D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E
1999-09-01
Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.
Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif
Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N
2015-01-01
Context Mice with null mutations in Matrix Extracellular Phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE over expression induces opposite effects. Also, Genome Wide Association studies show MEPE plays a major role in bone mass. We hypothesized the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. Design To test our theory we over expressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse over expresses ASARM-peptides and is defective for the PHEX gene. Results The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. Conclusions The C-terminal ASARM-motif plays a major role in regulating bone–mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide is chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also effects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments. PMID:26051469
[Serum sclerostin levels and metabolic bone diseases].
Yamauchi, Mika; Sugimoto, Toshitsugu
2013-06-01
Serum sclerostin levels are being investigated in various metabolic bone diseases. Since serum sclerostin levels are decreased in primary hyperparathyroidism and elevated in hypoparathyroidism, parathyroid hormone (PTH) is thought to be a regulatory factor for sclerostin. Serum sclerostin levels exhibit a significant positive correlation with bone mineral density. On the other hand, a couple of studies on postmenopausal women have shown that high serum sclerostin levels are a risk factor for fracture. Although glucocorticoid induced osteoporosis and diabetes are both diseases that reduce bone formation, serum sclerostin levels have been reported to be decreased in the former and elevated in the latter, suggesting differences in the effects of sclerostin in the two diseases. Serum sclerostin levels are correlated with renal function, and increase with reduction in renal function. Serum sclerostin level may be a new index of bone assessment that differs from bone mineral density and bone metabolic markers.
Uremic toxin and bone metabolism.
Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi
2006-01-01
Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.
Role of TGF-β in a mouse model of high turnover renal osteodystrophy.
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling. © 2014 American Society for Bone and Mineral Research.
Starke, Astrid; Corsenca, Alf; Kohler, Thomas; Knubben, Johannes; Kraenzlin, Marius; Uebelhart, Daniel; Wüthrich, Rudolf P; von Rechenberg, Brigitte; Müller, Ralph; Ambühl, Patrice M
2012-09-01
Acidosis and transplantation are associated with increased risk of bone disturbances. This study aimed to assess bone morphology and metabolism in acidotic patients with a renal graft, and to ameliorate bone characteristics by restoration of acid/base homeostasis with potassium citrate. This was a 12-month controlled, randomized, interventional trial that included 30 renal transplant patients with metabolic acidosis (S-[HCO(3)(-)] <24 mmol/L) undergoing treatment with either potassium citrate to maintain S-[HCO(3)(-)] >24 mmol/L, or potassium chloride (control group). Iliac crest bone biopsies and dual-energy X-ray absorptiometry were performed at baseline and after 12 months of treatment. Bone biopsies were analyzed by in vitro micro-computed tomography and histomorphometry, including tetracycline double labeling. Serum biomarkers of bone turnover were measured at baseline and study end. Twenty-three healthy participants with normal kidney function comprised the reference group. Administration of potassium citrate resulted in persisting normalization of S-[HCO(3)(-)] versus potassium chloride. At 12 months, bone surface, connectivity density, cortical thickness, and cortical porosity were better preserved with potassium citrate than with potassium chloride, respectively. Serological biomarkers and bone tetracycline labeling indicate higher bone turnover with potassium citrate versus potassium chloride. In contrast, no relevant changes in bone mineral density were detected by dual-energy X-ray absorptiometry. Treatment with potassium citrate in renal transplant patients is efficient and well tolerated for correction of metabolic acidosis and may be associated with improvement in bone quality. This study is limited by the heterogeneity of the investigated population with regard to age, sex, and transplant vintage.
Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggests that elevated TGF-β may contribute to the pathogenesis of high turnover disease partially through inhibition of β-catenin signaling. PMID:24166835
Schwarz, Anke; Merkel, Saskia; Leitolf, Holger; Haller, Hermann
2011-03-15
Parathyroidectomy is associated with renal functional losses in transplant patients; cinacalcet offers an attractive alternative. We performed a prospective observational study in 58 patients with persisting hyperparathyroidism after renal transplantation (Ca≥2.6 mmol/L) and impaired renal transplant function (estimated glomerular filtration rate [eGFR] <50 mL/min). The patients received 30 to 90 mg cinacalcet for 12 months with the target to normalize serum Ca. We measured parathyroid hormone (PTH), serum Ca, serum phosphorus, alkaline phosphatase, bone-specific alkaline phosphatase, osteocalcin, and telopeptide at 0, 1, 2, 3, 6, 9, and 12 months of cinacalcet treatment. Fractional excretion of calcium and phosphorus (n=24) were monitored at 0 and 1 month. At inclusion, creatinine was 181±70 μmol/L, eGFR 43±19 mL/min, PTH 371±279 pg/mL, and Ca 2.73±0.22 mmol/L. We observed nephrocalcinosis in 58% of biopsied patients at enrollment. After cinacalcet, Ca decreased significantly and normalized at nearly any measurement. Phosphorus increased significantly at months 1, 9, and 12. PTH decreased significantly, but only at months 9 and 12 and did not normalize. Bone-specific alkaline phosphatase increased significantly (>normal) by month 12. eGFR decreased and serum creatinine increased at all time points. The Δ(creatinine) % increase correlated significantly with the Δ(PTH) % decrease at month 1 and 12. Telopeptide and alkaline phosphatase correlated with PTH and telopeptide also correlated with serum creatinine. Calcium-phosphorus homeostasis in hypercalcemic renal transplant patients normalizes under cinacalcet and PTH decreases, albeit not to normal. The renal functional decline could be PTH mediated, analogous to the effects observed after parathyroidectomy.
Intestinal absorption and renal reabsorption of calcium throughout postnatal development
Beggs, Megan R
2017-01-01
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014
Prié, Dominique; Huart, Virginie; Bakouh, Naziha; Planelles, Gabrielle; Dellis, Olivier; Gérard, Bénédicte; Hulin, Philippe; Benqué-Blanchet, François; Silve, Caroline; Grandchamp, Bernard; Friedlander, Gérard
2002-09-26
Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization. Copyright 2002 Massachusetts Medical Society
Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela
2015-04-14
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milgram, S.; Carrière, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.
2007-07-01
Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.
An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma.
Grünwald, Viktor; Eberhardt, Berit; Bex, Axel; Flörcken, Anne; Gauler, Thomas; Derlin, Thorsten; Panzica, Martin; Dürr, Hans Roland; Grötz, Knut Achim; Giles, Rachel H; von Falck, Christian; Graser, Anno; Muacevic, Alexander; Staehler, Michael
2018-06-14
Bone is a major site of haematogenous tumour cell spread in renal cell carcinoma (RCC), and most patients with RCC will develop painful and functionally disabling bone metastases at advanced disease stages. The prognosis of these patients is generally poor and the treatment is, therefore, aimed at palliation. However, RCC-associated bone metastases can be curable in select patients. Current data support a multimodal management strategy that includes wide resection of lesions, radiotherapy, systemic therapy, and other local treatment options, which can improve quality of life and survival. Nevertheless, the optimal approach for metastatic bone disease in RCC has not yet been defined and practical recommendations are rare. To improve the management and outcomes of patients with RCC and bone metastases, the International Kidney Cancer Coalition and the interdisciplinary working group on renal tumours of the German Cancer Society convened a meeting of experts with a global perspective to perform an unstructured review and elaborate on current treatment strategies on the basis of published data and expertise. The panel formulated recommendations for the diagnosis and treatment of patients with RCC and metastasis to the bone. Furthermore, the experts summarized current challenges and unmet patient needs that should be addressed in the future.
Metabolic bone disease in chronic renal failure. II. Renal transplant patients.
Huffer, W. E.; Kuzela, D.; Popovtzer, M. M.; Starzl, T. E.
1975-01-01
Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy. Images Fig 1 PMID:1091152
Hamzah, Lisa; Tiraboschi, Juan M; Iveson, Helen; Toby, Martina; Mant, Christine; Cason, John; Burling, Keith; Wandolo, Emily; Jendrulek, Isabelle; Taylor, Chris; Ibrahim, Fowzia; Kulasegaram, Ranjababu; Teague, Alastair; Post, Frank A; Fox, Julie
2016-01-01
Efavirenz (EFV) has been associated with reductions in vitamin D (25[OH]D) and tenofovir (TDF) with increased bone turnover, reductions in bone mineral density (BMD) and renal tubular dysfunction. We hypothesized that switching from fixed-dose TDF/emtricitabine (FTC)/EFV to darunavir/ritonavir monotherapy (DRV/r) might increase 25(OH)D and BMD, and improve renal tubular function. Subjects with HIV RNA <50 copies/ml on TDF/FTC/EFV for ≥6 months were randomized 1:1 to ongoing TDF/FTC/EFV or DRV/r (800/100 mg once daily) for 48 weeks. The primary end point was change from baseline in 25(OH)D at week 48. Secondary end points included changes in BMD, bone turnover markers and renal tubular function. A total of 64 subjects (86% male, 66% white, mean [sd] CD4(+) T-cell count 537.3 [191.5]/mm(3)) were analysed. After adjustment for baseline 25(OH)D and demographics, at week 48 DRV/r monotherapy was associated with a +3.6 (95% CI 0.6, 6.6) ng/ml increase in 25(OH)D compared to TDF/FTC/EFV (P=0.02). DRV/r monotherapy was associated with an increase in BMD (+2.9% versus -0.003% at the neck of femur and +2.6% versus +0.008% at the lumbar spine for DRV/r versus TDF/FTC/EFV; P<0.05 for all) and reductions in bone biomarkers compared with those remaining on TDF/FTC/EFV. No significant difference in renal tubular function was observed. Reasons for discontinuation in the DRV/r arm included side effects (n=4) and viral load rebound (n=3), all of which resolved with DRV/r discontinuation or regimen intensification. Switching from TDF/FTC/EFV to DRV/r in patients with suppressed HIV RNA resulted in significant improvements in 25(OH)D and bone biomarkers, and a 2-3% increase in BMD.
Focal segmental necrotizing glomerulonephritis in rheumatoid arthritis.
Harper, L; Cockwell, P; Howie, A J; Michael, J; Richards, N T; Savage, C O; Wheeler, D C; Bacon, P A; Adu, D
1997-02-01
We report ten patients with rheumatoid arthritis (RA) who developed a focal segmental necrotizing glomerulonephritis (FSNGN) and extracapillary proliferation typical of vasculitic glomerulonephritis. Five patients also had extrarenal vasculitis. Renal presentation was with renal impairment (n = 9) (median creatinine 726 mumol/l, range 230-1592 mumol/l), microscopic haematuria (n = 8) and proteinuria (n = 10). Nine patients were seropositive for rheumatoid factor and nine had bone erosions. Serum from four of five patients tested by indirect immunofluorescence was positive for antineutrophil cytoplasmic antibody (ANCA) with perinuclear staining. Only three patients had penicillamine or gold therapy. Treatment was with prednisolone and cyclophosphamide (six patients, two of whom were also plasma-exchanged), prednisolone and azathioprine (two patients) and prednisolone alone (two patients). There was a marked improvement in renal function in eight patients. Two patients with dialysis-dependent renal failure recovered renal function, although in one patient this was transient and she required further dialysis 4 months later. Two other patients progressed to dialysis at 3 months and 1 year respectively. Four patients died, one remains dialysis-dependent, and four continue to have good renal function at 5 year follow-up (median creatinine 148.5 mumol/l, range 120-193 mumol/l). One patient was lost to follow-up at 5 years. FSNGN should be considered in all patients with RA and renal impairment, proteinuria and/or microscopic haematuria. This diagnosis appears to be more likely in patients with clinical extrarenal vasculitis, bone erosions or who are seropositive. In these cases, an urgent renal biopsy is indicated.
The consequences of pediatric renal transplantation on bone metabolism and growth.
Bacchetta, Justine; Ranchin, Bruno; Demède, Delphine; Allard, Lise
2013-10-01
During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).
Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model
Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto
2017-01-01
Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression. PMID:28405130
Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation
McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth
2015-01-01
ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160
Smerud, K T; Dolgos, S; Olsen, I C; Åsberg, A; Sagedal, S; Reisæter, A V; Midtvedt, K; Pfeffer, P; Ueland, T; Godang, K; Bollerslev, J; Hartmann, A
2012-12-01
The clinical profile of ibandronate as add-on to calcitriol and calcium was studied in this double-blind, placebo-controlled trial of 129 renal transplant recipients with early stable renal function (≤ 28 days posttransplantation, GFR ≥ 30 mL/min). Patients were randomized to receive i.v. ibandronate 3 mg or i.v. placebo every 3 months for 12 months on top of oral calcitriol 0.25 mcg/day and calcium 500 mg b.i.d. At baseline, 10 weeks and 12 months bone mineral density (BMD) and biochemical markers of bone turnover were measured. The primary endpoint, relative change in BMD for the lumbar spine from baseline to 12 months was not different, +1.5% for ibandronate versus +0.5% for placebo (p = 0.28). Ibandronate demonstrated a significant improvement of BMD in total femur, +1.3% versus -0.5% (p = 0.01) and in the ultradistal radius, +0.6% versus -1.9% (p = 0.039). Bone formation markers were reduced by ibandronate, whereas the bone resorption marker, NTX, was reduced in both groups. Calcium and calcitriol supplementation alone showed an excellent efficacy and safety profile, virtually maintaining BMD without any loss over 12 months after renal transplantation, whereas adding ibandronate significantly improved BMD in total femur and ultradistal radius, and also suppressed biomarkers of bone turnover. Ibandronate was also well tolerated. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Wang, Mengjing; Obi, Yoshitsugu; Streja, Elani; Rhee, Connie M; Lau, Wei Ling; Chen, Jing; Hao, Chuanming; Hamano, Takayuki; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar
2017-07-07
The relationship between mineral and bone disorders and survival according to residual kidney function status has not been previously studied in patients on hemodialysis. We hypothesized that residual kidney function, defined by renal urea clearance, modifies the association between mineral and bone disorder parameters and mortality. The associations of serum phosphorus, albumin-corrected calcium, intact parathyroid hormone, and alkaline phosphatase with all-cause mortality were examined across three strata (<1.5, 1.5 to <3.0, and ≥3.0 ml/min per 1.73 m 2 ) of baseline residual renal urea clearance using Cox models adjusted for clinical characteristics and laboratory measurements in 35,114 incident hemodialysis patients from a large United States dialysis organization over the period of 2007-2011. A total of 8102 (23%) patients died during the median follow-up of 1.3 years (interquartile range, 0.6-2.3 years). There was an incremental mortality risk across higher serum phosphorus concentrations, which was pronounced among patients with higher residual renal urea clearance ( P interaction =0.001). Lower concentrations of serum intact parathyroid hormone were associated with higher mortality among patients with low residual renal urea clearance ( i.e. , <1.5 ml/min per 1.73 m 2 ), whereas higher concentrations showed a higher mortality risk among patients with greater residual renal urea clearance ( i.e. , ≥1.5 ml/min per 1.73 m 2 ; P interaction <0.001). Higher serum corrected total calcium and higher alkaline phosphatase concentrations consistently showed higher mortality risk ( P trend <0.001 for both) irrespective of residual renal urea clearance strata ( P interaction =0.34 and P interaction =0.53, respectively). Residual kidney function modified the mortality risk associated with serum phosphorus and intact parathyroid hormone among incident hemodialysis patients. Future studies are needed to examine whether taking account for residual kidney function into the assessment of mortality risk associated with serum phosphorus and intact parathyroid hormone improves patient management and clinical outcomes in the hemodialysis population. Copyright © 2017 by the American Society of Nephrology.
Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway.
Rowe, Peter S N
2012-01-01
More than 300 million years ago, vertebrates emerged from the vast oceans to conquer gravity and the dry land. With this transition, new adaptations occurred that included ingenious changes in reproduction, waste secretion, and bone physiology. One new innovation, the egg shell, contained an ancestral protein (ovocleidin-116) that likely first appeared with the dinosaurs and was preserved through the theropod lineage in modern birds and reptiles. Ovocleidin-116 is an avian homolog of matrix extracellular phosphoglycoprotein (MEPE) and belongs to a group of proteins called short integrin-binding ligand-interacting glycoproteins (SIBLINGs). These proteins are all localized to a defined region on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of SIBLING proteins is an acidic serine aspartate-rich MEPE-associated motif (ASARM). Recent research has shown that the ASARM motif and the released ASARM peptide have regulatory roles in mineralization (bone and teeth), phosphate regulation, vascularization, soft-tissue calcification, osteoclastogenesis, mechanotransduction, and fat energy metabolism. The MEPE ASARM motif and peptide are physiological substrates for PHEX, a zinc metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets (HYP). There is evidence that PHEX interacts with another ASARM motif containing SIBLING protein, dentin matrix protein-1 (DMP1). DMP1 mutations cause bone and renal defects that are identical with the defects caused by a loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both HYP and ARHR, increased FGF23 expression plays a major role in the disease and in autosomal dominant hypophosphatemic rickets (ADHR), FGF23 half-life is increased by activating mutations. ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. FGF23 is a member of the fibroblast growth factor (FGF) family of cytokines, which surfaced 500 million years ago with the boney fish (i.e., teleosts) that do not contain SIBLING proteins. In terrestrial vertebrates, FGF23, like SIBLING proteins, is expressed in the osteocyte. The boney fish, however, are an-osteocytic, so a physiological bone-renal link with FGF23 and the SIBLINGs was cemented when life ventured from the oceans to the land during the Triassic period, approximately 300 million years ago. This link has been revealed by recent research that indicates a competitive displacement of a PHEX-DMP1 interaction by an ASARM peptide that leads to increased FGF23 expression. This review discusses the new discoveries that reveal a novel PHEX, DMP1, MEPE, ASARM peptide, and FGF23 bone-renal pathway. This pathway impacts not only bone formation, bone-renal mineralization, and renal phosphate homeostasis but also energy metabolism. The study of this new pathway is relevant for developing therapies for several diseases: bone-teeth mineral loss disorders, renal osteodystrophy, chronic kidney disease and bone mineralization disorders (CKD-MBD), end-stage renal diseases, ectopic arterial-calcification, cardiovascular disease renal calcification, diabetes, and obesity.
Stem cells in nephrology: present status and future.
Watorek, Ewa; Klinger, Marian
2006-01-01
Stem cell biology is currently developing rapidly because of the potential therapeutic utility of stem cells. The ability to acquire any desired phenotype raises hope for regenerative therapies. Manipulation of these cells is a potentially valuable tool; however, the mechanisms of stem cell differentiation and plasticity are currently beyond our control. In the field of nephrology, the presence of adult kidney stem cells has been debated. Renal adult stem cells may be descendants of some early kidney progenitors, or may be derived from bone marrow. Evidence of a hematopoietic stem-cell contribution to renal repair encourages the possibility of bone marrow or stem cell transplantation as a means of treating autoimmune glomerulopathies. The transplantation of fetal kidney tissue containing renal progenitors, which then develop into functional nephrons, is a step towards renal regeneration. According to recent reports, the development of functional nephrons from human mesenchymal stem cells in rodent whole-embryo culture is possible. Establishing in vitro self organs from autologous stem cells would be a promising therapeutic solution in light of the shortage of allogenic organs and the unresolved problem of chronic allograft rejection.
Wöhrle, Simon; Bonny, Olivier; Beluch, Noemie; Gaulis, Swann; Stamm, Christelle; Scheibler, Marcel; Müller, Matthias; Kinzel, Bernd; Thuery, Anne; Brueggen, Joseph; Hynes, Nancy E; Sellers, William R; Hofmann, Francesco; Graus-Porta, Diana
2011-10-01
The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis. Copyright © 2011 American Society for Bone and Mineral Research.
[Decline in renal function in old age : Part of physiological aging versus age-related disease].
Braun, F; Brinkkötter, P T
2016-08-01
The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.
Osumi, Tomoo; Awazu, Midori; Fujimura, Eriko; Yamazaki, Fumito; Hashiguchi, Akinori; Shimada, Hiroyuki
2013-06-01
Secondary polycythemia with increased production of erythropoietin (EPO) is known to occur in kidney diseases such as hydronephrosis and cystic disease, but the mechanism remains unclear. We report an 18-year-old female with isolated renal relapse of acute lymphoblastic leukemia accompanied by polycythemia. At the relapse, she presented with bilateral nephromegaly, mild renal dysfunction, and erythrocytosis with increased serum EPO levels up to 52.1 mIU/mL (9.1-32.8). Renal biopsy demonstrated diffuse lymphoblastic infiltration. The expression of hypoxia-inducible factor (HIF)-1α, which is undetectable in normal kidney, was observed in the renal tubule epithelium compressed by lymphoblastic cells. These findings suggest that erythrocytosis was caused by renal ischemia due to leukemic infiltration. Polycythemia probably became apparent because of the lack of leukemic involvement of the bone marrow. With chemotherapy, the serum EPO level rapidly decreased to normal range accompanied by the normalization of kidney size and function. Renal leukemic infiltration may enhance EPO production, although not recognized in the majority of cases because of bone marrow involvement. Our case has clarified the mechanism of previously reported polycythemia associated with renal diseases as renal ischemia. Furthermore, we have added renal ischemia resulting from tumor infiltration to the list of causes of secondary polycythemia.
Relationship between age, renal function and bone mineral density in the US population.
Klawansky, Sidney; Komaroff, Eugene; Cavanaugh, Paul F; Mitchell, David Y; Gordon, Matthew J; Connelly, Janet E; Ross, Susan D
2003-07-01
Bisphosphonate drugs for treating osteoporosis are excreted by the kidney. However, many of the major trials on efficacy and safety of the bisphophonates for treating osteoporosis excluded patients with significant renal compromise. Since both osteoporosis and renal insufficiency become more prevalent with age, it seems prudent for physicians to be aware of the prevalence of renal dysfunction in patients with osteoporosis who are candidates for treatment with bisphosphonates. Data on 13,831 men and women aged 20+ from the Third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) were used to study the occurrence of compromise in renal clearance function in men and women with osteopenia and osteoporosis. To estimate creatinine clearance (CCr), a measure of renal function, serum creatinine (sCr), weight and age were inserted into the Cockcoft-Gault (C-G) formula. The World Health Organization gender specific bone mineral density (BMD) cut-offs were used to define the populations with osteopenia and osteoporosis. For women ages 20-80+ with osteoporosis, the percent prevalence (95% CI) for mild to moderate compromise of CCr =60 ml/min is estimated to be 85% (79%, 91%) and for severe renal compromise of CCr <35 ml/min to be 24% (19%, 29%). In women with osteoporosis and severe compromise, the age specific prevalence is negligible through ages 50-59 and then rises steeply to 54% (46%, 62%) for ages 80+. Similarly, in women with osteopenia and severe renal compromise, the age specific prevalence is also negligible through ages 50-59 and then rises to 37% (28%, 45%) for ages 80+. Lower prevalence estimates hold for men with about 11% of men with osteoporosis having severe renal compromise as compared to 24% for women. These data suggest that there is a substantial prevalence of candidates for treatment of osteoporosis and osteopenia who have significant renal compromise but for whom there is a dearth of clinical trial data on the impact of treatment.
Hypercalcaemia and hypocalcaemia: finding the balance.
Body, Jean-Jacques; Niepel, Daniela; Tonini, Giuseppe
2017-05-01
The balance between bone formation and resorption may be disrupted in patients with cancer, leading either to increased bone resorption, calcium release, and possibly hypercalcaemia, or to increased bone formation, sequestration of calcium, and possibly hypocalcaemia. In adults, hypercalcaemia of malignancy is most common in patients with tumours that produce factors that induce osteoclast activation and enhance bone resorption. Impaired renal function and increased renal tubular calcium resorption may further affect calcium levels. Inhibitors of bone resorption, first the bisphosphonates and, later, denosumab, have been shown to be effective in hypercalcaemia treatment. Bisphosphonates (which are administered intravenously) are approved for hypercalcaemia of malignancy and are the current mainstay of treatment, whereas denosumab (which is administered subcutaneously) may offer an option for patients who do not respond to bisphosphonates or suffer from renal insufficiency. TREATMENT AND PREVENTION: Hypocalcaemia is most common in patients with prostate cancer and osteoblastic bone metastases, but can occur in patients with a variety of tumour types who are receiving inhibitors of bone resorption. While patients often respond to calcium and vitamin D supplementation, prevention should be the aim; at-risk patients should be identified before starting treatment with inhibitors of bone resorption, be closely monitored during at least the first few months of treatment, and receive concomitant calcium and vitamin D supplementation unless hypercalcaemia is present. Both hypercalcaemia and hypocalcaemia can be serious if left untreated. It is therefore important that patients with cancer are closely monitored and receive adequate prevention and treatment measures to maintain normal blood calcium levels.
Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women
Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching
2015-01-01
The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15–1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07–1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14–1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association. PMID:26459876
Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women.
Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching
2015-10-13
The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15-1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07-1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14-1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association.
Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude
2012-01-01
Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less
Effect of risedronate on bone in renal transplant recipients.
Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel
2012-08-01
Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.
Musante, Ilaria; Mattinzoli, Deborah; Otescu, Lavinia Alexandra; Bossi, Simone; Ikehata, Masami; Gentili, Chiara; Cangemi, Giuliana; Gatti, Cinzia; Emionite, Laura; Messa, Piergiorgio; Ravazzolo, Roberto; Rastaldi, Maria Pia; Riccardi, Daniela; Puliti, Aldamaria
2017-01-01
Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the metabotropic glutamate signaling in bone is poorly understood. Specifically type 1 metabotropic glutamate (mGlu1) receptors are expressed in bone, but the effect of its ablation on skeletal development has never been investigated. Here we report that Grm1 crv4/crv4 mice, homozygous for an inactivating mutation of the mGlu1 receptor, and mainly characterized by ataxia and renal dysfunction, exhibit decreased body weight, bone length and bone mineral density compared to wild type (WT) animals. Blood analyses of the affected mice demonstrate the absence of changes in circulating factors, such as vitamin D and PTH, suggesting renal damage is not the main culprit of the skeletal phenotype. Cultures of osteoblasts lacking functional mGlu1 receptors exhibit less homogeneous collagen deposition than WT cells, and present increased expression of osteocalcin, a marker of osteoblast maturation. These data suggest that the skeletal damage is directly linked to the absence of the receptor, which in turn leads to osteoblasts dysfunction and earlier maturation. Accordingly, skeletal histomorphology suggests that Grm1 crv4/crv4 mice exhibit enhanced bone maturation, resulting in premature fusion of the growth plate and shortened long bones, and further slowdown of bone apposition rate compared to the WT animals. In summary, this work reveals novel functions of mGlu1 receptors in the bone and indicates that in osteoblasts mGlu1 receptors are necessary for production of normal bone matrix, longitudinal bone growth, and normal skeletal development. Copyright © 2016 Elsevier Inc. All rights reserved.
Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C
2017-02-01
Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, V.A.; Jacobstein, J.G.
Bone scans were performed with Tc-99m stannous polyphosphate on four patients with thalassemia major. Three of the scans show generalized decrease in skeletal uptake of the radiopharmaceutical, associated with renal enlargement and markedly increased renal radioactivity. The skeletal findings are consistent with the known bone abnormalities in thalassemia major, which are secondary to the extensive marrow hyperplasia and include loss of trabeculae and cortical thinning with consequent loss of bone mass. The increased renal uptake is probably due in part to the increased renal excretion (secondary to the poor bone uptake) and in part to the tubular dilatation and renalmore » enlargement associated with thalassemia major. In addition, the presence of excessive amounts of iron in these patients may play a role in both the skeletal and renal findings.« less
Bone metabolism and renal stone risk during International Space Station missions.
Smith, Scott M; Heer, Martina; Shackelford, Linda C; Sibonga, Jean D; Spatz, Jordan; Pietrzyk, Robert A; Hudson, Edgar K; Zwart, Sara R
2015-12-01
Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk. Published by Elsevier Inc.
[Mineral and bone disorders in renal transplantation].
Bacchetta, Justine; Lafage-Proust, Marie-Hélène; Chapurlat, Roland
2013-12-01
The deregulation of bone and mineral metabolism during chronic kidney disease (CKD) is a daily challenge for physicians, its management aiming at decreasing the risk of both fractures and vascular calcifications. Renal transplantation in the context of CKD, with pre-existing renal osteodystrophy as well as nutritional impairment, chronic inflammation, hypogonadism and corticosteroids exposure, represents a major risk factor for bone impairment in the post-transplant period. The aim of this review is therefore to provide an update on the pathophysiology of mineral and bone disorders after renal transplantation. Copyright © 2013 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Blood disorders typically associated with renal transplantation
Yang, Yu; Yu, Bo; Chen, Yun
2015-01-01
Renal transplantation has become one of the most common surgical procedures performed to replace a diseased kidney with a healthy kidney from a donor. It can help patients with kidney failure live decades longer. However, renal transplantation also faces a risk of developing various blood disorders. The blood disorders typically associated with renal transplantation can be divided into two main categories: (1) Common disorders including post-transplant anemia (PTA), post-transplant lymphoproliferative disorder (PTLD), post-transplant erythrocytosis (PTE), and post-transplant cytopenias (PTC, leukopenia/neutropenia, thrombocytopenia, and pancytopenia); and (2) Uncommon but serious disorders including hemophagocytic syndrome (HPS), thrombotic microangiopathy (TMA), therapy-related myelodysplasia (t-MDS), and therapy-related acute myeloid leukemia (t-AML). Although many etiological factors involve the development of post-transplant blood disorders, immunosuppressive agents, and viral infections could be the two major contributors to most blood disorders and cause hematological abnormalities and immunodeficiency by suppressing hematopoietic function of bone marrow. Hematological abnormalities and immunodeficiency will result in severe clinical outcomes in renal transplant recipients. Understanding how blood disorders develop will help cure these life-threatening complications. A potential therapeutic strategy against post-transplant blood disorders should focus on tapering immunosuppression or replacing myelotoxic immunosuppressive drugs with lower toxic alternatives, recognizing and treating promptly the etiological virus, bacteria, or protozoan, restoring both hematopoietic function of bone marrow and normal blood counts, and improving kidney graft survival. PMID:25853131
Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone
Culbertson, Christopher D.; Kyker-Snowman, Kelly; Bushinsky, David A.
2012-01-01
Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality. PMID:22647635
Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients.
Mateo, Lourdes; Holgado, Susana; Mariñoso, Maria Luisa; Pérez-Andrés, Ricard; Bonjoch, Anna; Romeu, Joan; Olivé, Alejandro
2016-05-01
Tenofovir disoproxil fumarate (TDF) is an adenine analogue reverse transcription inhibitor widely used in first-line treatment of human immunodeficiency virus (HIV) infection and also in hepatitis B virus infection. Its use has been linked to sporadic Fanconi syndrome, renal failure and bone disease. We present the clinical characteristics of tenofovir-induced osteomalacia, discuss bone biopsy findings, describe predisposing factors and compare our results with other reported cases. We describe five cases of hypophosphatemic osteomalacia induced by TDF and recorded at the rheumatology service of a university hospital between 2010 and 2014. We also report the characteristics of bone biopsies of this pathology, which have not been previously described. We include a review of published cases of proximal renal tubulopathy (PRT) and osteomalacia induced by TDF (PubMed 1995-2014; keywords: osteomalacia, tenofovir, Fanconi syndrome, hypophosphatemic osteomalacia, proximal renal tubulopathy, bone biopsy). Five HIV patients who developed hypophosphatemic osteomalacia under TDF treatment (>5 years) presented increasing bone pain and a progressive inability to walk without assistance as a result of multiple insufficiency fractures. Bone biopsy performed in three patients after tetracycline labelling showed increased osteoid thickness, confirming osteomalacia. A literature review retrieved 17 publications on this condition, including 53 cases: 26 patients developed isolated PRT, 25 presented PRT and with multiple insufficiency fractures and two presented isolated bone disease, including osteomalacia and osteoporosis. Rheumatologists should be alert to this complication in patients receiving tenofovir. The main complaint reported by these patients is diffuse pain, predominantly in the lower limbs, indicating multiple stress fractures. Serum phosphate and appropriate screening for abnormal proximal tubule function should be monitored. Bone scintigraphy should be carried out in cases of limb pain before the occurrence of more severe complications.
Baek, Wook-Young; Park, Seung-Yoon; Kim, Yeo Hyang; Lee, Min-A; Kwon, Tae-Hwan; Park, Kwon-Moo; de Crombrugghe, Benoit; Kim, Jung-Eun
2013-01-01
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state. PMID:23922826
de Jonge, E A L; Koromani, F; Hofman, A; Uitterlinden, A G; Franco, O H; Rivadeneira, F; Kiefte-de Jong, J C
2017-08-01
We studied the relation between a diet that is high in acid-forming nutrients (e.g. proteins) and low in base-forming nutrients (e.g. potassium) and bone structure. We showed a negative relation, which was more prominent if proteins were of animal rather than of vegetable origin and if intake of dietary fibre was high. Studies on dietary acid load (DAL) and fractures have shown inconsistent results. Associations between DAL, bone mineral density (BMD) and trabecular bone integrity might play a role in these inconsistencies and might be influenced by renal function and dietary fibre intake. Therefore, our aim was to study (1) associations of DAL with BMD and with the trabecular bone score (TBS) and (2) the potential influence of renal function and dietary fibre in these associations. Dutch individuals aged 45 years and over (n = 4672) participating in the prospective cohort of the Rotterdam study were included. Based on food frequency questionnaires, three indices of DAL were calculated: the net endogenous acid production (NEAP) and the ratios of vegetable or animal protein and potassium (VegPro/K and AnPro/K). Data on lumbar spinal TBS and BMD were derived from dual-energy X-ray absorptiometry measurements. Independent of confounders, NEAP and AnPro/K, but not VegPro/K, were associated with low TBS (standardized β (95%) = -0.04 (-0.07, -0.01) and -0.08 (-0.11, -0.04)) but not with BMD. Associations of AnPro/K and VegPro/K with TBS were non-linear and differently shaped. Unfavourable associations between NEAP, BMD and TBS were mainly present in subgroups with high fibre intake. High NEAP was associated with low TBS. Associations of AnPro/K and VegPro/K and TBS were non-linear and differently shaped. No significant associations of DAL with BMD were observed, nor was there any significant interaction between DAL and renal function. Mainly in participants with high intake of dietary fibre, DAL might be detrimental to bone.
Yamaguchi, Shintaro; Maruyama, Tatsuya; Wakino, Shu; Tokuyama, Hirobumi; Hashiguchi, Akinori; Tada, Shinichiro; Homma, Koichiro; Monkawa, Toshiaki; Thomas, James; Miyashita, Kazutoshi; Kurihara, Isao; Yoshida, Tadashi; Konishi, Konosuke; Hayashi, Koichi; Hayashi, Matsuhiko; Itoh, Hiroshi
2015-11-11
Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease, characterized by increased concentrations of serum IgM and the presence of circulating anti-mitochondrial antibodies. Although bone diseases such as osteoporosis or osteodystrophy are commonly associated with PBC, osteomalacia which is caused by abnormal vitamin D metabolism, mineralization defects, and phosphate deficiency has not been recognized as a complication of PBC. We report the case of a 49-year-old Japanese woman who complained of multiple fractures. Hypophosphatemic osteomalacia was diagnosed from a low serum phosphorus level, 1,25-dihydroxyvitamin D3 level, high levels of bone specific alkaline phosphatase and the findings of bone scintigraphy, although a bone biopsy was not performed. Twenty four hour urine demonstrated a low renal fractional tubular reabsorption of phosphate, increased fractional excretion of uric acid and generalized aminoaciduria. An intravenous bicarbonate loading test suggested the presence of proximal renal tubular acidosis (RTA). These biochemical data indicated Fanconi syndrome with proximal RTA. A kidney biopsy demonstrated the features of tubulointerstitial nephritis (TIN). The patient was also suspected as having primary biliary cirrhosis (PBC) because of high levels of alkaline phosphatase, IgM and the presence of anti-mitochondrial M2 antibody, though biochemical liver function was normal. Sequential liver biopsy was compatible with PBC and the diagnosis of PBC was definite. After administration of 1,25 dihydroxyvitamin D3, neutral potassium phosphate, sodium bicarbonate for osteomalacia and subsequent predonizolone for TIN, symptoms of fractures were relieved and renal function including Fanconi syndrome was ameliorated. In this case, asymptomatic PBC was shown to induce TIN with Fanconi syndrome with dysregulation of electrolytes and vitamin D metabolism, which in turn led to osteomalacia with multiple fractures. Osteomalacia has not been recognized as a result of the renal involvement of PBC. PBC and its rare complication of TIN with Fanconi syndrome should be considered in adult patients with unexplained osteomalacia even in the absence of liver dysfunction.
Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito
2016-10-01
The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.
Secondary contributors to bone loss in osteoporosis related hip fractures.
Edwards, B J; Langman, C B; Bunta, A D; Vicuna, M; Favus, M
2008-07-01
Osteoporosis treatment of patients with hip fractures is necessary to prevent subsequent fractures. Secondary causes for bone loss are present in more than 80% of patients with hip fractures, and therefore, assessment of Vitamin D status, disorders in calcium absorption and excretion, monoclonal gammopathies, and renal function should be performed. Identifying and managing these disorders will improve detection and enhance treatment aimed at reducing the risk of recurrent fractures in older adults. The purpose of this study was to determine the prevalence of disorders affecting bone and mineral metabolism in individuals with osteoporotic hip fractures. Community dwelling individuals with hip fractures (HFx) 50 years of age and older. Assessment for vitamin D, renal and parathyroid status, calcium absorption, and plasma cell disorders. Of 157 HFx, mean age 70 +/- 10 years, HFx had higher creatinine (p = 0.002, 95% C.I. -0.09, 0.05); lower 25 OH vitamin D (p = 0.019, 95% C.I. 6.5, 2.7), albumin (p = 0.007, 95% C.I. 0.36, 0.009), and 24-h urine calcium (p = 0.024, 95% CI 51, 21) as compared to controls. More than 80% of HFx had at least one previously undiagnosed condition, with vitamin D insufficiency (61%), chronic kidney disease (16%) (CKD), monoclonal gammopathy (6%), and low calcium absorption (5%) being the most common. One case each of multiple myeloma and solitary plasmocytoma were identified. Osteoporosis treatment of HFx is necessary to prevent subsequent fractures. Secondary causes for bone loss are remarkably common in HFx; therefore, assessment of vitamin D status, disorders in calcium absorption and excretion, protein electrophoresis, and renal function should be performed. Identifying and correcting these disorders will improve detection and enhance treatment aimed at reducing the risk of recurrent fractures in older adults.
Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan
2018-06-12
There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Feng, Jian Q; Ward, Leanne M; Liu, Shiguang; Lu, Yongbo; Xie, Yixia; Yuan, Baozhi; Yu, Xijie; Rauch, Frank; Davis, Siobhan I; Zhang, Shubin; Rios, Hector; Drezner, Marc K; Quarles, L Darryl; Bonewald, Lynda F; White, Kenneth E
2007-01-01
The osteocyte, a terminally differentiated cell comprising 90%–95% of all bone cells1,2, may have multiple functions, including acting as a mechanosensor in bone (re)modeling3. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes4 and, when deleted in mice, results in a hypomineralized bone phenotype5. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (Pi) homeostasis. Both Dmp1- null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism. PMID:17033621
What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?
Blaslov, Kristina; Katalinic, Lea; Kes, Petar; Spasovski, Goce; Smalcelj, Ruzica; Basic-Jukic, Nikolina
2014-05-01
Although glucocorticoid therapy is considered to be the main pathogenic factor, a consistent body of evidence suggests that other immunosuppressants might also play an important role in the development of the post-transplant renal osteopathy (PRO) through their pleiotropic pharmacological effects. Glucocorticoids seem to induce osteoclasts' activity suppressing the osteoblasts while data regarding other immunosuppressive drugs are still controversial. Mycophenolate mofetil and azathioprine appear to be neutral regarding the bone metabolism. However, the study analyzing any independent effect of antimetabolites on bone turnover has not been conducted yet. Calcineurin inhibitors (CNIs) induce trabecular bone loss in rodent, with contradictory results in renal transplant recipients. Suppression of vitamin D receptor is probably the underlying mechanism of renal calcium wasting in renal transplant recipients receiving CNI. In spite of an increased 1,25(OH)2 vitamin D level, the kidney is not able to reserve calcium, suggesting a role of vitamin D resistance that may be related to bone loss. More efforts should be invested to determine the role of CNI in PRO. In particular, data regarding the role of mammalian target of rapamycin inhibitors (mTORi), such as sirolimus and everolimus, in the PRO development are still controversial. Rapamycin markedly decreases bone longitudinal growth as well as callus formation in experimental models, but also lowers the rate of bone resorption markers and glomerular filtration in clinical studies. Everolimus potently inhibits primary mouse and human osteoclast activity as well as the osteoclast differentiation. It also prevents the ovariectomy-induced loss of cancellous bone by 60 %, an effect predominantly associated with a decreased osteoclast-mediated bone resorption, resulting in a partial preservation of the cancellous bone. At present, there is no clinical study analyzing the effect of everolimus on bone turnover in renal transplant recipients or comparing sirolimus versus everolimus impact on bone, so only general conclusions could be drawn. Hence, the use of mTORi might be useful in patients with PRO due to their possible potential to inhibit osteoclast activity which might lead to a decreased rate of bone resorption. In addition, it should be also emphasized that they might inhibit osteoblast activity which may lead to a decreased bone formation and adynamic bone disease. Further studies are urgently needed to solve these important clinical dilemmas.
Use of Oral Bisphosphonates by Older Adults with Fractures and Impaired Renal Function
Sadowski, Cheryl A; Spencer, Tara; Yuksel, Nese
2011-01-01
Background: The manufacturers of oral bisphosphonates (alendronate, risedronate) recommend avoiding use of these drugs in patients with renal impairment. However, many patients who have osteoporosis or who are at risk of fracture are elderly and may have renal impairment. This situation poses a quandary for clinicians in deciding how best to manage osteoporosis in this high-risk population. Objective: To synthesize published evidence regarding the use and safety of oral bisphosphonates for patients with impaired renal function. Methods: The following databases were searched up to October 2010: PubMed, MEDLINE, Embase, the Cochrane Library, and International Pharmaceutical Abstracts. The following key words and terms were used for the searches: bisphosphonates, alendronate, risedronate, Fosamax, Actonel, “renal failure”, “renal insufficiency”, “chronic kidney disease”, and “end-stage renal disease”. The manufacturers of Fosamax and Actonel were asked to provide information about use of their products in patients with renal impairment, including unpublished pharmacokinetic studies or reports of adverse drug events. Results: The search yielded 2 post hoc analyses of safety data, 1 case–control study, 1 case series, 4 retrospective chart analyses, and 2 prospective studies. According to these publications, numerous patients with decreased renal function have received bisphosphonates and have experienced improvement in bone mineral density and/or reduction in risk of fractures, with no increase in adverse effects. Increased renal damage occurred in some individuals with underlying renal disorders, as described in case reports. Conclusions: Although the literature is limited, there is evidence that alendronate and risedronate are well tolerated and effective when used by individuals with renal impairment. Further research is required to confirm the benefits and risks of using these medications in patients with renal impairment. PMID:22479027
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Moreno, M. Llanos; Neto, Arlete; Ariceta, Gema; Vara, Julia; Alonso, Angel; Bueno, Alberto; Afonso, Alberto Caldas; Correia, António Jorge; Muley, Rafael; Barrios, Vicente; Gómez, Carlos; Argente, Jesús
2010-01-01
Background and objectives: Our aim was to evaluate the growth-promoting effect of growth hormone (GH) treatment in infants with chronic renal failure (CRF) and persistent growth retardation despite adequate nutritional and metabolic management. Design, setting, participants, & measurements: The study design included randomized, parallel groups in an open, multicenter trial comparing GH (0.33 mg/kg per wk) with nontreatment with GH during 12 months. Sixteen infants who had growth retardation, were aged 12 ± 3 months, had CRF (GFR ≤60 ml/min per 1.73 m2), and had adequate nutritional intake and good metabolic control were recruited from eight pediatric nephrology departments from Spain and Portugal. Main outcome measures were body length, body weight, bone age, biochemical and hormonal analyses, renal function, bone mass, and adverse effects. Results: Length gain in infants who were treated with GH was statistically greater (P < 0.05) than that of nontreated children (14.5 versus 9.5 cm/yr; SD score 1.43 versus −0.11). The GH-induced stimulation of growth was associated with no undesirable effects on bone maturation, renal failure progression, or metabolic control. In addition, GH treatment improved forearm bone mass and increased serum concentrations of total and free IGF-I and IGF-binding protein 3 (IGFBP-3), whereas IGF-II, IGFBP-1, IGFBP-2, GH-binding protein, ghrelin, and leptin were not modified. Conclusions: Infants with CRF and growth retardation despite good metabolic and nutritional control benefit from GH treatment without adverse effects during 12 months of therapy. PMID:20522533
Ginat, D T; Ferro, L; Gluth, M B
2016-12-01
We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.
Bone pulsating metastasis due to renal cell carcinoma.
Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz
2010-11-01
Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.
Sgambat, Kristen; Moudgil, Asha
2014-01-01
The accrual of healthy bone during the critical period of childhood and adolescence sets the stage for lifelong skeletal health. However, in children with chronic kidney disease (CKD), disturbances in mineral metabolism and endocrine homeostasis begin early on, leading to alterations in bone turnover, mineralization, and volume, and impairing growth. Risk factors for CKD–mineral and bone disorder (CKD–MBD) include nutritional vitamin D deficiency, secondary hyperparathyroidism, increased fibroblast growth factor 23 (FGF-23), altered growth hormone and insulin-like growth factor-1 axis, delayed puberty, malnutrition, and metabolic acidosis. After kidney transplantation, nutritional vitamin D deficiency, persistent hyperparathyroidism, tertiary FGF-23 excess, hypophosphatemia, hypomagnesemia, immunosuppressive therapy, and alteration of sex hormones continue to impair bone health and growth. As function of the renal allograft declines over time, CKD–MBD associated changes are reactivated, further impairing bone health. Strategies to optimize bone health post-transplant include healthy diet, weight-bearing exercise, correction of vitamin D deficiency and acidosis, electrolyte abnormalities, steroid avoidance, and consideration of recombinant human growth hormone therapy. Other drug therapies have been used in adult transplant recipients, but there is insufficient evidence for use in the pediatric population at the present time. Future therapies to be explored include anti-FGF-23 antibodies, FGF-23 receptor blockers, and treatments targeting the colonic microbiota by reduction of generation of bacterial toxins and adsorption of toxic end products that affect bone mineralization. PMID:24605319
Wang, Zijie; Han, Zhijian; Tao, Jun; Lu, Pei; Liu, Xuzhong; Wang, Jun; Wu, Bian; Huang, Zhengkai; Yin, Changjun; Tan, Ruoyun; Gu, Min
2014-01-01
Introduction The overall effect of pamidronate on bone mass density (BMD) in the early renal transplant period varies considerably among studies. The effects of pamidronate on graft function have not been determined. Materials and Methods A comprehensive search was conducted in PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL) and Embase independently by two authors. Randomized controlled trials of pamidronate evaluating bone loss in the first year of renal transplantation were included. Methods reported in the “Cochrane Handbook for Systematic Reviews of Interventions 5.0.2” were used to evaluate changes of lumbar spine and femoral neck BMD, and serum creatinine, calcium and intact parathyroid hormone (iPTH) levels. Fixed or random effect models were used as appropriate. Results Six randomized trials evaluating 281 patients were identified. One hundred forty-four were treated with pamidronate and 137 were control patients. Administration of pamidronate was associated with significant reduction of bone loss in the lumbar spine, compared to the control group (standardized mean difference (SMD) = 24.62 [16.25, 32.99]). There was no difference between the pamidronate treated and control femoral neck BMD (SMD = 3.53 [−1.84, 8.90]). A significant increase in the serum creatinine level of the intervention group was seen, compared to the control group. The serum calcium and iPTH of the pamidronate and control groups were not different after 1 year (serum creatinine: SMD = −3.101 [−5.33, −0.89]; serum calcium: SMD = 2.18 [−0.8, 5.16]; serum iPTH: SMD = 0.06 [−0.19, 0.31]). Heterogeneity was low for serum calcium and iPTH and high for serum creatinine. Conclusions This meta-analysis demonstrated the beneficial clinical efficacy of pamidronate on BMD with no association with any alteration in graft function during the first year of renal transplantation. Significant heterogeneity precludes the conclusion of the relationship between serum creatinine and pamidronate. PMID:25265508
Dainowski, B H; Duffy, L K; McIntyre, J; Jones, P
2015-06-15
We evaluated if total mercury (THg) concentrations of keratin-based and bone-based tissues can predict THg concentrations in skeletal muscle, renal medulla, renal cortex, and liver. The THg concentration in matched tissues of 65 red foxes, Vulpes vulpes, from western Alaska was determined. Hair THg concentration had a significant positive correlation with liver, renal medulla, renal cortex, and muscle. The THg concentration for males and females is moderately predictive of THg concentration in the renal cortex and liver for these foxes based on R(2) values (R(2)=0.61 and 0.63, respectively). Bone is weakly predictive of THg concentration in muscle (R(2)=0.40), but not a reliable tissue to predict THg concentration in liver (R(2)=0.24), renal cortex (R(2)=0.35), or renal medulla (R(2)=0.25). These results confirm the potential use of trapped animals, specifically foxes, as useful Arctic sentinel species to inform researchers about patterns in THg levels over time as industrialization of the Arctic continues. Copyright © 2015 Elsevier B.V. All rights reserved.
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin
2014-01-01
Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin
2014-08-01
Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.
Febuxostat-induced agranulocytosis in an end-stage renal disease patient: A case report.
Poh, Xue Er; Lee, Chien-Te; Pei, Sung-Nan
2017-01-01
Febuxostat, a nonpurine xanthine oxidase inhibitor, is approved as the first-line urate-lowering therapy in gout patients with normal renal function or mild to moderate renal impairment. The most common adverse effects of febuxostat are liver function test abnormalities, diarrhea, and skin rash. However, there is insufficient data in patients with severe renal impairment and end-stage renal disease (ESRD). We report the first case, to our knowledge, in which agranulocytosis developed after febuxostat treatment in an ESRD patient. A 67-year-old woman with gout and ESRD received febuxostat 40 mg a day for 2.5 months. She subsequently complicated with febrile neutropenia and the absolute neutrophil count was only 14/μL. After broad-spectrum antibiotics treatment and no more exposure to febuxostat for 17 days, her infection and neutrophil count recovered. Bone marrow study during neutropenic period showed myeloid hypoplasia without evidence of hematologic neoplasms. As febuxostat use may become more common in the population of advanced renal failure, clinicians should be aware of this rare but potentially life-threatening adverse effect. Based on our experience, close monitoring hemogram and immediate discontinuation of this medication may prevent serious consequences.
Febuxostat-induced agranulocytosis in an end-stage renal disease patient
Poh, Xue Er; Lee, Chien-Te; Pei, Sung-Nan
2017-01-01
Abstract Introduction: Febuxostat, a nonpurine xanthine oxidase inhibitor, is approved as the first-line urate-lowering therapy in gout patients with normal renal function or mild to moderate renal impairment. The most common adverse effects of febuxostat are liver function test abnormalities, diarrhea, and skin rash. However, there is insufficient data in patients with severe renal impairment and end-stage renal disease (ESRD). We report the first case, to our knowledge, in which agranulocytosis developed after febuxostat treatment in an ESRD patient. Clinical presentation: A 67-year-old woman with gout and ESRD received febuxostat 40 mg a day for 2.5 months. She subsequently complicated with febrile neutropenia and the absolute neutrophil count was only 14/μL. After broad-spectrum antibiotics treatment and no more exposure to febuxostat for 17 days, her infection and neutrophil count recovered. Bone marrow study during neutropenic period showed myeloid hypoplasia without evidence of hematologic neoplasms. Conclusion: As febuxostat use may become more common in the population of advanced renal failure, clinicians should be aware of this rare but potentially life-threatening adverse effect. Based on our experience, close monitoring hemogram and immediate discontinuation of this medication may prevent serious consequences. PMID:28079821
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Wyatt, Christina M; Dubois, Nicole
2017-02-01
Prior efforts to generate renal epithelial cells in vitro have relied on pluripotent or bone marrow-derived mesenchymal stem cells. A recent publication in Nature Cell Biology describes the generation of induced tubular epithelial cells from fibroblasts, potentially offering a novel platform for personalized drug toxicity screening and in vitro disease modeling. This report serves as a promising proof of principle study and opens future research directions, including the optimization of the reprogramming process, efficient translation to adult human fibroblasts, and the generation of highly specific functional renal cell types. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Acid-base balance of the diet: implications for bone
USDA-ARS?s Scientific Manuscript database
With aging, men and women develop a mild and progressive metabolic acidosis. This occurs as a result of the combination of declining renal function and ingestion of acid-producing diets. Acid-producing diets are generally low in fruits and vegetables in relation to their content of cereal grains and...
Bone Disease after Kidney Transplantation
Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard
2016-01-01
Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high– or low–turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549
Cardiac Abnormalities in Primary Hyperoxaluria
Mookadam, Farouk; Smith, Travis; Jiamsripong, Panupong; Moustafa, Sherif E; Monico, Carla G.; Lieske, John C.; Milliner, Dawn S.
2018-01-01
Background In patients with primary hyperoxaluria (PH), oxalate overproduction can result in recurrent urolithiasis and nephrocalcinosis, which in some cases results in a progressive decline in renal function, oxalate retention, and systemic oxalosis involving bone, retina, arterial media, peripheral nerves, skin, and heart. Oxalosis involving the myocardium or conduction system can potentially lead to heart failure and fatal arrhythmias. Methods and Results A retrospective review of our institution’s database was conducted for all patients with a confirmed diagnosis of PH between 1/1948 and 1/2006 (n=103). Electrocardiogram (ECG) and echocardiography were used to identify cardiac abnormalities. Ninety-three patients fulfilled the inclusion criteria, 58% were male. Mean follow-up was 11.9 (median 8.8) years. In 38 patients who received an ECG or echocardiography, 31 were found to have any cardiac abnormalities. Cardiac findings correlated with decline in renal function. Conclusions Our data suggests that physicians caring for patients with PH should pay close attention to cardiac status, especially if renal function is impaired. PMID:20921818
Bone metabolism and arterial stiffness after renal transplantation.
Cseprekál, Orsolya; Kis, Eva; Dégi, Arianna A; Kerti, Andrea; Szabó, Attila J; Reusz, György S
2014-01-01
To assess the relationship between bone and vascular disease and its changes over time after renal transplantation. Metabolic bone disease (MBD) is common in chronic kidney disease (CKD) and is associated with cardiovascular (CV) disease. Following transplantation (Tx), improvement in CV disease has been reported; however, data regarding changes in bone disease remain controversial. Bone turnover and arterial stiffness (pulse wave velocity (PWV)) were assessed in 47 Tx patients (38 (3-191) months after Tx). Bone alkaline phosphatase (BALP), osteocalcin (OC) and beta-crosslaps were significantly higher in Tx patients, and decreased significantly after one year. There was a negative correlation between BALP, OC and steroid administered (r = -0.35; r = -0.36 respectively). PWV increased in the Tx group (1.15 SD). In patients with a follow up of <24 months, PWV was correlated with BALP and beta-crosslaps (r=0.53; r = 0.69 respectively) while in the ≥24 months group, PWV was correlated with cholesterol (r=0.38). Increased bone turnover and arterial stiffness are present following kidney transplantation. While bone turnover decreases with time, arterial stiffness correlates initially with bone turnover, after which the influence of cholesterol becomes significant. Non-invasive estimation of bone metabolism and arterial stiffness may help to assess CKD-MBD following renal transplantation.
The Hypercalciurias CAUSES, PARATHYROID FUNCTIONS, AND DIAGNOSTIC CRITERIA
Pak, Charles Y. C.; Ohata, Masahiro; Lawrence, E. Clint; Snyder, W.
1974-01-01
The causes for the hypercalciuria and diagnostic criteria for the various forms of hypercalciuria were sought in 56 patients with hypercalcemia or nephrolithiasis (Ca stones), by a careful assessment of parathyroid function and calcium metabolism. A study protocol for the evaluation of hypercalciuria, based on a constant liquid synthetic diet, was developed. In 26 cases of primary hyperparathyroidism, characteristic features were: hypercalcemia, high urinary cyclic AMP (cAMP, 8.58±3.63 SD μmol/g creatinine; normal, 4.02±0.70 μmol/g creatinine), high immunoreactive serum parathyroid hormone (PTH), hypercalciuria, the urinary Ca exceeding absorbed Ca from intestinal tract (CaA), high fasting urinary Ca (0.2 mg/mg creatinine or greater), and low bone density by 125I photon absorption. The results suggest that hypercalciuria is partly secondary to an excessive skeletal resorption (resorptive hypercalciuria). The 22 cases with renal stones had normocalcemia, hypercalciuria, intestinal hyperabsorption of calcium, normal or low serum PTH and urinary cAMP, normal fasting urinary Ca, and normal bone density. Since their CaA exceeded urinary Ca, the hypercalciuria probably resulted from an intestinal hyperabsorption of Ca (absorptive hypercalciuria). The primacy of intestinal Ca hyperabsorption was confirmed by responses to Ca load and deprivation under a metabolic dietary regimen. During a Ca load of 1,700 mg/day, there was an exaggerated increase in the renal excretion of Ca and a suppression of cAMP excretion. The urinary Ca of 453±154 SD mg/day was significantly higher than the control group's 211±42 mg/day. The urinary cAMP of 2.26±0.56 μmol/g creatinine was significantly lower than in the control group. In contrast, when the intestinal absorption of calcium was limited by cellulose phosphate, the hypercalciuria was corrected and the suppressed renal excretion of cAMP returned towards normal. Two cases with renal stones had normocalcemia, hypercalciuria, and high urinary cAMP or serum PTH. Since CaA was less than urinary Ca, the hypercalciuria may have been secondary to an impaired renal tubular reabsorption of Ca (renal hypercalciuria). Six cases with renal stones had normal values of serum Ca, urinary Ca, urinary cAMP, and serum PTH (normocalciuric nephrolithiasis). Their CaA exceeded urinary Ca, and fasting urinary Ca and bone density were normal. The results support the proposed mechanisms for the hypercalciuria and provide reliable diagnostic criteria for the various forms of hypercalciuria. PMID:4367891
Sromicki, Jerzy Jan; Hess, Bernhard
2017-06-01
Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH 4 Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH 4 Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing metabolic evaluation should be screened for idRTA.
T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment
Dong, Lei; Nordlohne, Johannes; Ge, Shuwang; Hertel, Barbara; Melk, Anette; Rong, Song; Haller, Hermann
2016-01-01
Reduced kidney function increases the risk for atherosclerosis and cardiovascular death. Leukocytes in the arterial wall contribute to atherosclerotic plaque formation. We investigated the role of fractalkine receptor CX3CR1 in atherosclerotic inflammation in renal impairment. Apoe−/− (apolipoprotein E) CX3CR1−/− mice with renal impairment were protected from increased aortic atherosclerotic lesion size and macrophage accumulation. Deficiency of CX3CR1 in bone marrow, only, attenuated atherosclerosis in renal impairment in an independent atherosclerosis model of LDL receptor–deficient (LDLr−/−) mice as well. Analysis of inflammatory leukocytes in atherosclerotic mixed bone-marrow chimeric mice (50% wild-type/50% CX3CR1−/− bone marrow into LDLr−/− mice) showed that CX3CR1 cell intrinsically promoted aortic T cell accumulation much more than CD11b+CD11c+ myeloid cell accumulation and increased IL-17-producing T cell counts. In vitro, fewer TH17 cells were obtained from CX3CR1−/− splenocytes than from wild-type splenocytes after polarization with IL-6, IL-23, and TGFβ. Polarization of TH17 or TREG cells, or stimulation of splenocytes with TGFβ alone, increased T cell CX3CR1 reporter gene expression. Furthermore, TGFβ induced CX3CR1 mRNA expression in wild-type cells in a dose- and time-dependent manner. In atherosclerotic LDLr−/− mice, CX3CR1+/− T cells upregulated CX3CR1 and IL-17A production in renal impairment, whereas CX3CR1−/− T cells did not. Transfer of CX3CR1+/− but not Il17a−/− T cells into LDLr−/−CX3CR1−/− mice increased aortic lesion size and aortic CD11b+CD11c+ myeloid cell accumulation in renal impairment. In summary, T cell CX3CR1 expression can be induced by TGFβ and is instrumental in enhanced atherosclerosis in renal impairment. PMID:26449606
Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C
2013-01-01
Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. PMID:23806280
X-linked hypophosphataemia: a homologous disorder in humans and mice.
Tenenhouse, H S
1999-02-01
X-linked hypophosphatemia is an inherited disorder of phosphate (Pi) homeostasis characterized by growth retardation, rickets and osteomalacia, hypophosphataemia, and aberrant renal Pi reabsorption and vitamin D metabolism. Studies in murine Hyp and Gy homologues have identified a specific defect in Na+-Pi cotransport at the brush border membrane, abnormal regulation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) synthesis and degradation, and an intrinsic defect in bone mineralization. The mutant gene has been identified in XLH patients, by positional cloning, and in Hyp and Gy mice, and was designated PHEX/Phex to signify a PHosphate-regulating gene with homology to Endopeptidases on the X chromosome. PHEX/Phex is expressed in bones and teeth but not in kidney and efforts are under way to elucidate how loss of PHEX/Phex function elicits the mutant phenotype. Based on its homology to endopeptidases, it is postulated that PHEX/Phex is involved in the activation or inactivation of a peptide hormone(s) which plays a key role in the regulation of bone mineralization, renal Pi handling and vitamin D metabolism.
USDA-ARS?s Scientific Manuscript database
Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicar...
Corrado, C; Santarelli, M T; Pavlovsky, S; Pizzolato, M
1989-12-01
Four hundred ten previously untreated multiple myeloma patients entered onto two consecutive Grupo Argentino de Tratamiento de la Leucemia Aguda (GATLA) protocols were analyzed to identify significant prognostic factors influencing survival. The univariate analysis selected the following variables: performance status, renal function, percentage of bone marrow plasma cells at diagnosis, hemoglobin, and age. A multivariate analysis showed that performance status, renal function, percentage of bone marrow plasma cells, hemoglobin, and age were the best predictive variables for survival. A score was assigned to each patient according to these variables, which led to their classification in three groups: good, intermediate, and poor risk, with a probability of survival of 26% and 10% at 96 months, and 5% at 56 months, and median survival of 60, 37, and 14 months, respectively (P = .0000). In our patient population, this model proved to be superior to the Durie-Salmon staging system in defining prognostic risk groups, and separating patients with significantly different risks within each Durie-Salmon stage.
Ellis, H A; McCarthy, J H; Herrington, J
1979-01-01
Iliac bone aluminium was determined by neutron activation analysis in 34 patients with chronic renal failure and in eight control subjects. In 17 patients treated by haemodialysis there was a significant increase in the amount of aluminium (mean +/- SE = 152 +/- 30 ppm bone ash). In eight patients treated by haemodialysis and subsequent renal transplantation, bone aluminium was still significantly increased (92 +/- 4.5 ppm bone ash) but was less than in the haemodialysed patients. In some patients aluminium persisted in bone for many years after successful renal transplantation. There was no relationship between hyperparathyroidism and bone aluminium. Although no statistically significant relationship was found between the mineralisation status of bone and bone aluminium, patients dialysed for the longest periods tended to be those with the highest levels of aluminium, osteomalacia, and dialysis encephalopathy. In 20 rats given daily intraperitoneal injections of aluminium chloride for periods of up to three months, there was accumulation of aluminium in bone (163 +/- 9 ppm ash) to levels comparable to those obtained in the dialysis patients, and after about eight weeks osteomalacia developed. The increased bone aluminium and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondral ossification was restored to normal. As a working hypothesis it is suggested that aluminium retained in the bone of the dialysis patients and the experimental animals interferes with normal mineralisation. Images Fig. 5 Fig. 6 PMID:389958
Bone metabolism in renal transplant patients treated with cyclosporine or sirolimus.
Campistol, Josep M; Holt, David W; Epstein, Solomon; Gioud-Paquet, Martine; Rutault, Karine; Burke, James T
2005-09-01
Sirolimus is a new immunosuppressive agent used as treatment to prevent acute renal allograft rejection. One of the complications of renal transplantation and subsequent long-term immunosuppression is bone loss associated with osteoporosis and consequent fracture. Two open-label, randomized, phase 2 studies comparing sirolimus versus cyclosporine (CsA) included indices of bone metabolism as secondary end-points. Markers of bone turnover, serum osteocalcin and urinary N-telopeptides, were measured over a 1-year period in 115 patients receiving either CsA or sirolimus as a primary therapy in combination with azathioprine and glucocorticoids (study A) or mycophenolate mofetil (MMF) and glucocorticoids (study B). Urinary excretion of N-telopeptides and the concentrations of serum osteocalcin were consistently higher in the CsA-treated patients and significantly different at week 24 for N-telopeptides and at weeks 12, 24, and 52 for osteocalcin. In conclusion, future trials are warranted to test whether a sirolimus-based regimen conserves bone mineral density compared with a CsA-based regimen.
Improvement of adynamic bone disease after renal transplantation.
Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E
2006-01-01
Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.
Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I
2018-01-01
Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting
Riminucci, Mara; Collins, Michael T.; Fedarko, Neal S.; Cherman, Natasha; Corsi, Alessandro; White, Kenneth E.; Waguespack, Steven; Gupta, Anurag; Hannon, Tamara; Econs, Michael J.; Bianco, Paolo; Gehron Robey, Pamela
2003-01-01
FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS. PMID:12952917
Pepper, Ruth J.; Wang, Hsu-Han; Rajakaruna, Gayathri K.; Papakrivopoulou, Eugenia; Vogl, Thomas; Pusey, Charles D.; Cook, H. Terence; Salama, Alan D.
2015-01-01
Glomerulonephritis is a common cause of end-stage renal disease. Infiltrating leukocytes interacting with renal cells play a critical role during the initiation and progression of glomerulonephritis, but the exact mechanisms are not clearly defined. By using the murine model of nephrotoxic nephritis, we investigated the role of S100A8/A9 [myeloid-related protein (MRP) 8/14, calprotectin] in promoting glomerulonephritis. In nephrotoxic nephritis, wild-type (WT) mice with glomerulonephritis have elevated serum levels of S100A8/A9, whereas mice deficient in MRP14 (S100a9−/−), and hence S100A8/A9, are significantly protected from disease. By using bone marrow transplants, we showed that MRP14 deficiency is required in both the hemopoietic and intrinsic cells for the protective effect. In vitro, both the WT bone marrow–derived macrophages and renal mesangial cells stimulated with S100A8/A9 secrete IL-6, CXCL1, and tumor necrosis factor α; however, Mrp14−/− cells exhibit significantly blunted proinflammatory responses. The interaction of WT bone marrow–derived macrophages with renal microvascular endothelial cells results in increased levels of monocyte chemotactic protein 1, IL-8, and IL-6 cytokines, which is attenuated in Mrp14−/− bone marrow–derived macrophages. Data shows that S100A8/A9 plays a critical role during glomerulonephritis, exerting and amplifying autocrine and paracrine proinflammatory effects on bone marrow–derived macrophages, renal endothelial cells, and mesangial cells. Therefore, complete S100A8/A9 blockade may be a new therapeutic target in glomerulonephritis. PMID:25759267
Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad
2016-06-01
The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio‑vital function of both the liver and kidney.
ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD
2016-01-01
The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio-vital function of both the liver and kidney. PMID:27121771
Cancer in Patients With Gabapentin (GPRD)
2017-06-06
Pain, Neuropathic; Epilepsy; Renal Pelvis Cancer; Pancreatic Cancer; Breast Cancer; Nervous System Cancer; Chronic Pancreatitis; Stomach Cancer; Renal Cell Carcinoma; Diabetes; Bladder Cancer; Bone and Joint Cancer; Penis Cancer; Anal Cancer; Cancer; Renal Cancer
Tenofovir alafenamide (TAF) treatment of HBV, what are the unanswered questions?
Viganò, Mauro; Loglio, Alessandro; Grossi, Glenda; Lampertico, Pietro
2018-02-01
Tenofovir disoproxil fumarate (TDF), an ester prodrug of tenofovir (TFV), is one of the recommended drugs for chronic hepatitis B (CHB) patients. However, reduced kidney function and loss of bone mineral density have been reported in some CHB patients treated with TDF. Consequent to these safety issues, tenofovir alafenamide (TAF) [Vemlidy®], a phosphonate prodrug of TFV, was developed for the treatment of CHB patients. Areas covered: The favourable pharmacological profile of TAF allows a marked reduction in dosage (25 mg/day) thus reducing systemic exposure to tenofovir and improving the bone and renal safety, keeping however the same virological efficacy, compared to TDF 300 mg/day. In two ongoing 96-week phase III trials in mainly treatment-naive HBeAg-positive or -negative patients, TAF showed similar viral suppression but was associated with significantly higher alanine aminotransferase normalization rates and more favourable renal and bone safety compared to TDF. In a 48-week TAF switch study enrolling patients treated with TDF for 96 weeks, glomerular, tubular and bone safety parameters rapidly improved while virological suppression was maintained. Expert commentary: Waiting long-term large scale clinical practice studies aimed to confirm these advantages, TAF represents an helpful treatment option for both naïve and TDF-exposed CHB patients.
Nutrition and human physiological adaptations to space flight
NASA Technical Reports Server (NTRS)
Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.
1993-01-01
Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.
Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1.
Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid
2012-01-01
Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder.
Aneurysmal bone cyst does not hinder the success of kidney transplantation. A case report.
Giordano, Mario; Caloro, Giorgia; Gaeta, Alberto; Vergori, Antonio; Santangelo, Luisa; Giordano, Paolo; Ruggieri, Pietro
2015-03-01
Uremic osteodystrophy is an expected complication in subjects with chronic renal insufficiency. It develops gradually and progressively already during the conservative treatment and then during the dialysis treatment. It can present a wide histopathological spectrum including typical alterations (from osteitis fibrosa to osteomalacia and/or mixed lesions) or, more rarely, isolated bone lesions indicative of a brown tumor of the bone. These conditions must be clearly identified in the pretransplant phase, especially if a bone lesion indicative of a pathological condition possibly evolving into a neoplasm is detected fortuitously. We report the case of a 19-yr-old boy with renal insufficiency and candidate for a pre-emptive renal transplantation from a living donor, in whom the diagnosis of ABC of the pubic symphysis - asymptomatic and fortuitously detected while performing instrumental investigations - was suspected through the imaging studies (CT scan, MRI) and was confirmed by the histological examination. This made it possible to perform the renal transplant. The immunosuppressive treatment, which was subsequently administered, was based on steroids, calcineurin inhibitors (tacrolimus), and mycophenolate and did not determine any modification in the radiological aspect of the bone lesion, even after more than one yr from the transplant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Crowley, Rachel K; Kilbane, Mark; King, Thomas Fj; Morrin, Michelle; O'Keane, Myra; McKenna, Malachi J
2014-03-04
This is the first report of which the authors are aware to describe this c.2166delinsGG mutation in X-linked hypophosphataemia and to describe normalisation of renal threshold for phosphate excretion after parathyroidectomy for tertiary hyperparathyroidism in X-linked hypophosphataemia. We present the case of a 34-year-old Caucasian woman with X-linked hypophosphataemia. She developed tertiary hyperparathyroidism with markedly high bone turnover requiring total parathyroidectomy and had prolonged requirement for intravenous calcium infusion after surgery. She had a novel mutation in her phosphate-regulating gene with homologies to endopeptidases on the X-chromosome and had an unusual degree of dependence on phosphate supplementation. Prior to operative intervention she had a trial of cinacalcet that improved bone turnover markers when used in isolation but which led to a paradoxical rise in parathyroid hormone levels when given with phosphate supplementation. After correction of hungry bone syndrome, the renal phosphorus threshold normalised as a manifestation of hypoparathyroid state despite marked elevation in level of fibroblast growth factor 23. This case illustrates the risk of tertiary hyperparathyroidism as a complication of treatment for hypophosphataemia; it highlights the morbidity associated with hungry bone syndrome and provides novel insight into renal handling of phosphorus.
[Kidney stone formation during space flight and long-term bed rest].
Okada, Atsushi; Ichikawa, Jun; Tozawa, Keiichi
2011-10-01
Microgravity environment like space flight or a condition requiring long-term bed-rest increase bone resorption and decrease bone formation, inducing the rapid decrease of bone minerals to osteoporosis. Bone mineral loss increases urinary calcium excretion and the risk of urinary stone formation. To clarify the influence of the conditions on renal stone formation, a 90-day bed rest test was performed to analyze the mechanism of microgravity or bed rest-induced stone formation and prevention by bisphosphonate medication and bed-rest exercise. As the results, renal stone formation was observed in control and exercise groups and no stone was seen in the medication group. In the medication group, urinary calcium excretion and relative supersaturation of calcium oxalate were lower than in the control group throughout the bed-rest and recovery period. Bisphosphonate is useful for the prevention of renal stone formation during space flight and long-term bed-rest.
Wang, J; Yao, M; Xu, J-h; Shu, B; Wang, Y-j; Cui, X-j
2016-05-01
We conducted a systematic review of randomized controlled trials (RCTs) of bisphosphonates for the prevention of osteopenia in kidney-transplant recipients. Bisphosphonates improved bone mineral density at the lumbar spine and femoral neck after 12 months. However, additional well-designed RCTs are required to determine the optimal treatment strategy. Osteopenic-osteoporotic syndrome is a bone complication of renal transplantation. Bisphosphonates, calcitonin, and vitamin D analogs may be used to prevent or treat osteoporosis or bone loss after renal transplantation. However, there is currently no widely recognized strategy for the prevention of corticosteroid-induced osteoporosis. This study aims to assess the available evidence to guide the targeted use of bisphosphonates for reducing osteoporosis and bone loss in renal-transplant recipients. We searched the Cochrane Central Register of Controlled Trials, PubMed, and EMBASE for randomized controlled trials of bisphosphonates for osteoporosis or bone loss after renal transplantation. A total of 352 abstracts were identified, of which 55 were considered for evaluation and 9 were included in the final analysis. The primary outcome measure was change in the bone mineral density (BMD) of the lumbar spine and femoral neck after 12 months. Data extraction was performed independently by two investigators. BMD at the lumbar spine was improved after treatment with bisphosphonates [9 trials; 418 patients; weighted mean difference (WMD), 0.61; 95 % confidence interval (CI), 0.16-1.06]. Eight trials (406 patients) that reported changes in BMD at the femoral neck also showed improved outcomes after treatment with bisphosphonates (WMD, 0.06; 95 % CI, 0.03-0.09). Bisphosphonates improve BMD at the lumbar spine and femoral neck after 12 months in renal-transplant recipients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kang; Rai, Partab; Lan, Xiqian
Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic micemore » and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.« less
USDA-ARS?s Scientific Manuscript database
Background: Tenofovir disoproxil fumarate (TDF) causes bone, endocrine and renal changes, by unknown mechanism(s). There are limited data on tenofovir (TFV) pharmacokinetics and these effects. Methods: Using baseline data from a multicenter study in HIV-infected youth on stable treatment with cAR...
Primary hyperparathyroidism: recent advances.
Walker, Marcella D; Bilezikian, John P
2018-07-01
The purpose of this review is to describe recent advances and changes in the evaluation and management of primary hyperparathyroidism (PHPT). Although it has long been recognized that asymptomatic PHPT is associated with bone loss, particularly at cortical skeletal sites when evaluated with dual-energy X-ray absorptiometry, new imaging techniques suggest that trabecular skeletal deterioration as well as clinically silent vertebral fractures and nephrolithiasis are common. Nonclassical targets of asymptomatic PHPT as well as the effect of vitamin D deficiency and treatment upon PHPT presentation have been the subject of recent intense investigation. Randomized clinical trials are now available regarding the effect of parathyroidectomy (PTX) upon both classical and nonclassical target organs. They have confirmed results from observational studies with regard to the skeletal benefits of PTX but have not consistently shown improvements in nonclassical symptoms. These findings have led to recommendations for more extensive renal and skeletal evaluation and broader criteria for PTX in PHPT. In addition to dual-energy X-ray absorptiometry, vertebral and renal imaging is recommended. When available, trabecular imaging techniques may be helpful. PTX criteria now include subclinical kidney stones, vertebral fractures and hypercalciuria, in addition to those based on age, serum calcium, bone densitometry and renal function.
Liu, N M; Tian, J; Wang, W W; Han, G F; Cheng, J; Huang, J; Zhang, J Y
2013-02-28
We investigated the effect of erythropoietin (EPO) on differentiation and secretion of bone marrow-derived mesenchymal stem cells in an acute kidney injury microenvironment. Acute kidney injury mouse models were prepared. Both renal cortices were then immediately collected to produce the ischemia/reperfusion kidney homogenate supernatant. The morphological and ultrastructural changes in the cells were observed using an inverted microscope and a transmission electron microscope. Cytokeratin-18 was detected using flow cytometry. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor in the culture medium were detected using an enzyme-linked immunosorbent assay. The cells had high CD29 and CD44 expression, as well as low CD34 and CD45 expression. More round and oval cells with cobble-like appearances were observed after EPO treatment. In addition, an increase in the number of rough endoplasmic reticula, lysosomes, and mitochondria was observed in the cytoplasm; the intercellular junction peculiar to epithelial cells was also seen on the cell surface. After treatment with ischemia/reperfusion kidney homogenate supernatant, cytokeratin-18 expression increased significantly and EPO could magnify its expression. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor levels after treatment with ischemia/reperfusion kidney homogenate supernatant significantly decreased, whereas EPO increased the cytokine secretion. The acute kidney injury microenvironment can induce the bone marrow-derived mesenchymal stem cells to partially differentiate into renal tubular epithelium-shaped cells, but weaken their secretion function. EPO intervention can boost up their differentiation function and reverse their low secretion effect.
The effects of low environmental cadmium exposure on bone density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl; Jakubowski, M.; Szymczak, W.
2010-04-15
Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9;more » 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone density.« less
Melorheostosis with renal arterio-venous malformation: A case report with review of literature
Lone, Abdul Rashid; Ahmad, Mushtaq; Aziz, Sheikh Aejaz; Bhat, Gul Mohammad; Bhat, Javid Rasool; Jahan, Rifat; Khan, Shoukat H
2009-01-01
Melorheostosis, also known as Leri′s disease and flowing periosteal hyperostosis, is a rare cause of pain and stiffness in a limb. The appearance is of "candle greasing" down one side of one or several bones of the body. We describe a case referred to tertiary care center with suspicion of renal cell carcinoma with diffuse bone metastasis. After reassessment, the patient was diagnosed melorheostosis with renal AV malformation. He was reassured about the benign nature of the disease and is asymptomatic. PMID:20668607
Osteo-Renal Regulation of Systemic Phosphate Metabolism
Razzaque, Mohammed Shawkat
2011-01-01
Summary Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries. PMID:21438115
Osteo-renal regulation of systemic phosphate metabolism.
Razzaque, Mohammed Shawkat
2011-04-01
Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries. Copyright © 2011 Wiley Periodicals, Inc.
Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?
NASA Technical Reports Server (NTRS)
Davis-Street, Janis; Paloski, William H.
2005-01-01
Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.
2014 Bone and Muscle Risks Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan; Glowacki, Julie; Gregor, Robert; Cullen, Diane; Drake, Almond; Enoka, Roger; Hanley, Edward Jr.; Kraemer, William; Raven, Peter; Sumner, Rick, D.
2014-01-01
The 2014 Bone and Muscle Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 17 - 18, 2014. The SRP reviewed the updated research plans for the Risk of Impaired Performance Due to Reduced Muscle Mass, Strength and Endurance (Muscle Risk) and the Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity (Aerobic Risk). The SRP also received a status update on the Risk of Bone Fracture (Bone Risk), the Risk of Early Onset Osteoporosis Due To Spaceflight (Osteo Risk), the Risk of Intervertebral Disc Damage (IVD Risk), and the Risk of Renal Stone Formation (Renal Risk).
Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz
2015-01-01
Objectives The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Methods Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Conclusion Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. PMID:25659076
Comparative effects of mesenchymal stem cell therapy in distinct stages of chronic renal failure.
Caldas, Heloisa Cristina; de Paula Couto, Thaís Amarante Peres; Fernandes, Ida Maria Maximina; Baptista, Maria Alice Sperto Ferreira; Kawasaki-Oyama, Rosa Sayoko; Goloni-Bertollo, Eny Maria; Braile, Domingo Marcolino; Abbud-Filho, Mario
2015-10-01
The therapeutic potential of adult stem cells in the treatment of chronic diseases is becoming increasingly evident. In the present study, we sought to assess whether treatment with mesenchymal stem cells (MSCs) efficiently retards progression of chronic renal failure (CRF) when administered to experimental models of less severe CRF. We used two renal mass reduction models to simulate different stages of CRF (5/6 or 2/3 mass renal reduction). Renal functional parameters measured were serum creatinine (SCr), creatinine clearance (CCr), rate of decline in CCr (RCCr), and 24-h proteinuria (PT24h). We also evaluated renal morphology by histology and immunohistochemistry. MSCs were obtained from bone marrow aspirates and injected into the renal parenchyma of the remnant kidneys of both groups of rats with CRF (MSC5/6 or MSC2/3). Animals from groups MSC5/6 and CRF2/3 seemed to benefit from MSC therapy because they showed significantly reduction in SCr and PT24h, increase in CCr and slowed the RCCr after 90 days. Treatment reduced glomerulosclerosis but significant improvement did occur in the tubulointerstitial compartment with much less fibrosis and atrophy. MSC therapy reduced inflammation by decreasing macrophage accumulation proliferative activity (PCNA-positive cells) and fibrosis (α-SM-actin). Comparisons of renal functional and morphological parameters responses between the two groups showed that rats MSC2/3 were more responsive to MSC therapy than MSC5/6. This study showed that MSC therapy is efficient to retard CRF progression and might be more effective when administered during less severe stages of CRF.
BK virus associated pronounced hemorrhagic cystoureteritis after bone marrow transplantation.
Haab, Alexander C; Keller, Isabelle S; Padevit, Christian; John, Hubert
2015-10-01
Ureteral stenosis due to reactivation of the BK virus (BKV) in a state of immunodeficiency is very rare. More common is the appearance of a hemorrhagic cystitis. This report not only shows bilateral ureteral stenosis after bone marrow transplantation, but also presents severe complications as chronic pelvic pain and impaired kidney function as well as irreparable damage to the whole urinary tract leading to nephroureterectomy, subtrigonal cystectomy and orthotopic ileal neobladder. Finally renal transplantation was required. To our knowledge this is the first case in the literature where such a severe course of BKV associated hemorrhagic cystoureteritis is described.
NASA Technical Reports Server (NTRS)
Wilson, C. R.
1974-01-01
The bone mineral content (BMC) is extensively used to provide information about the status of an entire skeleton. Changes in BMC are employed to evaluate the effect of various drugs, disease states, weightlessness, exercise, renal dialysis and others on the skeleton. Clinical and functional information is discussed that may be derived from the BMC of a limited region of the skeleton. In particular there is a fairly high degree of correlation between the BMC of the radius or ulna and that of the femoral neck, r about 0.85 and a somewhat lower relationship between the BMC of the radius or ulna and the thoracic vertebrae, r about 0.65. Also the BMC is highly related to the strength of bone at that scan site.
Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1
Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid
2012-01-01
Background Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Case report Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Conclusion Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder. PMID:22956877
Toriihara, Akira; Daisaki, Hiromitsu; Yamaguchi, Akihiro; Yoshida, Katsuya; Isogai, Jun; Tateishi, Ukihide
2018-05-21
Recently, semiquantitative analysis using standardized uptake value (SUV) has been introduced in bone single-photon emission computed tomography/computed tomography (SPECT/CT). Our purposes were to apply SUV-based semiquantitative analytic method for gallium-67 (Ga)-citrate SPECT/CT and to evaluate correlation between SUV of physiological uptake and blood test results in representative organs. The accuracy of semiquantitative method was validated using an National Electrical Manufacturers Association body phantom study (radioactivity ratio of sphere : background=4 : 1). Thereafter, 59 patients (34 male and 25 female; mean age, 66.9 years) who had undergone Ga-citrate SPECT/CT were retrospectively enrolled in the study. A mean SUV of physiological uptake was calculated for the following organs: the lungs, right atrium, liver, kidneys, spleen, gluteal muscles, and bone marrow. The correlation between physiological uptakes and blood test results was evaluated using Pearson's correlation coefficient. The phantom study revealed only 1% error between theoretical and actual SUVs in the background, suggesting the sufficient accuracy of scatter and attenuation corrections. However, a partial volume effect could not be overlooked, particularly in small spheres with a diameter of less than 28 mm. The highest mean SUV was observed in the liver (range: 0.44-4.64), followed by bone marrow (range: 0.33-3.60), spleen (range: 0.52-2.12), and kidneys (range: 0.42-1.45). There was no significant correlation between hepatic uptake and liver function, renal uptake and renal function, or bone marrow uptake and blood cell count (P>0.05). The physiological uptake in Ga-citrate SPECT/CT can be represented as SUVs, which are not significantly correlated with corresponding blood test results.
FGF23 regulates renal sodium handling and blood pressure
Andrukhova, Olena; Slavic, Svetlana; Smorodchenko, Alina; Zeitz, Ute; Shalhoub, Victoria; Lanske, Beate; Pohl, Elena E; Erben, Reinhold G
2014-01-01
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating renal phosphate reabsorption and vitamin D synthesis in renal proximal tubules. Here, we show that FGF23 directly regulates the membrane abundance of the Na+:Cl− co-transporter NCC in distal renal tubules by a signaling mechanism involving the FGF receptor/αKlotho complex, extracellular signal-regulated kinase 1/2 (ERK1/2), serum/glucocorticoid-regulated kinase 1 (SGK1), and with-no lysine kinase-4 (WNK4). Renal sodium (Na+) reabsorption and distal tubular membrane expression of NCC are reduced in mouse models of Fgf23 and αKlotho deficiency. Conversely, gain of FGF23 function by injection of wild-type mice with recombinant FGF23 or by elevated circulating levels of endogenous Fgf23 in Hyp mice increases distal tubular Na+ uptake and membrane abundance of NCC, leading to volume expansion, hypertension, and heart hypertrophy in a αKlotho and dietary Na+-dependent fashion. The NCC inhibitor chlorothiazide abrogates FGF23-induced volume expansion and heart hypertrophy. Our findings suggest that FGF23 is a key regulator of renal Na+ reabsorption and plasma volume, and may explain the association of FGF23 with cardiovascular risk in chronic kidney disease patients. PMID:24797667
Horiguchi, Hyogo; Oguma, Etsuko; Sasaki, Satoshi; Miyamoto, Kayoko; Ikeda, Yoko; Machida, Munehito; Kayama, Fujio
2005-01-01
Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect.
Huang, Wen-Hung; Lee, Shen-Yang; Weng, Cheng-Hao; Lai, Ping-Chin
2012-01-01
Background Renal transplant patients often have severe bone and mineral deficiencies. While the clinical effects of immunosuppressive agents like calcineurin inhibitors (CIs) and sirolimus on bone turnover are unclear, bisphosphonates are effective in bone recovery in these patients. Gender is significantly associated with osteoporosis and affects bone turnover, which is different in women and men. The effective gender-related site of action of bisphosphonates is unknown. Methods Initially, we enrolled 84 kidney recipients who had received their transplants at least 5 months ago; of these, 8 were excluded and 76 were finally included in the study. First bone mineral density (BMD) at the lumbar spine, hip, and femoral neck was determined using dual-energy X-ray absorptiometry (DXA) between September 2008 and March 2009. These 76 patients underwent a repeat procedure after a mean period 14 months. Immunosuppressive agents, bisphosphonates, patients' characteristics, and biochemical factors were analyzed on the basis of the BMD determined using DXA. Results After the 14-month period, the BMD of lumbar spine increased significantly (from 0.9 g/cm2 to 0.92 g/cm2, p<0.001), whereas that of the hip and femoral neck did not. Ordinal logistic regression analysis was used to show that Fosamax improved bone condition, as defined by WHO (p = 0.007). The use of immunosuppressive agents did not affect bone turnover (p>0.05). Moreover, in subgroup analysis, Fosamax increased the BMD at the lumbar spine and the hipbone in males (p = 0.028 and 0.03, respectively) but only at the lumbar spine in females (p = 0.022). Conclusion After a long periods after renal transplantation, the detrimental effects of steroid and immunosuppressive agents on bone condition diminished. Short-term Fosamax administration effectively improves BMD in these patients. The efficacy of Fosamax differed between male and female renal transplant patients. PMID:23185261
Farinola, N; Kanjanapan, Y
2013-11-01
Denosumab, an anti-resorptive treatment for osteoporosis and skeletal metastases from solid tumours, can cause hypocalcaemia. The incidence may be higher than previously reported due to varying serum calcium cut-off and timing of measurement. The following cases illustrate patients at risk of hypocalcaemia despite supplementation. These populations, with underlying high bone turnover from metastatic bone disease or secondary hyperparathyroidism due to renal failure, may require closer monitoring of calcium levels post-denosumab administration. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.
Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.
1979-11-01
Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.
Barber, T J; Moyle, G; Hill, A; Jagjit Singh, G; Scourfield, A; Yapa, H M; Waters, L; Asboe, D; Boffito, M; Nelson, M
2016-05-01
Ongoing inflammation in controlled HIV infection contributes to non-AIDS comorbidities. High bilirubin appears to exhibit an anti-inflammatory effect in vivo. We therefore examined whether increased bilirubin in persons with HIV was associated with differences in markers of inflammation and cardiovascular, bone, renal disease, and neurocognitive (NC) impairment. This cross-sectional study examined inflammatory markers in individuals with stable HIV infection treated with two nucleoside reverse transcriptase inhibitors and a boosted protease inhibitor. Individuals recruited were those with a normal bilirubin (NBR; 0-17 μmol/L) or high bilirubin (>2.5 × upper limit of normal). Demographic and anthropological data were recorded. Blood and urine samples were taken for analyses. Pulse wave velocity (PWV) measurement, carotid intimal thickness (CIT), and calcaneal stiffness (CSI) were measured. Males were asked to answer a questionnaire about sexual function; NC testing was performed using CogState. 101 patients were screened, 78 enrolled (43 NBR and 35 HBR). Atazanavir use was significantly higher in HBR. Whilst a trend for lower CIT was seen in those with HBR, no significant differences were seen in PWV, bone markers, calculated cardiovascular risk (Framingham), or erectile dysfunction score. VCAM-1 levels were significantly lower in the HBR group. HBR was associated with lower LDL and triglyceride levels. NBR was associated with a calculated FRAX significantly lower than HBR although no associations were found after adjusting for tenofovir use. No difference in renal markers was observed. Component tests of NC testing revealed differences favouring HBR but overall composite scores were similar. High bilirubin in the context of boosted PI therapy was found not to be associated with differences in with the markers examined in this study. Some trends were noted and, on the basis of these, a larger, clinical end point study is warranted.
Does bone measurement on the radius indicate skeletal status. Concise communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazess, R.B.; Peppler, W.W.; Chesney, R.W.
1984-03-01
Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of themore » lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state.« less
Nkhoma, Ella T; Rosenblatt, Lisa; Myers, Joel; Villasis-Keever, Angelina; Coumbis, John
2016-01-01
Tenofovir disoproxil fumarate (TDF)-containing antiretroviral regimens have been associated with an increased incidence of renal and bone adverse outcomes. Here, we estimated the real-world incidence of renal and bone adverse outcomes among patients with HIV infection receiving different TDF-containing single-tablet regimens (STRs). This cohort study used US health insurance data spanning the years 2008-2014. We identified HIV-infected patients aged ≥18 years (all HIV patients) and those with ≥6 months of continuous enrollment prior to initiating efavirenz/emtricitabine/TDF (EFV/FTC/TDF), rilpivirine/FTC/TDF (RPV/FTC/TDF) or elvitegravir/cobicistat/FTC/TDF (EVG/COBI/FTC/TDF). Renal adverse outcomes were identified using renal International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes. Bone adverse outcomes were identified using ICD-9-CM diagnosis codes for fracture. Incidence rates (IRs) and associated 95% confidence intervals (CIs) were estimated assuming a Poisson distribution, and outcomes between STRs were compared using IR ratios (IRRs) and IR differences (IRDs). We identified 9876 and 10,383 eligible patients for the renal and fracture analyses, respectively. Observed IRs for renal adverse outcomes were 9.7, 10.5, 13.6, and 18.0 per 1000 person-years among those receiving EFV/FTC/TDF, RPV/FTC/TDF, or EVG/COBI/FTC/TDF, or all HIV patients, respectively. Corresponding values for IRs of fracture were 3.4, 3.6, 7.2, and 4.4 per 1000 person-years, respectively. Renal adverse outcomes with EFV/FTC/TDF were significantly less frequent than with EVG/COBI/FTC/TDF (IRD -3.96; 95% CI: -7.31, -1.06). No IRR differences were identified for the renal analysis. Fractures with EFV/FTC/TDF were significantly less frequent than with EVG/COBI/FTC/TDF (IRR 0.47; 95% CI: 0.27, 0.81 and IRD -3.85; 95% CI: -5.02, -2.78). In this large real-world database, observed IRs for renal adverse outcomes with TDF-containing STRs were lower or similar to those for all HIV patients, with the lowest IRs observed among patients receiving EFV/FTC/TDF. Compared with all HIV patients, the observed IR for fracture was higher with EVG/COBI/FTC/TDF, comparable with RPV/FTC/TDF, and lower with EFV/FTC/TDF.
Renal Lymphoma: Primary or First Manifestation of Aggressive Pediatric B-cell Lymphoma.
Coca, Pragnya; Linga, Vijay Gandhi; Gundeti, Sadashivudu; Tandon, Ashwani
2017-01-01
Renal lymphoma is an uncommon renal tumor in children. Unlike renal lymphomas presenting as bilateral disease and renal failure, we report a boy who presented with unilateral renal involvement. After initial nephrectomy, he achieved remission with multiagent chemotherapy but relapsed systemically within 3 months. He was initiated on salvage chemotherapy with autologous bone marrow transplant. Even though the initial manifestation was localized lymphoma eventually, it turned out to be a systemic disease. He succumbed to disease at 14 months from diagnosis.
[Hearing and balance in metabolic bone diseases].
Zatoński, Tomasz; Temporale, Hanna; Krecicki, Tomasz
2012-03-01
There are reports that hearing loss is one of the clinical manifestations of metabolic bone diseases. Demineralization can lead to a reduction in ossicular mass. Paget's disease can reveal loss of mineral density of the cochlear bone. Ear bone remodeling in osteoporosis is similar to the changes in otosclerosis. Moreover, osteoporosis, osteogenesis imperfecta and otosclerosis have a similar genetic mechanism. According to some researchers osteopenia and osteoporosis may well be associated with idiopathic benign positional vertigo (BPV). Dysfunction of the organ of hearing and balance in patients with renal insufficiency may be due to disturbances in calcium phosphate balance and renal osteodystrophy in the course of the disease. Proving the presence of hearing loss in patients with metabolic bone diseases may lead to determining the new indications for bone densitometry in some patients with hearing impairment. Furthermore, audiological examination in patients with osteoporosis may be important because of the impact of hearing loss on prognosis for patients with metabolic bone diseases.
Regulation and Function of TMEM16F in Renal Podocytes.
Schenk, Laura K; Ousingsawat, Jiraporn; Skryabin, Boris V; Schreiber, Rainer; Pavenstädt, Hermann; Kunzelmann, Karl
2018-06-18
The Ca 2+ -activated phospholipid scramblase and ion channel TMEM16F is expressed in podocytes of renal glomeruli. Podocytes are specialized cells that form interdigitating foot processes as an essential component of the glomerular filter. These cells, which participate in generation of the primary urine, are often affected during primary glomerular diseases, such as glomerulonephritis and secondary hypertensive or diabetic nephropathy, which always leads to proteinuria. Because the function of podocytes is known to be controlled by intracellular Ca 2+ signaling, it is important to know about the role of Ca 2+ -activated TMEM16F in these cells. To that end, we generated an inducible TMEM16F knockdown in the podocyte cell line AB8, and produced a conditional mouse model with knockout of TMEM16F in podocytes and renal epithelial cells of the nephron. We found that knockdown of TMEM16F did not produce proteinuria or any obvious phenotypic changes. Knockdown of TMEM16F affected cell death of tubular epithelial cells but not of glomerular podocytes when analyzed in TUNEL assays. Surprisingly, and in contrast to other cell types, TMEM16F did not control intracellular Ca 2+ signaling and was not responsible for Ca 2+ -activated whole cell currents in podocytes. TMEM16F levels in podocytes were enhanced after inhibition of the endolysosomal pathway and after treatment with angiotensin II. Renal knockout of TMEM16F did not compromise renal morphology and serum electrolytes. Taken together, in contrast to other cell types, such as platelets, bone cells, and immune cells, TMEM16F shows little effect on basal properties of podocytes and does not appear to be essential for renal function.
Zhang, Martin Y. H.; Ranch, Daniel; Pereira, Renata C.; Armbrecht, Harvey J.; Portale, Anthony A.
2012-01-01
The X-linked hypophosphatemic (Hyp) mouse carries a loss-of-function mutation in the phex gene and is characterized by hypophosphatemia due to renal phosphate (Pi) wasting, inappropriately suppressed 1,25-dihydroxyvitamin D [1,25(OH)2D] production, and rachitic bone disease. Increased serum fibroblast growth factor-23 concentration is responsible for the disordered metabolism of Pi and 1,25(OH)2D. In the present study, we tested the hypothesis that chronic inhibition of fibroblast growth factor-23-induced activation of MAPK signaling in Hyp mice can reverse their metabolic derangements and rachitic bone disease. Hyp mice were administered the MAPK inhibitor, PD0325901 orally for 4 wk. PD0325901 induced a 15-fold and 2-fold increase in renal 1α-hydroxylase mRNA and protein abundance, respectively, and thereby higher serum 1,25(OH)2D concentrations (115 ± 13 vs. 70 ± 16 pg/ml, P < 0.05), compared with values in vehicle-treated Hyp mice. With PD0325901, serum Pi levels were higher (5.1 ± 0.5 vs. 3 ± 0.2 mg/dl, P < 0.05), and the protein abundance of sodium-dependent phosphate cotransporter Npt2a, was greater than in vehicle-treated mice. The rachitic bone disease in Hyp mice is characterized by abundant unmineralized osteoid bone volume, widened epiphyses, and disorganized growth plates. In PD0325901-treated Hyp mice, mineralization of cortical and trabecular bone increased significantly, accompanied by a decrease in unmineralized osteoid volume and thickness, as determined by histomorphometric analysis. The improvement in mineralization in PD0325901-treated Hyp mice was confirmed by microcomputed tomography analysis, which showed an increase in cortical bone volume and thickness. These findings provide evidence that in Hyp mice, chronic MAPK inhibition improves disordered Pi and 1,25(OH)2D metabolism and bone mineralization. PMID:22334725
Zhang, Martin Y H; Ranch, Daniel; Pereira, Renata C; Armbrecht, Harvey J; Portale, Anthony A; Perwad, Farzana
2012-04-01
The X-linked hypophosphatemic (Hyp) mouse carries a loss-of-function mutation in the phex gene and is characterized by hypophosphatemia due to renal phosphate (Pi) wasting, inappropriately suppressed 1,25-dihydroxyvitamin D [1,25(OH)₂D] production, and rachitic bone disease. Increased serum fibroblast growth factor-23 concentration is responsible for the disordered metabolism of Pi and 1,25(OH)₂D. In the present study, we tested the hypothesis that chronic inhibition of fibroblast growth factor-23-induced activation of MAPK signaling in Hyp mice can reverse their metabolic derangements and rachitic bone disease. Hyp mice were administered the MAPK inhibitor, PD0325901 orally for 4 wk. PD0325901 induced a 15-fold and 2-fold increase in renal 1α-hydroxylase mRNA and protein abundance, respectively, and thereby higher serum 1,25(OH)₂D concentrations (115 ± 13 vs. 70 ± 16 pg/ml, P < 0.05), compared with values in vehicle-treated Hyp mice. With PD0325901, serum Pi levels were higher (5.1 ± 0.5 vs. 3 ± 0.2 mg/dl, P < 0.05), and the protein abundance of sodium-dependent phosphate cotransporter Npt2a, was greater than in vehicle-treated mice. The rachitic bone disease in Hyp mice is characterized by abundant unmineralized osteoid bone volume, widened epiphyses, and disorganized growth plates. In PD0325901-treated Hyp mice, mineralization of cortical and trabecular bone increased significantly, accompanied by a decrease in unmineralized osteoid volume and thickness, as determined by histomorphometric analysis. The improvement in mineralization in PD0325901-treated Hyp mice was confirmed by microcomputed tomography analysis, which showed an increase in cortical bone volume and thickness. These findings provide evidence that in Hyp mice, chronic MAPK inhibition improves disordered Pi and 1,25(OH)₂D metabolism and bone mineralization.
West, Sarah L; Lok, Charmaine E; Jamal, Sophie A
2010-08-20
Chronic kidney disease (CKD) is associated with an increased risk of fracture. Decreased bone mass and disruption of microarchitecture occur early in the course of CKD and worsens with the progressive decline in renal function so that at the time of initiation of dialysis at least 50% of patients have had a fracture. Despite the excess fracture risk, and the associated increases in morbidity and mortality, little is known about the factors that are associated with an increase in fracture risk. Our study aims to identify prognostic factors for bone loss and fractures in patients with stages 3 to 5 CKD. This prospective study aims to enroll two hundred and sixty men and women with stages 3 to 5 CKD. Subjects will be followed for 24 months and we will examine the ability of: 1) bone mineral density by dual x-ray absorptiometry at the spine, hip, and radius; 2) volumetric bone density by high resolution peripheral quantitated computed tomography at the radius and tibia; 3) serum markers of bone turnover; 4) bone formation rate by bone biopsy; and 5) muscle strength and balance to predict spine and non-spine fractures, identified by self-report and/or vertebral morphometry. All measurements will be obtained at baseline, at 12 and at 24 months with the exception of bone biopsy, which will be measured once at 12 months. Subjects will be contacted every 4 months to determine if there have been incident fractures or falls. This study is one of the first that aims to identify risk factors for fracture in early stage CKD patients. Ultimately, by identifying risk factors for fracture and targeting treatments in this group-before the initiation of renal replacement therapy--we will reduce the burden of disease due to fractures among patients with CKD.
Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders
Cordat, Emmanuelle; Chambrey, Régine; Dimke, Henrik; Eladari, Dominique
2016-01-01
Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis. PMID:27468975
USDA-ARS?s Scientific Manuscript database
Background. We aimed to define the relative importance of renal and endocrine changes in tenofovir disoproxil fumarate (TDF)-related bone toxicity. Methods. In a study of daily TDF/emtricitabine (FTC) pre-exposure prophylaxis (PrEP) in HIV uninfected young men who have sex with men, we measured ch...
Physiological Stresses Related to Hypercapnia during Patrols on Submarines
1975-12-01
Acid- base balance, CO., storage, and calcium homeostasis | I am trying to show that this delayed renal response in low level chronic hypercapnia is 1...C02 Co, P BONE 4 1 BLOOD Fig. 11. Cycles in acid- base balance, bone buffering, and renal regulation during prolonged exposure to 0.7...patrols on submarines K. E. SCHAEFER Naval Submarine Medical Research Laboratory, Naval Submarine Base . Groton. CT 06340 Schaefer, K. E. 1979
Zivcić-Cosić, Stela; Stalekar, Hrvoje; Mamula, Mihaela; Miletić, Damir; Orlić, Lidija; Racki, Sanjin; Cicvarić, Tedi
2012-10-01
Avascular bone necrosis is a relatively rare but significant complication in renal transplant recipients because it causes progressive pain and invalidity. It can be the consequence of the action of numerous causative factors, but it is mostly connected to corticosteroid treatment.The underlying pathophysiologic mechanism is a diminished blood flow to the bone leading to necrosis and bone destruction. During the past 25-years period, 570 renal transplantations and five combined kidney and pancreas transplantations were performed in our centre. A part of the patients was lost to follow-up due to the separation of Croatia from the former Republic of Yugoslavia. After transplantation, we revealed aseptic necrosis of the femoral head in five female patients. All patients had a history of treatment with pulse doses of corticosteroids. At transplantation the average age of the patients was 52.2 yrs (range 46 to 62 yrs), and dialytic treatment before transplantation lasted in average 9.2 yrs (range 2.5 to 21.2 yrs). The period between renal transplantation and the development of clinical signs of avascular bone necrosis lasted in average 1.2 yrs (range 0.3 to 2.3 yrs). We will demonstrate our 62-year old female patient with terminal renal failure caused by post-streptococcal glomerulonephritis, who was treated with peritoneal dialysis 2.5 years before renal transplantation. Twenty months before renal transplantation the patient received pulse doses of corticosteroids, together with immunoglobulins and plasmapheresis, for the treatment of an acute polyradiculoneuritis Guillaine Barré. After transplantation a standard immunosuppressive protocol was applied which included tacrolimus, mycophenolate mofetil, corticosteroids and induction with basiliximab. Four months after transplantation the patient started to feel pain in the right hip after longer standing, in addition to the earlier long-lasting problems caused by bilateral coxarthrosis. The pelvic radiograph showed subchondral radiolucencies in the lateral part of the head circumference spreading into the proximal part of the neck of the right femur, which indicated the presence of aseptic necrosis, but these changes could have also been caused by coxarthrosis. Unexpectedly, magnetic resonance imaging (MRI) did not reveal changes characteristic for avascular bone necrosis. Due to the progressively worsening of pain and the radiographic finding, the patient was submitted to decompression surgery of the femoral head. The surgical procedure was performed under diascopic guidance (C-arm) which allowed the correct positioning of a Kuerschner wire. A cannulated drill (diameter 4.0 mm) was placed over the wire and we performed two drillings of the spongiosis of the femoral head through to the subchondral area. Postoperatively, the patient was soon verticalized and advised to walk with crooks during a period of six weeks. This time is necessary to allow the mineralisation and strengthening of the bone which is now better vascularised. The patient recovered well and had no more pain. In renal transplant recipients it is most important to raise suspicion and verify the presence of avascular bone necrosis early, because timely bone decompression surgery can eliminate pain and cure the patient or it can prevent or delay bone destruction. When clinical signs of avascular bone necrosis arise and radiographic or standard MRI findings are negative, additional investigations (i.e. SPECT or MRI with contrast) should be performed to confirm or exclude the diagnosis. In latter phases of the disease, surgical decompression of the femoral head cannot lead to permanent amelioration, and it is inevitable to perform more invasive surgical procedures like "resurfacing" or bone grafting in younger patients, or the implantation of total hip endoprotheses.
European Transplant Registry of Senior Renal Transplant Recipients on Advagraf
2016-08-11
Graft Failure; Death; Acute Rejection of Renal Transplant; Infections; Bone Disease; Post Transplant Diabetes Mellitus; Quality of Life; HLA Antibody Production; Cardiovascular Risk Factors; Non-HLA Antibody Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craswell, P.W.; Price, J.; Boyle, P.D.
EDTA (calcium disodium edetate) lead mobilization and x-ray fluorescence (XRF) finger bone lead tests were done in 42 patients with chronic renal failure and without persisting lead intoxication. Nineteen of 23 patients with gout and 8 of 19 without gout had positive EDTA lead mobilization tests. Those patients with gout excreted significantly more excess lead chelate than those without gout. In the gout group 17 patients denied any childhood or industrial exposure to lead. They had a greater number of positive tests and excreted significantly more excess lead chelate than 14 patients with neither gout nor lead exposure. These resultsmore » confirm that gout in the presence of chronic renal failure is a useful marker of chronic lead poisoning. Of 27 patients with positive lead mobilization tests, only 13 had elevated XRF finger bone lead concentrations (sensitivity 48%). Three of 15 patients with negative lead mobilization tests had elevated XRF finger bone lead concentrations (specificity 80%). Although the XRF finger bone lead test is a convenient noninvasive addition to the diagnostic evaluation of patients with chronic renal failure and gout, its application is limited due to the lack of sensitivity of the method.« less
Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J
2014-01-01
The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.
New advances in renal amyloidosis.
Nishi, Shinichi; Alchi, Bassam; Imai, Nofumi; Gejyo, Fumitake
2008-04-01
Renal amyloidosis is a rare and intractable disease that accounts for 0.2% of the original kidney diseases of dialysis patients in Japan. However, the number of patients with renal amyloidosis seems to be increasing in recent years. There have been some new concepts focusing on the mechanism of amyloidogenesis, such as molecular chaperones, seeding mechanism, and genetic polymorphisms of precursor protein. Clinical and histological features of renal amyloidosis vary according to the type. Significantly higher levels of urinary protein excretion are seen in the AL type, whereas microscopic haematuria is more prominent in the AA type. Histologically, amyloid deposition of AL type has stronger predilection for GBM than mesangium, and spicule formation is more frequently observed. In contrast, AA type has a higher affinity to TBM and interstitial area. For the histological diagnosis of renal amyloidosis, plural staining methods including Congo-red, Daylon and thioflavin-T stains are available. Combinations of these staining methods are necessary for establishing the precise diagnosis. The more recent and intensive treatments for renal amyloidosis are expected to improve patient outcome. For AL amyloidosis, high-dose melphalan plus high-dose dexamethasone or VAD, in conjunction with bone marrow stem cells transplantation, have shown a definitive effect on reducing urinary protein excretion. The biological agent, tumor necrosis factor (TNF alpha) blocker, improves the renal function in AA-type renal amyloidosis, as well as suppresses the inflammatory reactions in patients with rheumatoid arthritis. Clinical advances have been made in various aspects of renal amyloidosis.
Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, C.H.; Tenenhouse, H.S.; Tihy, F.
1994-01-01
Several Mendelian disorders of renal phosphate reabsorption, associated with hypophosphatemia and bone disease, have been described. These include X-linked hypophosphatemia (XLH), hereditary hypophosphatemic rickets with hypercalciuria, hypophosphatemic bone disease, and autosomal dominant and autosomal recessive hypophosphatemic rickets. The underlying mechanisms for renal phosphate wasting in these disorders remain unknown. The proximal tubule is the major site of renal phosphate reabsorption. Thus, mutations in genes that participate in the transepithelial transport of phosphate in this segment of the nephron may be responsible for these disorders. Recently, a cDNA encoding a renal proximal tubular, brush-border membrane Na[sup +]-phosphate cotransporter (NaP[sub i]-3) wasmore » cloned from human kidney cortex. As a first step in establishing whether mutations in the NaP[sub i]-3 gene are the cause of inherited disorders in phosphate homeostasis, the authors sought to determine its chromosomal localization. 9 refs., 1 fig.« less
van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C
2015-05-01
Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.
1993-01-01
It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an empty stomach at a recommended dose of 20 mmol calcium/day.
Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Nai-Kong V.; Modak, Shakeel; Lin, Yukang
2004-08-31
In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90.more » (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.« less
Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation
Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo
2015-01-01
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696
Cryoablation of Bone Metastases from Renal Cell Carcinoma for Local Tumor Control.
Gardner, Carly S; Ensor, Joe E; Ahrar, Kamran; Huang, Steven Y; Sabir, Sharjeel H; Tannir, Nizar M; Lewis, Valerae O; Tam, Alda L
2017-11-15
Patients with bone metastases from renal cell carcinoma often are not surgical candidates and have a poor prognosis. There are limited data on the use of cryoablation as a locoregional therapy for bone metastases. Our objective was to assess the local tumor-control rate following cryoablation of bone metastases in the setting of renal cell carcinoma. We retrospectively reviewed the medical records of patients with metastatic renal cell carcinoma who underwent cryoablation for bone metastases between 2007 and 2014. We excluded patients if the intent of treatment was for pain palliation only, if cryoablation was performed without an attempt for complete tumor control (cytoreduction), or if the patient had no further follow-up beyond the cryoablation procedure. We recorded patient demographics, procedural variables, and complications. Cross-sectional imaging and clinical follow-up were reviewed to determine disease recurrence. The median overall survival and recurrence-free survival were determined using the Kaplan-Meier method. Forty patients (30 male and 10 female) with 50 bone metastases were included for analysis. The mean patient age was 62 years (range, 47 to 82 years). The median follow-up was 35 months (95% confidence interval [CI], 22.7 to 74.4 months). Twenty-five (62.5%) of the 40 patients had oligometastatic disease, defined as ≤5 metastases at the time of ablation. The mean tumor size was 3.4 ± 1.5 cm. Metastases in the pelvic region represented 68% of the treated tumors (34 of 50). The overall local tumor-control rate per lesion was 82% (41 of 50). Patients with oligometastatic disease experienced better local tumor control (96% [24 of 25]) compared with patients who had >5 metastases (53.3% [8 of 15]) (p = 0.001). The local tumor-control rate was better for lesions for which a larger mean difference between maximum ice-ball diameter and maximum lesion diameter was achieved (2.2 ± 0.9 cm for those without recurrence versus 1.35 ± 1.2 cm for those with recurrence; p = 0.005). There were 3 grade-3 complications and 1 grade-4 complication. Cryoablation can be effective for achieving local oncologic control in bone metastases from renal cell carcinoma and may represent a valuable alternative to surgical metastasectomy in select patients. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Bone Mineral Density, Sex Steroid Genes, Race and Prostate Cancer Risk
2006-09-01
renal disease, or bone disorders ν History of hypogonadism ν History of Bone Disease/problems – osteoporosis, Paget’s disease, osteomalacia...70, 2005. Claudia C. Leiras*, Francesmary Modugno, Joel Weissfeld, and Joel Nelson. Male Pattern Baldness as a Biomarker of Prostate Cancer Risk
The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations
Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin
2016-01-01
The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347
Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki
2015-01-01
We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254
Feng, Jian Q.; Clinkenbeard, Erica L.; Yuan, Baozhi; White, Kenneth E.; Drezner, Marc K.
2013-01-01
Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization. PMID:23403405
Long term outcome of treatment of end stage renal failure.
Henning, P; Tomlinson, L; Rigden, S P; Haycock, G B; Chantler, C
1988-01-01
The most common causes of end stage renal failure in 46 children (mean age 11 years, range 4-14) treated between January 1972 and June 1977 were: reflux nephropathy (n = 12), cystinosis (n = 7), focal and segmental glomerulosclerosis (n = 6), and Schönlein-Henoch disease (n = 5). The quality of life, degree of renal function, and height attainment of the 31 survivors were assessed in June 1985, when their mean age was 22 years (range 14-27), using hospital records and a questionnaire designed to highlight social and psychological problems. Twenty six patients had a functioning transplanted kidney. Average growth during treatment for all survivors was normal, but most were disappointed with their 'final height'. Though five patients had some form of disabling bone disease, all 31 could walk and 27 could run. Sixteen (67%) were in full or part time employment and nine were living independently. A group of 32 patients with juvenile onset diabetes treated at this hospital for at least five years were also asked to complete the questionnaire and of these, 17 responded. On average, their data could usefully be compared with those of cases of end stage renal failure. More of the diabetics had jobs, but most sexually mature patients with renal disease were concerned about their physical appearance and had not achieved any stable long term sexual relationships. We suggest that a poor body image resulting in low self esteem may be responsible for the deficiency and believe that further study in this group is warranted.
Yadav, Saveg; Pandey, Shrish Kumar; Goel, Yugal; Kujur, Praveen Kumar; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra
2018-03-01
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4 + & CD8 + ) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela
2008-01-01
Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470
Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study
Schutte, Rudolph; Nawrot, Tim S.; Richart, Tom; Thijs, Lutgarde; Vanderschueren, Dirk; Kuznetsova, Tatiana; Van Hecke, Etienne; Roels, Harry A.; Staessen, Jan A.
2008-01-01
Background Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. Objective We sought evidence for a direct osteotoxic effect of cadmium in women. Methods We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. Results In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm2 (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm2 (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). Conclusions In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. PMID:18560534
Statistical Challenges in Biomedical Research
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Ploutz-Snyder, Rob; Fiedler, James
2010-01-01
Potentially debilitating effects of spaceflight environment include: a) Bone Demineralization - Osteoporosis. b)Impaired Fracture Healing - Non-Union. c) Renal Stone Formation & Soft Tissue Calcification. d) Orthostatic Intolerance (on return to gravity). e) Cardiac Arrhythmias. f) Dehydration (on return to gravity). g) Decreased Aerobic Capacity. h) Impaired Coordination. i) Muscle Atrophy (Loss of Strength). j) Radiation Sickness. k) Increased Cancer Risk. l) Impaired Immune Function. m) Behavioral Changes & Performance Decrements n) Altitude Decompression Sickness during EVA.
Vadlamudi, Srilatha; Annapareddy, Siva Nagendra Reddy
2016-01-01
Multiple myeloma is one of the most common malignancies encountered in clinical practice. Renal involvement in myeloma is a well-recognized entity. Although rare, another special situation that a nephrologist can encounter is myeloma occurring in a patient with preexisting chronic kidney disease (CKD) due to other etiologies. Anemia, bone pains and hypercalcemia, which commonly indicate the diagnosis of myeloma in the general population, are not useful in the presence of CKD. The sensitivity and specificity of serum free light chain assay is decreased in the presence of renal failure. Chemotherapy-related adverse effects are high compared with that in patients without CKD; this is attributed to the decreased clearance of drugs and the additive effect of chemotherapy-related adverse effects to the complications of CKD. Autologous and allogenic bone marrow transplantation can be attempted in this group of patients with non-myeloablative-conditioning regimens. Combined bone marrow and renal transplantation remains a viable option in this group of patients to increase life expectancy and quality of life.
[Effects of smoking on the thyroid gland, digestive system, kidney and bone].
Underner, M; Hadjadj, S; Beauchant, M; Bridoux, F; Debiais, F; Meurice, J-C
2008-12-01
In addition to being a major cardiovascular risk factor, smoking promotes or worsens thyroid, digestive, renal and bone diseases. Smoking is positively associated with hyperthyroidism. It is associated with Graves' disease and it especially increases the risk of the development of severe exophthalmos. In contrast, smoking might exert a protective action for thyroid carcinoma. Smoking increases the severity of hepatic lesions in patients with chronic hepatitis C. Smoking accelerates the progression of primary biliary cirrhosis and increases the risk of hepatocellular carcinoma. Smoking increases risk of both hyperplastic and adenomatous polyps. While Crohn's disease is associated with smoking, ulcerative colitis is largely a disease of non smokers. Smoking increases risk of development of both renal cell carcinoma and chronic nephropathies, particularly in types 1 and 2 diabetes. Smoking is a risk factor for decreased bone density and is associated with a significantly increased risk of fracture. Smoking is related to the development of rheumatoid arthritis and may adversely influence its severity. Smoking might be considered a risk factor for the development of several thyroid, digestive, renal and bone diseases. Consequently, smoking prevention and cessation programs must be strongly encouraged among the patients concerned.
Research opportunities in bone demineralization, phase 3
NASA Technical Reports Server (NTRS)
Anderson, S. A. (Editor); Cohn, S. H. (Editor)
1984-01-01
An overview of bone demineralization during space flight, observations in bone demineralization and experiments related to bone loss planned for Spacelab flights, and suggestions for further research are investigated. The observations of the working group focused upon the following topics: (1) pathogenesis of bone demineralization, (2) potential for occurrence of renal stones consequent to prolonged hypercalciuria, (3) development of appropriate ground based and inflight models to study bone demineralization, (4) integration of research efforts, and (5) development of effective countermeasures.
CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis.
Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin; Entman, Mark L; Wang, Yanlin
2014-07-01
Recent studies have shown that angiotensin II (Ang II) plays a critical role in the pathogenesis and progression of hypertensive kidney disease. However, the signaling mechanisms are poorly understood. In this study, we investigated the role of CXCR6 in Ang II-induced renal injury and fibrosis. Wild-type and CXCR6-green fluorescent protein (GFP) knockin mice were treated with Ang II via subcutaneous osmotic minipumps at 1500 ng/kg per minute after unilateral nephrectomy for ≤ 4 weeks. Wild-type and CXCR6-GFP knockin mice had virtually identical blood pressure at baseline. Ang II treatment led to an increase in blood pressure that was similar between wild-type and CXCR6-GFP knockin mice. CXCR6-GFP knockin mice were protected from Ang II-induced renal dysfunction, proteinuria, and fibrosis. CXCR6-GFP knockin mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts and produced less extracellular matrix protein in the kidneys after Ang II treatment. Furthermore, CXCR6-GFP knockin mice exhibited fewer F4/80(+) macrophages and CD3(+) T cells and expressed less proinflammatory cytokines in the kidneys after Ang II treatment. Finally, wild-type mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts, macrophages, and T cells in the kidney after Ang II treatment when compared with wild-type mice engrafted with CXCR6(+/+) bone marrow cells. Our results indicate that CXCR6 plays a pivotal role in the development of Ang II-induced renal injury and fibrosis through regulation of macrophage and T-cell infiltration and bone marrow-derived fibroblast accumulation. © 2014 American Heart Association, Inc.
CXCR6 Plays a Critical Role in Angiotensin II-induced Renal Injury and Fibrosis
Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin; Entman, Mark L.; Wang, Yanlin
2014-01-01
Objective Recent studies have shown that angiotensin II (Ang II) plays a critical role in the pathogenesis and progression of hypertensive kidney disease. However, the signaling mechanisms are poorly understood. In this study, we investigated the role of CXCR6 in Ang II-induced renal injury and fibrosis. Approach and Results Wild-type and CXCR6-GFP knockin mice were treated with Ang II via subcutaneous osmotic minipumps at 1500 ng/kg/min after unilateral nephrectomy for up to 4 weeks. WT and CXCR6-GFP knockin mice had virtually identical blood pressure at baseline. Ang II treatment led to an increase in blood pressure that was similar between WT and CXCR6-GFP knockin mice. CXCR6-GFP knockin mice were protected from Ang II-induced renal dysfunction, proteinuria, and fibrosis. CXCR6-GFP knockin mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts and produced less extracellular matrix protein in the kidneys following Ang II treatment. Furthermore, CXCR6-GFP knockin mice exhibited fewer F4/80+ macrophages and CD3+ T cells and expressed less proinflammatory cytokines in the kidneys after Ang II treatment. Finally, wild-type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts, macrophages, and T cells in the kidney after Ang II treatment compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Conclusions Our results indicate that CXCR6 plays a pivotal role in the development of Ang II-induced renal injury and fibrosis through regulation of macrophage and T cell infiltration and bone marrow-derived fibroblast accumulation. PMID:24855055
Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate.
Blake, G M; Zivanovic, M A; McEwan, A J; Ackery, D M
1986-01-01
Strontium kinetics were investigated in a group of 14 patients receiving 89Sr palliation for metastatic bone disease secondary to prostatic carcinoma. Using 85Sr as a tracer, total body strontium retention R(t) was monitored for a 3 month period following 89Sr administration, and at 90 days was found to vary from 11% to 88% and to correlate closely with the fraction of the skeleton showing scintigraphic evidence of osteoblastic metastatic involvement. Strontium renal plasma clearance varied from 1.6 l/day to 11.6 l/day, and in nine patients was significantly reduced compared with values found in healthy adult men, probably due to increased renal tubular reabsorption associated with the disturbance of calcium homoeostasis. Renal clearance rate was the principal factor determining R(t) for t less than 6 days, and was an important secondary factor at later times. Over the interval 30 days less than t less than 90 days, R(t) was closely fitted by the power law function R(t) = R30 (t/30)-b, with R30 and b showing the close correlation expected from the effect of R(t) on strontium recycling. The correction of the data for this effect to determine the true skeletal release rate is described. Measurement of localized strontium turnover in individual metastatic deposits from whole body profiles and scintigraphic images gave retention curves that typically rose to a plateau by 10 days after therapy, and then decreased very slowly. In contrast, retention curves for adjacent normal trabecular bone showed more rapid turnover, peaking at 1 day and subsequently decreasing following a t-0.2 power law function.(ABSTRACT TRUNCATED AT 250 WORDS)
Iwamoto, Shotaro; Azuma, Eiichi; Hori, Hiroki; Hirayama, Masahiro; Kobayashi, Michihiro; Komada, Yoshihiro; Nishimori, Hisashi; Miyahara, Masazumi
2002-06-01
The human polyomavirus BK (BKV)-associated hemorrhagic cystitis (HC) has been a frequent and, seldom life-threatening complication after bone marrow transplantation (BMT). The authors report a male with melodysplastic syndrome, who developed BKV-associated late-onset HC 12 days after HLA-matched unrelated BMT. His urine contained epithelial cells with intranuclear inclusion bodies suggestive of BKV infection and was positive for BKV in polymerase chain reaction. He did not respond to any treatment for HC. In addition, he developed BKV-associated acute renal failure on day 26, followed by hepatic veno-occlusive disease on day 42. This is the first case in which BKV may be associated with fatal progressive renal failure.
El-Husseini, Amr A; Foda, Mohamed A; Osman, Yasser M; Sobh, Mohamed A
2006-05-01
To study the characteristics and the predictors of survival observed in our pediatric live-donor renal transplant recipients with an allograft that functioned for more than 10 yr. One hundred fifteen children underwent renal transplantation between 1976 and 1995. Of these, 30 had functioning allografts for more than 10 yr (range, 11-18). The patients included 18 males and 12 females, with a mean age at transplantation of 13 yr (range, 5-18). Characteristics of the patients, data on graft survival, and determinants of outcome were obtained by reviewing all medical charts. At most recent follow-up (January 2005), the mean daily dose of azathioprine was 1.2 mg/kg (range, 1-2) and that of prednisone was 0.16 mg/kg (range, 0.1-0.2). Mean creatinine clearance was 72 mL/min per 1.73 m(2) (range, 45-112). Acute rejection occurred in 14 (47%) patients. Seven patients had one episode, five had two episodes, and two had three episodes of acute rejection. Three patients (10%) developed malignancy. A substantial proportion of patients (44%) were short, with a height standard deviation score (SDS) less than -1.88, which is below the third percentile for age and gender. One quarter of the patients, more commonly the females, were obese. Other complications included osteoporosis in 16 (53%) patients, avascular bone necrosis in four (13%), post-transplantation diabetes mellitus in three (10%), and hypertension in 18 (60%). Twelve (40%) patients were married and 27% had children post-transplantation. The independent determinants of long-term graft survival were acute rejection and post-transplant hypertension. Despite good renal function, long-term pediatric renal transplant survivors are at risk of significant morbidity. The determinants of long-term graft survival are acute rejection and post-transplant hypertension.
Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan
2016-01-01
Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.
Nicolet-Barousse, Laurence; Blanchard, Anne; Roux, Christian; Pietri, Laurence; Bloch-Faure, May; Kolta, Sami; Chappard, Christine; Geoffroy, Valérie; Morieux, Caroline; Jeunemaitre, Xavier; Shull, Gary E; Meneton, Pierre; Paillard, Michel; Houillier, Pascal; De Vernejoul, Marie-Christine
2005-05-01
Chronic thiazide treatment is associated with high BMD. We report that patients and mice with null mutations in the thiazide-sensitive NaCl cotransporter (NCC) have higher renal tubular Ca reabsorption, higher BMD, and lower bone remodeling than controls, as well as abnormalities in Ca metabolism, mainly caused by Mg depletion. Chronic thiazide treatment decreases urinary Ca excretion (UVCa) and increases BMD. To understand the underlying mechanisms, Ca and bone metabolism were studied in two models of genetic inactivation of the thiazide-sensitive NaCl cotransporter (NCC): patients with Gitelman syndrome (GS) and Ncc knockout (Ncc(-/-)) mice. Ca metabolism was analyzed in GS patients and Ncc(-/-) mice under conditions of low dietary Ca. BMD was measured by DXA in patients and mice, and bone histomorphometry was analyzed in mice. GS patients had low plasma Mg. They exhibited reduced UVCa, but similar serum Ca and GFR as control subjects, suggesting increased renal Ca reabsorption. Blood PTH was lower despite lower serum ionized Ca, and Mg repletion almost corrected both relative hypoparathyroidism and low UVCa. BMD was significantly increased in GS patients at both lumbar (+7%) and femoral (+16%) sites, and osteocalcin was reduced. In Ncc(-/-) mice, serum Ca and GFR were unchanged, but UVCa was reduced and PTH was elevated; Mg repletion largely corrected both abnormalities. Trabecular and cortical BMD were higher than in Ncc(+/+) mice (+4% and +5%, respectively), and despite elevated PTH, were associated with higher cortical thickness and lower endosteal osteoclastic surface. Higher BMD is observed in GS patients and Ncc(-/-) mice. Relative hypoparathyroidism (human) and bone resistance to PTH (mice), mainly caused by Mg depletion, can explain the low bone remodeling and normal/low serum Ca despite increased renal Ca reabsorption.
Cao, Jing; Li, Yong; Peng, Yingxian; Zhang, Yaqian; Li, Huanhuan; Li, Ran; Xia, Anzhou
2015-01-01
Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats. © 2015 S. Karger AG, Basel.
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Hematogenous Renal Cell Carcinoma Metastasis in the Postoperative Temporal Bone
Konishi, Masaya; Suzuki, Kensuke; Iwai, Hiroshi
2017-01-01
Metastatic renal cell carcinoma (RCC) involving the temporal bone is a rare entity. It is usually asymptomatic and misdiagnosis as acute otitis media, mastoiditis, and Ramsay-Hunt syndrome in early onset is not uncommon. We report a case of RCC metastasis to the postoperative temporal bone in the middle of molecular targeted therapy. A 60-year-old man presented left facial palsy with severe retro-auricular pain and he also underwent left middle ear surgery for cholesteatoma more than 30 years before and had been aware of discontinuous otorrhea; therefore, initially we speculated that facial palsy was derived from recurrent cholesteatoma or Ramsay-Hunt syndrome. Exploratory tympanotomy revealed RCC metastasis and postoperative MR indicated hematogenous metastasis. To the best of our knowledge, no report was obtained on temporal bone metastasis in the middle of chemotherapy or hematogenous metastasis in the postoperative middle ear. Metastasis in the temporal bone is still a possible pathological condition despite the development of present cancer therapy. Besides, this case indicates that hematogenous metastasis can occur in the postoperative state of the temporal bone. PMID:28611633
Bone Density and Cortical Structure after Pediatric Renal Transplantation
Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.
2012-01-01
The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth;
2011-01-01
Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.
Konta, Eliziane Mieko; Almeida, Mara Ribeiro; do Amaral, Cátia Lira; Darin, Joana Darc Castania; de Rosso, Veridiana V; Mercadante, Adriana Zerlotti; Antunes, Lusânia Maria Greggi; Bianchi, Maria Lourdes Pires
2014-01-01
Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.
Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok
2017-08-01
Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Kidney transplantation restored uncoupled bone turnover in end-stage renal disease.
Kawarazaki, Hiroo; Shibagaki, Yugo; Kido, Ryo; Nakajima, Ichiro; Fuchinoue, Shohei; Ando, Katsuyuki; Fujita, Toshiro; Fukagawa, Masafumi; Teraoka, Satoshi; Fukumoto, Seiji
2012-07-01
While kidney transplantation (KTx) reverses many disorders associated with end-stage renal disease (ESRD), patients who have received KTx often have chronic kidney disease and bone and mineral disorder (CKD-MBD). However, it is unknown how bone metabolism changes by KTx. Living donor-KTx recipients (n = 34) at Tokyo Women's Medical University were prospectively recruited and the levels of bone-specific alkaline phosphatase (BAP) and serum cross-linked N-telopeptides of Type 1 collagen (NTX) were measured before, 6 and 12 months after transplantation. Before KTx, serum BAP was within the reference range in more than half of patients while NTX was high in most patients. Serum NTX was higher in patients with longer dialysis durations compared to that with shorter durations before KTx. However, there was no difference in serum BAP between these patients. After KTx, BAP increased while NTX decreased along with the decline of PTH. In addition, the numbers of patients who showed high BAP and NTX were comparable after KTx. These results suggest that bone formation is suppressed and uncoupled with bone resorption in patients with ESRD and this uncoupling is restored by KTx. Further studies are necessary to clarify the mechanism of bone uncoupling in patients with ESRD.
[Hypogonadism, a serious complication of chronic renal insufficiency].
Zofková, I; Bubenícek, P; Sotorník, I
2007-06-01
Hypogonadism is a frequent complication in patients with chronic renal insufficiency (CHRI). From a pathogenetic point of view, it is a disorder at the level of the hypothalamus caused by central inhibition of the pulsatile generation of gonadotropin releasing hormone (GnRH) and by a primary disorder of gonads. The cause of hypogonadism in dialysed patients is not completely known. The effect of inhibition of erythropoietin production is believed to be one of the factors, as well as the adverse effects of complicated therapeutic procedures and malnutrition. In men, the affection manifests itself as a disorder of sexual functions, inhibition ofspermatogenesis, premature andropause and severe fatigue syndrome. Menstruation disorders, premature menopause and anovulation cycles are frequent symptoms in dialysed women. Androgen or estrogen substitution improves the quality of life in both sexes and slows down the loss of bone mass. Complete remission of hypogonadism is obtained, in the majority of patients, by renal transplant. The overview study deals with the pathogenesis, diagnosis and treatment of hypogonadism in dialysed patients.
Langridge, Alexander; Musgrave, Kathryn; Upadhye, Yogesh
2016-03-09
A 78-year-old man, with a 6-year history of stable chronic myelomonocytic leukaemia (CMML), presented with general deterioration and worsening pancytopenia. Bone marrow biopsy showed that his disease had transformed into acute myeloid leukaemia (AML). He was started on a supportive transfusion regimen and did not receive any chemotherapy or corticosteroids. Several weeks later, he developed acute renal failure and was admitted to a medical admissions ward. Spontaneous tumour lysis syndrome (sTLS, grade 1) was diagnosed, as per the Cairo and Bishop criteria. He was treated with intravenous fluids, rasburicase and allopurinol. His renal function improved and he recovered from the sTLS. The authors believe that this is the first published case of sTLS occurring as a result of CMML transforming into AML; it highlights the importance of recognising sTLS as a cause of renal failure and electrolyte disturbance before cancer treatment begins. 2016 BMJ Publishing Group Ltd.
Kasap, Murat; Yeğenağa, Itır; Akpinar, Gurler; Tuncay, Mehmet; Aksoy, Ayça; Karaoz, Erdal
2015-01-01
The relationship between the stem cells and the bone turnover in uremic bone disease due to chronic renal failure (CRF) is not described. The aim of this study was to investigate the effect of bone turnover status on stem cell properties. To search for the presence of such link and shed some light on stem-cell relevant mechanisms of bone turnover, we carried out a study with mesenchymal stem cells. Tissue biopsies were taken from the abdominal subcutaneous adipose tissue of a CRF patient with secondary hyperparathyroidism with the high turnover bone disease. This patient underwent parathyroidectomy operation (PTX) and another sample was taken from this patient after PTX. A CRF patient with adynamic bone disease with low turnover and a healthy control were also included. Mesenchymal stem cells isolated from the subjects were analyzed using proteomic and molecular approaches. Except ALP activity, the bone turnover status did not affect common stem cell properties. However, detailed proteome analysis revealed the presence of regulated protein spots. A total of 32 protein spots were identified following 2D gel electrophoresis and MALDI-TOF/TOF analyzes. The identified proteins were classified into seven distinct groups and their potential relationship to bone turnover were discussed. Distinct protein expression patterns emerged in relation to the bone turnover status indicate a possible link between the stem cells and bone turnover in uremic bone disease due to CRF.
A primer of bone metastases management in breast cancer patients.
Petrut, B; Trinkaus, M; Simmons, C; Clemons, M
2008-01-01
Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (SRES). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay SRES, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use-for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use-for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient's developing a SRE and of benefiting from bisphosphonate treatment.
Zhou, Xiaoyan; Forrest, Michael J; Sharif-Rodriguez, Wanda; Forrest, Gail; Szeto, Daphne; Urosevic-Price, Olga; Zhu, Yonghua; Stevenson, Andra S; Zhou, Yuchen; Stribling, Sloan; Dajee, Maya; Walsh, Shawn P; Pasternak, Alexander; Sullivan, Kathleen A
2017-02-01
The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na + /K + /2Cl - cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups-control, high-salt diet alone; ROMKi B 3 mg·kg - 1 ·d - 1 ; ROMKi B 10 mg·kg - 1 ·d - 1 ; and hydrochlorothiazide 25 mg·kg - 1 ·d - 1 -were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population. © 2016 American Heart Association, Inc.
Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias
2017-10-01
Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.
Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma
2016-01-01
To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.
42 CFR 494.110 - Condition: Quality assessment and performance improvement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... improvement. 494.110 Section 494.110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... RENAL DISEASE FACILITIES Patient Care § 494.110 Condition: Quality assessment and performance... renal bone disease. (iv) Anemia management. (v) Vascular access. (vi) Medical injuries and medical...
42 CFR 494.110 - Condition: Quality assessment and performance improvement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... improvement. 494.110 Section 494.110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... RENAL DISEASE FACILITIES Patient Care § 494.110 Condition: Quality assessment and performance... renal bone disease. (iv) Anemia management. (v) Vascular access. (vi) Medical injuries and medical...
42 CFR 494.110 - Condition: Quality assessment and performance improvement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... improvement. 494.110 Section 494.110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... RENAL DISEASE FACILITIES Patient Care § 494.110 Condition: Quality assessment and performance... renal bone disease. (iv) Anemia management. (v) Vascular access. (vi) Medical injuries and medical...
Role of bone morphogenetic protein-7 in renal fibrosis
Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.
2015-01-01
Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203
The Function of V-ATPases in Cancer
Stransky, Laura; Cotter, Kristina
2016-01-01
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells. PMID:27335445
Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.
2014-01-01
Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.
Comprehensive metabolic characterization of serum osteocalcin action in a large non-diabetic sample.
Entenmann, Lukas; Pietzner, Maik; Artati, Anna; Hannemann, Anke; Henning, Ann-Kristin; Kastenmüller, Gabi; Völzke, Henry; Nauck, Matthias; Adamski, Jerzy; Wallaschofski, Henri; Friedrich, Nele
2017-01-01
Recent research suggested a metabolic implication of osteocalcin (OCN) in e.g. insulin sensitivity or steroid production. We used an untargeted metabolomics approach by analyzing plasma and urine samples of 931 participants using mass spectrometry to reveal further metabolic actions of OCN. Several detected relations between OCN and metabolites were strongly linked to renal function, however, a number of associations remained significant after adjustment for renal function. Intermediates of proline catabolism were associated with OCN reflecting the implication in bone metabolism. The association to kynurenine points towards a pro-inflammatory state with increasing OCN. Inverse relations with intermediates of branch-chained amino acid metabolism suggest a link to energy metabolism. Finally, urinary surrogate markers of smoking highlight its adverse effect on OCN metabolism. In conclusion, the present study provides a read-out of metabolic actions of OCN. However, most of the associations were weak arguing for a limited role of OCN in whole-body metabolism.
Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon
2013-01-01
We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713
Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis
Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.
2010-01-01
Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved. PMID:20850784
Clinical spectrum of primary hyperoxaluria type 1: Experience of a tertiary center
Soliman, Neveen A.; Nabhan, Marwa M.; Abdelrahman, Safaa M.; Abdelaziz, Hanan; Helmy, Rasha; Ghanim, Khaled; Bazaraa, Hafez M.; Badr, Ahmed M.; Tolba, Omar A.; Kotb, Magd A.; Eweeda, Khaled M.; Fayez, Alaa
2018-01-01
Background and aim Primary hyperoxalurias are rare inborn errors of metabolism resulting in increased endogenous production of oxalate that leads to excessive urinary oxalate excretion. Diagnosis of primary hyperoxaluria type 1 (PH1) is a challenging issue and depends on diverse diagnostic tools including biochemical analysis of urine, stone analysis, renal biopsy, genetic studies and in some cases liver biopsy for enzyme assay. We characterized the clinical presentation as well as renal and extrarenal phenotypes in PH1 patients. Methods This descriptive cohort study included patients with presumable PH1 presenting with nephrolithiasis and/or nephrocalcinosis (NC). Precise clinical characterization of renal phenotype as well as systemic involvement is reported. AGXT mutational analysis was performed to confirm the diagnosis of PH1. Results The study cohort included 26 patients with presumable PH1 with male to female ratio of 1.4:1. The median age at time of diagnosis was 6 years, nevertheless the median age at initial symptoms was 3 years. Thirteen patients (50%) were diagnosed before the age of 5 years. Two patients had no symptoms and were diagnosed while screening siblings of index patients. Seventeen patients (65.4%) had reached end-stage renal disease (ESRD): 6/17 (35.3%) during infancy, 4/17 (23.5%) in early childhood and 7/17 (41.29%) in late childhood. Two patients (7.7%) had clinically manifest extra renal (retina, heart, bone, soft tissue) involvement. Mutational analysis of AGXT gene confirmed the diagnosis of PH1 in 15 out of 19 patients (79%) where analysis had been performed. Fifty percent of patients with maintained renal functions had projected 10 years renal survival. Conclusion PH1 is a heterogeneous disease with wide spectrum of clinical, imaging and functional presentation. More than two-thirds of patients presented prior to the age of 5 years; half of them with the stormy course of infantile PH1. ESRD was the commonest presenting manifestation in two-thirds of our cohort. PMID:28161266
Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas
2011-01-01
An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805
Breast cancer metastatic to the kidney with renal vein involvement.
Nasu, Hatsuko; Miura, Katsutoshi; Baba, Megumi; Nagata, Masao; Yoshida, Masayuki; Ogura, Hiroyuki; Takehara, Yasuo; Sakahara, Harumi
2015-02-01
The common sites of breast cancer metastases include bones, lung, brain, and liver. Renal metastasis from the breast is rare. We report a case of breast cancer metastatic to the kidney with extension into the renal vein. A 40-year-old woman had undergone left mastectomy for breast cancer at the age of 38. A gastric tumor, which was later proved to be metastasis from breast cancer, was detected by endoscopy. Computed tomography performed for further examination of the gastric tumor revealed a large left renal tumor with extension into the left renal vein. It mimicked a primary renal tumor. Percutaneous biopsy of the renal tumor confirmed metastasis from breast cancer. Surgical intervention of the stomach and the kidney was avoided, and she was treated with systemic chemotherapy. Breast cancer metastatic to the kidney may present a solitary renal mass with extension into the renal vein, which mimics a primary renal tumor.
Fractures and Osteomalacia in a Patient Treated With Frequent Home Hemodialysis.
Hanudel, Mark R; Froch, Larry; Gales, Barbara; Jüppner, Harald; Salusky, Isidro B
2017-09-01
Bone deformities and fractures are common consequences of renal osteodystrophy in the dialysis population. Persistent hypophosphatemia may be observed with more frequent home hemodialysis regimens, but the specific effects on the skeleton are unknown. We present a patient with end-stage renal disease treated with frequent home hemodialysis who developed severe bone pain and multiple fractures, including a hip fracture and a tibia-fibula fracture complicated by nonunion, rendering her nonambulatory and wheelchair bound for more than a year. A bone biopsy revealed severe osteomalacia, likely secondary to chronic hypophosphatemia and hypocalcemia. Treatment changes included the addition of phosphate to the dialysate, a higher dialysate calcium concentration, and increased calcitriol dose. Several months later, the patient no longer required a wheelchair and was able to ambulate without pain. Repeat bone biopsy revealed marked improvements in bone mineralization and turnover parameters. Also, with increased dialysate phosphate and calcium concentrations, as well as increased calcitriol, circulating fibroblast growth factor 23 levels increased. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Piedra, María; Berja, Ana; Ramos, Laura; García-Unzueta, María Teresa; Morán, Jesús Manuel; Ruiz, David; Amado, José Antonio
2017-12-01
The receptor of parathyroid hormone and parathyroid hormone-related-protein (PTH/PTHrp) is located in the cell membrane of target tissues - kidney and osteoblasts. It is a G protein-coupled-receptor whose G s α subunit is encoded by the GNAS gene. Our aim was to study whether the single nucleotide polymorphism (SNP) T393C of the GNAS gene is associated with renal stones, bone mineral density (BMD), or bone remodelling markers in primary hyperparathyroidism (PHPT). An analysis was made of clinical and biochemical parameters and densitometric values in three areas and their relationship with the T393C SNP of the GNAS gene in 261 patients with primary hyperparathyroidism and in 328 healthy controls. Genotyping was performed using the Custom Taqman ® SNP Genotyping assay. The genotype frequencies of GNAS T/C 393 were similar in the control and PHPT groups. No association was found between genotypes and clinical expression of PHPT (renal stones and bone fractures). A nonstatistically significant trend was seen to lower BMD in the lumbar spine, femoral neck, and total hip in both PHPT and control C homozygote subjects. Genetic susceptibility to PHPT related to the GNAS T393C polymorphism or a major influence in its development and clinical expression were found. A C allele-related susceptibility to lower BMD in trabecular bone in both PHPT and control subjects is not sufficient to suggest a more severe clinical expression of PHPT. This trend may be considered as a basis for further studies with larger sample sizes and complementary functional evaluation. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.
Analyses of the combination of 6-MP and dasatinib in cell culture
KAUR, GURMEET; BEHRSING, HOLGER; PARCHMENT, RALPH E.; MILLIN, MYRTLE DAVIS; TEICHER, BEVERLY A.
2013-01-01
A major tenet of cancer therapeutics is that combinations of anticancer agents with different mechanisms of action and different toxicities may be effective treatment regimens. Evaluation of additivity/synergy in cell culture may be used to identify drug combination opportunities and to assess risk of additive/synergistic toxicity. The combination of 6-mercaptopurine and dasatinib was assessed for additivity/synergy using the combination index (CI) method and a response surface method in six human tumor cell lines including MCF-7 and MDA-MB-468 breast cancer, NCI-H23 and NCI-H460 non-small cell lung cancer, and A498 and 786-O renal cell cancer, based on two experimental end-points: ATP content and colony formation. Clonal colony formation by human bone marrow CFU-GM was used to assess risk of enhanced toxicity. The concentration ranges tested for each drug were selected to encompass the clinical Cmax concentrations. The combination regimens were found to be additive to sub-additive by both methods of data analysis, but synergy was not detected. The non-small cell lung cancer cell lines were the most responsive among the tumor lines tested and the renal cell carcinoma lines were the least responsive. The bone marrows CFU-GM were more sensitive to the combination regimens than were the tumor cell lines. Based upon these data, it appears that the possibility of enhanced efficacy from combining 6-mercaptopurine (6-MP) and dasatinib would be associated with increased risk of severe bone marrow toxicity, so the combination is unlikely to provide a therapeutic advantage for treating solid tumor patients where adequate bone marrow function must be preserved. PMID:23652925
Can bone marrow differentiate into renal cells?
Imai, Enyu; Ito, Takahito
2002-10-01
A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.
Owari, Takuya; Miyake, Makito; Nakai, Yasushi; Morizawa, Yosuke; Itami, Yoshitaka; Hori, Shunta; Anai, Satoshi; Tanaka, Nobumichi; Fujimoto, Kiyohide
2018-06-06
The objective of the present study was to report the incidence of skeletal-related events (SREs) and identify risk factors for SREs in patients with genitourinary cancer with newly diagnosed bone metastasis. This retrospective study included 180 patients with bone metastasis from prostate cancer (PCa; n = 111), renal cell carcinoma (RCC; n = 43), and urothelial carcinoma (UC; n = 26). Clinical factors at the time of diagnosis of bone metastasis were evaluated with Cox proportional hazards regression analysis to identify independent risk factors for SREs. During follow-up, 29 (26%) patients with PCa, 30 (70%) with RCC, and 15 (58%) with UC developed SREs. Treatment with bone-modifying agents (BMAs) before the development of SREs and within 6 months from the diagnosis of bone metastasis significantly delayed the time to first SRE as compared to nonuse of BMAs. Multivariate analysis identified type of primary cancer (PCa vs. RCC, PCa vs. UC), performance status, and bone pain as significant independent predictive risk factors for SREs. Treatment with BMAs significantly delayed the development of first SREs. The identified predictors of SREs might be useful to select patients who would benefit most from early treatment with BMAs. © 2018 S. Karger AG, Basel.
2017-12-04
Healthy Control; Localized Urothelial Carcinoma of the Renal Pelvis and Ureter; Metastatic Malignant Neoplasm in the Bone; Metastatic Malignant Neoplasm in the Soft Tissues; Metastatic Urothelial Carcinoma of the Renal Pelvis and Ureter; Recurrent Bladder Carcinoma; Recurrent Prostate Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Stage IV Bladder Cancer; Stage IV Bladder Urothelial Carcinoma; Stage IV Prostate Cancer
Tobramycin exposure from active calcium sulfate bone graft substitute
2014-01-01
Background Bone graft substitute such as calcium sulfate are frequently used as carrier material for local antimicrobial therapy in orthopedic surgery. This study aimed to assess the systemic absorption and disposition of tobramycin in patients treated with a tobramycin-laden bone graft substitute (Osteoset® T). Methods Nine blood samples were taken from 12 patients over 10 days after Osteoset® T surgical implantation. Tobramycin concentration was measured by fluorescence polarization. Population pharmacokinetic analysis was performed using NONMEM to assess the average value and variability (CV) of pharmacokinetic parameters. Bioavailability (F) was assessed by equating clearance (CL) with creatinine clearance (Cockcroft CLCr). Based on the final model, simulations with various doses and renal function levels were performed. (ClinicalTrials.gov number, NCT01938417). Results The patients were 52 +/− 20 years old, their mean body weight was 73 +/− 17 kg and their mean CLCr was 119 +/− 55 mL/min. Either 10 g or 20 g Osteoset® T with 4% tobramycin sulfate was implanted in various sites. Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing important variability. With CL equated to CLCr, mean absorption rate constant (ka) was 0.06 h-1, F was 63% or 32% (CV 74%) for 10 and 20 g Osteoset® T respectively, and volume of distribution (V) was 16.6 L (CV 89%). Simulations predicted sustained high, potentially toxic concentrations with 10 g, 30 g and 50 g Osteoset® T for CLCr values below 10, 20 and 30 mL/min, respectively. Conclusions Osteoset® T does not raise toxicity concerns in subjects without significant renal failure. The risk/benefit ratio might turn unfavorable in case of severe renal failure, even after standard dose implantation. PMID:24593819
Renal Stone Risk During Space Flight
NASA Technical Reports Server (NTRS)
Whitson, Peggy A.; Pietrzyk, Robert A.; Sams, Clarence F.; Pak, Charles Y. C.; Jones, Jeffrey A.
1999-01-01
Space flight produces a number of metabolic and physiological changes in the crewmembers exposed to microgravity. Following launch, body fluid volumes, electrolyte levels, and bone and muscle undergo changes as the human body adapts to the weightless environment. Changes in the urinary chemical composition may lead to the potentially serious consequences of renal stone formation. Previous data collected immediately after space flight indicate changes in the urine chemistry favoring an increased risk of calcium oxalate and uric acid stone formation (n = 323). During short term Shuttle space flights, the changes observed include increased urinary calcium and decreased urine volume, pH and citrate resulting in a greater risk for calcium oxalate and brushite stone formation (n = 6). Results from long duration Shuttle/Mir missions (n = 9) followed a similar trend and demonstrated decreased fluid intake and urine volume and increased urinary calcium resulting in a urinary environment saturated with the calcium stone-forming salts. The increased risk occurs rapidly upon exposure to microgravity, continues throughout the space flight and following landing. Dietary factors, especially fluid intake, or pharmacologic intervention can significantly influence the urinary chemical composition. Increasing fluid intake to produce a daily urine output of 2 liters/day may allow the excess salts in the urine to remain in solution, crystals formation will not occur and a renal stone will not develop. Results from long duration crewmembers (n = 2) who had urine volumes greater than 2.5 L/day minimized their risk of renal stone formation. Also, comparisons of stone-forming risk in short duration crewmembers clearly identified greater risk in those who produced less than 2 liters of urine/day. However, hydration and increased urine output does not correct the underlying calcium excretion due to bone loss and only treats the symptoms and not the cause of the increased urinary salts. Dietary modification and promising pharmacologic treatments may also be used to reduce the potential risk for renal stone formation. Potassium citrate is being used clinically to increase the urinary inhibitor levels to minimize the development of crystals and the growth of renal stones. Bisphosphonates are a class of drugs recently shown to help in patients with osteoporosis by inhibiting the loss of bones in elderly patients. This drug could potentially prevent the bone loss observed in astronauts and thereby minimize the increase in urinary calcium and reduce the risk for renal stone development. Results of NASA's renal stone risk assessment program clearly indicate that exposure to microgravity changes the urinary chemical environment such that there is an increased risk for supersaturation of stone-forming salts, including calcium oxalaie and brushite. These studies have indicated specific avenues for development of countermeasures for the increased renal stone risk observed during and following space flight. Increased hydration and implementation of pharmacologic countermeasures should largely mitigate the in-flight risk of renal stones.
International conference on bone mineral measurement, October 12--13, 1973, Chicago, Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-12-31
From international conference on bone mineral measurement; Chicago, Illinois, USA (12 Oct 1973). Abstracts of papers presented at the international conference on bone mineral measurement are presented. The papers were grouped into two sessions: a physical session including papers on measuring techniques, errors, interpretation and correlations, dual photon techniques, and data handling and exchange; a biomedical session including papers on bone disease, osteoporosis, normative data, non-disease influences, renal, and activity and inactivity. (ERB)
In search of adult renal stem cells.
Anglani, F; Forino, M; Del Prete, D; Tosetto, E; Torregrossa, R; D'Angelo, A
2004-01-01
The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.
A primer of bone metastases management in breast cancer patients
Petrut, B.; Trinkaus, M.; Simmons, C.; Clemons, M.
2008-01-01
Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (sres). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay sres, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use—for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use—for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient’s developing a sre and of benefiting from bisphosphonate treatment. PMID:18231649
Increasing dietary protein requirements in elderly people for optimal muscle and bone health.
Gaffney-Stomberg, Erin; Insogna, Karl L; Rodriguez, Nancy R; Kerstetter, Jane E
2009-06-01
Osteoporosis and sarcopenia are degenerative diseases frequently associated with aging. The loss of bone and muscle results in significant morbidity, so preventing or attenuating osteoporosis and sarcopenia is an important public health goal. Dietary protein is crucial for development of bone and muscle, and recent evidence suggests that increasing dietary protein above the current Recommended Dietary Allowance (RDA) may help maintain bone and muscle mass in older individuals. Several epidemiological and clinical studies point to a salutary effect of protein intakes above the current RDA (0.8 g/kg per day) for adults aged 19 and older. There is evidence that the anabolic response of muscle to dietary protein is attenuated in elderly people, and as a result, the amount of protein needed to achieve anabolism is greater. Dietary protein also increases circulating insulin-like growth factor, which has anabolic effects on muscle and bone. Furthermore, increasing dietary protein increases calcium absorption, which could be anabolic for bone. Available evidence supports a beneficial effect of short-term protein intakes up to 1.6 to 1.8 g/kg per day, although long-term studies are needed to show safety and efficacy. Future studies should employ functional measures indicative of protein adequacy, as well as measures of muscle protein synthesis and maintenance of muscle and bone tissue, to determine the optimal level of dietary protein. Given the available data, increasing the RDA for older individuals to 1.0 to 1.2 g/kg per day would maintain normal calcium metabolism and nitrogen balance without affecting renal function and may represent a compromise while longer-term protein supplement trials are pending.
Heart failure and kidney dysfunction: epidemiology, mechanisms and management.
Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan
2016-10-01
Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.
Rajapakse, Chamith S; Leonard, Mary B; Kobe, Elizabeth A; Slinger, Michelle A; Borges, Kelly A; Billig, Erica; Rubin, Clinton T; Wehrli, Felix W
2017-11-01
Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Panjeta, Mirsad; Tahirovic, Ismet; Karamehic, Jasenko; Sofic, Emin; Ridic, Ognjen; Coric, Jozo
2015-06-01
Hypoxia is a basic stimulant in production of erythropoietin (EPO). The primary function of erythrocytes is the transport of oxygen to tissues. Erythropoietin stimulates erythropoiesis which leads to increased production of erythrocytes- their total mass. This increases the capacity of the blood to carry oxygen, reduces the hypoxic stimulus and provides a negative feedback of stopping EPO production. The aim of this study was to establish a quantitative relationship between the concentration of erythropoietin, hemoglobin and hematocrit in different values of renal insufficiency. The survey was conducted on 562 subjects divided into two groups: with and without renal insufficiency. EPO, hemoglobin, hematocrit, serum creatinine and additional parameters iron, vitamin B12, and folic acid were determined by using immunochemical and spectrophotometric methods and glomerular filtration rate (GFR) was calculated as well. EPO values (median) grow to the first degree of renal insufficiency, as compared to EPO values of healthy subjects, this increase is statistically significant, p=0.002. With further deterioration of renal function the values of EPO between all pathological groups are decreasing, and this decrease is statistically significant between first and second degree of renal insufficiency (RI) p<0.001. In the group of healthy subjects EPO is correlated rho = -0.532, p <0.0005 with hematocrit. The correlations are negative and strong and can be predicted by regression line (EP0 = 41.375- Hct * .649; EPO = 61.41-Hb * 0.355). In the group of subjects with the first degree of renal insufficiency EPO is in correlation with hematocrit rho=-0.574, p<0, 0005. It is also correlated with hemoglobin rho=-0.580, p< 0.0005. The correlation is negative (EP0= 42.168- Hct * 0.678). In the group of subjects with the third degree of renal insufficiency EPO is in correlation with hemoglobin rho=0.257, p=0.028. The correlation is medium strong and positive. In the group of subjects with third and fourth degree of renal insufficiency EPO is not in correlation with hemoglobin and hematocrit p>0.05. Renal dysfunction, depending on the level of RI effects differently on the biosynthesis of EPO in a diseased kidney, and consequently it also has a different effect on biosynthesis of HB in bone marrow and its content in the blood.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Moghadasali, Reza; Azarnia, Mahnaz; Hajinasrollah, Mostafa; Arghani, Hassan; Nassiri, Seyed Mahdi; Molazem, Mohammad; Vosough, Ahmad; Mohitmafi, Soroush; Najarasl, Mostafa; Ajdari, Zahra; Yazdi, Reza Salman; Bagheri, Mohsen; Ghanaati, Hossein; Rafiei, Behrooz; Gheisari, Yousof; Baharvand, Hossein; Aghdami, Nasser
2014-06-01
Clinically, acute kidney injury (AKI) is a potentially devastating condition for which no specific therapy improves efficacy of the repair process. Bone marrow mesenchymal stromal cells (BM-MSCs) are proven to be beneficial for the renal repair process after AKI in different experimental rodent models, but their efficacy in large animals and humans remains unknown. This study aims to assess the effect of autologous rhesus Macaque mulatta monkey BM-MSC transplantation in cisplatin-induced AKI. We chose a model of AKI induced by intravenous administration of 5 mg/kg cisplatin. BM-MSCs were transplanted through intra-arterial injection. The animals were followed for survival, biochemistry analysis and pathology. Transplantation of 5 × 10(6) cells/kg ameliorated renal function during the first week, as shown by significantly lower serum creatinine and urea values and higher urine creatinine and urea clearance without hyponatremia, hyperkalemia, proteinuria and polyuria up to 84 d compared with the vehicle and control groups. The superparamagnetic iron oxide nanoparticle-labeled cells were found in both the glomeruli and tubules. BM-MSCs markedly accelerated Foxp3+ T-regulatory cells in response to cisplatin-induced damage, as revealed by higher numbers of Foxp3+ cells within the tubuli of these monkeys compared with cisplatin-treated monkeys in the control and vehicle groups. These data demonstrate that BM-MSCs in this unique large-animal model of cisplatin-induced AKI exhibited recovery and protective properties. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Ezquer, Fernando E; Ezquer, Marcelo E; Parrau, Daniela B; Carpio, Daniel; Yañez, Alejandro J; Conget, Paulette A
2008-06-01
Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.
Congenital hypothyroidism and concurrent renal insufficiency in a kitten.
Lim, Chee Kin; Rosa, Chantal T; de Witt, Yolanda; Schoeman, Johan P
2014-11-14
A 3-month-old male domestic short-hair kitten was presented with chronic constipation and disproportionate dwarfism. Radiographs of the long bones and spine revealed delayed epiphyseal ossification and epiphyseal dysgenesis. Diagnosis of congenital primary hypothyroidism was confirmed by low serum total thyroxine and high thyroid stimulating hormone concentrations. Appropriate supplementation of levothyroxine was instituted. The kitten subsequently developed mild renal azotaemia and renal proteinuria, possibly as a consequence of treatment or an unmasked congenital renal developmental abnormality. Early recognition, diagnosis and treatment are vital as alleviation of clinical signs may depend on the cat's age at the time of diagnosis.
Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.
Rogosnitzky, Moshe; Branch, Stacy
2016-06-01
Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.
Diagnostic and management dilemma of a pancreas-kidney transplant recipient with aplastic anaemia.
Viecelli, Andrea; Hessamodini, Hannah; Augustson, Bradley; Lim, Wai Hon
2014-09-25
We report a case of a 57-year-old woman with type I diabetes who had received a simultaneous pancreas-kidney (SPK) transplant maintained on tacrolimus, mycophenolic acid (MPA) and prednisolone. Her renal allograft failed 6 years post-transplant but she continued to have a normal functioning pancreatic allograft. Over the course of 5 years, she developed progressive bone marrow failure with repeat bone marrow aspirates demonstrating an evolution from erythroid hypoplasia to hypocellular marrow and eventual aplastic anaemia despite discontinuation of MPA and reduction of tacrolimus. She was transfusion-dependent and had frequent admissions for sepsis. Despite treatment with antithymocyte globulin and cyclosporine for aplastic anaemia, she developed fatal invasive pulmonary aspergillosis within 3 weeks of treatment. Even though the cause of aplastic anaemia is likely multifactorial, this case highlights the difficulty in balancing the need for versus the risk of ongoing immunosuppression in a SPK transplant recipient who continues to have normal pancreatic graft function. 2014 BMJ Publishing Group Ltd.
Kwon, Young Eun; Lee, Mi Jung; Park, Kyoung Sook; Han, Seung Hyeok; Yoo, Tae Hyun; Oh, Kook Hwan; Lee, Joongyub; Lee, Kyu Beck; Chung, Wookyung; Kim, Yeong Hoon; Ahn, Curie; Choi, Kyu Hun
2017-03-01
Recent studies have reported that loss of bone mass is associated with renal function decline and increased fracture risks in chronic kidney disease (CKD) patients. The aim of this study was to investigate the best estimated glomerular filtration rate (eGFR) equation to detect osteopenia in CKD patients. This was a cross-sectional study, and 780 patients aged 50 years or above were classified into normal bone mass or osteopenia groups according to the -1.0 of T-scores at total hip and femur neck. Comparisons of area under the receiver operating characteristic (ROC) curves (AUC) were performed to investigate significant differences among three eGFR formulas: Modification of Diet in Renal Disease, CKD-Epidemiology Collaboration (EPI) creatinine, and CKD-EPI cystatin C (CKD-EPI-Cys). The mean age was 61 years old and the proportion of females was 37.3%. The total hip osteopenia group showed lower CKD-EPI-Cys eGFR levels (osteopenia group, 33.3±19.0 mL/min/1.73 m²; normal group, 48.1±26.2 mL/min/1.73 m², p<0.001). In multiple logistic regression analysis, CKD-EPI-Cys eGFR was independently associated with osteopenia at the total hip (per 1 mL/min/1.73 m² increase, odds ratio 0.98, 95% confidence interval 0.97-0.99, p=0.004) after adjusting for confounding variables. ROC curve analyses indicated that CKD-EPI-Cys shows the largest AUC for osteopenia at the total hip (AUC=0.678, all p<0.01) and the femur neck (AUC=0.665, all p<0.05). Decreased renal function assessed by CKD-EPI-Cys equation correlates with osteopenia better than creatinine-based methods in CKD patients, and the CKD-EPI-Cys formula might be a useful tool to assess skeletal-related event risks.
Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J
2018-05-23
Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.
Dietary protein, calcium metabolism and bone health in humans
USDA-ARS?s Scientific Manuscript database
Protein is the major structural constituent of bone (50% by volume). But it is also a major source of metabolic acid, especially protein from animal sources because it contains sulfur amino acids that generate sulfuric acid. Increased potential renal acid load has been closely associated with increa...
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss
NASA Technical Reports Server (NTRS)
LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.;
2011-01-01
This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.
Wang, Xiao-Qin; Zou, Xin-Rong; Zhang, Yuan Clare
2016-01-01
Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of "Kidneys Govern Bones." Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.
Dietary Sodium Effects on Bone Loss and Calcium Metabolism During Bed Rest
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Arnaud, Sara B.; Abrams, Steven A.; Paloski, W. H. (Technical Monitor)
2000-01-01
The acceleration of age-related bone loss is one of the most detrimental effects of space flight. The ability to understand and counteract this loss will be critical for crew health and safety during and after long-duration missions. Studies in healthy ambulatory individuals have linked high salt (sodium) diets, hypercalciuria, and increased renal stone risk. Dietary salt may modulate bone loss through changes in calcium metabolism and the calcium endocrine system. The research proposed here will determine the role of dietary salt in the loss of bone during simulated space flight. Calcium metabolism will be determined through calcium kinetics studies, endocrine and biochemical measurements; and estimates of the mass, distribution and mechanical properties of bone, in subjects fed low (100 mmol sodium/day) or high (250 mmol sodium/day) levels of dietary salt during 28 days of headdown tilt bedrest. This research addresses the role of dietary salt in the loss of bone and calcium in space flight, and integrates the changes in calcium metabolism with those occurring in other physiologic systems. These data will be critical for both countermeasure development, and in determination of nutritional requirements for extended-duration space flight. The potential countermeasures resulting from this research will reduce health risks due to acceleration of age-related osteoporosis and increased risk of renal stone formation..
Genetic heterogeneity in familial renal magnesium wasting.
Kantorovich, Vitaly; Adams, John S; Gaines, Jade E; Guo, Xiuqing; Pandian, Murugan R; Cohn, Daniel H; Rude, Robert K
2002-02-01
Isolated hereditary renal magnesium (Mg) wasting may result from mutations in the renal tubular epithelial cell tight junction protein paracellin-1 gene or the tubular Na(+),K(+)-ATPase gamma-subunit gene FXYD2. The FXYD2 gene mutation was discovered in two Dutch families as an autosomal dominant disorder. It is characterized by isolated renal Mg wasting with resultant symptomatic hypomagnesemia. The defective FXYD2 gene in these families mapped to chromosome 11q23. Here, we describe an American family with a similar phenotype but without linkage to the 11q23 locus; in testing 22 individuals in the pedigree multipoint LOD scores for five different loci from the 11q23 region were equal to -2.97. Compared with unaffected family members and normal controls, affected family members harbored significant reductions in the serum and lymphocyte Mg concentrations and in the serum immunoreactive PTH level with a 4-fold increase in the mean fractional urinary Mg excretion rate during a normomagnesemic clamp. Bone mineral density at the lumbar spine and proximal femur was significantly reduced in affected family members. In conclusion, our data demonstrate locus heterogeneity for the phenotype of isolated renal Mg wasting with hypomagnesemia and suggest that hypomagnesemia, at least in this pedigree, may be associated with low bone mass.
Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran
2017-07-01
Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.
Functions of the Renal Nerves.
ERIC Educational Resources Information Center
Koepke, John P.; DiBona, Gerald F.
1985-01-01
Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…
Nuclear chromatin-concentrated osteoblasts in renal bone diseases.
Kazama, Junichiro James; Yamamoto, Suguru; Narita, Ichiei; Kurihara, Satoshi
2011-06-01
The morphological appearance of an osteoblast largely alters with its differentiation and maturation, along with the change of cell function. We quantitatively observed the osteoblast morphology and compared it with bone metabolism. Biopsied iliac bone samples obtained from 77 dialysis patients (14 mild change, 37 osteitis fibrosa, 2 osteomalacia, 8 mixed, and 16 adynamic bone) were included in the study. Osteoblast appearances were classified into three groups: (i) type II and III osteoblasts, namely, active osteoblasts characterized by cuboidal or columnar shapes with or without a nuclear clear zone; (ii) type IV osteoblasts, lining osteoblasts characterized by extremely thin cytoplasm; and (iii) type V osteoblasts, apoptotic osteoblasts characterized by nuclear chromatin concentration. The results were quantitatively expressed as the length of bone surface covered by each type of osteoblasts. The type II and III osteoblasts were predominant in osteitis fibrosa, mixed, and mild change. The type IV osteoblasts were overwhelmingly predominant in adynamic bone. The type V osteoblasts appeared most frequently in osteitis fibrosa, followed by mixed and mild change. Both absolute and relative lengths of bone surface covered by the type V osteoblasts were significantly higher in the high-turnover bone group (osteitis fibrosa and mixed) than the low-turnover bone group (adynamic bone and osteomalacia). The type V osteoblasts were slightly correlated with serum intact parathyroid hormone levels. In conclusion, a high bone-turnover condition seems to be associated with the promotion of osteoblastic apoptosis in dialysis patients. This finding may explain the fact that osteopenia develops faster in CKD patients with high turnover of bone. © 2011 The Authors. Therapeutic Apheresis and Dialysis © 2011 International Society for Apheresis.
Maditz, Kaitlin H; Smith, Brenda J; Miller, Matthew; Oldaker, Chris; Tou, Janet C
2015-02-10
Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD. Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks. Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups. Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.
Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow–derived cells
Day, Yuan-Ji; Huang, Liping; McDuffie, Marcia J.; Rosin, Diane L.; Ye, Hong; Chen, Jiang-Fan; Schwarzschild, Michael A.; Fink, J. Stephen; Linden, Joel; Okusa, Mark D.
2003-01-01
Activation of A2A adenosine receptors (A2ARs) protects kidneys from ischemia-reperfusion injury (IRI). A2ARs are expressed on bone marrow–derived (BM-derived) cells and renal smooth muscle, epithelial, and endothelial cells. To measure the contribution of A2ARs on BM-derived cells in suppressing renal IRI, we examined the effects of a selective agonist of A2ARs, ATL146e, in chimeric mice in which BM was ablated by lethal radiation and reconstituted with donor BM cells derived from GFP, A2AR-KO, or WT mice to produce GFP→WT, A2A-KO→WT, or WT→WT mouse chimera. We found little or no repopulation of renal vascular endothelial cells by donor BM with or without renal IRI. ATL146e had no effect on IRI in A2A-KO mice or A2A-KO→WT chimera, but reduced the rise in plasma creatinine from IRI by 75% in WT mice and by 60% in WT→WT chimera. ATL146e reduced the induction of IL-6, IL-1β, IL-1ra, and TGF-α mRNA in WT→WT mice but not in A2A-KO→WT mice. Plasma creatinine was significantly greater in A2A-KO than in WT mice after IRI, suggesting some renal protection by endogenous adenosine. We conclude that protection from renal IRI by A2AR agonists or endogenous adenosine requires activation of receptors expressed on BM-derived cells. PMID:12975473
PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.
Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru
2017-01-01
The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.
Ishii, H; Wada, M; Furuya, Y; Nagano, N; Nemeth, E F; Fox, J
2000-02-01
The calcium receptor agonist (calcimimetic) compound NPS R-568 causes rapid decreases in circulating levels of parathyroid hormone (PTH) in rats and humans. We hypothesized that daily intermittent decreases in serum PTH levels may have different effects on bone than do chronically sustained decreases. To test this hypothesis, we compared two NPS R-568 dosing regimens in rats with chronic renal insufficiency induced by two intravenous injections of adriamycin. Fourteen weeks after the second adriamycin injection, creatinine clearance was reduced by 52%, PTH levels were elevated approximately 2.5-fold, and serum 25(OH)D3 and 1,25(OH)2D3 levels were reduced substantially. Treatment by daily per os gavage, which decreased PTH levels intermittently, or continuous subcutaneous infusion, which resulted in a sustained suppression of serum PTH levels, then began for 8 weeks. Despite the hyperparathyroidism, the adriamycin-injected rats developed a low-turnover bone lesion with osteomalacia (fourfold increase in osteoid volume in the proximal tibial metaphysis) and osteopenia (67% decrease in cancellous bone volume and an 18% reduction in bone mineral density at the distal femur). Daily administered (but not infused) NPS R-568 significantly increased cancellous bone volume solely by normalizing trabecular thickness, and increased femoral bone mineral density by 14%. These results indicate that daily intermittent, but not sustained, decreases in PTH levels have an "anabolic-like" effect on bones with a low-turnover lesion in this animal model of chronic renal insufficiency.
Bergenfelz, Anders; Lindblom, Pia; Lindergård, Birger; Valdemarsson, Stig; Westerdahl, Johan
2003-04-01
Contemporary patients are often diagnosed with mild or intermittent hypercalcemia. In addition, most studies demonstrate patients with parathyroid (PTH) levels in the upper normal range. The aim of the present investigation was to define subgroups of patients with mild primary hyperparathyroidism (pHPT), which could be of importance in the decision for or against surgical treatment. Two-hundred and eleven patients, operated for pHPT were investigated with biochemical variables known to reflect PTH activity, renal function, and bone mineral content. The preoperative diagnosis of pHPT was based on the presence of hypercalcemia combined with an inappropriate serum concentration of PTH. The mean age of the patients was 64 +/- 14 years and the mean serum level of calcium was 2.78 +/- 0.19 mmol/L. One hundred and sixty-two patients (77%) had raised levels of calcium and PTH the day before surgery (overt pHPT), 25 patients (12%) had a normal level of calcium and a raised PTH level (normal calcium group), and 20 patients (9%) had a raised level of calcium and a normal level of PTH (normal PTH group). In four patients the level of calcium and PTH was normal. Between-group analysis demonstrated no major difference in symptom and signs of pHPT. Except for lower adenoma weight, patients in the normal calcium group did not essentially differ from the patients in the overt pHPT group. However, patients in the normal PTH group were a decade younger, and had better renal function, lower bone turnover, and a preserved bone density compared with patients in the overt pHPT group. In conclusion, the data from the present investigation show that pHPT patients with a preoperative normal PTH level have an early and mild form of the disease. Furthermore, the serum calcium concentration does not reflect disease severity in pHPT.
Bone scan findings in hypervitaminosis D: case report. [/sup 99m/Tc tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogelman, I.; McKillop, J.H.; Cowden, E.A.
1977-12-01
Bone scans in three patients showed generalized symmetrical increased uptake of radiopharmaceutical by the skeleton and absent or faint kidney images. It is thought that these appearances may be attributable to excess vitamin D, and other possible contributing factors, including the presence of renal osteodystrophy, are discussed.
Calcium metabolism in health and disease.
Peacock, Munro
2010-01-01
This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.
Kusuda, Machiko; Kimura, Shun-Ichi; Misaki, Yukiko; Yoshimura, Kazuki; Gomyo, Ayumi; Hayakawa, Jin; Tamaki, Masaharu; Akahoshi, Yu; Ugai, Tomotaka; Kameda, Kazuaki; Wada, Hidenori; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Sato, Miki; Terasako-Saito, Kiriko; Kikuchi, Misato; Nakasone, Hideki; Kako, Shinichi; Tanihara, Aki; Kanda, Yoshinobu
2018-03-27
The actual heparin concentration of harvested allogeneic bone marrow varies among harvest centers. We monitor the activated partial thromboplastin time (APTT) of the patient during bone marrow infusion and administer prophylactic protamine according to the APTT. We retrospectively reviewed the charts of consecutive patients who underwent bone marrow transplantation without bone marrow processing at our center between April 2007 and March 2016 (n = 94). APTT was monitored during marrow transfusion in 52 patients. We analyzed the relationship between the APTT ratio and several parameters related to heparin administration. As a result, the weight-based heparin administration rate (U/kg/hour) seemed to be more closely related to the APTT ratio (r = .38, P = .005) than to the total amount of heparin. There was no significant correlation between the APTT ratio and renal or liver function. Bleeding complications during and early after infusion were seen in 3 of 52 patients, and included intracranial, nasal, and punctured-skin bleeding. The APTT ratio during transfusion was over 5.88 in the former 2 patients and 2.14 in the latter. All of these patients recovered without sequelae. In conclusion, slow bone marrow infusion is recommended to decrease the weight-based heparin administration rate when the heparin concentration per patient body weight is high. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong
2016-05-01
To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.
Clinical spectrum of primary hyperoxaluria type 1: Experience of a tertiary center.
Soliman, Neveen A; Nabhan, Marwa M; Abdelrahman, Safaa M; Abdelaziz, Hanan; Helmy, Rasha; Ghanim, Khaled; Bazaraa, Hafez M; Badr, Ahmed M; Tolba, Omar A; Kotb, Magd A; Eweeda, Khaled M; Fayez, Alaa
2017-05-01
Primary hyperoxalurias are rare inborn errors of metabolism resulting in increased endogenous production of oxalate that leads to excessive urinary oxalate excretion. Diagnosis of primary hyperoxaluria type 1 (PH1) is a challenging issue and depends on diverse diagnostic tools including biochemical analysis of urine, stone analysis, renal biopsy, genetic studies and in some cases liver biopsy for enzyme assay. We characterized the clinical presentation as well as renal and extrarenal phenotypes in PH1 patients. This descriptive cohort study included patients with presumable PH1 presenting with nephrolithiasis and/or nephrocalcinosis (NC). Precise clinical characterization of renal phenotype as well as systemic involvement is reported. AGXT mutational analysis was performed to confirm the diagnosis of PH1. The study cohort included 26 patients with presumable PH1 with male to female ratio of 1.4:1. The median age at time of diagnosis was 6 years, nevertheless the median age at initial symptoms was 3 years. Thirteen patients (50%) were diagnosed before the age of 5 years. Two patients had no symptoms and were diagnosed while screening siblings of index patients. Seventeen patients (65.4%) had reached end-stage renal disease (ESRD): 6/17 (35.3%) during infancy, 4/17 (23.5%) in early childhood and 7/17 (41.29%) in late childhood. Two patients (7.7%) had clinically manifest extra renal (retina, heart, bone, soft tissue) involvement. Mutational analysis of AGXT gene confirmed the diagnosis of PH1 in 15 out of 19 patients (79%) where analysis had been performed. Fifty percent of patients with maintained renal functions had projected 10 years renal survival. PH1 is a heterogeneous disease with wide spectrum of clinical, imaging and functional presentation. More than two-thirds of patients presented prior to the age of 5 years; half of them with the stormy course of infantile PH1. ESRD was the commonest presenting manifestation in two-thirds of our cohort. Copyright © 2016 Association Société de néphrologie. Published by Elsevier Masson SAS. All rights reserved.
Weinberger, Sarah; Klarholz-Pevere, Carola; Liefeldt, Lutz; Baeder, Michael; Steckhan, Nico; Friedersdorff, Frank
2018-03-22
To analyse the influence of CT-based depth correction in the assessment of split renal function in potential living kidney donors. In 116 consecutive living kidney donors preoperative split renal function was assessed using the CT-based depth correction. Influence on donor side selection and postoperative renal function of the living kidney donors were analyzed. Linear regression analysis was performed to identify predictors of postoperative renal function. A left versus right kidney depth variation of more than 1 cm was found in 40/114 donors (35%). 11 patients (10%) had a difference of more than 5% in relative renal function after depth correction. Kidney depth variation and changes in relative renal function after depth correction would have had influence on side selection in 30 of 114 living kidney donors. CT depth correction did not improve the predictability of postoperative renal function of the living kidney donor. In general, it was not possible to predict the postoperative renal function from preoperative total and relative renal function. In multivariate linear regression analysis, age and BMI were identified as most important predictors for postoperative renal function of the living kidney donors. Our results clearly indicate that concerning the postoperative renal function of living kidney donors, the relative renal function of the donated kidney seems to be less important than other factors. A multimodal assessment with consideration of all available results including kidney size, location of the kidney and split renal function remains necessary.
Histopathological analysis for osteomalacia and tubulopathy in itai-itai disease.
Baba, Hayato; Tsuneyama, Koichi; Kumada, Tokimasa; Aoshima, Keiko; Imura, Johji
2014-02-01
Cadmium (Cd) is a widespread environmental contaminant that causes both renal tubulopathy and osteomalacia. Osteomalacia is thought to be a result of renal tubulopathy, but there are few studies about the histopathological relationship between the two pathoses. Therefore, in the present study, we examined specimens from cases of itai-itai disease (IID), the most severe form of chronic cadmium poisoning, to evaluate the relationship between them. We analyzed kidney and bone specimens of 61 IID cases and the data regarding Cd concentration in kidney and bone. Tubulopathy was graded on the basis of a three-step scale (mild, moderate, and severe) using the following three items: the degree of proximal tubular defluxion, thickness of renal cortex, and weight of the kidney. Osteomalacia was evaluated using the relative osteoid volume (ROV). There were 15 cases of mild, 19 cases of moderate, and 27 cases of severe tubulopathy. The average ROV was 24.9 ± 2.0%. ROV tended to increase as tubulopathy advanced in severity, and ROV was significantly higher in cases with severe tubulopathy than those with mild or moderate tubulopathy. ROV had a negative correlation with Cd concentration in the kidney but no correlation with that in the bone. Our results suggest that the development of osteomalacia was related to the development of tubulopathy.
Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio
2015-11-01
Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a novel therapeutic agent for ADH. © 2015 American Society for Bone and Mineral Research.
Bone mineral density, serum albumin and serum magnesium.
Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko
2004-12-01
This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
Prado Wohlwend, S; Sánchez Vaño, R; Sopena Novales, P; Uruburu García, E; Aparisi Rodríguez, F; Martínez Carsí, C
The coexistence of different bone diseases in the same patient involves a complex differential diagnosis. A patient is presented who was studied due to a renal mass that showed many sclerotic lesions in spine and limbs in conventional radiology and CT. These lesions were evaluated with 99m TC-HDP bone scintigraphy and 18 F-FDG PET/CT, which helped to obtain the definitive pathological diagnosis of osteopoikilosis (OP) co-existing with gastric cancer bone metastases. Of the different imaging scans performed, bone scintigraphy was particularly relevant due to its ability to discriminate between benign and metastatic bone disease. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Bone Genes in the Kidney of Stone Formers
NASA Astrophysics Data System (ADS)
Evan, Andrew P.; Bledsoe, Sharon B.
2008-09-01
Intraoperative papillary biopsies from kidneys of idiopathic-calcium oxalate stone formers (ICSF) have revealed a distinct pattern of mineral deposition in the interstitium of the renal papilla. The earliest sites of these deposits, termed Randall's plaque, are found in the basement membrane of thin loops of Henle and appear to spread into the surrounding interstitium down to the papillary epithelium. Recent studies show kidney stones of ICSF patients grow attached to the renal papilla and at sites of Randall's plaque. Together these observations suggest that plaque formation may be the critical step in stone formation. In order to control plaque formation and thereby reduce future kidney stone development, the mechanism of plaque deposition must be understood. Because the renal papilla has unique anatomical features similar to bone and the fact that the interstitial deposits of ICSF patients are formed of biological apatite, this paper tests the hypothesis that sites of interstitial plaque form as a result of cell-mediated osteoblast-like activity.
Stroup, Bridget M.; Sawin, Emily A.; Murali, Sangita G.; Binkley, Neil; Hansen, Karen E.
2017-01-01
Background. Skeletal fragility is a complication of phenylketonuria (PKU). A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF) provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF). Design. In a crossover design, 8 participants with PKU (16–35 y) provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1–3 wks. We calculated potential renal acid load (PRAL) of AA-MF and GMP-MF and determined bone mineral density (BMD) measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5–2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p = 0.002). Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p = 0.012) and magnesium by 30% (p = 0.029). Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1–L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258. PMID:28546877
Wesseling-Perry, Katherine; Pereira, Renata C; Wang, Hejing; Elashoff, Robert M; Sahney, Shobha; Gales, Barbara; Jüppner, Harald; Salusky, Isidro B
2009-02-01
Fibroblast growth factor (FGF)-23 is produced in bone, and circulating levels are markedly elevated in patients with end-stage kidney disease, but the relationship between plasma levels of FGF-23 and bone histology in dialysis patients with secondary hyperparathyroidism is unknown. The aim of the study was to evaluate the correlation between plasma levels of FGF-23 and bone histology in pediatric patients with end-stage kidney disease who display biochemical evidence of secondary hyperparathyroidism. We performed a cross-sectional analysis of the relationship between plasma FGF-23 levels and bone histomorphometry. The study was conducted in a referral center. Participants consisted of forty-nine pediatric patients who were treated with maintenance peritoneal dialysis and who had serum PTH levels (1st generation Nichols assay) greater than 400 pg/ml. There were no interventions. Plasma FGF-23 levels and bone histomorphometry were measured. No correlation existed between values of PTH and FGF-23. Bone formation rates correlated with PTH (r = 0.44; P < 0.01), but not with FGF-23. Higher FGF-23 concentrations were associated with decreased osteoid thickness (r = -0.49; P < 0.01) and shorter osteoid maturation time (r = -0.48; P < 0.01). High levels of FGF-23 are associated with improved indices of skeletal mineralization in dialyzed pediatric patients with high turnover renal osteodystrophy. Together with other biomarkers, FGF-23 measurements may indicate skeletal mineralization status in this patient population.
Howard, Brandon A; James, Olga G; Perkins, Jennifer M; Pagnanelli, Robert A; Borges-Neto, Salvador; Reiman, Robert E
2017-01-01
In thyroid cancer patients with renal impairment or other complicating factors, it is important to maximize I-131 therapy efficacy while minimizing bone marrow and lung damage. We developed a web-based calculator based on a modified Benua and Leeper method to calculate the maximum I-131 dose to reduce the risk of these toxicities, based on the effective renal clearance of I-123 as measured from two whole-body I-123 scans, performed at 0 and 24 h post-administration.
Cella, David; Escudier, Bernard; Tannir, Nizar M; Powles, Thomas; Donskov, Frede; Peltola, Katriina; Schmidinger, Manuela; Heng, Daniel Y C; Mainwaring, Paul N; Hammers, Hans J; Lee, Jae Lyun; Roth, Bruce J; Marteau, Florence; Williams, Paul; Baer, John; Mangeshkar, Milan; Scheffold, Christian; Hutson, Thomas E; Pal, Sumanta; Motzer, Robert J; Choueiri, Toni K
2018-03-10
Purpose In the phase III METEOR trial ( ClinicalTrials.gov identifier: NCT01865747), 658 previously treated patients with advanced renal cell carcinoma were randomly assigned 1:1 to receive cabozantinib or everolimus. The cabozantinib arm had improved progression-free survival, overall survival, and objective response rate compared with everolimus. Changes in quality of life (QoL), an exploratory end point, are reported here. Patients and Methods Patients completed the 19-item Functional Assessment of Cancer Therapy-Kidney Symptom Index (FKSI-19) and the five-level EuroQol (EQ-5D-5L) questionnaires at baseline and throughout the study. The nine-item FKSI-Disease-Related Symptoms (FKSI-DRS), a subset of FKSI-19, was also investigated. Data were summarized descriptively and by repeated-measures analysis (for which a clinically relevant difference was an effect size ≥ 0.3). Time to deterioration (TTD) was defined as the earlier of date of death, radiographic progressive disease, or ≥ 4-point decrease from baseline in FKSI-DRS. Results The QoL questionnaire completion rates remained ≥ 75% through week 48 in each arm. There was no difference over time for FKSI-19 Total, FKSI-DRS, or EQ-5D data between the cabozantinib and everolimus arms. Among the individual FKSI-19 items, cabozantinib was associated with worse diarrhea and nausea; everolimus was associated with worse shortness of breath. These differences are consistent with the adverse event profile of each drug. Cabozantinib improved TTD overall, with a marked improvement in patients with bone metastases at baseline. Conclusion In patients with advanced renal cell carcinoma, relative to everolimus, cabozantinib generally maintained QoL to a similar extent. Compared with everolimus, cabozantinib extended TTD overall and markedly improved TTD in patients with bone metastases.
Vitamin D and renal outcome: the fourth outcome of CKD-MBD? Oshima Award Address 2015.
Hamano, Takayuki
2018-04-01
Bone fracture, cardiovascular events, and mortality are three outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD), and the umbrella concept originally described for dialysis patients. The reported association of serum phosphorus or fibroblast growth factor 23 (FGF23) levels with renal outcome suggests that the fourth relevant outcome of CKD-MBD in predialysis patients is renal outcome. We found that proteinuria of 2+ or greater with a dipstick test was associated with low vitamin D status due to urinary loss of 25-hydroxyvitamin D (25D). Moreover, active vitamin D or its analogues decrease proteinuria. Given our finding that maxacalcitol does not repress renin, the reduction of proteinuria by this agent is likely due to direct upregulation of the nephrin and podocin in podocytes. Moreover, this agent downregulates the mesenchymal marker desmin in podocytes and blocks transforming growth factor-beta autoinduction, leading to attenuation of renal fibrosis in a unilateral ureteral obstructive (UUO) model. These facts are reminiscent of the suppression of epithelial-mesenchymal transition (EMT) by vitamin D. EMT blockage may explain our finding that vitamin D prescription in renal transplant recipients is associated with a lower incidence of cancer. We also reported that low vitamin D status and high FGF23 levels predict a worse renal outcome. However, administration of massive doses of 25D exacerbates renal fibrosis in UUO kidneys in 1alpha-hydroxylase knockout mice. Moreover, FGF23 inhibits 1alpha-hydroxylase in proximal tubules and monocytes. Taken together, local 1,25(OH) 2 D in the kidney tissue but not 25D seems to protect the kidney.
Han, Xiaobin; Quarles, L. Darryl
2016-01-01
Purpose of the review This review examines therole of FGF-23 in mineral metabolism, innate immunity and adverse cardiovascular outcomes. Recent findings FGF-23, produced by osteocytes in bone, activates FGFR/α-Klotho complexes in the kidney. The resulting bone-kidney axis coordinates renal phosphate reabsorption with bone mineralization, and creates a counter-regulatory feedback loop to prevent vitamin D toxicity. FGF-23 acts to counter-regulate the effects of Vitamin D on innate immunity and cardiovascular responses. FGF-23 is ectopically expressed along with α-Klotho in activated macrophages, creating a pro-inflammatory paracrine signaling pathway that counters the anti-inflammatory actions of vitamin D. FGF-23 also inhibits ACE2 expression and increases sodium reabsorption in the kidney, leading to hypertension and left ventricular hypertrophy. Finally, FGF-23 is purported to cause adverse cardiac and impair neutrophil responses through activation of FGFRs in the absence of α-Klotho. While secreted forms of α-Klotho have FGF-23- independent effects, the possibility of α-Klotho-independent effects of FGF-23 is controversial and requires additional experimental validation. Summary FGF-23 participates in a bone-kidney axis regulating mineral homeostasis, proinflammatory paracrine macrophage signaling pathways, and in a bone-cardio-renal axis regulating hemodynamics that counteract the effects of Vitamin D. PMID:27219044
Multiple faces of fibroblast growth factor-23.
Han, Xiaobin; Quarles, L Darryl
2016-07-01
This review examines the role of fibroblast growth factor-23 (FGF-23) in mineral metabolism, innate immunity and adverse cardiovascular outcomes. FGF-23, produced by osteocytes in bone, activates FGFR/α-Klotho (α-Kl) complexes in the kidney. The resulting bone-kidney axis coordinates renal phosphate reabsorption with bone mineralization, and creates a counter-regulatory feedback loop to prevent vitamin D toxicity. FGF-23 acts to counter-regulate the effects of vitamin D on innate immunity and cardiovascular responses. FGF-23 is ectopically expressed along with α-Kl in activated macrophages, creating a proinflammatory paracrine signaling pathway that counters the antiinflammatory actions of vitamin D. FGF-23 also inhibits angiotensin-converting enzyme 2 expression and increases sodium reabsorption in the kidney, leading to hypertension and left ventricular hypertrophy. Finally, FGF-23 is purported to cause adverse cardiac and impair neutrophil responses through activation of FGFRs in the absence of α-Kl. Although secreted forms of α-Kl have FGF-23 independent effects, the possibility of α-Kl independent effects of FGF-23 is controversial and requires additional experimental validation. FGF-23 participates in a bone-kidney axis regulating mineral homeostasis, proinflammatory paracrine macrophage signaling pathways, and in a bone-cardio-renal axis regulating hemodynamics that counteract the effects of vitamin D.
Schulte, Kevin; Vollmer, Clara; Klasen, Vera; Bräsen, Jan Hinrich; Püchel, Jodok; Borzikowsky, Christoph; Kunzendorf, Ulrich; Feldkamp, Thorsten
2017-08-01
Calcineurin inhibitor (CNI)-induced nephrotoxicity and chronic graft dysfunction with deteriorating glomerular filtration rate (GFR) are common problems of kidney transplant recipients. The aim of this study was to analyze the role of belatacept as a rescue therapy in these patients. In this retrospective, observational study we investigated 20 patients (10 females, 10 males) who were switched from a CNI (tacrolimus) to a belatacept-based immunosuppression because of CNI intolerance or marginal transplant function. Patient follow-up was 12 months. Patients were converted to belatacept in mean 28.8 months after transplantation. Reasons for conversion were CNI intolerance (14 patients) or marginal transplant function (6 patients). Mean estimated GFR (eGFR) before conversion was 22.2 ± 9.4 ml/min at baseline and improved significantly to 28.3 ± 10.1 ml/min at 4 weeks and to 32.1 ± 12.6 ml/min at 12 months after conversion. Serum bicarbonate significantly increased from 24.4 ± 3.2 mmol/l at baseline to 28.7 ± 2.6 mmol/l after 12 months. Conversion to belatacept decreased parathyroid hormone and phosphate concentrations significantly, whereas albumin levels significantly increased. In 6 cases an acute rejection preceded clinically relevant CNI toxicity; only two patients suffered from an acute rejection after conversion. Belatacept was well tolerated and there was no increase in infectious or malignant side effects. A late conversion from a tacrolimus-based immunosuppression to belatacept is safe, effective and significantly improves renal function in kidney transplant recipients. Additionally, the conversion to belatacept has a beneficial impact on acid-base balance, mineral-bone and protein metabolism, independently of eGFR.
Lancelot, Eric
2016-11-01
Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of a deep compartment of distribution for the GBCAs. The rate constant γ of gadoterate meglumine (0.107 hour) is 5 times higher than that of the linear agents (0.020 ± 0.008 hour), indicating a much faster blood clearance for the macrocyclic GBCA. Similar results were obtained in the preclinical studies. A strong correlation was shown between the γ values of the different products and their respective thermodynamic stability constants (Ktherm). Greater clearance rates of Gd from murine bone were also found after gadoterate meglumine or gadoteridol injection (0.131-0.184 day) than after administration of the linear agents (0.004-0.067 day). The concentrations of Gd in the bone marrow (CBM) from animals exposed to either gadoterate meglumine or gadodiamide are higher than those in the bone (CB) for at least 24 hours. Moreover, the ratio of concentrations (CBM/CB) at 4 hours is significantly lower with the former agent than the latter (1.9 vs 6.5, respectively). Using a nonconventional pharmacokinetic approach, we showed that gadoterate meglumine undergoes a much faster residual excretion from the body than the linear GBCAs, a process that seems related to the thermodynamic stability of the different chelates. Gadolinium dissociation occurs in vivo for some linear chelates, a mechanism that may explain their long-term retention and slow release from bone. Potential consequences in terms of bone toxicity warrant further investigations.
Park-Holohan, S J; Blake, G M; Fogelman, I
2001-09-01
We report a study of the renal and whole-blood kinetics of (18)F-fluoride and (99m)Tc-methylene diphosphonate ((99m)Tc-MDP) and their effect on the evaluation of the skeletal kinetics of the two bone tracers. Data were obtained during an investigation of postmenopausal women taking hormone replacement therapy who were compared with untreated, age-matched controls. After intravenous injection of 18F-fluoride (1 MBq), (99m)Tc-MDP (1 MBq), (51)Cr-ethylenediaminetetraacetic acid (51Cr-EDTA) (3 MBq) and (125)I-human serum albumin ((125)I-HSA) (0.25 MBq), multiple blood samples and urine collections were taken between 0 and 4 h after injection. (51)Cr-EDTA data were used to evaluate the glomerular filtration rate (GFR) and the completeness of each timed urine collection. (125)I-HSA data were used to evaluate the plasma volume and the red cell uptake of the other three tracers. At 4 h, the cumulative urine excretions (and standard deviations, SDs) were: (99m)Tc-MDP, 58.2% (4.8%); (18)F-fluoride, 36.1% (5.7%); (51)Cr-EDTA, 81.5% (4.5%). Plots of the renal clearance of (18)F-fluoride against urine volume showed that urine flow rates greater than 5 ml.min-1 were necessary to ensure a constant renal clearance of (18)F and hence stable conditions for the evaluation of bone tracer kinetics. In contrast, a low urine flow rate had no effect on the renal kinetics of (99m)Tc-MDP. For MDP, the evaluation of skeletal kinetics requires data on protein binding so that calculations can be performed for free MDP. In the present study, protein binding of MDP was evaluated from the ratio of total (99m)Tc-MDP renal clearance to GFR based on the principle that free (99m)Tc-MDP is a GFR tracer. Between 0 and 4 h after injection, the fractional protein binding of MDP increased linearly with time, changing from 21+/-5% immediately after injection to 58+/-5% at 4 h. Although red cell uptake of (99m)Tc-MDP was negligible, for (18)F-fluoride around 30% of circulating tracer was transported in red cells. In view of the data showing the rapid transport of (18)F-fluoride across the red cell membrane, bone kinetic data for (18)F are more accurately reported as whole-blood clearance rather than plasma clearance.
Dose-response analysis of heavy metal toxicants in man. Direct in vivo assessment of body burden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, K.J.
Differences in uptake, metabolism, and excretion of heavy metals makes selection of a suitable biological media as a monitor of body burden very difficult. Exposure assessments based on body fluid levels can provide, at best, only general population estimates. The most frequently monitored media are blood, urine, nail or hair clippings, sweat, and saliva. Unfortunately each of these tissues can be influenced by recent exposure conditions and are not accurate indices of the total dose or body burden. However, direct in vivo measurements of body burden in humans, have recently been performed. This nuclear technique has focused on the measurementsmore » of kidney and liver cadmium (Cd) by neutron activation analysis and bone lead (Pb) determinations using x-ray fluorescence. The dose-response relationship for renal dysfunction based on the direct in vivo body burden for Cd is presented. The most probable Cd value for the kidney associated with renal impairment is approximately 35 mg. Approximately 10% of the subjects with 20 mg Cd in the kidney will have moderately elevated ..beta../sub 2/-microglobulin, an early indicator of potential renal functional changes. 11 refs., 5 figs., 2 tabs.« less
Salmaso, Franciany Viana; Vigário, Patrícia dos Santos; Mendonça, Laura Maria Carvalho de; Madeira, Miguel; Vieira Netto, Leonardo; Guimarães, Marcela Rodrigues Moreira; Farias, Maria Lucia Fleiuss de
2014-04-01
To evaluate relationships between nutritional status, sarcopenia and osteoporosis in older women. We studied 44 women, 67-94 years, by mini-nutritional assessment (MAN), glomerular filtration corr. 1.73 m(2), body mass index (BMI), arm circumference and calf (CP and CB), bone mineral density and body composition, DXA (fat mass MG; lean MM). We gauge sarcopenia: IMM MM = MSS + MIS/height(2). We used the Pearson correlation coefficient, p < 0.05 as significant. MNA and IMM were positively correlated with BMI, CP, CB and MG. Age influenced negatively FG corr., BMI, FM, IMM and CP. Fourteen had a history of osteoporotic fractures. The lowest T-score was directly related to MAN and MG. CONCLUSIONS The aging caused the decline of FG, fat mass and muscle; the calf circumference, and brachial reflected nutritional status and body composition; and major influences on BMD were nutritional status and fat mass.
Inappropriate Prescription and Renal Function Among Older Patients with Cognitive Impairment.
Sönnerstam, Eva; Sjölander, Maria; Gustafsson, Maria
2016-12-01
Older people are more sensitive to drugs and adverse drug reactions than younger people because of age-related physiological changes such as impaired renal function. As people with dementia are particularly vulnerable to the effects of drugs, it is especially important to evaluate the dosages of renally cleared medications in this group. The aim of this study was to estimate the prevalence of impaired renal function and inappropriate prescriptions on the basis of renal function among older patients with dementia or cognitive impairment. The medical records of 428 patients aged ≥65 years who were admitted to two hospitals in northern Sweden were reviewed and renally cleared medications were identified. The Cockcroft-Gault equation was used to evaluate renal function. Doses were evaluated according to the Geriatric Dosage Handbook. Renal function was impaired (estimated glomerular filtration rate <60 ml/min) in 65.4 % of the study population. Impaired renal function was associated with increasing age. Among 547 prescriptions identified as renally cleared medications, 9.1 % were inappropriate based on the patient's renal function; 13.5 % of the 326 patients prescribed renally cleared medications had inappropriate prescriptions. Inappropriate prescriptions were more common among patients living in nursing homes. Impaired renal function is common and inappropriate prescription is prevalent among old people with cognitive impairment in northern Sweden. Continuous consideration of renal function is important when prescribing medications to this group.
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.
DiBona, Gerald F
2005-03-01
Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.
Li, Xiao-Dong; Wu, Yu-Peng; Wei, Yong; Chen, Shao-Hao; Zheng, Qing-Shui; Cai, Hai; Xue, Xue-Yi; Xu, Ning
2018-01-01
This study aimed to identify factors predicting the recoverability of renal function after pyeloplasty in adult patients with ureteropelvic junction obstruction. We retrospectively reviewed 138 adults with unilateral renal obstruction-induced hydronephrosis and who underwent Anderson-Hynes dismembered pyeloplasty from January 2013 to January 2016. Hydronephrosis was classified preoperatively according to the Society for Fetal Urology (SFU) grading system. All patients underwent Doppler ultrasonography, excretory urography, computed tomography, and technetium-99m-diethylenetriamine pentaacetic acid radioisotope (99mTc DTPA) renography before and after surgery. Renal resistive index (RRI) and 99mTc DTPA renography were repeated at 1, 3, 6, and 12 months. Multivariate analysis identified age, renal pelvic type, SFU grade, preoperative RRI, decline of RRI, and renal parenchyma to hydronephrosis area ratio (PHAR) as independent predictors of renal function recoverability after pyeloplasty. However, preoperative RRI and RRI decline were not significantly associated with recoverability of renal function in patients aged >35 years. Lower preoperative RRI, greater decline in RRI, higher PHAR, lower SFU grade, and extrarenal pelvis were associated with greater improvements in postoperative renal function. Preoperative differential renal function cannot independently predict the recoverability of postoperative renal function in adult patients with unilateral renal obstruction-induced hydronephrosis. SFU grade, renal pelvic type, PHAR, preoperative RRI, and decline in RRI were significantly associated with the recoverability of renal function in adult patients aged <35 years, while only SFU grade, renal pelvic type, and PHAR were significantly associated with renal function recoverability in patients aged ≥35 years. Renal function recovery was better in patients younger than 35 years when compared with older patients. © 2018 S. Karger AG, Basel.
Renal dopamine containing nerves. What is their functional significance?
DiBona, G F
1990-06-01
Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.
Khalafallah, Alhossain A.; Loi, Sie Wuong; Love, Sarah; Mohamed, Muhajir; Mace, Rose; Khalil, Ramy; Girgs, Miriam; Raj, Rajesh; Mathew, Mathew
2013-01-01
Background Multiple myeloma (MM) is a haematological malignancy associated with kidney injury resulting from cast nephropathy, which can be caused by monoclonal free light chains (FLC). It has been demonstrated that early reduction of FLC can lead to a higher proportion of patients recovering renal function with a better outcome, especially if high cut-off haemodialysis (HCO-HD) combined with chemotherapy is used. Patients and Methods In this study, four cases with MM nephropathy were treated with HCO-HD and chemotherapy at a single institution during the period from August 2009 to August 2011. All of the patients presented with acute renal failure and high serum FLC. All patients underwent a bone marrow biopsy to confirm the diagnosis of MM, according to the WHO criteria. Three patients had de novo MM and one patient had relapsed light chain myeloma disease. All patients underwent HCO-HD concomitantly with specific myeloma therapy once the diagnosis or relapse of MM was established. Results After a medial follow up of 26 months, (range, 13–36) our data showed that all patients had a significant decrease in serum FLC through HCO-HD, proving the effectiveness of HCO-HD in managing MM. De-novo MM patients restored their renal function and achieved low-level FLC early in the treatment and became dialysis-independent. One patient with relapsed myeloma remained dialysis-dependent. Conclusion In summary, our study suggests that in myeloma nephropathy associated with light-chain MM, HCO-HD should be initiated as early as possible. At the same time a specific MM treatment should be initiated to gain control of the disease and salvage the kidneys in order to achieve dialysis-independency. Further randomized trials to confirm our results are warranted. PMID:23350020
Cavalier, E; Bergmann, P; Bruyère, O; Delanaye, P; Durnez, A; Devogelaer, J-P; Ferrari, S L; Gielen, E; Goemaere, S; Kaufman, J-M; Toukap, A Nzeusseu; Reginster, J-Y; Rousseau, A-F; Rozenberg, S; Scheen, A J; Body, J-J
2016-07-01
The exact role of biochemical markers of bone turnover in the management of metabolic bone diseases remains a topic of controversy. In this consensus paper, the Belgian Bone Club aimed to provide a state of the art on the use of these biomarkers in different clinical or physiological situations like in postmenopausal women, osteoporosis in men, in elderly patients, in patients suffering from bone metastasis, in patients with chronic renal failure, in pregnant or lactating women, in intensive care patients, and in diabetics. We also gave our considerations on the analytical issues linked to the use of these biomarkers, on potential new emerging biomarkers, and on the use of bone turnover biomarkers in the follow-up of patients treated with new drugs for osteoporosis.
Alterations of bone microstructure and strength in end-stage renal failure.
Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R
2013-05-01
End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.
Klotho converts canonical FGF receptor into a specific receptor for FGF23.
Urakawa, Itaru; Yamazaki, Yuji; Shimada, Takashi; Iijima, Kousuke; Hasegawa, Hisashi; Okawa, Katsuya; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi
2006-12-07
FGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor. Using a renal homogenate, we found that Klotho binds to FGF23. Forced expression of Klotho enabled the high-affinity binding of FGF23 to the cell surface and restored the ability of a renal cell line to respond to FGF23 treatment. Moreover, FGF23 incompetence was induced by injecting wild-type mice with an anti-Klotho monoclonal antibody. Thus, Klotho is essential for endogenous FGF23 function. Because Klotho alone seemed to be incapable of intracellular signalling, we searched for other components of the FGF23 receptor and found FGFR1(IIIc), which was directly converted by Klotho into the FGF23 receptor. Thus, the concerted action of Klotho and FGFR1(IIIc) reconstitutes the FGF23 receptor. These findings provide insights into the diversity and specificity of interactions between FGF and FGF receptors.
Potential for effects of land contamination on human health. 1.The case of cadmium.
Kah, Melanie; Levy, Len; Brown, Colin
2012-01-01
A review of the epidemiological literature on the potential effects of land contamination shows that the largest body of contaminant-specific research relates to cadmium (Cd). First, a brief outline of the key issues related to the study of health impact of land contamination is presented. The recent literature is then reviewed for evidence of associations and possible causal relationships between exposure to Cd from land contamination and health impact. A large number of studies focusing on Cd arise because of the ready availability of biomarkers of exposure and effect and the demonstrated link between soil Cd and itai-itai disease (severe renal and bone disorders) via dietary exposure in Japan and China. Where dietary differences yield lower exposures, links have been established between Cd in soil and biomarkers of renal or bone dysfunctions, but not to health impacts per se. Potential effects of Cd exposure were also investigated for other health outcomes, including hypertension, cancer incidence, preterm delivery, and semen parameters. In contrast to renal and bone disorders, results are generally inconsistent and require further lines of evidence. Residence in locations with elevated concentrations of Cd in soil is a poor surrogate for exposure, and there are examples where residents in locations with elevated concentrations of Cd in soil did not appear to suffer serious health consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, M.; Yasuda, M.; Kitagawa, M.
1991-03-01
Itai-itai disease is thought to be the result of chronic cadmium (Cd) intoxication. We examined 23 autopsy cases of itai-itai disease and 18 cases of sudden death as controls. Urine and blood samples from 10 patients were collected before they died and revealed the presence of severe anemia and renal tubular injuries. Undecalcified sections of iliac bone were stained with Aluminon reagent, and ammonium salt of aurintricarboxylic acid, and Prussian blue reagent in all cases of itai-itai disease. These two reagents reacted at the same mineralization fronts. X-ray microanalysis revealed the presence of iron at mineralization fronts in itai-itai disease.more » Five patients showed evidence of hemosiderosis in the liver, spleen, and pancreas, probably as a result of post transfusion iron overload. Renal calculi and calcified aortic walls were also stained with Prussian blue reagent in several patients. Neither ferritin nor transferrin were visualized at mineralization fronts in itai-itai disease by immunohistochemical staining. These results suggest that iron is bound to calcium or to calcium phosphate by a physicochemical reaction. A marked osteomalacia was observed in 10 cases of itai-itai disease by histomorphometry. Regression analyses of data from cases of itai-itai disease suggested that an Aluminon-positive metal inhibited mineralization and that renal tubules were injured. Since bone Cd levels were increased in itai-itai disease, it is likely that renal tubules were injured by exposure to Cd. Therefore, stainable bone iron is another possible aggravating factor for osteopathy in itai-itai disease, and a synergistic effect between iron and Cd on mineralization is proposed.« less
Yendt, E. R.
1970-01-01
The pathogenesis of renal calculi is reviewed in general terms followed by the results of investigation of 439 patients with renal calculi studied by the author at Toronto General Hospital over a 13-year period. Abnormalities of probable pathogenetic significance were encountered in 76% of patients. Idiopathic hypercalciuria was encountered in 42% of patients, primary hyperparathyroidism in 11%, urinary infection in 8% and miscellaneous disorders in 8%. The incidence of uric acid stones and cystinuria was 5% and 2% respectively. In the remaining 24% of patients in whom no definite abnormalities were encountered the mean urinary magnesium excretion was less than normal. Of 180 patients with idiopathic hypercalciuria, only 24 were females. In the diagnosis of hyperparathyroidism, the importance of detecting minimal degrees of hypercalcemia is stressed; attention is also drawn to the new observation that the upper limit of normal for serum calcium is slightly lower in females than in males. The efficacy of various measures advocated for the prevention of renal calculi is also reviewed. In the author's experience the administration of thiazides has been particularly effective in the prevention of calcium stones. Thiazides cause a sustained reduction in urinary calcium excretion and increase in urinary magnesium excretion. These agents also appear to affect the skeleton by diminishing bone resorption and slowing down bone turnover. PMID:5438766
Association between pulmonary function and renal function: findings from China and Australia.
Yu, Dahai; Chen, Tao; Cai, Yamei; Zhao, Zhanzheng; Simmons, David
2017-05-01
The relationship between obstructive lung function and impaired renal function is unclear. This study investigated the dose-response relationship between obstructive lung function and impaired renal function. Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China (4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and impaired renal function marked by eGFR <60 mL/min/1.73m 2 were used as outcome. eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants, respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced expiratory volume in 1 s (PFEV1) at 81-82% and for the predicted percentage value of forced vital capacity (PFVC) at 83-84% among both Chinese and Australian participants, respectively. The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC) and risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively. The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 76-77% for PFEV1 and 79-80% for PFVC, respectively. In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1 and FVC below 3.05 L, with PFEV1 below 76-77% or with PFVC below 79-80%, respectively. Obstructive lung function was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement of potentially nephrotoxic medication where indicated (eg diuretics).
Amino acid supplementation alters bone metabolism during simulated weightlessness
NASA Technical Reports Server (NTRS)
Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.
2005-01-01
High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.
Clinical and Virological Outcome of European Patients Infected With HIV
2018-04-26
HIV; Hepatitis B; Hepatitis C; AIDS; Coinfection; Cardiovascular Diseases; Diabetes Mellitus; Acidosis, Lactic; Renal Insufficiency; Fractures, Bone; End Stage Liver Disease; Kidney Failure, Chronic; Proteinuria
Pruthi, Rishi; Maxwell, Heather; Casula, Anna; Braddon, Fiona; Lewis, Malcolm; O'Brien, Catherine; Stojanovic, Jelena; Tse, Yincent; Inward, Carol; Sinha, Manish D
2013-01-01
The British Association for Paediatric Nephrology Registry (BAPN) was established to analyse data related to renal replacement therapy (RRT) in children. The registry receives data from the 13 paediatric nephrology centres in the UK. This chapter aims to provide centre specific data so that individual centres can reflect on the contribution that their data makes to the national picture and to determine the extent to which their patient parameters meet nationally agreed audit standards for the management of children with established renal failure (ERF). Data returns included a mixture of electronic (92%) and paper (8%) returns. Data were analysed to calculate summary statistics and where applicable the percentage achieving an audit standard. The standards used were those set out by the Renal Association and the National Institute for Health and Clinical Excellence. Anthropometric data confirmed that children receiving RRT were short compared to healthy peers. Amongst patients with a height of <2SD between 2001 and 2012, 29.2%were receiving growth hormone if they were on dialysis compared to 11.9% if they had a functioning transplant. Prevalence rates of overweight and obese status in children with ERF remain concerningly high. Blood pressure control remained challenging with wide inter-centre variation although this was significantly better in children with a functioning transplant. Over a quarter of haemodialysis patients and 17.3% of peritoneal dialysis patients were anaemic, compared to only 8.3% of transplanted patients. ESA use in the dialysis population exceeded 90% amongst anaemic patients. The control of renal bone disease remained challenging. Optimising growth and reducing prevalent excess weight in children on RRT remains challenging. The likelihood of complete electronic reporting in the near future with plans for quarterly reporting in the format of the recently finalised NEW paediatric dataset will hopefully improve quality of data and their reporting, allowing improvements in patient care. © 2014 S. Karger AG, Basel.
Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang
2017-01-01
Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in AKI patients experiencing partial recovery than in patients experiencing complete recovery. The activation of the wnt/β-catenin pathway by CM protects against cisplatin-induced kidney injury, resulting in reduced apoptosis and intracellular ROS levels. © 2017 The Author(s). Published by S. Karger AG, Basel.
Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T
2016-05-01
Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.
Tanaka, Mari; Asada, Misako; Higashi, Atsuko Y; Nakamura, Jin; Oguchi, Akiko; Tomita, Mayumi; Yamada, Sachiko; Asada, Nariaki; Takase, Masayuki; Okuda, Tomohiko; Kawachi, Hiroshi; Economides, Aris N; Robertson, Elizabeth; Takahashi, Satoru; Sakurai, Takeshi; Goldschmeding, Roel; Muso, Eri; Fukatsu, Atsushi; Kita, Toru; Yanagita, Motoko
2010-03-01
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Development of countermeasures for medical problems encountered in space flight.
Nicogossian, A E; Rummel, J D; Leveton, L; Teeter, R
1992-01-01
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies.
Development of countermeasures for medical problems encountered in space flight
NASA Astrophysics Data System (ADS)
Nicogossian, Arnauld E.; Rummel, John D.; Leveton, Lauren; Teeter, Ron
1992-08-01
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies.
Biragova, Margarita S; Gracheva, Svetlana A; Glazunova, Alexandra M; Martynov, Sergey A; Ulaynova, Irina N; Ilyin, Alexandr V; Philippov, Yury I; Musaeva, Guliya M; Shamkhalova, Minara S; Shestakova, Marina V
2016-08-01
The objective of our study was to evaluate the role of mineral and bone metabolism disorders associated with chronic kidney disease (MBD-CKD) in the development and progression of cardiac and renal pathology in patients with type 1 diabetes mellitus (T1DM) of long duration. We investigated 96 patients with T1DM of long duration, with CKD at different stages (0-5), including patients on hemodialysis (HD) and with kidney transplantation (KT). Along with overall clinical examination, we assessed markers of MBD (calcium, phosphorus, parathormone, vitamin D, fibroblast growth factor (FGF) 23) and levels of cardiac injury marker (atrial natriuretic peptide, NT-proBNP). Multispiral computer tomography with Agatston index calculation was also included. Decreased kidney function was associated with increased of levels phosphorus, parathormone, FGF 23, and vitamin D deficiency, with the highest deviation from the reference ranges seen in patients on HD with a very high risk of cardiovascular events. In KT patients with satisfactory graft function, these parameters were at the same levels as in patients with CKD stages 0-4. Progression of cardiovascular pathology was accompanied by elevation of NT-proBNP levels as CKD duration increased, decreased glomerular filtration rate, and were correlated with the main parameters of mineral homeostasis. The severity of coronary arteries calcification was associated with patient age and duration of T1DM and arterial hypertension. Development and progression of kidney dysfunction is accompanied by MBD, a significant factor in progression of cardiac pathology, which remains a major cause of mortality in this patient population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bisphosphonate as a Countermeasure to Space Flight-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Spector, Elisabeth; LeBlanc, A.; Sibonga, J.; Matsumoto, T.; Jones, J.; Smith, S. M.; Shackelford, L.; Shapiro, J.; Lang, T.; Evans, H.;
2009-01-01
The purpose of this research is to determine whether anti-resorptive pharmaceuticals such as bisphosphonates, in conjunction with the routine in-flight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density and bone strength and the increased renal stone risk documented on previous long-duration space flights [1-3]. Losses averaged 1 to 2 percent per month in such regions as the lumbar spine and hip. Although losses showed significant heterogeneity among individuals and between bones within a given subject, space flight-induced bone loss was a consistent finding. More than 90 percent of astronauts and cosmonauts on long-duration flights (average 171 days) aboard Mir and the ISS, had a minimum 5 percent loss in at least one skeletal site, 40 percent of them had a 10 percent or greater loss in at least one skeletal site, and 22 percent of the Mir cosmonauts experienced a 15 to 20 percent loss in at least one site. These losses occurred even though the crewmembers performed time-consuming in-flight exercise regimens. Moreover, a recent study of 16 ISS astronauts using quantitative computed tomography (QCT) demonstrated trabecular bone losses from the hip averaging 2.3 percent per month [4]. These losses were accompanied by significant losses in hip bone strength that may not be recovered quickly [5]. This rapid loss of bone mass results from a combination of increased and uncoupled remodeling, as demonstrated by increased resorption with little or no change in bone formation markers [6-7]. This elevated remodeling rate likely affects the cortical and trabecular architecture and may lead to irreversible changes. In addition to bone loss, the resulting hypercalciuria increases renal stone risk. Therefore, it is logical to attempt to attenuate this increased remodeling with anti-resorption drugs such as bisphosphonates. Success with alendronate was demonstrated in a bed rest study [8]. This work has been extended to space flight and two dosing regimens: 1) an oral dose of 70 mg of alendronate taken weekly during flight or 2) a single intravenous (IV) dose of 4 mg of zoledronic acid given several weeks before flight. Currently the study is focusing on the oral option because of NASA s safety concerns with the IV-administered drug. The protocol requests 10 male or female crewmembers on ISS flights of 90 days or longer. Controls are 16 previous ISS crewmembers with QCT scans of the hip performed by these same investigators. The primary outcome measure for this study is hip trabecular bone mineral density measured by QCT, but other measures of bone mass are performed including peripheral QCT (pQCT) and dual-energy x-ray absorptiometry. Serum and urinary bone markers and renal stone risk measured before, during, and after flight are included. Postflight data are currently being collected from 2 ISS crewmembers. Two additional crewmembers will return this spring after 6-month missions. To date no untoward effects have been encountered.
Sensing a Sensor: Identifying the Mechanosensory Function of Primary Cilia
Prasad, Rahul M.; Jin, Xingjian; Nauli, Surya M.
2014-01-01
Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function. PMID:24839551
Maladjustment of kidneys to microgravity: Design of measures to reduce the loss of calcium
NASA Technical Reports Server (NTRS)
Nechay, Bohdan R.
1989-01-01
Losses of skeletal calcium and body fluids occur during prolonged exposure to microgravity. The kidney plays a major role in regulating the physiological functions involved. Relative to this regulatory function, the kidney performs three operations: filtration of blood plasma through the glomeruli, reabsorption, and secretion of fluid and electrolytes so that needed components are retained and only waste is eliminated in the urine. Using data published in Biomedical Results from Skylab, researchers performed new calculations that reflect more directly the operations of the kidney in the handling of calcium, sodium, chloride, potassium and phosphate during space flight. These calculations revealed that the fraction of filtered calcium that was rejected by renal tubules and excreted in the urine increased by 71 percent, from 1.77 percent (preflight) to 3.02 percent (inflight) of the filtered load. This represents a large absolute increase because the total filtered amount is huge. Because the tubular rejection fraction of other ions increased relatively less than that of calcium, researchers postulate the inflight development of a specific renal defect that causes an excessive loss of calcium in urine and thereby contributes to the weakening of bones.
Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco
2018-05-14
To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass
Zou, Xin-Rong
2016-01-01
Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of “Kidneys Govern Bones.” Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes. PMID:27668003
Przedlacki, J; Buczyńska-Chyl, J; Koźmiński, P; Niemczyk, E; Wojtaszek, E; Gieglis, E; Żebrowski, P; Podgórzak, A; Wściślak, J; Wieliczko, M; Matuszkiewicz-Rowińska, J
2018-05-01
We assessed the FRAX® method in 718 hemodialyzed patients in estimating increased risk of bone major and hip fractures. Over two prospective years, statistical analysis showed that FRAX® enables a better assessment of bone major fracture risk in these patients than any of its components and other risk factors considered in the analysis. Despite the generally increased risk of bone fractures among patients with end-stage renal disease, no prediction models for identifying individuals at particular risk have been developed to date. The goal of this prospective, multicenter observational study was to assess the usefulness of the FRAX® method in comparison to all its elements considered separately, selected factors associated with renal disease and the history of falls, in estimating increased risk of low-energy major bone and hip fractures in patients undergoing chronic hemodialysis. The study included a total of 1068 hemodialysis patients, who were followed for 2 years, and finally, 718 of them were analyzed. The risk analysis included the Polish version of the FRAX® calculator (without bone mineral density), dialysis vintage, mineral metabolism disorders (serum calcium, phosphate, and parathyroid hormone), and the number of falls during the last year before the study. Over 2 years, low-energy 30 major bone fractures were diagnosed and 13 of hip fractures among them. Area under the curve for FRAX® was 0.76 (95% CI 0.69-0.84) for major fractures and 0.70 (95% CI 0.563-0.832) for hip fractures. The AUC for major bone fractures was significantly higher than for all elements of the FRAX® calculator. In logistic regression analysis FRAX® was the strongest independent risk factor of assessment of the major bone fracture risk. FRAX® enables a better assessment of major bone fracture risk in ESRD patients undergoing hemodialysis than any of its components and other risk factors considered in the analysis.
Xp11.2 translocation renal cell carcinoma with multiple bone metastases: A case report
LIU, JIAJU; SU, ZHENGMING; LI, YIFAN; CHEN, DUQUN; NI, LIANGCHAO; MAO, XIANGMING; YANG, SHANGQI; LAI, YONGQING
2016-01-01
Xp11.2 translocation/transcription factor enhancer 3 (TFE3) fusion gene associated with renal cell carcinoma (Xp11.2 translocation RCC) is rare and occurs predominantly in children and adolescents. The current study reports the case of a 14-year-old male with Xp11.2 translocation RCC, who presented with chest pain that had persisted for 1 month. A solid neoplasm was located in the left kidney of the patient. Contrast-enhanced computed tomography revealed the presence of a solid mass in the kidney, with uneven enhancement. Destruction of multiple bones was also observed. The patient was treated with a radical nephrectomy. The pathological examination of the tumor revealed that the tumor cells contained an eosinophilic cytoplasm in the renal interstitial tissue. Immunohistochemistry revealed that the tumor cells expressed P504S, cluster of differentiation 10, pan-cytokeratin, vimentin and TFE3. In conclusion, Xp11.2 translocation RCC is a rare type of kidney cancer. Diagnosing this disease prior to surgery is challenging, and providing a definite diagnosis requires histopathological and immunohistochemical examination, while genetic analysis may also be required. PMID:26998154
Xp11.2 translocation renal cell carcinoma with multiple bone metastases: A case report.
Liu, Jiaju; Su, Zhengming; Li, Yifan; Chen, Duqun; Ni, Liangchao; Mao, Xiangming; Yang, Shangqi; Lai, Yongqing
2016-03-01
Xp11.2 translocation/transcription factor enhancer 3 (TFE3) fusion gene associated with renal cell carcinoma (Xp11.2 translocation RCC) is rare and occurs predominantly in children and adolescents. The current study reports the case of a 14-year-old male with Xp11.2 translocation RCC, who presented with chest pain that had persisted for 1 month. A solid neoplasm was located in the left kidney of the patient. Contrast-enhanced computed tomography revealed the presence of a solid mass in the kidney, with uneven enhancement. Destruction of multiple bones was also observed. The patient was treated with a radical nephrectomy. The pathological examination of the tumor revealed that the tumor cells contained an eosinophilic cytoplasm in the renal interstitial tissue. Immunohistochemistry revealed that the tumor cells expressed P504S, cluster of differentiation 10, pan-cytokeratin, vimentin and TFE3. In conclusion, Xp11.2 translocation RCC is a rare type of kidney cancer. Diagnosing this disease prior to surgery is challenging, and providing a definite diagnosis requires histopathological and immunohistochemical examination, while genetic analysis may also be required.
Arribas, José R; Thompson, Melanie; Sax, Paul E; Haas, Bernhard; McDonald, Cheryl; Wohl, David A; DeJesus, Edwin; Clarke, Amanda E; Guo, Susan; Wang, Hui; Callebaut, Christian; Plummer, Andrew; Cheng, Andrew; Das, Moupali; McCallister, Scott
2017-06-01
In 2 double-blind phase 3 trials, 1733 antiretroviral-naive adults were randomized to tenofovir alafenamide (TAF) or tenofovir disoproxil fumarate (TDF), each coformulated with elvitegravir/cobicistat/emtricitabine (E/C/F). At 144 weeks, TAF was superior to TDF in virologic efficacy, with 84.2% vs 80.0% having HIV-1 RNA <50 copies/mL (difference 4.2%; 95% confidence interval: 0.6% to 7.8%). TAF had less impact than TDF on bone mineral density and renal biomarkers. No participants on TAF had renal-related discontinuations vs 12 on TDF (P < 0.001), with no cases of proximal tubulopathy for TAF vs 4 for TDF. There were greater increases in lipids with TAF vs TDF, with no difference in the total cholesterol to high-density lipoprotein ratio. For initial HIV therapy, E/C/F/TAF is superior to E/C/F/TDF in efficacy and bone and renal safety.
HYPERCALCURIA AND METABOLIC BONE DISEASE
Rosenberg, Milton L.
1954-01-01
Hypercalcuria leading to nephrocalcinosis and nephrolithiasis may be secondary to a number of causes. In most instances, the history, physical examination, a few simple laboratory tests and x-ray study of the bones will reveal the true primary diagnosis. Specific treatment, if instituted early, will result in a satisfactory response and prevent the progression of renal complications. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:13209371
Evidence Report: Risk of Renal Stone Formation
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Pietrzyk, Robert
2017-01-01
The formation of renal stones poses an in-flight health risk of high severity, not only because of the impact of renal colic on human performance but also because of complications that could potentially lead to crew evacuation, such as hematuria, infection, hydronephrosis, and sepsis. Evidence for risk factors comes from urine analyses of crewmembers, documenting changes to the urinary environment that are conducive to increased saturation of stone-forming salts, which are the driving force for nucleation and growth of a stone nidus. Further, renal stones have been documented in astronauts after return to Earth and in one cosmonaut during flight. Biochemical analysis of urine specimens has provided indication of hypercalciuria and hyperuricemia, reduced urine volumes, and increased urine saturation of calcium oxalate and calcium phosphate. A major contributor to the risk for renal stone formation is bone atrophy with increased turnover of the bone minerals. Dietary and fluid intakes also play major roles in the risk because of the influence on urine pH (more acidic) and on volume (decreased). Historically, specific assessments on urine samples from some Skylab crewmembers indicated that calcium excretion increased early in flight, notable by day 10 of flight, and almost exceeded the upper threshold for normal excretion (300mg/day in males). Other crewmember data documented reduced intake of fluid and reduced intake of potassium, phosphorus, magnesium, and citrate (an inhibitor of calcium stone formation) in the diet. Hence, data from both short-duration and long-duration missions indicate that space travel induces risk factors for renal stone formation that continue to persist after flight; this risk has been documented by reported kidney stones in crewmembers.
Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease
NASA Astrophysics Data System (ADS)
Fogelman, Ignac
Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a means of quantitating this uptake the use of bone to soft-tissue ratios derived from the bone scan image by computer was critically evaluated. The technique was shown to be observer dependent and again found to be of limited value due to the large overlap of patient results with those from control subjects. In chapter 3 the use of bone scan imaging in metabolic bone disease has been compared with radiology. Despite the difficulties mentioned above the metabolic index was employed, and the bone scan found to be the more sensitive investigation in primary hyperparathyroidism, renal osteodystrophy and osteomalacia. In osteoporosis, however, the bone scan was often unable to identify disease and radiology remains the investigation of choice. In a further study comparing bone scanning and radiology in Paget's disease, the bone scan was found to be clearly the more sensitive investigation. As a result of the work described in chapter 2 it became apparent that a sensitive means of quantitating absolute bone uptake of tracer could be of diagnostic value. In chapter 4 a promising new quantitative technique is described in which the 24-hour whole-body retention of Tc-99m diphosphonate (WBR) is measured using a shadow-shield whole-body monitor. At 24 hours after injection, diphosphonate has reached a stable equilibrium in bone reflecting skeletal metabolic activity, while tracer in the soft-tissues of the body has been largely excreted via the urinary tract. It was found that this technique provided a sensitive means of detecting patients with primary hyperparathyroidism, osteomalacia, renal osteodystrophy and Paget's disease and that in these conditions all the results from individual patients lay outside the control range. In further studies the WBR technique was shown to be highly reproducible and not subject to any significant technical errors.
Moyer-Mileur, Laurie J; Slater, Hillarie; Jordan, Kristine C; Murray, Mary A
2008-12-01
Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12-15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA(1c)), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r(2) = 0.21) and greater IGFBP-1 (r(2) = 0.39), IGFBP-5 (r(2) = 0.38), and bone-specific alkaline phosphatase (BALP; r(2) = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r(2) = 0.44-0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r(2) >or=0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM.
Narita, Takuma; Hatakeyama, Shingo; Koie, Takuya; Hosogoe, Shogo; Matsumoto, Teppei; Soma, Osamu; Yamamoto, Hayato; Yoneyama, Tohru; Tobisawa, Yuki; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Ohyama, Chikara
2017-08-31
Urinary tract obstruction and postoperative hydronephrosis are risk factor for renal function deterioration after orthotopic ileal neobladder construction. However, reports of relationship between transient hydronephrosis and renal function are limited. We assess the influence of postoperative transient hydronephrosis on renal function in patients with orthotopic ileal neobladder construction. Between January 2006 and June 2013, we performed radical cystectomy in 164 patients, and 101 received orthotopic ileal neobladder construction. This study included data available from 64 patients with 128 renal units who were enrolled retrospectively. The hydronephrosis grade of each renal unit scored 0-4. The patients were divided into 4 groups according to the grade of hydronephrosis: control, low, intermediate, and high. The grade of postoperative hydronephrosis was compared with renal function 1 month and 1 year after surgery. There were no significant differences in renal function before surgery between groups. One month after surgery, the presence of hydronephrosis was significantly associated with decreased renal function. However, 1 year after urinary diversion hydronephrosis grades were improved significantly, and renal function was comparable between groups. Postoperative hydronephrosis at 1 month had no significant influence on renal function 1 year after ileal neobladder construction. Limitations include retrospective design, short follow-up periods, and a sample composition. The presence of transient hydronephrosis immediately after surgery may have limited influence on renal function 1 year after ileal neobladder construction.
Effect of alendronate on early bone loss of renal transplant recipients.
Abediazar, S; Nakhjavani, M R
2011-03-01
Renal transplant recipients (RTRs) are at risk of developing osteoporosis and osteopenia due to underlying renal osteodystrophy, hypophosphatemia, and immunosuppression. This process occurs more frequently in the first year after renal transplantation (RTX), resulting in eventual bone loss and fractures. The purpose of this study was to evaluate the effect of low-dose alendronate to prevent early bone loss after RTX. We prospectively studied 43 successful RTR including 22 men and 21-women with a mean overall age of 39.16±11.73 years, mean body mass index of 23.6±3.73, and mean dialysis duration of 25.73±17.67 months. We matched them based on age and sex: the alendronate-treated group received vitamin D (Vit D) during the study plus 30 mg alendronate weekly from 1 month after RTX. The control group only received Vit D. We measured serum calcium, phosphate, alkaline phosphatase, blood urea, creatinine, and intact parathyroid hormone (iPTH) at the pretransplant baseline and monthly thereafter as well as BMD of the lumbar spine, femur, and radius pretransplant baseline versus 3 and 6 months after RTX. At 6 month after RTX, the lumbar BMD in the alendronate group increased significantly from 0.819±0.11 to 0.863±0.14 (P<.01), while it decreased in the control group from 0.897±0.17 to 0.817±0.16 (P<.001). There was also a significant increase in radius BMD (P<.001) and a nonsignificant increase in femoral BMD in the alendronate versus a significant decrease of femoral and radius BMD (P<.001) in the control group at 6 months. Upon multivariate analysis, there was a significant correlation between alendronate and spine BMD (r=.45, P<.001) but no linear regression between age, sex, BMI, dialysis duration of or iPTH with femoral, spine, or radius BMD changes at month 6. Low-dose alendronate was significantly useful to mitigate fast bone loss and increase BMD immediately after RTX. Copyright © 2011. Published by Elsevier Inc.
Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng
2017-06-08
A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.
Kiser, Jennifer J.; Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G.; Woodhouse, Leslie R.; Van Loan, Marta D.; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Gordon, Catherine M.
2013-01-01
Tenofovir disoproxil fumarate (TDF) causes bone, endocrine, and renal changes by an unknown mechanism(s). Data are limited on tenofovir pharmacokinetics and these effects. Using baseline data from a multicenter study of HIV-infected youth on stable treatment with regimens containing TDF (n = 118) or lacking TDF (n = 85), we measured cross-sectional associations of TDF use with markers of renal function, vitamin D-calcium-parathyroid hormone balance, phosphate metabolism (tubular reabsorption of phosphate and fibroblast growth factor 23 [FGF23]), and bone turnover. Pharmacokinetic-pharmacodynamic associations with plasma tenofovir and intracellular tenofovir diphosphate concentrations were explored among those receiving TDF. The mean age was 20.9 (standard deviation [SD], 2.0) years; 63% were male; and 52% were African American. Compared to the no-TDF group, the TDF group showed lower mean estimated glomerular filtration rates and tubular reabsorption of phosphate, as well as higher parathyroid hormone and 1,25-dihydroxy vitamin D [1,25-OH(2)D] levels. The highest quintile of plasma tenofovir concentrations was associated with higher vitamin D binding protein, lower free 1,25-OH(2)D, higher 25-OH vitamin D, and higher serum calcium. The highest quintile of intracellular tenofovir diphosphate concentration was associated with lower FGF23. Higher plasma tenofovir concentrations were associated with higher vitamin D binding protein and lower free 1,25-OH(2)D, suggesting a functional vitamin D deficiency explaining TDF-associated increased parathyroid hormone. The finding of lower FGF23 accompanying higher intracellular tenofovir diphosphate suggests that different mechanisms mediate TDF-associated changes in phosphate handling. Separate pharmacokinetic properties may be associated with distinct TDF toxicities: tenofovir with parathyroid hormone and altered calcium balance and tenofovir diphosphate with hypophosphatemia and FGF23 regulation. (The clinical trial registration number for this study is NCT00490412 and is available online at http://clinicaltrials.gov/ct2/show/NCT00490412.) PMID:24002093
Impact of pretransplant renal function on survival after liver transplantation.
Gonwa, T A; Klintmalm, G B; Levy, M; Jennings, L S; Goldstein, R M; Husberg, B S
1995-02-15
To determine the effect of pretransplant liver function on survival following orthotopic liver transplantation and to quantify the effects of cyclosporine administration on long-term renal function in patients undergoing liver transplant, we performed an analysis of a prospectively maintained database. Data from 569 consecutive patients undergoing liver transplantation alone who were treated with CsA for immunosuppression were used for this study. Actuarial graft and patient survival rates were calculated using Kaplan-Meier statistics. Glomerular filtration rates, serum creatinine, and the use of various immunosuppressives were analyzed for this study. The initial analysis demonstrated that patients presenting for liver transplant with hepatorenal syndrome have a significantly decreased acturial patient survival after liver transplant at 5 years compared with patients without hepatorenal syndrome (60% vs. 68%, P < 0.03). Patients with hepatorenal syndrome recovered their renal function after liver transplant. Patients who had hepatorenal syndrome were sicker and required longer stays in the intensive care unit, longer hospitalizations, and more dialysis treatments after transplantation compared with patients who did not have hepatorenal syndrome. The incidence of end-stage renal disease after liver transplantation in patients who had hepatorenal syndrome was 7%, compared with 2% in patients who did not have hepatorenal syndrome. To more fully examine the effect of pretransplant renal function on posttransplant survival, the non-hepatorenal syndrome patients were divided into quartiles depending upon their pretransplant renal function. The patients with the lowest pretransplant renal function had the same survival as the patients with the highest pretransplant renal function. In addition, there was no increased incidence of acute or chronic rejection in any of the groups. The patients with the lower pretransplant renal function were treated with more azathioprine to maintain renal function and had a negligible decrease in glomerular filtration rate following transplant. Conversely, patients with the highest level of renal function pretransplant had a 40% decline in renal function in the first year, but maintained stable renal function up to 4 years after transplant. We conclude that pretransplant renal function other than hepato-renal syndrome has no effect on patient survival after orthotopic liver transplant. Renal function after liver transplant is stable after an initial decline, despite continued administration of CsA.(ABSTRACT TRUNCATED AT 400 WORDS)
Schiper, Luis; Faintuch, Bluma Linkowski; da Silva Badaró, Roberto José; de Oliveira, Erica Aparecida; Chavez, Victor E. Arana; Chinen, Elisangela; Faintuch, Joel
2016-01-01
OBJECTIVES: Conventional imaging methods are excellent for the morphological characterization of the consequences of osteonecrosis; however, only specialized techniques have been considered useful for obtaining functional information. To explore the affinity of radiotracers for severely devascularized bone, a new mouse model of isolated femur implanted in a subcutaneous abdominal pocket was devised. To maintain animal mobility and longevity, the femur was harvested from syngeneic donors. Two technetium-99m-labeled tracers targeting angiogenesis and bone matrix were selected. METHODS: Medronic acid and a homodimer peptide conjugated with RGDfK were radiolabeled with technetium-99m, and biodistribution was evaluated in Swiss mice. The grafted and control femurs were evaluated after 15, 30 and 60 days, including computed tomography (CT) and histological analysis. RESULTS: Radiolabeling achieved high (>95%) radiochemical purity. The biodistribution confirmed good blood clearance 1 hour after administration. For 99mTc-hydrazinonicotinic acid (HYNIC)-E-[c(RGDfK)2, remarkable renal excretion was observed compared to 99mTc-methylene diphosphonate (MDP), but the latter, as expected, revealed higher bone uptake. The results obtained in the control femur were equal at all time points. In the implanted femur, 99mTc-HYNIC-E-[c(RGDfK)2 uptake was highest after 15 days, consistent with early angiogenesis. Regarding 99mTc-MDP in the implant, similar uptake was documented at all time points, consistent with sustained bone viability; however, the uptake was lower than that detected in the control femur, as confirmed by histology. CONCLUSIONS: 1) Graft viability was successfully diagnosed using radiotracers in severely ischemic bone at all time points. 2) Analogously, indirect information about angiogenesis could be gathered using 999mTc-HYNIC-E-[c(RGDfK)2. 3) These techniques appear promising and warrant further studies to determine their potential clinical applications. PMID:27759852
Arun Thomas, E T; George, Jacob; Sruthi, Devi; Vineetha, N S; Gracious, Noble
2018-04-01
Dengue fever is a mosquito-borne viral disease endemic in many tropical and sub-tropical countries. There is only limited data in the literature about dengue fever in renal transplant recipients and patients with chronic kidney disease. This study compares the clinical course of dengue fever and its impact on renal function in renal transplant recipients, patients with chronic kidney disease and patients with normal base line renal function. An observational study was conducted from 1 st May to 31 st July 2017, at a tertiary care centre of South India. A major epidemic of dengue had occurred during the study period. Twelve renal transplant recipients, 22 patients with CKD and 58 patients with normal baseline renal function (control group) admitted with dengue fever were prospectively studied. Nadir WBC count was lowest in renal transplant recipients (2575 + 1187/mm 3 ), [P<0.001]. Renal transplant recipients took more time for normalisation of platelet count (6 + 4.5 days), [P<0.001]. All 22 patients with CKD and 11 of 12 renal transplant recipients had worsening of renal function where as only 17 of 58 patients in the control group had worsening [P<0.001]. Sixteen patients with CKD, one renal transplant recipient and none among control group required hemodialysis [P<0.001]. Dialysis requiring patients had more hemoconcentration (52.5+ 19.9% increase in haemoglobin), [P<0.001]. Seven patients with CKD were dialysis dependent at the end of 2 weeks. Clinical features of dengue fever were different in renal transplant recipients and patients with CKD. Severe worsening of renal function was common in CKD patients. Worsening of renal function in renal transplant recipients was less severe and transient. This article is protected by copyright. All rights reserved.
Protecting Space Travelers from Kidney Stones: Renal Stone Risk During Space Flight
NASA Technical Reports Server (NTRS)
Whitson, Peggy; Bloomberg, Jacob; Lee, Angie (Technical Monitor)
2002-01-01
Renal stones, popularly known as kidney or bladder stones, are small rock-like objects formed in the kidneys or urinary tract by deposits of calcium and other minerals. The problem arises when the stones block the drainage of the kidney, resulting in urinary obstruction and pain. Passing these stones can be one of the most painful experiences a person will endure so doctors often prescribe pain relievers to ease the experience. Drinking plenty of fluids, which help flush waste out of the body, and eating a well-balanced diet are the first steps to preventing stones. For individuals at risk, this may not be enough, and a doctor may recommend a special diet and medications. Unfortunately, approximately 60 percent of people who have had a renal stone will experience a recurrence. This is particularly true of men, who are four to five times more likely to develop stones than women. Renal stones do not discriminate based on age; even children are at risk. Astronauts are particularly at risk of developing renal stones because they lose bone and muscle mass; calcium, other minerals, and protein normally used for bone and muscle end up in the bloodstream and then in the kidneys. Without plenty of fluid to wash them away, crystals can form and then grow into stones. This factor compounds the risk for astronauts, since they also perceive that they are less thirsty in space and will drink less than normal during the mission. To minimize all of these factors, doctors must instead treat the stone-forming compounds with medication. This study will use potassium citrate to reduce the risk of stone formation. Renal stones are never convenient, but they are a particular concern for astronauts who have limited access to treatment during flight. Researchers are examining how earthbound preventions for renal stone formation work in flight, ensuring missions are not ended prematurely due to this medical condition. During STS-107, earthbound preventions and treatments become astronauts' gain.
Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.
Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K
2017-05-01
This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and continuing deterioration in renal function. Implanted renal stents could angulate renal arteries more cephalad after fenestrated stenting. Postoperative renal function impairment was not associated with the stent orientation and changes in vessel orientation. Accurate fenestrated alignment is important to maintain stent performance and preserve renal function. Copyright © 2017 Elsevier Inc. All rights reserved.
Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret
2015-01-01
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076
Fu, Shihui; Liu, Chunling; Luo, Leiming; Ye, Ping
2017-11-09
Predictive abilities of cardiovascular biomarkers to renal function decline are more significant in Chinese community-dwelling population without glomerular filtration rate (GFR) below 60 ml/min/1.73m 2 , and long-term prospective study is an optimal choice to explore this problem. Aim of this analysis was to observe this problem during the follow-up of 5 years. In a large medical check-up program in Beijing, there were 948 participants with renal function evaluated at baseline and follow-up of 5 years. Physical examinations were performed by well-trained physicians. Blood samples were analyzed by qualified technicians in central laboratory. Median rate of renal function decline was 1.46 (0.42-2.91) mL/min/1.73m 2 /year. Rapid decline of renal function had a prevalence of 23.5% (223 participants). Multivariate linear and Logistic regression analyses confirmed that age, sex, baseline GFR, homocysteine and N-terminal pro B-type natriuretic peptide (NT-proBNP) had independently predictive abilities to renal function decline rate and rapid decline of renal function (p < 0.05 for all). High-sensitivity cardiac troponin T (hs-cTnT), carotid femoral pulse wave velocity and central augmentation index had no statistically independent association with renal function decline rate and rapid decline of renal function (p > 0.05 for all). Homocysteine and NT-proBNP rather than hs-cTnT had independently predictive abilities to rapid decline of renal function in Chinese community-dwelling population without GFR below 60 ml/min/1.73m 2 . Baseline GFR was an independent factor predicting the rapid decline of renal function. Arterial stiffness and compliance had no independent effect on rapid decline of renal function. This analysis has a significant implication for public health, and changing the homocysteine and NT-proBNP levels might slow the rapid decline of renal function.
Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn
2017-10-19
Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.
Miyamoto, Takuma; Karimov, Jamshid H; Fukamachi, Kiyotaka
2018-03-01
Continuous-flow (CF) left ventricular assist devices (LVADs) are widely used to treat end-stage heart failure. Despite substantial improvement in clinical results, numerous complications remain associated with this technology. Worsening renal function is one, associated with morbidity and mortality in patients supported by CF LVADs. The effects of CF LVAD support on renal function have been investigated since the mid-1990s by many research groups. Area covered: We review the current status of LVAD therapy, experimental results regarding the effects of types of flow generated by LVADs on renal function and pathology, changes in renal function after LVAD implant, the influence of renal function on outcomes, and risk factors for renal dysfunction post implant. This information was obtained through online databases and direct extraction of single studies. Expert commentary: Immediately after CF LVAD implantation, renal function improves temporarily as patients recover from the kidneys' previously low perfusion and congestive state. However, many studies have shown that this initially recovered renal function gradually declines during long-term CF LVAD support. Although it is known that CF LVAD support adversely affects renal function over the long term, just how it does has not yet been clearly defined in terms of clinical symptoms or signs.
Renal Tubular Acidosis in Patients with Primary Sjögren's Syndrome.
Jung, Su Woong; Park, Eun Ji; Kim, Jin Sug; Lee, Tae Won; Ihm, Chun Gyoo; Lee, Sang Ho; Moon, Ju-Young; Kim, Yang Gyun; Jeong, Kyung Hwan
2017-09-01
Primary Sjögren's syndrome (pSS) is characterized by lymphocytic infiltration of the exocrine glands resulting in decreased saliva and tear production. It uncommonly involves the kidneys in various forms, including tubulointerstitial nephritis, renal tubular acidosis, Fanconi syndrome, and rarely glomerulonephritis. Its clinical symptoms include muscle weakness, periodic paralysis, and bone pain due to metabolic acidosis and electrolyte imbalance. Herein, we describe the cases of two women with pSS whose presenting symptoms involve the kidneys. They had hypokalemia and normal anion gap metabolic acidosis due to distal renal tubular acidosis and positive anti-SS-A and anti-SS-B autoantibodies. Since one of them experienced femoral fracture due to osteomalacia secondary to renal tubular acidosis, an earlier diagnosis of pSS is important in preventing serious complications.
Gannon, Stephen A; Mukamal, Kenneth J; Chang, James D
2018-06-14
The aim of this study was to identify echocardiographic predictors of improved or worsening renal function during intravenous diuresis for decompensated heart failure. Secondary aim included defining the incidence and clinical risk factors for acute changes in renal function with decongestion. A retrospective review of 363 patients admitted to a single centre for decompensated heart failure who underwent intravenous diuresis and transthoracic echocardiography was conducted. Clinical, echocardiographic, and renal function data were retrospectively collected. A multinomial logistic regression model was created to determine relative risk ratios for improved renal function (IRF) or worsening renal function (WRF). Within this cohort, 36% of patients experienced WRF, 35% had stable renal function, and 29% had IRF. Patients with WRF were more likely to have a preserved left ventricular ejection fraction compared with those with stable renal function or IRF (P = 0.02). Patients with IRF were more likely to have a dilated, hypokinetic right ventricle compared with those with stable renal function or WRF (P ≤ 0.01), although this was not significant after adjustment for baseline characteristics. Left atrial size, left ventricular linear dimensions, and diastolic function did not significantly predict change in renal function. An acute change in renal function occurred in 65% of patients admitted with decompensated heart failure. WRF was statistically more likely in patients with a preserved left ventricular ejection fraction. A trend towards IRF was noted in patients with global right ventricular dysfunction. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Role of Klotho in Osteoporosis and Renal Osteodystrophy
2014-10-01
about the complex physiology of bone development and maintenance including the endocrine regulation of mineral homeostasis that is absolutely...percentage of bone. This should enhance the effects we have already seen in other lines and enable us to delve further into physiology of the phenotype...Klotho and FGFRs [11,12]. To dissect the role of parathyroid gland resident Klotho in physiology and in pathophysiological states such as CKD, we
Melorheostosis and somatic mosaicism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryns, J.P.
1995-08-28
Melorheostosis is a rare congenital disorder of the bone and mesenchymal tissue. The longitudinal, cortical hyperostosis in the long bones has the appearance of wax flowing down the side of a candle. The short bones appear to manifest endosteal bone deposition. Usually only one limb is affected, but bilateral involvement is possible. Also, the skull, vertebrae, pelvis, and ribs can be affected. In 1980 we reported on a 3-year-old girl with clinical and radiological findings of melorheostosis, with manifest involvement of the left lower limb and scleroderma of the overlying soft tissues. Subsequently, at age 17 years, she was admittedmore » to the Orthopedic Department for an Ilizarov operation comprising lengthening and axis correction of the left tibia. Arterial hypertension (220/130 mm Hg) was noted, and biochemical studies documented high plasma renin activity and high aldosterone concentrations. Renal studies showed a small left kidney, and angiography showed several intrarenal high-grade stenoses of the left renal artery with poor opacification, and spotted nephrogram of the middle part and upper pole. Partial nephrectomy with removal of the upper and middle poles of the left kidney was performed. Pathological examination of the small and large blood vessels showed marked intimal proliferation and splitting of the elastica. 3 refs.« less
Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward
2013-01-01
To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944
Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E
2017-09-01
Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.
Hasani-Ranjbar, Shirin; Ejtahed, Hanieh Sadat; Amoli, Mahsa M; Bitarafan, Fatemeh; Qorbani, Mostafa; Soltani, Akbar; Yarjoo, Bahareh
2018-05-29
Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH) is a very rare inheritable hypophosphatemic rickets/osteomalacia characterized by decreased renal phosphate reabsorption, hypophosphatemia, vitamin D refractory rickets, hyperphosphaturia, hypercalciuria, elevated circulating 1, 25-dihydroxy vitamin D levels and low serum parathyroid hormone (PTH) levels, leading to growth retardation, limb deformities, bone pain, muscle weakness, rickets and osteomalacia. Biallelic mutations in SLC34A3/NPT2c gene are responsible for the occurrence of the disease. In this paper we describe the clinical examination, biochemical profile and gene analysis of Iranian kindred with a 101bp deletion in SLC34A3 gene. 12 members of a family of previously reported patient with HHRH (3 homozygote and 7 heterozygote) and 10 healthy controls were evaluated. All patients had significantly increased risk of kidney stone formation, bone deformities and short stature compared with unrelated healthy controls. The heterozygous patients displayed milder clinical symptoms compared with homozygous patients. These patients displayed mild or no hypophosphatemia and they did not develop skeletal deformities. Recurrent renal stones and hypercalciuria were the main presentations of heterozygous patients which could be confused with familial hypercalciuria. In addition, biochemical analysis showed significantly low serum sodium level and elevated alkaline phosphatase in patients. Genetic counseling and screening for SLC34A3 mutations can be helpful in adult onset phenotype with unexplained osteoporosis, bone deformities and especial recurrent renal stones. In subjects with vitamin D deficiency the results should be interpreted cautiously.
Karadag, Serhat; Gursu, Meltem; Aydin, Zeki; Uzun, Sami; Dogan, Oner; Ozturk, Savas; Kazancioglu, Rumeyza
2011-10-01
Primary hyperoxaluria (PH) is a rare genetic disorder characterized by overproduction of oxalate due to specific enzyme deficiencies in glyoxylate metabolism. The primary clinical presentation is in the form of recurrent urolithiasis, progressive nephrocalcinosis, end-stage renal disease, and systemic oxalosis. Herein, we present a case of PH who was diagnosed at 47 years of age after 6 years on hemodialysis. He presented with fatigue, anorexia, weight loss, and was found to have cachexia, diffuse edema, hepatomegaly, ascites, hypercalcemia, hyperphosphatemia, hypoalbuminemia, low parathyroid hormone levels, lytic and resorptive areas in the vertebrae, diffusely increased echogenity of the liver, multiple renal stones, and bilateral nephrocalcinosis. Bone marrow biopsy showed calcium oxalate crystals and crystal granulomas. The liver biopsy could not be performed. The absence of an identifiable reason for secondary forms, the severity of the clinical presentation, and pathological findings led to the diagnosis of PH2. He died while waiting for a potential liver and kidney donor. The presented case is consistent with the literature as he had renal stone disease in the third decade and end-stage renal disease in the fifth decade. Hypercalcemia was thought to be due to osteoclast-stimulating activity of macrophages constituting the granuloma. Erythropoietin-resistant anemia and hypothyroidism were thought to be due to accumulation of oxalate in the bone marrow and thyroid gland, respectively. It is very important to keep in mind the possibility of PH when faced with a patient with nephrocalcinosis and oxalate stone disease. © 2011 The Authors; Hemodialysis International © 2011 International Society for Hemodialysis.
Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao
2016-07-01
Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.
Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet
2016-04-01
After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Li, Yan; Wang, Xiaomin; O'Mara, Edward; Dimopoulos, Meletios A; Sonneveld, Pieter; Weisel, Katja C; Matous, Jeffrey; Siegel, David S; Shah, Jatin J; Kueenburg, Elisabeth; Sternas, Lars; Cavanaugh, Chloe; Zaki, Mohamed; Palmisano, Maria; Zhou, Simon
2017-01-01
Pomalidomide is an immunomodulatory drug for treatment of relapsed or refractory multiple myeloma (rrMM) in patients who often have comorbid renal conditions. To assess the impact of renal impairment on pomalidomide exposure, a population pharmacokinetics (PPK) model of pomalidomide in rrMM patients with various degrees of impaired renal function was developed. Intensive and sparse pomalidomide concentration data collected from two clinical studies in rrMM patients with normal renal function, moderately impaired renal function, severely impaired renal function not requiring dialysis, and with severely impaired renal function requiring dialysis were pooled over the dose range of 2 to 4 mg, to assess specifically the influence of the impaired renal function as a categorical variable and a continuous variable on pomalidomide clearance and plasma exposure. In addition, pomalidomide concentration data collected on dialysis days from both the withdrawal (arterial) side and from the returning (venous) side of the dialyzer, from rrMM patients with severely impaired renal function requiring dialysis, were used to assess the extent to which dialysis contributes to the removal of pomalidomide from blood circulation. PPK analyses demonstrated that moderate to severe renal impairment not requiring dialysis has no influence on pomalidomide clearance or plasma exposure, as compared to those patients with normal renal function, while pomalidomide exposure increased approximately 35% in patients with severe renal impairment requiring dialysis on nondialysis days. In addition, dialysis increased total body pomalidomide clearance from 5 L/h to 12 L/h, indicating that dialysis will significantly remove pomalidomide from the blood circulation. Thus, pomalidomide should be administered post-dialysis on the days of dialysis.
Barreto, Fellype C; de Oliveira, Rodrigo B; Benchitrit, Joyce; Louvet, Loïc; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Riser, Bruce L; Massy, Ziad A
2014-11-01
Vascular calcification (VC) is a risk factor for cardiovascular mortality in the setting of chronic kidney disease (CKD). Pyrophosphate (PPi), an endogenous molecule that inhibits hydroxyapatite crystal formation, has been shown to prevent the development of VC in animal models of CKD. However, the possibility of harmful effects of exogenous administration of PPi on bone requires further investigation. To this end, we examined by histomorphometry the bone of CKD mice after intraperitoneal PPi administration. After CKD creation or sham surgery, 10-week-old female apolipoprotein-E knockout (apoE(-/-)) mice were randomized to one non-CKD group or 4 CKD groups (n = 10-35/group) treated with placebo or three distinct doses of PPi, and fed with standard diet. Eight weeks later, the animals were killed. Serum and femurs were sampled. Femurs were processed for bone histomorphometry. Placebo-treated CKD mice had significantly higher values of osteoid volume, osteoid surface and bone formation rate than sham-placebo mice with normal renal function. Slightly higher osteoid values were observed in CKD mice in response to very low PPi dose (OV/BV, O.Th and ObS/BS) and, for one parameter measured, to high PPi dose (O.Th), compared to placebo-treated CKD mice. Treatment with PPi did not modify any other structural parameters. Mineral apposition rates, and other parameters of bone formation and resorption were not significantly different among the treated animal groups or control CKD placebo group. In conclusion, PPi does not appear to be deleterious to bone tissue in apoE(-/-) mice with CKD, although a possible stimulatory PPi effect on osteoid formation may be worth further investigation.
Measuring residual renal function for hemodialysis adequacy: Is there an easier option?
Davenport, Andrew
2017-10-01
Most patients starting hemodialysis (HD) have residual renal function. As such, there has been increased interest in starting patients with less frequent and shorter dialysis session times. However, for this incremental approach to be successful, patients require regular monitoring of residual renal function, so that as residual renal function declines, the amount of HD is appropriately increased. Currently most dialysis centers rely on interdialytic urine collections. However, many patients find these inconvenient and there may be marked intrapatient variability due to compliance issues. Thus, alternative markers of residual renal function are required for routine clinical practice. Currently three middle sized molecules; cystatin C, β2 microglobulin, and βtrace protein have been investigated as potential endogenous markers of glomerular filtration. Although none is ideal, combinations of these markers have been proposed to provide a more accurate estimation of glomerular clearance, and in particular cut offs for minimal residual renal function. However, in patients with low levels of residual renal function it remains unclear as to whether the benefits of residual renal function equally apply to glomerular filtration or tubular function. © 2017 International Society for Hemodialysis.
Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza
2017-01-01
To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.
Mitchell, Marc A; Wartinger, David D
2016-10-01
The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja
2015-12-01
To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.
Gadolinium toxicity and treatment.
Ramalho, Joana; Ramalho, Miguel; Jay, Michael; Burke, Lauren M; Semelka, Richard C
2016-12-01
Gadolinium based contrast agents (GBCAs) play an important role in the diagnostic evaluation of many patients. The safety of these agents has been once again questioned after gadolinium deposits were observed and measured in brain and bone of patients with normal renal function. This retention of gadolinium in the human body has been termed "gadolinium storage condition". The long-term and cumulative effects of retained gadolinium in the brain and elsewhere are not as yet understood. Recently, patients who report that they suffer from chronic symptoms secondary to gadolinium exposure and retention created gadolinium-toxicity on-line support groups. Their self-reported symptoms have recently been published. Bone and joint complaints, and skin changes were two of the most common complaints. This condition has been termed "gadolinium deposition disease". In this review we will address gadolinium toxicity disorders, from acute adverse reactions to GBCAs to gadolinium deposition disease, with special emphasis on the latter, as it is the most recently described and least known. Copyright © 2016 Elsevier Inc. All rights reserved.
Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko
2015-01-01
Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982
Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley
2017-01-01
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057
Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B
2015-09-01
A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weir, Matthew A; Gomes, Tara; Mamdani, Muhammad; Juurlink, David N; Hackam, Daniel G; Mahon, Jeffrey L; Jain, Arsh K; Garg, Amit X
2011-06-01
Little evidence justifies the avoidance of glyburide in patients with impaired renal function. We aimed to determine if renal function modifies the risk of hypoglycaemia among patients using glyburide. We conducted a nested case-control study using administrative records and laboratory data from Ontario, Canada. We included outpatients 66 years of age and older with diabetes mellitus and prescriptions for glyburide, insulin or metformin. We ascertained hypoglycaemic events using administrative records and estimated glomerular filtration rates (eGFR) using serum creatinine concentrations. From a cohort of 19,620 patients, we identified 204 cases whose eGFR was ≥ 60 mL/min/1.73 m(2) (normal renal function) and 354 cases whose eGFR was < 60 mL/min/1.73 m(2) (impaired renal function). Compared to metformin, glyburide is associated with a greater risk of hypoglycaemia in patients with both normal [adjusted odds ratio (OR) 9.0, 95% confidence interval (95% CI) 4.9-16.4] and impaired renal function (adjusted OR 6.0, 95% CI 3.8-9.5). We observed a similar relationship when comparing insulin to metformin; the risk was greater in patients with normal renal function (adjusted OR 18.7, 95% CI 10.5-33.5) compared to those with impaired renal function (adjusted OR 7.9, 95% CI 5.0-12.4). Tests of interaction showed that among glyburide users, renal function did not significantly modify the risk of hypoglycaemia, but among insulin users, impaired renal function is associated with a lower risk. In this population-based study, impaired renal function did not augment the risk of hypoglycaemia associated with glyburide use.
Anemia in patient with primary hyperoxaluria and bone marrow involvement by oxalate crystals.
Mykytiv, Vitaliy; Campoy Garcia, Fiz
2018-06-01
We present a rare case of anaemia secondary to bone marrow infiltration by oxalate crystals and renal failure in a patient diagnosed with primary hyperoxaluria. In our case, the anaemia was recovered after the double liver and kidney transplantation, the latter was performed on two occasions after the failure of the first graft. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Staub, Daniel; Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian
2016-06-01
Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48-0.70), 0.71 (95% CI, 0.61-0.81), 0.52 (95% CI, 0.41-0.65), and 0.56 (95% CI, 0.44-0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m(2), similar findings were obtained. Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function.
Li, Pu; Qin, Chao; Cao, Qiang; Li, Jie; Lv, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Tang, Lijun; Shao, Pengfei
2016-10-01
To evaluate the feasibility and efficiency of laparoscopic partial nephrectomy (LPN) with segmental renal artery clamping, and to analyse the factors affecting postoperative renal function. We conducted a retrospective analysis of 466 consecutive patients undergoing LPN using main renal artery clamping (group A, n = 152) or segmental artery clamping (group B, n = 314) between September 2007 and July 2015 in our department. Blood loss, operating time, warm ischaemia time (WIT) and renal function were compared between groups. Univariable and multivariable linear regression analyses were applied to assess the correlations of selected variables with postoperative glomerular filtration rate (GFR) reduction. Volumetric data and estimated GFR of a subset of 60 patients in group B were compared with GFR to evaluate the correlation between these functional variables and preserved renal function after LPN. The novel technique slightly increased operating time, WIT and intra-operative blood loss (P < 0.001), while it provided better postoperative renal function (P < 0.001) compared with the conventional technique. The blocking method and tumour characteristics were independent factors affecting GFR reduction, while WIT was not an independent factor. Correlation analysis showed that estimated GFR presented better correlation with GFR compared with kidney volume (R(2) = 0.794 cf. R(2) = 0.199) in predicting renal function after LPN. LPN with segmental artery clamping minimizes warm ischaemia injury and provides better early postoperative renal function compared with clamping the main renal artery. Kidney volume has a significantly inferior role compared with eGFR in predicting preserved renal function. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Functional MRI detects perfusion impairment in renal allografts with delayed graft function.
Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar
2015-06-15
Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.
Renal function monitoring in heart failure – what is the optimal frequency? A narrative review
Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir
2017-01-01
The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643
Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms.
Núñez, Julio; Miñana, Gema; Santas, Enrique; Bertomeu-González, Vicente
2015-05-01
Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney. Worsening renal function that occurs in patients with acute heart failure has been classified as cardiorenal syndrome type 1. In this setting, worsening renal function is a common finding and is due to complex, multifactorial, and not fully understood processes involving hemodynamic (renal arterial hypoperfusion and renal venous congestion) and nonhemodynamic factors. Traditionally, worsening renal function has been associated with worse outcomes, but recent findings have revealed mixed and heterogeneous results, perhaps suggesting that the same phenotype represents a diversity of pathophysiological and clinical situations. Interpreting the magnitude and chronology of renal changes together with baseline renal function, fluid overload status, and clinical response to therapy might help clinicians to unravel the clinical meaning of renal function changes that occur during an episode of heart failure decompensation. In this article, we critically review the contemporary evidence on the pathophysiology and clinical aspects of worsening renal function in acute heart failure. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.
Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.
Metastatic Bone Pain Palliation using (177)Lu-Ethylenediaminetetramethylene Phosphonic Acid.
Alavi, Mehrosadat; Omidvari, Shapour; Mehdizadeh, Alireza; Jalilian, Amir R; Bahrami-Samani, Ali
2015-01-01
(177)Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP) is presently suggested as an excellent bone seeking radionuclide for developing metastatic bone pain (MBP) palliation agent owing to its suitable nuclear decay characteristics. To find the exact dosage and its efficiency, this clinical study was performed on the human being, using (177)Lu-EDTMP for MBP palliation. (177)Lu-EDTMP was prepared by Iran, atomic energy organization. Thirty consecutive patients with determined tumors, incontrollable MBP, and positive bone scan at 4 weeks before the beginning of the study participated in this study in the nuclear medicine ward. (177)Lu-EDTMP in the form of sterile slow IV injection was administered with a dose of 29.6 MBq/kg. Short form of brief pain inventory questionnaire was used to evaluate the efficiency of the intervention. Questionnaires were filled out by an expert nuclear physician every 2 weeks while the cell blood count was also checked every 2 weeks up to 12 weeks for evaluation of bone marrow suppression and hematological toxicity. Furthermore, whole body scan was done at days 1, 3, and 7. Twenty-five patients showed a significant pain relief since 2 weeks after the injection, and continued until the end of the follow up period (12 weeks). There were no significant early complications such as bone marrow suppression, hematological toxicity, and no systemic adverse effects. No complication was observed in renal function. Twenty one patients showed flare phenomenon that was started after the 12.2 ± 1.78 h lasting for 38.4 ± 23.08. Sixteen patients (53%) were completely treated; nine patients (30%) showed a partial response, and five patients (17%) had no response to treatment. Total response to treatment was achieved in 25 patients (83%). At the end of the evaluation, no bone marrow suppression or hematologic toxicity was observed. (177)Lu-EDTMP has shown suitable physical and biological properties with good results in long term bone pain relief for patients with bone metastasis.
Metastatic Bone Pain Palliation using 177Lu-Ethylenediaminetetramethylene Phosphonic Acid
Alavi, Mehrosadat; Omidvari, Shapour; Mehdizadeh, Alireza; Jalilian, Amir R.; Bahrami-Samani, Ali
2015-01-01
177Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP) is presently suggested as an excellent bone seeking radionuclide for developing metastatic bone pain (MBP) palliation agent owing to its suitable nuclear decay characteristics. To find the exact dosage and its efficiency, this clinical study was performed on the human being, using 177Lu-EDTMP for MBP palliation. 177Lu-EDTMP was prepared by Iran, atomic energy organization. Thirty consecutive patients with determined tumors, incontrollable MBP, and positive bone scan at 4 weeks before the beginning of the study participated in this study in the nuclear medicine ward. 177Lu-EDTMP in the form of sterile slow IV injection was administered with a dose of 29.6 MBq/kg. Short form of brief pain inventory questionnaire was used to evaluate the efficiency of the intervention. Questionnaires were filled out by an expert nuclear physician every 2 weeks while the cell blood count was also checked every 2 weeks up to 12 weeks for evaluation of bone marrow suppression and hematological toxicity. Furthermore, whole body scan was done at days 1, 3, and 7. Twenty-five patients showed a significant pain relief since 2 weeks after the injection, and continued until the end of the follow up period (12 weeks). There were no significant early complications such as bone marrow suppression, hematological toxicity, and no systemic adverse effects. No complication was observed in renal function. Twenty one patients showed flare phenomenon that was started after the 12.2 ± 1.78 h lasting for 38.4 ± 23.08. Sixteen patients (53%) were completely treated; nine patients (30%) showed a partial response, and five patients (17%) had no response to treatment. Total response to treatment was achieved in 25 patients (83%). At the end of the evaluation, no bone marrow suppression or hematologic toxicity was observed. 177Lu-EDTMP has shown suitable physical and biological properties with good results in long term bone pain relief for patients with bone metastasis. PMID:26097421
Effects of Incretin-Based Therapies and SGLT2 Inhibitors on Skeletal Health.
Egger, Andrea; Kraenzlin, Marius E; Meier, Christian
2016-12-01
Anti-diabetic drugs are widely used and are essential for adequate glycemic control in patients with type 2 diabetes. Recently, marketed anti-diabetic drugs include incretin-based therapies (GLP-1 receptor agonists and DPP-4 inhibitors) and sodium-glucose co-transporter 2 (SGLT2) inhibitors. In contrast to well-known detrimental effects of thiazolidinediones on bone metabolism and fracture risk, clinical data on the safety of incretin-based therapies is limited. Based on meta-analyses of trials investigating the glycemic-lowering effect of GLP-1 receptor agonists and DPP4 inhibitors, it seems that incretin-based therapies are not associated with an increase in fracture risk. Sodium-glucose co-transporter 2 inhibitors may alter calcium and phosphate homeostasis as a result of secondary hyperparathyroidism induced by increased phosphate reabsorption. Although these changes may suggest detrimental effects of SGLT-2 inhibitors on skeletal integrity, treatment-related direct effects on bone metabolism seem unlikely. Observed changes in BMD, however, seem to result from increased bone turnover in the early phase of drug-induced weight loss. Fracture risk, which is observed in older patients with impaired renal function and elevated cardiovascular disease risk treated with SGLT2 inhibitors, seems to be independent of direct effects on bone but more likely to be associated with falls and changes in hydration status secondary to osmotic diuresis.
Resistance exercise training restores bone mineral density in renal transplant recipients.
Eatemadololama, Ali; Karimi, Mohammad Taghi; Rahnama, Nader; Rasolzadegan, Mohammad Hoseynen
2017-01-01
The kidneys are complex organs of human body sustain a number of vital and important functions. These organs need to be replaced in some subjects due to various diseases. Bone mineral density (BMD) of the subjects with kidney transplantation reduced as a result of poor mobility and use of especial drugs. Due to lack of information regarding the influences of weight training exercise on BMD of long bone, this research was done. 24 subjects with history of kidney transplantation were recruited in this study. They were divided into two groups who received weight training exercise and control group. The BMD of femur and lumbar spine was measured by use of dual energy X-Ray absorptiometry in both groups. The difference between BMD was evaluated by use of two sample T test. The mean values of BMD of femur were 0.679±0.09 g/cm 2 and 0.689±0.09 before and after exercise in this first group. In contrast it was 0.643±0.11 before follow-up and 0.641±0.11 g/cm 2 after follow-up in the control group. There was no difference in BMD of lumbar spine after exercise. The result of this research study showed that BMD of long bone improved follow exercise. Therefore, it was concluded that weight training exercise can be used for the subjects with kidney transplantation.
Review article: BK virus in systemic lupus erythematosus.
Gupta, Nirupama; Lawrence, Robert M; Nguyen, Cuong; Modica, Renee F
2015-08-21
BK virus (BKV) is a human polyomavirus with a seroprevalence of 60-80 % in the general population. In renal transplant patients, it is known to cause renal failure, ureteric stenosis and hemorrhagic cystitis. In bone marrow transplant patients, it is evident that BKV can also cause hemorrhagic cystitis along with BK virus nephropathy (BKVN) in the native kidneys, with subsequent renal failure. However, little is known about BVKN in non-transplanted immune-compromised patients, such as systemic lupus erythematosus (SLE) who may have underlying nephritis and have a compromised immune system due to therapy and/or systemic illness. Thus, this article will focus on the clinical aspects of BKV and its association in patients with SLE.
Tian, Haibin; Lu, Yan; Shah, Shraddha P; Wang, Quansheng; Hong, Song
2012-05-01
Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.
Hijazi, Ziad; Hohnloser, Stefan H; Andersson, Ulrika; Alexander, John H; Hanna, Michael; Keltai, Matyas; Parkhomenko, Alexander; López-Sendón, José L; Lopes, Renato D; Siegbahn, Agneta; Granger, Christopher B; Wallentin, Lars
2016-07-01
Renal impairment confers an increased risk of stroke, bleeding, and death in patients with atrial fibrillation. Little is known about the efficacy and safety of apixaban in relation to renal function changes over time. To evaluate changes of renal function over time and their interactions with outcomes during a median of 1.8 years of follow-up in patients with atrial fibrillation randomized to apixaban vs warfarin treatment. The prospective, randomized, double-blind Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) clinical trial randomized 18 201 patients with atrial fibrillation to apixaban or warfarin. Serial creatinine measurements were available in 16 869 patients. Worsening of renal function was defined as an annual decrease in estimated glomerular filtration more than 20%. The relations between treatment, outcomes, and renal function were investigated using Cox regression models, with renal function as a time-dependent covariate. Stroke or systemic embolism (primary outcome), major bleeding (safety outcome), and mortality were examined in relation to renal function over time estimated with both the Cockcroft-Gault and Chronic Kidney Disease Epidemiology Collaboration equations. Among 16 869 patients, the median age was 70 years and 65.2% of patients were men. Worsening in estimated glomerular filtration more than 20% was observed in 2294 patients (13.6%) and was associated with older age and more cardiovascular comorbidities. The risks of stroke or systemic embolism, major bleeding, and mortality were higher in patients with worsening renal function (HR, 1.53; 95% CI, 1.17-2.01 for stroke or systemic embolism; HR, 1.56; 95% CI, 1.27-1.93 for major bleeding; and HR, 2.31; 95% CI, 1.98-2.68 for mortality). The beneficial effects of apixaban vs warfarin on rates of stroke or systemic embolism and major bleeding were consistent in patients with normal or poor renal function over time and also in those with worsening renal function. In patients with atrial fibrillation, declining renal function was more common in elderly patients and those with cardiovascular comorbidities. Worsening renal function was associated with a higher risk of subsequent cardiovascular events and bleeding. The superior efficacy and safety of apixaban as compared with warfarin were similar in patients with normal, poor, and worsening renal function. clinicaltrials.gov Identifier: NCT00412984.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja
2015-01-01
Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759
Renal Function Recovery with Total Artificial Heart Support.
Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar
2016-01-01
Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.
Depleted Uranium (DU) Follow-up Program Update
2010-11-01
hematology, serum chemistry, neuroendocrine, urinalysis, urine, sem en and blood uranium, renal markers, semen analysis, bone metabolism) • Chromosomal...Clinical Findings • No clinically significant differences detected between low and high uranium exposure groups for – Semen characteristics
Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich
2013-01-01
Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780
Reversible posterior leucoencephalopathy syndrome associated with bone marrow transplantation.
Teive, H A; Brandi, I V; Camargo, C H; Bittencourt, M A; Bonfim, C M; Friedrich, M L; de Medeiros, C R; Werneck, L C; Pasquini, R
2001-09-01
Reversible posterior leucoencephalopathy syndrome (RPLS) has previously been described in patients who have renal insufficiency, eclampsia, hypertensive encephalopathy and patients receiving immunosuppressive therapy. The mechanism by which immunosuppressive agents can cause this syndrome is not clear, but it is probably related with cytotoxic effects of these agents on the vascular endothelium. We report eight patients who received cyclosporine A (CSA) after allogeneic bone marrow transplantation or as treatment for severe aplastic anemia (SSA) who developed posterior leucoencephalopathy. The most common signs and symptoms were seizures and headache. Neurological dysfunction occurred preceded by or concomitant with high blood pressure and some degree of acute renal failure in six patients. Computerized tomography studies showed low-density white matter lesions involving the posterior areas of cerebral hemispheres. Symptoms and neuroimaging abnormalities were reversible and improvement occurred in all patients when given lower doses of CSA or when the drug was withdrawn. RPLS may be considered an expression of CSA neurotoxicity.
Hyder, Joseph A; Allison, Matthew A; Barrett-Connor, Elizabeth; Detrano, Robert; Wong, Nathan D; Sirlin, Claude; Gapstur, Susan M; Ouyang, Pamela; Carr, J Jeffrey; Criqui, Michael H
2009-01-01
Context Molecular and cell biology studies have demonstrated an association between bone and arterial wall disease, but the significance of a population-level association is less clear and potentially confounded by inability to account for shared risk factors. Objective To test population-level associations between atherosclerosis types and bone integrity. Main Outcome Measures Volumetric trabecular lumbar bone mineral density (vBMD), ankle-brachial index (ABI), intima-media thickness of the common carotid (CCA-IMT) and internal carotid (ICA-IMT) arteries, and carotid plaque echogenicity. Design, Setting and Participants A random subset of participants from the Multi-Ethnic Study of Atherosclerosis (MESA) assessed between 2002 and 2005. Results 904 post-menopausal female (62.4 years; 62% non-white; 12% ABI<1; 17% CCA-IMT>1mm; 33% ICA-IMT>1mm) and 929 male (61.4 years; 58% non-white; 6% ABI<1; 25% CCA-IMT>1mm; 40% ICA-IMT>1mm) were included. In serial, sex-specific regression models adjusting for age, ethnicity, body mass index, dyslipidemia, hypertension, smoking, alcohol consumption, diabetes, homocysteine, interleukin-6, sex hormones, and renal function, lower vBMD was associated with lower ABI in men (p for trend <0.01) and greater ICA-IMT in men (p for trend <0.02). CCA-IMT was not associated with vBMD in men or women. Carotid plaque echogenicity was independently associated with lower vBMD in both men (trend p=0.01) and women (trend p<0.04). In all models, adjustment did not materially affect results. Conclusions Lower vBMD is independently associated with structural and functional measures of atherosclerosis in men and with more advanced and calcified carotid atherosclerotic plaques in both sexes. PMID:19819456
Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi
2012-01-01
Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621
Nishi, Morihiro; Matsumoto, Kazumasa; Fujita, Tetsuo; Iwamura, Masatsugu
2016-11-01
To evaluate the efficacy of laparoscopic pyeloplasty (LPP) for lower functioning kidney, we investigated the outcome of this procedure for patients with ureteropelvic junction obstruction with decreased renal function, defined as less than 20% split renal function. Between October 1998 and June 2015, we performed transperitoneal dismembered LPP in 224 patients. Among them, 15 patients with less than 20% split renal function were included in this study. Patient characteristics, perioperative split renal functions, complications, and surgical outcomes were retrospectively investigated. Fourteen of 15 patients had preoperative symptoms, including flank pain in 13 patients and gross hematuria in 1 patient. Preoperative 99mTc-mercaptoacetyltriglycine (MAG3) renogram revealed no response to diuretic injection and median split renal function was 16.5%. Median operative time and blood loss were 170 minutes and 20 mL, respectively. There were no complications during the perioperative period. Postoperative MAG3 renogram at 6 and 12 months after the operation revealed significantly increased split renal function (median: 23.8% and 23.7%, p = 0.001 and 0.008, respectively) and response to diuretic injection in all patients. Preoperative symptoms disappeared and no recurrence was seen during the follow-up period for all patients except for one who experienced flank pain again 4 months after the surgery. He subsequently underwent open pyeloplasty, and flank pain disappeared soon after. LPP for patients with low split renal function and flank pain significantly improved symptoms and split renal functions. Although the long-term clinical effects of LPP are unknown, we recommend performing LPP before considering nephrectomy for patients with lower functioning kidney.
Rare case of nephrotic syndrome: Schimke syndrome.
Pedrosa, Anna Kelly Krislane de Vasconcelos; Torres, Luiz Fernando Oliveira; Silva, Ana Corina Brainer Amorim da; Dantas, Adrianna Barros Leal; Zuntini, Káthia Liliane da Cunha Ribeiro; Aguiar, Lia Cordeiro Bastos
2016-01-01
Schimke syndrome corresponds to dysplasia of bone and immunity, associated with progressive renal disease secondary to nephrotic syndrome cortico-resistant, with possible other abnormalities such as hypothyroidism and blond marrow aplasia. It is a rare genetic disorder, with few reports in the literature. The most frequent renal involvement is nephrotic syndrome with focal segmental glomerulosclerosis and progressive renal failure. The objective of this study was to report a case of Schimke syndrome, diagnostic investigation and management of the case. Resumo A síndrome Schimke corresponde à displasia imuno-óssea, associada à doença renal progressiva secundária à síndrome nefrótica córtico-resistente, podendo haver outras anormalidades como hipotireoidismo e aplasia de medula óssea. Trata-se de uma patologia genética rara, com poucos relatos na literatura. O acometimento renal mais frequente é uma síndrome nefrótica por glomeruloesclerose segmentar e focal e falência renal progressiva. O objetivo deste estudo foi relatar um caso de síndrome de Schimke, investigação diagnóstica e condução do caso.
Li, Dezhi; Liu, Qian; Feng, Zhifang; Zhang, Qi; Feng, Saran
2018-06-01
Nephrogenic diabetes insipidus (NDI) rarely presents in the initial stage of acute lymphoblastic leukemia (ALL) and relapse due to renal infiltration is also rare. A 19-year-old man presented with weakness, polydipsia, and polyuria for 1 month. NDI was diagnosed with insignificant response to a water deprivation test after stimulation with vasopressin injection. Bone marrow examination combined with immunophenotypic analysis, cerebrospinal cytology, and abdominal ultrasonography confirmed the diagnoses of precursor B cell ALL with renal infiltration. The patient accepted standardized combination chemotherapy and ultimately had sustained remission, and his polydipsia and polyuria disappeared after 3 days of treatment. The ALL relapsed 1 year later and he received haploidentical stem cell transplantation (haplo-SCT) from his father. One year later, he again developed NDI, with bilateral renal enlargement because of extramedullary relapse, leading to subsequent death. This case demonstrates unusual early renal involvement in ALL presenting with initial NDI. Interestingly, the NDI returned with the relapse of renal infiltration 1 year after haplo-SCT. This case suggests that NDI was probably secondary to renal leukemic infiltration.
2018-04-02
Clear Cell Renal Cell Carcinoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Penile Carcinoma; Renal Pelvis Urothelial Carcinoma; Squamous Cell Carcinoma of the Penis; Stage III Bladder Adenocarcinoma AJCC v6 and v7; Stage III Bladder Squamous Cell Carcinoma AJCC v6 and v7; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Penile Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IIIa Penile Cancer AJCC v7; Stage IIIb Penile Cancer AJCC v7; Stage IV Bladder Adenocarcinoma AJCC v7; Stage IV Bladder Squamous Cell Carcinoma AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Penile Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma
Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian
2016-01-01
Background Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. Methods In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Results Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48–0.70), 0.71 (95% CI, 0.61–0.81), 0.52 (95% CI, 0.41–0.65), and 0.56 (95% CI, 0.44–0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m2, similar findings were obtained. Conclusions Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function. PMID:27280085
Koshida, Ryusuke; Yamaguchi, Hideki; Yamasaki, Koji; Tsuchimochi, Wakaba; Yonekawa, Tadato; Nakazato, Masamitsu
2010-09-01
Autosomal recessive hypophosphatemic rickets (ARHR) is an extremely rare disorder of autosomal recessive inheritance, characterized by hypophosphatemia resulting from renal phosphate wasting. Dentin matrix protein 1 (DMP1), a noncollagenous extracellular protein, plays critical roles in bone mineralization and phosphate homeostasis. Recently, loss-of-function mutations in DMP1 gene have been identified as the molecular cause of ARHR. Here, we describe a Japanese family that includes two ARHR-affected siblings carrying a novel mutation of the DMP1 gene. The patients were a 53-year-old woman and a 50-year-old man with short stature and skeletal deformities who were the offspring of a first-cousin marriage. Biochemical examination revealed hypophosphatemia with renal phosphate excretion and low levels of 1,25(OH)(2)D. Serum calcium, parathyroid hormone, and urinary calcium excretion were within the normal range, leading to clinical diagnosis of ARHR. Sequence analysis of peripheral leukocytes from the patients revealed that they carried a novel homozygous nonsense mutation in the DMP1 gene (98G>A, W33X), which leads to a truncated DMP protein with no putative biological function. Unaffected family members were heterozygous for the mutation. This is the first report of a Japanese family with ARHR carrying a novel mutation of the DMP1 gene.
Fu, Shihui; Zhang, Zhao; Luo, Leiming; Ye, Ping
2017-04-07
Although previous studies have analyzed the relationship between renal function and coronary artery calcification (CAC) in pre-dialysis and dialysis patients, limited studies have discussed the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. The present study was designed to explore the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. This cross-sectional study was carried out in 105 male participants older than 60 years with glomerular filtration rate (GFR) ≥ 45 ml/min/1.73 m 2 . CAC was detected by high-definition computerized tomography (HDCT), which is a highly sensitive technique for detecting the CAC and provides the most accurate CAC scores up to date. Age was 72 ± 8.4 years on average and ranged from 60 to 89 years. Simple correlation analysis indicated that all kinds of CAC scores including the Agatston, volume and mass scores inversely correlated with GFR values (p < 0.05 for all). In multivariate linear regression analysis, GFR values were independently associated with all these CAC scores (p < 0.05 for all). Renal function had an independent relationship with CAC detected by HDCT in Chinese elderly men, demonstrating that the relationship between renal function and CAC started at the early stage of renal function decline.
Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton
2015-12-01
The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.
Libbey, N P; Chazan, J A; London, M R; Pono, L; Abuelo, J G
1993-04-01
We examined bone biopsies from 47 patients on chronic hemodialysis, and analyzed the histomorphometric and biochemical findings and histologic quantitation of bone aluminium, looking primarily at mineralization lag time (Mlt) to evaluate its usefulness in categorization of renal osteodystrophy (ROD). The patients were categorized as having either relatively normal Mlt (< 35 days, n = 21 patients), moderately prolonged Mlt (35-100 days, n = 13 patients) or markedly prolonged Mlt (> 100 days, n = 13 patients). The group with relatively normal Mlt showed significantly higher C-terminal parathyroid hormone (PTHc) levels (26,141 +/- 19,270 vs 7,226 +/- 6,073 and 4,434 +/- 4,000 pg/ml) than the moderately or markedly prolonged Mlt groups (p < .01) and was associated with histologic characteristics of osteitis fibrosa or mild hyperparathyroidism (BFR/BS range 0.146-0.947 mcm3/mcm2/d). The group with markedly prolonged Mlt included one patient with classic and 11 with adynamic osteomalacia (BFR/BS range 0.009-0.099) and had greater bone aluminum (Al.S/OS 35.3 +/- 26.7% vs 7.2 +/- 9.0%) than the normal Mlt group (p < .01). The group with moderately prolonged Mlt included two patients with aplastic bone disease (Mlt 80.0 and 84.6 days, and Al.S/OS 100.0 and 72.3%) and 11 patients with features of hyperparathyroidism and osteomalacia (BFR/BS range 0.068-0.243) with variable but generally intermediate bone aluminum deposition (Al.S/OS 22.5 +/- 19.9%). Like BFR/BS and other dynamic parameters Mlt correlates with morphologic types of ROD which primarily reflect bone turnover, but it may also suggest varying degrees of mineralization impairment in a spectrum ranging from high to low turnover types of ROD. Its usefulness in this respect should not be overlooked.
Kidney and Phosphate Metabolism
2008-01-01
The serum phosphorus level is maintained through a complex interplay between intestinal absorption, exchange intracellular and bone storage pools, and renal tubular reabsorption. The kidney plays a major role in regulation of phosphorus homeostasis by renal tubular reabsorption. Type IIa and type IIc Na+/Pi transporters are important renal Na+-dependent inorganic phosphate (Pi) transporters, which are expressed in the brush border membrane of proximal tubular cells. Both are regulated by dietary Pi intake, vitamin D, fibroblast growth factor 23 (FGF23) and parathyroid hormone. The expression of type IIa Na+/Pi transporter result from hypophosphatemia quickly. However, type IIc appears to act more slowly. Physiological and pathophysiological alteration in renal Pi reabsorption are related to altered brush border membrane expression/content of the type II Na+/Pi cotransporter. Many studies of genetic and acquired renal phosphate wasting disorders have led to the identification of novel genes. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of genetic and acquired renal phosphate wasting disorders and studies are underway to define their mechanism on renal Pi regulation. In recent studies, sodium-hydrogen exchanger regulatory factor 1 (NHERF1) is reported as another new regulator for Pi reabsorption mechanism. PMID:24459526
Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H
2014-01-01
Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could reside in local injury sites, leading to the relief of hyperemia and inflammation, but no obvious transdifferentiation into renal-like cells. The results lay the foundation for further study on the potential application of UC-HSCs in human disease and Because of their availability; HSC may be useful for cell replacement therapy of acute renal failure. PMID:25232508
Renal function monitoring in heart failure - what is the optimal frequency? A narrative review.
Al-Naher, Ahmed; Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir
2018-01-01
The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication-based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Lange, Daniel; Helck, Andreas; Rominger, Axel; Crispin, Alexander; Meiser, Bruno; Werner, Jens; Fischereder, Michael; Stangl, Manfred; Habicht, Antje
2018-07-01
Renal function of potential living kidney donors is routinely assessed with scintigraphy. Kidney anatomy is evaluated by imaging techniques such as magnetic resonance imaging (MRI). We evaluated if a MRI-based renal volumetry is a good predictor of kidney function pre- and postdonation. We retrospectively analyzed the renal volume (RV) in a MRI of 100 living kidney donors. RV was correlated with the tubular excretion rate (TER) of MAG3-scintigraphy, a measured creatinine clearance (CrCl), and the estimated glomerular filtration rate (eGFR) by Cockcroft-Gault (CG), CKD-EPI, and modification of diet in renal disease (MDRD) formula pre- and postdonation during a follow-up of 3 years. RV correlated significantly with the TER (total: r = 0.6735, P < 0.0001). Correlation between RV and renal function was the highest for eGFR by CG (r = 0.5595, P < 0.0001), in comparison with CrCl, MDRD-GFR, and CKD-EPI-GFR predonation. RV significantly correlated with CG-GFR postdonation and predicted CG-GFR until 3 years after donation. MRI renal volumetry might be an alternative technique for the evaluation of split renal function and prediction of renal function postdonation in living kidney donors. © 2018 Steunstichting ESOT.
[Strontium and calcium metabolism. Interaction of strontium and vitamin D].
Rousselet, F; El Solh, N; Maurat, J P; Gruson, M; Girard, M L
1975-01-01
Oral administration of strontium to calcium wellfed rats blocks the intestinal absorption of calcium. When high doses of vitamine D are given over long period, the inhibition of calcium intestinal absorption disapears. Under these conditions the absorption of strontium is increased. It is suggested that there is only one absorption mechanism for these two cations. An overdose of the vitamine D increases the renal elimination of strontium but under these conditions the plasma concentration of the strontium is unchanged. Vitamine D brings about the some action on the bone fixation of the strontium as it does on the bone fixation of calcium. The bone fixation is increased with low dosages. The bone fixation is decreased with high dosages.
[Cranial metastasis of thyroid follicular carcinoma. Report of a case].
Calderón-Garcidueñas, A L; González-Schaffinni, M A; Farías-García, R; Rey-Laborde, R
2001-01-01
Thyroid follicular carcinoma is able to produce metastatic lesions before the vanishing of the primary lesion. We present a case of a woman with a lytic, solitary, asymptomatic parietal bone lesion of 2 years of evolution. Autopsy revealed a thyroid gland with two small cystic areas and renal metastasis. Thyroid carcinoma should be included in the differential diagnosis in cases of lytic bone lesions with long evolution in patients 60 years of age or older.
Witt, Lars; Glage, Silke; Lichtinghagen, Ralf; Pape, Lars; Boethig, Dietmar; Dennhardt, Nils; Heiderich, Sebastian; Leffler, Andreas; Sümpelmann, Robert
2016-03-01
Despite serious renal side effects in critically ill adult patients, artificial colloids are still fundamental components of perioperative fluid therapy in infants and children, although the impact of 6% hydroxyethyl starch (HES) and 4% gelatin (GEL) on renal function during pediatric surgery has not been identified yet. To determine the impact of high doses of artificial colloids on renal function, we conducted an experimental animal study and hypothesized that neither the infusion of HES nor of GEL would have a serious impact on renal function. Fifteen sedated piglets were randomly assigned to receive an infusion of either 50 ml · kg(-1) HES or GEL, or a balanced electrolyte solution (crystalloid group). Before and 1 week after infusion, serum and urine renal function tests were recorded and renal biopsies were taken. Serum and urine renal function tests revealed no increase after administration of HES and GEL, and only a discrete increase in serum creatinine (median 9.8 μmol · l(-1), 95% CI 4.0-19.1) in the crystalloid group. Histopathological examination indicated a sparsely, multifocal infiltration of mononuclear cells in all groups and an unspecific pyelectasia of one animal in the GEL group. After high doses of HES or GEL in piglets, no relevant impact on renal function could be found. These results confirm that AKI after HES or GEL is very unlikely in hemodynamically stable perioperative patients with normal renal function. © 2015 John Wiley & Sons Ltd.
Ziółkowska, Helena; Roszkowska-Blaim, Maria
2006-01-01
The aim of the study was to estimate the usefulness of total PTH and 1-84 molecule (CAP) assay in clinical practice. 118 children with chronic renal failure aged 13.8 +/- 4.5 years were examined: 69 on conservative treatment with creatinine clearance 40.7 +/- 20 ml/min/1.73 m2, 31 on peritoneal dialysis and 16 on hemodialysis. In all patients the following parameters were assessed: serum levels of calcium (sCa), phosphorus (sP), PTH intact (PTHs) by chemiluminescence method (Immulite analyzer), total PTH (PTHc) and CAP with Duo PTH Assay (Scantibodies Laboratories, USA). The value of CIP as the difference between total PTH and CAP was calculated. For the evaluation of bone turnover the serum level of osteocalcin (OC) with IRMA, (OsteoRiact, CIS, F) and activity of serum alkaline phosphatase (AP) were determined. The correlations between parameters were calculated by Pearson's correlation coefficient (r). Significant correlation were found between PTHs and PTHc (r=0.84, p=0.0000), CAP (r=0.79, p=0.0000) and CIP. The increase of PTHs, PTHc, CAP, CIP, sP, OC and percentage of CIP were noticed, when parallel increase of creatinine level was found. The negative correlation between creatinine level and CAP/CIP was observed. The similar correlations between level of PTHs, PTHc, CAP and OC level were observed (r=0.55, 0.49 and 0.50 respectively). The assay of total PTH and CAP fragment is not usefull in clinical practice for estimation of bone turnover in children with chronic renal failure.
Cevik, Muge; Orkin, Chloe
2018-07-01
In an era when virological efficacy approaches 100%, novel antiretroviral (ARV) therapies must deliver better tolerability, safety, and convenient coformulated regimens. We review the phase II and III clinical data on the fixed dose combination (FDC) darunavir (DRV) 800mg / cobicistat (COBI/C) 150 mg / emtricitabine (F/FTC) 200 mg / tenofovir alafenamide fumarate (TAF) 10mg (D/C/F/TAF) for the treatment of HIV-1 infection. In an exploratory phase II study, D/C/F/TAF FDC demonstrated similar virological efficacy to darunavir/cobicistat FDC + F /tenofovir disoproxil fumarate (TDF) FDC in treatment-naive HIV-1-infected individuals with favorable bone and renal outcomes. These findings led to two subsequent international phase III double-blind randomized controlled trials; AMBER and EMERALD. In the (treatment naïve) AMBER study, D/C/F/TAF FDC was noninferior to component regimen F/TDF + darunavir/cobicistat with favorable bone and renal outcomes at week 48. In the EMERALD study (switch study for virologically suppressed patients), D/C/F/TAF showed noninferior efficacy to F/TDF and boosted protease inhibitor (bPI) regimen at week 48 also with favorable renal and bone outcomes. No virological failure was observed, and no resistance to TDF or darunavir emerged in either study. In clinical trials, D/C/F/TAF FDC demonstrated excellent, noninferior virological efficacy, maintained a high genetic barrier and conferred the additional safety benefits of TAF. As the first one pill, once daily, protease inhibitor-based regimen, D/C/F/TAF FDC offers a new option for the treatment of HIV infection.
Stress and sodium intake in neural control of renal function in hypertension.
DiBona, G F
1991-04-01
The interaction between genetic and environmental factors is important in the pathophysiology of hypertension. By examining the effects of two environmental factors--acute psychoemotional stress and dietary sodium intake--in rats with genetic hypertension, an important influence on central neural mechanisms governing the renal sympathetic neural control of renal function has been demonstrated. Additional studies of the central opioid systems have demonstrated an important role of opioid peptides in modulating the renal functional responses to acute psychoemotional stress. The observed renal functional alterations--antidiuresis, antinatriuresis, and renal vasoconstriction--are known to be capable of contributing to the initiation, development, and maintenance of the hypertensive process.
Cytochrome P450 and Lipoxygenase Metabolites on Renal Function
Imig, John D.; Hye Khan, Md. Abdul
2018-01-01
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638
Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O
2000-09-28
Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (P< 0.001). In contrast, the final height of the untreated children (2.1+/-1.2 SD below normal) was 0.6 SD below their standardized height at base line (P<0.001). Although prepubertal bone maturation was accelerated in growth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.
Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.
El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben
2014-09-01
Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.
Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.
Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław
2015-04-17
Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.
A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood.
Monti, Manuela; Imberti, Barbara; Bianchi, Niccolò; Pezzotta, Anna; Morigi, Marina; Del Fante, Claudia; Redi, Carlo Alberto; Perotti, Cesare
2017-09-01
Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.
The Effect of Patient and Surgical Characteristics on Renal Function After Partial Nephrectomy.
Winer, Andrew G; Zabor, Emily C; Vacchio, Michael J; Hakimi, A Ari; Russo, Paul; Coleman, Jonathan A; Jaimes, Edgar A
2018-06-01
The purpose of the study was to identify patient and disease characteristics that have an adverse effect on renal function after partial nephrectomy. We conducted a retrospective review of 387 patients who underwent partial nephrectomy for renal tumors between 2006 and 2014. A line plot with a locally weighted scatterplot smoothing was generated to visually assess renal function over time. Univariable and multivariable longitudinal regression analyses incorporated a random intercept and slope to evaluate the association between patient and disease characteristics with renal function after surgery. Median age was 60 years and most patients were male (255 patients [65.9%]) and white (343 patients [88.6%]). In univariable analysis, advanced age at surgery, larger tumor size, male sex, longer ischemia time, history of smoking, and hypertension were significantly associated with lower preoperative estimated glomerular filtration rate (eGFR). In multivariable analysis, independent predictors of reduced renal function after surgery included advanced age, lower preoperative eGFR, and longer ischemia time. Length of time from surgery was strongly associated with improvement in renal function among all patients. Independent predictors of postoperative decline in renal function include advanced age, lower preoperative eGFR, and longer ischemia time. A substantial number of subjects had recovery in renal function over time after surgery, which continued past the 12-month mark. These findings suggest that patients who undergo partial nephrectomy can experience long-term improvement in renal function. This improvement is most pronounced among younger patients with higher preoperative eGFR. Copyright © 2017 Elsevier Inc. All rights reserved.
Knee Pain in a Renal Transplant Patient
2017-04-26
chronic kidney disease. They often develop soft tissue rheumatic syndromes, crystalline arthropathy, and metabolic bone disease. We describe a...hemodialysis. Furthermore, patients who undergo kidney transplant report improvement of symptoms. Disclaimer: The views expressed are those of the author(s
EARLY COMPLICATIONS IN THE ORTHOPEDIC TREATMENT OF BONE METASTASES
Teixeira, Luiz Eduardo Moreira; Miranda, Ricardo Horta; Ghedini, Daniel Ferreira; Aguilar, Rafael Bazílio; Novais, Eduardo Nilo Vasconcelos; de Abreu e Silva, Guilherme Moreira; Araújo, Ivana Duval; de Andrade, Marco Antônio Percope
2015-01-01
Objective: To assess the early complications in the orthopedic treatment of metastatic bone lesions and the factors associated with these complications. Method: There were assessed, retrospectively, 64 patients that underwent surgical treatment for bone metastases, analyzing the complications that occurred in the pre-operative and early post- operative period and associating them with the tumor origin, type of procedure done, the need of blood reposition before the surgery, the need of new surgical procedures and the mortality due to the complications. Results: Early complications in the treatment were observed in 17 (26.6%) patients, of which six (35.2%) ended up dying due to these complications. Regarding the type, 15 (23.8%) cases were due to surgical complications, four (6.3%) clinical and three (4.7%) patients showed clinical and surgical complications. There was no significant difference in the frequency of complications or mortality when assessed the type of reconstruction or affected region. The tumors with a renal origin needed more blood reposition and showed a bigger frequency of complications. Conclusion: The complications occurred in 26.6%. The complications are not related to the kind of treatment performed or to the region affected. The renal origin tumors showed a higher risk of hemorrhage. PMID:27077063
EARLY COMPLICATIONS IN THE ORTHOPEDIC TREATMENT OF BONE METASTASES.
Teixeira, Luiz Eduardo Moreira; Miranda, Ricardo Horta; Ghedini, Daniel Ferreira; Aguilar, Rafael Bazílio; Novais, Eduardo Nilo Vasconcelos; de Abreu E Silva, Guilherme Moreira; Araújo, Ivana Duval; de Andrade, Marco Antônio Percope
2009-01-01
To assess the early complications in the orthopedic treatment of metastatic bone lesions and the factors associated with these complications. There were assessed, retrospectively, 64 patients that underwent surgical treatment for bone metastases, analyzing the complications that occurred in the pre-operative and early post- operative period and associating them with the tumor origin, type of procedure done, the need of blood reposition before the surgery, the need of new surgical procedures and the mortality due to the complications. Early complications in the treatment were observed in 17 (26.6%) patients, of which six (35.2%) ended up dying due to these complications. Regarding the type, 15 (23.8%) cases were due to surgical complications, four (6.3%) clinical and three (4.7%) patients showed clinical and surgical complications. There was no significant difference in the frequency of complications or mortality when assessed the type of reconstruction or affected region. The tumors with a renal origin needed more blood reposition and showed a bigger frequency of complications. The complications occurred in 26.6%. The complications are not related to the kind of treatment performed or to the region affected. The renal origin tumors showed a higher risk of hemorrhage.
Diethylstilbesterol revisited: androgen deprivation, osteoporosis and prostate cancer.
Scherr, Douglas; Pitts, W Reid; Vaughn, E Darracott
2002-02-01
It is well described in the urological literature that androgen deprivation can result in accelerated bone breakdown and osteoporosis. Therefore, we evaluate the degree of bone breakdown in patients on conventional androgen deprivation with those on diethylstilbesterol alone or in conjunction with luteinizing hormone releasing hormone agonists or orchiectomy. During an 18-month period a total of 54 patients with clinically localized prostate cancer and 24 with benign prostatic hyperplasia were evaluated. All patients with prostate cancer were either treated with external beam radiotherapy without androgen deprivation or were started on androgen deprivation therapy. All patients were prospectively followed and evaluated for serum testosterone and estradiol along with urinary collagen type I cross-linked N-telopeptides. Three separate morning urine samples on 3 separate months were collected on each patient and analyzed for N-telopeptides. To correct for different levels of renal function, all N-telopeptides were measured as a ratio of urinary N-telopeptides/urine creatinine. All patients with any bone or skeletal abnormalities were excluded from study as were those with osseous metastatic disease. There was a statistically significant (p < 0.05) higher level of urinary N-telopeptides/creatinine in patients on androgen deprivation therapy who were not treated with diethylstilbesterol. The estrogenic effect of diethylstilbesterol protects one from bone resorption. Patients on diethylstilbesterol did not have any higher levels of bone breakdown than patients with benign prostatic hyperplasia or those who never received any androgen deprivation. Rapid bone turnover and resorption can be prevented with 1 mg. diethylstilbesterol alone or in conjunction with other modes of androgen deprivation. Therefore, diethylstilbesterol should be considered as monotherpy in men who require long-term antiandrogen therapy.
DiBona, G F
2000-12-01
Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.
Haroldsen, Peter E; Sisic, Zlatko; Datt, Joe; Musson, Donald G; Ingenito, Gary
2017-07-01
The purpose of this study is to evaluate safety, tolerability, and pharmacokinetic (PK) properties of amifampridine phosphate (Firdapse™) and its major inactive 3-N-acetyl metabolite in renally impaired and healthy individuals with slow acetylator (SA) and rapid acetylator (RA) phenotypes. This was a Phase I, multicenter, open-label study of the PK properties and safety profile of amifampridine phosphate in individuals with normal, mild, moderate, or severely impaired renal function. Amifampridine phosphate was given as a single 10 mg (base equivalent) dose, and the plasma and urine PK properties of amifampridine and its 3-N-acetyl metabolite were determined. The safety profile was evaluated by monitoring adverse events (AEs), clinical laboratory tests, and physical examinations. Amifampridine clearance was predominantly metabolic through N-acetylation, regardless of renal function in both acetylator phenotypes. In individuals with normal renal function, mean renal clearance represented approximately 3% and 18% of the total clearance of amifampridine in RA and SA, respectively. Large differences in amifampridine exposure were observed between acetylation phenotypes across renal function levels. Mean amifampridine exposure values of AUC 0-∞ and C max were up to 8.8-fold higher in the SA group compared with the RA group across renal function levels. By comparison, mean AUC 0-∞ was less affected by renal function within an acetylator group, only 2- to 3-fold higher in individuals with severe renal impairment (RI) compared with those with normal renal function. Exposure to amifampridine in the SA group with normal renal function was higher (AUC 0-∞, approximately 1.8-fold; C max, approximately 4.1-fold) than the RA group with severe RI. Exposure to the inactive 3-N-acetyl metabolite was higher than amifampridine in both acetylator groups, independent of renal function level. The metabolite is cleared by renal excretion, and exposure was clearly dependent on renal function with 4.0- to 6.8-fold increases in AUC 0-∞ from normal to severe RI. No new tolerability findings were observed. A single dose of 10 mg of amifampridine phosphate was well tolerated, independent of renal function and acetylator status. The results indicate that the PK profile of amifampridine is affected by metabolic acetylator phenotype to a greater extent than by renal function level, supporting Firdapse™ administration in individuals with RI in line with current labeling recommendations. Amifampridine should be dosed to effect per the individual patient need, altering administration frequency and dose in normal through severe RI. The therapeutic dose of amifampridine phosphate should be tailored to the individual patient needs by gradual dose titration up to the present maximum recommended dose (60-80 mg/day) or until dose-limiting AEs intervene to avoid overdosing and underdosing. EudraCT identifier: 2013-005349-35. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Khedun, S M; Naicker, T; Moodley, J
2000-05-01
To improve the diagnostic accuracy of concurrent renal disease in hypertension of pregnancy, biopsy evaluation is essential. In addition, establishing underlying renal disease is important for prognosis on future pregnancies. We therefore designed a study to determine the diagnostic yield of postpartum renal biopsy and the nature and frequency of complications associated with this procedure. Also, to determine relationships, if any, between renal function tests and ultrastructural and histopathological findings. Fifty renal biopsies were performed in the immediate postpartum period in black African women with early onset pre-eclampsia. Each biopsy specimen was placed in a separate container and coded so that sampling was unknown to the electron microscopist. Each biopsy specimen was divided into three parts, and processed and stained for light, fluorescent and transmission electron microscopy using conventional techniques. Renal tissue biopsies were adequate for diagnostic purposes in all cases. There were no complications in any of the 50 patients studied. Ultrastructural examination confirmed the light microscopy findings. In addition the ultrastructural findings showed intramembranous deposits, foot process fusion and mesangial deposits. In 16 patients with normal renal function tests; the biopsies evaluation from these patients showed ultrastructural changes. In the remaining 34 patients with abnormal renal function tests of varying severity; biopsy evaluation from these patients showed both ultrastructural and histopathological changes. Renal biopsy procedure is safe, and ultrastructural and histological findings obtained from postpartum renal biopsies are more informative than the routine renal function tests.
Hsiao, Shih-Hung; Chiou, Kuan-Rau
2017-05-01
Since natriuretic peptide and troponin are associated with renal prognosis and left atrial (LA) parameters are indicators of subclinical cardiovascular abnormalities, this study investigated whether LA expansion index can predict renal decline. This study analysed 733 (69% male) non-diabetic patients with sinus rhythm, preserved systolic function, and estimated glomerular filtration rate (eGFR) higher than 60 mL/min/1.73 m2. In all patients, echocardiograms were performed and LA expansion index was calculated. Renal function was evaluated annually. The endpoint was a downhill trend in renal function with a final eGFR of <60 mL/min/1.73 m2. Rapid renal decline was defined as an annual decline in eGFR >3 mL/min/1.73 m2. The median follow-up time was 5.2 years, and 57 patients (7.8%) had renal function declines (19 had rapid renal declines, and 38 had incidental renal dysfunction). Events were associated with left ventricular mass index, LA expansion index, and heart failure during the follow-up period. The hazard ratio was 1.426 (95% confidence interval, 1.276-1.671; P < 0.0001) per 10% decrease in LA expansion index and was independently associated with an increased event rate. Compared with the highest quartile for the LA expansion index, the lowest quartile had a 9.7-fold risk of renal function decline in the unadjusted model and a 6.9-fold risk after adjusting for left ventricular mass index and heart failure during the follow-up period. Left atrial expansion index is a useful early indicator of renal function decline and may enable the possibility of early intervention to prevent renal function from worsening. NCT01171040. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Longitudinal changes in kidney parenchymal volume associated with renal artery stenting.
Modrall, J Gregory; Timaran, Carlos H; Rosero, Eric B; Chung, Jayer; Plummer, Mitchell; Valentine, R James; Trimmer, Clayton
2012-03-01
This study assessed the longitudinal changes in renal volume after renal artery stenting (RAS) to determine if renal mass is preserved by stenting. The study cohort consisted of 38 patients with longitudinal imaging available for renal volume quantification before and after RAS. Renal volume was estimated as (kidney length) × (width) × (depth/2) based on preoperative renal imaging. For each patient, the clinical response of blood pressure (BP) and renal function to RAS was categorized according to modified American Heart Association guidelines. Changes in renal volume were assessed using paired nonparametric analyses. The cohort was a median age of 69 years (interquartile range [IQR], 60-74 years). A favorable BP response was observed in 11 of 38 patients (28.9%). At a median interval between imaging studies of 21 months (IQR, 13-32 months), ipsilateral renal volume was significantly increased from baseline (146.8 vs 133.8 cm(3);P = .02). This represents a 6.9% relative increase in ipsilateral kidney volume from baseline. A significant negative correlation between preoperative renal volume and the relative change in renal volume postoperatively (r = -0.42; P = .0055) suggests that smaller kidneys experienced the greatest gains in renal volume after stenting. It is noteworthy that the 25 patients with no change in BP or renal function-clinical failures using traditional definitions-experienced a 12% relative increase in ipsilateral renal volume after RAS. Multivariate analysis determined that stable or improved renal volume after stenting was an independent predictor of stable or improved long-term renal function (odds ratio, 0.008; 95% confidence interval, 0.000-0.206; P = .004). These data lend credence to the belief that RAS preserves renal mass in some patients. This benefit of RAS even extends to those patients who would be considered treatment failures by traditional definitions. Patients with stable or increased renal volume after RAS had more stable renal function during long-term follow-up, whereas patients with renal volume loss after stenting were prone to deterioration of renal function. Published by Mosby, Inc.
Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes
2012-04-01
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
Kurabayashi, Atsushi; Inoue, Keiji; Fukuhara, Hideo; Karashima, Takashi; Fukata, Satoshi; Kawada, Chiaki; Shuin, Taro; Furihata, Mutsuo
2015-08-01
The aim of this study was to investigate whether the third-generation nitrogen-containing bisphosphonate (YM529) can inhibit the progression of established bone renal cell carcinoma (RCC) and to elucidate its mechanism. Antiproliferative effect and apoptosis induction of RCC cells and mouse osteoclasts by YM529 and/or interferon-alpha (IFN-α) were evaluated in vitro using cell counting and in vivo using soft X-ray, the TUNEL method and tartrate-resistant acid phosphatase stain. For the in vivo study, male athymic BALB/cA Jc1-nu nude mice bearing human RCC cell line RBM1-IT4 cells were treated with YM529 and/or IFN-α. The biological activity of osteoclasts was evaluated using the pit formation assay. The antiangiogenetic effect by YM529 and/or IFN-α was analyzed using micro-vessel density and in situ mRNA hybridization. Osteoclast number in bone tumors was decreased in YM529-treated mouse. YM529 also inhibited osteoclast activity and proliferation in vitro, whereas basic fibroblast growth factor expressions and micro-vessel density within tumors were inhibited by IFN-α. Neither YM529 nor IFN-α alone significantly inhibited the growth of established bone metastatic tumors. Combined treatment with YM529 and IFN-α may be beneficial in patients with human RCC bone metastasis. Their effects are mediated by osteoclast recruitment inhibition and inactivation by YM529 and antiangiogenesis by IFN-α. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Changes in Renal Function and Blood Pressure in Patients with Stone Disease
NASA Astrophysics Data System (ADS)
Worcester, Elaine M.
2007-04-01
Stone disease is a rare cause of renal failure, but a history of kidney stones is associated with an increased risk for chronic kidney disease, particularly in overweight patients. Loss of renal function seems especially notable for patients with stones associated with cystinuria, hyperoxaluria, and renal tubular acidosis, in whom the renal pathology shows deposits of mineral obstructing inner medullary collecting ducts, often diffusely. However, even idiopathic calcium oxalate stone formers have a mild but significant decrease in renal function, compared to age, sex and weight-matched normals, and appear to lose renal function with age at a slightly faster rate than non-stone formers. There is also an increased incidence of hypertension among stone formers, although women are more likely to be affected than men.
Data Mining Activities for Bone Discipline - Current Status
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Pietrzyk, R. A.; Johnston, S. L.; Arnaud, S. B.
2008-01-01
The disciplinary goals of the Human Research Program are broadly discussed. There is a critical need to identify gaps in the evidence that would substantiate a skeletal health risk during and after spaceflight missions. As a result, data mining activities will be engaged to gather reviews of medical data and flight analog data and to propose additional measures and specific analyses. Several studies are briefly reviewed which have topics that partially address these gaps in knowledge, including bone strength recovery with recovery of bone mass density, current renal stone formation knowledge, herniated discs, and a review of bed rest studies conducted at Ames Human Research Facility.
Sarashina, Akiko; Ueki, Kohjiro; Sasaki, Tomohiro; Tanaka, Yuko; Koiwai, Kazuki; Sakamoto, Wataru; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C; Macha, Sreeraj
2014-11-01
The purpose of this study was to assess the effect of renal impairment on the pharmacokinetic, pharmacodynamic, and safety profiles of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in Japanese patients with type 2 diabetes mellitus (T2DM). In an open-label, parallel-group study, 32 Japanese patients with T2DM and different degrees of renal function (n = 8 per renal function category: normal renal function, estimated glomerular filtration rate [eGFR; Japanese equation] ≥90 mL/min/1.73 m(2); mild renal impairment, eGFR of 60-<90 mL/min/1.73 m(2); moderate renal impairment, eGFR of 30-<60 mL/min/1.73 m(2); and severe renal impairment, eGFR of 15-<30 mL/min/1.73 m(2)) received a single 25 mg dose of empagliflozin. Empagliflozin exposure increased with increasing renal impairment. Maximum empagliflozin plasma concentrations were similar among all renal function groups. Adjusted geometric mean ratios for extent of exposure (AUC0-∞) to empagliflozin versus normal renal function were 128.8% (95% CI, 106.0-156.6%), 143.8% (95% CI, 118.3-174.8%), and 152.3% (95% CI, 125.3-185.2%) for patients with mild, moderate, and severe renal impairment, respectively. Decreases in renal clearance of empagliflozin correlated with eGFR. Urinary glucose excretion decreased with increasing renal impairment and correlated with eGFR (adjusted mean [SE] change from baseline: 75.0 [4.84] g, 62.6 [5.75] g, 57.9 [4.86] g, and 23.7 [5.24] g for patients with normal renal function and mild, moderate, and severe renal impairment, respectively). Only 2 patients (6%) had adverse events; both were mild. Pharmacokinetic data suggest that no dose adjustment of empagliflozin is necessary in Japanese patients with T2DM and renal impairment because increases in exposure were <2-fold. Urinary glucose excretion decreased with increasing renal impairment. ClinicalTrials.gov identifier: NCT01581658. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
The rebirth of interest in renal tubular function.
Lowenstein, Jerome; Grantham, Jared J
2016-06-01
The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.
Velciov, Silvia; Hoinoiu, B; Hoinoiu, Teodora; Popescu, Alina; Gluhovschi, Cristina; Grădinaru, Oana; Popescu, Mădalină; Moţiu, Flavia; Timar, R; Gluhovschi, G H; Sporea, I
2013-01-01
Colorectal cancer represents the third cause of cancer. Since its detection in due time is important resolution, appropriate monitoring is mandatory. The present study deals with the relationship between colorectal cancer and renal function, as well as other associated risk factors. Chronic kidney disease (CKD) represents a risk factor of cancer, both in non-dialysed patients and especially in dialysed patients and in patients with renal transplant. It can get aggravated with cancer in general and particularly with colorectal cancer, partly related to the toxins that cannot be appropriately eliminated because of renal functional disturbances. At the same time, immunosuppressive therapy used for treating glomerular or secondary nephropathies represents an important risk factor of cancer. Some patients with colorectal cancer were found to present also impaired renal function, a fact whose significance is still little known. The object of the present paper is an analysis of the case records of a clinic of gastroenterology on the relationship between colorectal cancer and renal functional impairment. We found in the patients with colorectal cancer under study a glomerular filtration rate (GFR calculated with the EPI formula) of < 60 ml/min/1.73m2 in 31/180 patients, respectively 17.22% of the cases, a value that is similar to that in specialised literature. We also analysed associated risk factors that could be related to renal function impairment in these patients: age, gender, anaemia, diabetes mellitus and hypertension. These could represent, together with the colorectal cancer of the investigated patients, risk factors affecting on the one hand renal function, and on the other hand, potentially increasing the risk of cancer. Correction of these risk factors would have beneficial effects on patients. The relationship between renal functional impairment, respectively CKD, and colorectal cancer is to be regarded from the point of view of complex reciprocity: the impairment of the renal function is a factor of risk of colorectal cancer and colorectal cancer can influence renal function of these patients. This report of reciprocity based on important pathogenic mechanisms also interrelates with factors of risk consecutive to both renal function impairment and colorectal cancer.
Bone disease in primary hyperparathyroidism
Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.
2015-01-01
Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047
McKee, Marc D.; Hoac, Betty; Addison, William N.; Barros, Nilana M.T.; Millán, José Luis; Chaussain, Catherine
2013-01-01
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth – where calcium phosphate crystals are deposited and grow within an extracellular matrix – is essential to dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition such that teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibres (Sharpey's fibres) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here with clinical examples given, namely tissue-nonspecific alkaline phosphatase (TNAP) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX). Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH), respectively, where levels of local and systemic circulating mineralization determinants are perturbed. In XLH, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating SIBLING proteins such as matrix extracellular phosphoglycoprotein (MEPE) and osteopontin (OPN), and the phosphorylated peptides proteolytically released from them such as the acidic serine- and aspartate-rich motif (ASARM) peptide, may accumulate locally to impair mineralization in this disease. PMID:23931057
José, Fabio Freire; Kerbauy, Lucila Nassif; Perini, Guilherme Fleury; Blumenschein, Danielle Isadora; Pasqualin, Denise da Cunha; Malheiros, Denise Maria Avancini Costa; Campos Neto, Guilherme de Carvalho; de Souza Santos, Fabio Pires; Piovesan, Ronaldo; Hamerschlak, Nelson
2017-03-01
This is the report of the first case of TAFRO syndrome (Thrombocytopenia, Anasarca, myelofibrosis, Renal dysfunction, Organomegaly) in Latin America. The patient was a 61-year-old white woman of Ashkenazi Jewish descent, who presented with a history of 8 days of nausea, vomiting, and fever; severe pitting edema in both legs, ascites, splenomegaly, and palpable axillary lymph nodes. Abdominal computed tomography (CT) showed bilateral pleural effusion and retroperitoneal lymph node enlargement. Anasarca and worsening of renal function led to admission to the intensive care unit (ICU) with multiple organ failure, requiring mechanical ventilation, vasopressor medications, and continuous renal replacement therapy (CRRT). Diagnosis of TAFRO syndrome was made on day 18 after admission, based on clinical findings and results of bone marrow and lymph node biopsies. She was treated with methylprednisolone, tocilizumab, and rituximab. One week after the first tocilizumab dose, she had dramatic improvements in respiratory and hemodynamic status, and was weaned from ventilator support and vasopressor medications. After 2 weeks of therapy, CRRT was switched to intermittent hemodialysis. On day 46, the patient was discharged from the ICU to the general ward, and 3 months after admission, she went home. Provided the interleukin-6 measurement is available, this approach is suggested in cases of TAFRO syndrome, in order to customize the treatment.
Asymptomatic Kidney Stones in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia
Thomas, Nicole A.; Rai, Shesh N.; Cheon, Kyeongmi; McCammon, Elizabeth; Chesney, Russell; Jones, Deborah; Pui, Ching-Hon; Hudson, Melissa M.
2009-01-01
We hypothesized an association between renal calculi and bone mineral density (BMD) deficits, shown in adults, exists in survivors of childhood ALL. Thus, we analyzed associations between quantitative computed tomography (QCT)-determined renal calcifications and clinical parameters (gender, race, age at diagnosis, age at time of QCT), BMD, treatment exposures, Tanner stage. We investigated associations between stone formation and nutritional intake, serum and urinary calcium and creatinine levels, and urinary calcium/creatinine ratio. Exact Chi-square test was used to compare categorical patient characteristics and Wilcoxon-Mann-Whitney test to compare continuous measurements. Of 424 participants, 218 (51.4%) were male; 371 (87.5%) were non-black. Most (n=270; 63.7%) were ≥ 3.5 years at ALL diagnosis. Mean (SD) and median (range) BMD Z-scores of the entire cohort was -0.4 (1.2) and -0.5 (-3.9 to 5.1), respectively. Nineteen (10 males; 10 Caucasians) had kidney stones (observed prevalence of 4.5 %; 19/424) with significant negative association between stone formation and body habitus (BMI, p=0.003). Stone formation was associated with treatment protocol (p=0.009) and treatment group (0.007). Thus, kidney stones in childhood ALL survivors could herald future deterioration of renal function and development of hypertension. Long-term follow-up imaging may be warranted in these patients to monitor for progressive morbidity. PMID:18830261
Kaneko, Hidehiro; Neuss, Michael; Schau, Thomas; Weissenborn, Jens; Butter, Christian
2017-02-01
MitraClip (MC; Abbott Vascular, Menlo Park, CA, USA) is a treatment option for mitral regurgitation. Renal dysfunction is closely associated with cardiovascular disease. However, the influence of renal function in MC remains not fully understood. In this study, we aimed to clarify the association between renal function and MC. We examined 206 consecutive patients who underwent MC and divided patients into 3 groups according to estimated glomerular filtration rate (eGFR), normal eGFR (≥60mL/min/1.73m 2 ) (n=70), mild chronic kidney disease (CKD) (30-59mL/min/1.73m 2 ) (n=106), and severe CKD (<30mL/min/1.73m 2 ) (n=30). N-terminal pro-B type natriuretic peptide (NT-pro BNP) levels increased with decreasing eGFR. Kaplan-Meier curves revealed that the long-term survival rate significantly decreased with eGFR. After adjustment with the covariates, severe CKD was still associated with mortality. Improved renal function was observed in 30% and associated with baseline lower NT-pro BNP levels. Patients with improved renal function had higher chronic phase survival rate. Renal dysfunction is common in MC patients and the survival rate decreased with eGFR in association with increased NT-pro BNP levels. MC may improve renal function in approximately 30% of MC patients. Improved renal function is associated with lower NT-pro BNP levels and results in satisfactory prognosis. These results implies a close association between renal function and MC treatment. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Abebe, Nardos; Kebede, Tedla; Wolde, Mistire
2016-01-01
Studies demonstrated that abnormal thyroid functions may result in decreased or increased kidney size, kidney weight, and affect renal functions. In this regard, studies on the association of abnormal thyroid functions and renal function tests are scarcely found in Ethiopia. To assess renal function and electrolytes in patients with thyroid dysfunction, in Addis Ababa, Ethiopia. Cross sectional study was conducted from March 21/2015-May 27/2015 at Arsho Advanced Medical Laboratory. During the study period, 71 patients with thyroid dysfunction were eligible, and socio demographic data collected by structured questionnaire. Then blood sample was collected for thyroid function tests, renal function and blood electrolyte analysis. The collected data was analyzed by SPSS version 20. ANOVA and binary logistic regression were employed to evaluate the mean deference and associations of thyroid hormone with renal function and electrolyte balances. Among the renal function tests, serum uric acid, and creatinine mean values were significantly decreased in hyperthyroid patients; whereas, eGFR mean value was significantly increased in hyperthyroid study patients (P<0.05). Meanwhile, from the electrolyte measurements made, only the mean serum sodium value was significantly increased in hyperthyroid study participants. Binary logistic regression analysis on the association of thyroid dysfunction with electrolyte balance and renal function tests indicated that serum sodium, creatinine, eGFR values and hyperthyroidism have a statistical significant association at AOR 95% CI of 0.141(0.033-0.593, P=0.008); 16.236(3.481-75.739, P=0.001), and 13.797(3.261-58.67, P=0.001) respectively. The current study reveals, thyroid abnormalities may lead to renal function alterations and also may disturb electrolyte balance. Knowledge of this significant association has worthwhile value for clinicians, to manage their patients' optimally.
Sass, D A; Rucinski, B; Bryer, H P; Mann, G N; Yuan, Z; Ma, Y; Jee, W S; Epstein, S
1996-10-01
Cyclosporine (CsA) is a potent immunosuppressant that has revolutionized the success of organ transplantation. Flurbiprofen (FB), a propionic acid derivative NSAID, has been demonstrated in vivo to reduce osteoclast numbers in normal rats. The aim of this experiment was to determine whether addition of FB to CsA-treated rats could prevent the bone changes associated with CsA therapy. Forty-eight 10-12-week-old male Sprague-Dawley rats were randomized to receive, daily for 28 days: (1) CsA vehicle p.o. plus FB vehicle sc; (2) CsA (15 mg/kg) p.o. plus FB vehicle sc, (3) CsA vehicle p.o. plus FB (1.5 mg/kg) sc; and (4) CsA (15 mg/kg) p.o. plus FB (1.5 mg/kg) sc. Rats were weighed and venous blood sampled at baseline, 14 days, and 28 days for determination of glucose, Ca+2, BUN, creatinine, PTH, osteocalcin, and 1,25(OH)2 vitamin D. Tibiae were removed following killing, after double labeling for histomorphometry. Body mass was significantly lower than control in all rats receiving CsA on days 14 and 28 while blood glucose was only elevated in the CsA alone group. Day 28 BUN and creatinine were significantly elevated in the CsA group and the combination of CsA and FB revealed an exacerbation of this trend. Vitamin D and osteocalcin were consistently increased in the CsA and CsA/FB groups. Bone histomorphometry showed evidence of trabecular osteopenia in CsA and CsA/FB groups. CsA alone resulted in elevated bone turnover. FB was unable to prevent the trabecular bone loss induced by CsA therapy. This experiment indicates no role for FB as a therapeutic option in CsA-induced bone disease at the given doses and duration of treatment by virtue of its lack of bone sparing ability and adverse renal effects when the two drugs are administered concurrently.
Asdonk, T; Nickenig, G; Hammerstingl, C
2014-10-01
Mitral regurgitation (MR) is a frequent valve disorder in elderly patients, often accompanied by multiple comorbidities such as renal impairment. In these patients percutaneous mitral valve (MV) repair has become an established treatment option but the role of MR on renal dysfunction is not yet well defined. We here report on two cases presenting with severe MR and progressive renal failure caused by cardio renal syndrome, in which percutaneous MV treatment with the MitraClip system significantly improved renal function. These findings suggest that interventional MV repair can prevent progression of renal deterioration in patients suffering from combined advanced heart and renal failure. Further clinical studies are necessary to support our finding and to answer the question whether optimizing renal function by implantation of the MitraClip device is also of prognostic relevance in these patients. © 2014 Wiley Periodicals, Inc.
Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun
2017-04-01
The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription factor 2 (markers for osteoblastic functions), and up-regulated the expression of carbonic anhydrase II (marker for bone resorption). Captopril exerted therapeutic effects on renal injuries associated with type 2 diabetes but worsened the deteriorations of trabecular bone in db/db mice; the latter of which was at least in part due to the stimulation of osteoclastogenesis and the suppression of osteogenesis by captopril. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative analysis of the renal aging in rats. Stereological study.
Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de
2016-05-01
To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.
Kitai, Yuichiro; Doi, Yohei; Osaki, Keisuke; Sugioka, Sayaka; Koshikawa, Masao; Sugawara, Akira
2015-12-01
Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.
Effects of renal function on pharmacokinetics and pharmacodynamics of lesinurad in adult volunteers.
Gillen, Michael; Valdez, Shakti; Zhou, Dongmei; Kerr, Bradley; Lee, Caroline A; Shen, Zancong
2016-01-01
Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of gout in combination with a xanthine oxidase inhibitor (XOI) in patients who have not achieved target serum uric acid (sUA) levels with an XOI alone. Most people with gout have chronic kidney disease. The pharmacokinetics, pharmacodynamics, and safety of lesinurad were assessed in subjects with impaired renal function. Two Phase I, multicenter, open-label, single-dose studies enrolled subjects with normal renal function (estimated creatinine clearance [eCrCl] >90 mL/min; N=12) or mild (eCrCl 60-89 mL/min; N=8), moderate (eCrCl 30-59 mL/min; N=16), or severe (eCrCl <30 mL/min; N=6) renal impairment. Subjects were given a single oral lesinurad dose of 200 mg (N=24) or 400 mg (N=18). Blood and urine samples were analyzed for plasma lesinurad concentrations and serum and urine uric acid concentrations. Safety was assessed by adverse events and laboratory data. Mild, moderate, and severe renal impairment increased lesinurad plasma area under the plasma concentration-time curve by 34%, 54%-65%, and 102%, respectively. Lesinurad plasma C max was unaffected by renal function status. Lower renal clearance and urinary excretion of lesinurad were associated with the degree of renal impairment. The sUA-lowering effect of a single dose of lesinurad was similar between mild renal impairment and normal function, reduced in moderate impairment, and greatly diminished in severe impairment. Lesinurad increased urinary urate excretion in normal function and mild renal impairment; the increase was less with moderate or severe renal impairment. Lesinurad was well tolerated by all subjects. Lesinurad exposure increased with decreasing renal function; however, the effects of lesinurad on sUA were attenuated in moderate to severe renal impairment.
Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.
Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming
2018-05-22
Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.
Chade, Alejandro R.; Kelsen, Silvia
2011-01-01
Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789
Neural regulation of the kidney function in rats with cisplatin induced renal failure
Goulding, Niamh E.; Johns, Edward J.
2015-01-01
Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693
Availability of information on renal function in Dutch community pharmacies.
Koster, Ellen S; Philbert, Daphne; Noordam, Michelle; Winters, Nina A; Blom, Lyda; Bouvy, Marcel L
2016-08-01
Background Early detection and monitoring of impaired renal function may prevent drug related problems. Objective To assess the availability of information on patient's renal function in Dutch community pharmacies, for patients using medication that might need monitoring in case of renal impairment. Methods Per pharmacy, 25 patients aged ≥65 years using at least one drug that requires monitoring, were randomly selected from the pharmacy information system. For these patients, information on renal function [estimated glomerular filtration rate (eGFR)], was obtained from the pharmacy information system. When absent, this information was obtained from the general practitioner (GP). Results Data were collected for 1632 patients. For 1201 patients (74 %) eGFR values were not directly available in the pharmacy, for another 194 patients (12 %) the eGFR value was not up-to-date. For 1082 patients information could be obtained from the GP, resulting in 942 additional recent eGFR values. Finally, recent information on renal function was available for 72 % (n = 1179) of selected patients. Conclusion In patients using drugs that require renal monitoring, information on renal function is often unknown in the pharmacy. For the majority of patients this information can be retrieved from the GP.
Carotid artery wall shear stress is independently correlated with renal function in the elderly.
Guo, Yuqi; Wei, Fang; Wang, Juan; Zhao, Yingxin; Sun, Shangwen; Zhang, Hua; Liu, Zhendong
2018-01-12
Hemodynamic has increasingly been regarded as an important factor of renal function. However, the relationship between carotid artery wall shear stress (WSS) and renal function is not clarified. To investigate the relationship between carotid WSS and renal function, we recruited 761 older subjects aged 60 years and over from community-dwelling in the Shandong area, China. Carotid WSS, endothelial function, and estimated glomerular filtration rate (eGFR) were assessed in all subjects. Subjects were grouped by the interquartile of the carotid artery mean WSS. We found that the eGFRs derived from serum creatinine and/or cystatin C using three CKD-EPI equations were significantly higher and albumin/creatinine ratio was lower in the higher interquartile groups than in the lower interquartile groups ( P <0.05). The mean WSS was independently correlated with eGFRs even after adjustment for confounders. Similar findings were found between carotid artery peak WSS and eGFRs and albumin/creatinine ratio. In addition, we found that endothelial function was strongly related to carotid WSS and renal function after adjustment for confounders. In conclusion, there is an independent correlation of carotid WSS with renal function in the elderly. The local rheologic forces may play an important role in renal function changing. The correlation may be mediated by regulation of endothelial function.
A Review of Anesthetic Effects on Renal Function: Potential Organ Protection.
Motayagheni, Negar; Phan, Sheshanna; Eshraghi, Crystal; Nozari, Ala; Atala, Anthony
2017-01-01
Renal protection is a critical concept for anesthesiologists, nephrologists, and urologists, since anesthesia and renal function are highly interconnected and can potentially interfere with one another. Therefore, a comprehensive understanding of anesthetic drugs and their effects on renal function remains fundamental to the success of renal surgeries, especially transplant procedures. Some experimental studies have shown that some anesthetics provide protection against renal ischemia/reperfusion (IR) injury, but there is limited clinical evidence. The effects of anesthetic drugs on renal failure are particularly important in the context of kidney transplantation, since the conditions of preservation following removal profoundly influence the recovery of organ function. Currently, preservation procedures are typically based on the usage of a cold-storage solution. Some anesthetic drugs induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. A more thorough understanding of anesthetic effects on renal function can present a novel approach for developing organ-protective strategies. The aim of this review is to discuss the effects of different anesthetic drugs on renal function, with particular focus on IR injury. Many studies have demonstrated the organ-protective effects of some anesthetic drugs, specifically propofol, which indicate the potential of some anesthetics to introduce novel organ protective targets. This is not surprising, since lipid emulsions are major components of propofol, which accumulating data show provide organ protective effects against IR injury. Key Messages: Thorough understanding of the interaction between anesthetic drugs and renal function remains fundamental to the delivery of safe perioperative care and to optimizing outcomes after renal surgeries, particularly transplant procedures. Anesthetics can be repurposed for organ protection with more information about their effects, especially during transplant procedures. Here, we review the effects of different anesthetic drugs - specifically those that contain lipids in their structure, with special reference to IR injury. © 2017 S. Karger AG, Basel.
Faisal, Nabiha; Bilodeau, Marc; Aljudaibi, Bandar; Hirch, Geri; Yoshida, Eric M; Hussaini, Trana; Ghali, Maged P; Congly, Stephen E; Ma, Mang M; Lilly, Leslie B
2018-04-04
We assessed the impact of sofosbuvir-based regimens on renal function in liver transplant recipients with recurrent hepatitis C virus and the role of renal function on the efficacy and safety of these regimens. In an expanded pan-Canadian cohort, 180 liver transplant recipients were treated with sofosbuvir-based regimens for hepatitis C virus recurrence from January 2014 to May 2015. Mean age was 58 ± 6.85 years, and 50% had F3/4 fibrosis. Patients were stratified into 4 groups based on baseline estimated glomerular filtration rate (calculated by the Modification of Diet in Renal Disease formula): < 30, 30 to 45, 46 to 60, and > 60 mL/min/173 m2. The primary outcome was posttreatment changes in renal function from baseline. Secondary outcomes included sustained virologic response at 12 weeks posttreatment and anemia-related and serious adverse events. Posttreatment renal function was improved in most patients (58%). Renal function declined in 22% of patients, which was more marked in those with estimated glomerular filtration rate < 30 mL/min/173 m2, advanced cirrhosis (P = .05), and aggressive hepatitis C virus/fibrosing cholestatic hepatitis (P < .05). High rates (80%-88%) of sustained virologic response at 12 weeks posttreatment were seen across all renal function strata. Cirrhotic patients with glomerular filtration rates < 30 mL/min/173 m2 had sustained virologic response rates at 12 weeks posttreatment comparable to the overall patient group. Rates of anemia-related adverse events and transfusion requirements increased across decreasing estimated glomerular filtration rate groups, with notably more occurrences with ribavirin-based regimens. Sofosbuvir-based regimens improved overall renal function in liver transplant recipients, with sustained virologic response, suggesting an association of subclinical hepatitis C virus-related renal disease. Sustained virologic response rates at 12 weeks posttreatment (80%-88%) were comparable regardless of baseline renal function but lower in cirrhosis.
Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin
2017-05-01
To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p < 0.001), 3 months (-2.31 vs -10.39%, p < 0.001), 6 months (-2.16 vs -7.99%, p = 0.015), 12 months (-3.26 vs -8.03%, p = 0.012) and latest test (-3.24 vs -8.02%, p = 0.040), also had better functional renal parenchyma volume preservation (89.19 vs 84.27%, p < 0.001), lower decrease of the spilt glomerular filtration rate (-9.41 vs -17.13%, p < 0.001) at 12 months. The functional renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.
Rassaf, Tienush; Balzer, Jan; Rammos, Christos; Zeus, Tobias; Hellhammer, Katharina; v Hall, Silke; Wagstaff, Rabea; Kelm, Malte
2015-04-01
In patients with mitral regurgitation (MR), changes in cardiac stroke volume, and thus renal preload and afterload may affect kidney function. Percutaneous mitral valve repair (PMVR) with the MitraClip® system can be a therapeutic alternative to surgical valve repair. The influence of MitraClip® therapy on renal function and clinical outcome parameters is unknown. Sixty patients with severe MR underwent PMVR using the MitraClip® system in an open-label observational study. Patients were stratified according to their renal function. All clips have been implanted successfully. Effective reduction of MR by 2-3 grades acutely improved KDOQI class. Lesser MR reduction (MR reduction of 0-1 grades) led to worsening of renal function in patients with pre-existing normal or mild (KDOQI 1-2) compared to severe (KDOQI 3-4) renal dysfunction. Reduction of MR was associated with improvement in Minnesota Living with Heart Failure Questionnaire (MLHFQ), NYHA-stadium, and 6-minute walk test. Successful PMVR was associated with an improvement in renal function. The improvement in renal function was associated with the extent of MR reduction and pre-existing kidney dysfunction. Our data emphasize the relevance of PVMR to stabilize the cardiorenal axis in patients with severe MR. © 2014 Wiley Periodicals, Inc.
Calcium and Bone Metabolism Indices.
Song, Lu
2017-01-01
Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic origins, and clinical utilities of BTMs. This review will briefly discuss the regulations of calcium and phosphate homeostasis, laboratory's role in the diagnosis, and monitoring of bone and calcium metabolism, as well as the usefulness and controversies of the utilities of BTMs in the diagnosis and monitoring of metabolic bone diseases. © 2017 Elsevier Inc. All rights reserved.
Metabolic Changes in Summer Active and Anuric Hibernating Free-Ranging Brown Bears (Ursus arctos)
Stenvinkel, Peter; Fröbert, Ole; Anderstam, Björn; Palm, Fredrik; Eriksson, Monica; Bragfors-Helin, Ann-Christin; Qureshi, Abdul Rashid; Larsson, Tobias; Friebe, Andrea; Zedrosser, Andreas; Josefsson, Johan; Svensson, My; Sahdo, Berolla; Bankir, Lise; Johnson, Richard J.
2013-01-01
The brown bear (Ursus arctos) hibernates for 5 to 6 months each winter and during this time ingests no food or water and remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments. Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea, indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer and changes between seasons were positively correlated. Further studies to understand how bears can prevent the development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the treatment of human kidney disease. PMID:24039826
Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos).
Stenvinkel, Peter; Fröbert, Ole; Anderstam, Björn; Palm, Fredrik; Eriksson, Monica; Bragfors-Helin, Ann-Christin; Qureshi, Abdul Rashid; Larsson, Tobias; Friebe, Andrea; Zedrosser, Andreas; Josefsson, Johan; Svensson, My; Sahdo, Berolla; Bankir, Lise; Johnson, Richard J
2013-01-01
The brown bear (Ursus arctos) hibernates for 5 to 6 months each winter and during this time ingests no food or water and remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments. Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea, indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer and changes between seasons were positively correlated. Further studies to understand how bears can prevent the development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the treatment of human kidney disease.
Thomas, Peter
2012-01-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its “pregenomic” signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology. PMID:22495674
Filardo, Edward J; Thomas, Peter
2012-07-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its "pregenomic" signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology.
Silverberg, Donald S
2011-11-01
Anemia is common in Congestive Heart Failure (CHF) and is associated with an increased mortality, morbidity and progressive renal failure. The most common causes of the anemia in CHF are (1) the associated Chronic Kidney Disease (CKD), which causes depression of erythropoietin (EPO) production in the kidney, and (2) excessive cytokine production in CHF, which can cause both depression of erythropoietin production in the kidney and depression of erythropoietin response in the bone marrow. The cytokines can also induce iron deficiency by increasing hepcidin production from the liver, which both reduces gastrointestinal iron absorption and reduces iron release from iron stores located in the macrophages and hepatocytes. It appears that iron deficiency is very common in CHF and is rarely recognized or treated. The iron deficiency can cause a thrombocytosis that might contribute to cardiovascular complications in both CHF and CKD and is reversible with iron treatment. Thus, attempts to control this anemia in CHF will have to take into consideration both the use of both Erythropoiesis Stimulating Agents (ESA) such as EPO and oral and, probably more importantly, intravenous (IV) iron. Many studies of anemia in CHF with ESA and oral or IV iron and even with IV iron without ESA have shown a positive effect on hospitalization, New York Heart Association functional class, cardiac and renal function, quality of life, exercise capacity and reduced Beta Natriuretic Peptide and have not demonstrated an increase in cardiovascular damage related to the therapy. However, adequately powered long-term placebo-controlled studies of ESA and of IV iron in CHF are still needed and are currently being carried out.
Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.
Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro
2018-05-01
Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Wang, K.; Blotner, S.; Magnusson, M. O.; Wilkins, J. J.; Martin, P.; Solsky, J.; Nieforth, K.; Wat, C.; Grippo, J. F.
2013-01-01
Ribavirin (RBV) is an integral part of standard-of-care hepatitis C virus (HCV) treatments and many future regimens under investigation. The pharmacokinetics (PK), safety, and tolerability of RBV in chronically HCV-infected patients with renal impairment are not well defined and were the focus of an open-label PK study in HCV-infected patients receiving RBV plus pegylated interferon. Serial RBV plasma samples were collected over 12 h on day 1 of weeks 1 and 12 from patients with moderate renal impairment (creatinine clearance [CLCR], 30 to 50 ml/min; RBV, 600 mg daily), severe renal impairment (CLCR, <30 ml/min; RBV, 400 mg daily), end-stage renal disease (ESRD) (RBV, 200 mg daily), or normal renal function (CLCR, >80 ml/min; RBV, 800 to 1,200 mg daily). Of the 44 patients, 9 had moderately impaired renal function, 10 had severely impaired renal function, 13 had ESRD, and 12 had normal renal function. The RBV dose was reduced because of adverse events (AEs) in 71% and 53% of severe and moderate renal impairment groups, respectively. Despite this modification, patients with moderate and severe impairment had 12-hour (area under the concentration-time curve from 0 to 12 h [AUC0–12]) values 36% (38,452 ng · h/ml) and 25% (35,101 ng · h/ml) higher, respectively, than those with normal renal function (28,192 ng · h/ml). Patients with ESRD tolerated a 200-mg daily dose, and AUC0–12 was 20% lower (22,629 ng · h/ml) than in patients with normal renal function. PK modeling and simulation (M&S) indicated that doses of 200 mg or 400 mg alternating daily for patients with moderate renal impairment and 200 mg daily for patients with severe renal impairment were the most appropriate dose regimens in these patients. PMID:24080649
The risk of renal disease is increased in lambda myeloma with bone marrow amyloid deposits.
Kozlowski, Piotr; Montgomery, Scott; Befekadu, Rahel; Hahn-Strömberg, Victoria
2017-01-01
Light chain amyloidosis (AL) is a rare deposition disease and is present in 10-15% of patients with myeloma (MM). In contrast to symptomatic AL in MM, presence of bone marrow (BM) amyloid deposits (AD) in MM is not connected to kidney damage. Renal AD but not BM-AD occur mostly in MM with lambda paraprotein (lambda MM). We investigated amyloid presence in BM clots taken at diagnosis in 84 patients with symptomatic MM and compared disease characteristics in MM with kappa paraprotein (kappa MM)/lambda MM with and without BM-AD. Lambda MM with BM-AD was compared with kappa MM without BM-AD, kappa MM with BM-AD, and lambda MM without BM-AD: lambda MM with BM-AD patients had a significantly higher mean creatinine level (4.23 mg/dL vs 1.69, 1.14, and 1.28 mg/dL, respectively) and a higher proportion presented with severe kidney failure (6/11 [55%] vs 6/32 [19%], 1/22 [5%], and 3/19 [16%], respectively). Proteinuria was more common in lambda MM with BM-AD patients compared with kappa MM without BM-AD patients (8/11 [73%] vs 5/32 [16%], respectively). Kidney damage was more common in lambda MM with BM-AD indicating presence of renal AD.
Piedra, María; Berja, Ana; García-Unzueta, María Teresa; Ramos, Laura; Valero, Carmen; Amado, José Antonio
2015-01-01
The CLDN14 gene encodes a protein involved in the regulation of paracellular permeability or ion transport at epithelial tight junctions as in the nephron. The C allele of the rs219780 SNP (single nucleotide polymorphism) of CLDN14 has been associated with renal lithiasis, high levels of parathormone (PTH), and with low bone mineral density (BMD) in healthy women. Our aim is to study the relationship between rs219780 SNP of CLDN14 and renal lithiasis, fractures, and BMD in patients with primary hyperparathyroidism (PHPT). We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analysed anthropometric data, history of fractures or kidney stones, biochemical parameters including markers for bone remodelling, abdominal ultrasound, and BMD and genotyping for the rs219780 SNP of CLDN14. We did not find any difference in the frequency of fractures or renal lithiasis between the genotype groups in PHPT patients. Moreover, we did not find any relationship between the T or C alleles and BMD or biochemical parameters. rs219780 SNP of CLDN14 does not appear to be a risk factor for the development of PHPT nor does it seem to influence the clinical expression of PHPT.
Determination of split renal function using dynamic CT-angiography: preliminary results.
Helck, Andreas; Schönermarck, Ulf; Habicht, Antje; Notohamiprodjo, Mike; Stangl, Manfred; Klotz, Ernst; Nikolaou, Konstantin; la Fougère, Christian; Clevert, Dirk Andrè; Reiser, Maximilian; Becker, Christoph
2014-01-01
To determine the feasibility of a dynamic CT angiography-protocol with regard to simultaneous assessment of renal anatomy and function. 7 healthy potential kidney donors (58 ± 7 years) underwent a dynamic computed tomography angiography (CTA) using a 128-slice CT-scanner with continuous bi-directional table movement, allowing the coverage of a scan range of 18 cm within 1.75 sec. Twelve scans of the kidneys (n = 14) were acquired every 3.5 seconds with the aim to simultaneously obtain CTA and renal function data. Image quality was assessed quantitatively (HU-measurements) and qualitatively (grade 1-4, 1 = best). The glomerular filtration rate (GFR) was calculated by a modified Patlak method and compared with the split renal function obtained with renal scintigraphy. Mean maximum attenuation was 464 ± 58 HU, 435 ± 48 HU and 277 ± 29 HU in the aorta, renal arteries, and renal veins, respectively. The abdominal aorta and all renal vessels were depicted excellently (grade 1.0). The image quality score for cortex differentiation was 1.6 ± 0.49, for the renal parenchyma 2.4 ± 0.49. GFR obtained from dynamic CTA correlated well with renal scintigraphy with a correlation coefficient of r = 0.84; P = 0.0002 (n = 14). The average absolute deviation was 1.6 mL/min. The average effective dose was 8.96 mSv. Comprehensive assessment of renal anatomy and function is feasible using a single dynamic CT angiography examination. The proposed protocol may help to improve management in case of asymmetric kidney function as well as to simplify evaluation of potential living kidney donors.
Rasche, F. M.; Rasche, W. G.; Schiekofer, S.; Boldt, A.; Sack, U.; Fahnert, J.
2016-01-01
Summary IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Lifelong mesangial deposition of IgA1 complexes subsist inflammation and nephron loss, but the complex pathogenesis in detail remains unclear. In regard to the heterogeneous course, classical immunosuppressive and specific therapeutic regimens adapted to the loss of renal function will here be discussed in addition to the essential common renal supportive therapy. Renal supportive therapy alleviates secondary, surrogate effects or sequelae on renal function and proteinuria of high intraglomerular pressure and subsequent nephrosclerosis by inhibition of the renin angiotensin system (RAASB). In patients with physiological (ΔGFR < 1·5 ml/min/year) or mild (ΔGFR 1·5–5 ml/min/year) decrease of renal function and proteinuric forms (> 1 g/day after RAASB), corticosteroids have shown a reduction of proteinuria and might protect further loss of renal function. In patients with progressive loss of renal function (ΔGFR > 3 ml/min within 3 months) or a rapidly progressive course with or without crescents in renal biopsy, cyclophosphamide with high‐dose corticosteroids as induction therapy and azathioprine maintenance has proved effective in one randomized controlled study of a homogeneous cohort in loss of renal function (ΔGFR). Mycophenolic acid provided further maintenance in non‐randomized trials. Differentiated, precise, larger, randomized, placebo‐controlled studies focused on the loss of renal function in the heterogeneous forms of IgAN are still lacking. Prospectively, fewer toxic agents will be necessary in the treatment of IgAN. PMID:27283488
Ashour, Rehab H; Saad, Mohamed-Ahdy; Sobh, Mohamed-Ahmed; Al-Husseiny, Fatma; Abouelkheir, Mohamed; Awad, Amal; Elghannam, Doaa; Abdel-Ghaffar, Hassan; Sobh, Mohamed
2016-09-01
The paracrine and regenerative activities of mesenchymal stem cells (MSCs) may vary with different stem cell sources. The aim of the present study is to compare the effects of MSCs from different sources on acute kidney injury (AKI) induced by cisplatin and their influence on renal regeneration. A single intraperitoneal injection of cisplatin (5 mg/kg) was used to induce AKI in 120 Sprague-Dawley rats. Rats were treated with either rat bone marrow stem cells (rBMSCs), human adipose tissue-derived stem cells (hADSCs), or human amniotic fluid-derived stem cells (hAFSCs). 5 × 10(6) MSCs of different sources were administered through rat tail vein in a single dose, 24 hours after cisplatin injection. Within each group, rats were sacrificed at the 4th, 7th, 11th, and 30th day after cisplatin injection. Serum creatinine, BUN, and renal tissue oxidative stress parameters were measured. Renal tissue was scored histopathologically for evidence of injury, regeneration, and chronicity. Immunohistochemistry was also done using Ki67 for renal proliferative activity evaluation. MSCs of the three sources were able to ameliorate cisplatin-induced renal function deterioration and tissue damage. The rat BMSCs-treated group had the lowest serum creatinine by day 30 (0.52 ± 0.06) compared to hADSCs and hAFSCs. All MSC-treated groups had nearly equal antioxidant activity as indicated by the decreased renal tissue malondialdehyde (MDA) and increased reduced glutathione (GSH) level and superoxide dismutase (SOD) activity at different time intervals. Additionally, all MSCs improved injury and regenerative scores. Rat BMSCs had the highest count and earliest proliferative activity in the renal cortex by day 7 as identified by Ki67; while, hAFSCs seem to have the greatest improvement in the regenerative and proliferative activities with a higher count of renal cortex Ki67-positive cells at day 11 and with the least necrotic lesions. Rat BMSCs, hADSCs, and hAFSCs, in early single IV dose, had a renoprotective effect against cisplatin-induced AKI, and were able to reduce oxidative stress markers. Rat BMSCs had the earliest proliferative activity by day 7; however, hAFSCs seemed to have the greatest improvement in the regenerative activities. Human ADSCs were the least effective in the terms of proliferative and regenerative activities.
Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.
Berg, Ulla B; Németh, Antal
2018-04-01
On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.
Chen, Szu-Chia; Lin, Tsung-Hsien; Hsu, Po-Chao; Chang, Jer-Ming; Lee, Chee-Siong; Tsai, Wei-Chung; Su, Ho-Ming; Voon, Wen-Chol; Chen, Hung-Chun
2011-09-01
Heart failure and increased arterial stiffness are associated with declining renal function. Few studies have evaluated the association between left ventricular ejection fraction (LVEF) and brachial-ankle pulse-wave velocity (baPWV) and renal function progression. The aim of this study was to assess whether LVEF<40% and baPWV are associated with a decline in the estimated glomerular filtration rate (eGFR) and the progression to a renal end point of ≥25% decline in eGFR. This longitudinal study included 167 patients. The baPWV was measured with an ankle-brachial index-form device. The change in renal function was estimated by eGFR slope. The renal end point was defined as ≥25% decline in eGFR. Clinical and echocardiographic parameters were compared and analyzed. After a multivariate analysis, serum hematocrit was positively associated with eGFR slope, and diabetes mellitus, baPWV (P=0.031) and LVEF<40% (P=0.001) were negatively associated with eGFR slope. Forty patients reached the renal end point. Multivariate, forward Cox regression analysis found that lower serum albumin and hematocrit levels, higher triglyceride levels, higher baPWV (P=0.039) and LVEF<40% (P<0.001) were independently associated with progression to the renal end point. Our results show that LVEF<40% and increased baPWV are independently associated with renal function decline and progression to the renal end point.
An update on renal involvement in hemophagocytic syndrome (macrophage activation syndrome).
Esmaili, Haydarali; Mostafidi, Elmira; Mehramuz, Bahareh; Ardalan, Mohammadreza; Mohajel-Shoja, Mohammadali
2016-01-01
Hemophagocytic syndrome (HPS) is mainly characterized by massive infiltration of bone marrow by activated macrophages and often presents with pancytopenia. Thrombotic microangiopathy (TMA) is also present with thrombocytopenia and renal involvement. Both conditions could coexist with each other and complicate the condition. Directory of Open Access Journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science with keywords relevant to; Hemophagocytic syndrome, macrophage activation syndrome, interferon-gamma and thrombotic microangiopathy, have been searched. Viral infection, rheumatologic disease and malignancies are the main underlying causes for secondary HPS. calcineurin inhibitors and viral infections are also the main underlying causes of TMA in transplant recipients. In this review, we discussed a 39-year-old male who presented with pancytopenia and renal allograft dysfunction. With the diagnosis of HPS induced TMA his renal condition and pancytopenia improved after receiving intravenous immunoglobulin (IVIG) and plasmapheresis therapy. HPS is an increasingly recognized disorder in the realm of different medical specialties. Renal involvement complicates the clinical picture of the disease, and this condition even is more complex in renal transplant recipients. We should consider the possibility of HPS in any renal transplant recipient with pancytopenia and allograft dysfunction. The combination of HPS with TMA future increases the complexity of the situation.
An update on renal involvement in hemophagocytic syndrome (macrophage activation syndrome)
Esmaili, Haydarali; Mostafidi, Elmira; Mehramuz, Bahareh; Ardalan, Mohammadreza; Mohajel-Shoja, Mohammadali
2016-01-01
Context: Hemophagocytic syndrome (HPS) is mainly characterized by massive infiltration of bone marrow by activated macrophages and often presents with pancytopenia. Thrombotic microangiopathy (TMA) is also present with thrombocytopenia and renal involvement. Both conditions could coexist with each other and complicate the condition. Evidence Acquisition: Directory of Open Access Journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science with keywords relevant to; Hemophagocytic syndrome, macrophage activation syndrome, interferon-gamma and thrombotic microangiopathy, have been searched. Results: Viral infection, rheumatologic disease and malignancies are the main underlying causes for secondary HPS. calcineurin inhibitors and viral infections are also the main underlying causes of TMA in transplant recipients. In this review, we discussed a 39-year-old male who presented with pancytopenia and renal allograft dysfunction. With the diagnosis of HPS induced TMA his renal condition and pancytopenia improved after receiving intravenous immunoglobulin (IVIG) and plasmapheresis therapy. Conclusions: HPS is an increasingly recognized disorder in the realm of different medical specialties. Renal involvement complicates the clinical picture of the disease, and this condition even is more complex in renal transplant recipients. We should consider the possibility of HPS in any renal transplant recipient with pancytopenia and allograft dysfunction. The combination of HPS with TMA future increases the complexity of the situation. PMID:27047804
The common causes leading to pancytopenia in patients presenting to tertiary care hospital.
Das Makheja, Kirpal; Kumar Maheshwari, Bharat; Arain, Shafique; Kumar, Suneel; Kumari, Sangeeta; Vikash
2013-09-01
The objective of this study was to determine the frequency of common causes leading to Pancytopenia in patients presenting to tertiary care hospital at Karachi. A total of 62 patients with the diagnosis of Pancytopenia of more than one week duration were enrolled in the study. All patients underwent a detailed medical history and full physical examination followed by blood sampling for the investigations i.e. complete blood count with peripheral film, erythrocyte sedimentation rate (ESR), Malarial parasites (MP), liver function test, Renal function tests, PT and viral profile (HBsAg, Anti-HCV), Ultrasonography of abdomen. All patients underwent bone marrow aspiration and trephine biopsy for reporting and interpretation. Duration of study was six months, from May 2010 to November 2010. The average age of the patients was 37.76 ± 16.38years. Out of 62 patients, 36 (58%) were male and 26 (42%) were female. Megaloblastic anemia was the commonest cause that was observed in 41.9% cases followed by acute myeloid leukemia 27.4%, aplastic anemia 19.4% and erythroid hyperplasia 11.3%. Conclusion : This study concluded that most common cause of pancytopenia is Megaloblastic anemia, followed by acute myeloid leukemia and aplastic anemia. Bone marrow examination is a single useful investigation which reveals the underlying cause in patients with pancytopenia.
Renal function and acute heart failure outcome.
Llauger, Lluís; Jacob, Javier; Miró, Òscar
2018-06-05
The interaction between acute heart failure (AHF) and renal dysfunction is complex. Several studies have evaluated the prognostic value of this syndrome. The aim of this systematic review, which includes non-selected samples, was to investigate the impact of different renal function variables on the AHF prognosis. The categories included in the studies reviewed included: creatinine, blood urea nitrogen (BUN), the BUN/creatinine quotient, chronic kidney disease, the formula to estimate the glomerular filtration rate, criteria of acute renal injury and new biomarkers of renal damage such as neutrophil gelatinase-associated lipocalin (NGAL and cystatin c). The basal alterations of the renal function, as well as the acute alterations, transient or not, are related to a worse prognosis in AHF, it is therefore necessary to always have baseline, acute and evolutive renal function parameters. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Knight, Simon R; Hussain, Samia
2016-12-01
Early measures of graft function are increasingly used to assess efficacy in clinical trials of kidney transplant immunosuppression. This study aimed to assess the variability and quality of reporting of these endpoints in contemporary trials. Data regarding renal function endpoints were extracted from 213 reports from randomized controlled trials comparing immunosuppressive interventions in renal transplant recipients published between 2010 and 2014. A total of 174 (81.7%) reports included a measure of renal function; in 44 (20.7%), this was the primary endpoint. A total of 103 manuscripts (48.4%) reported serum creatinine, 142 (66.6%) reported estimated glomerular filtration rate (eGFR), and 26 (12.2%) reported measured GFR. Formulas used for GFR estimation were modification of diet in renal disease (42.3%), Cockroft-Gault (23.5%), Nankivell (15.0%), and CKD-EPI (0.9%). Six studies (2.8%) did not report the formula used to estimate GFR. A total of 13.9% of endpoints had missing data. In 10 studies, disagreement was found in the significance of findings using different measures of renal function. There is a great deal of variability in the reporting of renal function endpoints, with a significant proportion of studies using underperforming or inappropriate estimates. There is a need for consensus as to the best tool for monitoring and reporting renal function post-transplant, and in particular for use in clinical trials and registries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Assaram, Shirelle; Mashamba-Thompson, Tivani P; Magula, Nombulelo P
2018-01-01
Our systematic scoping review has demonstrated a research gap in antiretroviral treatment (ART) nephrotoxicity as well as in the long-term outcomes of renal function for patients on ART in South Africa. Bearing in mind the high prevalence of human immunodeficiency virus (HIV) in South Africa, this is of great concern. To determine the risk factors and co-morbidities associated with changes in renal function in HIV-infected adults in South Africa. We conducted a retrospective study of 350 ART-naïve adult patients attending the King Edward VIII HIV clinic, Durban, South Africa. Data were collected at baseline (pre-ART) and at six, 12, 18 and 24 months on ART. Renal function was assessed in the 24-month period using the Modification of Diet in Renal Disease equation and was categorised into normal renal function (estimated glomerular filtration rate [eGFR] ≥ 60), moderate renal impairment (eGFR 30-59), severe renal impairment (eGFR 15-29) and kidney failure (eGFR < 15 mL/min/1.73 m 2 ). Generalised linear models for binary data were used to model the probability of renal impairment over the five time periods, controlling for repeated measures within participants over time. Risk ratios and 95% confidence intervals (CI) were reported for each time point versus baseline. The cohort was 64% female, and 99% were Black. The median age was 36 years. At baseline, 10 patients had hypertension (HPT), six had diabetes, 61 were co-infected with tuberculosis (TB) and 157 patients had a high body mass index (BMI) with 25.4% being categorised as overweight and 19.4% as obese. The majority of the patients (59.3%) were normotensive. At baseline, the majority of the patients (90.4%) had normal renal function (95% CI: 86% - 93%), 7.0% (CI: 5% - 10%) had moderate renal impairment, 1.3% (CI: 0% - 3%) had severe renal impairment and 1.3% (CI: 0% - 3%) had renal failure. As BMI increased by one unit, the risk of renal impairment increased by 1.06 (CI: 1.03-1.10) times. The association of HPT with abnormal renal function was found to be insignificant, p > 0.05. The vast majority of patients were initiated on tenofovir disoproxil fumarate (TDF) (90.6%), in combination with lamivudine (3TC) (100%) and either efavirenz (EFV) (56.6%) or nevirapine (NVP) (43.4%). This study reports a low prevalence of baseline renal impairment in HIV-infected ART-naïve outpatients. An improvement in renal function after the commencement of ART has been demonstrated in this population. However, the long-term outcomes of patients with HIV-related renal disease are not known.
Ogawa, Eiichi; Furusyo, Norihiro; Nguyen, Mindie H
2017-01-01
Tenofovir alafenamide (TAF), a novel prodrug of tenofovir (TFV), has been approved for the treatment of chronic hepatitis B virus (HBV) infection. TAF has been shown to be a potent inhibitor of HBV replication at a low dose, with high intracellular concentration and more than 90% lower systemic TFV concentration than tenofovir disoproxil fumarate (TDF). In two randomized, double-blind, multinational, Phase 3, non-inferiority trials for hepatitis B e antigen (HBeAg)-positive and -negative patients (primary analysis: 48 weeks), TAF 25 mg orally once-daily was not inferior to TDF 300 mg in achieving an HBV DNA level <29 IU/mL at week 48. No amino-acid substitutions associated with viral breakthrough were detected by deep sequencing, and no resistance to TAF was found through week 96. In addition, no difference in the frequency of HBeAg or hepatitis B surface antigen loss was observed. However, TAF was associated with a significantly higher ALT normalization rate than was TDF, based on the American Association for the Study of Liver Diseases criteria (male: ALT ≤30 U/L and female: ALT ≤19 U/L). An analysis of renal safety showed that patients treated with TAF had a significantly lower decrease in the estimated glomerular filtration rate level than did patients treated with TDF. Similarly, the declines of hip and spine bone mineral density were significantly less in the TAF group. These trends of efficacy and renal/bone safety continued through week 96. Longer term follow-up and real-world data will be required to determine if the differences in viral/biochemical response and renal/bone safety seen with TAF in comparison with TDF are clinically relevant. PMID:29158666
DeJesus, Edwin; Haas, Bernard; Segal-Maurer, Sorana; Ramgopal, Moti N; Mills, Anthony; Margot, Nicolas; Liu, Ya-Pei; Makadzange, Tariro; McCallister, Scott
2018-04-01
We previously demonstrated superior efficacy and safety advantages in HIV-infected, virologically suppressed adults switched to a regimen containing tenofovir alafenamide (TAF) as compared with those remaining on a tenofovir disoproxil fumarate (TDF) regimen through week 48. We now report long-term data through week 96. In this randomized, active-controlled, multicenter, open-label, noninferiority trial (ClinicalTrials.gov No. NCT01815736), we randomized virologically suppressed (HIV-1 RNA <50 copies/ml) adults (2:1) to receive a once-daily, single-tablet regimen containing elvitegravir (EVG), cobicistat (COBI), emtricitabine (FTC), and TAF group or to continue one of four TDF-containing regimens (TDF group) for 96 weeks. We evaluated efficacy (HIV-1 RNA <50 copies/ml using the FDA snapshot algorithm) and prespecified bone and renal endpoints at week 96. We randomized and treated 1,436 participants in this study (TAF n = 959, TDF n = 477). At week 96, TAF was superior to TDF in virologic efficacy, with 93% on TAF and 89% on TDF having HIV-1 RNA <50 copies/ml (difference 3.7%, 95% confidence interval: 0.4%-7.0%). Improvements in hip and spine bone mineral density for those assigned to TAF versus TDF continued through week 96 (p < .001). Significant improvements in urine protein or albumin to creatinine ratios were also seen among those in the TAF group versus TDF through week 96 (p < .001). There were no cases of investigator-reported proximal renal tubulopathy in the TAF group as compared with one case in the TDF group. Switching to EVG/COBI/FTC/TAF (E/C/F/TAF) was associated with statistically significant efficacy and safety advantages over remaining on a standard-of-care TDF-based regimen.
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Cell Biology of Thiazide Bone Effects
NASA Astrophysics Data System (ADS)
Gamba, Gerardo; Riccardi, Daniela
2008-09-01
The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.
Two distinct clinical courses of renal involvement in rheumatoid patients with AA amyloidosis.
Uda, Hiroshi; Yokota, Akira; Kobayashi, Kumiko; Miyake, Tadao; Fushimi, Hiroaki; Maeda, Akira; Saiki, Osamu
2006-08-01
We conducted a prospective study to investigate whether a correlation exists between the clinical course of renal involvement and the pathological findings of renal amyloidosis in patients with rheumatoid arthritis (RA). Patients with RA of more than 5 years' duration and who did not show renal manifestations were selected and received a duodenal biopsy for the diagnosis of amyloidosis. After the diagnosis of AA amyloidosis, patients received a renal biopsy, and patterns of amyloid deposition were examined. We followed the renal functions (serum levels of blood urea nitrogen and creatinine) of patients diagnosed with AA amyloidosis for 5 years. We diagnosed 53 patients with AA amyloidosis and monitored the renal function of 38 of them for > 5 years. The histological patterns were examined; in the 38 patients there were appreciable variations in the patterns of amyloid deposition. In 27 patients, amyloid deposits were found exclusively in the glomerulus (type 1). In the other 11 patients, however, amyloid deposits were found selectively around blood vessels and were totally absent in the glomerulus (type 2). In type 1 patients with glomerular involvement, renal function deteriorated rapidly regardless of disease state; most patients received hemodialysis. In type 2 patients with purely vascular involvement, however, renal function did not deteriorate significantly. In patients with RA and AA amyloidosis, 2 distinct clinical courses in terms of renal involvement were identified. It is suggested that renal function does not deteriorate when amyloid deposition is totally lacking in the glomerulus.
Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R
2005-07-01
A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.
Chade, Alejandro R; Kelsen, Silvia
2010-08-01
Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.
Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv
2015-02-01
In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Grande, M Teresa; Fuentes-Calvo, Isabel; Arévalo, Miguel; Heredia, Fabiana; Santos, Eugenio; Martínez-Salgado, Carlos; Rodríguez-Puyol, Diego; Nieto, M Angela; López-Novoa, José M
2010-03-01
Tubulointerstitial fibrosis is characterized by the presence of myofibroblasts that contribute to extracellular matrix accumulation. These cells may originate from resident fibroblasts, bone-marrow-derived cells, or renal epithelial cells converting to a mesenchymal phenotype. Ras GTPases are activated during renal fibrosis and play crucial roles in regulating both cell proliferation and TGF-beta-induced epithelial-mesenchymal transition. Here we set out to assess the contribution of Ras to experimental renal fibrosis using the well-established model of unilateral ureteral obstruction. Fifteen days after obstruction, both fibroblast proliferation and inducers of epithelial-mesenchymal transition were lower in obstructed kidneys of H-ras knockout mice and in fibroblast cell lines derived from these mice. Interestingly, fibronectin, collagen I accumulation, overall interstitial fibrosis, and the myofibroblast population were also lower in the knockout than in the wild-type mice. As expected, we found lower levels of activated Akt in the kidneys and cultured fibroblasts of the knockout. Whether Ras inhibition will turn out to prevent progression of renal fibrosis will require more direct studies.
Aortic calcification burden predicts deterioration of renal function after radical nephrectomy.
Fukushi, Ken; Hatakeyama, Shingo; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Soma, Osamu; Matsumoto, Teppei; Hamano, Itsuto; Narita, Takuma; Imai, Atsushi; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Terayama, Yuriko; Funyu, Tomihisa; Ohyama, Chikara
2017-02-06
Radical nephrectomy for renal cell carcinoma (RCC) is a risk factor for the development of chronic kidney disease (CKD), and the possibility of postoperative deterioration of renal function must be considered before surgery. We investigated the contribution of the aortic calcification index (ACI) to the prediction of deterioration of renal function in patients undergoing radical nephrectomy. Between January 1995 and December 2012, we performed 511 consecutive radical nephrectomies for patients with RCC. We retrospectively studied data from 109 patients who had regular postoperative follow-up of renal function for at least five years. The patients were divided into non-CKD and pre-CKD based on a preoperative estimated glomerular filtration rate (eGFR) of ≥60 mL/min/1.73 m 2 or <60 mL/min/1.73 m 2 , respectively. The ACI was quantitatively measured by abdominal computed tomography before surgery. The patients in each group were stratified between low and high ACIs. Variables such as age, sex, comorbidities, and pre- and postoperative renal function were compared between patients with a low or high ACI in each group. Renal function deterioration-free interval rates were evaluated by Kaplan-Meier analysis. Factors independently associated with deterioration of renal function were determined using multivariate analysis. The median age, preoperative eGFR, and ACI in this cohort were 65 years, 68 mL/min/1.73 m 2 , and 8.3%, respectively. Higher ACI (≥8.3%) was significantly associated with eGFR decline in both non-CKD and pre-CKD groups. Renal function deterioration-free interval rates were significantly lower in the ACI-high than ACI-low strata in both of the non-CKD and pre-CKD groups. Multivariate analysis showed that higher ACI was an independent risk factor for deterioration of renal function at 5 years after radical nephrectomy. Aortic calcification burden is a potential predictor of deterioration of renal function after radical nephrectomy. This study was registered as a clinical trial: UMIN000023577.
Shen, Chong; Meng, Qin; Zhang, Guoliang
2013-08-01
Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.
Serum osteoprotegerin and renal function in the general population: the Tromsø Study.
Vik, Anders; Brodin, Ellen E; Mathiesen, Ellisiv B; Brox, Jan; Jørgensen, Lone; Njølstad, Inger; Brækkan, Sigrid K; Hansen, John-Bjarne
2017-02-01
Serum osteoprotegerin (OPG) is elevated in patients with chronic kidney disease (CKD) and increases with decreasing renal function. However, there are limited data regarding the association between OPG and renal function in the general population. The aim of the present study was to explore the relation between serum OPG and renal function in subjects recruited from the general population. We conducted a cross-sectional study with 6689 participants recruited from the general population in Tromsø, Norway. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equations. OPG was modelled both as a continuous and categorical variable. General linear models and linear regression with adjustment for possible confounders were used to study the association between OPG and eGFR. Analyses were stratified by the median age, as serum OPG and age displayed a significant interaction on eGFR. In participants ≤62.2 years with normal renal function (eGFR ≥90 mL/min/1.73 m 2 ) eGFR increased by 0.35 mL/min/1.73 m 2 (95% CI 0.13-0.56) per 1 standard deviation (SD) increase in serum OPG after multiple adjustment. In participants older than the median age with impaired renal function (eGFR <90 mL/min/1.73 m 2 ), eGFR decreased by 1.54 (95% CI -2.06 to -1.01) per 1 SD increase in serum OPG. OPG was associated with an increased eGFR in younger subjects with normal renal function and with a decreased eGFR in older subjects with reduced renal function. Our findings imply that the association between OPG and eGFR varies with age and renal function.
Mebarek, Saida; Abousalham, Abdelkarim; Magne, David; Do, Le Duy; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Buchet, René
2013-01-01
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions. PMID:23455471
Iglesias, Jose; Frank, Elliot; Mehandru, Sushil; Davis, John M; Levine, Jerrold S
2013-07-13
Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction.
Renal function preservation with the mTOR inhibitor, Everolimus, after lung transplant.
Schneer, Sonia; Kramer, Mordechai R; Fox, Benjamin; Rusanov, Viktoria; Fruchter, Oren; Rosengarten, Dror; Bakal, Ilana; Medalion, Benjamin; Raviv, Yael
2014-06-01
Chronic kidney disease (CKD) is a common complication of calcineurin inhibitors (CNIs) in solid organ transplantation. Previous data suggest that the use of everolimus as an immunosuppressant drug leads to improvement in renal function. The aim of our study was to establish the effect of everolimus in combination with lower doses of CNIs on renal function among lung transplant recipients. Data regarding renal function and pulmonary function were collected from 41 lung transplanted patients in whom treatment was converted to a combination of everolimus with lower doses of CNIs. Patients transferred to everolimus and low dose CNIs showed an improvement in renal function. Patients who continued treatment with everolimus showed improvement in renal function, as opposed to patients who discontinued the treatment. Subjects without proteinuria at baseline showed a better improvement compared with subjects with proteinuria. The incidence of graft rejection did not increase. We concluded that a protocol that includes everolimus and lower doses of CNIs is effective for preserving renal function in lung transplant recipients with CKD. We also believe that an early implementation of everolimus, before proteinuria occurs or creatinine clearance is reduced, could lead to better outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hughes, Kim; Flynn, Tanya; de Zoysa, Janak; Dalbeth, Nicola; Merriman, Tony R
2014-02-01
Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.
Palumbo, Antonio; Rajkumar, S. Vincent; San Miguel, Jesus F.; Larocca, Alessandra; Niesvizky, Ruben; Morgan, Gareth; Landgren, Ola; Hajek, Roman; Einsele, Hermann; Anderson, Kenneth C.; Dimopoulos, Meletios A.; Richardson, Paul G.; Cavo, Michele; Spencer, Andrew; Stewart, A. Keith; Shimizu, Kazuyuki; Lonial, Sagar; Sonneveld, Pieter; Durie, Brian G.M.; Moreau, Philippe; Orlowski, Robert Z.
2014-01-01
Purpose To provide an update on recent advances in the management of patients with multiple myeloma who are not eligible for autologous stem-cell transplantation. Methods A comprehensive review of the literature on diagnostic criteria is provided, and treatment options and management of adverse events are summarized. Results Patients with symptomatic disease and organ damage (ie, hypercalcemia, renal failure, anemia, or bone lesions) require immediate treatment. The International Staging System and chromosomal abnormalities identify high- and standard-risk patients. Proteasome inhibitors, immunomodulatory drugs, corticosteroids, and alkylating agents are the most active agents. The presence of concomitant diseases, frailty, or disability should be assessed and, if present, treated with reduced-dose approaches. Bone disease, renal damage, hematologic toxicities, infections, thromboembolism, and peripheral neuropathy are the most frequent disabling events requiring prompt and active supportive care. Conclusion These recommendations will help clinicians ensure the most appropriate care for patients with myeloma in everyday clinical practice. PMID:24419113
Acar, Sezer; Demir, Korcan; Shi, Yufei
2017-01-01
Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches. PMID:29280738
Giddens, W. E.; Labbe, R. F.; Swango, L. J.; Padgett, G. A.
1975-01-01
A feline erythropoietic porphyria was studied in an affected female Siamese cat and 2 male offspring. The principal elevated porphyrins were Type I isomers of uroporphyrin and coproporphyrin; the porphyrin precursors, porphobilinogen and sigma-aminolevulinic acid, were also detected. Porphyrins were present in the blood and in all the viscera, teeth, bones, and excreta. There was severe macrocytic hypochromic anemia, hepatomegaly, splenomegaly, and uremia associated with a renal disease characterized by mesangial hypercellularity and proliferation (resulting in narrowing of glomerular capillaries) and ischemic tubular injury. There was thickening of tubular basement membranes and tubular epithelial lipidosis, degeneration, and necrosis. Electron microscopic studies of bone marrow and kidney revealed the presence of membrane-enclosed lamellar bodies 150 to 1000 nm in diameter in cytoplasmic and extracellular locations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:1231563
Bartlett, Marissa L; Forsythe, Anna; Brady, Zoe; Mathews, John D
2018-05-01
We report data for all Australians aged 0-19 y who underwent publicly funded nuclear medicine studies between 1985 and 2005, inclusive. Radiation doses were estimated for individual patients for 95 different types of studies. There were 374 848 occasions of service for 277 511 patients with a collective effective dose of 1123 Sievert (Sv). Most services were either bone scans (45%) or renal scans (29%), with renal scans predominating at younger ages and bone scans at older ages. This pattern persisted despite a 4-fold increase in the annual number of procedures. Younger children were more likely to experience multiple scans, with the third quartile of scans per patient dropping from two to one with patient age. The median effective dose per patient ranged from 1.3 mSv (4-7 y old) to 2.8 mSv (13-16 y old). This large data set provides valuable information on nuclear medicine services for young Australians in the period 1985-2005.
Hypophosphataemia: an easy strategy for diagnosis and treatment in HIV patients.
Bagnis, Corinne Isnard; Karie, Svetlana; Deray, Gilbert; Essig, Marie
2009-01-01
Because HIV infection has become a chronic disease, it is crucial that metabolic complications secondary to HIV infection or prolonged therapy be diagnosed and managed appropriately over time. Therefore the optimal follow-up becomes complex and time consuming. Our review aimed to provide physicians in charge of HIV-infected patients with key data helping them to diagnose and understand hypophosphataemia in HIV patients. Hypophosphataemia is frequent and sometimes secondary to renal phosphate wasting. It is very rarely a component of a complex proximal tubular disorder, such as Fanconi syndrome. When isolated, hypophosphataemia is easy to rule out and treat. In rare cases, prolonged hypophosphataemia, when related to renal phosphate wasting and tubular dysfunction, might have potential consequences on bone outcome, however, more studies are needed. HIV infection by itself might be a risk factor for bone metabolism abnormalities; antiretroviral drugs might also be involved. Therefore, it seems valuable for patients that the minimal screening should be performed routinely, in order to prevent long-term disabilities.
Fenske, Wiebke K; Dubb, Sukhpreet; Bueter, Marco; Seyfried, Florian; Patel, Karishma; Tam, Frederick W K; Frankel, Andrew H; le Roux, Carel W
2013-01-01
Bariatric surgery improves arterial hypertension and renal function; however, the underlying mechanisms and effect of different surgical procedures are unknown. In the present prospective study, we compared the 12-month follow-up results after Roux-en-Y gastric bypass, laparoscopic adjustable gastric banding, and laparoscopic sleeve gastrectomy on weight loss, hypertension, renal function, and inflammatory status. A total of 34 morbidly obese patients were investigated before, one and 12 months after Roux-en-Y gastric bypass (n = 10), laparoscopic adjustable gastric banding (n = 13), and laparoscopic sleeve gastrectomy (n = 11) for hypertension, kidney function, urinary and serum cytokine levels of macrophage migration inhibitory factor, monocyte chemotactic protein-1, and chemokine ligand-18. At 12 months after surgery, the patients in all 3 treatment arms showed a significant decrease in the mean body mass index, mean arterial pressure, and urinary and serum inflammatory markers (all P < .001). The reduction in urinary and serum cytokine levels correlated directly with body weight loss (P < .05). Patients with impaired renal function at baseline (corresponding to serum cystatin C >.8 mg/L) had a marked improvement in renal function 12 months after surgery (P < .05). Surgically induced weight loss is associated with a marked decrease in renal and systemic inflammation and arterial hypertension and improvement in renal function in patients with pre-existing renal impairment. These effects appear to be independent of surgical procedure. The improvement in renal inflammation could be 1 of the mechanisms contributing to the beneficial effects of bariatric surgery on arterial blood pressure, proteinuria, and renal function. Copyright © 2013 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Ojeda, José M; Kohout, Isolda; Cuestas, Eduardo
2013-01-01
Haemolytic uremic syndrome (HUS) is the most common cause of acute renal failure and the second leading cause of chronic renal failure in children. The factors that affect incomplete renal function recovery prior to hospital admission are poorly understood. To analyse the risk factors that determine incomplete recovery of renal function prior to hospitalisation in children with HUS. A retrospective case-control study. age, sex, duration of diarrhoea, bloody stools, vomiting, fever, dehydration, previous use of antibiotics, and incomplete recovery of renal function (proteinuria, hypertension, reduced creatinine clearance, and chronic renal failure during follow-up). Patients of both sexes under 15 years of age were included. Of 36 patients, 23 were males (65.3%; 95%CI: 45.8 to 80.9), with an average age of 2.5 ± 1.4 years. Twenty-one patients required dialysis (58%; 95% CI: 40.8 to 75.8), and 13 (36.1%; 95% CI: 19.0 to 53.1) did not recover renal function. In the bivariate model, the only significant risk factor was dehydration (defined as weight loss >5%) [(OR: 5.3; 95% CI: 1.4 to 12.3; P=.0220]. In the multivariate analysis (Cox multiple regression), only dehydration was marginally significant (HR: 95.823; 95% CI: 93.175 to 109.948; P=.085). Our data suggest that dehydration prior to admission may be a factor that increases the risk of incomplete recovery of renal function during long-term follow-up in children who develop HUS D+. Consequently, in patients with diarrhoea who are at risk of HUS, dehydration should be strongly avoided during outpatient care to preserve long-term renal function. These results must be confirmed by larger prospective studies.
Shimada, Takashi; Urakawa, Itaru; Yamazaki, Yuji; Hasegawa, Hisashi; Hino, Rieko; Yoneya, Takashi; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi
2004-02-06
Fibroblast growth factor (FGF)-23 was identified as a causative factor of tumor-induced osteomalacia and also as a responsible gene for autosomal dominant hypophosphatemic rickets. To clarify the pathophysiological roles of FGF-23 in these diseases, we generated its transgenic mice. The transgenic mice expressing human FGF-23 reproduced the common clinical features of these diseases such as hypophosphatemia probably due to increased renal phosphate wasting, inappropriately low serum 1,25-dihydroxyvitamin D level, and rachitic bone. The renal phosphate wasting in the transgenic mice was accompanied by the reduced expression of sodium phosphate cotransporter type IIa in renal proximal tubules. These results reinforce the notion that the excessive action of FGF-23 plays a causative role in the development of several hypophosphatemic rickets/osteomalacia.
Posthuma, E F; Westendorp, R G; van der Sluys Veer, A; Kluin-Nelemans, J C; Kluin, P M; Lamers, C B
1995-02-01
A 19 year old man with a history of Crohn's disease treated with azathioprine and prednisone, died after a primary infection with Epstein-Barr virus. He had the characteristics of the virus associated haemophagocytic syndrome, a rare complication of viral infections, which consists of fever, constitutional symptoms, hepatosplenomegaly, liver function and coagulation abnormalities, and hypertriglyceridaemia. Additionally, there was pain, cytopenia, and histiocytic hyperplasia in the bone marrow, spleen, or lymph nodes. This severe complication has been reported previously in renal transplant patients, but not in those with inflammatory bowel disease taking azathioprine. The immunosuppressive therapy may have contributed to this fatal complication of infectious mononucleosis, and this complication should be considered when treating a patient with inflammatory bowel disease with azathioprine.
Selective androgen receptor modulators in preclinical and clinical development.
Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T
2008-01-01
Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.
Neural control of renal function: cardiovascular implications.
DiBona, G F
1989-06-01
The innervation of the kidney serves to function of its component parts, for example, the blood vessels, the nephron (glomerulus, tubule), and the juxtaglomerular apparatus. Alterations in efferent renal sympathetic nerve activity produce significant changes in renal blood flow, glomerular filtration rate, the reabsorption of water, sodium, and other ions, and the release of renin, prostaglandins, and other vasoactive substances. These functional effects contribute significantly to the renal regulation of total body sodium and fluid volumes with important implications for the control of arterial pressure. The renal nerves, both efferent and afferent, are known to be important contributors to the pathogenesis of hypertension. In addition, the efferent renal nerves participate in the mediation of the excessive renal sodium retention, which characterizes edema-forming states such as congestive heart failure. Thus, the renal nerves play an important role in overall cardiovascular homeostasis in both normal and pathological conditions.
Gadolinium deposition disease: Initial description of a disease that has been around for a while.
Semelka, Richard C; Ramalho, Joana; Vakharia, Ami; AlObaidy, Mamdoh; Burke, Lauren M; Jay, Michael; Ramalho, Miguel
2016-12-01
To describe the clinical manifestations of presumed gadolinium toxicity in patients with normal renal function. Participants were recruited from two online gadolinium toxicity support groups. The survey was anonymous and individuals were instructed to respond to the survey only if they had evidence of normal renal function, evidence of gadolinium in their system beyond 30days of this MRI, and no pre-existent clinical symptoms and/or signs of this type. 42 subjects responded to the survey (age: 28-69, mean 49.1±22.4years). The most common findings were: central pain (n=15), peripheral pain (n=26), headache (n=28), and bone pain (n=26). Only subjects with distal leg and arm distribution described skin thickening (n=22). Clouded mentation and headache were the symptoms described as persistent beyond 3months in 29 subjects. Residual disease was present in all patients. Twenty-eight patients described symptoms following administration of one brand of Gadolinium-Based Contrast Agent (GBCA), 21 after a single GBCA administration and 7 after multiple GBCA administrations, including: gadopentetate dimeglumine, n=9; gadodiamide, n=4; gadoversetamide, n=4; gadobenate dimeglumine, n=4; gadobutrol, n=1; gadoteridol, n=2; and unknown, n=4. Gadolinium toxicity appears to arise following GBCA administration, which appears to contain clinical features seen in Nephrogenic Systemic Fibrosis, but also features not observed in that condition. Copyright © 2016 Elsevier Inc. All rights reserved.
Hill, Andrew; Hughes, Sophie L; Gotham, Dzintars; Pozniak, Anton L
2018-04-01
Higher plasma tenofovir concentrations are associated with higher risks of renal and bone adverse events. The pharmacokinetic boosters ritonavir (RTV) and cobicistat (COBI) significantly increase plasma area under the curve (AUC) concentrations of tenofovir disoproxil fumarate (TDF), by 25-37%. When combined with RTV or COBI, the dose of tenofovir alafenamide (TAF) is lowered from 25 mg to 10 mg daily, but the TDF dose is maintained at 300 mg daily. To assess the differences in safety and efficacy between tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF) in regimens with and without the pharmacokinetic boosters RTV and COBI. A PubMed/Embase search inclusive of dates up to 17 July 2017 identified 11 randomised head-to-head trials (8111 patients) of TDF versus TAF. The Mantel-Haenszel method was used to calculate pooled risk differences and 95% confidence intervals using random-effects models. A pre-defined sub-group analysis compared TAF with TDF, either when boosted with RTV or COBI, or when unboosted. Nine clinical trials compared TAF and TDF for treatment of HIV-1 and two were for hepatitis B treatment. The eleven clinical trials documented 4574 patients with boosting RTV or COBI in both arms, covering 7198 patient-years of follow-up. Some 3537 patients received unboosted regimens, totalling 3595 patient-years of follow-up. Boosted TDF-treated patients showed borderline lower HIV RNA suppression <50 copies/mL ( P =0.05), more bone fractures ( P =0.04), larger decreases in bone mineral density ( P <0.001), and more discontinuations for bone ( P =0.03) or renal ( P =0.002) adverse events. By contrast, there were no significant differences in HIV RNA suppression rates or clinical safety endpoints between unboosted TAF and unboosted TDF. TDF boosted with RTV or COBI was associated with higher risks of bone and renal adverse events, and lower HIV RNA suppression rates, compared with TAF. By contrast, when ritonavir and cobicistat were not used, there were no efficacy differences between TAF and TDF, and marginal differences in safety. The health economic value of TAF versus low-cost generic TDF may be limited when these drugs are used without cobicistat or ritonavir.
Clinical types and drug therapy of renal impairment in cirrhosis
Rodés, J.; Bosch, J.; Arroyo, V.
1975-01-01
Four separate types of renal failure in cirrhosis are described: functional renal failure; diuretic induced uraemia; acute tubular necrosis; chronic intrinsic renal disease. Functional renal failure may arise spontaneously or be precipitated by such factors as haemorrhage, surgery, or infection. It carries a poor prognosis but preliminary results of treating this condition with plasma volume expansion in combination with high doses of furosemide are encouraging. PMID:1234328
The role of the renal specialist nurse in prevention of renal failure.
Hurst, J
2002-01-01
This article will investigate the care required for those with reduced renal function before renal replacement therapy (RRT) commences. Renal nurses are often involved with the technical, monitoring and evaluative aspects of RRT for those with end stage renal failure. However, many patients may experience reduced renal function many years before reaching the stage of needing RRT. Renal nurses are already involved in the preparation of patients for RRT, but are not presently exercising their specialist skills in the period before this time by contributing to the prevention of end stage renal failure (ESRF). Screening programmes carried out in various parts of the world demonstrate that many members of the population have undetected renal insufficiency, and may benefit from intervention from the nephrology team to prevent further renal dysfunction. It is for this group of patients that this article will consider the potential for the renal nurse to expand their scope of practice.
Hendrickson, Chase D; Castro Pereira, Daniel J; Comi, Richard J
2014-08-01
Management of primary hyperparathyroidism has evolved over the past two decades, yet impaired renal function has consistently been a surgical indication. This recommendation has been based upon the historical association between primary hyperparathyroidism and renal impairment, and a review of the literature is needed to determine whether such a recommendation is warranted. PubMed was utilized to identify English-language articles published between January 1990 and February 2014 using keywords related to hyperparathyroidism and renal function. The keywords were "primary hyperparathyroidism," "surgery," "parathyroidectomy," "kidney," "renal," "glomerular filtration rate," and "creatinine." Of the 1926 articles obtained with this search, all articles germane to the topic that quantified the relationship between primary hyperparathyroidism and renal function were included. All references within these articles were investigated for inclusion. When helpful, data tables were constructed to summarize the results succinctly. A secondary elevation of PTH levels has not been consistently shown to occur at the threshold currently indicated for surgical intervention. While renal impairment is seen with more significant disease, mild asymptomatic primary hyperparathyroidism has not been conclusively associated with renal impairment. Furthermore, there is no evidence to suggest that surgically curing primary hyperparathyroidism via a parathyroidectomy has any impact upon renal function.
Effect of renal denervation on dynamic autoregulation of renal blood flow.
DiBona, Gerald F; Sawin, Linda L
2004-06-01
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.
Johannes, Tanja; Mik, Egbert G; Nohé, Boris; Raat, Nicolaas JH; Unertl, Klaus E; Ince, Can
2006-01-01
Introduction Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (μPO2) and oxygen consumption (VO2,ren), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore μPO2, VO2,ren and kidney function, and that colloids are more effective than crystalloids. Methods Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.4 (Voluven®), HES200/0.5 (HES-STERIL® ® 6%) or Ringer's lactate. The renal μPO2 in the cortex and medulla and the renal venous PO2 were measured by a recently published phosphorescence lifetime technique. Results Endotoxemia induced a reduction in renal blood flow and anuria, while the renal μPO2 and VO2,ren remained relatively unchanged. Resuscitation restored renal blood flow, renal oxygen delivery and kidney function to baseline values, and was associated with oxygen redistribution showing different patterns for the different compounds used. HES200/0.5 and Ringer's lactate increased the VO2,ren, in contrast to HES130/0.4. Conclusion The loss of kidney function during endotoxemia could not be explained by an oxygen deficiency. Renal oxygen redistribution could for the first time be demonstrated during fluid resuscitation. HES130/0.4 had no influence on the VO2,ren and restored renal function with the least increase in the amount of renal work. PMID:16784545
AGXT2 rs37369 polymorphism predicts the renal function in patients with chronic heart failure.
Hu, Xiao-Lei; Zeng, Wen-Jing; Li, Mu-Peng; Yang, Yong-Long; Kuang, Da-Bin; Li, He; Zhang, Yan-Jiao; Jiang, Chun; Peng, Li-Ming; Qi, Hong; Zhang, Ke; Chen, Xiao-Ping
2017-12-30
Patients with chronic heart failure (CHF) are often accompanied with varying degrees of renal diseases. The purpose of this study was to identify rs37369 polymorphism of AGXT2 specific to the renal function of CHF patients. A total of 1012 southern Chinese participants, including 487 CHF patients without history of renal diseases and 525 healthy volunteers, were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes of AGXT2 rs37369 polymorphism. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected to indicate the renal function of the participants. BUN level was significantly higher in CHF patients without history of renal diseases compared with healthy volunteers (p=0.000). And the similar result was also obtained for SCr (p=0.000). Besides, our results indicated that the level of BUN correlated significantly with SCr in both the CHF patients without renal diseases (r=0.4533, p<0.0001) and volunteers (r=0.2489, p<0.0001). Furthermore, we found that the AGXT2 rs37369 polymorphism could significantly affect the level of BUN in CHF patients without history of renal diseases (p=0.036, AA+AG vs GG). Patients with rs37369 GG genotype showed a significantly reduced level of BUN compared to those with the AA genotype (p=0.024), and the significant difference was still observed in the smokers of CHF patients without renal diseases (p=0.023). In conclusion, we found that CHF might induce the impairment of kidney and cause deterioration of renal function. AGXT2 rs37369 polymorphism might affect the renal function of CHF patients free from renal diseases, especially in patients with cigarette smoking. Copyright © 2017. Published by Elsevier B.V.
Hallow, K M; Gebremichael, Y
2017-06-01
Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt-sensitive hypertension. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Sánchez Lázaro, Ignacio J; Almenar Bonet, Luis; Martínez Dolz, Luis; Buendía Fuentes, Francisco; Navarro Manchón, Josep; Agüero Ramón-Llin, Jaime; Vicente Sánchez, José Luis; Salvador Sanz, Antonio
2011-03-01
Daclizumab is an interleukin-2 receptor antagonist which is used for induction therapy in heart transplant patients. It has few side effects and is associated with a low infection rate. Postoperative renal failure after heart transplantation is common and potentially fatal. The administration of calcineurin inhibitors in the postoperative period can aggravate the situation. We report the cases of six patients who underwent heart transplantation and developed acute renal failure in the immediate postoperative period. All were administered daclizumab weekly to avoid the introduction of calcineurin inhibitors and to facilitate recovery of renal function. Calcineurin inhibitors were introduced only once renal function had improved. Renal function recovered in all cases and there was a low complication rate. The administration of repeated doses of daclizumab to patients who experience acute postoperative renal failure after heart transplantation may provide an alternative therapeutic approach that enables calcineurin inhibitors to be avoided and, consequently, renal function to recover. Copyright © 2010 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
MRI to assess renal structure and function.
Artunc, Ferruh; Rossi, Cristina; Boss, Andreas
2011-11-01
In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.
[Impaired renal function: be aware of exogenous factors].
van der Meijden, Wilbert A G; Smak Gregoor, Peter J H
2013-01-01
Renal function is currently estimated using the Modification of Diet in Renal Disease (MDRD) formula, which is partly based on the serum creatinine level. Patients with impaired renal function are referred to nephrologists in accordance with the Dutch national transmural agreement for 'Chronic renal impairment'. A 54-year-old woman without significant history was referred to analyse a coincidentally found decline in the estimated glomerular filtration rate (eGFR). The patient had no complaints and used no medication except creatine supplements. Additional diagnostic testing showed no abnormalities. After cessation of creatine supplementation, the calculated renal function normalized. Serum creatinine is a reflection of muscle mass. The use of creatine-containing dietary supplements, such as creatine ethyl ester, can influence serum creatinine levels and therefore the eGFR as calculated with the MDRD formula. The use of supplements deserves attention when taking the history.
Testani, Jeffrey M; McCauley, Brian D; Chen, Jennifer; Shumski, Michael; Shannon, Richard P
2010-01-01
Worsening renal function (WRF) during the treatment of decompensated heart failure, frequently defined as an absolute increase in serum creatinine >or=0.3 mg/dl, has been reported as a strong adverse prognostic factor in several studies. We hypothesized that this definition of WRF is biased by baseline renal function secondary to the exponential relationship between creatinine and renal function. We reviewed consecutive admissions with a discharge diagnosis of heart failure. An increase in creatinine >or=0.3 mg/dl (WRF(CREAT)) was compared to a decrease in GFR >or=20% (WRF(GFR)). Overall, 993 admissions met eligibility. WRF(CREAT) occurred in 31.5% and WRF(GFR) in 32.7%. WRF(CREAT) and WRF(GFR) had opposing relationships with baseline renal function (OR = 1.9 vs. OR = 0.51, respectively, p < 0.001). Both definitions had similar unadjusted associations with death at 30 days [WRF(GFR) OR = 2.3 (95% CI 1.1-4.8), p = 0.026; WRF(CREAT) OR = 2.1 (95% CI 1.0-4.4), p = 0.047]. Controlling for baseline renal insufficiency, WRF(GFR) added incrementally in the prediction of mortality (p = 0.009); however, WRF(CREAT) did not (p = 0.11). WRF, defined as an absolute change in serum creatinine, is heavily biased by baseline renal function. An alternative definition of WRF should be considered for future studies of cardio-renal interactions. Copyright 2010 S. Karger AG, Basel.
Renal subcapsular rim sign. Radionuclide pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howman-Giles, R.; Gett, M.; Roy, P.
1986-04-01
The renal cortical rim sign is a radiological term describing the thin peripheral nephrogram of 2-4 mm thick which is from the peri-renal capsular collateral circulation in an otherwise nonfunctioning kidney. Radionuclides are used frequently in the estimation of renal function. A neonate with renal vein thrombosis demonstrated a rim sign on renal scan with Technetium DTPA. The rim sign on renal scan can be differentiated from severe hydronephrosis or multicystic kidney both of which may have a peripheral thin cortex which functions late on the renal scan. The rim sign in renal vein thrombosis was best visualized during themore » early blood pool phase when there was a considerable amount of radioactivity in the blood pool.« less
Ulbing, M; Kirsch, A H; Leber, B; Lemesch, S; Münzker, J; Schweighofer, N; Hofer, D; Trummer, O; Rosenkranz, A R; Müller, H; Eller, K; Stadlbauer, V; Obermayer-Pietsch, B
2017-02-01
Chronic kidney disease (CKD) is associated with a multifactorial dysregulation of bone and vascular calcification and closely linked to increased cardiovascular mortality and concomitant bone disease. We aimed to investigate specific microRNA (miRNA) signatures in CKD patients to find indicators for vascular calcification and/or bone mineralization changes during CKD and after kidney transplantation (KT). A miRNA array was used to investigate serum miRNA profiles in CKD patients, then selected miRNAs were quantified in a validation cohort comprising 73 patients in CKD stages 3 to 5, 67 CKD patients after KT, and 36 healthy controls. A spectrum of biochemical parameters including markers for kidney function, inflammation, glucose, and mineral metabolism was determined. The relative expression of miR-223-3p and miR-93-5p was down-regulated in patients with CKD stage 4 and 5 compared to healthy controls. This down-regulation disappeared after kidney transplantation even when lower glomerular filtration rates (eGFR) persisted. MiR-223-3p and miR-93-5p were associated with interleukin-6 (IL-6) and eGFR levels, and by trend with interleukin-8 (IL-8), C-peptide, hematocrit, and parathyroid hormone (PTH). This study contributes new knowledge of serum miRNA expression profiles in CKD, potentially reflecting pathophysiological changes of bone and calcification pathways associated with inflammation, vascular calcification, mineral and glucose metabolism. Identified miRNA signatures can contribute to future risk markers or future therapeutic targets in bone and kidney disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis.
Orth, P; Cucchiarini, M; Wagenpfeil, S; Menger, M D; Madry, H
2014-06-01
To test the hypothesis that changes in the subchondral bone induced by parathyroid hormone (PTH [1-34]) reciprocally affect the integrity of the articular cartilage within a naïve osteochondral unit in vivo. Daily subcutaneous injections of 10 μg PTH [1-34]/kg were given to adult rabbits for 6 weeks, controls received saline. Blood samples were continuously collected to monitor renal function. The subchondral bone plate and subarticular spongiosa of the femoral heads were separately assessed by micro-computed tomography. Articular cartilage was evaluated by macroscopic and histological osteoarthritis scoring, polarized light microscopy, and immunohistochemical determination of type-I, type-II, type-X collagen contents, PTH [1-34] receptor and caspase-3 expression. Absolute and relative extents of hyaline and calcified articular cartilage layers were measured histomorphometrically. The correlation between PTH-induced changes in subchondral bone and articular cartilage was determined. PTH [1-34] enhanced volume, mineral density, and trabecular thickness within the subarticular spongiosa, and increased thickness of the calcified cartilage layer (all P < 0.05). Moreover, PTH [1-34] led to cartilage surface irregularities and reduced matrix staining (both P < 0.03). These early osteoarthritic changes correlated with and were ascribed to the increased thickness of the calcified cartilage layer (P = 0.026) and enhanced mineral density of the subarticular spongiosa (P = 0.001). Modifications of the subarticular spongiosa by PTH [1-34] cause broadening of the calcified cartilage layer, resulting in osteoarthritic cartilage degeneration. These findings identify a mechanism by which PTH-induced alterations of the normal subchondral bone microarchitecture may provoke early osteoarthritis. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Hu, Ping; Zhou, Xiang-Hai; Wen, Xin; Ji, Linong
2016-10-01
Risk factors related to renal function decline in type 2 diabetes mellitus (T2DM) remain uncertain. This study aimed to investigate risk factors in relation to renal function decline in patients with T2DM and in a subgroup of patients with normoalbuminuria. This study was a retrospective cohort study, which included 451 patients with T2DM aged 63 ± 14 years admitted to a tertiary hospital in Beijing, China, between April and December 2010 and followed up for 6-60 months. Endpoint was renal function decline, defined as estimated glomerular filtration rate less than 60 mL/min 1.73 m 2 or at least twofold increase of serum creatinine. Cox proportional hazards analysis was used to estimate hazard ratios (HRs) for candidate risk factors of renal function decline. After a median follow-up of 3.3 years, 94 (20.8%) patients developed renal function decline. Increased age (HR, 1.045; 95% CI, 1.020-1.070), albuminuria (HR, 1.956; 95%CI, 1.271-3.011), mild renal dysfunction (HR, 4.521; 95%CI, 2.734-7.476), hyperfiltration (HR, 3.897; 95%CI, 1.572-9.663), and increased hemoglobin A1c (HR, 1.128; 95%CI, 1.020-1.249) were identified as major risk factors. Among a subgroup of 344 patients with normoalbuminuria at baseline, 53 (15.4%) patients developed renal function decline. Increased age (HR, 1.089; 95%CI, 1.050-1.129), mild renal dysfunction (HR, 4.667; 95%CI, 2.391-9.107), hyperfiltration (HR, 5.677; 95%CI, 1.544-20.872), smoking (HR, 2.886; 95%CI, 1.370-6.082), higher pulse pressure (HR, 1.022; 95%CI, 1.004-1.040), and increased fasting glucose (HR, 1.104; 95%CI, 1.020-1.194) were major risk factors. Risk factors of diabetic renal impairment in T2DM should be screened and evaluated at an early stage of diabetes. Albuminuria, mild renal dysfunction, hyperfiltration, increased blood glucose, increased pulse pressure, and smoking were all predictors for diabetic renal impairment and interventions that focus on these risk factors may reduce further decline in renal function.
Vesicoureteral reflux in the primate IV: does reflux harm the kidney
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.A.; Fischman, N.H.; Thomas, R.
1982-09-01
It has been said that vesicoureteral reflux causes renal scarring because of intrarenal reflux. We studied reflux in the monkey because of its similarity to man, especially in regard to the incidence of vesicoureteral reflux and chronic pyelonephritis. High pressure moderate grade reflux was produced and renal function followed by means of quantitative renal camera studies using /sup 131/I hippuran. There was no change in renal function from sterile reflux even when intrarenal reflux occurred. When, however, infection was introduced, renal function decreased. We concluded that sterile moderate vesicoureteral or intrarenal reflux does not harm the kidney.
Why and how to measure renal function in patients with liver disease.
Piano, Salvatore; Romano, Antonietta; Di Pascoli, Marco; Angeli, Paolo
2017-01-01
Patients with advanced liver disease frequently have impaired renal function. Both acute kidney injury (AKI) and chronic kidney disease (CKD) are quite common in patients with cirrhosis and both are associated with a worse prognosis in these patients. A careful assessment of renal function is highly important in these patients to help physicians determine their diagnosis, prognosis and therapeutic management and to define transplantation strategies (liver transplantation alone vs simultaneous liver and kidney transplantation). Although they are still widely used in clinical practice, conventional biomarkers of renal function such as serum creatinine have several limitations in these patients. Recent progress has been made in the evaluation of renal function and new diagnostic criteria for AKI have been proposed. However, certain issues such as the noninvasive assessment of the glomerular filtration rate and/or improvement in the differential diagnosis between hepatorenal syndrome and acute tubular necrosis must still be addressed. The purposes of this paper are: (i) to highlight the importance of the evaluation of renal function in patients with cirrhosis; (ii) to review the state of the art in the assessment of renal function in these patients as well as advances that we expect will be made to improve the accuracy of available tools. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Acute renal failure associated with an accidental overdose of colchicine.
Borrás-Blasco, J; Enriquez, R; Sirvent, A E; Amoros, F; Navarro-Ruiz, A; Reyes, A
2005-10-01
A 47-year-old man with a history of polyarticular gout was admitted to the nephrology service because of severe renal insufficiency (creatinine 6.25 mg/dl). Three days before admission he had a pain crisis in his knees and ankles and self-administered 20 x 1 mg granules of colchicine p.o. over a period of 4 - 5 hours together with six suppositories each containing 100 mg of indomethacin. The patient began vomiting within 24 hours, experienced diarrhea which persisted for three days and then came to the hospital. The patient reported oliguria during the preceding 24 hours. In hospital, attempts to correct water and electrolyte balance were initiated. The patient became stabilized hemo-dynamically, the diarrhea disappeared within 24 hours, diuresis resumed and the renal function progressively improved. Leukopenia and thrombopenia were diagnosed, the transaminases increased: AST = 79 U/l, ALT = 132 U/l on the eighth day after taking the colchicine. The serology for hepatitis A, B, C and HIV viruses was negative; the serology for CMV and VEB revealed a previous infection. After being discharged from hospital 11 days after admission, the patient presented with the following parameters: hematocrit 39%, leukocytes 5,920/microl (3 470 neutrophils), prothrombin time 13 seconds, urea 44 mg/dl, creatinine 1.29 mg/dl, AST 16 U/l and ALT 35 U/l. The patient mistakenly ingested 20 mg ofcolchicine p.o. (0.22 mg/kg). The intoxication was associated with gastroenterocolitis, dehydration and renal failure during the first three days after ingestion. The patient also developed leukopenia, thrombopenia and mild hepatocellular injury. Renal failure due to colchicine intoxication is due to various factors such as depletion of volume/hypotension, rhabdomyolysis and multiorgan failure. In this case, the hypovolemia was probably the fundamental cause of the acute renal insufficiency as demonstrated by the quick recovery after administering fluids. It is possible that indomethacin may have enhanced the toxic effect of colchicine on the kidneys and bone marrow. Some colchicine intoxications, as in this case, are caused by an error in interpreting the dose for treating an acute attack of gout. A way to prevent these errors would be to use a low-dose treatment protocol.
Bisphosphonate induced hypocalcaemia - report of six cases and review of the literature.
Kreutle, Veronika; Blum, Claudine; Meier, Christian; Past, Miriam; Müller, Beat; Schütz, Philipp; Borm, Katrin
2014-01-01
Intravenous bisphosphonates are widely used to treat osteoporosis and bone metastasis in cancer patients The risk of hypocalcaemia is a rare but underestimated side effect of anti-resorptive treatment. Clinically apparent hypocalcaemia is mostly related to high-dose treatment with zoledronate and denosumab in cancer patients Particular caution is mandatory in all malnourished patients and patients with renal failure who are treated for either bone metastases or osteoporosis. To avoid serious hypocalcaemia, pre-treatment calcium and vitamin D status should be assessed and corrected if appropriate.
B-Receptor Signaling in Cardiomyopathy
2015-11-16
Carcinomas; Amyloidosis; Anal Cancer; Anemia; Cholangiocarcinoma of the Extrahepatic Bile Duct; Transitional Cell Carcinoma of Bladder; Bone Marrow Transplant Failure; Bone Cancer; Cancer of Brain and Nervous System; Breast Cancer; Carcinoma of the Large Intestine; Endocrine Cancer; Esophageal Cancer; Eye Cancer; Gall Bladder Cancer; Gastric (Stomach) Cancer; Gastrooesophageal Cancer; Gastrointestinal Stromal Tumor (GIST); Gynecologic Cancers; Head and Neck Cancers; Hepatobiliary Neoplasm; Kidney (Renal Cell) Cancer; Leukemia; Lung Cancer; Hodgkin Disease; Lymphoma, Non-Hodgkin; Mesothelioma; Multiple Myeloma; Myelodysplastic Syndromes (MDS); Neuroendocrine Tumors; Myeloproliferative Disorders; Pancreatic Cancer; Prostate Cancer; Skin Cancer; Soft Tissue Sarcoma; Testicular Cancer; Thymus Cancer; Thyroid Cancer
Paralysis Episodes in Carbonic Anhydrase II Deficiency.
Al-Ibrahim, Alia; Al-Harbi, Mosa; Al-Musallam, Sulaiman
2003-01-01
Carbonic anhydrase II (CAII) deficiency is an autosomal recessive disorder manifest by osteopetrosis, renal tubular acidosis, and cerebral calcification. Other features include growth failure and mental retardation. Complications of the osteopetrosis include frequent bone fractures, cranial nerve compression, and dental mal-occlusion. A hyper-chloremic metabolic acidosis, sometimes with hypokalemia, occurs due to renal tubular acidosis that may be proximal, distal, or more commonly, the combined type. Such patients may present with global hypotonia, muscle weakness or paralysis. We report a case of CA II deficiency with recurrent attacks of acute paralysis which was misdiagnosed initially as Guillian-Barre syndrome.
Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis
Haller, Steven T.; Fan, Xiaoming; Xie, Jeffrey X.; Kennedy, David J.; Liu, Jiang; Yan, Yanling; Hernandez, Dawn-Alita; Mathew, Denzil P.; Cooper, Christopher J.; Shapiro, Joseph I.; Tian, Jiang
2016-01-01
Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly (P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words) PMID:27789733
2013-01-01
Background Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Methods Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Results Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. Conclusion These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction. PMID:23849513
Dosing of cytotoxic chemotherapy: impact of renal function estimates on dose.
Dooley, M J; Poole, S G; Rischin, D
2013-11-01
Oncology clinicians are now routinely provided with an estimated glomerular filtration rate on pathology reports whenever serum creatinine is requested. The utility of using this for the dose determination of renally excreted drugs compared with other existing methods is needed to inform practice. Renal function was determined by [Tc(99m)]DTPA clearance in adult patients presenting for chemotherapy. Renal function was calculated using the 4-variable Modification of Diet in Renal Disease (4v-MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Cockcroft and Gault (CG), Wright and Martin formulae. Doses for renal excreted cytotoxic drugs, including carboplatin, were calculated. The concordance of the renal function estimates according to the CKD classification with measured Tc(99m)DPTA clearance in 455 adults (median age 64.0 years: range 17-87 years) for the 4v-MDRD, CKD-EPI, CG, Martin and Wright formulae was 47.7%, 56.3%, 46.2%, 56.5% and 60.2%, respectively. Concordance for chemotherapy dose for these formulae was 89.0%, 89.5%, 85.1%, 89.9% and 89.9%, respectively. Concordance for carboplatin dose specifically was 66.4%, 71.4%, 64.0%, 73.8% and 73.2%. All bedside formulae provide similar levels of concordance in dosage selection for the renal excreted chemotherapy drugs when compared with the use of a direct measure of renal function.
Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley
2017-10-20
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Allowable exposure limits for carbon dioxide during extravehicular activity
NASA Technical Reports Server (NTRS)
Seter, Andrew J.
1993-01-01
The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.
Oral metastasis from primary transitional cell carcinoma of the renal pelvis: report of a case.
Zhang, Y; Gu, Z-Y; Tian, Z; Yang, C; Cai, X-Y
2010-07-01
Transitional cell carcinoma of the renal pelvis is initially a slow growing tumor arising from the transitional epithelium of the mucous membrane of the renal pelvis. Recurrences occur in two forms: superficial bladder cancer and distant metastases. The common metastasis is in the lung, liver, brain and bone. Oral metastasis is seldom reported. The authors report an unusual case of transitional cell carcinoma of the renal pelvis metastasized to the oral cavity and lung simultaneously in a 74-year-old man, which occurred 1 year after a left nephroureterectomy. The patient underwent six courses of chemotherapy (gemcitabine, oxaliplatin, fluorouracil and nedaplatin), and received radiotherapy for the oral lesion. The symptoms were alleviated, but the tumor recurred in the oral cavity 2 years later. Brain and liver metastases were confirmed by CT. Repeated radiotherapy for oral metastasis was performed, but the patient died 4 years after the initial nephroureterectomy due to multiple metastases. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Favus, Murray J.
2008-09-01
Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.
Frequency response of the renal vasculature in congestive heart failure.
DiBona, Gerald F; Sawin, Linda L
2003-04-29
The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.
[Dent's syndrome. Nephrology follow-up of four patients of the same family].
Coulibaly, G; Babinet, F; Champion, G
2012-04-01
Dent's syndrome is a rare inherited tubulopathy. Factors influencing renal function in this disease are not well known. The aim of our study is to investigate the evolution of the Dent's syndrome in renal plan. The study was retrospective and conducted in 2006, concerning four brothers. The genetic defect was a mutation S244L missense in exon 6 of gene CLCN5. Various parameters were studied. Patients were 8.5 to 21-years-old at the beginning of the follow-up. Two of them had chronic renal insufficiency (CRI) which evolved, at least 7 years of moderate to terminal stage. Tubular signs were made of hypokalemia, hypercalciuria, hypophosphatemia and proteinuria mostly β2 microglobulin. Improvement of these abnormalities was obtained with symptomatic treatment which has not always been well tolerated. A case of beginner nephrocalcinosis was observed. There was size and weight delay at the beginning of patient monitoring. Dent's syndrome may be complicated by CRI. It seems to appear in the second decade of life and hypercalciuria would contribute to it. Our CRI patients had significant bone disease. The hypercalciuria and proteinuria are factors over which we try to act. Clinical trials are needed to evaluate the efficacy of treatment on the reduction of CRI or its progression by reducing these factors in patients with Dent's syndrome. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Guerraty, Marie A; Chai, Boyang; Hsu, Jesse Y; Ojo, Akinlolu O; Gao, Yanlin; Yang, Wei; Keane, Martin G; Budoff, Matthew J; Mohler, Emile R
2015-05-01
Although subjects with chronic kidney disease (CKD) are at markedly increased risk for cardiovascular mortality, the relation between CKD and aortic valve calcification has not been fully elucidated. Also, few data are available on the relation of aortic valve calcification and earlier stages of CKD. We sought to assess the relation of aortic valve calcium (AVC) with estimated glomerular filtration rate (eGFR), traditional and novel cardiovascular risk factors, and markers of bone metabolism in the Chronic Renal Insufficiency Cohort (CRIC) Study. All patients who underwent aortic valve scanning in the CRIC study were included. The relation between AVC and eGFR, traditional and novel cardiovascular risk factors, and markers of calcium metabolism were analyzed using both unadjusted and adjusted regression models. A total of 1,964 CRIC participants underwent computed tomography for AVC quantification. Decreased renal function was independently associated with increased levels of AVC (eGFR 47.11, 44.17, and 39 ml/min/1.73 m2, respectively, p<0.001). This association persisted after adjusting for traditional, but not novel, AVC risk factors. Adjusted regression models identified several traditional and novel risk factors for AVC in patients with CKD. There was a difference in AVC risk factors between black and nonblack patients. In conclusion, our study shows that eGFR is associated in a dose-dependent manner with AVC in patients with CKD, and this association is independent of traditional cardiovascular risk factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.
Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E
2016-05-01
This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone. © 2015, The American College of Clinical Pharmacology.
Minhas, Anum S; Jiang, Qingmei; Gu, Xiaokui; Haymart, Brian; Kline-Rogers, Eva; Almany, Steve; Kozlowski, Jay; Krol, Gregory D; Kaatz, Scott; Froehlich, James B; Barnes, Geoffrey D
2016-11-01
All available direct oral anticoagulants (DOACs) are at least partially eliminated by the kidneys. These agents are increasingly being used as alternatives to warfarin for stroke prevention in patients with atrial fibrillation. The aim of this study was to identify changes in renal function and associated DOAC dosing implications in a multicenter cohort of atrial fibrillation patients switched from warfarin to DOAC treatment. We included all patients in the Michigan Anticoagulation Quality Improvement Initiative cohort who switched from warfarin to a DOAC with atrial fibrillation as their anticoagulant indication between 2009 and 2014, and who had at least two creatinine values. Compliance with FDA-recommended dosing based on renal function was assessed. Of the 189 patients switched from warfarin to a DOAC, 34 (18.0 %) had a baseline creatinine clearance <50 mL/min and 23 (12.2 %) experienced important fluctuations in renal function. Of these 23 patients, 6 (26.1 %) should have impacted the DOAC dosing, but only 1 patient actually received an appropriate dose adjustment. Additionally, 15 (7.9 %) of patients on DOACs had a dose change performed, but only one patient demonstrated a change in renal function to justify the dose adjustment. Most atrial fibrillation patients who switched from warfarin to a DOAC had stable renal function. However, the majority of patients who had a change in renal function did not receive the indicated dose change. As the use of DOACs expands, monitoring of renal function and appropriate dose adjustments are critical.
European Myeloma Network Guidelines for the Management of Multiple Myeloma-related Complications
Terpos, Evangelos; Kleber, Martina; Engelhardt, Monika; Zweegman, Sonja; Gay, Francesca; Kastritis, Efstathios; van de Donk, Niels W.C.J.; Bruno, Benedetto; Sezer, Orhan; Broijl, Annemiek; Bringhen, Sara; Beksac, Meral; Larocca, Alessandra; Hajek, Roman; Musto, Pellegrino; Johnsen, Hans Erik; Morabito, Fortunato; Ludwig, Heinz; Cavo, Michele; Einsele, Hermann; Sonneveld, Pieter; Dimopoulos, Meletios A.; Palumbo, Antonio
2015-01-01
The European Myeloma Network provides recommendations for the management of the most common complications of multiple myeloma. Whole body low-dose computed tomography is more sensitive than conventional radiography in depicting osteolytic disease and thus we recommend it as the novel standard for the detection of lytic lesions in myeloma (grade 1A). Myeloma patients with adequate renal function and bone disease at diagnosis should be treated with zoledronic acid or pamidronate (grade 1A). Symptomatic patients without lytic lesions on conventional radiography can be treated with zoledronic acid (grade 1B), but its advantage is not clear for patients with no bone involvement on computed tomography or magnetic resonance imaging. In asymptomatic myeloma, bisphosphonates are not recommended (grade 1A). Zoledronic acid should be given continuously, but it is not clear if patients who achieve at least a very good partial response benefit from its continuous use (grade 1B). Treatment with erythropoietic-stimulating agents may be initiated in patients with persistent symptomatic anemia (hemoglobin <10g/dL) in whom other causes of anemia have been excluded (grade 1B). Erythropoietic agents should be stopped after 6–8 weeks if no adequate hemoglobin response is achieved. For renal impairment, bortezomib-based regimens are the current standard of care (grade 1A). For the management of treatment-induced peripheral neuropathy, drug modification is needed (grade 1C). Vaccination against influenza is recommended; vaccination against streptococcus pneumonia and hemophilus influenza is appropriate, but efficacy is not guaranteed due to suboptimal immune response (grade 1C). Prophylactic aciclovir (or valacyclovir) is recommended for patients receiving proteasome inhibitors, autologous or allogeneic transplantation (grade 1A). PMID:26432383
NASA Technical Reports Server (NTRS)
Kravik, Stein E.
1989-01-01
Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.
NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.
Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae
2017-10-15
Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubovsky, E.V.; Curtis, J.J.; Luke, R.G.
Impaired function of renal allografts caused by recurrent disease or rejection is often accompanied by hypertension. The etiology of persistent severe hypertension in recipients with good renal function is more difficult to explain. To study this problem, 33 patients with mean arterial pressure (MAP) > 105 mm Hg (at least one year after transplantation) were tested. When compared to a normotensive group, they were found to have increased renal vascular resistance, lower ERPF, and increased renin-angiotensin activity. The effect of Captopril, a converting enzyme inhibitor, was studied to evaluate the role of angiotension. The paper concludes that Captopril test maymore » permit differentiation between native kidney-dependent hypertension (increase in ERPF) and functionally active renal artery stenosis (decline in ERPF) in patients with persistent hypertension and good renal function.« less
Reference values of renal tubular function tests are dependent on age and kidney function.
Bech, Anneke P; Wetzels, Jack F M; Nijenhuis, Tom
2017-12-01
Electrolyte disorders due to tubular disorders are rare, and knowledge about validated clinical diagnostic tools such as tubular function tests is sparse. Reference values for tubular function tests are based on studies with small sample size in young healthy volunteers. Patients with tubular disorders, however, frequently are older and can have a compromised renal function. We therefore evaluated four tubular function tests in individuals with different ages and renal function. We performed furosemide, thiazide, furosemide-fludrocortisone, and desmopressin tests in healthy individuals aged 18-50 years, healthy individuals aged more than 50 years and individuals with compromised renal function. For each tubular function test we included 10 individuals per group. The responses in young healthy individuals were in line with previously reported values in literature. The maximal increase in fractional chloride excretion after furosemide was below the lower limit of young healthy individuals in 5/10 older subjects and in 2/10 patients with compromised renal function. The maximal increase in fractional chloride excretion after thiazide was below the lower limit of young healthy individuals in 6/10 older subjects and in 7/10 patients with compromised renal function. Median maximal urine osmolality after desmopressin was 1002 mosmol/kg H 2 O in young healthy individuals, 820 mosmol/kg H 2 O in older subjects and 624 mosmol/kg H 2 O in patients with compromised renal function. Reference values for tubular function tests obtained in young healthy adults thus cannot simply be extrapolated to older patients or patients with compromised kidney function. Larger validation studies are needed to define true reference values in these patient categories. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases.
Bernheim, Jacques; Benchetrit, Sydney
2011-08-01
Fibroblast growth factor (FGF) 23 and Klotho are two factors associated with several metabolic disorders. Similar to humans, accelerated aging processes characterized by chronic vascular disease, bone demineralization, skin atrophy and emphysema have been recognized in FGF23-null mice and Klotho-deficient mice. The role of these factors in the control of mineral metabolism homeostasis have been shown recently, particularly at the level of parathyroid cells and also in modulating active vitamin D production, two phenomena which are relevant in the presence of chronic kidney disease. In addition, the hormonal affect of circulating FGF23 and Klotho proteins on vascular reactivity, either directly on endothelial cell functions or indirectly by modulating the brain endothelin-1-dependent sympathetic nervous system activity, has contributed to understanding their role in the pathophysiology of hypertension and atherosclerotic vasculopathies. Consequently, very recent clinical investigations seem to confirm the involvement of Klotho in modulating the severity and prognosis of human cardiovascular (CV) disorders and longevity. The present review reports data related to the possible interactive effects of Klotho and FGF23 on the prognosis of renal and CV diseases.
Iron-induced hypophosphatemia: an emerging complication.
Zoller, Heinz; Schaefer, Benedikt; Glodny, Bernhard
2017-07-01
Iron-induced hypophosphatemia is a well documented side-effect but associated complications are largely neglected, because the results from single dosing studies suggest that transient decreases in plasma phosphate concentrations are asymptomatic and fully reversible. However, an increasing number of case reports and case series suggest that some patients develop severe and symptomatic hypophosphatemia. Long-term complications from hypophosphatemia include osteomalacia and bone fractures, which can result from repeated intravenous administration of certain high-dose iron preparations. Results from clinical trials suggest that the highest risk for the development of hypophosphatemia is associated with ferric carboxymaltose, iron polymaltose, and saccharated iron oxide. Clinical studies show that renal phosphate wasting mediated by increased fibroblast growth factor 23 causes hypophosphatemia after iron therapy. Impaired renal function therefore protects from hypophosphatemia, whereas the highest incidences and most severe manifestations have been reported in patients in whom the underlying cause of iron deficiency cannot be corrected. Diagnosis of iron-induced hypophosphatemia requires clinical suspicion. Treatment is guided by the severity of hypophosphatemia, and most patients will require oral or intravenous phosphate substitution. Future treatment options could involve therapeutic anti-FGF23 antibody (KRN23). Prevention and correction of vitamin D deficiency represents a supportive treatment option.
The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.
Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru
2017-06-01
Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury
Rampanelli, Elena; Stroo, Ingrid; Butter, Loes M.; Teske, Gwendoline J.; Claessen, Nike; Stokman, Geurt; Florquin, Sandrine; Leemans, Jaklien C.; Dessing, Mark C.
2017-01-01
An accumulating body of evidence shows that gut microbiota fulfill an important role in health and disease by modulating local and systemic immunity. The importance of the microbiome in the development of kidney disease, however, is largely unknown. To study this concept, we depleted gut microbiota with broad-spectrum antibiotics and performed renal ischemia-reperfusion (I/R) injury in mice. Depletion of the microbiota significantly attenuated renal damage, dysfunction, and remote organ injury and maintained tubular integrity after renal I/R injury. Gut flora–depleted mice expressed lower levels of F4/80 and chemokine receptors CX3CR1 and CCR2 in the F4/80+ renal resident macrophage population and bone marrow (BM) monocytes than did control mice. Additionally, compared with control BM monocytes, BM monocytes from gut flora–depleted mice had decreased migratory capacity toward CX3CL1 and CCL2 ligands. To study whether these effects were driven by depletion of the microbiota, we performed fecal transplants in antibiotic-treated mice and found that transplant of fecal material from an untreated mouse abolished the protective effect of microbiota depletion upon renal I/R injury. In conclusion, we show that depletion of gut microbiota profoundly protects against renal I/R injury by reducing maturation status of F4/80+ renal resident macrophages and BM monocytes. Therefore, dampening the inflammatory response by targeting microbiota-derived mediators might be a promising therapy against I/R injury. PMID:27927779
PAROTID FLUID TOTAL PROTEIN IN PATIENTS WITH UREMIA AND PROTEINURIA.
Stimulated parotid fluid samples (238) were collected from 32 patients to determine if altered renal function was associated with deviations in...tubular necrosis, and 15 had normal renal function. There were no significant differences in parotid fluid protein concentration or minute secretion associated with the state of renal function. (Author)
Acute and cumulative effects of carboplatin on renal function.
Sleijfer, D. T.; Smit, E. F.; Meijer, S.; Mulder, N. H.; Postmus, P. E.
1989-01-01
Carboplatin, a cisplatinum analogue, has no reported nephrotoxicity in phase I/II studies, assessed by creatinine clearance. We prospectively determined renal function in 10 untreated lung cancer patients with normal baseline renal function, treated with carboplatin 400 mg m-2 day 1 and vincristine 2 mg day 1 and 8 every 4 weeks (max. five cycles) by means of clearance studies with 125I-sodium thalamate and 131I-hippurate to determine GFR and ERPF respectively. Tubular damage was monitored by excretion of tubular enzymes and relative beta 2-microglobulin clearance. During the first course no changes in renal function were seen. After the second course a significant fall in GFR and ERPF started, ultimately leading to a median decrease in GFR of 19.0% (range 6.8-38.7%) and in ERPF of 14% (range 0-38.9%). No increases in the excretion of tubular enzymes or changes in the relative beta 2-microglobulin clearances were seen. We conclude from our data that carboplatin causes considerable loss of renal function. Monitoring renal function in patients treated with multiple courses of carboplatin is warranted. PMID:2679841
Jackson, Price; Foroudi, Farshad; Pham, Daniel; Hofman, Michael S; Hardcastle, Nicholas; Callahan, Jason; Kron, Tomas; Siva, Shankar
2014-11-26
Stereotactic ablative body radiotherapy (SABR) has been proposed as a definitive treatment for patients with inoperable primary renal cell carcinoma. However, there is little documentation detailing the radiobiological effects of hypofractionated radiation on healthy renal tissue. In this study we describe a methodology for assessment of regional change in renal function in response to single fraction SABR of 26 Gy. In a patient with a solitary kidney, detailed follow-up of kidney function post-treatment was determined through 3-dimensional SPECT/CT imaging and (51)Cr-EDTA measurements. Based on measurements of glomerular filtration rate, renal function declined rapidly by 34% at 3 months, plateaued at 43% loss at 12 months, with minimal further decrease to 49% of baseline by 18 months. The pattern of renal functional change in (99m)Tc-DMSA uptake on SPECT/CT imaging correlates with dose delivered. This study demonstrates a dose effect relationship of SABR with loss of kidney function.
Jakobovits, Akos; Jakobovits, Antal
2009-06-14
Although it becomes vitally important only after birth, renal function already plays significant role in maintaining fetal metabolic equilibrium. The kidneys significantly contribute to production of amniotic fluid. Adequate amount of amniotic fluid is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development. As a result, oligohydramnion is conducive to pulmonary hypoplasia. The latter may lead to neonatal demise soon after birth. In extrauterine life kidneys eliminate nitrogen containing metabolic byproducts. Inadequate renal function results therefore lethal uremia. Integrity of ureters and the urethra is essential for the maintenance of renal function. Retention of urine causes degeneration of the functional units of the kidneys and ensuing deterioration of renal function. Intrauterine kidney puncture or shunt procedure may delay this process in some cases. On the other hand, once renal function has been damaged, no therapy can restart it. Certain anomalies of renal excretory pathways may also be associated with other congenital abnormalities, making the therapeutic efforts pointless. Presence of these associated intrauterine defects makes early pregnancy termination a management alternative, as well as it affects favorably perinatal mortality rates.
Neural control of renal function: role of renal alpha adrenoceptors.
DiBona, G F
1985-01-01
Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.
The effect of primary hyperparathyroidism on pancreatic exocrine function.
Sisman, P; Avci, M; Akkurt, A; Sahin, A B; Gul, O O; Ersoy, C; Erturk, E
2018-03-01
Elastase-1 is a proteolytic enzyme secreted by pancreatic acinar cells, and measurements of the concentration this enzyme are used to evaluate pancreatic exocrine function. We aimed to determine whether pancreatic exocrine function declines due to chronic hypercalcemia by measuring fecal elastase levels. 75 patients with primary hyperparathyroidism (18 men and 47 women) and 30 healthy subjects (11 men and 19 women) participated in this study. Renal function tests, lipid parameters, bone mineral density, and serum calcium, phosphorus, vitamin D, parathormone, glucose, and thyroid stimulating hormone levels as well as fecal elastase concentrations, were determined in these patients and controls. The mean fecal elastase level was 335.3 ± 181.4 μg/g in the PHPT group and 317.4 ± 157.3 μg/g in the control group. There was no significant difference in fecal elastase levels between the two groups (p = 0.5). Chronic hypercalcemia in primary hyperparathyroidism did not decrease the fecal elastase level, which is an indirect indicator of chronic pancreatitis; therefore, chronic hypercalcemia in PHPT may not cause chronic pancreatitis.
Makhlough, Atieh; Shekarchian, Soroosh; Moghadasali, Reza; Einollahi, Behzad; Dastgheib, Mona; Janbabaee, Ghasem; Hosseini, Seyedeh Esmat; Falah, Nasrin; Abbasi, Fateme; Baharvand, Hossein; Aghdami, Nasser
2018-05-01
Chronic kidney disease (CKD) is a progressive loss of kidney function and structure that affects approximately 13% of the population worldwide. A recent meta-analysis revealed that cell-based therapies improve impaired renal function and structure in preclinical models of CKD. We assessed the safety and tolerability of bone marrow-mesenchymal stromal cell (MSC) infusion in patients with CKD. A single-arm study was carried out at one center with 18-month follow-up in seven eligible patients with CKD due to different etiologies such as hypertension, nephrotic syndrome (NS) and unknown etiology. We administered an intravenous infusion (1-2 × 10 6 cells/kg) of autologous cultured MSCs. The primary endpoint was safety, which was measured by number and severity of adverse events. The secondary endpoint was decrease in the rate of decrease in estimated glomerular filtration rate (eGFR). We compared kidney function during the follow-up visits to baseline and 18 months prior to the intervention. Follow-up visits of all seven patients were completed; however, we have not observed any cell-related adverse events during the trial. Changes in eGFR (P = 0.10) and serum creatinine (P = 0.24) from 18 months before cell infusion to baseline in comparison with baseline to 18 months were not statistically significant. We showed safety and tolerability of a single-dose infusion of autologous MSCs in patients with CKD. Copyright © 2018. Published by Elsevier Inc.
Li, Yizhun; Yang, Liangle; Wang, Hao; Jiang, Haijing; Qiu, Gaokun; Liu, Yiyi; Xiao, Yang; Yang, Handong; Wu, Tangchun; Zhang, Xiaomin
2018-03-01
Prospective evidence on the relation between time in bed and renal dysfunction remains limited. We aimed to investigate the association of time spent in bed attempting to sleep (TSBS) with renal function decline in a middle-aged and elderly Chinese population. About 16,733 eligible participants with a mean age of 62.3 years at baseline were included. Rapid renal function decline was defined as (baseline eGFR - revisit eGFR)/years of follow-up ≥5 mL/min per 1.73 m 2 /year. A total of 1738 study participants experienced rapid renal function decline after a median 4.6-year follow-up. Logistic regression models were used for multivariate analyses. The adjusted odds ratio (OR) of rapid renal function decline was 1.18 (95% CI: 1.02, 1.37) for TSBS ≥9 h/night compared with TSBS 7 to <8 h/night. This association remained significant (OR = 1.19, 95% CI: 1.03, 1.38) after further adjustment for sleep quality, midday napping and usage of sleeping pills. Particularly, the association appeared to be prominent in individuals with diabetes. Longer TSBS (≥9 h) was independently associated with an increased risk of rapid renal function decline. Our findings emphasized the importance to have optimal TSBS. Key messages Our study firstly investigated the association between time spent in bed attempting to sleep (TSBS) and renal dysfunction in Chinese adults. Compared with individuals TSBS 7 to <8 h, individuals with TSBS ≥9 h had 19% increased risk for rapid renal function decline after adjustment for multivariate confounders. The association appeared to be prominent in individuals with diabetes.
Enhanced renal prostaglandin production in the dog. I. Effects on renal function.
Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S
1975-01-01
The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.
Levine, Lauren B; Roddy, Julianna Vf; Kim, Miryoung; Li, Junan; Phillips, Gary; Walker, Alison R
2018-06-01
Purpose There are limited data regarding the clinical use of decitabine for the treatment of acute myeloid leukemia in patients with a serum creatinine of 2 mg/dL or greater. Methods We retrospectively evaluated 111 patients with acute myeloid leukemia who had been treated with decitabine and compared the development of toxicities during cycle 1 in those with normal renal function (creatinine clearance greater than or equal to 60 mL/min) to those with renal dysfunction (creatinine clearance less than 60 mL/min). Results Notable differences in the incidence of grade ≥3 cardiotoxicity (33% of renal dysfunction patients vs. 16% of normal renal function patients, p = 0.042) and respiratory toxicity (40% of renal dysfunction patients vs. 14% of normal renal function patients, p = 0.0037) were observed. The majority of heart failure, myocardial infarction, and atrial fibrillation cases occurred in the renal dysfunction group. The odds of developing grade ≥3 cardiotoxicity did not differ significantly between patients with and without baseline cardiac comorbidities (OR 1.43, p = 0.43). Conclusions This study noted a higher incidence of grade ≥3 cardiac and respiratory toxicities in decitabine-treated acute myeloid leukemia patients with renal dysfunction compared to normal renal function. This may prompt closer monitoring, regardless of baseline cardiac comorbidities. Further evaluation of decitabine in patients with renal dysfunction is needed.
Hasslacher, Christoph
2003-03-01
To evaluate the influence of renal impairment on the safety and efficacy of repaglinide in type 2 diabetic patients. This multinational, open-label study comprised a 6-week run-in period, continuing prestudy antidiabetic medication, followed by a titration period (1-4 weeks) and a 3-month maintenance period. Patients with normal renal function (n = 151) and various degrees of renal impairment (n = 130) were treated with repaglinide (maximal dose of 4 mg, three times daily). Safety and efficacy assessments were performed at baseline (end of run-in) and at the end of study treatment. The type and severity of adverse events during repaglinide treatment were similar to the run-in period. The number of patients with adverse events was not significantly related to renal function during run-in or repaglinide treatment. Percentage of patients with hypoglycemic episodes increased significantly (P = 0.007) with increasing severity of renal impairment during run-in but not during repaglinide treatment (P = 0.074). Metabolic control (HbA(1c) and fasting blood glucose) with repaglinide was unchanged from that on previous antidiabetic medication. Final repaglinide dose tended to be lower for patients with severe and extreme renal impairment than for patients with less severe renal impairment or normal renal function (P = 0.032). Repaglinide has a good safety and efficacy profile in type 2 diabetic patients complicated by renal impairment and is an appropriate treatment choice, even for individuals with more severe degrees of renal impairment.
Luciani, Lorenzo G; Chiodini, Stefano; Donner, Davide; Cai, Tommaso; Vattovani, Valentino; Tiscione, Daniele; Giusti, Guido; Proietti, Silvia; Chierichetti, Franca; Malossini, Gianni
2016-06-01
To measure the early impact of robot-assisted partial nephrectomy (RAPN) on renal function as assessed by renal scan (Tc 99m-DTPA), addressing the issue of risk factors for ischemic damage to the kidney. All patients undergoing RAPN for cT1 renal masses between June 2013 and May 2014 were included in this prospective study. Renal function as expressed by glomerular filtration rate (GFR) was assessed by Technetium 99m-diethylenetriaminepentaacetic acid (Tc 99m-DTPA) renal scan preoperatively and postoperatively at 1 month in every patient. A multivariable analysis was used for the determination of independent factors predictive of GFR decrease of the operated kidney. Overall, 32 patients underwent RAPN in the time interval. Median tumor size, blood loss, and ischemia time were 4 cm, 200 mL, and 24 min, respectively. Two grade III complications occurred (postoperative bleeding in the renal fossa, urinoma). The GFR of the operated kidney decreased significantly from 51.7 ± 15.1 mL/min per 1.73 m(2) preoperatively to 40, 12 ± 12.4 mL/min per 1.73 m(2) 1 month postoperatively (p = 0.001) with a decrease of 22.4 %. On multivariable analysis, only tumor size (p = 0.05) was a predictor of GFR decrease of the operated kidney. Robotic-assisted partial nephrectomy had a detectable impact on early renal function in a series of relatively large tumors and prevailing intermediate nephrometric risk. A mean decrease of 22 % of GFR as assessed by renal scan in the operated kidney was found at 1 month postoperatively. In multivariable analysis, tumor size only was a significant predictor of renal function loss.
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage
Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James
2015-01-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779
Hynes, Conor F; Colo, Sanchez; Amdur, Richard L; Chawla, Lakhmir S; Greenberg, Michael D; Trachiotis, Gregory D
2016-01-01
This study aimed to evaluate the short- and long-term effects of conventional on-pump coronary bypass grafting (cCABG) compared with off-pump coronary artery bypass (OPCAB) on renal function. A retrospective review of patients undergoing coronary bypass grafting from 2004 through 2013 at a single center was conducted. Preoperative renal function, perioperative acute kidney injury, and long-term glomerular filtration were evaluated. Multivariable analyses were used to determine factors contributing to short- and long-term renal impairment. A total of 234 patients underwent cCABG, and 582 underwent OPCAB. Patients undergoing OPCAB were significantly older, had greater preoperative renal dysfunction, had greater functional dependence, and took more hypertension medications. Multivariable analyses found that 30-day acute kidney injury was an independent risk factor for a 10% decline in glomerular filtration rate at 1 and 5 years (P < 0.0001 and 0.002, respectively). However, the use of cardiopulmonary bypass was not found to influence long-term renal function (P = 0.78 at 1 year, P = 0.76 at 5 years). The percentage of patients experiencing a 10% drop in renal function from baseline at 1 year (33% OPCAB, 35% cCABG; P = 0.73) and 5 years (16% OPCAB, 16% cCABG; P = 0.93) were not significantly different. Independent predictors of acute kidney injury included baseline kidney function (P = 0.04) and age (P < 0.0001), whereas cardiopulmonary bypass did not affect the incidence (P = 0.17). A propensity-matched analysis confirmed these findings. Acute kidney injury is a risk factor for long-term renal dysfunction after either bypass method and was not greater after cCABG compared with OPCAB. Patients undergoing OPCAB did not experience greater decrease in long-term kidney function despite having worse baseline kidney function.
Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.
Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin
2006-08-01
X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown.
Maric-Bilkan, Christine; Flynn, Elizabeth R.
2012-01-01
Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and 125I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function. PMID:22031855
Kramer, H J; Heer, M; Cirillo, M; De Santo, N G
2001-09-01
Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.