoplastidea: Cryptobiida) - parasites of the excretory system of Udonella murmanica (Udonellida)].

    PubMed

    Frolov, A O; Kornakova, E E

    2001-01-01

    A new cryptobiid flagellates, Cryptobia udonellae sp. n., is described from the excretory channels of Udonella murmanica. The body of flagellates is spindle-shaped. The flagellar pocket is subapical. Two flagella emerge from the pocket. One flagellum turns anterior and is forward-directed; the other flagellum is directed posterior and close to the ventral cell surface. The ventral groove is well developed. The cytostome opens just anterior to the flagellar pocket. The cytostome leads to the short cytopharynx. In the excretory channel of worms the flagellates C. udonellae sp. n. are attached to microvilli of epithelium or lay free in the lumen. Both flagellates have been studied with TEM. The unusual parasite system which involves organisms of four different phylums of animals has been described for the first time.

  1. The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling.

    PubMed

    Rink, Jochen C; Vu, Hanh Thi-Kim; Sánchez Alvarado, Alejandro

    2011-09-01

    The maintenance of organs and their regeneration in case of injury are crucial to the survival of all animals. High rates of tissue turnover and nearly unlimited regenerative capabilities make planarian flatworms an ideal system with which to investigate these important processes, yet little is known about the cell biology and anatomy of their organs. Here we focus on the planarian excretory system, which consists of internal protonephridial tubules. We find that these assemble into complex branching patterns with a stereotyped succession of cell types along their length. Organ regeneration is likely to originate from a precursor structure arising in the blastema, which undergoes extensive branching morphogenesis. In an RNAi screen of signaling molecules, we identified an EGF receptor (Smed-EGFR-5) as a crucial regulator of branching morphogenesis and maintenance. Overall, our characterization of the planarian protonephridial system establishes a new paradigm for regenerative organogenesis and provides a platform for exploring its functional and evolutionary homologies with vertebrate excretory systems.

  2. Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.

    PubMed

    Sindhu, Edakkadath Raghavan; Nithya, Thattaruparambil Raveendran; Binitha, Ponnamparambil Purushothaman; Kuttan, Ramadasan

    2016-01-01

    We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.

  3. Regulation of ectodermal and excretory function by the C. elegans POU homeobox gene ceh-6.

    PubMed

    Bürglin, T R; Ruvkun, G

    2001-03-01

    Caenorhabditis elegans has three POU homeobox genes, unc-86, ceh-6 and ceh-18. ceh-6 is the ortholog of vertebrate Brn1, Brn2, SCIP/Oct6 and Brn4 and fly Cf1a/drifter/ventral veinless. Comparison of C. elegans and C. briggsae CEH-6 shows that it is highly conserved. C. elegans has only three POU homeobox genes, while Drosophila has five that fall into four families. Immunofluorescent detection of the CEH-6 protein reveals that it is expressed in particular head and ventral cord neurons, as well as in rectal epithelial cells, and in the excretory cell, which is required for osmoregulation. A deletion of the ceh-6 locus causes 80% embryonic lethality. During morphogenesis, embryos extrude cells in the rectal region of the tail or rupture, indicative of a defect in the rectal epithelial cells that express ceh-6. Those embryos that hatch are sick and develop vacuoles, a phenotype similar to that caused by laser ablation of the excretory cell. A GFP reporter construct expressed in the excretory cell reveals inappropriate canal structures in the ceh-6 null mutant. Members of the POU-III family are expressed in tissues involved in osmoregulation and secretion in a number of species. We propose that one evolutionary conserved function of the POU-III transcription factor class could be the regulation of genes that mediate secretion/osmoregulation.

  4. Enigmatic dual symbiosis in the excretory organ of Nautilus macromphalus (Cephalopoda: Nautiloidea)

    PubMed Central

    Pernice, Mathieu; Wetzel, Silke; Gros, Olivier; Boucher-Rodoni, Renata; Dubilier, Nicole

    2007-01-01

    Symbiosis is an important driving force in metazoan evolution and the study of ancient lineages can provide an insight into the influence of symbiotic associations on morphological and physiological adaptations. In the ‘living fossil’ Nautilus, bacterial associations are found in the highly specialized pericardial appendage. This organ is responsible for most of the excretory processes (ultrafiltration, reabsorption and secretion) and secretes an acidic ammonia-rich excretory fluid. In this study, we show that Nautilus macromphalus pericardial appendages harbour a high density of a β-proteobacterium and a coccoid spirochaete using transmission electron microscopy, comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH). These two bacterial phylotypes are phylogenetically distant from any known bacteria, with ammonia-oxidizing bacteria as the closest relatives of the β-proteobacterium (above or equal to 87.5% sequence similarity) and marine Spirochaeta species as the closest relatives of the spirochaete (above or equal to 89.8% sequence similarity), and appear to be specific to Nautilus. FISH analyses showed that the symbionts occur in the baso-medial region of the pericardial villi where ultrafiltration and reabsorption processes take place, suggesting a symbiotic contribution to the excretory metabolism. PMID:17311780

  5. Ultrastructure of the excretory organs of Bombus morio (Hymenoptera: Bombini): bee without rectal pads.

    PubMed

    Gonçalves, Wagner Gonzaga; Fialho, Maria do Carmo Queiroz; Azevedo, Dihego Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2014-02-01

    Bumblebees need to keep bodily homeostasis and for that have an efficient system of excretion formed by the Malpighian tubules, ileum, and rectum. We analyzed the excretory organs of Bombus morio, a bee without rectal pads. In addition, we analyzed the rectal epithelium of Melipona quadrifasciata anthidioides which has rectal pads. The Malpighian tubules exhibited two cell types and the ileum four types. However, comparative analysis of the rectum showed that only cells of the anterior region of the rectal epithelium of B. morio are structurally distinct. We suggest that cells of the Malpighian tubules of B. morio have an excretory feature and that cells of ileum have different functions, such as ion absorption and water, organic compound, and protein secretion. In addition, only the anterior region of the rectum of B. morio showed characteristic absorption. We suggest that Malpighian tubules participate in the excretion of solutes and that the ileum and rectal epithelium are responsible for homeostasis of water and solutes, compensating for the absence of rectal papillae. These results contribute to our understanding of the morphophysiology of the excretory organs of bees without rectal pads.

  6. Excretory transport of xenobiotics by dogfish shark rectal gland tubules.

    PubMed

    Miller, D S; Masereeuw, R; Henson, J; Karnaky, K J

    1998-09-01

    Marine elasmobranch rectal gland is a specialized, osmoregulatory organ composed of numerous blind-ended, branched tubules emptying into a central duct. To date, NaCl excretion has been its only described function. Here we use isolated rectal gland tubule fragments from dogfish shark (Squalus acanthias), fluorescent xenobiotics, and confocal microscopy to describe a second function, xenobiotic excretion. Isolated rectal gland tubules rapidly transported the fluorescent organic anion sulforhodamine 101 from bath to lumen. Luminal accumulation was concentrative, saturable, and inhibited by cyclosporin A (CSA), chlorodinitrobenzene, leukotriene C4, and KCN. Inhibitors of renal organic anion transport (probenecid, p-aminohippurate), organic cation transport (tetraethylammonium and verapamil), and P-glycoprotein (verapamil) were without effect. Cellular accumulation of sulforhodamine 101 was not concentrative, saturable, or inhibitable. Rectal gland tubules did not secrete fluorescein, daunomycin, or a fluorescent CSA derivative. Finally, frozen rectal gland sections stained with an antibody to a hepatic canalicular multispecific organic anion transporter (cMOAT or MRP2) showed heavy and specific staining on the luminal membrane of the epithelial cells. We conclude that rectal gland is capable of active and specific excretion of xenobiotics and that such transport is mediated by a shark analog of MRP2, an ATP-driven xenobiotic transporter, but not by P-glycoprotein.

  7. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

    PubMed Central

    Deng, Shi; Jin, Tao; Zhang, Li; Bu, Hong; Zhang, Peng

    2016-01-01

    Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long-term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK-52E, were cultured either with oxidized low-density lipoprotein (ox-LDL), FK506, ox-LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin-like ox-LDL receptor-1 (LOX-1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis-associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague-Dawley rats were divided randomly into four groups, which included a high-fat group, FK506 group, high-fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox-LDL, ROS, and the expression levels of transforming growth factor (TGF)-β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX-1 markedly reduced the levels of TGF-β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation. PMID:27633115

  8. Epigenetic Regulation of MicroRNAs Controlling CLDN14 Expression as a Mechanism for Renal Calcium Handling

    PubMed Central

    Gong, Yongfeng; Himmerkus, Nina; Plain, Allein; Bleich, Markus

    2015-01-01

    The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney—claudin-14, -16, and -19—as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases. PMID:25071082

  9. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure

    PubMed Central

    Zhang, Zhi-Hao; Vaziri, Nosratola D.; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-01-01

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF. PMID:26903149

  10. Renal Stones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Renal stones are never convenient, but they are a particular concern for astronauts who have limited access to treatment during flight. Researchers are examining how earthbound preventions for renal stone formation work in flight, ensuring missions are not ended prematurely due to this medical condition. The micrograph shows calcium oxalate crystals in urine. These small crystals can develop to form renal stones. Principal Investigator: Dr. Peggy Whitson, NASA Johnson Space Center, Houston, TX.

  11. The effects of drugs, ions, and poly-l-lysine on the excretory system of Schistosoma mansoni.

    PubMed

    Kusel, J R; Oliveira, F A; Todd, M; Ronketti, F; Lima, S F; Mattos, A C A; Reis, K T; Coelho, P M Z; Thornhill, J A; Ribeiro, F

    2006-09-01

    We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.

  12. Filterable plasma concentration, glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances in metal workers

    SciTech Connect

    Araki, S.; Aono, H.; Yokoyama, K.; Murata, K.

    1986-07-01

    To estimate filterable plasma concentration (FPx), glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances, the authors examined the regressions of the 24-hr urinary excretion on glomerular filtration rate (GFR, 24-hr endogenous creatinine (Cn) clearance) in 19 gun-metal foundry workers with blood lead (Pb) concentrations of 25-59 micrograms/dl. It was estimated that the proportion of FPx to total plasma concentration was on average 15, 7, 3, 0.6, 0.06, and 0.008% for Pb, cadmium (Cd), manganese (Mn), zinc (Zn), chromium (Cr), and copper (Cu), respectively. The estimated FPx value was 2.8 X 10(2), 4, 0.08, and 2.8 X 10(4) micrograms/dl for hippuric acid (HA), delta-aminolevulinic acid (ALA), coproporphyrin (CP), and total urinary solutes (TUS), respectively. The estimated glomerular filtration was significantly greater than the zero level for all substances but inorganic mercury (Hg). Similarly, the estimated net tubular secretion was significantly greater than the zero level for Cr, Cu, and TUS; the net tubular reabsorption was significantly greater than the zero level for Pb, ALA, and CP. The renal clearance of ''filterable'' plasma substance was significantly greater than GFR for Cr, Cu, and TUS and was significantly smaller for Pb, ALA, and CP. Thus the renal excretory mechanisms of substances were classified into four major categories: glomerular filtration for Cd, Mn, Zn, HA, and Cn; glomerular filtration and net tubular secretion for Cr, Cu, and TUS; glomerular filtration and net tubular reabsorption for Pb, ALA, and CP; and no glomerular filtration, i.e., suspected tubular secretion, for Hg.

  13. Renal trauma: radiological studies - comparison of urography, computed tomography, angiography, and radionuclide studies

    SciTech Connect

    Lang, E.K.; Sullivan, J.; Frentz, G.

    1985-01-01

    Excretory urography, computed radionuclide urography, angiography, and both conventional and dynamic computed tomography (CT) were compared with regard to accuracy, sensitivity, and specificity in 388 patients with renal trauma. Used as the triage examination, urography established the absence of significant renal injury with an accuracy of 87%, obviating further evaluation. Dynamic CT proved to be the best methods of assessing parenchymal injuries, establishing the correct diagnosis in 129 out of 130 cases compared to 116/130 for conventional CT. Angiography was the procedure of choice for diagnosis and categorization of renal artery injuries, which were diagnosed correctly in all 43 cases. The choice between dynamic CT and angiography as the second examination rests upon careful evaluation of clinical and urographic findings for signs of renal artery injury which would mandate angiographic assessment.

  14. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation.

  15. Nuclear renal imaging in acute pyelonephritis

    SciTech Connect

    Handmaker, H.

    1982-07-01

    Patients with acute pyelonephritis may present with a spectrum of clinical signs and symptoms. There are few noninvasive diagnostic studies, however, to confirm or exclude this diagnosis. A small number of patients, generally those with severe disease, will demonstrate radiographic changes on excretory urography, but the lack of sensitivity of the IVP in early, acute pyelonephritis is well documented. Several radionuclide techniques have been proposed to assist in the earlier detection of this clinical problem including imaging with Mercury-197 chlormerodrin, Gallium-67 citrate, Technetium-99m glucoheptonate. Technetium-99m DMSA, and, more recently, Indium-111 labeled white blood cells. The success of the renal cortical imaging agents as well as those which localize in infection are described in this report. There appears to be a complimentary role or the cortical imaging agents and the radiopharmaceuticals which localize in bacterial infection. Cortical agents offer the advantage of specific assessment of functioning renal tissue and a convenient, rapid method for following the response to treatment in a noninvasive manner. A pattern is described which may be diagnostic; correlation with Gallium-67 citrate of Indium-111 WBCs may increase the probability of infection as the cause for the cortical abnormality. The measurement of differential renal function using cortical agents provides additional information to assist the clinician in predicting the late effects of infection. Improved sensitivity and specificity, and a reproducible method for following the response to therapy in patients with acute pyelonephritis are the advantages of the techniques described.

  16. Renal adaptation during hibernation.

    PubMed

    Jani, Alkesh; Martin, Sandra L; Jain, Swati; Keys, Daniel; Edelstein, Charles L

    2013-12-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.

  17. Renal adaptation during hibernation

    PubMed Central

    Martin, Sandra L.; Jain, Swati; Keys, Daniel; Edelstein, Charles L.

    2013-01-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation. PMID:24049148

  18. Nuclear medicine and complementary modalities in renal trauma.

    PubMed

    Berg, B C

    1982-07-01

    The diagnosis of renal trauma for many years was achieved through history, clinical findings, the performance of a survey film of the abdomen, urinalysis, excretory urography, aortography, and selective renal artery arteriography. The development of the scintillation camera and the availability of 99mTc, as well as 99mTc labeled pharmaceuticals, approximately fifteen years ago has widened this diagnostic horizon. Exquisite new imaging modalities have become available recently. As a result of constantly improving technology, these techniques--including computed tomography, sonography, with real time enhancement, and digital video subtraction angiography--are utilized more and more frequently. The full impact of these newest wonders is not yet realized. Cost-effectiveness, radiation exposure, accumulative drug side-effects, availability of facilities and personnel and professional and technical training have become major considerations.

  19. Nuclear medicine and complementary modalities in renal trauma

    SciTech Connect

    Berg, B.C. Jr.

    1982-07-01

    The diagnosis of renal trauma for many years was achieved through history, clinical findings, the performance of a survey film of the abdomen, urinalysis, excretory urography, aortography, and selective renal artery arteriography. The development of the scintillation camera and the availability of /sup 99m/Tc, as well as /sup 99m/Tc labeled pharmaceuticals, approximately fifteen years ago has widened this diagnostic horizon. Exquisite new imaging modalities have become available recently. As a result of constantly improving technology, these techniques--including computed tomography, sonography, with real time enhancement, and digital video subtraction angiography--are utilized more and more frequently. The full impact of these newest wonders is not yet realized. Cost-effectiveness, radiation exposure, accumulative drug side-effects, availability of facilities and personnel and professional and technical training have become major considerations.

  20. An ultrastructural study of excretory system development in the cercariae of Prosorhynchoides gracilescens (Rudolphi, 1819) and Prosorhynchus squamatus Odhner, 1905 (Digenea, Bucephalidae).

    PubMed

    Podvyaznaya, I M; Galaktionov, K V; Irwin, S W B

    2004-08-01

    The ultrastructure of the developing excretory system of Prosorhynchoides gracilescens and Prosorhynchus squamatus cercariae is described. The development pattern was similar in both species. In early embryos the two main collecting tubes were composed of a layer of cells which were wrapped around the lumen. Later, the tubes fused and the excretory epithelium of the fusion zone and that of the lateral caudal ducts became a syncytium. The collecting tubes in the cercarial body retained their cellular organization. As the tails grew, additional excretory pores were formed in the tail stem where thickened portions of the caudal duct epithelium contacted the surface tegument. Following this, the distal portions of the lateral caudal ducts lost contact with the primary excretory pores and progressively degenerated. Excretory atrium development started with differentiation of secretory active cytons peripheral to the fusion zone. These cells gave rise to cytoplasmic extensions that penetrated the fusion zone wall to eventually form a continuous cytoplasmic layer. This layer eventually replaced some of the fusion zone excretory epithelium and became the lining of the excretory atrium. The anterior end of the fusion zone differentiated into an excretory bladder and a short posterior portion gave rise to the caudal vesicle.

  1. Novel mechanism of intra‑renal angiotensin II-induced sodium/proton exchanger 3 expression by losartan in spontaneously hypertensive rats.

    PubMed

    Fan, Xiaoqin; Liu, Kaishan; Cui, Wei; Huang, Jiongmei; Wang, Weina; Gao, Yuan

    2014-11-01

    The present study aimed to investigate the molecular pharmacodynamic mechanisms of losartan used in the treatment of hypertension. A total of 12 spontaneously hypertensive rats (SHR) were divided randomly into an SHR group treated with saline and LOS group treated with losartan. Six Wistar‑kyoto rats (WKY) were enrolled as the WKY group with saline in the study. The LOS group received 30 mg/kg/day losartan by intragastric injection, while the SHR and WKY were fed the same volume of saline. The dosage was modulated according to the weekly weight. Changes in blood pressure were measured by the indirect tail cuff method. Angiotensin (Ang) II production in the plasma and renal tissue was measured by an immunoradiometric method. Na+/H+ exchanger (NHE)3 and serum and glucocorticoid‑inducible kinase (SGK)1 were assessed by quantitative polymerase chain reaction (qPCR) and western blot analysis. When compared with the WKY group, the blood pressure of the SHR and LOS groups were higher prior to treatment with losartan. Following two weeks, blood pressure was reduced and the trend continued to decrease over the following six weeks. The plasma and renal tissue levels of Ang II in the SHR and LOS groups were significantly higher than those in the WKY group. NHE3 and SGK1 were increased at the mRNA and protein level in the SHR group, and losartan reduced the expression of both of them. The results suggested that in hypertensive rats, the circular and tissue renin angiotensin systems were activated, and the increased Ang II stimulated the expression of NHE3 and SGK1, which was reduced by losartan. Therefore, the effects of losartan in hypertension may be associated with the Ang II‑SGK1‑NHE3 of intra‑renal tissue.

  2. Development of the excretory system in a polyplacophoran mollusc: stages in metanephridial system development

    PubMed Central

    2012-01-01

    Background Two types of excretory systems, protonephridia and metanephridial systems are common among bilaterians. The homology of protonephridia of lophotrochozoan taxa has been widely accepted. In contrast, the homology of metanephridial systems – including coelomic cavities as functional units – among taxa as well as the homology between the two excretory systems is a matter of ongoing discussion. This particularly concerns the molluscan kidneys, which are mostly regarded as being derived convergently to the metanephridia of e.g. annelids because of different ontogenetic origin. A reinvestigation of nephrogenesis in polyplacophorans, which carry many primitive traits within molluscs, could shed light on these questions. Results The metanephridial system of Lepidochitona corrugata develops rapidly in the early juvenile phase. It is formed from a coelomic anlage that soon achieves endothelial organization. The pericardium and heart are formed from the central portion of the anlage. The nephridial components are formed by outgrowth from lateral differentiations of the anlage. Simultaneously with formation of the heart, podocytes appear in the atrial wall of the pericardium. In addition, renopericardial ducts, kidneys and efferent nephroducts, all showing downstream ciliation towards the internal lumen, become differentiated (specimen length: 0.62 mm). Further development consists of elongation of the kidney and reinforcement of filtration and reabsorptive structures. Conclusions During development and in fully formed condition the metanephridial system of Lepidochitona corrugata shares many detailed traits (cellular and overall organization) with the protonephridia of the same species. Accordingly, we suggest a serial homology of various cell types and between the two excretory systems and the organs as a whole. The formation of the metanephridial system varies significantly within Mollusca, thus the mode of formation cannot be used as a homology criterion

  3. In vitro production of Toxocara canis excretory-secretory (TES) antigen.

    PubMed

    Thomas, Divyamol; Jeyathilakan, N; Abdul Basith, S; Senthilkumar, T M A

    2016-09-01

    Toxocara canis is a widespread gastrointestinal nematode parasite of dogs and cause Toxocara larva migrans, an important zoonotic disease in humans on ingestion of infective eggs. Toxocarosis is one of the few human parasitic diseases whose serodiagnosis uses a standardized antigen, T. canis excretory secretory antigen (TES). The present study describes collection of T. canis adult worm, collection and embryonation of T. canis eggs, hatching and separation of T. canis larvae, in vitro maintenance of T. canis second stage larvae for production of TES, concentration of culture fluid TES and yield of TES in correlation with various methods cited in literature.

  4. Ultrastructure of the excretory system of the marine nematode Monhystera disjuncta.

    PubMed

    van de Velde, M C; Coomans, A

    1987-01-01

    The excretory system of Monhystera disjuncta is a single ventral gland in the pharyngo-intestinal region. Its ultrastructural morphology is described. The posterior part is swollen, contains the nucleus and many secretory granules. This part gradually narrows anteriorly to form the cell neck, in the apical part of which a valve structure is differentiated. This pear-shaped valve structure opens into a cuticular duct which is embedded in an accompanying cytoplasmic sheath. The cuticular duct opens to the exterior by a pore between the two subventral inner labial papillae.

  5. Immaturity of the biliary excretory system predisposes neonates to intrahepatic cholestasis.

    PubMed

    Abernathy, C O; Utili, R; Zimmerman, H J

    1979-06-01

    Intrahepatic cholestasis associated with both gram-negative bacterial infections and total parenteral nutrition (TPN) is observed more frequently in neonates than in older children or adults. Factors involved in the pathogenesis of this syndrome are uncertain. The cholestatic effects of gram-negative bacterial infections appear to result from the inhibitory effects of endotoxin on bile flow. Since the adverse effects of both endotoxin and TPN on bile flow involve primarily the bile acid-independent portion, the immaturity of the neonatal hepatic excretory system which an inadequate bile acid-dependent fraction of bile would explain the increased susceptibility of the neonate to endotoxin- and, perhaps, to TPN-induced cholestasis.

  6. Survival, activity and release of antigenic excretory secretory products and microfilariae of Setaria digitata maintained in artificial media.

    PubMed

    Sundar, S T B; D'Souza, Placid E

    2015-03-01

    The survival, activity and release of excretory secretory products from Setaria digitata, the filarial worm of cattle was studied. Adult female worms were maintained in vitro in DMEM and Tyrode solution. Worms incubated in DMEM were alive and very active for 2 days. The activity was moderate for another 2 days and after the fourth day increased mortality was observed. Antigenic excretory secretory products were also released. Worms incubated in Tyrode solution were very active without any mortality up to 4 h of incubation. Copious amount of ova and microfilaria were shed by the incubated worms in a time-dependent manner.

  7. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway

    PubMed Central

    Domínguez-Calderón, Alaide; Ávila-Flores, Antonia; Ponce, Arturo; López-Bayghen, Esther; Calderón-Salinas, José-Víctor; Luis Reyes, José; Chávez-Munguía, Bibiana; Segovia, José; Angulo, Carla; Ramírez, Leticia; Gallego-Gutiérrez, Helios; Alarcón, Lourdes; Martín-Tapia, Dolores; Bautista-García, Pablo; González-Mariscal, Lorenza

    2016-01-01

    Renal compensatory hypertrophy (RCH) restores normal kidney function after disease or loss of kidney tissue and is characterized by an increase in organ size due to cell enlargement and not to cell proliferation. In MDCK renal epithelial cells, silencing of the tight junction protein zona occludens 2 (ZO-2 KD) induces cell hypertrophy by two mechanisms: prolonging the time that cells spend at the G1 phase of the cell cycle due to an increase in cyclin D1 level, and augmenting the rate of protein synthesis. The latter is triggered by the nuclear accumulation and increased transcriptional activity of Yes-associated protein (YAP), the main target of the Hippo pathway, which results in decreased expression of phosphatase and tensin homologue. This in turn increased the level of phosphatidylinositol (3,4,5)-triphosphate, which transactivates the Akt/mammalian target of rapamycin pathway, leading to activation of the kinase S6K1 and increased synthesis of proteins and cell size. In agreement, in a rat model of uninephrectomy, RCH is accompanied by decreased expression of ZO-2 and nuclear expression of YAP. Our results reveal a novel role of ZO-2 as a modulator of cell size. PMID:27009203

  8. Environmental factors responsible for switching on the SO₄²⁻ excretory system in the kidney of seawater eels.

    PubMed

    Watanabe, Taro; Takei, Yoshio

    2011-08-01

    Eels are unique in that they maintain lower plasma SO(4)(2-) concentration in SO(4)(2-)-rich (∼30 mM) seawater (SW) than in SO(4)(2-)-poor (<0.3 mM) freshwater (FW), showing drastic changes in SO(4)(2-) regulation between FW and SW. We previously showed that the expression of renal SO(4)(2-) transporter genes, FW-specific Slc13a1 and SW-specific Slc26a6a, changes profoundly after transfer of FW eels to SW, which results in the decrease in plasma SO(4)(2-) concentration after 3 days in SW. In this study, we attempted to identify the environmental factor(s) that trigger the switching of SO(4)(2-) regulation using changes in plasma and urine SO(4)(2-) concentrations and expression of the transporter genes as markers. Transfer of FW eels to 30 mM SO(4)(2-) or transfer of SW eels to SO(4)(2-)-free SW did not change the SO(4)(2-) regulation. Major divalent cations in SW, Mg(2+) (50 mM) and Ca(2+) (10 mM), were also ineffective, but 50 mM NaCl was effective for switching the SO(4)(2-) regulation. Further analyses using choline-Cl and Na-gluconate showed that Cl(-) is a primary factor and Na(+) is permissive for the Cl(-) effect. Since plasma SO(4)(2-) and Cl(-) concentrations were inversely correlated, we injected various solutions into the blood and found that Cl(-) alone triggered the switching from FW to SW-type regulation. Furthermore, the inhibitor of Na-Cl cotransporter (NCC) added to media significantly impaired the expression of SW-specific Slc26a6a in 150 mM NaCl. In summary, it appears that Cl(-) ions in SW are taken up into the circulation via the NCC together with Na(+), and the resultant increase in plasma Cl(-) concentration enhances SO(4)(2-) excretion by the kidney through downregulation of absorptive Slc13a1 and upregulation of excretory Slc26a6a, resulting in low plasma SO(4)(2-) concentration in SW.

  9. Atherosclerotic renal artery stenosis: Current status

    PubMed Central

    Kwon, Soon Hyo; Lerman, Lilach O.

    2014-01-01

    Atherosclerotic renal artery stenosis (ARAS) remains a major cause of secondary hypertension and renal failure. Randomized, prospective trials show that medical treatment should constitute the main therapeutic approach in ARAS. Regardless of intensive treatment and adequate blood pressure control, however, renal and extra-renal complications are not uncommon. Yet, the precise mechanisms, accurate detection, and optimal treatment in ARAS remain elusive. Strategies oriented to early detection and targeting these pathogenic pathways might prevent development of clinical endpoints. Here, we review the results of recent clinical trials, current understanding of the pathogenic mechanisms, novel imaging techniques to assess renal damage in ARAS, and treatment options. PMID:25908472

  10. Characterization of excretory-secretory antigens of adult Toxocara canis by western blotting.

    PubMed

    Sudhakar, N R; Samanta, S; Sahu, Shivani; Raina, O K; Gupta, S C; Goswami, T K; Lokesh, K M; Kumar, Ashok

    2014-06-01

    Toxocara canis is one of the most common helminth worm of dogs which continues to stimulate both public health concern alongside the higher scientific interest. It may cause visceral and ocular damage in humans especially in children. The identification of specific antigens of T. canis is important so as to develop better diagnostic techniques. Excretory-secretory (ES) antigens were prepared by culturing the adult T. canis worms in RPMI 1640 medium without serum supplementation followed by ammonium sulphate precipitation. These antigens were separated using sodium dodecyl sulphate-electrophoresis (SDS-PAGE). Recovered proteins ranged from 30 to 384 kDa. The specific reactivity of the T. canis excretory-secretory (TC-ES) proteins was checked by western blotting. The immuno-reactivity of the naturally infected dog sera with the TC-ES antigens showed five bands at 43, 57,105, 139 and 175 kDa. The immuno-reactivity of the hyper immune serum raised in rabbits against TC-ES antigens was observed with ten polypeptides of 21, 25, 30, 37, 45, 50, 57, 69, 77 and 105 kDa. Common antigens band were observed at 57 and 105 KDa. These antigens merit further evaluation as candidate for use in diagnosis of toxocariasis in humans and adult dogs.

  11. Development of the excretory system in the polyplacophoran mollusc, Lepidochitona corrugata: the protonephridium.

    PubMed

    Baeumler, Natalie; Haszprunar, Gerhard; Ruthensteiner, Bernhard

    2011-08-01

    A single pair of protonephridia is the typical larval excretory organ of molluscs. Their presence in postlarval developmental stages was discovered only recently. We found that the protonephridia of the polyplacophoran mollusc, Lepidochitona corrugata, achieve their most elaborate differentiation and become largest during the postlarval period. This study describes the protonephridia of L. corrugata using light and electron microscopy and interactive three-dimensional visualization. We focus on the postlarval developmental period, in which the protonephridia consist of three parts: the terminal part with the ultrafiltration sites at the distal end, the voluminous protonephridial kidney, and the efferent nephroduct leading to the nephropore. The ultrafiltration sites show filtration slits between regularly arranged thin pedicles. The ciliary flame originates from both the terminal cell and the duct cells of the terminal portion. The efferent duct also shows ciliation. The most conspicuous structures, the protonephridial kidneys, are voluminous swellings composed of reabsorptive cells ("nephrocytes"). These cells exhibit strong vacuolization and an infolding system increasing the basal surface. The protonephridial kidneys, previously not reported at such a level of organization in molluscs, strikingly resemble (metanephridial) kidneys of adult molluscan excretory systems.

  12. Immunoprotection in sheep against Haemonchus contortus using its thiol-purified excretory/secretory proteins.

    PubMed

    Arunkumar, Selvarayar

    2012-01-01

    Excretory/Secretory antigen was prepared by culturing live adult worms of Haemonchus contortus in RPMI 1640 medium at a concentration of 50 worms per mL in a culture-flask at 37 ˚C for 24 hr and the culture supernatant was used as antigen. The E/S antigen was purified by thiol-sepharose affinity chromatography. On western blot analysis, it was demonstrated that thiol-purified antigen showed a single reactive band at 66 kDa. In immunization trial, sheep were administered intramuscularly with 500 µg of thiol-purified excretory/secretory antigen along with montanide as adjuvant on day 0, 30 and 60. On ELISA, it was observed that the mean absorbance values were significantly (p ≤ 0.01) higher up to 20 weeks post immunization in Group-I (purified antigen) compared to Group- II (unimmunized control). Further, the mean EPG values was lower in Group I (200.00 ± 40.82 to 400.00 ± 91.29) than Group II (2200.00 ± 108.01 to 5100.00 ± 169.56) and the percentage reduction in mean fecal egg counts was 88.50%. Similarly, the mean abomasal worm counts was lower in Group I (808.33 ± 78.29) than Group II (3280.00 ± 147.19) and the percentage reduction in mean abomasal worm count was 75.40%.

  13. Haemonchus contortus excretory and secretory proteins (HcESPs) suppress functions of goat PBMCs in vitro.

    PubMed

    Gadahi, Javaid Ali; Yongqian, Bu; Ehsan, Muhammad; Zhang, Zhen Chao; Wang, Shuai; Yan, Ruo Feng; Song, Xiao Kai; Xu, Li Xin; Li, Xiang Rui

    2016-06-14

    Excretory and secretory products (ESPs) of nematode contain various proteins which are capable of inducing the instigation or depression of the host immune response and are involved in the pathogenesis of the worms. In the present study, Haemonchus contortus excretory and secretory products (HcESPs) were collected from the adult worms. Binding of HcESPs to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immune-fluorescence assay. Effects of the HcESPs on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production of PBMCs were checked by co-incubation of HcESPs with goat PBMCs. The results indicated that the production of IL-4 and IFN-γ were significantly decreased by HcESPs in dose dependent manner. On the contrary, the production of IL-10 and IL-17 were increased. Cell migration was significantly enhanced by HcESPs, whereas, HcESPs treatment significantly suppressed the cell proliferation and NO production. These results indicated that the HcESPs played important suppressive regulatory roles on PBMCs and provided highlights to the understanding of the host-parasite interactions.

  14. CELLULAR SPECIALIZATION IN THE EXCRETORY EPITHELIA OF AN INSECT, Macrosteles fascifrons STÅL (HOMOPTERA)

    PubMed Central

    Smith, David S.; Littau, Virginia C.

    1960-01-01

    An electron microscopic investigation of the Malpighian tubules of a leaf hopper, Macrosteles fascifrons, shows that these organs comprise three quite distinct cell types, and the structure of these and of the mid- and hindgut epithelial cells is described. In particular, a comparison is made between the organization of the basal and apical surfaces of cells in the Malpighian tubule and in the vertebrate kidney, and it is suggested that similarities between these excretory epithelia reflect functional parallels between them. While the midgut and one region of the Malpighian tubule bear a typical microvillar brush border, elsewhere in the tubule and in the hindgut the apical surface bears cytoplasmic leaflets or lamellae. The sole solid excretory material of these insects consists of the brochosomes, secreted by cells of one region of the Malpighian tubule. The structure, geometry, and development of these unusual bodies, apparently formed within specialized Golgi regions, has been investigated, and histochemical tests indicate that they contain lipid and protein components. PMID:19866568

  15. Renal Scintigraphy

    MedlinePlus

    ... size with caption Related Articles and Media General Nuclear Medicine Radiation Dose in X-Ray and CT Exams X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Renal Scintigraphy Sponsored by ...

  16. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  17. Determination of the electrophoretic pattern of somatic and excretory-secretory proteins of Ligula intestinalis parasite in spirlin (Alburnoides bipunctatus).

    PubMed

    Youssefi, M R; Hosseinifard, S M; Halimi, M; Kordafshari, S

    2012-12-01

    Ligula intestinalis parasite is a cestodes that causes remarkable damages to fish. It is also of prime importance in economic and hygienic aspects. SDS-PAGE and western blotting are the methods that can be used to determine the electerophoretic pattern of somatic and excretory-secretory proteins of parasites. In this study, after obtaining the plerocercoidal stage of this parasite from the spirlin (Alburnoides bipunctatus), its somatic proteins were prepared using ultrasonicae, and excretory-secretory proteins were prepared using the PBS solution. After protein assay, which included using the Bradford method and then SDS-PAGE on these two antigenic solutions, 5 protein bands of 26, 33, 38, 58, 70kDa in somatic antigens, and 7 bands of 25, 28, 33, 43, 49, 60, 70kDa in excretory-secretory antigens were observed. After western blotting on both antigens and adding the primary antibody (the sera of infected fish) and then the secondary antibody (Rabbit Anti-fish Polyclonal Antibody Conjugated from Abnova Corporation) no band was seen in excretory-secretory antigen. And only in the 55kDa band of somatic antigen, a positive response, in comparison of fish positive serum was observed.

  18. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4.

    PubMed

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana; Anders, Hans-Joachim

    2012-08-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI.

  19. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  20. Ubenimex attenuates acquired sorafenib resistance in renal cell carcinoma by inhibiting Akt signaling in a lipophagy associated mechanism

    PubMed Central

    Liu, Shuai; Gao, Mingwei; Wang, Xiaoqing; Ding, Sentai; Lv, Jiaju; Gao, Dexuan; Wang, Zhiyang; Niu, Zhihong

    2016-01-01

    Sorafenib is used as first line treatment of renal cell carcinoma (RCC) due to the poor sensitivity to radiotherapy and chemotherapy of this malignancy; however, acquired resistance limits the application of sorafenib and its analogues. In this study, we explored a new strategy to overcome acquired resistance to sorafenib. The RCC cell lines 786-O and ACHN were cultured in presence of increasing concentrations of sorafenib to generate sorafenib-resistant cell lines, 786-O-R and ACHN-R. Interestingly, treatment with ubenimex (0.25 mg/ml) and 3-MA (2 mM) restored the sensitivity of resistant cell lines to sorafenib, indicating the involvement of autophagy in acquired resistance. High levels of autophagy flux were observed in resistant cells, and the opposite effects of ubenimex and 3-MA suggested a complex role for autophagy. While 3-MA abolished protection in sorafenib-resistant cells, ubenimex induced uncontrolled autophagy and autophagic cell death. Lipophagy, characterized by a lipid droplet cargo, was observed in RCC tissues and cells. In sorafenib-resistant cells, ubenimex inhibited the Akt signaling pathway that regulates autophagy. In summary, lipophagy participates in sorafenib-resistance of RCC, which could be reversed by interventions targeting the Akt pathway. PMID:27816967

  1. Development of the renal arterioles.

    PubMed

    Sequeira Lopez, Maria Luisa S; Gomez, R Ariel

    2011-12-01

    The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.

  2. Role of prostaglandins in the renal response to calcium infusion.

    PubMed

    Lahera, V; Fiksen-Olsen, M J; Romero, J C

    1990-04-01

    The effects of intrarenal infusions of calcium gluconate (10 and 100 micrograms Ca.kg-1.min-1) on renal hemodynamics and on renal excretory function were studied in anesthetized mongrel dogs. In one group, the two doses of calcium were infused for 30 min each (1 ml/min). In a second group, the same doses were administered 30 min after the start of an infusion of prostaglandin (PG) inhibitors (intrarenal indomethacin, 10 micrograms.kg-1.min-1, or intravenous bolus injection of meclofenamate, 5 mg/kg). No change with physiological significance was observed during the infusion of 10 micrograms Ca.kg-1.min-1. However, the infusion of 100 micrograms Ca.kg-1.min-1 induced increases (P less than 0.05) in glomerular filtration rate (50%), sodium excretion rate (180%), and fractional excretion of sodium (160%), with respect to control precalcium values. All these changes were prevented by the concurrent administration of PG synthesis inhibitors. Urinary PGE2 and 6-keto-PGF1 alpha increased 220 and 85%, respectively, during the infusion of 100 micrograms Ca.kg-1.min-1, but both decreased (P less than 0.05) below basal levels during the concurrent administration of PG synthesis inhibitors. The infusion of 100 micrograms Ca.kg-1.min-1 decreased (P less than 0.05) renal blood flow by 16% during the administration of PG synthesis inhibitors. These results suggest that PGs are mediating the increase in hemodynamic and excretory factors induced by the intrarenal infusion of 100 micrograms Ca.kg-1.min-1.

  3. Three monoclonal antibodies with specific binding activity to the excretory system of Schistosoma mansoni: an immunoelectron microscopic study using the gold labeling technique.

    PubMed

    de Water, R; Fransen, J A; Schut, D W; Deelder, A M

    1987-09-01

    This study describes three monoclonal antibodies against the excretory system of Schistosoma mansoni. Immunofluorescence revealed antigens forming part of the excretory system of cercariae, adult worms, and miracidia, which were located on the luminal membranes of flame and first tubule cells by immunoelectron microscopy. These antigens are either structural components of the membranes or they derive from excretory fluid and are absorbed during transport and ultrafiltration. Binding specificity of the monoclonal antibodies was tested by immunoelectrophoresis and competitive immunofluorescence; one or two antigens were recognized by each. Reactivity of the antigens after treatment with 7.5% trichloroacetic acid or Rossman's fixative demonstrates at least partial polysaccharide content.

  4. Hypertension in children. Increased efficacy of technetium Tc/sup 99m/ succimer in screening for renal disease

    SciTech Connect

    Rosen, P.R.; Treves, S.; Ingelfinger, J.

    1985-02-01

    Renal scintigraphy with technetium Tc-99m succimer (DMSA) and technetium Tc-99m pentetate (DTPA) was used to study 80 hypertensive pediatric and adolescent patients. Renal abnormalities such as asymmetry of function, size, or shape were identified in 13 patients. Both excretory urography and technetium Tc-99m pentetate studies were successful in detecting 54% of the abnormalities in patients studied; technetium Tc-99m succimer identified 92%. The accuracy of the latter was 96%, with a specificity of 97%. The ability of technetium Tc-99m succimer renal scintigraphy to identify accurately the presence or absence of renal abnormalities warrants its inclusion in the initial examination of pediatric and adolescent patients with hypertension.

  5. Cytogenic effects of diatrizoate and ioxaglate on patients undergoing excretory urography

    SciTech Connect

    Nunez, M.E.; Sinues, B. )

    1990-06-01

    Possible cytogenic alterations due to radiologic contrast medium in patients undergoing a common radiologic examination is studied. Two groups of 20 patients each were used. Group I consisted of patients undergoing excretory urography, using sodium and meglumine diatrizoate as contrast. A different agent, sodium and meglumine ioxaglate, was used with group II. Three blood samples were taken from each patient before urography, immediately after urography, and 1 week later. The frequency of sister chromatid exchanges (SCE) and chromosomal aberrations (CA) were found to increase significantly in the B samples from both groups, that of group I being higher (P less than .01 compared with P less than .05). Furthermore, these alterations were found to persist in the C samples from group I. No modification of the Proliferating Rate Index (PRI) was found. The osmolarity or other components of the contrast media studied could be involved in the process. The results indicate that ioxaglate produces less cytogenic damage than diatrizoate.

  6. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis.

  7. Microanatomy and ultrastructure of the excretory system of two pelagic opisthobranch species (Gastropoda: Gymnosomata and Thecosomata).

    PubMed

    Fahrner, A; Haszprunar, G

    2000-04-01

    The microanatomy and ultrastructure of the excretory system of Pneumoderma sp. (Gymnosomata) and Creseis virgula Rang, 1828 (Thecosomata) have been investigated by means of semithin serial sections, reconstructions and transmission electron microscopy. The studies revealed a functional metanephridial system consisting of a heart with a single ventricle and auricle in a pericardial cavity and a single kidney in both species. Podocytes in the atrial wall of the pericardial epithelium are the site of ultrafiltration, whereas the flat epithelium of the kidney with numerous basal infoldings and a dense microvillous border on the luminal surface suggests modification of the ultrafiltrate. In Pneumoderma sp., additional loci of ultrafiltration with identical fine structure (meandering slits with diaphragms covered by extracellular matrix) occur in the solitary rhogocytes (pore cells). The presence of podocytes situated on the atrial wall in representatives of two higher opisthobranch taxa contradicts former ideas on the loss of the primary site of ultrafiltration in the ancestors of the Opisthobranchia.

  8. The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction.

    PubMed

    Kusel, John R; McVeigh, Paul; Thornhill, Joyce A

    2009-08-01

    There is a gulf between the enormous information content of the various genome projects and the understanding of the life of the parasite in the host. In vitro studies with adult Schistosoma mansoni using several substrates suggest that the excretory system contains both P-glycoproteins and multiresistance proteins. If both these families of protein were active in vivo, they could regulate parasite metabolism and be responsible for the excretion of drugs. During skin penetration, membrane-impermeant molecules of a wide range of molecular weights can be taken into the cercaria and schistosomulum through the nephridiopore, through the surface membrane or through both. We speculate that this uptake process might stimulate novel signalling pathways involved in growth and development.

  9. Sandwich enzyme-linked immunosorbent assay for detection of excretory secretory antigens in humans with fascioliasis.

    PubMed Central

    Espino, A M; Finlay, C M

    1994-01-01

    A sandwich enzyme-linked immunosorbent assay has been developed for the detection of Fasciola hepatica excretory secretory (ES) antigens in stool specimens of infected humans. The assay uses antibodies against F. hepatica ES antigens. A monoclonal antibody (ES78, mouse immunoglobulin G2a) was used to capture ES antigens, and a rabbit polyclonal antibody, peroxidase conjugate, was used to identify ES antigens. Thirteen of 14 patients with parasitological evidence of fascioliasis had a detectable concentration of ES antigens (more than 15 ng/ml). None of the stool specimens from controls and from patients with parasites other than F. hepatica showed a positive reaction, suggesting the absence of cross-reactions in this assay. When the 14 patients were retested 2 months after treatment, all of the specimens from the 11 parasitologically cured patients were negative by the antigen detection assay while the specimens from the 3 patients with persisting F. hepatica eggs in their stools remained positive. PMID:8126178

  10. Impact of pregnancy on underlying renal disease.

    PubMed

    Baylis, Chris

    2003-01-01

    Normal pregnancy involves marked renal vasodilation and large increases in glomerular filtration rate (GFR). Studies in rats reveal that the gestational renal vasodilation is achieved by parallel reductions in tone in afferent and efferent arterioles so GFR rises without a change in glomerular blood pressure. There is some evidence from animal studies that increased renal generation of nitric oxide (NO) may be involved. Although chronic renal vasodilation has been implicated in causing progression of renal disease in nonpregnant states by glomerular hypertension, there are no long-term deleterious effects of pregnancies on the kidney when maternal renal function is normal because glomerular blood pressure remains normal. When maternal renal function is compromised before conception, there are no long-term adverse effects on renal function in most types of renal disease, providing that the GFR is well maintained before conception. When serum creatinine exceeds approximately 1.4 mg/dL, pregnancy may accelerate the renal disease increases and when serum creatinine >2 mg/dL, the chances are greater than 1 in 3 that pregnancy will hasten the progression of the renal disease. The available animal studies suggest that glomerular hypertension does not occur despite diverse injuries. Thus, the mechanisms of the adverse interaction between pregnancy and underlying renal disease remain unknown.

  11. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation

    PubMed Central

    Fang, Qilu; Zou, Chunpeng; Zhong, Peng; Lin, Feng; Li, Weixin; Wang, Lintao; Zhang, Yali; Zheng, Chao; Wang, Yi; Li, Xiaokun; Liang, Guang

    2016-01-01

    Previous studies have implicated inflammation, oxidative stress, and fibrosis as key factors in the development of obesity-induced kidney diseases. Epidermal growth factor receptor (EGFR) plays an important role in cancer development. Recently, the EGFR pathway has been increasingly implicated in chronic cardiovascular diseases via regulating inflammation and oxidative stress. However, it is unclear if EGFR is involved in obesity-related kidney injury. Using ApoE−/− and C57BL/6 mice models and two specific EGFR inhibitors, we investigated the potential effects of EGFR inhibition in the treatment of obesity-related nephropathy and found that EGFR inhibition alleviates renal inflammation, oxidative stress and fibrosis. In NRK-52E cells, we also elucidated the mechanism behind hyperlipidemia-induced EGFR activation. We observed that c-Src and EGFR forms a complex, and following PA stimulation, it is the successive phosphorylation, not formation, of the c-Src/EGFR complex that results in the subsequent cascade activation. Second, we found that TLR4 regulates the activation EGFR pathway mainly through the phosphorylation of the c-Src/EGFR complex. These results demonstrate the detrimental role of EGFR in the pathogenesis of obesity-related nephropathy, provide a new understanding of the mechanism behind hyperlipidemia/FFA-induced EGFR activation, and support the use of EGFR inhibitors in the treatment of obesity-induced kidney diseases. PMID:27014908

  12. Renal Cysts

    MedlinePlus

    ... as “simple” cysts, meaning they have a thin wall and contain water-like fluid. Renal cysts are fairly common in ... simple kidney cysts, meaning they have a thin wall and only water-like fluid inside. They are fairly common in ...

  13. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells.

    PubMed Central

    Dudley, A. J.; Brown, C. D.

    1996-01-01

    1. Previous studies have shown that the weak base, cimetidine, is actively secreted by the renal proximal tubule. In this study we have examined the transport of cimetidine by renal LLC-PK1 epithelial cell monolayers. 2. In LLC-PK1 cell monolayers the basal-to-apical flux of cimetidine was significantly greater than the apical-to basal flux, consistent with net secretion of cimetidine in a basal-to-apical direction. 3. Net secretion of cimetidine was significantly (70%) reduced by the addition of either 100 microM verapamil or 100 microM nifedipine to the apical membrane. The reduction in net secretion was the result of an inhibition of basal-to-apical flux; these agents had no effect upon flux in the apical-to-basal direction. These results suggest that cimetidine secretion is mediated primarily by P-glycoprotein located in the apical membrane. In addition we found no evidence of a role for organic cation antiport in the secretion of cimetidine. 4. In the presence of an inwardly directed proton gradient across the apical membrane (pH 6.0), cimetidine secretion was significantly reduced compared to that measured at an apical pH of 7.4. The reduction in net secretion at pH 6.0 was the result of a stimulation of cimetidine uptake across the apical membrane. This pH-dependent uptake mechanism was sensitive to inhibition by DIDS (100 microM). 5. Experiments with BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) loaded monolayers demonstrated that cimetidine influx across the apical membrane was associated with proton flow into the cell and was sensitive to inhibition by DIDS. 6. These results suggest that net secretion of cimetidine across the apical membrane is a function of the relative magnitudes of cimetidine secretion mediated by P-glycoprotein and cimetidine absorption mediated by a novel proton-coupled, DIDS-sensitive transport mechanism. PMID:8882608

  14. [Regulatory mechanism of p38MAPK signaling pathway on renal tissue inflammation in chronic kidney disease and interventional effect of traditional Chinese medicine].

    PubMed

    Zhao, Qing; Wan, Yigang; Wang, Chaojun; Wei, Qingxue; Chen, Haoli; Meng, Xianjie; Yao, Jian

    2012-06-01

    The inflammatory reaction of renal tissues and its relevant tissue damages (such as glomerulosclerosis and renal interstitial fibrosis) are important factors for the development of chronic kidney diseases (CKD) to end-state renal diseases. Of them, p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in regulating expression and bioactivity of multiple nuclear transcription factors, impacting synthesis of downstream inflammatory mediators and activating inflammatory cells. Some monomer traditional Chinese medicines and their extracts (such as emodin and berberine) and some traditional Chinese medicine compound prescriptions (such as Yishen Huoxue decoction) can affect inflammatory reaction of renal tissues by regulating p38MAPK signaling pathway, thas improving reduce glomerulus and renal interstitial inflammatory injury.

  15. The innervation of the kidney in renal injury and inflammation: A cause and consequence of deranged cardiovascular control.

    PubMed

    Abdulla, Mohammed H; Johns, Edward J

    2017-02-09

    Extensive investigations have revealed that renal sympathetic nerves regulate renin secretion, tubular fluid reabsorption and renal haemodynamics which can impact on cardiovascular homoeostasis normally and in pathophysiological states. The significance of the renal afferent innervation and its role in determining the autonomic control of the cardiovascular system is uncertain. The transduction pathways at the renal afferent nerves have been shown to require pro-inflammatory mediators and TRPV1 channels. Reno-renal reflexes have been described, both inhibitory and excitatory, demonstrating that a neural link exists between kidneys and may determine the distribution of excretory and haemodynamic function between the two kidneys. The impact of renal afferent nerve activity on basal and reflex regulation of global sympathetic drive remains opaque. There is clinical and experimental evidence that in states of chronic kidney disease and renal injury there is infiltration of T-helper cells with a sympatho-excitation and blunting of the high and low pressure baroreceptor reflexes regulating renal sympathetic nerve activity. The baroreceptor deficits are renal nerve-dependent as the dysregulation can be relieved by renal denervation. There is also experimental evidence that in obese states there is a sympatho-excitation and disrupted baroreflex regulation of renal sympathetic nerve activity which is mediated by the renal innervation. This body of information provides an important basis for directing greater attention to the role of renal injury/inflammation causing an inappropriate activation of the renal afferent nerves as an important initiator of aberrant autonomic cardiovascular control. This article is protected by copyright. All rights reserved.

  16. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts.

    PubMed

    Bai, X; Wang, X L; Tang, B; Shi, H N; Boireau, P; Rosenthal, B; Wu, X P; Liu, M Y; Liu, X L

    2016-11-15

    The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for skeletal muscle repair, notably, via their actions on myogenic precursor cells. However, these interactions during T. spiralis infection have not been characterized. In the present study, the ability of conditioned medium (CM) from J774A.1 macrophages treated with ML-ESPs to influence the differentiation of murine myoblasts, and the mechanisms of this influence, were investigated in vitro. The results showed that the expression of Myogenic Regulatory Factors (MRFs) MyoD and myogenin, myosin heavy chain (MyHC), and the p21 cyclin-dependent kinase inhibitor were reduced in CM treated cells compared to their expression in the control group. These findings indicated that CM inhibited myoblast differentiation. Conversely, CM promoted myoblast proliferation and increased cyclin D1 levels. Taken together, results of our study suggested that CM can indirectly influence myoblast differentiation and proliferation, which provides a new method for the elucidation of the complex mechanisms involved in cell-parasite and cell-cell interactions during T. spiralis infection.

  17. Responses of the surface membrane and excretory system of Schistosoma mansoni to damage and to treatment with praziquantel and other biomolecules.

    PubMed

    Oliveira, F A; Kusel, J R; Ribeiro, F; Coelho, P M Z

    2006-03-01

    Damage to the surface membrane of adult Schistosoma mansoni, and the activity of the excretory system, as shown by resorufin fluorescence, was observed following treatment with praziquantel and incubation with other molecules. Praziquantel treatment induced damage to the surface membrane as measured by the use of a variety of fluorescent compounds. The excretory system of the male worm was inhibited immediately after praziquantel treatment, but fully recovered after culture for 2 h following removal of praziquantel. The excretory system of the female, observed to be minimally active in untreated worm pairs, was often greatly activated in paired females, as shown by intense resorufin labelling, after praziquantel treatment, and this continued during recovery of the male excretory system. In experiments with normal worm pairs, the female could be activated by inhibiting the metabolic rate of the pair by a cooling procedure. The effects on the excretory system of changes in culture conditions (such as changes in pH, concentrations of bacterial lipopolysaccharide, cytokines, reactive oxygen species, compounds which remove cholesterol, such as beta-methyl cyclodextrin, and damaging basic poly-L-lysine) were also assessed. It is concluded that the extensive excretory system of the adult worm is responsive to drug treatment and to certain changes in environmental conditions. Its activity seems to be strongly linked to the integrity of the surface membrane.

  18. Renal papillary necrosis and pyelonephritis accompanying fenoprofen therapy.

    PubMed

    Husserl, F E; Lange, R K; Kantrow, C M

    1979-10-26

    Renal papillary necrosis occurred after fenoprofen calcium administration in a patient with systemic lupus erythematosus and urinary tract infection. Possible mechanisms of renal damage may be hypersensitivity, decreased blood flow, and decreased production of a prostaglandin E-like substance.

  19. Cellular Responses to Mechanical Stress Selected Contribution: A Three-Dimensional Model for Assessment of in Vitro Toxicity in Balaena Mysticetus Renal Tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  20. Inhibition of murine renal carcinoma pulmonary metastases by systemic administration of interferon gamma: mechanism of action and potential for combination with interleukin 4.

    PubMed

    Hillman, G G; Younes, E; Visscher, D; Hamzavi, F; Kim, S; Lam, J S; Montecillo, E J; Ali, E; Pontes, J E; Puri, R K; Haas, G P

    1997-10-01

    We have previously demonstrated that IFN-gamma causes cell growth inhibition and up-regulation of MHC antigens in human renal cell carcinoma cell lines. In this study, we have investigated the therapeutic potential of IFN-gamma for the treatment of 5-day established pulmonary metastases induced by i.v. injection of Renca cells, a murine renal adenocarcinoma. We found that systemic injections of IFN-gamma significantly reduced the number of lung metastases in a dose-dependent manner and increased mouse survival. Histological evaluation of IFN-gamma-treated lungs showed residual small tumor nodules containing extensive necrosis and mononuclear infiltrates. Immunohistochemistry studies on lung sections showed macrophage infiltration into tumor nodules, and in vivo depletion of macrophages partially inhibited IFN-gamma antitumor effect, suggesting a role for the macrophages in tumor destruction. Lymphocyte depletion of either natural killer (NK) cells or CD4+ or CD8+ T-cell subsets or both T-cell subsets did not affect the IFN-gamma effect, whereas depletion of both NK and T cells decreased the antitumor activity of IFN-gamma. These data indicate that neither T cells nor NK cells are essential for this activity but that either lymphocyte population can contribute to the IFN-gamma effect. An optimal dose of IFN-gamma inhibited by 60% the growth of Renca cells treated for 3 days in vitro, but this effect was transient and less pronounced in a long-term colony assay, suggesting that IFN-gamma direct growth inhibition may play a role but may not be sufficient to mediate its antitumor effect in vivo. In vitro, IFN-gamma caused up-regulation of class I MHC antigens and induction of class II antigen expression in Renca cells, an effect that may enhance Renca immunogenicity but may be relevant only when a T-cell response is elicited. A sequential administration of IFN-gamma followed by interleukin 4 was therapeutically better than IFN-gamma alone for the treatment of advanced

  1. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: A potential mechanism for the “obesity paradox”

    PubMed Central

    Ito, Ryuichi; Narita, Shintaro; Huang, Mingguo; Nara, Taketoshi; Numakura, Kazuyuki; Takayama, Koichiro; Tsuruta, Hiroshi; Maeno, Atsushi; Saito, Mitsuru; Inoue, Takamitsu; Tsuchiya, Norihiko; Satoh, Shigeru; Habuchi, Tomonori

    2017-01-01

    Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this “obesity paradox” is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = −0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoR1/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-O and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation- and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the “obesity paradox” of RCC. PMID:28178338

  2. Renal dysfunction in liver cirrhosis: renal duplex Doppler US vs. scintigraphy for early identification.

    PubMed

    Al-Kareemy, E A; Sobh, M A; Muhammad, A M; Mostafa, M M; Saber, R A

    1998-01-01

    A diagnostic tool to detect early renal dysfunction before it becomes irreversible would be useful in cirrhosis. This study was carried out to evaluate the role of Doppler sonography and Tc-99m DTPA renography in the detection of early renal dysfunction in patients with different grades of liver cirrhosis. Renal arteries of 43 patients with cirrhosis and normal renal function tests were compared with 15 age and gender matched normal subjects as a control group using colour Doppler sonography and Tc-99m DTPA scintigraphy. The patients were categorized into three groups, A (14), B (14) and C (15), according to a modified Child's classification that assesses the severity of liver cirrhosis. Doppler results revealed a highly significant increase in both the pulsatility and resistive indices in groups B and C compared with either group A patients or control subjects and in group C compared with group B (P < 0.001) in the main renal arteries as well as in the interlobar and arcuate arteries. Insignificant differences were observed between group A and controls (PI: control 0.96+/-0.08, group A 0.95+/-0.07, group B 1.26+/-0.06, group C 1.48+/-0.06; RI: control 0.57+/-0.02, group A 0.58+/-0.02, group B 0.66+/-0.01, group C 0.72+/-0.02). Abnormal renograms in the form of delayed appearance (34+/-14.6 s), diminished blood flow bilaterally with prolonged secretory (12+/-4.5 min) and excretory phases (> 30 min) and poor response to intravenous frusemide were only observed in group C patients. Radionuclide computed glomerular filtration rate was within the normal range in patients of group A (81+/-9.5 ml/min) and group B (78+/-8.4 ml/min) and reduced only in patients of group C (34+/-14.5 ml/min). Thus Doppler sonography can detect an increase in renal vascular resistance in patients with moderately severe cirrhosis (Child grade B) when renography was normal. We conclude that Doppler sonography can be used for earlier identification of cirrhotic patients with a higher risk of

  3. [Topography and mechanisms of adhesion of uropathogenic Escherichia coli bacteria in the human kidney and renal pelvis].

    PubMed

    Vierbuchen, M; Peters, G; Ortmann, M; Pulverer, G; Fischer, R

    1989-01-01

    The occurrence and significance of bacterial carbohydrate recognition proteins (bacterial lectins) and endogenous carbohydrate binding proteins (endogenous lectins) of human urothelium as well as kidney tubulus epithelium was analyzed with respect to the adhesion of urotoxogenic Escherichia coli bacteria. Using biotinylated neoglycoproteins, we demonstrated a wide spectrum of endogenous lectins with Galactose-, Mannose-, Fucose-, N-Acetylgalactosamine-, and N-Acetylglucosamine binding activities in the urothelium. In the kidney the distal nephron and especially the medullar collecting ducts exhibited a similar spectrum of endogenous carbohydrate binding activities as detected for the urothelium. Adhesion- as well as inhibition-experiments with selective blocking of either bacterial lectins or endogenous lectins of the target cells by different carbohydrates both reduced the bacterial adhesion. However, maximal inhibition of bacterial adhesion was achieved by simultanous blocking of microbial and target cell lectins with mannose or mannan. From these results it is reasonable to conclude that specific adhesion which may result in an organotropism (urotropism) of E. coli infection is due to a dual recognition mechanism which is accomplished by the combined interaction of the bachterial and host cell lectins with the corresponding carbohydrates of E. coli and that of the target cells respectively. Further studies showed that normal human serum possesses natural antiadhesins which are represented by the glycan parts of the serum-glycoproteins.

  4. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy

    SciTech Connect

    Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B.

    1985-08-01

    The acute effects of extracorporeal shock-wave lithotripsy (ESWL) on morphology and function of the kidney were evaluated by excretory urography, quantitative radionuclide renography (QRR), and magnetic resonance imaging (MRI) in 33 consecutive patients. Excretory urograms demonstrated an enlarged kidney in seven (18%) of 41 treatments and partial or complete obstruction of the ureter by stone fragments after 15 (37%) of 41 treatments. Total effective renal plasma flow (ERPF) was not changed after ESWL, but the percentage ERPF of the treated kidney was decreased by more than 5% in 10 (30%) of 33 cases. QRR images showed partial parenchymal obstruction in 10 (25%) of 41 teated kidneys and total parenchymal obstruction in 9 (22%). MRI disclosed one or more abnormalities in 24 (63%) of 38 treated kidneys. Treated kidneys were normal by all three imaging methods in 26% and abnormal by one or more tests in 74% of cases. The morphologic and functional changes are attributed to renal contusion resulting in edema and extravasation of urine and blood into the interstitial, subcapsular, and perirenal spaces.

  5. Antigenic components of excretory-secretory products of adult Fasciola hepatica recognized in human infections.

    PubMed

    Sampaio-Silva, M L; Da Costa, J M; Da Costa, A M; Pires, M A; Lopes, S A; Castro, A M; Monjour, L

    1996-02-01

    The antigenic components of excretory-secretory products (ESP) of adult worms of Fasciola hepatica were revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using sera from 20 patients infected with F. hepatica. Sera from 184 other parasitic infections and 20 healthy volunteers were also analyzed. It was found that the ESP were composed of more than 11 polypeptides; five components detected in fascioliasis sera had molecular weights of 12.4, 16.4, 19.4, 25, and 27 kilodaltons (kD). Only the 25- and 27-kD components were recognized by all 20 fascioliasis sera. Using the ESP as antigen, it was possible to perform an enzyme-linked immunosorbent assay with a sensitivity of 95% and a specificity of 97%. Sera from other parasitic infections had antibodies to antigenic components with apparent molecular weights of 37, 38.4, 52, 63, 73, 87, 109, and 116 kD that were also found in sera from fascioliasis patients. These findings suggested that the 25- and 27-kD antigenic components may be sensitive and specific for the diagnosis of human fascioliasis.

  6. Hepatectomy in a hepatocellular carcinoma case with Dubin-Johnson syndrome and indocyanine green excretory defect.

    PubMed

    Aoki, Hideki; Morihiro, Toshiaki; Arata, Takashi; Kanaya, Nobuhiko; Takeda, Shou; Ninomiya, Takayuki; Seita, Masayuki; Katsuda, Kou; Tanakaya, Kohji; Takeuchi, Hitoshi

    2013-02-01

    A 77-year-old male patient with history of jaundice was referred to our hospital for treatment of hepatocellular carcinoma (HCC). He was found to have Dubin-Johnson syndrome (DJS), a clinical feature of constitutional jaundice with conjugated hyperbilirubinemia, and indocyanine green (ICG) excretory defect, both of which are rare conditions. Total bilirubin was 5.1 mg/dl and ICG retention at 15 min (ICGR15) (77.1 %). Converted ICGR15 from GSA scintigraphy was 15.9 %. Resection of the medial segment and ventral region of the anterior segment of the liver as well as cholecystectomy were performed. The background of the liver tissue was blackish yellow and consistent with DJS and chronic hepatitis. Although total bilirubin level increased to 8.2 mg/dl on the 2nd postoperative day, the patient ultimately recovered and he was discharged on the 14th day. His 1- and 2-year medical checkups indicated recurrence of HCC. He underwent transarterial chemoembolization and is presently doing well 39 months after surgery. We report here on evaluation and treatment of patients with such disorders.

  7. In vitro culture of Parascaris equorum larvae and initial investigation of parasite excretory-secretory products.

    PubMed

    Burk, Steffanie V; Dangoudoubiyam, Sriveny; Brewster-Barnes, Tammy; Bryant, Uneeda K; Howe, Daniel K; Carter, Craig N; Vanzant, Eric S; Harmon, Robert J; Kazacos, Kevin R; Rossano, Mary G

    2014-11-01

    Currently, diagnosis of Parascaris equorum infection in equids is limited to patent infections. The goals of this study were to culture P. equorum larvae in vitro and identify excretory-secretory (ES) products for prepatent diagnostic testing. Parascaris equorum L2/L3 larvae were hatched and cultured for up to 3 weeks for ES product collection. Fifth stage (L5) P. equorum were also cultured for ES product collection. Examination of ES fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and silver stain revealed L2/L3 products ranging from 12-94 kDa and L5 products ranging from 12-189 kDa. Western blot analyses were conducted using polyclonal antibodies produced against P. equorum or Baylisascaris procyonis L2/L3 ES products, sera from rabbits inoculated with B. procyonis or Toxocara canis eggs, and sera from animals naturally infected with P. equorum or T. canis. Western blot results indicated parasite antigens migrating at 19 and 34 kDa may be useful for specifically detecting P. equorum infections.

  8. In vitro culture of Mesocestoides corti metacestodes and isolation of immunomodulatory excretory-secretory products.

    PubMed

    Vendelova, E; Hrčková, G; Lutz, M B; Brehm, K; Nono Komguep, J

    2016-07-01

    Cestode-mediated diseases hold the interesting feature of persisting metacestode larvae dwelling within the host tissues, in the midst of the immune response. Excretory-secretory (ES) products of the metacestode larval stage modulate the host immune response and modify the outcome of the disease. Therefore, isolation and analysis of axenic metacestode ES products are crucial to study their properties. Here, we report the development of a system for long-term in vitro cultivation of the metacestode of the parasitic cestode Mesocestoides corti (syn. Mesocestoides vogae). Although feeder cells and host serum supported the early growth of the parasite, long-term survival was not dependent on host serum or host-derived factors enabling the collection of parasite released products in serum-free medium. Functionally, these axenic ES products recapitulated M. corti tetrathyridia's ability to inhibit LPS-driven IL-12p70 secretion by dendritic cells. Thus, our new axenic culture system will simplify the identification and characterization of M. corti-derived immunomodulatory factors that will indirectly enable the identification and characterization of corresponding factors in the metacestode larvae of medically relevant cestodes such as Echinococcus multilocularis that are not yet amenable to serum-free cultivation.

  9. Equine antibody response to larval Parascaris equorum excretory-secretory products.

    PubMed

    Burk, Steffanie V; Dangoudoubiyam, Sriveny; Brewster-Barnes, Tammy; Howe, Daniel K; Carter, Craig N; Bryant, Uneeda K; Rossano, Mary G

    2016-08-15

    Parascaris equorum is an intestinal nematode of foals and young horses that can produce mild to severe pathology. Current diagnosis is limited to detection of patent infections, when parasite eggs are identified during fecal examinations. This study examined the use of larval P. equorum excretory-secretory (ES) products in a western blot test for diagnosis of prepatent equine P. equorum infection. Sera from adult mares negative for patent P. equorum infections, foals prior to consuming colostrum, and P. equorum infected foals were used as controls in this study. Study samples included sera from 18 broodmares prior to parturition and sera from their foals throughout the process of natural infection. Sera from study horses were examined for IgG(T) antibody recognition of ES products. Foals naturally infected with P. equorum possessed IgG(T) antibodies against 19kDa, 22kDa, 26kDa, and 34kDa ES products. However, passive transfer of colostral antibodies from mares was shown to preclude the use of the crude larval ES product-based western blot test for diagnosis of prepatent P. equorum infections in foals.

  10. Deglycosylation of Toxocara excretory-secretory antigens improves the specificity of the serodiagnosis for human toxocariasis.

    PubMed

    Roldán, W H; Elefant, G R; Ferreira, A W

    2015-11-01

    Serodiagnosis of human toxocariasis is difficult in tropical areas where other helminthiasis are endemic. Many studies have shown that glycans from helminths may be the responsible for cross-reactions in the immunoassays. In this study, we have evaluated the deglycosylation of the Toxocara canis excretory-secretory (TES) antigens for the detection of IgG antibodies using a panel of 228 serum samples (58 patients with toxocariasis, 75 patients with other helminth infections and 95 healthy individuals) by ELISA and Western blot assays. Our results showed that the deglycosylation of TES antigens resulted in a single fraction of 26 kDa (dTES) and was able to detect IgG antibodies with a sensitivity and specificity of 100% in both above-mentioned assays. The rate of cross-reactions, observed in ELISA with TES (13·3%), was significantly reduced (5·3%) when the dTES antigens were used. Likewise, the cross-reactivity observed with the fractions of 32, 55 and 70 kDa of the TES antigens was totally eliminated when the dTES were used in the Western blot. All these results showed that the deglycosylation of the TES antigens really improves the specificity of the serodiagnosis of human toxocariasis in endemic areas for helminth infections.

  11. Serodiagnosis of fasciolosis by fast protein liquid chromatography-fractionated excretory/secretory antigens.

    PubMed

    Mokhtarian, Kobra; Akhlaghi, Lame; Meamar, Ahmad Reza; Razmjou, Elham; Manouchehri Naeini, Kourosh; Gholami, Samaneh; Najafi Samei, Masoomeh; Falak, Reza

    2016-08-01

    In several studies, different antigenic preparations and diverse immunological tests were applied for serodiagnosis of Fasciola hepatica infections. Most of these preparations showed cross-reactivity with proteins of other parasites. Application of purified antigens might reduce these cross-reactivities. Here, we used fast protein liquid chromatography (FPLC)-fractionated extracts of F. hepatica excretory/secretory antigens (E/S Ags) for serodiagnosis of human and sheep fasciolosis. To develop an improved diagnostic method, we fractionated F. hepatica E/S Ags by anion exchange chromatography on a Sepharose CL-6B column and then tested the serodiagnostic values of the fractions. We used sera from F. hepatica-infected human and sheep as positive controls. Sera from patients with hydatidosis and strongyloidiasis were used for cross-reactivity studies. Enzyme-linked immunosorbent assays (ELISA) of the second FPLC peak, containing 20, 25, and 70 kDa proteins, discriminated between F. hepatica-infected and uninfected human and sheep samples. Fractionation of F. hepatica E/S Ags by FPLC is a fast and reproducible way of obtaining antigens useful for serodiagnosis of human and sheep fasciolosis with acceptable sensitivity and specificity. Graphical abstract ᅟ.

  12. Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by early infection sera.

    PubMed

    Liu, Ruo Dan; Qi, Xin; Sun, Ge Ge; Jiang, Peng; Zhang, Xi; Wang, Li Ang; Liu, Xiao Lin; Wang, Zhong Quan; Cui, Jing

    2016-11-15

    At the intestinal stage of a Trichinella spiralis (T. spiralis) infection, the excretory-secretory (ES) antigens produced by adult worms (AWs) result in an early exposure to the host's immune system and elicit the production of specific antibodies; the AW ES proteins might provide early diagnostic markers of trichinellosis. The aim of this study was to identify early serodiagnostic markers from T. spiralis AW ES antigens. T. spiralis AWs were collected at 72h post infection, and their ES antigens were analysed by SDS-PAGE and Western blot. Then, the immunoreactive bands were subjected to shotgun LC-MS/MS and bioinformatics analyses. Our results showed that only one protein band (33kDa) was recognized by the sera of mice infected with T. spiralis at 8 days after infection. The shotgun LC-MS/MS analysis identified 23 proteins that were then clustered into 10 types; these proteins had molecular weights of 28.13-71.62kDa and pI 5.05-9.20. Certain enzymes (e.g., serine protease, adult-specific deoxyribonuclease [DNase] II, peptidase S1A subfamily, and multi cystatin-like domain protein) were found to be highly represented. The functions of the 10 proteins were further analysed: of the 6 annotated proteins, 3 had serine hydrolase activity and 2 had DNase II activity. These results provide a valuable basis for identifying early diagnostic antigens and vaccine candidates for trichinellosis.

  13. Parasite excretory-secretory products and their effects on metabolic syndrome.

    PubMed

    Crowe, J; Lumb, F E; Harnett, M M; Harnett, W

    2017-01-09

    Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.

  14. Properties of the V-type ATPase from the excretory system of the usherhopper, Poekilocerus bufonius.

    PubMed

    Al-Fifi, Z I A; Al-Robai, A; Khoja, S M

    2002-09-01

    The bafilomycin A(1) and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membrane-rich fractions of excretory system (Malpighian tubules and hind gut) of P. bufonius. Enzymatic activity was inhibited by bafilomycin A(1) (IC(50) = 1.3 nM) and NEM (IC(50) = 10.1 microM). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na(+)/K(+) -ATPase forms the major part of the basal membrane fraction. The optimal pH required for maximal activity of V-type ATPase was pH 7.5. The effect of 30 mM of various salts on ATPase activity was investigated. NaCl and KCl caused increases of 175% and 184%, respectively. Other chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl. The activity of V-type ATPase was stimulated by a variety of different anions and cations, and HCO(3)(-) was found to be the most potent cationic activator of ATPase activity. The present results show that the properties of V-type ATPase of P. bufonius are similar to those reported for other insect tissues.

  15. Immunodominant antigens in Naegleria fowleri excretory--secretory proteins were potential pathogenic factors.

    PubMed

    Kim, Jong-Hyun; Yang, Ae-Hee; Sohn, Hae-Jin; Kim, Daesik; Song, Kyoung-Ju; Shin, Ho-Joon

    2009-11-01

    Naegleria fowleri, a ubiquitous pathogenic free-living amoeba, is the most virulent species and causes primary amoebic meningoencephalitis in laboratory animals and humans. The parasite secretes various inducing molecules as biological responses, which are thought to be involved in pathophysiological and immunological events during infection. To investigate what molecules of N. fowleri excretory-secretory proteins (ESPs) are related with amoebic pathogenicity, N. fowleri ESPs fractionated by two-dimensional electrophoresis were reacted with N. fowleri infection or immune sera. To identify immunodominant ESPs, six major protein spots were selected and analyzed by N-terminal sequencing. Finally, six proteins, 58, 40, 24, 21, 18, and 16 kDa of molecular weight, were partially cloned and matched with reference proteins as follow: 58 kDa of exendin-3 precursor, 40 kDa of secretory lipase, 24 kDa of cathepsin B-like proteases and cysteine protease, 21 kDa of cathepsin B, 18 kDa of peroxiredoxin, and 16 kDa of thrombin receptor, respectively. These results suggest that N. fowleri ESPs contained important proteins, which may play an important role in the pathogenicity of N. fowleri.

  16. Focus on renal congestion in heart failure.

    PubMed

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-02-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure.

  17. Focus on renal congestion in heart failure

    PubMed Central

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-01-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure. PMID:26798459

  18. Renal disease in pregnancy.

    PubMed

    Thorsen, Martha S; Poole, Judith H

    2002-03-01

    Anatomic and physiologic adaptations within the renal system during pregnancy are significant. Alterations are seen in renal blood flow and glomerular filtration, resulting in changes in normal renal laboratory values. When these normal renal adaptations are coupled with pregnancy-induced complications or preexisting renal dysfunction, the woman may demonstrate a reduction of renal function leading to an increased risk of perinatal morbidity and mortality. This article will review normal pregnancy adaptations of the renal system and discuss common pregnancy-related renal complications.

  19. Renal Denervation

    PubMed Central

    Persu, Alexandre; Renkin, Jean; Thijs, Lutgarde; Staessen, Jan A.

    2013-01-01

    The term “ultima ratio” has multiple, though related, meanings. The motto “ultima ratio regum,” cast on the cannons of the French army of King Louis XIV, meant that war is the last argument of kings, that is, the one to be used after all diplomatic arguments have failed. Along similar lines, we propose that, given the current evidence, renal denervation should be used as a last resort, after state-of-the-art drug treatment optimized at expert centers failed to control blood pressure. PMID:22851728

  20. Molecular Mechanism for Hypertensive Renal Disease: Differential Regulation of Chromogranin A Expression at 3'-Untranslated Region Polymorphism C+87T by MicroRNA-107.

    PubMed

    Zhang, Kuixing; Mir, Saiful A; Hightower, C Makena; Miramontes-Gonzalez, Jose Pablo; Maihofer, Adam X; Chen, Yuqing; Mahata, Sushil K; Nievergelt, Caroline M; Schork, Nicholas J; Freedman, Barry I; Vaingankar, Sucheta M; O'Connor, Daniel T

    2015-08-01

    Chromogranin A (CHGA) is coreleased with catecholamines from secretory vesicles in adrenal medulla and sympathetic axons. Genetic variation in the CHGA 3'-region has been associated with autonomic control of circulation, hypertension, and hypertensive nephropathy, and the CHGA 3'-untranslated region (3'-UTR) variant C+87T (rs7610) displayed peak associations with these traits in humans. Here, we explored the molecular mechanisms underlying these associations. C+87T occurred in a microRNA-107 (miR-107) motif (match: T>C), and CHGA mRNA expression varied inversely with miR-107 abundance. In cells transfected with chimeric luciferase/CHGA 3'-UTR reporters encoding either the T allele or the C allele, changes in miR-107 expression levels had much greater effects on expression of the T allele. Cotransfection experiments with hsa-miR-107 oligonucleotides and eukaryotic CHGA plasmids produced similar results. Notably, an in vitro CHGA transcription/translation experiment revealed that changes in hsa-miR-107 expression altered expression of the T allele variant only. Mice with targeted ablation of Chga exhibited greater eGFR. Using BAC transgenesis, we created a mouse model with a humanized CHGA locus (T/T genotype at C+87T), in which treatment with a hsa-miR-107 inhibitor yielded prolonged falls in SBP/DBP compared with wild-type mice. We conclude that the CHGA 3'-UTR C+87T disrupts an miR-107 motif, with differential effects on CHGA expression, and that a cis:trans (mRNA:miR) interaction regulates the association of CHGA with BP and hypertensive nephropathy. These results indicate new strategies for probing autonomic circulatory control and ultimately, susceptibility to hypertensive renal sequelae.

  1. Inhibitory mechanism of the nucleus of the solitary tract involved in the control of cardiovascular, dipsogenic, hormonal, and renal responses to hyperosmolality.

    PubMed

    Blanch, Graziela T; Freiria-Oliveira, André H; Murphy, David; Paulin, Renata F; Antunes-Rodrigues, José; Colombari, Eduardo; Menani, José V; Colombari, Débora S A

    2013-04-01

    The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality.

  2. Mechanisms Involving Ang II and MAPK/ERK1/2 Signaling Pathways Underlie Cardiac and Renal Alterations during Chronic Undernutrition

    PubMed Central

    Pereira-Acácio, Amaury; Luzardo, Ricardo; Sampaio, Luzia S.; Luna-Leite, Marcia A.; Lara, Lucienne S.; Einicker-Lamas, Marcelo; Panizzutti, Rogério; Madeira, Caroline; Vieira-Filho, Leucio D.; Castro-Chaves, Carmen; Ribeiro, Valdilene S.; Paixão, Ana D. O.; Medei, Emiliano; Vieyra, Adalberto

    2014-01-01

    Background Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. Methodology/Principal Findings Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. Conclusion/Significance The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood. PMID:24983243

  3. Effects of excretory/secretory products from Clonorchis sinensis and the carcinogen dimethylnitrosamine on the proliferation and cell cycle modulation of human epithelial HEK293T cells.

    PubMed

    Kim, Eun-Min; Kim, June-Sung; Choi, Min-Ho; Hong, Sung-Tae; Bae, Young Mee

    2008-09-01

    Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.

  4. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS.

    PubMed

    Liu, Qing; Huang, Si-Yang; Yue, Dong-Mei; Wang, Jin-Lei; Wang, Yujian; Li, Xiangrui; Zhu, Xing-Quan

    2017-02-01

    Fasciola hepatica is a helminth parasite with a worldwide distribution, which can cause chronic liver disease, fasciolosis, leading to economic losses in the livestock and public health in many countries. Control is mostly reliant on the use of drugs, and as a result, drug resistance has now emerged. The identification of F. hepatica genes involved in interaction between the parasite and host immune system is utmost important to elucidate the evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, we aimed to identify molecules in F. hepatica excretory and secretory products (FhESPs) interacting with the host peripheral blood mononuclear cells (PBMCs), Th1-like cytokines (IL2 and IFN-γ), and Th17-like cytokines (IL17) by Co-IP combined with tandem mass spectrometry. The results showed that 14, 16, and 9 proteins in FhESPs could bind with IL2, IL17, and IFN-γ, respectively, which indicated that adult F. hepatica may evade the host immune responses through directly interplaying with cytokines. In addition, nine proteins in FhESPs could adhere to PBMCs. Our findings provided potential targets as immuno-regulators, and will be helpful to elucidate the molecular basis of host-parasite interactions and search for new potential proteins as vaccine and drug target candidates.

  5. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-03-08

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression.

  6. [Primary renal angiosarcoma].

    PubMed

    Costero-Barrios, Cesáreo B; Oros-Ovalle, Cuauhtémoc

    2004-01-01

    The twenty-fourth case of primary renal angiosarcoma is described, according to the available international literature, this present in a 71-year-old male, a mechanic by trade, without carcinogenic antecedents. Hematuria, pain in flank, and left-side tumoral mass of approximately 20 cm in diameter located in kidney by computerized axial tomography (CT) constituted manifestations. A left nefrectomy was performed. No metastasis was found. The tumor replaced 4/5 of the organ and weighed 1145 g. It showed angiomatous structure with atypical proliferation of endothelial cells in a sinusoldal trauma and anastomosatic vascular channels that invaded neighboring parenchymal and capsule. Tymorous cells were positive for CD31 and CD34 and negative for cytokeratins, S100 and HMB 45 proteins. The patient was subjected to treatment with chemotherapy and radiotherapy (lineal accelerator), but 12 months after surgery he presented retroperitonal tumoral relapse and hepatic metastasis. Diagnostic differentiation with benign vascular tumors is pointed out, as well as carcinomas and sarcomas that showed an outstanding angiomatous component, both primary and/or secondary. Primary renal angiosarcoma exposes the multiplicity of localizations that it is capable of with a tumor of this type, as well as renal parenquimatous capacity to be the seat of a great variety of neoplasias.

  7. The uptake of Texas Red-BSA in the excretory system of schistosomes and its colocalisation with ER60 promoter-induced GFP in transiently transformed adult males.

    PubMed

    Wippersteg, Volker; Ribeiro, Fabio; Liedtke, Stefanie; Kusel, John R; Grevelding, Christoph G

    2003-09-30

    The excretory system of schistosomes has focused some attention during the last years since accumulating evidence suggests that it plays an important role in the host-parasite interaction. Signalling molecules such as phosphatases, but also proteases have been localised in the excretory system. To some extent, however, localisation studies are limited by the fact that sections of fixed specimens are used. In this study, we tested the fluorescent molecules FITC-dextran and Texas Red-BSA for their ability to enter the excretory system of living Schistosoma mansoni males. It is demonstrated that the dyes selectively stain the excretory tubules which are widely distributed along the worm body. This finding was used to investigate whether the staining of worms with Texas Red-BSA can help to localise transgene activity in worms which were transiently transformed by particle bombardment. A vector was used for transformation which contained the green fluorescent protein gene, under the control of the regulatory elements of the cysteine protease ER60 gene. After transformation and staining, confocal laser scanning microscopy revealed that ER60-induced green fluorescent protein activity colocalises with Texas Red-BSA in the excretory tubules. The results suggest a role for ER60 during the host-parasite interaction. Furthermore, the colocalisation approach introduced here opens further perspectives to characterise gene-expression profiles in this parasite.

  8. Renal Vascular Structure and Rarefaction

    PubMed Central

    Chade, Alejandro R.

    2014-01-01

    An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation. PMID:23720331

  9. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites.

    PubMed

    Wang, Wendy WeiWei; Khetani, Salman R; Krzyzewski, Stacy; Duignan, David B; Obach, R Scott

    2010-10-01

    Metabolism is one of the important determinants of the overall disposition of drugs, and the profile of metabolites can have an impact on efficacy and safety. Predicting which drug metabolites will be quantitatively predominant in humans has become increasingly important in the research and development of new drugs. In this study, a novel micropatterned hepatocyte coculture system was evaluated for its ability to generate human in vivo metabolites. Twenty-seven compounds of diverse chemical structure and subject to a range of drug biotransformation reactions were assessed for metabolite profiles in the micropatterned coculture system using pooled cryopreserved human hepatocytes. The ability of this system to generate metabolites that are >10% of dose in excreta or >10% of total drug-related material in circulation was assessed and compared to previously reported data obtained in human hepatocyte suspensions, liver S-9 fraction, and liver microsomes. The micropatterned coculture system was incubated for up to 7 days without a change in medium, which offered an ability to generate metabolites for slowly metabolized compounds. The micropatterned coculture system generated 82% of the excretory metabolites that exceed 10% of dose and 75% of the circulating metabolites that exceed 10% of total circulating drug-related material, exceeds the performance of hepatocyte suspension incubations and other in vitro systems. Phase 1 and phase 2 metabolites were generated, as well as metabolites that arise via two or more sequential reactions. These results suggest that this in vitro system offers the highest performance among in vitro metabolism systems to predict major human in vivo metabolites.

  10. Are the unenhanced and excretory CT phases necessary for the evaluation of acute pyelonephritis?

    PubMed

    Taniguchi, Lincoln S; Torres, Ulysses S; Souza, Saulo M; Torres, Lucas R; D'Ippolito, Giuseppe

    2017-05-01

    Background The most widely accepted computed tomography (CT) protocol for diagnosis of acute pyelonephritis (APN) includes at least a pre- and post-contrast scan, which may expose patients to higher doses of ionizing radiation. Purpose To establish the accuracy, reproducibility, and degree of confidence in CT diagnosis of acute pyelonephritis (APN) and urolithiasis using only images obtained during the nephrographic phase. Material and Methods A retrospective study of 100 consecutive patients (88 women; age range, 19-70 years) with clinical and laboratory suspicion of APN and who underwent triphasic abdominal CT scans (non-contrast, nephrographic, and excretory phases) was performed. Two readers first evaluated independently only the nephrographic phase of scans, and, in a second session, the entire study. The diagnostic reference standard was settled by a third experienced radiologist who reviewed all triphasic scans and clinical data. Results The accuracy of only nephrographic phase for diagnosis of APN and urolithiasis was in the range of 90.3-91.78% and 96.27-99.25%, respectively. There was no significant difference in comparison with the triphasic reading (z: -0.4 - 0.2; P = 0.34-0.83). The average degree of confidence for APN also showed no significant variation for both readers ( P = 0.4 and 0.08). Almost perfect inter-observer agreements for the diagnosis of APN (k = 0.86, P < 0.001) and for urolithiasis (k = 0.84, P < 0.001) were observed when considering only the nephrographic phase. Conclusion CT assessment of APN and urolithiasis can be accurately performed using only the late nephrographic phase, with consequent dose reduction.

  11. Immunomodulatory effect of diethylcarbamazine citrate plus filarial excretory-secretory product on rat hepatocarcinogenesis.

    PubMed

    Abdel-Latif, Mahmoud; Sakran, Thabet; El-Shahawi, Gamal; El-Fayoumi, Hoda; El-Mallah, Al-Mahy

    2015-02-01

    Diethylcarbamazine citrate (DEC) had a significance in anti-filarial chemotherapy, while excretory-secretory product (ES) is released from adult filarial females. The target of the current study was to examine the immunomodulatory effect of DEC, Setaria equina ES or a combination of them on rat hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN). In vitro effect of combined DEC and ES or ES alone on lipopolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs) was tested through IFN-γ assay in culture supernatants. In addition, single or repeated doses of DEC, ES or DEC+ES have been applied in white albino rats to test the effect on HCC. Levels of IFN-γ and anti-ES IgG antibodies in rat serum were assayed using ELISA. Hemolytic complement activity (CH50) was determined in serum while the concentration of nitric oxide (NO) was assayed in liver tissue. The infiltration of NK cells as well as the expression of MHC Iproliferating cell nuclear antigen (PCNA), inducible NO synthase (iNOS), Bcl2 and p53 were determined using immunohistochemistry. There was a dose-dependent increase in IFN-γ after in vitro exposure to DEC+ES. Repeated ES doses increased NO concentration (p<0.05) and expression of iNOS but reduced CH50 (p<0.001), while repeated DEC+ES doses could increase anti-ES IgG (p<0.01), IFN-γ level (p<0.05) and NK cell infiltration. The same treatments could also reduce the expression of MHC I expression, PCNA, Bcl2 and p53. This study has shown immunomodulatory and protective effects of DEC+ES repeated doses on rat HCC.

  12. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland.

    PubMed

    Plachov, D; Chowdhury, K; Walther, C; Simon, D; Guenet, J L; Gruss, P

    1990-10-01

    Several mouse genes designated 'Pax genes' contain a highly conserved DNA sequence homologous to the paired box of Drosophila. Here we describe the isolation of Pax8, a novel paired box containing clone from an 8.5 day p.c. mouse embryo cDNA library. An open reading frame of 457 amino acids (aa) contains the 128 aa paired domain near the amino terminus. Another conserved region present in some other paired box genes, the octapeptide Tyr-Ser-Ile-Asn-Gly-Leu-Leu-Gly, is located 43 aa C-terminal to the paired domain. Using an interspecies backcross system, we have mapped the Pax8 gene within the proximal portion of mouse chromosome 2 in a close linkage to the surf locus. Several developmental mutations are located in this region. In situ hybridization was used to determine the pattern of Pax8 expression during mouse embryogenesis. Pax8 is expressed transiently between 11.5 and 12.5 days of gestation along the rostrocaudal axis extending from the myelencephalon throughout the length of the neural tube, predominantly in two parallel regions on either side of the basal plate. We also detected Pax8 expression in the developing thyroid gland beginning at 10.5 days of gestation, during the thyroid evagination. In the mesonephros and metanephros the expression of Pax8 was localized to the mesenchymal condensations, which are induced by the nephric duct and ureter, respectively. These condensations develop to functional units, the nephrons, of the kidney. These data are consistent with a role for Pax8 in the induction of kidney epithelium. The embryonic expression pattern of Pax8 is compared with that of Pax2, another recently described paired box gene expressed in the developing excretory system.

  13. Effect of diethylcarbamazine citrate and Setaria equina excretory-secretory material on rat hepatocellular carcinoma.

    PubMed

    Abdel-Latif, Mahmoud; Sakran, Thabet; El-Shahawi, Gamal; El-Fayoumi, Hoda; El-Mallah, Al-Mahy

    2014-12-01

    Diethylcarbamazine citrate (DEC) has been known for its efficacy to eradicate bancroftian filariasis in Egypt and other countries in the world. One of the known effects was to decrease the level of circulating filarial antigen in the patient's serum. The target of this study was to examine the effect of DEC, excretory-secretory (ES) material from the filarial parasite Setaria equina or a combination of both on the status of oxidative stress and pathogenesis of rat hepatocellular carcinoma (HCC) induced by diethylnitrosamine and 2-acetylaminofluorene. This could be tested in vitro using nitroblue tetrazolium reduction test for measuring the level of superoxide anion (O₂(•-)) released from rat peritoneal macrophages. For in vivo test, a single dose before induction of carcinogenesis or continually repeated doses with DEC, ES or DEC + ES was used. Exposure of macrophages to ES could lead to a significant decrease (p < 0.01) in O₂(•-) release, while DEC (200 μM) could modulate such effect with significant increase (p < 0.05). Pathogenesis of liver cancer and treatment were evaluated using histological investigation, level of antioxidant and liver function enzymes. Repeated ES doses could increase the activity of antioxidant enzymes, especially the catalase enzyme and show a protective effect on liver architecture. DEC could modulate the later effects when combined with ES. No significant effect on the liver function enzymes after treatment was observed. Nuclear factor κB was found to be localized only in the cytoplasm after single and repeated treatments with ES. This study could indicate the effect of S. equina ES as antioxidant against rat HCC, while DEC could modulate such effect when combined with it.

  14. Excretory-secretory and somatic antigens in the diagnosis of human filariasis.

    PubMed

    Kaushal, N A; Hussain, R; Ottesen, E A

    1984-06-01

    In order to compare the immunodiagnostic value of excretory-secretory (E-S) antigens derived from adult Brugia malayi worms with somatic antigens derived from adults, microfilariae (Mf) and infective larvae (L3) of these parasites, well defined serum pools from patients with filarial (brugia, bancrofti, loa and perstans) and non-filarial (ascaris, stronglyoides, toxocara, echinococcus, cysticercus and schistosoma) helminth infections were tested against antigens derived from these different life cycle stages of B. malayi in a Staphylococcus aureus radioimmunoprecipitation assay (S. aureus RIA). The adult brugia antigens proved significantly more discriminatory than those of the other parasite stages, with the homologous brugia serum pool also showing greater reactivity to adult than to L3 and Mf antigens. Similar results were obtained when individual sera from patients (rather than serum pools) were tested in the same assay. The most surprising finding was the minimal reactivity seen between the adult filarial antigens and the non-filarial serum pools despite the presence in these pools of strong antibody reactivity with their homologous antigens. The reasons underlying the unexpected specificity of this S. aureus RIA for discriminating among sera from filarial and non-filarial infections were analysed qualitatively by immunoprecipitation techniques. It was found that use of the chloramine-T method for radioiodination resulted in preferential labelling of the low molecular weight (mol. wt) proteins (10-70,000 daltons) in the B. malayi adult somatic antigen and that these antigens were bound primarily by the filarial and not the non-filarial serum pools. These findings suggest that lower mol. wt helminth antigens may show greater species specificity than those with higher mol. wt, and those with higher mol. wt, greater cross-reactivity. If substantiated by further analysis, such results would have important implications for the subsequent isolation of diagnostically

  15. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  16. Comprehensive Immunophenotypic Characterization of Adult and Fetal Testes, the Excretory Duct System, and Testicular and Epididymal Appendages.

    PubMed

    Magers, Martin J; Udager, Aaron M; Chinnaiyan, Arul M; French, Diana; Myers, Jeffrey L; Jentzen, Jeffrey M; McHugh, Jonathan B; Heider, Amer; Mehra, Rohit

    2016-08-01

    The immunophenotype of a normal testis and the excretory duct system has not been studied comprehensively in fetal and adult patients without testicular disease or hormonal manipulation so far. In addition, testicular (TA) and epididymal (EA) appendages are frequent paratesticular structures without previously reported comprehensive immunophenotypic studies. Immunohistochemistry for multiple markers, including the androgen receptor (AR), the estrogen receptor (ER), the progesterone receptor (PR), the prostate-specific antigen, the prostate-specific membrane antigen, PAX8, WT1, calretinin, CK7, CK20, OCT4, SALL4, and CD117, was performed on full sections of testicular/paratesticular tissue from a large cohort of adult and fetal autopsy patients. In contrast to adult germ cells (GC), fetal GC strongly express OCT4 and CD117, although the expression of these proteins is lost in the early postnatal period; SALL4, in contrast, is expressed in both fetal and adult GC, with only weak and focal expression in adult patients. Fetal Sertoli cells (SC) express WT1 and calretinin strongly and diffusely, in contrast to adult SC. Both fetal and adult excretory duct systems express CK7 and PAX8 with frequent AR coexpression, and all 3 main segments of the excretory duct system (ductuli efferentes, epididymis, and vas deferens) have unique immunophenotypes. The rete testis also has a unique immunohistochemical expression pattern, which includes strong expression of CK7, PAX8, WT1, calretinin, and AR. Finally, of the adult autopsy patients examined, 80% had a TA, and 60% had an EA; these paratesticular structures occurred at stereotypical locations, demonstrated reproducible morphologic features, and had a unique immunophenotype relative to other studied structures, with strong CK7, PAX8, WT1, AR, ER, and PR coexpression. The testis and the paratestis may be involved by diverse neoplastic and non-neoplastic processes, and knowledge of the immunophenotypic expression spectrum of

  17. Evaluation of Toxoplasma gondii soluble, whole and excretory/secretary antigens for diagnosis of toxoplasmosis by ELISA test.

    PubMed

    Pishkari, S; Shojaee, S; Keshavarz, H; Salimi, M; Mohebali, M

    2017-03-01

    The present study was performed to compare the soluble, whole and excretory/secretary antigens of Toxoplasma gondii (RH strain) in diagnosis of toxoplasmosis by ELISA method. Tachyzoites of T. gondii, RH strain were injected in intra-peritoneal cavity of BALB/c mice, after 4 days tachyzoites were harvested by peritoneal washing of the mice. For soluble antigen, exudates were centrifuged and sediment sonicated and then centrifuged at 4 °C, 1 h, supernatant collected and density of protein determined by Bradford method. For whole antigen after collecting, washing and centrifuging of peritoneal fluid the tachyzoites sediment was counted. In excretory/secretary antigen 1.5 × 10(8) tachyzoites were transferred in 1 ml tube of saline and incubated under mild agitation and after centrifuging, supernatant was collected and protein density determined by Bradford method. 176 human serum samples were evaluated for T. gondii IgG antibody with prepared antigens, and finally serum samples were evaluated by commercial ELISA kit (Trinity, USA) which was considered as gold standard method. In this study sensitivity and specificity of prepared antigens compared with commercial kit in ELISA method. Sensitivity and specificity of soluble antigen was 91.4 and 74.5 %, in whole antigen these parameters were 77.1 and 77.3 % and in excretory/secretary antigen were 28.5 and 74.5 % respectively. Soluble antigen had high levels of sensitivity and specificity in ELISA method and the results were rather resemble to commercial kit (Trinity, USA).

  18. [A Study On The Fine Structure Of Clonorchis Sinensis, A Liver Fluke: II. The Alimentary Tract And The Excretory System

    PubMed

    Jeong, Kye Heon; Rim, Han Jong; Kim, Woo Kap; Kim, Chang Whan; Yang, He Young

    1980-06-01

    A morphological study on the ultrastructures of the alimentary tract and the excretory system of Clonorchis sinensis was conducted. The liver flukes were collected from rabbit liver six months after the experimental infection The worms were washed with 0.85% saline solution and immediately moved to cold 2.5% glutaraldehyde in 0.1 M phosphate buffer pH 7.4. The materials were dissected and fixed for two hours. The blocks were post-fixed in 1% osmium tetroxide. The blocks were embedded in Epon 812. Ultra thin sections were cut with Sovall MT-2 ultramicrotome and stained with uranyl acetate and lead citrate. Sections were then observed with Hitachi HS-7S electron microscope. The following results were obtained in a series of observations. The walls of oral cavity and esophagus comprised tegumental syncytium, basement membrane, loose connective tissue, muscular layer and parenchymal cells. The apical surface and the base of the syncytium were covered with a protoplasmic membrane for each forming numerous invaginations. Granular endoplasmic reticulum was developed in the epithelium of the oesophagus. The gastrodermis of Clonorchis sinensis comprised two types of cells in general. The first cell type was numerous one forming a single continuous layer of epithelial cells. Each of the cells had outfolded cytoplasm into the caecal lumen and lamellae along the cell surface. Among the above epithelial cells, no considerable differences in structure reflecting their functional states were identified. The second cell type was less differentiated in nature and lay within the gastrodermis above the basement membrane but not in contact with the caecal lumen, being overlapped by neighboring gastrodermal cells of the type described above. At this portion the gastrodermis seemed to be a pseudostratified epithelium. There were well-developed lamellae along the surface of epithelia of all canals or duct concerning evacuation. The excretory pore was 7.5 micrometer in diameter and dorso

  19. Free radicals enzymatically triggered by Clonorchis sinensis excretory-secretory products cause NF-κB-mediated inflammation in human cholangiocarcinoma cells.

    PubMed

    Nam, Joo-Hyun; Moon, Ju Hyun; Kim, In Ki; Lee, Myoung-Ro; Hong, Sung-Jong; Ahn, Joong Ho; Chung, Jong Woo; Pak, Jhang Ho

    2012-01-01

    Chronic clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis worms and their excretory-secretory products, is associated with hepatobiliary damage, inflammation, periductal fibrosis and even development of cholangiocarcinoma. Our previous report revealed that intracellular reactive oxygen species were generated in C. sinensis excretory-secretory product-treated human cholangiocarcinoma cells; however, their endogenous sources and pathophysiological roles in host cells were not determined. In the present study, we found that treatment of human cholangiocarcinoma cells with excretory-secretory products triggered increases in free radicals via a time-dependent activation of NADPH oxidase, xanthine oxidase and inducible nitric oxide synthase. This increase in free radicals substantially promoted the degradation of cytosolic IκB-α, nuclear translocation of nuclear factor-κB subunits (RelA and p50), and increased κB consensus DNA-binding activity. Excretory-secretory product-induced nuclear factor-κB activation was markedly attenuated by preincubation with specific inhibitors of each free radical-producing enzyme or the antioxidant, N-acetylcysteine. Moreover, excretory-secretory products induced an increase in the mRNA and protein expression of the proinflammatory cytokines, IL-1β and IL-6, in an nuclear factor-κB-dependent manner, indicating that enzymatic production of free radicals in ESP-treated cells participates in nuclear factor-κB-mediated inflammation. These findings provide new insights into the pathophysiological role of C. sinensis excretory-secretory products in host chronic inflammatory processes, which are initial events in hepatobiliary diseases.

  20. Renal denervation for resistant hypertension.

    PubMed

    Almeida, Manuel de Sousa; Gonçalves, Pedro de Araújo; Oliveira, Eduardo Infante de; Carvalho, Henrique Cyrne de

    2015-02-01

    There is a marked contrast between the high prevalence of hypertension and the low rates of adequate control. A subset of patients with suboptimal blood pressure control have drug-resistant hypertension, in the pathophysiology of which chronic sympathetic hyperactivation is significantly involved. Sympathetic renal denervation has recently emerged as a device-based treatment for resistant hypertension. In this review, the pathophysiological mechanisms linking the sympathetic nervous system and cardiovascular disease are reviewed, focusing on resistant hypertension and the role of sympathetic renal denervation. An update on experimental and clinical results is provided, along with potential future indications for this device-based technique in other cardiovascular diseases.

  1. Dynamics of renal electrolyte excretion in growing mice.

    PubMed

    Schmidt, Katharina; Ripper, Maria; Tegtmeier, Ines; Humberg, Evelyn; Sterner, Christina; Reichold, Markus; Warth, Richard; Bandulik, Sascha

    2013-01-01

    Genetically modified mice represent important models for elucidating renal pathophysiology, but gene deletions frequently cause severe failure to thrive. In such cases, the analysis of the phenotype is often limited to the first weeks of life when renal excretory function undergoes dramatic physiological changes. Here, we investigated the postnatal dynamics of urinary ion excretion in mice. The profiles of urinary electrolyte excretion of mice were examined from birth until after weaning using an automated ion chromatography system. Postnatally, mice grew about 0.4 g/day, except during two phases with slower weight gain: (i) directly after birth during adaptation to extrauterine conditions (P0-P2) and (ii) during the weaning period (P15-P21), when nutrition changed from mother's milk to solid chow and water. During the first 3 days after birth, remarkable changes in urinary Na(+), Ca(2+), Mg(2+), and phosphate concentrations occurred, whereas K(+) and Cl(-) concentrations hardly changed. From days 4-14 after birth, Na(+), Ca(2+), Mg(2+), K(+), and Cl(-) concentrations remained relatively stable at low levels. Urinary concentrations of creatinine, NH4(+), phosphate, and sulfate constantly increased from birth until after weaning. Profiles of salt excretion in KCNJ10(-/-) mice exemplified the relevance of age-dependent analysis of urinary excretion. In conclusion, the most critical phases for analysis of renal ion excretion during the first weeks of life are directly after birth and during the weaning period. The age dependence of urinary excretion varies for the different ions. This should be taken into consideration when the renal phenotype of mice is investigated during the first weeks of life.

  2. Renal effects of atriopeptin (AP) II in conscious SHR

    SciTech Connect

    Smits, J.F.; Debets, J.M.; Struyker-Boudier, H.A.; Daemen, M.J.

    1986-03-05

    Diuresis and natriuresis following APs has been suggested to depend upon increased renal blood flow (RBF). In a previous study, they found that APII infusions in conscious SHR decrease RBF. In this study, they report effects of APII on glomerular filtration rate (GFR) and renal excretory function in conscious SHR. Male SHR were equipped with arterial and venous catheters. Furthermore, a special catheter was implanted into the bladder to allow continuous urine sampling from conscious, freely moving rats. Animals were allowed at least 4 days to recover. In one group of SHR, APII (N=7) or saline (N=7) was infused to quantitate excretion of water, Na/sup +/, and K/sup +/. Two other groups of SHR (N=8 each) were infused with /sup 51/Cr-EDTA and /sup 125/I-PAH. GFR and renal plasma flow (ERPF) were calculated from urine and a mid-time plasma sample during APII or saline infusion. Following changes in infusion rates, urine from the first 5 min was discarded, after which a 10-min collection was made. APII (0.5-4 ..mu..g/kg/min) increased water, Na/sup +/ and K/sup +/ output maximally during 2 ..mu..g/kg/min. ERPF decreased from 10.7 +/- 1.1 ml/min to 7.9 +/- 0.5 ml/min. GFR did not change significantly. Filtration fraction increased from 24 +/- 1% to 33 +/- 2%. Fractional water excretion increased from 0.8 +/- 0.2% to 2.5 +/- 0.7%. Saline infusions did not affect renal function. The results indicate that in conscious SHR, APII causes diuresis and natriuresis which does not depend upon increased GFR, but, rather, upon a primary tubular effect.

  3. Should excretory urography be used as a routine diagnostic procedure in patients with acute ureteric colic: a single center study.

    PubMed

    Samara, Osama A; Haroun, Dina A; Ashour, Do'a Z; Tarawneh, Emad S; Haroun, Azmi A

    2011-05-01

    The aim of this study was to find an accurate, easily available and safe imaging modality as an alternative to intravenous urography for the diagnosis of acute urinary obstruction. This retrospective study included 332 patients, who underwent both excretory urography (EU) preceeded by plain radiograph as well as ultrasonography for evaluation of acute flank pain. There were 198 male and 134 female patients. The presence or absence of urinary stones, level of obstruction, excretion delay on EU and dilated excretory system on either or both techniques were recorded. The sensitivity, specificity, predictive values, and accuracy for plain radiograph, ultrasonography, and for both modalities together were measured considering EU as a standard reference. The sensitivity and specificity of combined plain radiograph and ultrasound were 97% and 67%, respectively, with positive and negative predictive values and accuracy rates of 92%, 99%, and 97%, respectively. Our study suggests that the combination of plain radiograph and ultrasonography yields a high sensitivity, negative predictive value, and accuracy in depiction of urinary stones. Thus, EU need not be used as a routine diagnostic procedure in patients with acute obstructive uropathy.

  4. MicroRNAs in renal fibrosis

    PubMed Central

    Chung, Arthur C.-K.; Lan, Hui Y.

    2015-01-01

    MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD) is characterized by renal fibrosis. Transforming growth factor beta (TGF-β) is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix (ECM) proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of ECM and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases. PMID:25750628

  5. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.

    PubMed

    Gill, Hasreet K; Cohen, Jennifer D; Ayala-Figueroa, Jesus; Forman-Rubinsky, Rachel; Poggioli, Corey; Bickard, Kevin; Parry, Jean M; Pu, Pu; Hall, David H; Sundaram, Meera V

    2016-08-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  6. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis.

    PubMed

    Deng, Chuanhuan; Sun, Jiufeng; Li, Xuerong; Wang, Lexun; Hu, Xuchu; Wang, Xiaoyun; Chen, Wenjun; Lv, Xiaoli; Liang, Chi; Li, Wenfang; Huang, Yan; Li, Ran; Wu, Zhongdao; Yu, Xinbing; Xu, Jin

    2012-10-01

    Aminopeptidases serve vital roles in metabolism of hormones, neurotransmission, turnover of proteins and immunological regulations. Leucine aminopeptidases catalyze the hydrolysis of amino-acid residues from the N-terminus of proteins and peptides. In the present study, leucine aminopeptidase 2 (LAP2) gene of Clonorchis sinensis (C. sinensis) was isolated and identified from an adult cDNA library of C. sinensis. Recombinant CsLAP2 was expressed and purified in Escherichia coli BL21. The open reading frame of LAP2 contains 1,560 bp equivalent to 519 amino acids, a similarity analysis showed a relatively low homology with Homo sapiens (19.0 %), Trypanosoma cruzi (18.0 %), Mus musculus (19.3 %), and relatively high homology with Schistosoma mansoni (65.6 %). The optimum condition of rCsLAP2 enzyme activity was investigated using a fluorescent substrate of Leu-MCA at 37 °C and pH 7.5. The K (m) and V (max) values of rCsLAP2 were 18.2 μM and 10.7 μM/min, respectively. CsLAP2 gene expression can be detected at the stages of the adult worm, metacercaria, excysted metacercaria and egg of C. sinensis using real-time PCR, no difference was observed at the stages of the adult worm, metacercaria and egg. However, CsLAP2 showed a higher expression level at the stage of excysted metacercaria than the adult worm (3.90-fold), metacercaria (4.60-fold) and egg (4.59-fold). Histochemistry analysis showed that CsLAP2 was located at the tegument and excretory vesicle of metacercaria, and the tegument and intestine of adult worm. The immune response specific to rCsLAP2 was characterized by a mixed response patterns of Th1 and Th2, indicating a compounded humoral and cellular immune response. The combined results from the present study indicate that CsLAP2 was an important antigen exposed to host immune system, and probably implicated as potential role in interaction with host cells in clonorchiasis.

  7. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix

    PubMed Central

    Ayala-Figueroa, Jesus; Parry, Jean M.; Pu, Pu; Hall, David H.

    2016-01-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  8. A Review on Renal Toxicity Profile of Common Abusive Drugs

    PubMed Central

    Singh, Varun Parkash; Singh, Nirmal

    2013-01-01

    Drug abuse has become a major social problem of the modern world and majority of these abusive drugs or their metabolites are excreted through the kidneys and, thus, the renal complications of these drugs are very common. Morphine, heroin, cocaine, nicotine and alcohol are the most commonly abused drugs, and their use is associated with various types of renal toxicity. The renal complications include a wide range of glomerular, interstitial and vascular diseases leading to acute or chronic renal failure. The present review discusses the renal toxicity profile and possible mechanisms of commonly abused drugs including morphine, heroin, cocaine, nicotine, caffeine and alcohol. PMID:23946695

  9. Renal arteries (image)

    MedlinePlus

    A renal angiogram is a test used to examine the blood vessels of the kidneys. The test is performed ... main vessel of the pelvis, up to the renal artery that leads into the kidney. Contrast medium ...

  10. Primary renal carcinoid tumor.

    PubMed

    Kanodia, K V; Vanikar, A V; Patel, R D; Suthar, K S; Kute, V B; Modi, P R; Trivedi, H L

    2013-09-01

    Primary renal carcinoid tumor is extremely rare and, therefore, its pathogenesis and prognosis is not well known. We report a primary renal carcinoid in a 26-year-old man treated by radical nephrectomy.

  11. Kidney (Renal) Failure

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Kidney Failure Kidney failure, also known as renal failure, ... evaluated? How is kidney failure treated? What is kidney (renal) failure? The kidneys are designed to maintain ...

  12. Renal vein thrombosis

    MedlinePlus

    ... the kidneys. Possible Complications Complications may include: Acute renal failure (especially if thrombosis occurs in a dehydrated child) ... Saunders; 2012:chap 34. Read More Acute kidney failure Arteriogram Blood ... embolus Renal Tumor Review Date 5/19/2015 Updated by: ...

  13. [Inhibitory Effect of the Excretory/Scretory Proteins of Trichinella spiralis on Proliferation of Human Hepatocellular Carcinoma HepG2 Cell line].

    PubMed

    Liu, Ying-jie; Xu, Jing; Huang, Hong-ying; Xu, Guo-qiang

    2015-08-01

    Human hepatocellular carcinoma HepG2 Cell line were cultured with different concentrations of excretory/secretory proteins from Trichinella spiralis, and MTT assay was used to evaluate the cell inhibition rate. After co-cultured with 300 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were observed under a fluorescence microscope with AO and EB staining. When co-cultured with 75 µg/ml excretory/secretory proteins for 24 h, the HepG2 cells were quantified by flow cytometry using Annexin V-FITC/PI stain, and the expression of cleaved-caspase 9 was detected by immunofluorescence assay. The proliferation of HepG2 cells was inhibited significantly by excretory/secretory proteins in a dosage dependant manner. Under fluorescence microscope, some HepG2 cells presented typical apoptotic morphologic changes and the cleaved-caspase 9 protein expression was higher than that of the control. The early and late apoptotic cells and necrotic ones occupied 17.9%, 7.3%, and 6.6%, respectively.

  14. The cooperation of FGF receptor and Klotho is involved in excretory canal development and regulation of metabolic homeostasis in Caenorhabditis elegans.

    PubMed

    Polanska, Urszula M; Edwards, Elisabeth; Fernig, David G; Kinnunen, Tarja K

    2011-02-18

    FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation.

  15. Renal disease in pregnancy.

    PubMed

    Sanders, C L; Lucas, M J

    2001-09-01

    Women with renal disease who conceive and continue a pregnancy are at significant risk for adverse maternal and fetal outcomes. Risk is inversely related to the degree of renal insufficiency. Pregnancy-induced changes in the urinary tract can temporarily increase renal function compromise, such as nephrosis, but most often results in no net increase in dysfunction. Common complications of pregnancy--such as hypertension and hypovolemia--can be associated with acute renal injury or aggravation of pre-existing disease.

  16. PROGRESSIVE RENAL VASCULAR PROLIFERATION AND INJURY IN OBESE ZUCKER RATS

    PubMed Central

    Iliescu, Radu; Chade, Alejandro R.

    2010-01-01

    Objective Obesity, an independent risk factor for chronic kidney disease, may induce renal injury by promoting inflammation. Inflammatory cytokines can induce neovascularization in different organs, including the kidneys. However, whether obesity triggers renal neovascularization and, if so, its effect on renal function has never been investigated. Methods Blood pressure, proteinuria and glomerular-filtration-rate (GFR) were measured in-vivo. Renal microvascular (MV) architecture was studied by 3D micro-CT in lean and obese Zucker rats (LZR and OZR, n=7/group) at 12, 22, and 32 weeks of age. Renal inflammation was assessed by quantifying interleukin (IL)-6, tumor-necrosis-factor (TNF)-alpha, and ED-1 expression, as renal fibrosis in trichrome-stained cross-sections. Results Mild inflammation and lower GFR was only observed in younger OZR, without renal fibrosis or changes in MV density. Interestingly, renal MV density increased in OZR at 32 weeks of age, accompanied by pronounced increase in renal IL-6 and TNF-alpha, ED-1+ cells, proteinuria, decreased GFR, and fibrosis. Conclusion This study shows increased renal cortical vascularization in experimental obesity, suggesting neovascularization as an evolving process as obesity progresses. Increased renal vascularization, possibly triggered by inflammation, may reflect an initially compensatory mechanism in obesity. However, increased inflammation and inflammatory-induced neovascularization may further promote renal injury as obesity advances. PMID:20536738

  17. Renal Denervation

    PubMed Central

    Pan, Tao; Guo, Jin-he; Teng, Gao-jun

    2015-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a group of metabolic diseases of multiple etiologies. Although great progress has been made, researchers are still working on the pathogenesis of T2DM and how to best use the treatments available. Aside from several novel pharmacological approaches, catheter-based sympathetic renal denervation (RDN) has gained a significant role in resistant hypertension, as well as improvements in glycemic control in T2DM. In this article, we will summarize herein the role sympathetic activation plays in the progression of T2DM and review the recent clinical RDN experience in glucose metabolism. We performed systematic review in online databases, including PubMed, EmBase, and Web of Science, from inception until 2015. Studies were included if a statistical relationship was investigated between RDN and T2DM. The quality of each included study was assessed by Newcastle–Ottawa scale score. To synthesize these studies, a random-effects model or a fixed-effects model was applied as appropriate. Then, we calculated heterogeneity, performed sensitivity analysis, tested publication bias, and did meta-regression analysis. Finally, we identified 4 eligible articles. In most studies, RDN achieved via novel catheter-based approach using radiofrequency energy has gained a significant role in resistant hypertension, as well as improvements in glycemic control in T2DM. But the DREAMS-Study showed that RDN did not change median insulin sensitivity nor systemic sympathetic activity. Firstly, the current published studies lacked a proper control group, along with the sample capacity was small. Also, data obtained in the subgroups of diabetic patients were not separately analyzed and the follow-up period was very short. In addition, a reduction in blood pressure accounts for the improvements in glucose metabolism and insulin resistance cannot be excluded. If the favorable result of better glucose metabolism is confirmed in large-scale, randomized studies

  18. Renal Tubular Acidosis

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Renal Tubular Acidosis KidsHealth > For Parents > Renal Tubular Acidosis Print A A A What's in ... Causes Symptoms Diagnosis Treatment en español Acidosis tubular renal Each time our internal organs do something, such ...

  19. [Idiopathic renal arteriovenous fistula].

    PubMed

    Bennani, S; Ait Bolbarod, A; el Mrini, M; Kadiri, R; Benjelloun, S

    1996-06-01

    The authors report a case of idiopathic renal arteriovenous fistula. The diagnosis was established angiographically in a 24 year old man presenting gross hematuria. Embolization of the fistula was performed. Efficiency of this treatment was appreciated clinically and by duplex renal ultrasonography. The characteristics of renal arteriovenous fistulas are reviewed.

  20. Cardio-renal syndrome

    PubMed Central

    Gnanaraj, Joseph; Radhakrishnan, Jai

    2016-01-01

    Cardio-renal syndrome is a commonly encountered problem in clinical practice. Its pathogenesis is not fully understood. The purpose of this article is to highlight the interaction between the cardiovascular system and the renal system and how their interaction results in the complex syndrome of cardio-renal dysfunction. Additionally, we outline the available therapeutic strategies to manage this complex syndrome. PMID:27635229

  1. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis.

    PubMed

    Ma, Zhiheng; Jin, Xiaogao; He, Liqun; Wang, Yanlin

    2016-09-01

    Recent studies have shown that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease, including renal artery stenosis. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that CXCL16 was induced in the kidney in a murine model of renal artery stenosis. To determine whether CXCL16 is involved in renal injury and fibrosis, wild-type and CXCL16 knockout mice were subjected to renal artery stenosis induced by placing a cuff on the left renal artery. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Renal artery stenosis caused an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from RAS-induced renal injury and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the stenotic kidneys, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80(+) macrophages and CD3(+) T cells in the stenotic kidneys compared with those of wild-type mice. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of renal artery stenosis-induced renal injury and fibrosis through regulation of bone marrow-derived fibroblast accumulation and macrophage and T-cell infiltration.

  2. Functional aspects of silent ureteral stones investigated with MAG-3 renal scintigraphy

    PubMed Central

    2014-01-01

    Background To investigate functional aspects of silent ureteral stones with special focus on obstruction and its relationship to renal anatomy. The present study is the first investigation of renal excretory function in patients with silent ureteral stones. Methods Patients with primarily asymptomatic ureteral stones underwent a mercapto-acetyltriglycine (MAG-3) renal scintigraphy prior to treatment, in addition to anatomic evaluation of renal units and serum creatinine levels. The primary outcome measure was the presence or absence of obstruction. Secondary outcome measures were kidney anatomy, grade of hydronephrosis, location of stones, stone size, and serum creatinine levels. Results During a ten-year period, 14 patients (median age 52.6 years; range 37.3 to 80.7 years) were included in the study. The relative frequency of primarily asymptomatic ureteral stones among all patients treated for ureteral stones in the study period was 0.7%. Eleven renal units showed some degree of hydronephrosis while 3 kidneys were not dilated. On the MAG-3 scan, 7 patients had an obstruction of the ureter, 5 had no obstruction, and 2 had dysfunction of the kidney. A statistically significant correlation was established between the grade of obstruction and stone size (p = 0.02). Conclusions At the time of presentation, only 64.3% of the patients revealed an obstruction in the stone-bearing renal unit. The degree of hydronephrosis and renal function were very diverse in this subgroup of patients with ureteral stones. The onset of ureterolithiasis and the chronological sequence of obstruction remain unclear in patients who have never experienced symptoms due to their stones. PMID:24397735

  3. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    NASA Astrophysics Data System (ADS)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  4. Sonic hedgehog protein regulates fibroblast growth factor 8 expression in metanephric explant culture from BALB/c mice: Possible mechanisms associated with renal morphogenesis.

    PubMed

    Chen, Xing; Hou, Xiao-Ming; Fan, You-Fei; Jin, Yu-Ting; Wang, Yu-Lin

    2016-10-01

    The sonic hedgehog (SHH) morphogen regulates cell differentiation and controls a number of genes during renal morphogenesis. To date, the effects of SHH on fibroblast growth factors (Fgfs) in embryonic kidney development remain unclear. In the present study, explants of BALB/c mouse embryonic kidney tissues were used to investigate the role of exogenous SHH on Fgf8 and Fgf10 expression levels ex vivo. Ureteric bud branches and epithelial metanephric derivatives were used to determine the renal morphogenesis with Dolichos biflorus agglutinin or hematoxylin‑eosin staining. mRNA expression levels were determined using reverse transcription‑quantitative polymerase chain reaction, while the protein expression levels were examined using immunohistochemistry and western blot analysis. During the initial stages of metanephric development, low levels of SHH, Fgf8, and Fgf10 expression were observed, which were found to increase significantly during more advanced stages of metanephric development. In addition, exogenous SHH protein treatment increased the number of ureteric bud branches and enhanced the formation of nephrons. Exogenous SHH reduced the Fgf8 mRNA and protein expression levels, whereas cyclopamine (an SHH‑smoothened receptor inhibitor) interfered with SHH‑mediated downregulation of Fgf8 expression. By contrast, exogenous SHH protein was not found to modulate Fgf10 mRNA and protein expression levels. In conclusion, these results indicate that the modulatory effects of SHH on BALB/c mouse metanephric explant cultures may involve the regulation of Fgf8 expression but not Fgf10 expression, which provides evidence for the functional role of Fgf proteins in renal morphogenesis.

  5. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    PubMed

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  6. Sonic hedgehog protein regulates fibroblast growth factor 8 expression in metanephric explant culture from BALB/c mice: Possible mechanisms associated with renal morphogenesis

    PubMed Central

    Chen, Xing; Hou, Xiao-Ming; Fan, You-Fei; Jin, Yu-Ting; Wang, Yu-Lin

    2016-01-01

    The sonic hedgehog (SHH) morphogen regulates cell differentiation and controls a number of genes during renal morphogenesis. To date, the effects of SHH on fibroblast growth factors (Fgfs) in embryonic kidney development remain unclear. In the present study, explants of BALB/c mouse embryonic kidney tissues were used to investigate the role of exogenous SHH on Fgf8 and Fgf10 expression levels ex vivo. Ureteric bud branches and epithelial metanephric derivatives were used to determine the renal morphogenesis with Dolichos biflorus agglutinin or hematoxylineosin staining. mRNA expression levels were determined using reverse transcription-quantitative polymerase chain reaction, while the protein expression levels were examined using immunohistochemistry and western blot analysis. During the initial stages of metanephric development, low levels of SHH, Fgf8, and Fgf10 expression were observed, which were found to increase significantly during more advanced stages of metanephric development. In addition, exogenous SHH protein treatment increased the number of ureteric bud branches and enhanced the formation of nephrons. Exogenous SHH reduced the Fgf8 mRNA and protein expression levels, whereas cyclopamine (an SHH-smoothened receptor inhibitor) interfered with SHH-mediated downregulation of Fgf8 expression. By contrast, exogenous SHH protein was not found to modulate Fgf10 mRNA and protein expression levels. In conclusion, these results indicate that the modulatory effects of SHH on BALB/c mouse metanephric explant cultures may involve the regulation of Fgf8 expression but not Fgf10 expression, which provides evidence for the functional role of Fgf proteins in renal morphogenesis. PMID:27510750

  7. Renal artery aneurysms.

    PubMed

    González, J; Esteban, M; Andrés, G; Linares, E; Martínez-Salamanca, J I

    2014-01-01

    A renal artery aneurysm is defined as a dilated segment of renal artery that exceeds twice the diameter of a normal renal artery. Although rare, the diagnosis and incidence of this entity have been steadily increasing due to the routine use of cross-sectional imaging. In certain cases, renal artery aneurysms may be clinically important and potentially lethal. However, knowledge of their occurrence, their natural history, and their prognosis with or without treatment is still limited. This article aims to review the recent literature concerning renal artery aneurysms, with special consideration given to physiopathology, indications for treatment, different technical options, post-procedure complications and treatment outcomes.

  8. Novel mechanisms of tubulointerstitial injury in IgA nephropathy: a new therapeutic paradigm in the prevention of progressive renal failure.

    PubMed

    Chan, Loretta Y Y; Leung, Joseph C K; Lai, Kar Neng

    2004-12-01

    IgA nephropathy (IgAN) runs a highly variable clinical course with frequent involvement of tubulointerstitial damage. Notably, renal progression correlates more closely with the severity of tubulointerstitial lesions than with the degree of glomerular lesions In IgAN. Mesangial IgA deposition induces local release of cytokines, complement, and angiotensin II leading to glomerular inflammation. It remains unclear how mesangial IgA deposition leads to tubulointerstitial injury in IgAN. Moreover, IgA deposits are rarely detected in renal interstitium in IgAN. We hypothesize that mediators released from mesangial cells triggered by IgA deposition leads to activation of proximal tubular epithelial cells. Our preliminary findings implicate a glomerulotubular cross talk with mediators released from the mesangium contributing to the pathogenesis of tubulointerstitial damage in IgAN. We have also found the expression of angiotensin II subtype-1 receptor or angiotensin II subtype-2 receptor in proximal tubular epithelial cells differs from that of mesangial cells. One potential therapeutic approach is to counterbalance the growth-stimulatory effects of angiotensin II through subtype-1 receptor in tubular epithelial cells by subtype-2 receptor-mediated apoptosis and growth inhibition. These novel findings may provide clinicians new therapeutic approach for selective blockade of the RAS in IgAN.

  9. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    PubMed

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-08

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  10. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  11. Effect of a 30-day isolation stress on calcium, phosphorus and other excretory products in an unrestrained chimpanzee.

    NASA Technical Reports Server (NTRS)

    Sabbot, I. M.; Mcnew, J. J.; Hoshizaki, T.; Sedgwick, C. J.; Adey, W. R.

    1972-01-01

    An unrestrained chimpanzee was studied in an isolation chamber and in his home cage environment. The study consisted of 49 urine collection days (14 days pre-, 5 days post- and 30 days of isolation), and then of 10 days in the home cage. Dietary intake, urine and fecal data were obtained. The effect of isolation on various excretory parameters was studied. Urine samples were analyzed for volume, osmolarity, creatinine, creatine, urea-N, 17-hydroxy corticosteroids, VMA, calcium and inorganic phosphorus. One way analyses of variance performed on the urinary excretion parameters showed all except creatinine excretion to vary significantly during periods of the study. The changes observed in calcium and phosphorus were highly significant. The data suggests that the calcium to phosphorus excretion ratio might serve as a physiological stress indicator of Selye's adaptation syndrome (period of resistance).

  12. Challenges and intriguing problems in comparative renal physiology.

    PubMed

    Dantzler, William H

    2005-02-01

    The comparative approach has proved important many times in understanding renal function and continues to offer possible approaches to unsolved problems today, in three general areas. (1) Quantification of glomerular ultrafiltration. In contrast to the complex capillary network in the mammalian glomerulus, the glomerulus of the superficial loopless (reptilian-type) avian nephrons consists of a single capillary loop. This structure, in an avian species where it can be approached directly, should for the first time permit accurate determinations of the pressure profiles and the capillary area involved in glomerular ultrafiltration in an animal with high arterial pressure. (2) Fluid reabsorption by proximal renal tubules. In some reptilian proximal renal tubules, isolated and perfused in vitro, isosmotic fluid reabsorption can occur at control rates when lithium replaces sodium or when some other substance replaces sodium or chloride or both in the perfusate and bathing medium simultaneously. Reabsorption at the control rates, regardless of the composition of the perfusate and bathing medium, can be at least partially inhibited by cold and cyanide, but not by blockers of Na(+)-K(+)-ATPase. It is also independent of the buffer system used, but it is reduced about 20% by removal of colloid from the peritubular fluid. During the substitutions, the surface area of the proximal tubule cells increases dramatically and might permit some insignificant force to be more effective in the reabsorptive process. Understanding the process involved in this, apparently unique coupling of solute and fluid transport, certainly would be very valuable in understanding coupled transport of solutes and water across epithelia in general. (3) Urate secretion by proximal renal tubules. Urate is the major excretory end product of nitrogen metabolism in birds, most reptiles, and a few amphibians. It undergoes net secretion by the renal tubules. It has been possible to learn much about the

  13. A comparative study between excretory/secretory and autoclaved vaccines against RH strain of Toxoplasma gondii in murine models.

    PubMed

    Ezz Eldin, Hayam Mohamed; Kamel, Hanan Hussein; Badawy, Abeer Fathy; Shash, Lobna Sadek

    2015-09-01

    Toxoplasma gondii is an obligate intracellular protozoan that has a major importance in public health, in addition to veterinary medicine. Therefore, the development of an effective vaccine for controlling toxoplasmosis is an important goal. Excretory/secretory antigens (ESA), were previously identified as potential vaccine candidates, proved to play important roles in the pathogenesis and immune escape of the parasite. In addition, autoclaved Toxoplasma vaccine (ATV) is a special type of killed vaccine, recently characterized. The aim of the present work was, to compare between excretory/secretory and ATV against RH strain of T. gondii in mice based on; parasitological and histopathological levels. Tachyzoites were harvested from peritoneal exudates of infected mice and were used for challenge infection and vaccine preparation. BCG was used as an adjuvant. Mice were allocated equally into five groups; they were vaccinated intradermally over the sternum. The results of this study showed that the survival time after challenge, extended up to 16 days in ESA vaccinated group and up to 15 days in autoclaved Toxoplasma vaccinated group. ESA vaccinated group exhibited a profound decrease in parasite load following parasite challenge with a higher percentage of reduction in parasite count in all examined organs than the autoclaved Toxoplasma vaccinated group. The histopathological picture of the liver in both immunized groups, revealed marked reduction in the pathological changes observed as compared to controls, especially in ESA vaccinated group. It was concluded that vaccination with ESA showed more promising results versus ATV, as demonstrated by the survival rate of vaccinated mice, tachyzoites count and histopathological examination.

  14. Antibody and cytokine responses to Giardia excretory/secretory proteins in Giardia intestinalis-infected BALB/c mice.

    PubMed

    Jiménez, Juan C; Fontaine, Josette; Creusy, Colette; Fleurisse, Laurence; Grzych, Jean-Marie; Capron, Monique; Dei-Cas, Eduardo

    2014-07-01

    The humoral and cellular responses against excretory/secretory proteins and soluble extracts of Giardia intestinalis were evaluated in the course of experimental G. intestinalis infection in BALB/c mice. Production of IgG1, IgG2a, IgA, and IgE antibodies against excreted/secreted proteins and soluble extract was detected after infection by G. intestinalis. Specific IgA antibody against E/S proteins and soluble extract form intestinal fluids in infected mice was detected by ELISA. The Western blotting identified proteins of 30, 58, 63, and 83 kDa for IgA and IgG, respectively. High proliferation rate in vitro of spleen cell and secretion of interleukin-4 (IL-4) at 21 days p.i. after stimulation with excreted/secreted proteins and low proliferative response in the presence of soluble extract in infected BALB/c mice was observed. High production of interferon gamma (IFN-γ) and interleukin-5 (IL-5) at the time of decreasing cyst output (14-21 days p.i.) in infected mice was recorded, suggesting the important role of these cytokines in the control of the infection. Interestingly, progressive and gradual increase of the interleukin-10 after stimulation with both preparations was recorded from 7 days until 28 days after infection, indicating the possible regulatory effect of these antigens on the immune response during Giardia infection. Therefore, the infection by Giardia duodenalis stimulates a mixed response Th1 and Th2, mainly stimulated by excretory/secretory antigens. The immunogenicity of these antigens may be a suitable for identification of the proteins related with the effective immune response in the course of infection by G. duodenalsis.

  15. Enhancement of excretory production of an exoglucanase from Escherichia coli with phage shock protein A (PspA) overexpression.

    PubMed

    Wang, Y Y; Fu, Z B; Ng, K L; Lam, C C; Chan, A K N; Sze, K F; Wong, W K R

    2011-06-01

    Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.

  16. P2 Receptors in Renal Autoregulation

    PubMed Central

    Guan, Zhengrong; Fellner, Robert C.; Van Beusecum, Justin; Inscho, Edward W.

    2014-01-01

    Accomplishing autoregulation of renal blood flow and glomerular filtration rate is an essential function of the renal microcirculation. While the existence of this phenomenon has been known for many years, the exact mechanisms that underlie this unique regulatory capability remain poorly understood. The work of many investigators has provided insights into many aspects of the autoregulatory mechanism, but many critical components remain elusive. This review is intended to update the reader on the role of P2 purinoceptors as a postulated mechanism responsible for renal autoregulatory resistance adjustments. It will summarize recent advances in normal function and it will touch on more recent ideas regarding autoregulatory insufficiency in hypertension and inflammation. Current thoughts on the nature of the mechanosensor responsible for myogenic behavior will be discussed as well as current thoughts on the mechanisms involved in ATP release to the extracellular fluid space. PMID:24066935

  17. Severe antenatally diagnosed renal disorders: background, prognosis and practical approach.

    PubMed

    Aulbert, Wiebke; Kemper, Markus J

    2016-04-01

    Nowadays most renal disorders, especially urinary tract malformations and renal cystic disease, are diagnosed antenatally. In cases of severe bilateral disease, intrauterine renal dysfunction may lead to renal oligohydramnios (ROH), resulting in pulmonary hypoplasia which affects perinatal mortality and morbidity as well as the long-term outcome. However, some infants may only have mild pulmonary and renal disease, and advances in postnatal and dialysis treatment have resulted in improved short- and long-term outcome even in those infants with severe ROH. Here, we review the current state of knowledge and clinical experience of patients presenting antenatally with severe bilateral renal disorders and ROH. By addressing underlying mechanisms, intrauterine tools of diagnosis and treatment as well as published outcome data, we hope to improve antenatal counselling and postnatal care. KEY SUMMARY POINTS: 1. Nowadays most renal disorders are diagnosed antenatally, especially urinary tract malformations and renal cystic disease. 2. Severe kidney dysfunction may lead to renal oligohydramnios, which can cause pulmonary hypoplasia and is a risk factor of perinatal mortality and postnatal renal outcome. However, as considerable clinical heterogeneity is present, outcome predictions need to be treated with caution. 3. Advances in postnatal and dialysis treatment have resulted in improved short- and long-term outcomes even in infants with severe renal oligohydramnios. 4. A multidisciplinary approach with specialist input is required when counselling a family with an ROH-affected fetus as the decision-making process is very challenging.

  18. Renal scintiscanning. A review

    PubMed Central

    Davies, E. Rhys

    1970-01-01

    Renal scintiscanning is a simple investigation that does not require special preparation and is well tolerated by patients. Radiopharmaceuticals used in linear scanning are accumulated in the renal cortex. This accumulation is diminished: (a) when the cortex is destroyed, e.g. by pyelonephritis, injury, etc.; and (b) when the amount available to the cortex is reduced, e.g. by ischaemia. The scintigram depicts the kidneys unimpeded by bowel contents, gives a qualitative assessment of renal function and shows the distribution of zones of normal function. Recent technical improvements show great promise in deriving a quantitative measure of renal function in some circumstances. The location of normally functioning cortex is often important in the management of renal diseases and the value of scintiscanning is then considerable. It is occasionally useful in planning surgery. The anatomy of the renal collecting system can be shown only by urography. High dose techniques achieve this even in the face of renal failure, and scintiscanning has few indications in investigating lesions that distort the renal anatomy, e.g. tumours and cysts. Renal scintiscanning is a very valuable additional method to urography, arteriography and renography in investigation of renal disorders. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4905447

  19. Renal replacement therapy for acute renal failure.

    PubMed

    Macedo, E; Bouchard, J; Mehta, R L

    2009-09-01

    Renal replacement therapy became a common clinical tool to treat patients with severe acute kidney injury (AKI) since the 1960s. During this time dialytic options have expanded considerably; biocompatible membranes, bicarbonate dialysate and dialysis machines with volumetric ultrafiltration control have improved the treatment for acute kidney injury. Along with advances in methods of intermittent hemodialysis, continuous renal replacement therapies have gained widespread acceptance in the treatment of dialysis-requiring AKI. However, many of the fundamental aspects of the renal replacement treatment such as indication, timing of dialytic intervention, and choice of dialysis modality are still controversial and may influence AKI patient's outcomes. This review outlines current concepts in the use of dialysis techniques for AKI and suggests an approach for selecting the optimal method of renal replacement therapy.

  20. [Mechanisms of phosphorus and calcium homeostatic disorders in the development of cardiovascular events in patients with chronic renal diseases. The role of fibroblast growth factor 23 and Klotho].

    PubMed

    Milovanova, L Iu; Kozlovskaia, L V; Milovanov, Iu S; Bobkova, I N; Dobrosmyslov, I A

    2010-01-01

    The paper deals with the analysis of studies of the role of the bone morphogenetic proteins fibroblast growth factor 23 (FGF-23) and Klothno in the development of vascular wall calcification in chronic renal disease (CRD). FGF-23 is shown to be an important phosphaturic hormone that inhibits hypercalcemic and hyperphosphatemic effects of elevated serum vitamin D concentrations. There is evidence that there is an association between high serum FGF-23 levels and vascular wall calcification irrespective of the content of phosphorus and parathyroid hormone. Most authors regard FGF-23 as a potential uremic toxin in patients with end-stage CRD. There are data that support the renoprotective value of the morphogenetic protein Klotho whose expression in CRD is decreased.

  1. Computed tomography of transitional-cell carcinoma of the renal pelvis and ureter

    SciTech Connect

    Baron, R.L.; McClennah, B.L.; Lee, J.K.T.; Lawson, T.L.

    1982-07-01

    Preoperative staging of transitional-cell carcinoma of the upper urinary tract is important for identification of those tumors amenable to limited resection. Twenty-two patients were examined using computed tomography (CT), and three patterns were noted: (a) a focal intraluminal mass, (b) ureteral wall thickening with luminal narrowing, and (c) an infiltrating mass. In most cases, attenuation was similar to that of soft tissue; one tumor was calcified. Tumors of the renal pelvis may exhibit contrast enhancement. In 11 cases, excretory urography was inadequate or not attempted. CT demonstrated the site and cause of obstruction in all cases and proved to be a useful noninvasive staging procedure for suspected or proved transitional-cell carcinoma of the upper urinary tract.

  2. Activation of histamine H3 receptors inhibits renal noradrenergic neurotransmission in anesthetized dogs.

    PubMed

    Yamasaki, T; Tamai, I; Matsumura, Y

    2001-05-01

    To investigate the possible involvement of histamine H(3) receptors in renal noradrenergic neurotransmission, effects of (R)alpha-methylhistamine (R-HA), a selective H3-receptor agonist, and thioperamide (Thiop), a selective H3-receptor antagonist, on renal nerve stimulation (RNS)-induced changes in renal function and norepinephrine (NE) overflow in anesthetized dogs were examined. RNS (0.5-2.0 Hz) produced significant decreases in urine flow and urinary sodium excretion and increases in NE overflow rate (NEOR), without affecting renal hemodynamics. When R-HA (1 microg x kg(-1) x min(-1)) was infused intravenously, mean arterial pressure and heart rate were significantly decreased, and there was a tendency to reduce basal values of urine flow and urinary sodium excretion. During R-HA infusion, RNS-induced antidiuretic action and increases in NEOR were markedly attenuated. Thiop infusion (5 microg x kg(-1) x min(-1)) did not affect basal hemodynamic and excretory parameters. Thiop infusion caused RNS-induced antidiuretic action and increases in NEOR similar to the basal condition. When R-HA was administered concomitantly with Thiop infusion, R-HA failed to attenuate the RNS-induced antidiuretic action and increases in NEOR. However, in the presence of pyrilamine (a selective H1-receptor antagonist) or cimetidine (a selective H2-receptor antagonist) infusion, R-HA attenuated the RNS-induced actions, similarly to the case without these antagonists. Thus functional histamine H3 receptors, possibly located on renal noradrenergic nerve endings, may play the role of inhibitory modulators of renal noradrenergic neurotransmission.

  3. [Postural trauma and rhabdomyolosis causing acute renal failure].

    PubMed

    Vecer, J; Kubátová, H; Soucek, M; Charvát, J; Kvapil, M; Matousovic, K; Martínek, V

    2000-02-01

    Rhabdomyolysis (damage of the muscles of various origin) leads to the efflux of the intracellular fluids in the circulation. The common complication of this status is the renal failure. The early diagnosis and the proper treatment makes the fall of renal function reversible. That is why the possibility of the rhabdomyolysis must be consider. The case report describes the development of renal failure in young, previously healthy men, followed by trauma mechanism after drug and alcohol abuse.

  4. Prospective radionuclide renal function evaluation and its correlation with radiological findings in patients with Kock pouch urinary diversion

    SciTech Connect

    Chen, K.K.; Chang, L.S.; Chen, M.T.; Yeh, S.H. )

    1991-05-01

    In an attempt to understand better the status of renal function after Kock pouch urinary diversion we conducted a prospective evaluation of renal function in 25 patients using the radionuclide 131iodine-hippurate. Studies were done before, and at 1 month and every 6 months for 30 months postoperatively. The radionuclide results were then compared to excretory urography and contrast study of the reservoir. Our renal function study included the determination of individual and total effective renal plasma flow (ml. per minute), the time to maximal radioactivity over the kidney (peak time in minutes) and a renogram. The mean total (both kidneys) effective renal plasma flow rates before (25 patients) and at month 1 (19), month 6 (14), month 12 (12), month 18 (6), month 24 (6) and month 30 (7) after operation were 385.5 +/- 112.2, 310.5 +/- 109.9, 362.7 +/- 69.2, 442.0 +/- 97.5, 468.2 +/- 82.5, 405.7 +/- 70.6 and 414.0 +/- 65.1, respectively. A comparison of individual and total effective renal plasma flow before and after operation revealed that only the change of the flow at each or both sides of the kidney before and at 1 month after the operation reached statistically significant differences, respectively (p less than 0.05, paired t test). Postoperatively 5 of 6 patients with hydronephrosis had abnormal peak time and a third segment on the renogram was performed on the corresponding side of the kidney. No reflux was noted on contrast study of the reservoir of any patient followed for up to 30 months. In conclusion, the radionuclide renal function evaluation showed a significant decrease of renal function 1 month after Kock pouch diversion, then it resumed and remained stable (neither improved nor deteriorated) for 30 months. Also the abnormal peak time and third segment on the renogram usually implicated a dilated upper urinary tract.

  5. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.

    PubMed

    O'Neill, Julie; Fasching, Angelica; Pihl, Liselotte; Patinha, Daniela; Franzén, Stephanie; Palm, Fredrik

    2015-08-01

    Early stage diabetic nephropathy is characterized by glomerular hyperfiltration and reduced renal tissue Po2. Recent observations have indicated that increased tubular Na(+)-glucose linked transport (SGLT) plays a role in the development of diabetes-induced hyperfiltration. The aim of the present study was to determine how inhibition of SLGT impacts upon Po2 in the diabetic rat kidney. Diabetes was induced by streptozotocin in Sprague-Dawley rats 2 wk before experimentation. Renal hemodynamics, excretory function, and renal O2 homeostasis were measured in anesthetized control and diabetic rats during baseline and after acute SGLT inhibition using phlorizin (200 mg/kg ip). Baseline arterial pressure was similar in both groups and unaffected by SGLT inhibition. Diabetic animals displayed reduced baseline Po2 in both the cortex and medulla. SGLT inhibition improved cortical Po2 in the diabetic kidney, whereas it reduced medullary Po2 in both groups. SGLT inhibition reduced Na(+) transport efficiency [tubular Na(+) transport (TNa)/renal O2 consumption (Qo2)] in the control kidney, whereas the already reduced TNa/Qo2 in the diabetic kidney was unaffected by SGLT inhibition. In conclusion, these data demonstrate that when SGLT is inhibited, renal cortex Po2 in the diabetic rat kidney is normalized, which implies that increased proximal tubule transport contributes to the development of hypoxia in the diabetic kidney. The reduction in medullary Po2 in both control and diabetic kidneys during the inhibition of proximal Na(+) reabsorption suggests the redistribution of active Na(+) transport to less efficient nephron segments, such as the medullary thick ascending limb, which results in medullary hypoxia.

  6. Renal Artery Embolization

    PubMed Central

    Sauk, Steven; Zuckerman, Darryl A.

    2011-01-01

    Renal artery embolization (RAE) is an effective minimally invasive alternative procedure for the treatment of a variety of conditions. Since the 1970s when RAE was first developed, technical advances and growing experience have expanded the indications to not only include treatment of conditions such as symptomatic hematuria and palliation for metastatic renal cancer, but also preoperative infarction of renal tumors, treatment of angiomyolipomas, vascular malformations, medical renal disease, and complications following renal transplantation. With the drastically improved morbidity associated with this technique in part due to the introduction of more precise embolic agents and smaller delivery catheters, RAE continues to gain popularity for various urologic conditions. The indications and techniques for renal artery embolization are reviewed in the following sections. PMID:23204638

  7. Secondary hyperoxaluria: a risk factor for kidney stone formation and renal failure in native kidneys and renal grafts.

    PubMed

    Karaolanis, Georgios; Lionaki, Sophia; Moris, Demetrios; Palla, Viktoria-Varvara; Vernadakis, Spiridon

    2014-10-01

    Secondary hyperoxaluria is a multifactorial disease affecting several organs and tissues, among which stand native and transplanted kidneys. Nephrocalcinosis and nephrolithiasis may lead to renal insufficiency. Patients suffering from secondary hyperoxaluria, should be promptly identified and appropriately treated, so that less renal damage occurs. The aim of this review is to underline the causes of hyperoxaluria and the related pathophysiologic mechanisms, which are involved, along with the description of seven cases of irreversible renal graft injury due to secondary hyperoxaluria.

  8. [Renal artery stenosis : atheromatous disease and fibromuscular dysplasia].

    PubMed

    Halimi, Jean-Michel

    2009-04-01

    Renal artery stenosis may be due to atheromatous disease or renal fibromuscular dysplasia (FMD). Management of both diseases requires treatment of hypertension usually observed in such patients; however, clinical presentation, mechanism and treatment of these 2 diseases are usually different. Renal FMD is now considered as a systemic disease, the cause of which may be genetic (although the exact cause is still elusive). Renal arteries are the most frequent localizations of FMD, but extra renal arteries may also be involved (usually carotid arteries). Risk factors of hypertension-induced renal FMD include estrogen treatment and smoking. Renal FMD are mostly found in young women and in children who present with recent severe and/or refractory symptomatic hypertension. Diagnosis is usually easy (Doppler, CT-scan), and treatment of renal FMD is angioplasty in most cases. Atheromatous renal artery stenosis is usually found in patients with other atheromatous disease (peripheral artery disease, carotid, coronary artery disease...). Clinical presentation include severe or refractory hypertension, recurrent flash pulmonary edema in a patient with hypertension, progressive renal dysfunction spontaneously or after medical treatment with converting-enzyme inhibition or angiotensin II blockade, hypertension in a patient (usually smoker or ex-smoker) with diffuse atheromatous vascular disease. Management of atheromatous renal artery disease is medical treatment in all patients (aggressive treatment of cardiovascular risk factors, control of arterial pressure); revascularization is required in some patients only since it rarely cures hypertension: the goal of revascularization is mostly renal function protection, which may be observed in selected patients. Revascularization must be decided by physicians or teams involved in the care of such patients. Patients with atheromatous renal artery disease are at very high renal and cardiovascular risk : aggressive management of

  9. EGFR signaling in renal fibrosis

    PubMed Central

    Zhuang, Shougang; Liu, Na

    2014-01-01

    Signaling through the epidermal growth factor receptor (EGFR) is involved in regulation of multiple biological processes, including proliferation, metabolism, differentiation, and survival. Owing to its aberrant expression in a variety of malignant tumors, EGFR has been recognized as a target in anticancer therapy. Increasingly, evidence from animal studies indicates that EGFR signaling is also implicated in the development and progression of renal fibrosis. The therapeutic value of EGFR inhibition has not yet been evaluated in human kidney disease. In this article, we summarize recent research into the role of EGFR signaling in renal fibrogenesis, discuss the mechanism by which EGFR regulates this process, and consider the potential of EGFR as an antifibrotic target. PMID:26312153

  10. Renal pelvis or ureter cancer

    MedlinePlus

    Transitional cell cancer of the renal pelvis or ureter; Kidney cancer - renal pelvis; Ureter cancer ... Cancer can grow in the urine collection system, but it is uncommon. Renal pelvis and ureter cancers ...

  11. Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction.

    PubMed

    Quiroz, Yasmir; Ferrebuz, Atilio; Romero, Freddy; Vaziri, Nosratola D; Rodriguez-Iturbe, Bernardo

    2008-02-01

    The progressive deterioration of renal function and structure resulting from renal mass reduction are mediated by a variety of mechanisms, including oxidative stress and inflammation. Melatonin, the major product of the pineal gland, has potent_antioxidant and anti-inflammatory properties, and its production is impaired in chronic renal failure. We therefore investigated if melatonin treatment would modify the course of chronic renal failure in the remnant kidney model. We studied rats followed 12 wk after renal ablation untreated (Nx group, n = 7) and treated with melatonin administered in the drinking water (10 mg/100 ml) (Nx + MEL group, n = 8). Sham-operated rats (n = 10) were used as controls. Melatonin administration increased 13-15 times the endogenous hormone levels. Rats in the Nx + MEL group had reduced oxidative stress (malondialdehyde levels in plasma and in the remnant kidney as well as nitrotyrosine renal abundance) and renal inflammation (p65 nuclear factor-kappaB-positive renal interstitial cells and infiltration of lymphocytes and macrophages). Collagen, alpha-smooth muscle actin, and transforming growth factor-beta renal abundance were all increased in the remnant kidney of the untreated rats and were reduced significantly by melatonin treatment. Deterioration of renal function (plasma creatinine and proteinuria) and structure (glomerulosclerosis and tubulointerstitial damage) resulting from renal ablation were ameliorated significantly with melatonin treatment. In conclusion, melatonin administration improves the course of chronic renal failure in rats with renal mass reduction. Further studies are necessary to define the potential usefulness of this treatment in other animal models and in patients with chronic renal disease.

  12. Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens-methionine aminopeptidase 2 and acid phosphatase.

    PubMed

    Zheng, Minghui; Hu, Kunhua; Liu, Wei; Li, Hongyu; Chen, Jingfang; Yu, Xinbing

    2013-03-01

    The excretory secretory products (ESP) of Clonorchis sinensis are the causative agents of clonorchiasis and biliary diseases. The parasites' ESP play important roles in host-parasite interactions. The protein compositions of ESP at different secretory times are different and have not been systemically investigated so far. In this study, we collected ESP from six different periods (0-3 h, 3-6 h, 6-12 h, 12-24 h, 24-36 h, and 36-48 h) from C. sinensis adults. Using a shotgun LC-MS/MS analysis, we found 187, 80, 103, 58, 248, and 383 proteins, respectively. Among these proteins, we selected methionine aminopeptidase 2 (MAP-2, presented in 24-36 h and 36-48 h ESP) and acid phosphatase (AP, presented in 3-6 h, 12-24 h, 24-36 h, and 36-48 h ESP) for further study. Bioinformatics analysis showed that CsMAP-2 has metallopeptidase family M24, unique lysine residue-rich and acidic residue-rich domain, SGTS motif, and auto-cleavage point; and that CsAP has possible signal sequence cleavage site, acid phosphate domain, and two histidine acid phosphatases active regions. CsMAP-2 and CsAP's cDNA have 1,425 bp and1,410 bp ORF, encoding 475 and 470 amino acid proteins and weighing 55.3840 kDa and 55.2875 kDa, respectively. MAP-2 and AP were identified as antigens present in the ESP and circulating antigens by immunoblot analysis, which were also found expressing in the eggs, metacercaria, and adult stages of C. sinensis. Immunofluorescence analysis showed that they were located in tegument and intestinal cecum of adult. MTT assay showed that they could inhibit hepatic stellate cell line (LX-2) proliferation. These findings presented the compositions of different period excretory secretary products from C. sinensis adults.

  13. Early postnatal hyperalimentation impairs renal function via SOCS-3 mediated renal postreceptor leptin resistance.

    PubMed

    Alcazar, Miguel Angel Alejandre; Boehler, Eva; Rother, Eva; Amann, Kerstin; Vohlen, Christina; von Hörsten, Stephan; Plank, Christian; Dötsch, Jörg

    2012-03-01

    Early postnatal hyperalimentation has long-term implications for obesity and developing renal disease. Suppressor of cytokine signaling (SOCS) 3 inhibits phosphorylation of signal transducer and activator of transcription (STAT) 3 and ERK1/2 and thereby plays a pivotal role in mediating leptin resistance. In addition, SOCS-3 is induced by both leptin and inflammatory cytokines. However, little is known about the intrinsic-renal leptin synthesis and function. Therefore, this study aimed to elucidate the implications of early postnatal hyperalimentation on renal function and on the intrinsic-renal leptin signaling. Early postnatal hyperalimentation in Wistar rats during lactation was induced by litter size reduction at birth (LSR) either to LSR10 or LSR6, compared with home cage control male rats. Assessment of renal function at postnatal day 70 revealed decreased glomerular filtration rate and proteinuria after LSR6. In line with this impairment of renal function, renal inflammation and expression as well as deposition of extracellular matrix molecules, such as collagen I, were increased. Furthermore, renal expression of leptin and IL-6 was up-regulated subsequent to LSR6. Interestingly, the phosphorylation of Stat3 and ERK1/2 in the kidney, however, was decreased after LSR6, indicating postreceptor leptin resistance. In accordance, neuropeptide Y (NPY) gene expression was down-regulated; moreover, SOCS-3 protein expression, a mediator of postreceptor leptin resistance, was strongly elevated and colocalized with NPY. Thus, our findings not only demonstrate impaired renal function and profibrotic processes but also provide compelling evidence of a SOCS-3-mediated intrinsic renal leptin resistance and concomitant up-regulated NPY expression as an underlying mechanism.

  14. Jade-1, a candidate renal tumor suppressor that promotes apoptosis.

    PubMed

    Zhou, Mina I; Foy, Rebecca L; Chitalia, Vipul C; Zhao, Jin; Panchenko, Maria V; Wang, Hongmei; Cohen, Herbert T

    2005-08-02

    Medical therapies are lacking for advanced renal cancer, so there is a great need to understand its pathogenesis. Most renal cancers have defects in the von Hippel-Lindau tumor suppressor pVHL. The mechanism by which pVHL protein functions in renal tumor suppression remains unclear. Jade-1 is a short-lived, kidney-enriched transcription factor that is stabilized by direct interaction with pVHL. Loss of Jade-1 stabilization by pVHL correlates with renal cancer risk, making the relationship between Jade-1 and renal cancer compelling. We report that Jade-1 expression was barely detectable in all tested renal cancer cell lines, regardless of VHL status. Strikingly, proteasome inhibitor treatment increased endogenous Jade-1 expression up to 10-fold. Jade-1 inhibited renal cancer cell growth, colony formation, and tumor formation in nude mice. Intriguingly, Jade-1 also affected the pattern of cell growth in monolayer culture and 3D culture. Jade-1 increased apoptosis by 40-50% and decreased levels of antiapoptotic Bcl-2. Antisense Jade-1-expressing cells confirmed these results. Therefore, Jade-1 may suppress renal cancer cell growth in part by increasing apoptosis. Jade-1 may represent a proapoptotic barrier to proliferation that must be overcome generally in renal cancer, perhaps initially by pVHL inactivation and subsequently by increased proteasomal activity. Therefore, Jade-1 may be a renal tumor suppressor.

  15. [Heavy metal poisoning and renal injury in children].

    PubMed

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  16. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  17. Immunocytochemical detection of vasoactive intestinal peptide-like and peptide histidine isoleucine-like peptides in the nervous system and the excretory system of adult Nippostrongylus brasiliensis.

    PubMed

    Foster, N

    1998-05-01

    Vasoactive intestinal peptide-like and peptide histidine isoleucine-like immunoreactivities were detected in the excretory duct of adult male and female Nippostrongylus brasiliensis, thus indicating the source of these two physiologically active peptides previously isolated from the excretory/secretory products of adult N. brasiliensis. In the nervous system immunoreactivity to both these peptides was confined to females and was found in the neurons of the ovijector associated ganglion. This is consistent with co-synthesis of vasoactive intestinal peptide-like and peptide histidine isoleucine-like peptides which has also been shown to occur in all mammalian vasoactive intestinal peptid-ergic neurons studied to date. However, in addition to this, and in common to some previous studies on helminth vasoactive intestinal peptide and peptide histidine isoleucine immunoreactivities, co-synthesis of the peptides was not indicated in a pair of branched neurons which projected posteriorly and peripherally from the ganglion associated with the ovijector of females and which terminated in two pairs of ganglia also exhibiting vasoactive intestinal peptide-like immunoreactivity only. The position of these ganglia indicated that they innervate muscles close to the body wall and may be responsible for the muscular contractions required for expulsion of eggs from female Nippostrongylus brasiliensis. This is also the first study to successfully detect these peptides in the excretory system of gastrointestinal nematodes.

  18. Toxocara canis: monoclonal antibodies to larval excretory-secretory antigens that bind with genus and species specificity to the cuticular surface of infective larvae.

    PubMed

    Bowman, D D; Mika-Grieve, M; Grieve, R B

    1987-12-01

    When maintained in culture, the infective-stage larvae of Toxocara canis produce a group of excretory-secretory antigens. Monoclonal antibodies to these antigens have been produced and partially characterized. Hybridomas were made using spleens from mice that had been given 250 embryonated eggs of T. canis followed by immunization with excretory-secretory antigens. Monoclonal antibodies were first screened against excretory-secretory antigens using an indirect enzyme-linked immunosorbent assay. Those antibodies positive in this assay were then screened against the surfaces of formalin-fixed, infective-stage larvae using an indirect fluorescent antibody assay. The two monoclonal antibodies showing fluorescence were also tested against the surfaces of infective-stage larvae of Toxocara cati, Baylisascaris procyonis, Toxascaris leonina, Ascaris suum, a Porrocaecum sp., and Dirofilaria immitis. One of these two antibodies bound to the surface of T. canis and T. cati while the other bound only to the surface of T. canis; neither were reactive with the other ascaridoid larvae or the larvae of D. immitis. Enzyme-linked immunoelectrotransfer blotting techniques were used to demonstrate that the cross-reactive antibody recognized antigens with molecular weights of about 200 kDa while the more specific monoclonal antibody recognized antigens with approximate molecular weights of 80 kDa. The specificity of these two antibodies for T. canis and T. cati should prove helpful in the development of more specific assays for the diagnosis of visceral and ocular larva migrans.

  19. Renal neurohormonal regulation in heart failure decompensation.

    PubMed

    Jönsson, Sofia; Agic, Mediha Becirovic; Narfström, Fredrik; Melville, Jacqueline M; Hultström, Michael

    2014-09-01

    Decompensation in heart failure occurs when the heart fails to balance venous return with cardiac output, leading to fluid congestion and contributing to mortality. Decompensated heart failure can cause acute kidney injury (AKI), which further increases mortality. Heart failure activates signaling systems that are deleterious to kidneys such as renal sympathetic nerve activity (RSNA), renin-angiotensin-aldosterone system, and vasopressin secretion. All three reduce renal blood flow (RBF) and increase tubular sodium reabsorption, which may increase renal oxygen consumption causing AKI through renal tissue hypoxia. Vasopressin contributes to venous congestion through aquaporin-mediated water retention. Additional water retention may be mediated through vasopressin-induced medullary urea transport and hyaluronan but needs further study. In addition, there are several systems that could protect the kidneys and reduce fluid retention such as natriuretic peptides, prostaglandins, and nitric oxide. However, the effect of natriuretic peptides and nitric oxide are blunted in decompensation, partly due to oxidative stress. This review considers how neurohormonal signaling in heart failure drives fluid retention by the kidneys and thus exacerbates decompensation. It further identifies areas where there is limited data, such as signaling systems 20-HETE, purines, endothelin, the role of renal water retention mechanisms for congestion, and renal hypoxia in AKI during heart failure.

  20. Atheroembolic renal disease.

    PubMed

    Scolari, Francesco; Ravani, Pietro

    2010-05-08

    Atheroembolic renal disease develops when atheromatous aortic plaques rupture, releasing cholesterol crystals into the small renal arteries. Embolisation often affects other organs, such as the skin, gastrointestinal system, and brain. Although the disease can develop spontaneously, it usually develops after vascular surgery, catheterisation, or anticoagulation. The systemic nature of atheroembolism makes diagnosis difficult. The classic triad of a precipitating event, acute or subacute renal failure, and skin lesions, are strongly suggestive of the disorder. Eosinophilia further supports the diagnosis, usually confirmed by biopsy of an affected organ or by the fundoscopic finding of cholesterol crystals in the retinal circulation. Renal and patient prognosis are poor. Treatment is mostly preventive, based on avoidance of further precipitating factors, and symptomatic, aimed to the optimum treatment of hypertension and cardiac and renal failure. Statins, which stabilise atherosclerotic plaques, should be offered to all patients. Steroids might have a role in acute or subacute progressive forms with systemic inflammation.

  1. [Sarcoidosis : Renal manifestations].

    PubMed

    Löffler, C; Bergner, R

    2017-04-12

    Renal involvement in sarcoidosis is much more common than generally assumed from old epidemiological studies and is often only detected when actively searched for. Many patients with renal sarcoidosis present with no or only few symptoms. The diagnostic work-up of sarcoidosis should always include a possible renal involvement. In cases of impaired renal function, proteinuria or a pathological urine sediment, a renal biopsy specimen should be obtained to assess the type, severity and prognosis of the kidney disease. Treatment is primarily based on the use of corticosteroids. Steroid-sparing agents, such as disease-modifying antirheumatic drugs and infliximab can be applied; however, the evidence for efficacy of these therapies is mostly based on case series and expert opinions. Discontinuation of immunosuppression therapy bears a high risk of relapse.

  2. Effect of renal impairment on the pharmacokinetics of grepafloxacin.

    PubMed

    Efthymiopoulos, C; Bramer, S L; Maroli, A; Gambertoglio, J G

    1997-01-01

    Grepafloxacin is mainly (approximately 90%) excreted by nonrenal mechanisms. The effect of renal impairment on the pharmacokinetics of grepafloxacin was evaluated in an open-label study involving 20 adults, 15 of whom had some degree of renal impairment (creatinine clearance 7.5 to 64.0 ml/min). Of these 15, 3 had mild renal impairment, 6 had moderate renal impairment, and 6 had severe renal impairment. Grepafloxacin 400 mg was administered orally once daily for 7 days, and pharmacokinetic parameters were measured on days 1 and 7. The results show that both renal clearance and the amount of grepafloxacin excreted unchanged in urine, on day 1 and day 7, were significantly lower in individuals with severe renal impairment compared with those who were healthy. Renal clearance was 0.50 +/- 0.05 ml/min/kg in healthy individuals vs 0.15 +/- 0.05 ml/min/kg in patients with severe renal impairment on day 1, while the corresponding values on day 7 were 0.46 +/- 0.04 ml/min/kg vs 0.14 +/- 0.08 ml/min/kg, respectively. The percentage of grepafloxacin excreted unchanged in urine on day 1 was 5.1 +/- 3.0 in the healthy individuals and 1.5 +/- 0.7 in those with severe renal impairment. On day 7, the corresponding values were 7.9 +/- 1.9 and 2.9 +/- 2.2. No other significant pharmacokinetic differences occurred between the 2 groups. Accumulation during multiple dose administration did not vary with the degree of renal impairment. We conclude that the pharmacokinetics of grepafloxacin are not significantly different in individuals with varying degrees of renal impairment. Hence, dose adjustment is not necessary during treatment of patients with renal dysfunction.

  3. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  4. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  5. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  6. Renal Trauma: The Rugby Factor

    PubMed Central

    Freeman, Catherine M.; Kelly, Michael E.; Nason, Gregory J.; McGuire, Barry B.; Kilcoyne, Aoife; Ryan, John; Lennon, Gerald; Galvin, David; Quinlan, David; Mulvin, David

    2015-01-01

    Introduction Renal trauma accounts for 5% of all trauma cases. Rare mechanisms of injuries including sports participation are increasingly common. Rugby-related trauma poses a conundrum for physicians and players due to the absence of clear guidelines and a paucity of evidence. Our series highlights traumatic rugby-related renal injuries in our institution, and emphasize the need for international guidelines on management. Methods A retrospective review of all abdominal traumas between January 2006 and April 2013, specifically assessing for renal related trauma that were secondary to rugby injuries was performed. All patients' demographics, computerized tomography results, hematological and biochemical results and subsequent management were recorded. Results Five male patients presented with rugby-related injuries. Mean age was 21 years old. All patients were hemodynamically stable and managed conservatively in acute setting. One patient was detected to have an unknown pre-existing atrophic kidney that had been subsequently injured, and was booked for an elective nephrectomy an 8-week interval. Conclusion Rugby-related trauma has generated essential attention. This paper serves to highlight this type of injury and the need for defined guidelines on role of imaging and international consensus on timing of return to contact sport, in both professional and amateur settings. PMID:26889132

  7. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR).

    PubMed

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J; Laclette, Juan P; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-05-19

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.

  8. Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions.

    PubMed

    Vendelova, Emilia; Camargo de Lima, Jeferson; Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Mueller, Thomas; Veepaschit, Jyotishman; Grimm, Clemens; Brehm, Klaus; Hrčková, Gabriela; Lutz, Manfred B; Ferreira, Henrique B; Nono, Justin Komguep

    2016-10-01

    Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts.

  9. Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions

    PubMed Central

    Vendelova, Emilia; Camargo de Lima, Jeferson; Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Mueller, Thomas; Veepaschit, Jyotishman; Grimm, Clemens; Brehm, Klaus; Hrčková, Gabriela; Lutz, Manfred B.; Ferreira, Henrique B.

    2016-01-01

    Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts. PMID:27736880

  10. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

    PubMed Central

    Bahk, Young Yil; Pak, Jhang Ho

    2016-01-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases. PMID:27853127

  11. Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis.

    PubMed

    Sotillo, Javier; Ferreira, Ivana; Potriquet, Jeremy; Laha, Thewarach; Navarro, Severine; Loukas, Alex; Mulvenna, Jason

    2017-02-13

    Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases.

  12. Dirofilaria immitis exhibits sex- and stage-specific differences in excretory/secretory miRNA and protein profiles.

    PubMed

    Tritten, Lucienne; Clarke, Damian; Timmins, Scott; McTier, Tom; Geary, Timothy G

    2016-12-15

    The canine heartworm Dirofilaria immitis releases excretory/secretory molecules into its host and in culture. We report analyses of the types, amounts and stage-dependence of microRNAs and proteins found in D. immitis culture media recovered after incubating 800,000 microfilariae for 6days, 500L3 and 500L4 for 7days, as well as 40 adult females and 40 adult males for 48h, all separately. In addition, the presence of exosome-like particles was established by nanoparticle tracking analysis. Our results are in concordance with the D. immitis molecules previously detected in dog blood and in culture medium, but add additional insight into the sex- and stage-specificity of these processes. Of 131 miRNA candidates analyzed, none of the most abundant sequences was exclusively associated with one stage. Several isoforms of the nematode miR-100 family, miR-279, miR-71, were highly represented and overlapped substantially with the profile of heartworm miRNAs described from infected dog blood. lin-4 was primarily associated with males. We also report 4, 27 and 72 proteins in media from microfilariae, females and males, respectively. The only protein in common to all samples was actin, and only 9/88 proteins with a gene ontology description had not been reported in other studies of filarial secretomes. Exosomal proteins were well represented, dominated by cytoskeletal proteins, metabolic enzymes, zeta polypeptide, and chaperones.

  13. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    PubMed

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  14. iTRAQ-based comparative proteomic analysis of excretory-secretory proteins of schistosomula and adult worms of Schistosoma japonicum.

    PubMed

    Cao, Xiaodan; Fu, Zhiqiang; Zhang, Min; Han, Yanhui; Han, Hongxiao; Han, Qian; Lu, Ke; Hong, Yang; Lin, Jiaojiao

    2016-04-14

    Schistosomiasis remains a serious public health problem with 200 million people infected and 779 million people at risk worldwide. The schistosomulum and adult worm are two stages of the complex lifecycle of Schistosoma japonicum and excretory/secretory proteins (ESPs) play a major role in host-parasite interactions. In this study, iTRAQ-coupled LC-MS/MS was used to investigate the proteome of ESPs obtained from schistosomula and adult worms of S. japonicum, and 298 differential ESPs were identified. Bioinformatics analysis of differential ESPs in the two developmental stages showed that 161 ESPs upregulated in schistosomula were associated with stress responses, carbohydrate metabolism and protein degradation, whereas ESPs upregulated in adult worms were mainly related to immunoregulation and purine metabolism. Recombinant heat shock protein 70 (HSP70) and thioredoxin peroxidase (TPx), two differential proteins identified in this study, were expressed. Further studies showed that rSjHSP70 and rSjTPx stimulated macrophages expressing high levels of the anti-inflammatory factors TGF-β, IL-10 and Arg-1, and suppressed the expression of the pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and iNOS in LPS-induced macrophages. This study provides new insights into the survival and development of schistosomes in the final host and helps identify vaccine candidates or new diagnostic reagents for schistosomiasis.

  15. Glycans expressed on Trichinella spiralis excretory-secretory antigens are important for anti-inflamatory immune response polarization.

    PubMed

    Cvetkovic, Jelena; Ilic, Natasa; Sofronic-Milosavljevic, Ljiljana; Gruden-Movsesijan, Alisa

    2014-12-01

    Trichinella spiralis muscle larvae excretory-secretory antigens (ES L1) are most likely responsible for the induction of immune response during infection by this parasitic. The antigens bear carbohydrate structures that may contribute to immune system activation resulting in a Th2/anti-inflammatory immune response. We show that T. spiralis glycans affect the expression and the production of IL-4 and IL-10 in vivo. Alteration of carbohydrate structures on ES L1 altered dendritic cell (DC) maturation. Periodate treatment of ES L1 led to the reduction in both ERK and p38 phosphorylation which may be the cause of reduced IL-10 and IL-12p70 production. In vitro priming of naïve T cells with DCs stimulated with native and periodate-treated ES L1 emphasized the importance of intact glycans for IL-10 production. We conclude that T. spiralis glycans affect the anti-inflammatory environment and can interfere with the development of inflammatory diseases.

  16. Brugia malayi soluble and excretory-secretory proteins attenuate development of streptozotocin-induced type 1 diabetes in mice.

    PubMed

    Amdare, N; Khatri, V; Yadav, R S P; Tarnekar, A; Goswami, K; Reddy, M V R

    2015-12-01

    Understanding the modulation of the host-immune system by pathogens-like filarial parasites offers an alternate approach to prevent autoimmune diseases. In this study, we have shown that treatment with filarial proteins prior to or after the clinical onset of streptozotocin-induced type-1 diabetes (T1D) can ameliorate the severity of disease in BALB/c mice. Pre-treatment with Brugia malayi adult soluble (Bm A S) or microfilarial excretory-secretory (Bm mf ES) or microfilarial soluble (Bm mf S) antigens followed by induction of diabetes led to lowering of fasting blood glucose levels with as many as 57.5-62.5% of mice remaining nondiabetic. These proteins were more effective when they were used to treat the mice with established T1D as 62.5-71.5% of the mice turned to be nondiabetic. Histopathological examination of pancreas of treated mice showed minor inflammatory changes in pancreatic islet cell architecture. The therapeutic effect was found to be associated with the decreased production of cytokines TNF-α & IFN-γ and increased production of IL-10 in the culture supernatants of splenocytes of treated mice. A switch in the production of anti-insulin antibodies from IgG2a to IgG1 isotype was also seen. Together these results provide a proof towards utilizing the filarial derived proteins as novel anti-diabetic therapeutics.

  17. MICROANATOMY, ULTRASTRUCTURE, AND SYSTEMATIC SIGNIFICANCE OF THE EXCRETORY SYSTEM AND MANTLE CAVITY OF AN ACOCHLIDIAN GASTROPOD (OPISTHOBRANCHIA).

    PubMed

    Fahrner, A.; Haszprunar, G.

    2002-05-01

    The microanatomy and ultrastructure of the excretory system of an undescribed mesopsammic gastropod of the genus Hedylopsis have been examined by means of semithin serial sections, reconstructions, and transmission electron microscopy. The functional metanephridial system comprises a monotocardian heart with a single ventricle and auricle in a spacious pericardium as well as a single, large kidney. Podocytes in the auricular epicardium represent the site of ultrafiltration and formation of the primary urine, whereas the flat epithelium of the kidney with extensive basal infoldings, large vacuoles and the apical microvillous border indicates modification of the primary filtrate. Solitary rhogocytes (pore cells) represent additional loci of ultrafiltration with an identical fine-structure as those of the podocytes (meandering slits with diaphragms covered by extracellular matrix). The presence of podocytes situated in the epicardial wall of the auricle is regarded as plesiomorphic for the Opisthobranchia and is confirmed for the Acochlidia for the first time. Kidney and rectum both open into a small, yet distinct mantle cavity. Within the Acochlidia this condition represents a plesiomorphic character only known from one further Hedylopsis species until now. Special cells (here termed microvillous pit-cells) with a presumed absorptive function are interspersed between the epithelial cells of the mantle cavity. They are mainly characterized by a prominent invagination of the apical border with densely arranged, very large microvilli. The presence of a mantle cavity that has been lost in all other acochlidian genera supports the systematic placement of the Hedylopsidae at the base of the Achochlidia.

  18. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes.

    PubMed

    Długosz, Ewa; Wasyl, Katarzyna; Klockiewicz, Maciej; Wiśniewski, Marcin

    2015-09-01

    The effect of Toxocara larval antigens on cytokine secretion by mouse splenocytes was studied in vitro. Recombinant mucins were produced in Pichia pastoris yeast, and Toxocara excretory-secretory (TES) antigens were collected from in vitro culture of L2 larvae. Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5 were expressed as glycoproteins and were specifically recognized by Toxocara canis-infected dog serum antibodies. Mouse splenocytes stimulated with recombinant mucins produced IL-5, IL-6, and TGF-β. Cell stimulation with whole TES products was more effective and resulted in secretion of IL-4, IL-5, IL-6, IL-10, and TGF-β and downregulation of TNF-α production. IFN-γ and IL-17 secretion was noted only after ConA treatment. Cells originating from infected animals produced significantly smaller amounts of these two cytokines compared to control cells, which suggests that Th1 and Th17 response in infected mice is strongly inhibited. However, splenocyte stimulation with both TES and ConA upregulated the production of IFN-γ and IL-17. This shows that TES antigens have strong immunomodulatory properties and are able to induce a broad range of effects on murine immune cells.

  19. Quantification of mesenchymal stem cell growth rates through secretory and excretory biomolecules in conditioned media via Fresnel reflection.

    PubMed

    Ahmad, Harith; Thambiratnam, Kavintheran; Zulkifli, Ahmad Z; Lawrence, Anthony; Jasim, Ali A; Kunasekaran, Wijenthiran; Musa, Sabri; Gnanasegaran, Nareshwaran; Vasanthan, Punitha; Jayaraman, Pukana; Kasim, Noor H A; Govindasamy, Vijayendran; Shahrir, Mohammad S; Harun, Sulaiman W

    2013-09-30

    An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.

  20. Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis

    PubMed Central

    Sotillo, Javier; Ferreira, Ivana; Potriquet, Jeremy; Laha, Thewarach; Navarro, Severine; Loukas, Alex; Mulvenna, Jason

    2017-01-01

    Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases. PMID:28191818

  1. Cadmium and renal cancer

    SciTech Connect

    Il'yasova, Dora; Schwartz, Gary G. . E-mail: gschwart@wfubmc.edu

    2005-09-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine.

  2. Acute renal failure.

    PubMed

    Bellomo, Rinaldo

    2011-10-01

    Acute renal failure (now acute kidney injury) is a common complication of critical illness affecting between 30 and 60% of critically ill patients. The development of a consensus definition (RIFLE--risk, injury, failure, loss, end-stage system) has allowed standardization of reporting and epidemiological work. Multicenter multinational epidemiological studies indicate that sepsis is now the most common cause of acute renal failure in the intensive care unit (ICU) followed by cardiac surgery-associated acute kidney injury. Unfortunately, our understanding of the pathogenesis of acute renal failure in these settings remains limited. Because of such limited understanding, no reproducibly effective therapies have been developed. In addition the diagnosis of acute renal failure still rests upon the detection of changes in serum creatinine, which only occur if more than 50% of glomerular filtration is lost and are often delayed by more than 24 hours. Such diagnostic delays make the implementation of early therapy nearly impossible. In response to these difficulties, there has been a concerted effort to use proteomics to identify novel early biomarkers of acute renal failure. The identification and study of neutrophil gelatinase- associated lipocalin has been an important step in this field. Another area of active interest and investigation relates to the role of intravenous fluid resuscitation and fluid balance. Data from large observational studies and randomized, controlled trials consistently indicate that a positive fluid balance in patients with acute renal failure represents a major independent risk factor for mortality and provides no protection of renal function. The pendulum is clearly swinging away from a fluid-liberal approach to a fluid-conservative approach in these patients. Finally, there is a growing appreciation that acute renal failure may identify patients who are at increased risk of subsequent chronic renal dysfunction and mortality, opening the way

  3. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury

    PubMed Central

    Zhai, Songhui; Hu, Lijuan; Zhong, Lin; Guo, Yannan; Dong, Liqun; Jia, Ruizhen; Wang, Zheng

    2016-01-01

    The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV) and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs), serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC) activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6 × 106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+ T lymphocytes, due to an increase in the percentage of CD8+ T lymphocytes and a decrease in the percentage of CD4+ T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV. PMID:27747195

  4. Renal oncocytoma: new observations

    SciTech Connect

    Quinn, M.J.; Hartman, D.S.; Friedman, A.C.; Sherman, J.L.; Lautin, E.M.; Pyatt, R.S.; Ho, C.K.; Csere, R.; Fromowitz, F.B.

    1984-10-01

    Renal oncocytomas are uncommon, benign tumors that can be treated by local incision or heminephrectomy; their preoperative differentiation from renal cell carcinoma, treated by radical nephrectomy, would be invaluable. A particularly important finding, a central scar, not stressed in previous reports, is frequently demonstrated by CT examination. The authors evaluated radiographic studies of 18 pathologically confirmed cases of oncocytoma and compared findings with results of CT, sonography, and angiogrpahy studies of 18 renal cell carcinoma cases. Oncocytomas can be suggested if a stellate scar is identified within an otherwise homogeneous tumor on ultrasound (US) and CT; if the mass appears homogeneous but no scar is present, angiography should be performed.

  5. Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes.

    PubMed

    Krolewski, Andrzej S; Skupien, Jan; Rossing, Peter; Warram, James H

    2017-03-30

    A new model of diabetic nephropathy in type 1 diabetes emerged from our studies of Joslin Clinic patients. The dominant feature is progressive renal decline, not albuminuria. This decline is a unidirectional process commencing while patients have normal renal function and, in the majority, progressing steadily (linearly) to end-stage renal disease (ESRD). While an individual's rate of renal decline is constant, the estimated glomerular filtration rate (eGFR) slope varies widely among individuals from -72 to -3.0 ml/min/year. Kidney Disease: Improving Global Outcomes guidelines define rapid progression as rate of eGFR declines > 5 ml/min/year, a value exceeded by 80% of patients in Joslin's type 1 diabetes ESRD cohort. The extraordinary range of slopes within the rapid progression category prompted us to partition it into "very fast," "fast" and "moderate" decline. We showed, for the first time, that very fast and fast decline from normal eGFR to ESRD within 2 to 10 years constitutes 50% of the Joslin cohort. In this review we present data about frequency of fast decliners in both diabetes types, survey some mechanisms underlying fast renal decline, discuss methods of identifying patients at risk and comment on the need for effective therapeutic interventions. Whether the initiating mechanism of fast renal decline affects glomerulus, tubule, interstitium or vasculature is unknown. Since no animal model mimics progressive renal decline, studies in humans are needed. Prospective studies searching for markers predictive of the rate of renal decline yield findings that may make detection of fast decliners feasible. Identifying such patients will be the foundation for developing effective individualized methods to prevent or delay onset of ESRD in diabetes.

  6. Renal scintigraphy in veterinary medicine.

    PubMed

    Tyson, Reid; Daniel, Gregory B

    2014-01-01

    Renal scintigraphy is performed commonly in dogs and cats and has been used in a variety of other species. In a 2012 survey of the members of the Society of Veterinary Nuclear Medicine, 95% of the respondents indicated they perform renal scintigraphy in their practice. Renal scintigraphy is primarily used to assess renal function and to evaluate postrenal obstruction. This article reviews how renal scintigraphy is used in veterinary medicine and describes the methods of analysis. Species variation is also discussed.

  7. Renal Autoregulation in Health and Disease

    PubMed Central

    Carlström, Mattias; Wilcox, Christopher S.; Arendshorst, William J.

    2015-01-01

    Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80–180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca2+]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca2+]i occurs predominantly by Ca2+ influx through L-type voltage-operated Ca2+ channels (VOCC). Increased [Ca2+]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca2+ from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca2+ sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism

  8. Renal and perirenal abscesses

    SciTech Connect

    Patterson, J.E.; Andriole, V.T.

    1987-12-01

    Our knowledge of the spectrum of renal abscesses has increased as a result of more sensitive radiologic techniques. The classification of intrarenal abscess now includes acute focal bacterial nephritis and acute multifocal bacterial nephritis, as well as the previously recognized renal cortical abscess, renal corticomedullary abscess, and xanthogranulomatous pyelonephritis. In general, the clinical presentation of these entities does not differentiate them; various radiographic studies can distinguish them, however. The intrarenal abscess is usually treated successfully with antibiotic therapy alone. Antistaphylococcal therapy is indicated for the renal cortical abscess, whereas therapy directed against the common gram-negative uropathogens is indicated for most of the other entities. The perinephric abscess is often an elusive diagnosis, has a more serious prognosis, and is more difficult to treat. Drainage of the abscess and sometimes partial or complete nephrectomy are required for resolution. 73 references.

  9. Renal papillary necrosis

    MedlinePlus

    ... ureters. Causes Renal papillary necrosis often occurs with analgesic nephropathy . This is damage to one or both ... Treatment depends on the cause. For example, if analgesic nephropathy is the cause, your doctor will recommend ...

  10. Proximal renal tubular acidosis

    MedlinePlus

    ... References Krapf R, Seldin DW, Alpern RJ. Clinical syndromes of metabolic acidosis. In: Alpern RJ, Caplan M, Moe OW, ... 529. Read More Distal renal tubular acidosis Fanconi syndrome Low potassium level Metabolic acidosis Osteomalacia Respiratory acidosis Rickets Review Date 10/ ...

  11. Renal primitive neuroectodermal tumors.

    PubMed

    Bartholow, Tanner; Parwani, Anil

    2012-06-01

    Primitive neuroectodermal tumors exist as a part of the Ewing sarcoma/primitive neuroectodermal tumor family. These tumors most commonly arise in the chest wall and paraspinal regions; cases with a renal origin are rare entities, but have become increasingly reported in recent years. Although such cases occur across a wide age distribution, the average age for a patient with a renal primitive neuroectodermal tumor is the mid- to late 20s, with both males and females susceptible. Histologically, these tumors are characterized by pseudorosettes. Immunohistochemically, CD99 is an important diagnostic marker. Clinically, these are aggressive tumors, with an average 5-year disease-free survival rate of only 45% to 55%. Given that renal primitive neuroectodermal tumor bears many similarities to other renal tumors, it is important to review the histologic features, immunostaining profile, and genetic abnormalities that can be used for its correct diagnosis.

  12. Distal renal tubular acidosis

    MedlinePlus

    ... get better with treatment. When to Contact a Medical Professional Call your health care provider if you have symptoms of distal renal tubular acidosis. Get medical help right away if you develop emergency symptoms ...

  13. Renal differentiation of Mesenchymal stem cells seeded on nanofibrous scaffolds improved by Human renal tubular cell lines conditioned medium.

    PubMed

    Ardeshirylajimi, Abdolreza; Vakilian, Saeid; Salehi, Mohammad

    2016-11-09

    Kidney injuries and renal dysfunctions are one of the most important clinical problems and tissue engineering could be a valuable method for solving it. The objective of this study was to investigate the synergistic effect of renal cell line conditioned medium and Polycaprolactone nanofibers on renal differentiation of human mesenchymal stem cells. In the present study, after stem cells isolation and characterization, Polycaprolactone nanofibrous scaffold was fabricated using electrospinning methods and characterized morphologically, mechanically and biocompatibility. And then the renal differentiation of seeded mesenchymal stem cells on the surface of Polycaprolactone nanofibers with and without human renal tubular cell lines conditioned medium was investigated by evaluation of eight important renal related genes expression by Real-time RT-PCR and immunocytochemistry. Fabricated nanofibrous scaffolds were good in all characterized items. Almost highest expression of all genes was detected in stem cells seeded on Polycaprolactone under conditioned media in comparison with the stem cells seeded on Polycaprolactone, tissue culture polystyrene under renal induction medium and tissue culture polystyrene under conditioned medium. According to the results, Polycaprolactone nanofibers in contribution with conditioned medium can provide the optimal conditions for renal differentiation of mesenchymal stem cells and could be a promising candidate for renal tissue engineering application.

  14. Modeling Renal Progenitors – Defining the Niche

    PubMed Central

    Tanigawa, Shunsuke; Perantoni, Alan O.

    2016-01-01

    Significant recent advances in methodologies for the differentiation of pluripotent stem cells to renal progenitors as well as the definition of niche conditions for sustaining those progenitors have dramatically enhanced our understanding of their biology and developmental programing, prerequisites for establishing viable approaches to renal regeneration. In this article, we review the evolution of culture techniques and models for the study of metanephric development, describe the signaling mechanisms likely to be driving progenitor self-renewal, and discuss current efforts to generate de novo functional tissues, providing in depth protocols and niche conditions for the stabilization of the nephronic Six2+ progenitor. PMID:26856661

  15. 'Transcollateral' Renal Angioplasty for a Completely Occluded Renal Artery

    SciTech Connect

    Chandra, Subash; Chadha, Davinder S. Swamy, Ajay

    2011-02-15

    Percutaneous transluminal renal angioplasty with stenting has been effective in the control of hypertension, renal function, and pulmonary edema caused by atherosclerotic renal artery stenosis. However, the role of the procedure has not been fully established in the context of chronic total occlusion of renal artery. We report the successful use of this procedure in 57-year-old male patient who reported for evaluation of a recent episode of accelerated hypertension. A renal angiogram in this patient showed ostial stenosis of the right renal artery, which was filling by way of the collateral artery. Renal angioplasty for chronic total occlusion of right renal artery was successfully performed in a retrograde fashion through a collateral artery, thereby leading to improvement of renal function and blood pressure control.

  16. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  17. Renal dysfunction and coronary disease: a high-risk combination.

    PubMed

    Schiele, Francois

    2009-01-01

    Chronic kidney dysfunction is recognized as a risk factor for atherosclerosis and complicates strategies and treatment. Therefore, it is important for cardiologists not only to detect and measure potential kidney dysfunction, but also to know the mechanisms by which the heart and kidney interact, and recognize that in cases of acute coronary syndrome, the presence of renal dysfunction increases the risk of death. The detection and classification of kidney dysfunction into 5 stages is based on the estimated glomerular filtration rate (GFR). The presence of hypertension, endothelial dysfunction, dyslipidemia, inflammation, activation of the renin-angiotensin system and specific calcifications are the main mechanisms by which renal dysfunction can induce or compound cardiovascular disease. The magnitude of renal dysfunction is related to the cardiovascular risk; a linear relation links the extent of GFR decrease and the risk of cardiovascular events. Renal dysfunction and acute coronary syndromes are a dangerous combination: more common comorbidities, more frequent contraindications for effective drugs and higher numbers of drug-related adverse events such as bleeding partially explain the higher mortality in patients with renal dysfunction. In addition, despite higher risk, patients with renal dysfunction often receive fewer guideline-recommended treatments even in the absence of contraindications. Renal dysfunction induces and promotes atherosclerosis by various pathophysiologic pathways and is associated with other cardiovascular risk factors and underuse of appropriate therapy. Therefore, the assessment of renal function is an important step in the risk evaluation of patients with coronary artery disease.

  18. Renal pathology in reptiles.

    PubMed

    Zwart, Peernel

    2006-01-01

    The class of Reptilia varies widely. Both the gross morphology and microscopic anatomy of the kidneys are specific for each species. In each species of reptile, the physiology of the renal system has adapted to the specific conditions of life, including, among other factors, the type of food, environmental temperature, and the availability of water. The pathology of the kidneys in reptiles has been poorly studied, but in recent years a number of investigators have specifically studied reptilian renal pathology.

  19. [Imaging renal cell carcinoma].

    PubMed

    Bazan, F; Busto, M

    2014-01-01

    Renal cell carcinoma is the eighth most common malignancy in adults and the most common malignancy in the kidney. It is thus a very common disease for radiologists. This review aims to provide a general overview of the imaging techniques used to diagnose, characterize, and help plan the treatment of renal cell carcinoma as well as to review basic aspects related to staging, imaging-guided percutaneous treatment, and follow-up in the most common clinical scenarios.

  20. Renal effects of anti-gravity suit inflation in man in relation to cardiovascular and hormonal changes

    NASA Technical Reports Server (NTRS)

    Geelen, G.; Kravik, S. E.; Hadj-Aissa, A.; Vincent, M.; Sem-Jacobsen, C. W.; Greenleaf, J.; Gharib, C.

    1987-01-01

    It is shown that inflation for 3 hr of an antigravity suit that covered the legs and abdomen of normal standing subjects results in significant increases in urine flow, osmolar and free water clearances, total and fractional sodium excretion, and potassium excretion, while glomerular filtration rate and renal plasma flow are transiently increased. Such changes in kidney function are the consequence of the increase in thoracic blood volume induced by inflation which also results in an immediate increase in blood pressure and reflex bradycardia, together with a progressive lowering of plasma renin activity and aldosterone. The changes in kidney excretory patterns brought about by suit inflation appear to be similar in nature and magnitude to those observed during water immersion or in the early phase of bed rest, situations known to result in a headward redistribution of blood.

  1. Laparoscopic Renal Cryoablation

    PubMed Central

    Schiffman, Marc; Moshfegh, Amiel; Talenfeld, Adam; Del Pizzo, Joseph J.

    2014-01-01

    In light of evidence linking radical nephrectomy and consequent suboptimal renal function to adverse cardiovascular events and increased mortality, research into nephron-sparing techniques for renal masses widely expanded in the past two decades. The American Urological Association (AUA) guidelines now explicitly list partial nephrectomy as the standard of care for the management of T1a renal tumors. Because of the increasing utilization of cross-sectional imaging, up to 70% of newly detected renal masses are stage T1a, making them more amenable to minimally invasive nephron-sparing therapies including laparoscopic and robotic partial nephrectomy and ablative therapies. Cryosurgery has emerged as a leading option for renal ablation, and compared with surgical techniques it offers benefits in preserving renal function with fewer complications, shorter hospitalization times, and allows for quicker convalescence. A mature dataset exists at this time, with intermediate and long-term follow-up data available. Cryosurgical recommendations as a first-line therapy are made at this time in limited populations, including elderly patients, patients with multiple comorbidities, and those with a solitary kidney. As more data emerge on oncologic efficacy, and technical experience and the technology continue to improve, the application of this modality will likely be extended in future treatment guidelines. PMID:24596441

  2. Hereditary Renal Cancer Syndromes

    PubMed Central

    Haas, Naomi B.

    2013-01-01

    Inherited susceptibility to kidney cancer is a fascinating and complex topic. Our knowledge about types of genetic syndromes associated with an increased risk of disease is continually expanding. Currently, there are 10 syndromes associated with an increased risk of all types of renal cancer, which are reviewed herein. Clear cell renal cancer is associated with von Hippel Lindau disease, chromosome 3 translocations, PTEN hamartomatous syndrome and mutations in BAP1, as well as several of the genes encoding the proteins comprising the succinate dehydrogenase complex (SDHB/C/D). Type 1 papillary renal cancers arise in conjunction with germline mutations in MET and type 2 as part of Hereditary Leiomyomatosis and Renal Cell Cancer (FH mutations). Chromophone and oncocytic renal cancers are predominantly associated with Birt Hogg Dubé syndrome. Angiomyolipomas are commonly and their malignant counterpart epitheliod angiomyolipomas rarely are found in patients with Tuberous Sclerosis Complex. The targeted therapeutic options for the renal cancer associated with these diseases are just starting to expand, and are an area of active clinical research. PMID:24359990

  3. Renal stem cells: fact or science fiction?

    PubMed

    McCampbell, Kristen K; Wingert, Rebecca A

    2012-06-01

    The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.

  4. Endothelial Dysfunction in Renal Failure: Current Update.

    PubMed

    Radenkovic, Miroslav; Stojanovic, Marko; Prostran, Milica

    2016-01-01

    Endothelial dysfunction is principally characterized by impaired endothelium- dependent transduction mechanisms related to vascular relaxation, as an outcome of decreased release of endothelium-derived relaxing factors, mainly nitric oxide, as well as augmented oxidative stress, increased inflammation and predominance of vascular action produced by endothelium-derived contracting factors. Current data strongly suggest that pathological development of different types of kidney impairment with further progression to renal failure includes notable vascular changes associated with endothelial dysfunction. In accordance, this scientific field represents an advancing area of investigation, involving different biomarkers of endothelial dysfunction linked to renal impairment, as well as clinical findings with new information that can provide a more comprehensive understanding of the role of endothelial dysfunction in kidney disease. With regards to quoted facts, the aim of this article was to review the latest data related to endothelial dysfunction and renal failure by selection of relevant articles released from 2010 to 2015.

  5. Epigenetics of Renal Development and Disease

    PubMed Central

    Hilliard, Sylvia A.; El-Dahr, Samir S.

    2016-01-01

    An understanding of epigenetics is indispensable to our understanding of gene regulation under normal and pathological states. This knowledge will help with designing better therapeutic approaches in regenerative tissue medicine. Epigenetics allows us to parse out the mechanisms by which transcriptional regulators gain access to specific gene loci thereby imprinting epigenetic information affecting chromatin function. This epigenetic memory forms the basis of cell lineage specification in multicellular organisms. Post-translational modifications to DNA and histones in the nucleosome core form characteristic epigenetic codes which are distinct for self-renewing and primed progenitor cell populations. Studies of chromatin modifiers and modifications in renal development and disease have been gaining momentum. Both congenital and adult renal diseases have a gene-environment component, which involves alterations to the epigenetic information imprinted during development. This epigenetic memory must be characterized to establish optimal treatment of both acute and chronic renal diseases. PMID:28018145

  6. Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites.

    PubMed

    Dalvie, Deepak; Obach, R Scott; Kang, Ping; Prakash, Chandra; Loi, Cho-Ming; Hurst, Susan; Nedderman, Angus; Goulet, Lance; Smith, Evan; Bu, Hai-Zhi; Smith, Dennis A

    2009-02-01

    An early understanding of key metabolites of drugs is crucial in drug discovery and development. As a result, several in vitro models typically derived from liver are frequently used to study drug metabolism. It is presumed that these in vitro systems provide an accurate view of the potential in vivo metabolites and metabolic pathways. However, no formal analysis has been conducted to validate their use. The goal of the present study was to conduct a comprehensive analysis to assess if the three commonly used in vitro systems, pooled human liver microsomes, liver S-9 fraction, and hepatocytes, adequately predict in vivo metabolic profiles for drugs. The second objective was to compare the overall capabilities of these three systems to generate in vivo metabolic profiles. Twenty-seven compounds in the Pfizer database and 21 additional commercially available compounds of diverse structure and routes of metabolism for which the human ADME data was available were analyzed in this study to assess the performance of the in vitro systems. The results suggested that all three systems reliably predicted human excretory and circulating metabolite profiles. Furthermore, the success in predicting primary metabolites and metabolic pathways was high (>70%), but the predictability of secondary metabolites was less reliable in the three systems. Thus, the analysis provides sufficient confidence in using in vitro systems to reliably produce primary in vivo human metabolites and supports their application in early discovery to identify metabolic spots for optimization of metabolic liabilities anticipated in humans in vivo. However, the in vitro systems cannot solely mitigate the risk of disproportionate circulating metabolites in humans and may need to be supplemented with metabolic profiling of plasma samples from first-in-human studies or early human radiolabeled studies.

  7. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae.

    PubMed

    Sun, Ge Ge; Liu, Ruo Dan; Wang, Zhong Quan; Jiang, Peng; Wang, Li; Liu, Xiao Lin; Liu, Chun Yin; Zhang, Xi; Cui, Jing

    2015-12-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis, but anti-Trichinella IgG antibodies cannot be detected until 2-3 weeks after infection; there is an obvious window period between Trichinella infection and antibody positivity. Intestinal infective larvae (IIL) are the first invasive stage during Trichinella infection, and their ES antigens are firstly exposed to the immune system and might be the early diagnostic markers of trichinellosis. The aim of this study was to evaluate the early diagnostic values of IIL ES antigens for trichinellosis. The IIL were collected from intestines of infected mice at 6 h postinfection (hpi), and IIL ES antigens were prepared by incubation for 18 h. Anti-Trichinella IgG antibodies in mice infected with 100 ML were detectable by ELISA with IIL ES antigens as soon as 10 days postinfection (dpi), but ELISA with ML ES antigens did not permit detection of infected mice before 12 dpi. When the sera of patients with trichinellosis at 19 dpi were assayed, the sensitivity (100 %) of ELISA with IIL ES antigens was evidently higher than 75 % of ELISA with ML ES antigens (P < 0.05) The specificity (96.86 %) of ELISA with IIL ES antigens was also higher than 89.31 % of ELISA with ML ES antigens (P < 0.05). The IIL ES antigens provided a new source of diagnostic antigens and could be considered as a potential early diagnostic antigen for trichinellosis.

  8. COMPARISON OF TRANSVERSE COMPUTED TOMOGRAPHIC EXCRETORY UROGRAPHY IMAGES AND MAXIMUM INTENSITY PROJECTION IMAGES FOR DIAGNOSING ECTOPIC URETERS IN DOGS.

    PubMed

    Secrest, Scott; Bugbee, Andrew; Waller, Kenneth; Jiménez, David A

    2017-03-01

    Computed tomographic maximum intensity projection (MIP) images have been shown to improve reader confidence in their diagnoses and to improve detection of vascular structures and pulmonary nodules. The objectives of this method comparison study were to compare transverse source computed tomographic excretory urography (CTEU) images to two, five, and 10 slab thick MIP images for diagnosing canine ectopic ureters, compare reader confidence, and evaluate interobserver agreement. Two board-certified veterinary radiologists and a board-certified small animal internist blindly reviewed transverse source CTEU and two, five, and 10 slab thick MIP images of 24 dogs enrolled in the study. Inclusion criteria included a diagnostic CTEU and either cystoscopic or surgical confirmation of the presence or absence of ureteral ectopia. Eleven dogs were confirmed to have 17 ectopic ureters at surgery and/or cystoscopically. There was no significant difference in reader diagnoses between viewing methods or between viewing methods and the surgical/cystoscopic findings (P < 0.001). Reader confidence was significantly greater on two (P = 0.0080) and five (P = 0.0009) slab thick MIP images with significant interobserver agreement between readers for all viewing methods (P values ranging between 0.0363 and <0.001). In addition, the diagnostic accuracy of MIP images was similar to or better than transverse source CTEU images, when assessed by a radiologist. The study results suggest that CTEU is a reliable imaging technique for diagnosing canine ectopic ureters among specialists of varied experience. In addition, thin slice reconstructed MIP images improve reader confidence and potentially diagnostic accuracy, and thus their use should be considered, especially in more challenging cases.

  9. Identification and characterization of an immunogenic antigen, enolase 2, among excretory/secretory antigens (ESA) of Toxoplasma gondii.

    PubMed

    Jiang, Wei; Xue, Jun-Xin; Liu, Ying-Chun; Li, Tao; Han, Xian-Gan; Wang, Shao-Hui; Chen, Yong-Jun; Qi, Jingjing; Yu, Sheng-Qing; Wang, Quan

    2016-11-01

    An immunogenic protein, enolase 2, was identified among the secreted excretory/secretory antigens (ESAs) from Toxoplasma gondii strain RH using immunoproteomics based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Enolase 2 was cloned, sequenced, and heterologously expressed. BLAST analysis revealed 75-96% similarity with enolases from other parasites. Immunoblotting demonstrated good immunoreactivity of recombinant T. gondii enolase (Tg-enolase 2) to T. gondii-infected animal serum. Purified Tg-enolase 2 was found to catalyze dehydration of 2-phospho-d-glycerate to phosphoenolpyruvate. In vitro studies revealed maximal activity at pH 7.5 and 37 °C, and activity was inhibited by K(+), Ni(2+), Al(3+), Na(+), Cu(2+) and Cr(3+). A monoclonal antibody against Tg-enolase 2 was prepared, 1D6, with the isotype IgG2a/κ. Western blotting revealed that 1D6 reacts with Tg-enolase 2 and native enolase 2, present among T. gondii ESAs. The indirect immunofluorescence assays showed that enolase 2 could be specifically detected on the growing T. gondii tachyzoites. Immunoelectron microscopy revealed the surface and intracellular locations of enolase 2 on T. gondii cells. In conclusion, our results clearly show that the enzymatic activity of T. gondii enolase 2 is ion dependent and that it could be influenced by environmental factors. We also provide evidence that enolase 2 is an important immunogenic protein of ESAs from T. gondii and that it is a surface-exposed protein with strong antigenicity and immunogenicity. Our findings indicate that enolase 2 could play important roles in metabolism, immunogenicity and pathogenicity and that it may serve as a novel drug target and candidate vaccine against T. gondii infection.

  10. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation

    PubMed Central

    Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping

    2014-01-01

    Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817

  11. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} induces renal epithelial cell death through NF-{kappa}B-dependent and MAPK-independent mechanism

    SciTech Connect

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun . E-mail: kim430@pusan.ac.kr

    2006-11-01

    The peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) ligand 15d-PGJ{sub 2} induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-{kappa}B in opossum kidney (OK) cell death induced by 15d-PGJ{sub 2}. Treatment of OK cells with 15d-PGJ{sub 2} resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ{sub 2} increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ{sub 2}-induced cell death was also prevented by these antioxidants, suggesting that the cell death was associated with ROS generation. The PPAR{gamma} antagonist GW9662 did not prevent the 15d-PGJ{sub 2}-induced cell death. 15d-PGJ{sub 2} caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ{sub 2}-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ{sub 2} inhibited the NF-{kappa}B transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-{kappa}B subunit p65 and impairment in DNA binding. Inhibition of NF-{kappa}B with a NF-{kappa}B specific inhibitor pyrrolidinecarbodithioate and transfection with I{kappa}B{alpha} (S32A/36A) caused cell death. These results suggest that the 5d-PGJ{sub 2}-induced OK cell death was associated with ROS production and NF-{kappa}B inhibition, but not with MAPK activation.

  12. Cardiovascular risk and mortality in end-stage renal disease patients undergoing dialysis: sleep study, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life: a prospective, double blind, randomized controlled clinical trial

    PubMed Central

    2013-01-01

    Background Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life. Methods/Design A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height2; circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life. Discussion CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients. Trial registration The

  13. Localization of K⁺, H⁺, Na⁺ and Ca²⁺ fluxes to the excretory pore in Caenorhabditis elegans: application of scanning ion-selective microelectrodes.

    PubMed

    Adlimoghaddam, Aida; Weihrauch, Dirk; O'Donnell, Michael J

    2014-12-01

    Although Caenorhabditis elegans is commonly used as a model organism for studies of cell biology, development and physiology, the small size of the worm has impeded measurements of ion transport by the excretory cell and hypodermis. Here, we use the scanning ion-selective microelectrode technique to measure efflux and influx of K(+), H(+), Na(+) and Ca(2+) in intact worms. Transport of ions into, or out of, immobilized worms produces small gradients in ion concentration in the unstirred layer near the surface of the worm. These gradients are readily detectable with ion-selective microelectrodes and the corresponding ion fluxes can be estimated using the Fick equation. Our data show that effluxes of K(+), H(+), Na(+) and Ca(2+) are localized to the region of the excretory pore, consistent with release of these ions from the excretory cell, and that effluxes increase after experimental preloading with Na(+), K(+) or Ca(2+). In addition, the hypodermis is a site of Na(+) influx.

  14. Update on Renal Mass Biopsy.

    PubMed

    Haifler, Miki; Kutikov, Alexander

    2017-04-01

    Renal masses are diagnosed with an increasing frequency. However, a significant proportion of these masses are benign, and the majority of malignant tumors are biologically indolent. Furthermore, renal tumors are often harbored by the elderly and comorbid patients. As such, matching of renal tumor biology to appropriate treatment intensity is an urgent clinical need. Renal mass biopsy is currently a very useful clinical tool that can assist with critical clinical decision-making in patients with renal mass. Yet, renal mass biopsy is associated with limitations and, as such, may not be appropriate for all patients.

  15. Malignant renal tumors in children

    PubMed Central

    Sanchez, Thomas Ray; Wootton-Gorges, Sandra

    2015-01-01

    Renal malignancies are common in children. While the majority of malignant renal masses are secondary to Wilms tumor, it can be challenging to distinguish from more aggressive renal masses. For suspicious renal lesions, it is crucial to ensure prompt diagnosis in order to select the appropriate surgical procedure and treatment. This review article will discuss the common differential diagnosis that can be encountered when evaluating a suspicious renal mass in the pediatric population. This includes clear cell sarcoma of the kidney, malignant rhabdoid tumor, renal medullary carcinoma and lymphoma. PMID:28326263

  16. Anaesthesia for the patient with impaired renal function.

    PubMed

    Maddern, P J

    1983-11-01

    Patients with renal disease are at risk of further deterioration of renal function and acute tubular necrosis when subjected to anaesthesia and surgery. Optimal fluid loading and careful selection of anaesthetic techniques and agents, appropriate monitoring and the use of mannitol and dopamine assist in the maintenance of renal blood flow and help preserve renal function in these patients. In association with renal failure, physiological changes in other systems result in reduced oxygen supply to the tissues, metabolic disturbances, impairment of the coagulation and immune defence mechanisms and an increased risk of cardiac and cerebrovascular catastrophe. Although many anaesthetic techniques including regional analgesia may be used successfully in these patients caution with most drugs, especially pethidine, phenoperidine, suxamethonium and all non-depolarising neuromuscular relaxants is recommended. Of the volatile anaesthetics currently available, halothane is the agent of choice. Oxygen therapy and close monitoring of cardiorespiratory function are necessary postoperatively.

  17. Renal blood flow in man with essential hypertension.

    PubMed

    London, G M; Safar, M E; Marchais, S

    1986-01-01

    Abnormalities in renal blood flow in man with sustained essential hypertension are reviewed with emphasis on four points: renal blood flow is decreased not only per unit square meter but also as a fraction of cardiac output, a result which is not observed in other organs, the relationship between cardiac output and renal blood flow is reset, so that restriction of arteriolar renal vessels is dominantly preglomerular in origin, the renal abnormalities may be reversed by alpha-blockade, suggesting an important contribution of the autonomic nervous system, and, finally, the normal sodium balance in steady-state conditions is achieved through adaptive mechanisms involving the venous system and resulting in decreased venous compliance and increased postglomerular and venous hydrostatic pressures.

  18. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  19. Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution.

    PubMed

    Bettge, Kathrin; Wahli, Thomas; Segner, Helmut; Schmidt-Posthaus, Heike

    2009-01-28

    Proliferative kidney disease is a parasitic infection of salmonid fishes caused by Tetracapsuloides bryosalmonae. The main target organ of the parasite in the fish is the kidney. To investigate the influence of water temperature on the disease in fish, rainbow trout Oncorhynchus mykiss infected with T bryosalmonae were kept at 12 degrees C and 18 degrees C. The number of parasites, the type and degree of lesions in the kidney and the mortality rate was evaluated from infection until full development of disease. While mortality stayed low at 12 degrees C, it reached 77% at 18 degrees C. At 12 degrees C, pathological lesions were dominated by a multifocal proliferative and granulomatous interstitial nephritis. This was accompanied by low numbers of T. bryosalmonae, mainly located in the interstitial lesions. With progression of the disease, small numbers of parasites appeared in the excretory tubuli, and parasite DNA was detected in the urine. Parasite degeneration in the interstitium was observed at late stages of the disease. At 18 degrees C, pathological lesions in kidneys were more severe and more widely distributed, and accompanied by significantly higher parasite numbers. Distribution of parasites in the renal compartments, onset of parasite degeneration and time course of appearance of parasite DNA in urine were not clearly different from the 12 degrees C group. These findings indicate that higher mortality at 18 degrees C compared to 12 degrees C is associated with an enhanced severity of renal pathology and increased parasite numbers.

  20. Identification of a mechanism by which the methylmercury antidotes N-acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: transport by the renal organic anion transporter-1.

    PubMed

    Koh, Albert S; Simmons-Willis, Tracey A; Pritchard, John B; Grassl, Steven M; Ballatori, Nazzareno

    2002-10-01

    N-Acetylcysteine (NAC) and dimercaptopropanesulfonate (DMPS) are sulfhydryl-containing compounds that produce a dramatic acceleration of urinary methylmercury (MeHg) excretion in poisoned animals, but the molecular mechanism for this effect is unknown. NAC and DMPS are themselves excreted in urine in high concentrations. The present study tested the hypothesis that the complexes formed between MeHg and these anionic chelating agents are transported from blood into proximal tubule cells by the basolateral membrane organic anion transporters (Oat) 1 and Oat3. Xenopus laevis oocytes expressing rat Oat1 showed increased uptake of [(14)C]MeHg when complexed with either NAC or DMPS but not when complexed with L-cysteine, glutathione, dimercaptosuccinate, penicillamine, or gamma-glutamylcysteine. In contrast, none of these MeHg complexes were transported by Oat3-expressing oocytes. The apparent K(m) values for Oat1-mediated transport were 31 +/- 2 microM for MeHg-NAC and 9 +/- 2 microM for MeHg-DMPS, indicating that these are relatively high-affinity substrates. Oat1-mediated uptake of [(14)C]MeHg-NAC and [(14)C]MeHg-DMPS was inhibited by prototypical substrates for Oat1, including p-aminohippurate (PAH), and was trans-stimulated when oocytes were preloaded with 2 mM glutarate but not glutamate. Conversely, efflux of [(3)H]PAH from Oat1-expressing oocytes was trans-stimulated by glutarate, PAH, NAC, DMPS, MeHg-NAC, MeHg-DMPS, and a mercapturic acid, indicating that these are transported solutes. [(3)H]PAH uptake was competitively inhibited by NAC (K(i) of 2.0 +/- 0.3 mM) and DMPS (K(i) of 0.10 +/- 0.02 mM), providing further evidence that these chelating agents are substrates for Oat1. These results indicate that the MeHg antidotes NAC and DMPS and their mercaptide complexes are transported by Oat1 but are comparatively poor substrates for Oat3. This is the first molecular identification of a transport mechanism by which these antidotes may enhance urinary excretion of

  1. Renal Alterations in Feline Immunodeficiency Virus (FIV)-Infected Cats: A Natural Model of Lentivirus-Induced Renal Disease Changes

    PubMed Central

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-01-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy. PMID:23170163

  2. Renal disease in Colombia.

    PubMed

    Gómez, Rafael Alberto

    2006-01-01

    Chronic renal disease represents a problem of public health in Colombia. Its prevalence has increased in last decade, with a prevalence of 44.7 patients per million (ppm) in 1993 to 294.6 ppm in 2004, considering that only 56.2% of the population has access to the health. This increase complies with the implementation of Law 100 of 1993, offering greater coverage of health services to the Colombian population. The cost of these pathologies is equivalent to the 2.49% of the budget for health of the nation. The three most common causes of renal failure are diabetes mellitus (DM; 30%), arterial hypertension (30%), and glomerulonephritis (7.85%). In incident patients, the DM accounts for 32.9%. The rate of global mortality is 15.8%, 17.4% in hemodialysis and 15.1% in peritoneal dialysis. In 2004, 467 renal transplants were made, 381 of deceased donor with an incidence of 10.3 ppm. The excessive cost of these pathologies can cause the nation's health care system to collapse if preventative steps are not taken. In December of 2004, the Colombian Association of Nephrology with the participation of the Latin American Society of Nephrology and Arterial Hypertension wrote the "Declaration of Bogotá," committing the state's scientific societies and promotional health companies to develop a model of attention for renal health that, in addition to implementing national registries, continues to manage renal disease.

  3. Renal physiology of nocturia.

    PubMed

    Verbalis, Joseph G

    2014-04-01

    Renal function, diurnal fluctuations in arginine vasopressin (AVP) secretion, sex, and advanced age affect urine formation and may contribute to nocturia. Renal effects of AVP are mediated by AVP V2 receptors in the kidney collecting duct. Changes in AVP concentration have the greatest relative effects on urine volume when AVP levels are low; therefore small changes can have a large effect on renal water excretion. AVP is the major regulator of water excretion by the kidneys, and AVP levels have been shown to affect nocturnal voiding. Results of several studies show that patients with nocturia had no significant variation in plasma AVP, whereas patients without nocturia had significant diurnal variation in plasma AVP. The V2 receptor gene is located on the X chromosome, which has important sex-specific consequences. For example, mutations in the V2 gene can cause nephrogenic diabetes insipidus, predominantly in men. Age-related changes in water metabolism are associated with overall body composition, kidney, and brain. Older people generally experience decreased extracellular fluid and plasma volume, which leads to increased adverse consequences from net body water gain or loss. Renal function declines with age, and the ability to concentrate urine and conserve sodium is reduced in the elderly. Thirst perception is also decreased in the elderly, who, compared with younger people, tend to hypersecrete AVP in response to higher plasma osmolality, possibly resulting in hyponatremia. These aspects of renal physiology should be considered when antidiuretic drugs are prescribed for the treatment of nocturia.

  4. Haemostatic mechanism in uraemia

    PubMed Central

    Hutton, R. A.; O'Shea, M. J.

    1968-01-01

    The haemostatic mechanism was investigated in 20 patients with renal failure, of whom nine had evidence of a bleeding tendency. A defect of platelet function was the most common finding. The effect of dialysis on the bleeding state is briefly discussed, and a scheme for the routine investigation of haemostasis in renal failure is put forward. PMID:5699082

  5. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep.

    PubMed

    Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N

    2015-02-01

    Previous studies indicate that catheter-based renal denervation reduces blood pressure and renal norepinephrine spillover in human resistant hypertension. The effects of this procedure on afferent sensory and efferent sympathetic renal nerves, and the subsequent degree of reinnervation, have not been investigated. We therefore examined the level of functional and anatomic reinnervation at 5.5 and 11 months after renal denervation using the Symplicity Flex catheter. In normotensive anesthetized sheep (n=6), electric stimulation of intact renal nerves increased arterial pressure from 99±3 to 107±3 mm Hg (afferent response) and reduced renal blood flow from 198±16 to 85±20 mL/min (efferent response). In a further group (n=6), immediately after denervation, renal sympathetic nerve activity was absent and the responses to electric stimulation were abolished. At 11 months after denervation (n=5), renal sympathetic nerve activity and the responses to electric stimulation were at normal levels. Immunohistochemical staining for renal efferent (tyrosine hydroxylase) and renal afferent nerves (calcitonin gene-related peptide), as well as renal norepinephrine levels, was normal 11 months after denervation. Findings at 5.5 months after denervation were similar (n=5). In summary, catheter-based renal denervation effectively ablated the renal afferent and efferent nerves in normotensive sheep. By 11 months after denervation the functional afferent and efferent responses to electric stimulation were normal. Reinnervation at 11 months after denervation was supported by normal anatomic distribution of afferent and efferent renal nerves. In view of this evidence, the mechanisms underlying the prolonged hypotensive effect of catheter-based renal denervation in human resistant hypertension need to be reassessed.

  6. Amygdalin inhibits renal fibrosis in chronic kidney disease.

    PubMed

    Guo, Junqi; Wu, Weizheng; Sheng, Mingxiong; Yang, Shunliang; Tan, Jianming

    2013-05-01

    Renal interstitial fibrosis is a common outcome of chronic renal diseases. Amygdalin is one of a number of nitrilosides, the natural cyanide‑containing substances abundant in the seeds of plants of the prunasin family that are used to treat cancer and relieve pain. However, whether amygdalin inhibits the progression of renal fibrosis or not remains unknown. The present study aimed to assess the therapeutic potential of amygdalin by investigating its effect and potential mechanism on the activation of renal interstitial fibroblast cells and renal fibrosis in rat unilateral ureteral obstruction (UUO). Treatment of the cultured renal interstitial fibroblasts with amygdalin inhibited their proliferation and the production of transforming growth factor (TGF)‑β1. In the rat model of obstructive nephropathy, following ureteral obstruction, the administration of amygdalin immediately eliminated the extracellular matrix accumulation and alleviated the renal injury on the 21st day. Collectively, amygdalin attenuated kidney fibroblast (KFB) activation and rat renal interstitial fibrosis. These results indicate that amygdalin is a potent antifibrotic agent that may have therapeutic potential for patients with fibrotic kidney diseases.

  7. Renal injury, nephrolithiasis and Nigella sativa: A mini review

    PubMed Central

    Hayatdavoudi, Parichehr; Khajavi Rad, Abolfazl; Rajaei, Ziba; Hadjzadeh, Mousa AL-Reza

    2016-01-01

    Objective: The incidence and prevalence of kidney stone is increasing worldwide. After the first recurrence the risk of subsequent relapses is higher and the time period between relapses is shortened. Urinary stones can be severely painful and make a huge economic burden. The stone disease may increase the vulnerability of patients to other diseases such as renal failure. Medicinal herbs are rich sources of antioxidants which are increasingly consumed globally for their safety, efficacy and low price. Nigella sativa is a spice plant that is widely used for prevention and treatment of many ailments in Muslim countries and worldwide. This review aims at investigation of the effects of Nigella sativa on renal injury and stone formation. Materials and Methods: The scientific resources including PubMed, Scopus, and Google scholar were searched using key words such as: nephrolithiasis, urolithiasis, kidney/renal stone, renal injury, renal failure, urinary retention and black seed, black cumin, Nigella sativa and thymoquinone. Results: N. sativa and its main component, thymoquinone showed positive effects in prevention or curing kidney stones and renal failure through various mechanism such as antioxidative, anti-inflammatory, anti-eicosanoid and immunomodulatory effects. The putative candidate in many cases has been claimed to be thymoquinone but it seems that at least in part, particularly in kidney stones, the herbal melanin plays a role which requires further investigation to prove. Conclusion: N. sativa and its components are beneficial in prevention and curing of renal diseases including nephrolithiasis and renal damages. PMID:27247917

  8. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero G in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Four rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast, five of the seven remaining rats increased the fraction of the filtered sodium excreted and their urinary flow rate. Potassium excretion increased. End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause in the rat a decrease in distal tubular sodium and water reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis. The adequacy of other nonatrial volume control mechanisms in regulating renal salt and water conservation in opposition to the studied atrial-renal (Henry-Gauer) reflex of thoracic vascular distension is confirmed.

  9. Angiotensin II Blockade and Renal Protection

    PubMed Central

    Kobori, Hiroyuki; Mori, Hirohito; Masaki, Tsutomu; Nishiyama, Akira

    2013-01-01

    Current national guidelines have recommended the use of renin-angiotensin system inhibitors, including angiotensin II type 1 receptor blockers (ARBs), in preference to other antihypertensive agents for treating hypertensive patients with chronic kidney disease. However, the mechanisms underlying the renoprotective effects of ARBs are multiple and complex. Blood pressure reduction by systemic vasodilation with an ARB contributes to its beneficial effects in treating kidney disease. Furthermore, ARB-induced renal vasodilation results in an increase in renal blood flow, leading to improvement of renal ischemia and hypoxia. ARBs are also effective in reducing urinary albumin excretion through a reduction in intraglomerular pressure and the protection of glomerular endothelium and/or podocyte injuries. In addition to blocking angiotensin II-induced renal cell and tissue injuries, ARBs can decrease intrarenal angiotensin II levels by reducing proximal tubular angiotensinogen and production of collecting duct renin, as well as angiotensin II accumulation in the kidney. In this review, we will briefly summarize our current understanding of the pharmacological effects of an ARB in the kidney. We will also discuss the possible mechanisms responsible for the renoprotective effects of ARBs on type 2 diabetic nephropathy. PMID:23176216

  10. Genetics Home Reference: renal hypouricemia

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions renal hypouricemia renal hypouricemia Enable ...

  11. Renal Artery Stent Outcomes

    PubMed Central

    Murphy, Timothy P.; Cooper, Christopher J.; Matsumoto, Alan H.; Cutlip, Donald E.; Pencina, Karol M.; Jamerson, Kenneth; Tuttle, Katherine R.; Shapiro, Joseph I.; D’Agostino, Ralph; Massaro, Joseph; Henrich, William; Dworkin, Lance D.

    2016-01-01

    BACKGROUND Multiple randomized clinical trials comparing renal artery stent placement plus medical therapy with medical therapy alone have not shown any benefit of stent placement. However, debate continues whether patients with extreme pressure gradients, stenosis severity, or baseline blood pressure benefit from stent revascularization. OBJECTIVES The study sought to test the hypothesis that pressure gradients, stenosis severity, and/or baseline blood pressure affects outcomes after renal artery stent placement. METHODS Using data from 947 patients with a history of hypertension or chronic kidney disease from the largest randomized trial of renal artery stent placement, the CORAL (Cardiovascular Outcomes in Renal Atherosclerotic Lesions) study, we performed exploratory analyses to determine if subsets of patients experienced better outcomes after stent placement than the overall cohort. We examined baseline stenosis severity, systolic blood pressure, and translesion pressure gradient (peak systolic and mean) and performed interaction tests and Cox proportional hazards analyses for the occurrence of the primary endpoint through all follow-up, to examine the effect of these variables on outcomes by treatment group. RESULTS There were no statistically significant differences in outcomes based on the examined variables nor were there any consistent nonsignificant trends. CONCLUSIONS Based on data from the CORAL randomized trial, there is no evidence of a significant treatment effect of the renal artery stent procedure compared with medical therapy alone based on stenosis severity, level of systolic blood pressure elevation, or according to the magnitude of the transstenotic pressure gradient. (Benefits of Medical Therapy Plus Stenting for Renal Atherosclerotic Lesions [CORAL]; NCT00081731) PMID:26653621

  12. [Renal duplex: clinical usefulness].

    PubMed

    Miralles, M; Giménez, A; Cairols, M A; Riambau, V; Sáez, A

    1993-01-01

    It is the purpose of this report to focus attention on the clinical usefulness of Renal Duplex for the diagnosis of patients with vasculo-renal diseases in terms of: 1. Accuracy of Duplex/Angiography in the measurement of the renal stenosis degree. 2. Correlationship between Duplex ans Isotopic Renogram with respect to the study of the parenchyma's perfusion. 3. The effect of the inhibitors of the conversor enzyme (Captopril) on the Doppler signal of the parenchyma, comparing it with the results from the captopril test about the peripheral plasmatic renin activity and the isotopic renogram, in patients with vasculo-renal HTA. Results obtains by Duplex and Angiography were compared in 92 renal arteries from 46 patients. For both technics, three degrees of stenosis were established: 0-59%, 60-99% and occlusion. The Duplex technique identified 49/54 stenosis < 60%, 28/33 stenosis > 60% and 5/5 occlusions (Kappa 0.8). Sensibility and specificity of Duplex for the diagnosis of stenosis > 60% were, respectively, 89.5% and 90.7%; with an exactness of 90.2%. The angiographies showed stenosis > 60% in 23 patients with HTA (diastolic pressures > 100 mmHg). In all of the patients, a measurement of the plasmatic renin activity, an isotopic renogram and a Doppler of the interlobar arteries basal and post-captopril, were performed. The correlationship between Duplex and isotopic renogram with respect to the measurement of the relative renal perfusion was statistically significant (r = 0.91; p < 0.0001). The captopril test for renin and isotopic renogram were positives for 5 patients (4 with unilateral stenosis an 1 with bilateral stenosis). All of them showed severe stenosis (> 80%).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Biochemical analyses of secretory and excretory products of adult Dipetalonema viteae in culture

    SciTech Connect

    Wisnewski, N.; Saz, H.J.; Moessinger, Jd.; deBruyn, B.S.; Weinstein, P.P. )

    1990-06-01

    Radioisotopically labeled glucose and pyruvate were employed to elucidate biochemical mechanisms utilized by the filariid Dipetalonema viteae during cultivation. Adults isolated from amicrofilaremic hamsters were incubated at 37 C in a mixture of NCTC135:IMDM (NI), with either D-({sup 14}C-(U))glucose or (1-{sup 14}C)pyruvate, under a gas phase of 5% CO{sub 2}/N{sub 2} for 3 days. Labeled organic acids were separated and quantified by ion exchange chromatography. High performance liquid chromatography (HPLC) was used for separation and quantification of the 23 free amino acids in the NI medium. Ion exchange chromatography revealed that lactate was the major glycolytic end product, accounting for 90-97% of the original carbon utilized. Small amounts of radioactivity were recovered in succinate and variably in acetate fractions. HPLC analysis demonstrated that some amino acids increased, some decreased, and some remained at the initial concentration. Alanine exhibited the greatest change, consistently increasing from 2 to 4 times the original concentration. Analyses of purified amino acid peaks revealed radioactivity only in the alanine peak, accounting for 2-4% of the original carbon utilized.

  14. Amphibian renal disease.

    PubMed

    Cecil, Todd R

    2006-01-01

    Amphibians by nature have an intimate connection with the aquatic environment at some stage of development and fight an osmotic battle due to the influx of water. Many amphibians have acquired a more terrestrial existence at later stages of development and consequently have physiologic adaptations to conserve moisture. Renal adaptations have allowed amphibians successfully to bridge the gap between aqueous and terrestrial habitats. The kidneys, skin,and, in many amphibian species, the urinary bladder play key roles in fluid homeostasis. Renal impairment may be responsible for the clinical manifestation of disease, morbidity, and mortality.

  15. Hypothyroid acute renal failure.

    PubMed

    Birewar, Sonali; Oppenheimer, Mark; Zawada, Edward T

    2004-03-01

    Muscular disorders and even hypothyroid myopathy with elevated muscle enzymes are commonly seen in hypothyroidism. In this paper, we report a case of acute renal failure in a 35-year old male patient with myalgia. His serum creatinine reached a level of 2.4 mg/dl. Later, his myalgia was found to be due to hypothyroidism with TSH of over 500 uiv/ml. With thyroid replacement therapy, myalgia and his serum creatinine stabilized and subsequently improved. Hypothyroidism, although rare, has been reported as a definite and authentic cause of rhabdomyolysis. As a result, hypothyroidism must be considered in patients presenting with acute renal failure and elevated muscle enzymes.

  16. Renal Failure in Pregnancy.

    PubMed

    Balofsky, Ari; Fedarau, Maksim

    2016-01-01

    Renal failure during pregnancy affects both mother and fetus, and may be related to preexisting disease or develop secondary to diseases of pregnancy. Causes include hypovolemia, sepsis, shock, preeclampsia, thrombotic microangiopathies, and renal obstruction. Treatment focuses on supportive measures, while pharmacologic treatment is viewed as second-line therapy, and is more useful in mitigating harmful effects than treating the underlying cause. When supportive measures and pharmacotherapy prove inadequate, dialysis may be required, with the goal being to prolong pregnancy until delivery is feasible. Outcomes and recommendations depend primarily on the underlying cause.

  17. Obesity and renal cancer

    PubMed Central

    Gati, Asma; Kouidhi, Soumaya; Marrakchi, Raja; El Gaaied, Amel; Kourda, Nadia; Derouiche, Amine; Chebil, Mohamed; Caignard, Anne; Perier, Aurélie

    2014-01-01

    Epidemiological studies link obesity, as measured by increased body mass index (BMI) to the incidence of renal cell carcinoma (RCC) as well as to the cancer-related mortality of RCC patients. RCC is the third cancer most robustly associated with increased BMI. Understanding the role of the adipose tissue in renal carcinogenesis is therefore of major importance for the development of novel paradigms of RCC prevention and treatment. Here, we discuss the current knowledge on the impact of obesity on the development and progression of RCC as well as the role of adipose tissue-derived hormones (adipokines) in the conflict between growing tumors and the immune system. PMID:24804162

  18. Renal lithiasis and nutrition

    PubMed Central

    Grases, Felix; Costa-Bauza, Antonia; Prieto, Rafel M

    2006-01-01

    Renal lithiasis is a multifactorial disease. An important number of etiologic factors can be adequately modified trough diet, since it must be considered that the urine composition is directly related to diet. In fact, the change of inappropriate habitual diet patterns should be the main measure to prevent kidney stones. In this paper, the relation between different dietary factors (liquid intake, pH, calcium, phosphate, oxalate, citrate, phytate, urate and vitamins) and each type of renal stone (calcium oxalate monohydrate papillary, calcium oxalate monohydrate unattached, calcium oxalate dihydrate, calcium oxalate dihydrate/hydroxyapatite, hydroxyapatite, struvite infectious, brushite, uric acid, calcium oxalate/uric acid and cystine) is discussed. PMID:16956397

  19. Cigarette smoking: an important renal risk factor – far beyond carcinogenesis

    PubMed Central

    Orth, SR

    2003-01-01

    In recent years, it has become apparent that smoking has a negative impact on renal function, being one of the most important remediable renal risk factors. It has been clearly shown that the risk for high-normal urinary albumin excretion and microalbuminuria is increased in smoking compared to non-smoking subjects of the general population. Data from the Multiple Risk Factor Intervention Trial (MRFIT) indicate that at least in males, smoking increases the risk to reach end-stage renal failure. Smoking is particularly "nephrotoxic" in older subjects, subjects with essential hypertension and patients with preexisting renal disease. Of interest, the magnitude of the adverse renal effect of smoking seems to be independent of the underlying renal disease. Death-censored renal graft survival is decreased in smokers, indicating that smoking also damages the renal transplant. Cessation of smoking has been show to reduce the rate of progression of renal failure both in patients with renal disease or a renal transplant. The mechanisms of smoking-induced renal damage are only partly understood and comprise acute hemodynamic (e.g., increase in blood pressure and presumably intraglomerular pressure) and chronic effects (e.g., endothelial cell dysfunction). Renal failure per se leads to an increased cardiovascular risk. The latter is further aggravated by smoking. Particularly survival of smokers with diabetes mellitus on hemodialysis is abysmal. In the present review article the current state of knowledge about the renal risks of smoking is reviewed. It is the aim of the article to point out that smoking not only increases the risk of renal cell carcinoma or uroepithelial cell carcinoma, but also the risk of a faster decline of renal function. The latter is a relatively new negative aspect which has not been widely recognized. PMID:19570254

  20. Cigarette smoking: an important renal risk factor – far beyond carcinogenesis

    PubMed Central

    Orth, SR

    2003-01-01

    In recent years, it has become apparent that smoking has a negative impact on renal function, being one of the most important remediable renal risk factors. It has been clearly shown that the risk for high-normal urinary albumin excretion and microalbuminuria is increased in smoking compared to non-smoking subjects of the general population. Data from the Multiple Risk Factor Intervention Trial (MRFIT) indicate that at least in males, smoking increases the risk to reach end-stage renal failure. Smoking is particularly "nephrotoxic" in older subjects, subjects with essential hypertension and patients with preexisting renal disease. Of interest, the magnitude of the adverse renal effect of smoking seems to be independent of the underlying renal disease. Death-censored renal graft survival is decreased in smokers, indicating that smoking also damages the renal transplant. Cessation of smoking has been show to reduce the rate of progression of renal failure both in patients with renal disease or a renal transplant. The mechanisms of smoking-induced renal damage are only partly understood and comprise acute hemodynamic (e.g., increase in blood pressure and presumably intraglomerular pressure) and chronic effects (e.g., endothelial cell dysfunction). Renal failure per se leads to an increased cardiovascular risk. The latter is further aggravated by smoking. Particularly survival of smokers with diabetes mellitus on hemodialysis is abysmal. In the present review article the current state of knowledge about the renal risks of smoking is reviewed. It is the aim of the article to point out that smoking not only increases the risk of renal cell carcinoma or uroepithelial cell carcinoma, but also the risk of a faster decline of renal function. The latter is a relatively new negative aspect which has not been widely recognized.

  1. Physiology of the Renal Interstitium

    PubMed Central

    2015-01-01

    Long overlooked as the virtual compartment and then strictly characterized through descriptive morphologic analysis, the renal interstitium has finally been associated with function. With identification of interstitial renin- and erythropoietin-producing cells, the most prominent endocrine functions of the kidney have now been attributed to the renal interstitium. This article reviews the functional role of renal interstitium. PMID:25813241

  2. Tubulocystic Renal Cell Carcinoma: A Rare Renal Tumor

    PubMed Central

    Bindroo, Sandiya; Varshney, Neha; Mittal, Vijay

    2014-01-01

    Tubulocystic renal cell carcinoma of the kidney is a rare entity with less than one hundred cases reported so far. It was previously considered to have some similarities to various other renal cancers although this tumor has distinct macroscopic, microscopic and immuno-histochemical features. It is now a well-established entity in renal neoplastic pathology and has been recognized as a distinct entity in the 2012 Vancouver classification of renal tumors. This review aims to give an overview of tubulocystic renal cell carcinoma after extensive literature search using PubMed and CrossRef.

  3. Renal diagnosis without renal biopsy. Nephritis and sensorineural deafness.

    PubMed

    Richardson, D; Shires, M; Davison, A M

    2001-06-01

    Two examples of hereditary nephropathy within the context of clinical syndromes are described. Emphasis is put on the ability to make a renal diagnosis without renal biopsy and the benefits of screening relatives once a diagnosis is achieved. A variant of Alport's syndrome with associated macrothrombocytic thrombocytopenia, known as Epstein's syndrome, is reported. In addition siblings with Alström's syndrome characterized by pigmentary retinal degeneration (causing blindness in early childhood), progressive sensorineural hearing loss, and progressive renal failure are reported. Both cases had previously presented for non-renal pathology in advance of the onset of symptomatic renal failure and may have benefited from appropriate screening.

  4. Molecular cloning of Schistosoma mansoni calcineurin subunits and immunolocalization to the excretory system.

    PubMed

    Mecozzi, B; Rossi, A; Lazzaretti, P; Kady, M; Kaiser, S; Valle, C; Cioli, D; Klinkert, M Q

    2000-10-01

    In order to explain the schistosomicidal effect of cyclosporin A, the hypothesis was advanced that the drug, complexed with cyclophilin, inhibits the phosphatase activity of parasite calcineurin (CN), with mechanisms similar to those operating in its immunosuppressive action. As a preparatory step to the testing of this hypothesis, we report the molecular cloning of both CN subunits in Schistosoma mansoni. The catalytic (A) subunit has a predicted sequence of 607 amino acids and shows substantial similarity to other cloned CNs, except for the carboxy-terminal end that is highly divergent. The regulatory (B) subunit consists of 169 amino acids that are 86% identical to those of the human counterpart and, from its anomalous electrophoretic mobility, it appears to be myristoylated. The results of Southern blotting experiments are compatible with the existence of multiple genes for CNA and a single gene for CNB. Western blots showed that both subunits are present at all stages of the parasite life cycle and can be detected both in the soluble and in the membrane fraction. Immunofluorescence confocal microscopy revealed a striking concentration of the anti-CNA reactivity in 6-8 discrete spots in the schistosomula and in distinct spots along the body of the adult parasite, corresponding to the expected localization of flame cells. Both patterns were confirmed by a perfect co-localization of the anti-CNA signal with that of a previously characterized anti-flame cell monoclonal antibody. The preferential confinement of schistosome CN to the protonephridial system suggests that the enzyme in the parasite may fulfil similar functions to those performed in mammalian kidneys.

  5. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  6. Recombinant Haemonchus contortus 24 kDa excretory/secretory protein (rHcES-24) modulate the immune functions of goat PBMCs in vitro.

    PubMed

    Gadahi, Javaid Ali; Li, Baojie; Ehsan, Muhammad; Wang, Shuai; Zhang, Zhenchao; Wang, Yujian; Hasan, Muhammad Waqqas; Yan, Ruofeng; Song, Xiaokai; Xu, Lixin; Li, Xiangrui

    2016-12-20

    A 24 kDa protein is one of the important components in Haemonchus contortus (barber pole worm) excretory/secretory products (HcESPs), which was shown to have important antigenic function. However, little is known about the immunomodulatory effects of this proteinon host cell. In the present study gene encoding 24kDa excretory/secretory protein (HcES-24) was cloned. The recombinant protein of HcES-24 (rHcES-24) was expressed in a histidine-tagged fusion protein soluble form in Escherichia coli. Binding activity of rHcES-24 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effect on cytokine secretion, cell proliferation, cell migration and nitric oxide production were observed by co-incubation of rHcES-24. IFA results revealed that rHcES-24 could bind to the PBMCs. The interaction of rHcES-24 increased the production of IL4, IL10, IL17 and cell migration in dose dependent manner. However, rHcES-24 treatment significantly suppressed the production of IFNγ, proliferation of the PBMC and Nitric oxide (NO) production. Our findings showed that the rHcES-24 played important regulatory effects on the goat PBMCs.

  7. Primary cardiac lymphoma in a patient with concomitant renal cancer.

    PubMed

    Severino, Davide; Santos, Beatriz; Costa, Cátia; Durão, David; Alves, Miguel; Monteiro, Isabel; Pitta, Luz; Leal, Margarida

    2015-12-01

    Primary cardiac lymphoma is defined as non-Hodgkin lymphoma involving the heart and/or pericardium. It is a rare cancer that primarily affects the right heart and in particular the right atrium. By contrast, renal cell carcinoma is a relatively common cancer, which in rare circumstances can metastasize to the heart. It is now known that there is an association between non-Hodgkin lymphoma and renal cell carcinoma, although the underlying mechanisms are not fully understood. The authors present a case of primary cardiac non-Hodgkin lymphoma in a patient with concomitant renal cell carcinoma and explore the possible reasons for this association.

  8. [Renal markers and predictors, and renal and cardiovascular risk factors].

    PubMed

    Fernández-Andrade, C

    2002-01-01

    prediction. And also, its possible association nexuses, its injuring mechanisms, and the characterization of the new "emergent" renal and cardiovascular risk's markers and factors. 4. The impact on the possibility to treat the end stage renal disease with effective and prolonged procedures, by hemodialisis or kidney transplantation, has been occurred. The affected population's survival with the adequacy renal-sustitution treatment, and the possibility of indefinite duration of its treatment, has also impacted on the public health, and its resources, in an evident way. Simultaneously to increase of the incidence in the population, the electivity for the treatment has been enlarged and extended increasing it exponentially. These facts are documented here, and are defined the characteristics of the factors and markers of risk, of renal and cardiovascular diseases. The defined factors are valued to mark, so far as with the well-known evidence is possible, the prediction and the progression of the renal and cardiovascular functional deterioration: The hypertension, cardiovascular remodeling, the arterial stiffness, the heart rate, the sympathetic activation, the modification of the physiological response of the target organ to the overcharge, the metabolic syndrome, the obesity, the insulin resistance, the altered lipid profile, and metabolism of the fatty acids, the salt-sensibility, the decrease of the renal functional reserve, the glomerular hyperfiltration, the absence of the arterial pressure nocturnal descent, the abnormal excretion of proteins for the urine, the phenomenon induced by dysfunctions of the clotting, superoxide production, growth factors, the production of chronic inflammation and its markers, the factors of the glomerulosclerosis progression, the hyperuricemic status, the endothelial dysfunction and others, are evaluated. As well as their association among them and with other factors of risk not changeable like the age, and in turn, with other acquired

  9. Renal impairment and worsening of renal function in acute heart failure: can new therapies help? The potential role of serelaxin.

    PubMed

    Schmieder, Roland E; Mitrovic, Veselin; Hengstenberg, Christian

    2015-08-01

    Renal dysfunction is a frequent finding in patients with acute heart failure (AHF) and an important prognostic factor for adverse outcomes. Worsening of renal function occurs in 30-50% of patients hospitalised for AHF, and is associated with increased mortality, prolonged hospital stay and increased risk of readmission. Likely mechanisms involved in the decrease in renal function include impaired haemodynamics and activation of neurohormonal factors, such as the renin-angiotensin-aldosterone system, the sympathetic nervous system and the arginine-vasopressin system. Additionally, many drugs currently used to treat AHF have a detrimental effect on renal function. Therefore, pharmacotherapy for AHF should carefully take into account any potential complications related to renal function. Serelaxin, currently in clinical development for the treatment of AHF is a recombinant form of human relaxin-2, identical in structure to the naturally occurring human relaxin-2 peptide hormone that mediates cardiac and renal adaptations during pregnancy. Data from both pre-clinical and clinical studies indicate a potentially beneficial effect of serelaxin on kidney function. In this review, we discuss the mechanisms and impact of impairment of renal function in AHF, and the potential benefits of new therapies, such as serelaxin, in this context.

  10. LITHIUM AND RENAL FUNCTIONS

    PubMed Central

    Sethi, N.; Trivedi, J.K.; Sethi, B.B.

    1987-01-01

    SUMMARY Thirty patients of affective disorder who were on lithium for a year and thirty patients on antidepressant were studied in detail for renal functions. Our observation is that lithium therapy does not lead to any deterioration in kidney functions. The results are discussed. PMID:21927211

  11. Kidney (Renal) Failure

    MedlinePlus

    ... the ureter (s) or a tube connected to an external drainage bag. Both options are used to unblock the ureters in order to allow proper urine flow from the kidneys if this has been identified as the cause for the renal failure. Surgical treatment such as a urinary stent or ...

  12. Management of Renal Cysts

    PubMed Central

    Nalbant, Ismail; Can Sener, Nevzat; Firat, Hacer; Yeşil, Süleyman; Zengin, Kürşad; Yalcınkaya, Fatih; Imamoglu, Abdurrahim

    2015-01-01

    Background and Objectives: Renal cysts have a high prevalence in the general population, and their estimated incidence increases with age. Renal cyst aspiration (usually with sclerotherapy) or open/laparoscopic decortication is a generally effective and safe method in the treatment of symptomatic simple renal cysts. The success rates of laparoscopic decortication and percutaneous aspiration-sclerotherapy were compared to assist in the decision making for the procedure. Methods: A total of 184 patients with symptomatic simple renal cysts were treated with either laparoscopic decortication in 149 cases or percutaneous aspiration-sclerotherapy in 35 cases. The follow-up period was approximately 35 months, and the symptomatic and radiologic success rates of the 2 techniques were compared retrospectively. Results: Laparoscopic decortication was found to have high success rates, a low recurrence rate, and minimal morbidity. Percutaneous aspiration-sclerotherapy is an outpatient procedure with a minimally higher recurrence rate. Conclusion: When a symptomatic cyst is encountered and treatment of the cyst is indicated, laparoscopic decortication is a more efficient method that offers better results than percutaneous aspiration-sclerotherapy. PMID:25848184

  13. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  14. [Renal abnormalities in ankylosing spondylitis].

    PubMed

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.

  15. Hemostatic Parameters according to Renal Function and Time after Transplantation in Brazilian Renal Transplanted Patients

    PubMed Central

    Mota, Ana Paula Lucas; Alpoim, Patrícia Nessralla; de Figueiredo, Roberta Carvalho; Simões e Silva, Ana Cristina; Braga Gomes, Karina; Dusse, Luci Maria SantAna

    2015-01-01

    Kidney transplantation is the key for patients with end-stage renal disease, improving quality of life and longer survival. However, kidney transplant triggers an intense inflammatory response and alters the hemostatic system, but the pathophysiological mechanisms of these changes are not completely understood. The aim of this cross-sectional cohort study was to investigate hemostatic biomarkers in Brazilian renal transplanted patients according to renal function and time after transplantation. A total of 159 renal transplanted patients were enrolled and D-Dimer (D-Di), Thrombomodulin (TM), von Willebrand Factor (VWF), and ADAMTS13 plasma levels were assessed by ELISA. An increase of D-Di was observed in patients with higher levels of creatinine. ADAMTS13 levels were associated with creatinine plasma levels and D-Di levels with Glomerular Filtration Rate. These results suggested that D-Di and ADAMTS13 can be promising markers to estimate renal function. ADAMTS13 should be investigated throughout the posttransplant time to clarify the participation of this enzyme in glomerular filtration and acceptance or rejection of the graft in Brazilian transplanted patients. PMID:26229221

  16. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats.

    PubMed

    El-Sisi, Alaa E; Sokar, Samia S; Abu-Risha, Sally E; Ibrahim, Hanaa A

    2016-12-01

    Life threatening conditions characterized by renal ischemia/reperfusion (RIR) such as kidney transplantation, partial nephrectomy, renal artery angioplasty, cardiopulmonary bypass and aortic bypass surgery, continue to be among the most frequent causes of acute renal failure. The current study investigated the possible protective effects of tadalafil alone and in combination with diltiazem in experimentally-induced renal ischemia/reperfusion injury in rats. Possible underlying mechanisms were also investigated such as oxidative stress and inflammation. Rats were divided into sham-operated and I/R-operated groups. Anesthetized rats (urethane 1.3g/kg) were subjected to bilateral ischemia for 30min by occlusion of renal pedicles, then reperfused for 6h. Rats in the vehicle I/R group showed a significant (p˂0.05) increase in kidney malondialdehyde (MDA) content; myeloperoxidase (MPO) activity; TNF-α and IL-1β contents. In addition significant (p˂0.05) increase in intercellular adhesion molecule-1(ICAM-1) content, BUN and creatinine levels, along with significant decrease in kidney superoxide dismutase (SOD) activity. In addition, marked diffuse histopathological damage and severe cytoplasmic staining of caspase-3 were detected. Pretreatment with combination of tadalafil (5mg/kg bdwt) and diltiazem (5mg/kg bdwt) resulted in reversal of the increased biochemical parameters investigated. Also, histopathological examination revealed partial return to normal cellular architecture. In conclusion, pretreatment with tadalafil and diltiazem combination protected against RIR injury.

  17. Interspecies scaling of excretory amounts using allometry - retrospective analysis with rifapentine, aztreonam, carumonam, pefloxacin, miloxacin, trovafloxacin, doripenem, imipenem, cefozopran, ceftazidime, linezolid for urinary excretion and rifapentine, cabotegravir, and dolutegravir for fecal excretion.

    PubMed

    Srinivas, Nuggehally R

    2016-09-01

    1. Interspecies allometry scaling for prediction of human excretory amounts in urine or feces was performed for numerous antibacterials. Antibacterials used for urinary scaling were: rifapentine, pefloxacin, trovafloxacin (Gr1/low; <10%); miloxacin, linezolid, PNU-142300 (Gr2/medium; 10-40%); aztreonam, carumonam, cefozopran, doripenem, imipenem, and ceftazidime (Gr3/high; >50%). Rifapentine, cabotegravir, and dolutegravir was used for fecal scaling (high; >50%). 2. The employment of allometry equation: Y = aW(b) enabled scaling of urine/fecal amounts from animal species. Corresponding predicted amounts were converted into % recovery by considering the respective human dose. Comparison of predicted/observed values enabled fold difference and error calculations (mean absolute error [MAE] and root mean square error [RMSE]). Comparisons were made for urinary/fecal data; and qualitative assessment was made amongst Gr1/Gr2/Gr3 for urine. 3. Average correlation coefficient for the allometry scaling was >0.995. Excretory amount predictions were largely within 0.75- to 1.5-fold differences. Average MAE and RMSE were within ±22% and 23%, respectively. Although robust predictions were achieved for higher urinary/fecal excretion (>50%), interspecies scaling was applicable for low/medium excretory drugs. 4. Based on the data, interspecies scaling of urine or fecal excretory amounts may be potentially used as a tool to understand the significance of either urinary or fecal routes of elimination in humans in early development.

  18. Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease

    PubMed Central

    Aldámiz-Echevarría, Luis; Andrade, Fernando

    2012-01-01

    l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review. PMID:23109853

  19. Chronic renal disease in pregnancy.

    PubMed

    Ramin, Susan M; Vidaeff, Alex C; Yeomans, Edward R; Gilstrap, Larry C

    2006-12-01

    The purpose of this review was to examine the impact of varying degrees of renal insufficiency on pregnancy outcome in women with chronic renal disease. Our search of the literature did not reveal any randomized clinical trials or meta-analyses. The available information is derived from opinion, reviews, retrospective series, and limited observational series. It appears that chronic renal disease in pregnancy is uncommon, occurring in 0.03-0.12% of all pregnancies from two U.S. population-based and registry studies. Maternal complications associated with chronic renal disease include preeclampsia, worsening renal function, preterm delivery, anemia, chronic hypertension, and cesarean delivery. The live birth rate in women with chronic renal disease ranges between 64% and 98% depending on the severity of renal insufficiency and presence of hypertension. Significant proteinuria may be an indicator of underlying renal insufficiency. Management of pregnant women with underlying renal disease should ideally entail a multidisciplinary approach at a tertiary center and include a maternal-fetal medicine specialist and a nephrologist. Such women should receive counseling regarding the pregnancy outcomes in association with maternal chronic renal disease and the effect of pregnancy on renal function, especially within the ensuing 5 years postpartum. These women will require frequent visits and monitoring of renal function during pregnancy. Women whose renal disease is further complicated by hypertension should be counseled regarding the increased risk of adverse outcome and need for blood pressure control. Some antihypertensives, especially angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, should be avoided during pregnancy, if possible, because of the potential for both teratogenic (hypocalvaria) and fetal effects (renal failure, oliguria, and demise).

  20. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  1. Computational Biology: Modeling Chronic Renal Allograft Injury

    PubMed Central

    Stegall, Mark D.; Borrows, Richard

    2015-01-01

    New approaches are needed to develop more effective interventions to prevent long-term rejection of organ allografts. Computational biology provides a powerful tool to assess the large amount of complex data that is generated in longitudinal studies in this area. This manuscript outlines how our two groups are using mathematical modeling to analyze predictors of graft loss using both clinical and experimental data and how we plan to expand this approach to investigate specific mechanisms of chronic renal allograft injury. PMID:26284070

  2. Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis

    PubMed Central

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya

    2015-01-01

    apoptosis (P < 0.05) of renal cells. The kidneys of fKSC as compared to saline treated rats had a higher capillary density on day 3 [13.30 ± 1.54 vs 7.10 ± 1.29, capillaries/high-power fields (HPF), P < 0.05], and on day 7 (21.10 ± 1.46 vs 15.00 ± 1.30, capillaries/HPF, P < 0.05). In addition, kidneys of fKSC treated rats had an up-regulation of angiogenic proteins hypoxia-inducible factor-1α, VEGF and eNOS on day 3 (P < 0.05). CONCLUSION: Our study shows th