Science.gov

Sample records for renal salt wasting

  1. Is it cerebral or renal salt wasting?

    PubMed

    Maesaka, John K; Imbriano, Louis J; Ali, Nicole M; Ilamathi, Ekambaram

    2009-11-01

    Cerebral salt-wasting (CSW), or renal salt-wasting (RSW), has evolved from a misrepresentation of the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) to acceptance as a distinct entity. Challenges still confront us as we attempt to differentiate RSW from SIADH, ascertain the prevalence of RSW, and address reports of RSW occurring without cerebral disease. RSW is redefined as 'extracellular volume depletion due to a renal sodium transport abnormality with or without high urinary sodium concentration, presence of hyponatremia or cerebral disease with normal adrenal and thyroid function.' Our inability to differentiate RSW from SIADH lies in the clinical and laboratory similarities between the two syndromes and the difficulty of accurate assessment of extracellular volume. Radioisotopic determinations of extracellular volume in neurosurgical patients reveal renal that RSW is more common than SIADH. We review the persistence of hypouricemia and increased fractional excretion of urate in RSW as compared to correction of both in SIADH, the appropriateness of ADH secretion in RSW, and the importance of differentiating renal RSW from SIADH because of disparate treatment goals: fluid repletion in RSW and fluid restriction in SIADH. Patients with RSW are being incorrectly treated by fluid restriction, with clinical consequences. We conclude that RSW is common and occurs without cerebral disease, and propose changing CSW to RSW.

  2. Renal salt-wasting syndrome in children with intracranial disorders.

    PubMed

    Bettinelli, Alberto; Longoni, Laura; Tammaro, Fabiana; Faré, Pietro B; Garzoni, Luca; Bianchetti, Mario G

    2012-05-01

    Hypotonic hyponatremia, a serious and recognized complication of any intracranial disorder, results from extra-cellular fluid volume depletion, inappropriate anti-diuresis or renal salt-wasting. The putative mechanisms by which intracranial disorders might lead to renal salt-wasting are either a disrupted neural input to the kidney or the elaboration of a circulating natriuretic factor. The key to diagnosis of renal salt-wasting lies in the assessment of extra-cellular volume status: the central venous pressure is currently considered the yardstick for measuring fluid volume status in subjects with intracranial disorders and hyponatremia. Approximately 110 cases have been reported so far in subjects ≤18 years of age (male: 63%; female: 37%): intracranial surgery, meningo-encephalitis (most frequently tuberculous) or head injury were the most common underlying disorders. Volume and sodium repletion are the goals of treatment, and this can be performed using some combination of isotonic saline, hypertonic saline, and mineralocorticoids (fludrocortisone). It is worthy of a mention, however, that some authorities contend that cerebral salt wasting syndrome does not exist, since this diagnosis requires evidence of a reduced arterial blood volume, a concept but not a measurable variable.

  3. Renal salt wasting as part of dysautonomia in Guillain-Barre syndrome.

    PubMed

    Lenhard, T; Grimm, C; Ringleb, P A

    2011-09-01

    Cerebral salt-wasting syndrome and the syndrome of inappropriate antidiuresis (SIAD) are the most important causes of non-iatrogenic hyponatraemia that can significantly complicate various brain diseases. Salt wasting without an underlying CNS disease may have been disregarded so far by clinicians and has been described as renal salt-wasting (RSW) in patients as drug side effect (eg, cisplatin), in older people with various common diseases (eg, hip fracture, pulmonary infections) and other sporadic conditions. In Guillain-Barré Syndrome (GBS), however, hyponatraemia has been described mainly as SIAD. However, symptoms of hyponatraemia rarely develop in GBS. Here, we report on a woman with GBS with dominant symptoms of dysautonomia and moderate severe hyponatraemia. We could identify RSW as part of the autonomic dysfunction that significantly contributed to disease worsening.

  4. Central Diabetes Insipidus and Cisplatin-Induced Renal Salt Wasting Syndrome: A Challenging Combination.

    PubMed

    Cortina, Gerard; Hansford, Jordan R; Duke, Trevor

    2016-05-01

    We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury.

  5. Membranous nephropathy with renal salt wasting: role of neurohumoral factors in sodium retention.

    PubMed

    Hommos, Musab; Sinkey, Christine; Haynes, William G; Dixon, Bradley S

    2012-09-01

    The role of neurohumoral factors in the sodium retention of nephrotic syndrome is controversial. We report a case with abrupt onset of severe nephrotic-range proteinuria and hypoalbuminemia due to membranous glomerulonephritis that was associated with renal salt wasting and hypovolemia without edema. Further evaluation showed hypoaldosteronism, hyporeninemia, and primary autonomic failure principally affecting the sympathetic nervous system, determined by the Valsalva maneuver. Administration of exogenous mineralocorticoid and oral salt caused edema and accelerated hypertension. The severe hypoaldosteronism likely was due to use of the angiotensin-converting enzyme inhibitor lisinopril, and it improved after this drug treatment was discontinued. The nephrotic proteinuria resolved after treatment with cyclosporine and prednisone, but the primary autonomic failure with hyporeninemic hypoaldosteronism persisted. The case shows that intratubular factors activated by nephrotic proteinuria are not sufficient to produce sodium retention in the absence of aldosterone and an intact sympathetic nervous system. Copyright © 2012 National Kidney Foundation, Inc. All rights reserved.

  6. Syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome: similarities and differences.

    PubMed

    Oh, Ji Young; Shin, Jae Il

    2014-01-01

    Hyponatremia (sodium levels of <135 mEq/L) is one of the most common electrolyte imbalances in clinical practice, especially in patients with neurologic diseases. Hyponatremia can cause cerebral edema and brain herniation; therefore, prompt diagnosis and proper treatment is important in preventing morbidity and mortality. Among various causes of hyponatremia, diagnosing syndrome of inappropriate antidiuretic hormone secretion (SIADH) and cerebral/renal salt wasting syndrome (C/RSW) is difficult due to many similarities. SIADH is caused by excess of renal water reabsorption through inappropriate antidiuretic hormone secretion, and fluid restriction is the treatment of choice. On the other hand, C/RSW is caused by natriuresis, which is followed by volume depletion and negative sodium balance and replacement of water and sodium is the mainstay of treatment. Determinating volume status in hyponatremic patients is the key point in differential between SIADH and C/RSW. However, in most situations, differential diagnosis of these two diseases is difficult because they overlap in many clinical and laboratory aspects, especially to assess differences in volume status of these patients. Although distinction between the SIADH and C/RSW is difficult, improvement of hypouricemia and an increased fractional excretion of uric acid after the correction of hyponatremia in SIADH, not in C/RSW, may be one of the helpful points in discriminating the two diseases. In this review, we compare these two diseases regarding the pathophysiologic mechanisms, diagnosis, and therapeutic point of view.

  7. More on Renal Salt Wasting Without Cerebral Disease: Response to Saline Infusion

    PubMed Central

    Bitew, Solomon; Imbriano, Louis; Miyawaki, Nobuyuki; Fishbane, Steven; Maesaka, John K.

    2009-01-01

    Background and objectives: The existence and prevalence of cerebral salt wasting (CSW) or the preferred term, renal salt wasting (RSW), and its differentiation from syndrome of inappropriate antidiuretic hormone (SIADH) have been controversial. This controversy stems from overlapping clinical and laboratory findings and an inability to assess the volume status of these patients. The authors report another case of RSW without clinical cerebral disease and contrast it to SIADH. Design, setting, participants, & measurements: Three patients with hyponatremia, hypouricemia, increased fractional excretion (FE) of urate, urine sodium >20 mmol/L, and concentrated urines were infused with isotonic saline after collection of baseline data. Results: One patient with RSW had pneumonia without cerebral disease and showed increased plasma aldosterone and FEphosphate, and two patients with SIADH had increased blood volume, low plasma renin and aldosterone, and normal FEphosphate. The patient with RSW responded to isotonic saline by excretion of dilute urines, prompt correction of hyponatremia, and normal water loading test after volume repletion. Hypouricemia and increased FEurate persisted after correction of hyponatremia. Two patients with SIADH failed to dilute their urines and remained hyponatremic during 48 and 110 h of saline infusion. Conclusions: The authors demonstrate appropriate stimulation of ADH in RSW. Differences in plasma renin and aldosterone levels and FEphosphate can differentiate RSW from SIADH, as will persistent hypouricemia and increased FEurate after correction of hyponatremia in RSW. FEphosphate was the only contrasting variable at baseline. The authors suggest an approach to treat the hyponatremic patient meeting criteria for SIADH and RSW and changing CSW to the more appropriate term, RSW. PMID:19201917

  8. Demonstration of natriuretic activity in urine of neurosurgical patients with renal salt wasting

    PubMed Central

    Youmans, Steven J; Fein, Miriam R; Wirkowski, Elizabeth; Maesaka, John K

    2013-01-01

    We have utilized the persistent elevation of fractional excretion (FE) of urate, > 10%, to differentiate cerebral/renal salt wasting (RSW) from the syndrome of inappropriate antidiuretic hormone secretion (SIADH), in which a normalization of FEurate occurs after correction of hyponatremia.  Previous studies suggest as well  that an elevated FEurate with normonatremia, without pre-existing hyponatremia, is also consistent with RSW, including studies demonstrating induction of RSW in rats infused with plasma from normonatremic neurosurgical and Alzheimer’s disease patients.  The present studies were designed to test whether precipitates from the urine of normonatremic neurosurgical patients, with either normal or elevated FEurate, and patients with SIADH, display natriuretic activity.   Methods: Ammonium sulfate precipitates from the urine of 6 RSW and 5 non-RSW Control patients were dialyzed (10 kDa cutoff) to remove the ammonium sulfate, lyophilized, and the reconstituted precipitate was tested for its effect on transcellular transport of 22Na across LLC-PK1 cells grown to confluency in transwells. Results: Precipitates from 5 of the 6 patients with elevated FEurate and normonatremia significantly inhibited the in vitro transcellular transport of 22Na above a concentration of 3 μg protein/ml, by 10-25%, versus to vehicle alone, and by 15-40% at concentrations of 5-20 μg/ml as compared to precipitates from 4 of the 5 non-RSW patients with either normal FEurate and normonatremia (2 patients) or with SIADH (2 patients). Conclusion: These studies provide further evidence that an elevated FEurate with normonatremia is highly consistent with RSW.  Evidence in the urine of natriuretic activity suggests significant renal excretion of the natriuretic factor. The potentially large source of the natriuretic factor that this could afford, coupled with small analytical sample sizes required by the in-vitro bioassay used here, should facilitate future experimental

  9. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  10. Renal salt wasting and chronic dehydration in claudin-7-deficient mice

    PubMed Central

    Tatum, Rodney; Zhang, Yuguo; Salleng, Kenneth; Lu, Zhe; Lin, Jen-Jar; Lu, Qun; Jeansonne, Beverly G.; Ding, Lei

    2010-01-01

    Claudin-7, a member of the claudin family, is highly expressed in distal nephrons of kidneys and has been reported to be involved in the regulation of paracellular Cl− permeability in cell cultures. To investigate the role of claudin-7 in vivo, we generated claudin-7 knockout mice (Cln7−/−) by the gene-targeting deletion method. Here we report that Cln7−/− mice were born viable, but died within 12 days after birth. Cln7−/− mice showed severe salt wasting, chronic dehydration, and growth retardation. We found that urine Na+, Cl−, and K+ were significantly increased in Cln7−/− mice compared with that of Cln7+/+ mice. Blood urea nitrogen and hematocrit were also significantly higher in Cln7−/− mice. The wrinkled skin was evident when Cln7−/− mice were ∼1 wk old, indicating that they suffered from chronic fluid loss. Transepidermal water loss measurements showed no difference between Cln7+/+ and Cln7−/− skin, suggesting that there was no transepidermal water barrier defect in Cln7−/− mice. Claudin-7 deletion resulted in the dramatic increase of aldosterone synthase mRNA level as early as 2 days after birth. The significant increases of epithelial Na+ channel α, Na+-Cl− cotransporter, and aquaporin 2 mRNA levels revealed a compensatory response to the loss of electrolytes and fluid in Cln7−/− mice. Na+-K+-ATPase α1 expression level was also greatly increased in distal convoluted tubules and collecting ducts where claudin-7 is normally expressed. Our study demonstrates that claudin-7 is essential for NaCl homeostasis in distal nephrons, and the paracellular ion transport pathway plays indispensable roles in keeping ionic balance in kidneys. PMID:19759267

  11. Cerebral salt wasting syndrome: review.

    PubMed

    Cerdà-Esteve, M; Cuadrado-Godia, E; Chillaron, J J; Pont-Sunyer, C; Cucurella, G; Fernández, M; Goday, A; Cano-Pérez, J F; Rodríguez-Campello, A; Roquer, J

    2008-06-01

    Hyponatremia is the most frequent electrolyte disorder in critically neurological patients. Cerebral salt wasting syndrome (CSW) is defined as a renal loss of sodium during intracranial disease leading to hyponatremia and a decrease in extracellular fluid volume. The pathogenesis of this disorder is still not completely understood. Sympathetic responses as well as some natriuretic factors play a role in this syndrome. Distinction between SIADH and CSW might be difficult. The essential point is the volemic state. It is necessary to rule out other intermediate causes. Treatment requires volume replacement and maintenance of a positive salt balance. Mineral corticoids may be useful in complicated cases.

  12. Differentiating SIADH from Cerebral/Renal Salt Wasting: Failure of the Volume Approach and Need for a New Approach to Hyponatremia.

    PubMed

    Maesaka, John K; Imbriano, Louis; Mattana, Joseph; Gallagher, Dympna; Bade, Naveen; Sharif, Sairah

    2014-12-08

    Hyponatremia is the most common electrolyte abnormality. Its diagnostic and therapeutic approaches are in a state of flux. It is evident that hyponatremic patients are symptomatic with a potential for serious consequences at sodium levels that were once considered trivial. The recommendation to treat virtually all hyponatremics exposes the need to resolve the diagnostic and therapeutic dilemma of deciding whether to water restrict a patient with the syndrome of inappropriate antidiuretic hormone secretion (SIADH) or administer salt and water to a renal salt waster. In this review, we briefly discuss the pathophysiology of SIADH and renal salt wasting (RSW), and the difficulty in differentiating SIADH from RSW, and review the origin of the perceived rarity of RSW, as well as the value of determining fractional excretion of urate (FEurate) in differentiating both syndromes, the high prevalence of RSW which highlights the inadequacy of the volume approach to hyponatremia, the importance of changing cerebral salt wasting to RSW, and the proposal to eliminate reset osmostat as a subtype of SIADH, and finally propose a new algorithm to replace the outmoded volume approach by highlighting FEurate. This algorithm eliminates the need to assess the volume status with less reliance on determining urine sodium concentration, plasma renin, aldosterone and atrial/brain natriuretic peptide or the BUN to creatinine ratio.

  13. Differentiating SIADH from Cerebral/Renal Salt Wasting: Failure of the Volume Approach and Need for a New Approach to Hyponatremia

    PubMed Central

    Maesaka, John K.; Imbriano, Louis; Mattana, Joseph; Gallagher, Dympna; Bade, Naveen; Sharif, Sairah

    2014-01-01

    Hyponatremia is the most common electrolyte abnormality. Its diagnostic and therapeutic approaches are in a state of flux. It is evident that hyponatremic patients are symptomatic with a potential for serious consequences at sodium levels that were once considered trivial. The recommendation to treat virtually all hyponatremics exposes the need to resolve the diagnostic and therapeutic dilemma of deciding whether to water restrict a patient with the syndrome of inappropriate antidiuretic hormone secretion (SIADH) or administer salt and water to a renal salt waster. In this review, we briefly discuss the pathophysiology of SIADH and renal salt wasting (RSW), and the difficulty in differentiating SIADH from RSW, and review the origin of the perceived rarity of RSW, as well as the value of determining fractional excretion of urate (FEurate) in differentiating both syndromes, the high prevalence of RSW which highlights the inadequacy of the volume approach to hyponatremia, the importance of changing cerebral salt wasting to RSW, and the proposal to eliminate reset osmostat as a subtype of SIADH, and finally propose a new algorithm to replace the outmoded volume approach by highlighting FEurate. This algorithm eliminates the need to assess the volume status with less reliance on determining urine sodium concentration, plasma renin, aldosterone and atrial/brain natriuretic peptide or the BUN to creatinine ratio. PMID:26237607

  14. [Hyponatremia in acute intracranial disorders: cerebral salt wasting].

    PubMed

    Betjes, M G; Koopmans, R P

    2000-03-18

    Hyponatraemia is a frequent finding in the course of an acute intracranial disease, especially after a subarachnoid haemorrhage. The fall in plasma sodium concentration is usually mild and not below 124 mmol/l but may reach dangerously low levels with serious neurological complications. In the early 1950s the cause of the hyponatraemia was believed to be primarily excessive natriuresis and therefore named 'cerebral salt wasting'. After the description of the syndrome of inappropriate antidiuretic hormone secretion (SIADH) this was favoured as the most likely explanation. Only in recent years has it become evident that many hyponatraemic patients with acute brain disease are actually hypovolaemic. This is compatible with the original diagnosis of cerebral salt wasting. The increased plasma concentrations of natriuretic peptides are likely to mediate the increased natriuresis. Cerebral salt wasting can be treated with a simple regimen of water and salt suppletion. If needed a mineralocorticoid like fludrocortisone can be given to increase renal tubular sodium reabsorption.

  15. Cerebral salt-wasting syndrome. We need better proof of its existence.

    PubMed

    Oh, M S; Carroll, H J

    1999-06-01

    It is widely believed that the cerebral salt-wasting syndrome (CSWS) exists as an entity distinct from the syndrome of inappropriate ADH secretion, and that it is characterized by evidence of severe renal salt wasting that results in volume depletion and hyponatremia. Proof of the existence of CSWS as an entity requires documentation of renal salt wasting and volume depletion. The present review has been undertaken to examine the evidence that the CSWS is a separate entity. In this effort, we have discussed various methods of documentation of volume depletion, and then reviewed reported cases of CSWS to determine whether volume depletion and renal salt wasting have been clearly demonstrated. Our review has led us to conclude that not one case of purported CSWS has demonstrated clear evidence of volume depletion and renal salt wasting. If renal salt wasting had been proven in these cases, we would conclude that the likely site of renal salt transport was the proximal tubule. The proximal site of salt transport defect has been suggested by the absence of hyperreninemia and hypokalemia, which would be a distinguishing feature of Bartter's syndrome and Gitelman's syndrome.

  16. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  17. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  18. Disposal of NORM waste in salt caverns

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  19. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    SciTech Connect

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  20. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  1. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  2. Salt caverns for oil field waste disposal.

    SciTech Connect

    Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

    2000-07-01

    Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

  3. Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.

    PubMed

    Oguchi, Hideyo; Sasamura, Hiroyuki; Shinoda, Kazunobu; Morita, Shinya; Kono, Hidaka; Nakagawa, Ken; Ishiguro, Kimiko; Hayashi, Kaori; Nakamura, Mari; Azegami, Tatsuhiko; Oya, Mototsugu; Itoh, Hiroshi

    2014-10-01

    The role of salt intake in the development of hypertension is prominent, but its mechanism has not been fully elucidated. Our aim was to examine the effect of transient salt intake during the prehypertensive period in hypertensive model animals. Dahl salt-sensitive rats and spontaneously hypertensive rats were fed from 6 to 14 weeks with low-salt (0.12% NaCl), normal-salt (0.8% NaCl), high-salt (7% NaCl), or high-sodium/normal-chloride diet and returned to normal-salt diet for 3 months. Rats in the high-salt group saw elevations in blood pressure (BP) not only during the treatment period but also for the 3 months after returning to normal-salt diet. We named this phenomenon salt memory. Renal arteriolar injury was found in the high-salt group at the end of experiment. Dahl salt-sensitive rats were fed from 6 to 14 weeks with high-salt diet with angiotensin receptor blocker, vasodilator, calcium channel blocker, and calcium channel blocker+angiotensin receptor blocker and returned to normal-salt diet. Although BP was suppressed to control levels by vasodilator or calcium channel blocker, elevated renal angiotensin II and renal arteriolar injury were observed, and salt memory did not disappear because of sustained renal arteriolar injury. Calcium channel blocker+angiotensin receptor blocker suppressed renal arteriolar injury, resulting in the disappearance of salt memory. Cross-transplantation of kidneys from Dahl salt-sensitive rats on high salt to control rats caused increase of BP, whereas control kidneys caused reduction in BP of hypertensive rats, inducing the central role of the kidney. These results suggest that renal arteriolar injury through BP and renal angiotensin II elevation plays important roles in the development of salt memory for hypertension. © 2014 American Heart Association, Inc.

  4. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome.

    PubMed

    Betjes, Michiel G.H.

    2002-02-01

    Hyponatremia in acute brain disease is a common occurrence, especially after an aneurysmal subarachnoid hemorrhage. Originally, excessive natriuresis, called cerebral salt wasting, and later the syndrome of inappropriate antidiuretic hormone secretion (SIADH), were considered to be the causes of hyponatremia. In recent years, it has become clear that most of these patients are volume-depleted and have a negative sodium balance, consistent with the original description of cerebral salt wasting. Elevated plasma concentrations of atrial or brain natriuretic peptide have been identified as the putative natriuretic factor. Hyponatremia and volume depletion may aggravate neurological symptoms, and timely treatment with adequate replacement of water and NaCl is essential. The use of fludrocortisone to increase sodium reabsorption by the renal tubules may be an alternative approach.

  5. [Cerebral salt wasting syndrome in bacterial meningitis].

    PubMed

    Attout, H; Guez, S; Seriès, C

    2007-10-01

    Subarachnoid hemorrhage is the most common cause of cerebral salt wasting syndrome. There are few reports of this condition in infectious meningitis. We describe a patient with hyponatremia and bacterial meningitis. Hyponatremia rapidly improved after administration of sodium chloride. The purpose of this report is to alert clinicians to the fact that hyponatremic patients with central nervous system disease do not necessarily have a syndrome of inappropriate secretion of antidiuretic hormone (SIADH), but may have cerebral salt wasting syndrome. By contrast with SIADH, the treatment requires saline administration.

  6. Cerebral salt wasting in a postoperative period.

    PubMed

    Janus, Dominika; Wojcik, Malgorzata; Dolezal-Oltarzewska, Katarzyna; Kalicka-Kasperczyk, Anna; Poplawska, Karolina; Starzyk, Jerzy B

    2014-01-01

    Cerebral salt wasting syndrome (CSW-cerebral salt wasting) was first described in 1950 by Peters. This syndrome can occur in patients who have sustained damage to the central nervous system (e.g. patients with subarachnoid bleeding, bacterial meningitis or after neurosurgery). Patients present with excessive natriuresis and hyponatremic dehydration. Differentiating this syndrome with the syndrome of inappropriate antidiuretic hormone secretion (SIADH-syndrome of inappropriate antidiuretic hormone secretion), which may occur in the same group of patients, is necessary in order to administer the correct treatment which consists of fluid restriction and sodium replacement in SIADH and fluid and sodium replacement as well as occasional mineralocorticoid therapy in CSW.

  7. Immobilization of IFR salt wastes in mortar

    SciTech Connect

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  9. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  10. Cerebral salt wasting versus SIADH: what difference?

    PubMed

    Sterns, Richard H; Silver, Stephen M

    2008-02-01

    The term cerebral salt wasting (CSW) was introduced before the syndrome of inappropriate antidiuretic hormone secretion was described in 1957. Subsequently, CSW virtually vanished, only to reappear a quarter century later in the neurosurgical literature. A valid diagnosis of CSW requires evidence of inappropriate urinary salt losses and reduced "effective arterial blood volume." With no gold standard, the reported measures of volume depletion do not stand scrutiny. We cannot tell the difference between CSW and the syndrome of inappropriate antidiuretic hormone secretion. Furthermore, the distinction does not make a difference; regardless of volume status, hyponatremia complicating intracranial disease should be treated with hypertonic saline.

  11. Cerebral salt wasting syndrome following neurosurgical intervention in tuberculous meningitis.

    PubMed

    Nagotkar, L; Shanbag, P; Dasarwar, N

    2008-07-01

    Cerebral salt wasting is characterized by inappropriate natriuresis and volume contraction in the presence of cerebral pathology. Diagnosis can be difficult and therapy is challenging. We report two children with tuberculous meningitis and hydrocephalus who developed cerebral salt wasting following neurosurgical intervention. The first patient was managed with rigorous salt and water replacement whereas the second patient required the addition of fludrocortisone for control of salt-wasting.

  12. Salt-occluded zeolites as an immobilization matrix for chloride waste salt

    SciTech Connect

    Lewis, M.A.; Fischer, D.F.; Smith, L.J. . Chemical Technology Div.)

    1993-11-01

    The pyrometallurgical processing of spent fuel from the integral fast reactor (IFR), an advanced reactor under development at Argonne National Laboratory, will generate a chloride salt waste containing the alkali-metal, alkaline-earth, and some of the rare-earth fission products. Salt-occluded zeolite A, formed by equilibrating simulated molten waste salt and zeolite A, has been investigated as an immobilization matrix for this salt waste. In this concept, the chloride waste salt is loaded into the zeolite cavities, and cesium and strontium from the salt are preferentially sorbed by the zeolite. Experiments showed that the salt occluded zeolite powders are leach resistant and radiation stable. The conclusion is that the salt-occluded zeolite is a promising immobilization matrix for the IFR waste salt.

  13. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    SciTech Connect

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  14. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  15. Cerebral salt wasting: pathophysiology, diagnosis, and treatment.

    PubMed

    Yee, Alan H; Burns, Joseph D; Wijdicks, Eelco F M

    2010-04-01

    Cerebral salt wasting (CSW) is a syndrome of hypovolemic hyponatremia caused by natriuresis and diuresis. The mechanisms underlying CSW have not been precisely delineated, although existing evidence strongly implicates abnormal elevations in circulating natriuretic peptides. The key in diagnosis of CSW lies in distinguishing it from the more common syndrome of inappropriate secretion of antidiuretic hormone. Volume status, but not serum and urine electrolytes and osmolality, is crucial for making this distinction. Volume and sodium repletion are the goals of treatment of patients with CSW, and this can be performed using some combination of isotonic saline, hypertonic saline, and mineralocorticoids.

  16. [Hyponatraemia in patients with neurosurgical disorders: SIADH or cerebral salt wasting syndrome?].

    PubMed

    Frey, Felix J

    2009-11-01

    Patients with neurosurgical disorders often present with hyponatraemia. Two mechanisms account for hyponatraemia in these patients: the Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH) and Cerebral Salt Wasting Syndrome (CSWS). The two entities differ in their volume status. In SIADH, volume is expanded due to ADH-mediated renal water retention, but in CSWS, volume is diminished as a consequence of renal salt wasting, most likely attributable to an increased secretion of Brain Natriuretic Peptide (BNP) and Artrial Natriuretic Peptide (ANP). Since it is clinically difficult to distinguish between these two entities, fluid management has to be performed carefully. Salt and fluid replacement appears to be indicated in CSWS, whereas fluid restriction might be the primary approach in patients with SIADH.

  17. ED 09-1 RENAL SODIUM HANDLING AND SALT SENSITIVITY.

    PubMed

    Wainford, Richard

    2016-09-01

    This lecture will provide a background on the physiology of renal sodium handling and its importance in long term blood pressure regualtion. A brief overview of the classical Guytonion Pressure-Natriuresis Hypothesis of blood pressure control will be provided. The global impact of dietary salt intake on hypertension incidence and cardiovasular health will be discussed. Addtionally, recent insights into the mechanisitc regualtion of renal sodium handling during health and the pathophysiology of salt-sensitive hypertension - including a focus on the regulation of the sodium chloride cotransport will be provided. Finally proposed mechansims involved in the sensing of alterations in dietary sodium intake to ifluence long term blood pressue will be presented.

  18. Renal inflammation, autoimmunity and salt-sensitive hypertension

    PubMed Central

    Rodríguez-Iturbe, Bernardo; Franco, Martha; Tapia, Edilia; Quiroz, Yasmir; Johnson, Richard J

    2011-01-01

    This article reviews the role of immune competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension.We discuss the alteration of the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment.The potential role of T cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension. PMID:21251049

  19. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Demmer, Ricky Lynn; Reese, Stephen Joseph

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  20. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  1. [Tubercular meningitis with severe hyponatraemia caused by cerebral salt wasting].

    PubMed

    Tinggaard, Jeanette; Schmidt, Ida Maria; Kristensen, Kim

    2011-09-12

    We describe two children, who were admitted with severe hyponatraemia and dehydration. In both children the hyponatraemia was due to cerebral salt wasting caused by tubercular meningitis. Differential diagnosis and pathophysiology is discussed. It is important to discriminate between cerebral salt wasting and inappropriate secretion of antidiuretic hormone since the therapy required is completely different in the two conditions.

  2. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    SciTech Connect

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-11-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

  3. Salt disposal of heat-generating nuclear waste.

    SciTech Connect

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  4. SALT SENSITIVITY IN RESPONSE TO RENAL INJURY REQUIRES RENAL ANGIOTENSIN-CONVERTING ENZYME

    PubMed Central

    Giani, Jorge F.; Bernstein, Kenneth E.; Janjulia, Tea; Han, Jiyang; Toblli, Jorge E.; Shen, Xiao Z.; Rodriguez-Iturbe, Bernardo; McDonough, Alicia A.; Gonzalez-Villalobos, Romer A.

    2015-01-01

    Recent evidence indicates that salt-sensitive hypertension can result from a subclinical injury that impairs the kidneys’ capacity to properly respond to a high salt diet. However, how this occurs is not well understood. Here, we showed that while previously salt resistant wild-type mice became salt-sensitive after the induction of renal injury with the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); mice lacking renal angiotensin-converting enzyme, exposed to the same insult, did not become hypertensive when faced with a sodium load. This is because the activity of renal angiotensin-converting enzyme plays a critical role in: 1) augmenting the local pool of angiotensin II and, 2) the establishment of the anti-natriuretic state via modulation of glomerular filtration rate and sodium tubular transport. Thus, this study demonstrates that the presence of renal angiotensin-converting enzyme plays a pivotal role in the development of salt sensitivity in response to renal injury. PMID:26150439

  5. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  6. [Cerbral salt wasting syndrome versus SIADH].

    PubMed

    Deslarzes, Tristan; Turini, Pierre; Friolet, Raymond; Meier, Pascal

    2009-11-11

    In the context of cerebral diseases the two main mechanisms responsible for non iatrogenic causes of hyponatremia are cerebral salt wasting syndrome (CSW) and inappropriate secretion of antidiuretic hormone (SIADH). Distinction between these two syndromes is difficult and is based on the assessment of the patient's volume status. In case of CSW, the volume status is low and the treatment is fluid and sodium replacement. In case of SIADH the volume status is normal or slightly expanded and the treatment is fluid restriction. To avoid centropontine myelinolysis, the speed of correction should not exceed 8 to 10 mmol/L over a 24-hour period. This article will describe practical tools to differentiate CSW from SIADH and therapeutic strategies useful in daily clinical practice.

  7. [Does cerebral salt wasting syndrome exist?].

    PubMed

    Leblanc, P-E; Cheisson, G; Geeraerts, T; Tazarourte, K; Duranteau, J; Vigué, B

    2007-11-01

    Increased natriuresis is a frequent situation after subarachnoid haemorrhage (SAH). It may be responsible for hyponatremia, which can be dangerous in case of severe hypo-osmolarity or hypovolemia. Inappropriate secretion of antidiuretic hormone or cerebral salt wasting syndrome (CSWS) have been incriminated for hyponatremia after SAH, but it remains difficult to distinguish between both syndromes. There are many explanations for increased natriuresis after SAH, depending on the level of blood pressure, the volemia, and the presence or not of natriuretic peptides. The cerebral insult and the treatments, which are done to fight against elevated intracranial pressure or vasospasm, can modify any of these parameters. So it appears that the word "cerebral" in CSWS is probably not a good term and it would be better to talk about appropriate or non-appropriate natriuretic response. Corticoïds or urea can be useful for controlling hypernatriuresis.

  8. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    SciTech Connect

    Simpson, Michael F.

    2013-01-01

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  9. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  10. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  11. Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease.

    PubMed

    Dworkin, L D; Benstein, J A; Tolbert, E; Feiner, H D

    1996-03-01

    Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease. Male Munich-Wistar rats that underwent right nephrectomy and segmental infarction of two thirds of the left kidney were fed standard chow for 4 wk and then randomly assigned to ingest standard or low-salt chow for an additional 4 wk. Four wk after ablation, rats had systemic hypertension, proteinuria, and glomerular sclerosis. The prevalence of sclerosis, protein excretion rate, and glomerular volume increased between the fourth and eighth week in rats that were fed standard chow, however, in rats that were fed low-salt chow, the increase in glomerular volume and development of further glomerular sclerosis was prevented whereas the protein excretion rate actually declined. Micropuncture studies performed 8 wk after ablation revealed that the glomerular hydraulic pressure was elevated in remnant kidneys and was not affected by salt restriction. This study demonstrates that dietary salt restriction can prevent further glomerular injury and reduce proteinuria even when instituted in rats with established renal disease. These findings are also consistent with the hypothesis that glomerular hypertrophy promotes injury in this model of hypertension and progressive renal disease.

  12. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  13. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  14. High-temperature vacuum distillation separation of plutonium waste salts

    SciTech Connect

    Garcia, E.

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  15. Essential role of Kir5.1 channels in renal salt handling and blood pressure control

    PubMed Central

    Levchenko, Vladislav; Ilatovskaya, Daria V.; Pavlov, Tengis S.; Pochynyuk, Oleh M.; Jacob, Howard J.; Geurts, Aron M.; Hodges, Matthew R.

    2017-01-01

    Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16–/–). SSKcnj16–/– rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16–/– rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16–/– rats, but the protein was predominantly localized in the cytosol in SSKcnj16–/– rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16–/– rats and prevented or mitigated hypertension in SSKcnj16–/– or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension. PMID:28931751

  16. Cerebral salt wasting syndrome in a patient with tuberculous meningitis.

    PubMed

    Ravishankar, B; Mangala; Prakash, G K; Shetty, K J; Ballal, H S

    2006-05-01

    We report a case of a 65 year male with meningitis who had polyuria, severe hyponatremia, volume depletion and very high urinary sodium excretion. He was diagnosed to have cerebral salt wasting syndrome based on clinical and laboratory parameters.

  17. Waste disposal in a German rock-salt mine

    SciTech Connect

    Wegener, W. )

    1993-04-01

    A worked-out area of the operating Helibronn rock-salt mine is being used as a repository for fly-ash waste from incineration plants. The waste is packed in large bags, handled by fork-lifts, trucks, and cranes, and stacked 11-m-high. In addition insolubles from the re-saturation of brine for electrolysis using rock salt are stowed in bulk. Special care is taken to isolate waste-disposal activities from the salt mining and hoisting operations. Considerable interest is being shown in the underground disposal of waste in Germany, particularly as existing landfill sites are approaching the end of their lives and the establishment of new sites is meeting strong opposition from local populations. The problems encountered in the disposal of fly ash in salt mines are discussed.

  18. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    SciTech Connect

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.

  19. Disposition of salt-waste from pyrochemical nuclear fuel processing

    SciTech Connect

    Vance, E.R.

    2007-07-01

    Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

  20. Molten salt treatment to minimize and optimize waste

    SciTech Connect

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-07-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability.

  1. Secondary Aluminum Processing Waste: Salt Cake ...

    EPA Pesticide Factsheets

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leachable metal content may still pose a contamination concern and potential human and ecological exposure if uncontrollably released to the environment. As a result, salt cake should always be managed at facilities that utilize synthetic liner systems with leachate collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The mineral phase analysis showed that various species of aluminum are present in the salt cake samples with a large degree of variability. The relative abundance of various aluminum species was evaluated but it is noted that the method used is a semi-quantitative method and as a result there is a limitation for the data use. The analysis only showed a few aluminum species present in salt cake which does not exclude the presence of other crystalline species especially in light of the variability observed in the samples. Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of salt cake in MSW landfills. From the end-of-life management perspective, data presented here suggest that salt cake should not be size reduce

  2. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  3. Oil field waste disposal in salt caverns: An information website

    SciTech Connect

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  4. Transient Oliguria during Anesthesia in Cerebral Salt Wasting Syndrome.

    PubMed

    Lee, Kwang Ho; Park, Jong Taek; Cho, Dong Woo; Song, Seung Woo; Lim, Hyun Kyo

    2016-09-01

    Cerebral salt wasting syndrome is a hyponatremic and hypovolemic condition caused by intracranial disorders, such as head injury, subarachnoid hemorrhage, brain tumor, and brain operations. We report a case of a 5-year-old girl that had cerebral salt wasting syndrome with marked polyuria who showed transient oliguria during general anesthesia. The patient had undergone an operation for traumatic intracranial hemorrhage three months prior and has had marked polyuria and hyponatremia since then. After induction of anesthesia for cranioplasty, the patient had oliguria during surgery and then resumed polyuria in the post-operative period.

  5. Gasification characteristics of organic waste by molten salt

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Minami, Keishi; Yamauchi, Makoto; Morimitsu, Shinsuke; Tanimoto, Kazumi

    Recently, along with the growth in economic development, there has been a dramatic accompanying increase in the amount of sludge and organic waste. The disposal of such is a significant problem. Moreover, there is also an increased in the consumption of electricity along with economic growth. Although new energy development, such as fuel cells, has been promoted to solve the problem of power consumption, there has been little corresponding promotion relating to the disposal of sludge and organic waste. Generally, methane fermentation comprises the primary organic waste fuel used in gasification systems. However, the methane fermentation method takes a long time to obtain the fuel gas, and the quality of the obtained gas is unstable. On the other hand, gasification by molten salt is undesirable because the molten salt in the gasification gas corrodes the piping and turbine blades. Therefore, a gasification system is proposed by which the sludge and organic waste are gasified by molten salt. Moreover, molten carbonate fuel cells (MCFC) are needed to refill the MCFC electrolyte volatilized in the operation. Since the gasification gas is used as an MCFC fuel, MCFC electrolyte can be provided with the fuel gas. This paper elucidates the fundamental characteristics of sludge and organic waste gasification. A crucible filled with the molten salt comprising 62 Li 2CO 3/38 K 2CO 3, is installed in the reaction vessel, and can be set to an arbitrary temperature in a gas atmosphere. In this instance, the gasifying agent gas is CO 2. Sludge or the rice is supplied as organic waste into the molten salt, and is gasified. The chemical composition of the gasification gas is analyzed by a CO/CO 2 meter, a HC meter, and a SO x meter gas chromatography. As a result, although sludge can generate CO and H 2 near the chemical equilibrium value, all of the sulfur in the sludge is not fixed in the molten salt, because the sludge floats on the surface of the carbonate by the specific

  6. MIXING MODELING ANALYSIS FOR SRS SALT WASTE DISPOSITION

    SciTech Connect

    Lee, S.

    2011-01-18

    Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended

  7. Transient Oliguria during Anesthesia in Cerebral Salt Wasting Syndrome

    PubMed Central

    Lee, Kwang Ho; Park, Jong Taek; Cho, Dong Woo; Song, Seung Woo; Lim, Hyun Kyo

    2016-01-01

    Cerebral salt wasting syndrome is a hyponatremic and hypovolemic condition caused by intracranial disorders, such as head injury, subarachnoid hemorrhage, brain tumor, and brain operations. We report a case of a 5-year-old girl that had cerebral salt wasting syndrome with marked polyuria who showed transient oliguria during general anesthesia. The patient had undergone an operation for traumatic intracranial hemorrhage three months prior and has had marked polyuria and hyponatremia since then. After induction of anesthesia for cranioplasty, the patient had oliguria during surgery and then resumed polyuria in the post-operative period. PMID:27924287

  8. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  9. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  10. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  11. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  12. Laboratory simulation of salt dissolution during waste removal

    SciTech Connect

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended.

  13. Direct Grout Stabilization of High Cesium Salt Waste: Salt Alternative Phase III Feasibility Study

    SciTech Connect

    Langton, C.A.

    1998-12-07

    The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The composition of the direct grout salt solution is higher in sodium salts and contains up to a few hundred ppm Cs-137 more than the current reference salt solution. However it is still similar to the composition of the current reference salt solution. Consequently, the processing, setting, and leaching properties (including TCLP for Cr and Hg) of the direct grout and current saltstone waste forms are very similar. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The Cs-137 concentration in the direct grout salt solution will also affect the long-term curing temperature of the waste form since 4.84 Watts of energy are generated per 1000 Ci of Cs-137. The temperature rise of the direct grout during long-term curing has been calculated by A. Shaddy, SRTC.1 The effect of curing temperature on the strength, leaching and physical durability of the direct grout saltstone is described in this report. At the present time, long term curing at 90 degrees C appears to be unacceptable because of cracking which will affect the structural integrity as evaluated in the immersion test. (The experiments conducted in this feasibility study do not address the effect of cracking on leaching of contaminants other than Cr, Hg, and Cs.) No cracking of the direct grout or reference saltstone waste forms was observed for samples cured at 70 degrees C. At the present time the implications of waste form cracking at elevated curing temperatures has not been fully addressed. The direct grout falls within the

  14. Aggravated renal inflammatory responses in TRPV1 gene knockout mice subjected to DOCA-salt hypertension.

    PubMed

    Wang, Youping; Wang, Donna H

    2009-12-01

    To test the hypothesis that deletion of the transient receptor potential vanilloid type 1 (TRPV1) channel exaggerates hypertension-induced renal inflammatory response, wild-type (WT) or TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for 4 wk. Mean arterial pressure (MAP) determined by radiotelemetry increased in DOCA-salt-treated WT or TRPV1(-/-) mice, whereas there was no difference in MAP between two strains at the baseline or after DOCA-salt treatment. DOCA-salt treatment increased urinary excretion of albumin and 8-isoprostane in both WT and TRPV1(-/-) mice, and the increases were greater in magnitude in the latter strain. Periodic acid-Schiff and Mason's trichrome staining showed that kidneys of DOCA-salt-treated TRPV1(-/-) mice exhibited more severe glomerulosclerosis and tubulointerstitial injury compared with DOCA-salt-treated WT mice. NF-kappaB assay showed that DOCA-salt treatment increased renal activated NF-kappaB concentrations in TRPV1(-/-) mice compared with WT mice. Immunostaining and ELISA assay revealed that DOCA-salt-treated TRPV1(-/-) mice had enhanced renal infiltration of monocyte/macrophage and lymphocyte, as well as increased renal levels of proinflammatory cytokine (TNF-alpha, IL-6) and chemokine (MCP-1) compared with DOCA-salt-treated WT mice. Renal ICAM-1 but not VCAM-1 expression was also greater in DOCA-salt-treated TRPV1(-/-) than WT mice. Dexamethasone (DEXA), an immunosuppressive drug, conveyed a renoprotective effect that was greater in DOCA-salt-treated TRPV1(-/-) compared with WT mice. These data show that renal inflammation is exacerbated in DOCA-salt hypertension when TRPV1 gene is deleted and that the deterioration is ameliorated by DEXA treatment, indicating that TRPV1 may act as a potential regulator of the inflammatory process to lessen renal injury in DOCA-salt hypertension.

  15. Soaking salted eggs in gambier liquid waste inhibit bacterial growth.

    PubMed

    Novia, Deni; Juliyarsi, Indri; Sandra, Afriani; Dan, Yuherman; Muhammad, Rifki

    2014-02-01

    Gambier liquid waste containing tannin compounds were quite high and serves as an antimicrobial agent that will tanning salted eggs so that closed the pores of the egg shell and egg to be durable. This study aims to see the effect of soaking salted eggs in gambier liquid waste remaining effective in improving the quality of salted eggs. This study used a randomized block design with three replicates and ten treatments. The treatment were, A: control (no soaking), B: Immersion 49 h with a gambier liquid waste : distilled water (1:2), C: 25 h (1:2), D: 1 h (1:2), E: 49 h (1:1), F:25 h (1:1), G: 1 h (1:1), H: 49 h (1:0), I: 25 h (1:0), J: 1 h (1:0). The variables used were water content, bacterial colony forming and shelf life. Results of this study showed a significant (p < 0.05) on water content, bacterial colony forming and shelf life. The best treatment inhibiting bacterial growth for longer was salted eggs soaking in gambier liquid waste : water (1:0) 1 h and 25 h with a water content of 62.67%, bacterial colony forming 0.99 x 1 (0)5 CFU (g-1) and a shelf life 63 days.

  16. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  17. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  18. Cerebral salt wasting following tuberculous meningoencephalitis in an infant.

    PubMed

    Zaki, Syed Ahmed; Lad, Vijay; Shanbag, Preeti

    2012-04-01

    In patients with central nervous system disease, life-threatening hyponatremia can result from either the syndrome of inappropriate secretion of antidiuretic hormone or cerebral salt wasting. Clinical manifestations of the two conditions may be similar, but their pathogeneses and management protocols are different. Cerebral salt wasting syndrome is a disorder in which excessive natriuresis and hyponatremia occurs in patients with intracranial diseases. We report a 6-month-old girl with CSWS associated with tuberculous meningoencephalitis. She was diagnosed as having CSWS on the basis of hypovolemia, polyuria, natriuresis, and the relatively high level of fractional excretion of uric acid. Aggressive replacement of urine salt and water losses using 0.9% or 3% sodium chloride was done. Fludrocortisone was started at 0.1 mg twice daily on the seventh day of admission and was continued for 17 days.

  19. Effect of sodium salt on anaerobic digestion of kitchen waste.

    PubMed

    Anwar, Naveed; Wang, Wen; Zhang, Jie; Li, Yeqing; Chen, Chang; Liu, Guangqing; Zhang, Ruihong

    2016-01-01

    The effect of different sodium salt concentration on anaerobic digestion of kitchen waste was investigated. The methane production performance, the corresponding methane production model and sodium salt inhibition model were studied, and the degradation efficiency was analyzed. With the increase of sodium salt concentration, the methane yield and the maximal methane production rate decreased along with the increase of lag phase time. The highest methane yield of 594 mL/g-VSadded (VS: volatile solids) was found with no sodium salt addition while the lowest was obtained with addition of 16 g/L NaCl. The declines of the methane yield were negligible when the sodium salt concentration was below 8 g/L, which corresponded to <10% inhibiting efficiency. In contrast, a sharp decrease of methane yield was observed with addition of >8 g/L NaCl (causing 17-80% inhibition). Five kinds of regression models were developed to describe the sodium salt inhibition efficiency, and the cubic regression model of y = 0.508 + 2.401x - 0.369x(2) + 0.033x(3) showed the best fitting. The volatile fatty acids/ethanol gradually accumulated along with the increase of the sodium salt concentration, and the volatile solid removal efficiency represented a gradual decline accordingly. It is recommended that the sodium salt concentration in the anaerobic digesters should be controlled below 8 g/L in order to avoid intense methane inhibition.

  20. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  1. [Role of renal inflammation in the physiopathology of salt-sensitive hypertension].

    PubMed

    Castro Torres, Yaniel; Santos Portela, Alejandro Emilio; Garrido Bősze, Ildiko María

    2014-01-01

    Salt-sensitive hypertension is produced by a decrease in salt renal excretion after a salt overload. Over the last few years, a new theory has been developed to explain this condition based on renal tissue inflammation. This process begins with free radicals production in renal tissue due to oxidative metabolism. Then they favor a renal inflammation mechanism with T-lymphocytes infiltration and other immune cells. Essentially, T-lymphocytes determine an increase in angiotensin ii production which raises sodium and water retention. Association among autoimmune diseases and hypertension may be explained, in part, by the relationship between salt-sensitive hypertension and renal inflammation. The use of antioxidant drugs and the development of new medicaments may be a choice for treating patients affected with this condition.

  2. Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice.

    PubMed

    Diao, Zhenyu; Asico, Laureano D; Villar, Van Anthony M; Zheng, Xiaoxu; Cuevas, Santiago; Armando, Ines; Jose, Pedro A; Wang, Xiaoyan

    2017-05-01

    We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.

  3. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  4. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  5. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  6. Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats

    PubMed Central

    Huang, Baorui; Cheng, Yuan; Usa, Kristie; Liu, Yong; Baker, Maria Angeles; Mattson, David L.; He, Yongcheng; Wang, Niansong; Liang, Mingyu

    2016-01-01

    Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13BN26 rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13BN26 rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7–8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats. PMID:26916681

  7. Cerebral salt wasting treated with fludrocortisone in a 17-year-old boy.

    PubMed

    Choi, Min Jeong; Oh, Yoon Su; Park, Se Jin; Kim, Ji Hong; Shin, Jae Il

    2012-07-01

    Cerebral salt wasting is characterized by inappropriate natriuresis and volume contraction with associated cerebral pathology. It is distinct from the syndrome of inappropriate antidiuretic hormone secretion, which is characterized by inappropriate retention of free water. We report a patient with a porencephalic cyst who developed cerebral salt wasting. His initial treatment was supplementation of water and salt, which did not improve natriuresis or volume contraction. Fludrocortisone administration effectively managed the cerebral salt wasting.

  8. Cerebral Salt-Wasting Syndrome Caused by Minor Head Injury.

    PubMed

    Fukuoka, Toshiki; Tsurumi, Yuko; Tsurumi, Arihito

    2017-01-01

    A 34-year-old woman was admitted to hospital after sustaining a head injury in a motor vehicle accident (day 1). No signs of neurological deficit, skull fracture, brain contusion, or intracranial bleeding were evident. She was discharged without symptoms on day 4. However, headache and nausea worsened on day 8, at which time serum sodium level was noted to be 121 mEq/L. Treatment with sodium chloride was initiated, but serum sodium decreased to 116 mEq/L on day 9. Body weight decreased in proportion to the decrease in serum sodium. Cerebral salt-wasting syndrome was diagnosed. This case represents the first illustration of severe hyponatremia related to cerebral salt-wasting syndrome caused by a minor head injury.

  9. Cerebral Salt-Wasting Syndrome Caused by Minor Head Injury

    PubMed Central

    Tsurumi, Yuko; Tsurumi, Arihito

    2017-01-01

    A 34-year-old woman was admitted to hospital after sustaining a head injury in a motor vehicle accident (day 1). No signs of neurological deficit, skull fracture, brain contusion, or intracranial bleeding were evident. She was discharged without symptoms on day 4. However, headache and nausea worsened on day 8, at which time serum sodium level was noted to be 121 mEq/L. Treatment with sodium chloride was initiated, but serum sodium decreased to 116 mEq/L on day 9. Body weight decreased in proportion to the decrease in serum sodium. Cerebral salt-wasting syndrome was diagnosed. This case represents the first illustration of severe hyponatremia related to cerebral salt-wasting syndrome caused by a minor head injury. PMID:28194285

  10. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg (P < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P < 0.001). Nitric oxide excretion was 2935 ± 256 μmol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178 μmol /24 hrs P < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  12. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  13. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  14. Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat.

    PubMed

    Evans, Louise C; Petrova, Galina; Kurth, Theresa; Yang, Chun; Bukowy, John D; Mattson, David L; Cowley, Allen W

    2017-09-01

    Renal T-cell infiltration is a key component of salt-sensitive hypertension in Dahl salt-sensitive (SS) rats. Here, we use an electronic servo-control technique to determine the contribution of renal perfusion pressure to T-cell infiltration in the SS rat kidney. An aortic balloon occluder placed around the aorta between the renal arteries was used to maintain perfusion pressure to the left kidney at control levels, ≈128 mm Hg, during 7 days of salt-induced hypertension, whereas the right kidney was exposed to increased renal perfusion pressure that averaged 157±4 mm Hg by day 7 of high-salt diet. The number of infiltrating T cells was compared between the 2 kidneys. Renal T-cell infiltration was significantly blunted in the left servo-controlled kidney compared with the right uncontrolled kidney. The number of CD3(+), CD3(+)CD4(+), and CD3(+)CD8(+) T cells were all significantly lower in the left servo-controlled kidney. This effect was not specific to T cells because CD45R(+) (B cells) and CD11b/c(+) (monocytes and macrophages) cell infiltrations were all exacerbated in the hypertensive kidneys. Increased renal perfusion pressure was also associated with augmented renal injury, with increased protein casts and glomerular damage in the hypertensive kidney. Levels of norepinephrine were comparable between the 2 kidneys, suggestive of equivalent sympathetic innervation. Renal infiltration of T cells was not reversed by the return of renal perfusion pressure to control levels after 7 days of salt-sensitive hypertension. We conclude that increased pressure contributes to the initiation of renal T-cell infiltration during the progression of salt-sensitive hypertension in SS rats. © 2017 American Heart Association, Inc.

  15. Effects of salt restriction on renal growth and glomerular injury in rats with remnant kidneys.

    PubMed

    Lax, D S; Benstein, J A; Tolbert, E; Dworkin, L D

    1992-06-01

    Male Munich-Wistar rats underwent right nephrectomy and infarction of two thirds of the left kidney. Rats were randomly assigned to ingest standard chow (REM) or a moderately salt restricted chow (LS). A third group of rats were fed the low salt diet and were injected with an androgen (LSA). Eight weeks after ablation, glomerular volume and glomerular capillary radius were markedly increased in REM. This increase was prevented by the low salt diet, however, the antihypertrophic effect of the diet was overcome by androgen. Values for glomerular volume and capillary radius were similar in LSA and REM. Morphologic studies revealed that approximately 25% of glomeruli were abnormal in REM. Much less injury was observed in salt restricted rats, however, the protective effect of the low salt diet was significantly abrogated when renal growth was stimulated in salt restricted rats by androgen. Micropuncture studies revealed that glomerular pressure was elevated in all three groups and not affected by diet or androgen. Serum cholesterol was also similar in the three groups. These findings indicate that renal and glomerular hypertrophy are correlated with the development of glomerular injury after reduction in renal mass and suggest that dietary salt restriction lessens renal damage, at least in part, by inhibiting compensatory renal growth.

  16. Ceramic waste form for residues from molten salt oxidation of mixed wastes

    SciTech Connect

    Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A.

    1995-11-01

    A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

  17. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  18. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    SciTech Connect

    Rempe, N.T.

    1993-12-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible.

  19. Disposal of soluble salt waste from coal gasification

    SciTech Connect

    McKnight, C.E.

    1980-06-01

    This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

  20. Salt-induced renal injury in SHRs is mediated by AT1 receptor activation

    PubMed Central

    Susic, Dinko; Frohlich, Edward D.; Kobori, Hiroyuki; Shao, Weijian; Seth, Dale; Navar, L. Gabriel

    2011-01-01

    Objective This study aimed to examine the effects of salt loading, with or without simultaneous angiotensin receptor blocker (ARB) treatment, on the systemic and tissue renin-angiotensin system (RAS) in spontaneously hypertensive rats (SHRs). Method Evaluation was performed early (4 weeks) in the course of salt loading in order to examine initial mediating events of cardiovascular and renal damage produced by salt excess. Four groups of rats were studied. Group 1 received regular rat chow (normal-salt diet); group 2 received normal-salt diet and an ARB (losartan, 30 mg/kg per day); group 3 received high-salt (8%) chow; and group 4 received high-salt diet and losartan. Results High-salt diet increased systolic pressure to 193 ± 1 mmHg compared to 180 ± 2 in normal-salt diet group. Losartan reduced SBP in SHRs fed normal-salt diet but did not reduce SBP in the SHRs fed high-salt diet (192 ± 2 mmHg). High-salt diet markedly increased urinary protein excretion from 27 ± 4 to 64 ± 13 mg/day and this increase was ameliorated by losartan (40 ± 9 mg/day). In SHRs on high-salt diet, plasma angiotensin II concentration increased three to four-fold, whereas urinary angiotensinogen excretion increased 10-fold; and these changes were significantly reduced by losartan. High-salt diet accelerated glomerular injury and interstitial fibrosis in SHRs which were reduced by losartan. Conclusion These results demonstrate that the activity of RAS was either not suppressed or, even augmented, after 4 weeks of salt loading despite high salt intake and increased SBP. The data suggest that an augmented intrarenal RAS during high-salt diet may contribute to the development of renal injury in this experimental model. PMID:21346625

  1. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  2. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    PubMed Central

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  3. Variations of Dietary Salt and Fluid Modulate Calcium and Magnesium Transport in Renal Distal Tubule

    PubMed Central

    Lee, Chien-Te; Lien, Yeong-Hau H; Lai, Li-Wen; Ng, Hwee-Yeong; Chiou, Terry Ting-Yu; Chen, Hung-Chun

    2014-01-01

    Background The renal distal tubule serves as the fine tuning of renal epithelial calcium transport. Dietary intake of salt and fluid varies day to day and the kidney adapts accordingly to maintain the homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood. Methods Sprague-Dawley rats were grouped into high salt, low salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of experiment, blood and urine samples were collected for hormonal and biochemical testes. Genetic analysis, immunoblotting, and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules. Results High salt treatment increased urinary sodium, calcium and magnesium excretion. Low salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High salt treatment was associated with increased intact parathyroid hormone levels. Significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high salt treatment while low salt and dehydration diminished the expression. These findings were confirmed with immunofluorescence studies. High salt and low salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4. Conclusions Alternations in salt and water intake affect renal calcium and magnesium handling. High salt intake increases distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low salt intake or dehydration. PMID:23774784

  4. Alteration of renal baroreceptor by salt intake in control of plasma renin activity in conscious dogs.

    PubMed

    Farhi, E R; Cant, J R; Barger, A C

    1983-07-01

    We investigated the relationship between renal arterial pressure (RAP) and systemic plasma renin activity (PRA) in five uninephrectomized conscious dogs on normal salt (80 meq Na+/day) and low salt (10 meq Na+/day) diets. The RAP was controlled by an inflatable cuff placed around the origin of the renal artery. In both salt states the PRA was an exponential function of the RAP: log (PRA) = (-0.026 X RAP) + 2 on the normal salt diet (r = 0.96) and log (PRA) = (-0.026 X RAP) + 2.5 on the low salt diet (r = 0.99). At any RAP, the value of the low salt PRA was 3 times that of the normal salt PRA. Accordingly, a reduction in salt intake increases the sensitivity of the renal baroreceptor so that the absolute value of PRA increases at any RAP, but the percentage change in PRA caused by any change in RAP is the same in both normal and low salt states.

  5. The influence of salt intake on the metabolic acidosis of chronic renal failure

    PubMed Central

    Espinel, G H

    1975-01-01

    The influence of dietary salt on the levels of plasma bicarbonate and on the characteristics of bicarbonate reabsorption was studied in experimental chronic renal failure. Chronic renal failure was produced in rats by sequential partial nephrectomies. The control group received a diet constant in salt content throughout the progression of renal failure; the other group (PRNa), at each stage of renal failure, received salt intake reduced in direct proportion to the fall in glomerular filtration rate (GFR). In the steady state, the quantities of urinary sodium closely approximated intake in obth groups of animals. The adaptive increased natriuresis per nephron exhibited by the control animals was prevented in the PRNa animals. The PRNa group had (a) higher plasma bicarbonate levels, (b) increased bicarbonate thresholds, and (c) increased maximal tubular reabsorptive capacity for bicarbonate. As renal failure progresses, dietary salt can become a determining factor of the levels at which plasma bicarbonate is maintained. Proportional reduction of dietary salt results in bicarbonate conservation in rats with experimental progressive renal failure. PMID:1150871

  6. [Cerebral salt wasting syndrome and traumatic vasospasm after head trauma: report of two cases].

    PubMed

    Katsuno, Makoto; Kobayashi, Shiro; Yokota, Hiroyuki; Teramoto, Akira

    2009-08-01

    While patients with cerebral salt wasting syndrome and traumatic cerebral arterial spasms have been reported, the underlying pathogenesis of these events remains unclear. We encountered 2 patients with head trauma and cerebral infarction who presented with cerebral salt-wasting syndrome and cerebral arterial spasms. Our findings suggested hypothalamic dysfunction due to venous congestion around the hypothalamus caused cerebral salt wasting syndrome and traumatic cerebral arterial spasms.

  7. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X.; Smith, Roger D.; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  8. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X; Smith, Roger D; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  9. Cerebral salt wasting: a report of three cases.

    PubMed

    Younas, Haroon; Sabir, Omer; Baig, Ilyas; Tarif, Nauman

    2015-01-01

    Hyponatremia secondary to the Syndrome of Inappropriate Anti-Diuretic Hormone (SIADH) secretion is commonly observed in patients with various neurological disorders. Cerebral Salt Wasting (CSW) resulting in hyponatremia is also an infrequent occurrence in some patients with neurological disorders. Confusion in differentiating CSW from SIADH may arise since both results in similar electrolyte disturbances. Herein, we report three cases of CSW with intracranial afflictions. CSW was diagnosed on the basis of fractional excretion of urinary sodium and uric acid along with extremely low serum uric acid. Improvements in serum sodium levels after saline hydration and fludrocortisone administration further supported the diagnosis.

  10. Early hyponatraemia after pituitary surgery: cerebral salt-wasting syndrome.

    PubMed

    Guerrero, R; Pumar, A; Soto, A; Pomares, M A; Palma, S; Mangas, M A; Leal, A; Villamil, F

    2007-06-01

    Hyponatraemia is a common complication in patients undergoing neurosurgery. It can be caused either by the syndrome of inappropriate secretion of antidiuretic hormone or by the cerebral salt-wasting syndrome (CSWS). CSWS frequently occurs in patients suffering from subarachnoid haemorrhage and brain injury, but it is rare after pituitary tumour surgery. However, this diagnostic possibility should be considered as these disorders require specific treatment and have different prognoses. In this article, we present a case of acute and early hyponatraemia caused by CSWS after pituitary tumour surgery. We also revise the aetiology, mechanisms, differential diagnosis and treatment of hyponatraemia after pituitary surgery.

  11. Salt-Induced Renal Injury in Spontaneously Hypertensive Rats: Effects of Nebivolol

    PubMed Central

    Varagic, Jasmina; Ahmad, Sarfaraz; Brosnihan, K. Bridget; Habibi, Javad; Tilmon, Roger D.; Sowers, James R.; Ferrario, Carlos M.

    2010-01-01

    Background We investigated renal effects of nebivolol, a selective β1-receptor blocker with additional antioxidative ability, in spontaneously hypertensive rats (SHR) where increased salt intake induces oxidative stress and worsens renal function as a result of further activation of the renin-angiotensin and sympathetic nervous systems. Methods Male SHR were given an 8% salt diet (HS; n = 22) for 5 weeks; their age-matched controls (n = 9) received standard chow. Nebivolol was given at a dose of 10 mg/kg/day for 5 weeks in 11 HS rats. Results HS increased blood pressure, plasma renin concentration, urinary protein excretion, and renal nitroxidative stress while decreasing renal blood flow and angiotensin 1–7 receptor (mas) protein expression. There was no change in angiotensin II type 1 receptor expression among the experimental groups. Nebivolol did not alter the salt-induced increase in blood pressure but reduced urinary protein excretion, plasma renin concentration, and nitroxidative stress. Nebivolol also increased neuronal NOS expression while preventing the salt-induced decrease in renal blood flow and mas protein expression. Conclusion Nebivolol prevented salt-induced kidney injury and associated proteinuria in SHR through a blood pressure-independent mechanism. Its protective effects may be related to reduction in oxidative stress, increases in neuronal NOS and restoration of angiotensin II type 1/mas receptor balance. PMID:21042014

  12. Blood pressure and renal haemodynamic response to salt during the normal menstrual cycle.

    PubMed

    Pechère-Bertschi, A; Maillard, M; Stalder, H; Brunner, H R; Burnier, M

    2000-06-01

    The purpose of the present study was to evaluate prospectively blood pressure and the renal haemodynamic response to salt during the normal menstrual cycle. A total of 35 healthy normotensive young women not on oral contraceptives were enrolled; 17 were studied in the follicular phase and 18 in the luteal phase of the menstrual cycle. The women in each group were then randomly allocated to receive a low-sodium (40 mmol/day) or a high-sodium (250 mmol/day) diet for a 7-day period in two consecutive menstrual cycles. At the end of each dietary period, 24 h ambulatory blood pressure, urinary sodium excretion, plasma renin activity, plasma catecholamine levels and renal haemodynamics were measured. Our results show that the blood pressure response to salt is comparable during the luteal and the follicular phases of the normal menstrual cycle and is characterized by a salt-resistant pattern. In the kidney, effective renal plasma flow was significantly greater and the filtration fraction lower (P<0.05) after salt loading in women studied in the luteal phase compared with women investigated in the follicular phase. This study thus demonstrates that the female hormone status does not affect the blood pressure response to sodium in young normotensive women. However, in contrast with systemic haemodynamics, the renal response to salt varies during the normal menstrual cycle, suggesting that female sex hormones play a role (direct or indirect) in the regulation of renal haemodynamics.

  13. Treatment of Difficult Wastes with Molten Salt Oxidation

    SciTech Connect

    Hsu, P C; Kwak, S

    2003-02-21

    Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid-1990s, the U.S. Army Defense Ammunition Center (DAC) and the Department of Energy (DOE) have jointly invested in MSO development at the Lawrence Livermore National Laboratory (LLNL). LLNL first demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5-kg/hr bench-scale unit, and then in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. Several MSO systems have been built with sizes up to 10 ft in height and 16 inches in diameter. LLNL in 2001 completed a MSO plant for DAC for the destruction of explosives-contaminated sludge and explosives-contaminated carbon. We will present in this paper our latest demonstration data and our operational experience with MSO.

  14. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  15. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling.

    PubMed

    Yu, Hao; Yang, Tao; Gao, Peng; Wei, Xing; Zhang, Hexuan; Xiong, Shiqiang; Lu, Zongshi; Li, Li; Wei, Xiao; Chen, Jing; Zhao, Yu; Arendshorst, William J; Shang, Qianhui; Liu, Daoyan; Zhu, Zhiming

    2016-05-12

    High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na(+) channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC.

  16. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling

    PubMed Central

    Yu, Hao; Yang, Tao; Gao, Peng; Wei, Xing; Zhang, Hexuan; Xiong, Shiqiang; Lu, Zongshi; Li, Li; Wei, Xiao; Chen, Jing; Zhao, Yu; Arendshorst, William J.; Shang, Qianhui; Liu, Daoyan; Zhu, Zhiming

    2016-01-01

    High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC. PMID:27173481

  17. [Prolonged cerebral salt wasting following craniopharyngioma surgery and posterior reversible encephalopathy syndrome: a case report].

    PubMed

    Ohtonari, Tatsuya; Hashimoto, Masanori; Urasaki, Eiichiro; Yokota, Akira; Araki, Shunsuke; Asayama, Koutaro; Shirahata, Akira

    2005-01-01

    A 9-year-old boy was admitted to our hospital with daytime urinary incontinence for the past one year. MRI showed craniopharyngioma occupying the third ventricle. The tumor was excised by interhemispheric approach. Because hyponatremia and polyuria with high renal loss of sodium were observed on postoperative day 3, hydrocortisone and DDAVP were replaced. On postoperative day 24, successive general convulsions and hyponatremia recurred, and MRI FLAIR imaging showed marked brain edema in the bilateral parieto-occipital lobes. This finding disappeared late in the course of treatment, and the case was diagnosed as posterior reversible encephalopathy syndrome. The pathophysiology of cerebral salt wasting and posterior reversible encephalopathy syndrome in a craniopharyngioma patient are also discussed in the article.

  18. Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.

    2012-01-01

    Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.

  19. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  20. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats.

    PubMed

    Blasi, Eileen R; Rocha, Ricardo; Rudolph, Amy E; Blomme, Eric A G; Polly, Melissa L; McMahon, Ellen G

    2003-05-01

    We evaluated the role of aldosterone as a mediator of renal inflammation and fibrosis in a rat model of aldosterone/salt hypertension using the selective aldosterone blocker, eplerenone. Unnephrectomized, Sprague-Dawley rats were given 1% NaCl (salt) to drink and randomized to receive treatment for 28 days: vehicle infusion (control); 0.75 microg/hour aldosterone subcutaneous infusion; or aldosterone infusion + 100 mg/kg/day oral dose of eplerenone. Blood pressure and urinary albumin were measured and kidneys were evaluated histologically. Renal injury, inflammation, and fibrosis were assessed by immunohistochemistry, in situ hybridization, and reverse transcription-polymerase chain reaction (RT-PCR). Aldosterone/salt induced severe hypertension compared to controls (220 +/- 4 mm Hg vs. 131 +/- 4 mm Hg, P < 0.05), which was partially attenuated by eplerenone (179 +/- 4 mm Hg, P < 0.05). In aldosterone/salt treated rats, renal histopathologic evaluation revealed severe vascular and glomerular sclerosis, fibrinoid necrosis and thrombosis, interstitial leukocyte infiltration, and tubular damage and regeneration. Aldosterone/salt increased circulating osteopontin (925.0 +/- 80.2 ng/mL vs. 53.6 +/- 6.3 ng/mL) and albuminuria (75.8 +/- 10.9 mg/24 hours vs. 13.2 +/- 3.0 mg/24 hours) compared to controls and increased expression of proinflammatory molecules. Treatment with eplerenone reduced systemic osteopontin (58.3 +/- 4.2 ng/mL), albuminuria (41.5 +/- 7.2 mg/24 hours), and proinflammatory gene expression: osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and interleukin-1beta (IL-1beta). These findings indicate that aldosterone/salt-induced renal injury and fibrosis has inflammatory components involving macrophage infiltration and cytokine up-regulation. Attenuation of renal damage and inflammation by eplerenone supports the protective effects of aldosterone blockade in hypertensive renal disease.

  1. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  2. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect

    Simpson, M.F.; Patterson, M.N.; Lee, J.; Wang, Y.; Versey, J.; Phongikaroon, S.

    2013-07-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  3. Stability High Salt Content Waste Using Sol Gel Process. Mixed Waste Focus Area. OST Reference Number 0236

    SciTech Connect

    None, None

    1999-09-01

    Mixed waste sludges, soils, and homogeneous solids containing high levels of salt ( ~ greater than 15% by weight ) have proven to be difficult to stabilize due to the soluble nature of the salts. The current stabilization technique for high salt waste, grouting with Portland cement, is limited to low waste loadings. The presence of salts interfere with the hydration and curing of the cement, cause waste form deteriorating mineral expansions, or result in an undesirable separate phase altogether. Improved technologies for the stabilization of salt waste must be able to accommodate higher salt loadings, while maintaining structural integrity, chemical durability, and leach resistance. In a joint collaboration supported by the Department of Energy’s (DOE’s) Mixed Waste Focus Area (MWFA), the Pacific Northwest National Laboratory (PNNL) and the Arizona Materials Laboratory (AML) at the University of Arizona have developed a sol-gel (wet-chemical) based, low-temperature-processing route for the stabilization of salt-containing mixed wastes. By blending and reacting liquid precursors at room temperature with salt waste, strong, impermeable “polyceram” matrices have been formed that encapsulate the environmentally hazardous waste components. As depicted by Figure 1, polycerams are hybrid organic/inorganic materials with unique properties derived from the chemical combination of polymer (organic) and ceramic (inorganic) components. For this application, the stabilizing polyceram matrices contain polybutadiene-based polymer components and silicon dioxide (SiO2) as the inorganic component. Polybutadiene (PBD) is a strong, tough, waterresistant plastic and its use in the polyceram promotes these same characteristics in the waste form. The PBD polymer component is modified to increase its reactivity with the SiO2 precursor during sol-gel processing. When combined, the polymer and SiO2 precursors react, gel, solidify, and encapsulate the

  4. The treatment of cerebral salt wasting with fludrocortisone in a child with lissencephaly.

    PubMed

    Ozdemir, Halil; Aycan, Zehra; Degerliyurt, Aydan; Metin, Ayse

    2010-01-01

    Hyponatremia is the most frequent electrolyte disorder in critically ill neurological patients. The major differential diagnoses in this situation are the syndrome of inappropriate antidiuretic hormone secretion, marked by inappropriate retention of free water, and cerebral salt wasting, characterized by excessive urinary loss of sodium and resulting in polyuria and extracellular volume contraction. Cerebral salt wasting is a syndrome of hyponatremia due to increased urine output and excessive natriuresis described in patients with central nervous system disease. Although cerebral salt wasting has been well described in neurosurgical patients, data regarding pediatric patients is sparse. We present a 34-month-old boy with lissencephaly who developed cerebral salt wasting after brain biopsy. The patient was treated with hypertonic saline and multiple antiepileptic drugs. Fludrocortisone supplementation effectively treated cerebral salt wasting.

  5. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  6. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, T.

    1992-01-01

    This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  7. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  8. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  9. Dietary inclusion of local salt substitutes induces oxidative stress and renal dysfunction in rats.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O; Araoye, Obafemi O; Oyeleye, Sunday I

    2014-01-01

    Our earlier report has shown that salt substitutes (Obu-Otoyo) contain some toxic heavy metals. This study, therefore, investigated the effect of the dietary inclusion of salt substitutes (Obu-Otoyo), namely, salt "A" and "B", on biomarkers of oxidative stress and renal function in rats. Salt "A", which has a gray color, is the product of a process in which ash is produced by burning palm kernel shaft soaked in water overnight and extracting the residue to produce the salt substitute while Salt "B", which has a white color, is a rock salt mined from a local site at Ilobu town, Osun-State, Nigeria. Salt substitutes were fed to normal rats as dietary inclusion at 0.5% and 1.0% for 21 days. The dietary inclusion of the salt substitutes caused a significant (p<0.05) increase in plasma activities of creatinine, urea, uric acid, and blood urea nitrogen compared with the control. Meanwhile, the dietary inclusion of the salt substitutes caused a significant (p<0.05) decrease in renal superoxide dismutase, catalase, reduced glutathione level, glutathione-S-transferase, and glutathione peroxidase activities with a concomitant increase in the malondialdehyde level compared with the control. Furthermore, there was a significant (p<0.05) increase in the concentrations of heavy metals, such as Pb, Co, Cu, Fe, Zn and Cr, in kidney of rats fed with the salt substitute Obu-Otoyo. Therefore, this finding indicates that Obu-Otoyo induces nephrotoxicity in rats. The nephrotoxicity of Obu-Otoyo could be attributed to the induction of oxidative stress as a result of the presence of some heavy metals, suggesting possible health hazards in subjects who consume it.

  10. Container materials for isolation of radioactive waste in salt

    SciTech Connect

    Streicher, M.A.; Andrews, A.

    1987-10-01

    The workshop reviewed the extensive data on the corrosion resistance of low-carbon steel in simulated salt repository environments, determined whether these data were sufficient to recommend low-carbon steel for fabrication of the container, and assessed the suitability of other materials under consideration in the SRP. The panelists determined the need for testing and research programs, recommended experimental approaches, and recommended materials based on existing technology. On the first day of the workshop, presentations were made on waste package requirements; the expected corrosion environment; degradation processes, including a review of data from corrosion tests on carbon steel; and rationales for container design and materials, modeling studies, and planned future work. The second day was devoted to a panel caucus, presentation of workshop findings, and open discussion. 76 refs., 2 figs., 3 tabs.

  11. Cerebral salt wasting syndrome in children with acute central nervous system injury.

    PubMed

    Jiménez, Raquel; Casado-Flores, Juan; Nieto, Monserrat; García-Teresa, María Angeles

    2006-10-01

    The purpose of this investigation was to describe the causes, clinical pattern, and treatment of cerebral salt wasting syndrome in children with acute central nervous system injury. This retrospective study focused on patientssalt wasting syndrome, over a period of 7 years, in the pediatric intensive care unit of a tertiary care hospital. Selection criteria included evidence of hyponatremia (serum sodium<130 mEq/L), polyuria, elevated urine sodium (>120 mEq/L), and volume depletion. Fourteen patients were identified with cerebral salt wasting syndrome, 12 after a neurosurgical procedure (8 brain tumor, 4 hydrocephalus) and 2 after severe brain trauma. In 11 patients the cerebral salt wasting syndrome was diagnosed during the first 48 hours of admission. Prevalence of cerebral salt wasting syndrome in neurosurgical children was 11.3/1000 surgical procedures. The minimum sodium was 122+/-7 mEq/L, the maximum urine osmolarity 644+/-59 mOsm/kgH2O. The maximum sodium supply was 1 mEq/kg/h (range, 0.1-2.4). The mean duration of cerebral salt wasting syndrome was 6+/-5 days (range 1-9). In conclusion, cerebral salt wasting syndrome can complicate the postoperative course of children with brain injury; it is frequently present after surgery for brain tumors and hydrocephalus and in patients with severe head trauma. Close monitoring of salt and fluid balance is essential to prevent severe neurologic and hemodynamic complications.

  12. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  13. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wang, Youping; Babánková, Dagmar; Huang, Jie; Swain, Greg M; Wang, Donna H

    2008-08-01

    To determine whether the transient receptor potential vanilloid type 1 (TRPV1) channel provides protection against hypertension-induced renal damage, hypertension was induced by uninephrectomy and by giving deoxycorticosterone acetate (DOCA)-salt in wild-type (WT) and TRPV1-null mutant (TRPV1-/-) mice. Mean arterial pressure, as determined by radiotelemetry, increased significantly and reached the peak 7 days after DOCA-salt treatment in both WT and TRPV1-/- mice. There was no difference in mean arterial pressure between the 2 strains at the baseline or at the peak that lasted for 4 treatment weeks. DOCA-salt treatment in both WT and TRPV1-/- mice led to increased urinary excretion of albumin and 8-isoprostane, glomerulosclerosis, renal cortical tubulointerstitial injury, tubulointerstitial fibrosis, increased number of tubular proliferating cell nuclear antigen-positive cells, and renal monocyte/macrophage infiltration, all of which were much more severe in DOCA-salt-treated TRPV1-/- compared with DOCA-salt-treated WT mice. Renal TRPV1 protein expression, but not the renal anandamide content, was elevated in DOCA-salt-treated WT compared with vehicle-treated WT mice. Renal anandamide levels were markedly elevated in DOCA-salt-treated TRPV1-/- but not in vehicle-treated TRPV1-/- mice. Thus, our data show that ablation of the TRPV1 gene exacerbates renal damage induced by DOCA-salt hypertension, indicating that TRPV1 may constitute a protective mechanism against end-organ damage induced by hypertension.

  14. Differential Effect of Renal Cortical and Medullary Interstitial Fluid Calcium on Blood Pressure Regulation in Salt-Sensitive Hypertension

    PubMed Central

    Eley, Shaleka; Anderson, Lauren; Waters, Brittany; Royall, Brittany; Nichols, Sheena; Wells, Candace

    2015-01-01

    BACKGROUND Hypercalciuria is a frequent characteristic of hypertension. In this report we extend our earlier studies investigating the role of renal interstitial fluid calcium (ISFCa)2+ as a link between urinary calcium excretion and blood pressure in the Dahl salt-sensitive (DS) hypertensive model. METHODS Dahl salt-sensitive and salt-resistant (DR) rats were placed on control (0.45%) and high (8%) salt diets to determine if changes in renal cortical and medullary ISFCa 2+correlated with changes in urinary calcium excretion and blood pressure. RESULTS We observed that renal ISFCa 2+ was predicted by urinary calcium excretion (P < 0.05) in DS rats but not DR rats. Renal cortical ISFCa 2+ was negatively associated with blood pressure (P < 0.03) while renal medullary ISFCa 2+ was positively associated with blood pressure in DS rats (P < 0.04). In contrast, neither urinary calcium excretion nor renal ISFCa 2+ was associated with blood pressure in the DR rats under the conditions of this study. CONCLUSION We interpret these findings to suggest that decreased renal cortical ISFCa 2+ plays a role in the increase in blood pressure following a high salt diet in salt hypertension perhaps by mediating renal vasoconstriction; the role of medullary calcium remains to be fully understood. Further studies are needed to determine the mechanism of the altered renal ISFCa 2+ and its role in blood pressure regulation. PMID:25552516

  15. Recovery of salt wastes in the production of propylene oxide

    SciTech Connect

    Zyablitseva, M.P.; Tyurin, B.K.; Kudinov, V.I.; Bukbulatov, I.K.; Mazanko, A.F.

    1983-02-01

    In the production of propylene oxide as much as 40 t dilute calcium chloride solution forms per ton of product in the step of saponification of propylene chlorhydrine with milk of lime. To create a zero-waste technology for production of propylene oxide, there is practical interest in saponification of propylene chlorhydrine with electrolysis brines with recovery of the resultant solution of sodium chloride after purification to remove organic impurities. The possibility of using an electrochemical method to purify wastewater from production of propylene oxide in using the purified solution as starting material for production of electrolysis brines was investigated. Experimental testing of processes of purification and recovery of wastewaters in a regime of industrial electrolysis confirmed the possibility of using purified wastewater from production of propylene oxide as brine for electrolysis. Incorporation of the developed method into industry will permit zero-waste production of propylene oxide with a closed salt cycle. The cost of purification of 1 m/sup 3/ wastewater is 1-1.5 rubles.

  16. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  17. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  18. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion

    PubMed Central

    Cai, Shi-Ying; Lionarons, Daniël A.; Hagey, Lee; Soroka, Carol J.; Mennone, Albert; Boyer, James L.

    2012-01-01

    The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the post-metamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (~10 μM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ~35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72 hr period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts and BSP, were predominantly excreted via the kidney with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. PMID:23175353

  19. Direct renal effects of a fructose-enriched diet: interaction with high salt intake.

    PubMed

    Ares, Gustavo R; Ortiz, Pablo A

    2015-11-01

    Consumption of fructose has increased during the last 50 years. Excessive fructose consumption has a detrimental effect on mammalian health but the mechanisms remain unclear. In humans, a direct relationship exists between dietary intake of added sugars and increased risk for cardiovascular disease mortality (52). While the causes for this are unclear, we recently showed that fructose provided in the drinking water induces a salt-dependent increase in blood pressure in Sprague-Dawley rats in a matter of days (6). However, little is known about the effects of fructose in renal salt handling and whether combined intake of high fructose and salt can lead to salt-sensitive hypertension before the development of metabolic abnormalities. The long-term (more than 4 wk) adverse effects of fructose intake on renal function are not just due to fructose but are also secondary to alterations in metabolism which may have an impact on renal function. This minireview focuses on the acute effect of fructose intake and its effect on salt regulation, as they affect blood pressure. Copyright © 2015 the American Physiological Society.

  20. Direct renal effects of a fructose-enriched diet: interaction with high salt intake

    PubMed Central

    Ares, Gustavo R.

    2015-01-01

    Consumption of fructose has increased during the last 50 years. Excessive fructose consumption has a detrimental effect on mammalian health but the mechanisms remain unclear. In humans, a direct relationship exists between dietary intake of added sugars and increased risk for cardiovascular disease mortality (52). While the causes for this are unclear, we recently showed that fructose provided in the drinking water induces a salt-dependent increase in blood pressure in Sprague-Dawley rats in a matter of days (6). However, little is known about the effects of fructose in renal salt handling and whether combined intake of high fructose and salt can lead to salt-sensitive hypertension before the development of metabolic abnormalities. The long-term (more than 4 wk) adverse effects of fructose intake on renal function are not just due to fructose but are also secondary to alterations in metabolism which may have an impact on renal function. This minireview focuses on the acute effect of fructose intake and its effect on salt regulation, as they affect blood pressure. PMID:26447210

  1. Expedited demonstration of molten salt mixed waste treatment technology. Final report

    SciTech Connect

    1995-02-02

    This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas.

  2. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  3. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression.

    PubMed

    Wang, Dan; Wang, Yang; Liu, Fu-Qiang; Yuan, Zu-Yi; Mu, Jian-Jun

    2016-04-01

    Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na⁺/K⁺-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension.

  4. High Salt Diet Affects Renal Sodium Excretion and ERRα Expression

    PubMed Central

    Wang, Dan; Wang, Yang; Liu, Fu-Qiang; Yuan, Zu-Yi; Mu, Jian-Jun

    2016-01-01

    Kidneys regulate the balance of water and sodium and therefore are related to blood pressure. It is unclear whether estrogen-related receptor α (ERRα), an orphan nuclear receptor and transcription factor highly expressed in kidneys, affects the reabsorption of water and sodium. The aim of this study was to determine whether changes in the expressions of ERRα, Na+/K+-ATPase and epithelial sodium channel (ENaC) proteins affected the reabsorption of water and sodium in kidneys of Dahl salt-sensitive (DS) rats. SS.13BN rats, 98% homologous to the DS rats, were used as a normotensive control group. The 24 h urinary sodium excretion of the DS and SS.13BN rats increased after the 6-week high salt diet intervention, while sodium excretion was increased in DS rats with daidzein (agonist of ERRα) treatment. ERRα expression was decreased, while β- and γ-ENaC mRNA expressions were increased upon high sodium diet treatment in the DS rats. In the chromatin immunoprecipitation (CHIP) assay, positive PCR signals were obtained in samples treated with anti-ERRα antibody. The transcriptional activity of ERRα was decreased upon high salt diet intervention. ERRα reduced the expressions of β- and γ-ENaC by binding to the ENaC promoter, thereby increased Na+ reabsorption. Therefore, ERRα might be one of the factors causing salt-sensitive hypertension. PMID:27043552

  5. Cerebral salt-wasting syndrome due to hemorrhagic brain infarction: a case report.

    PubMed

    Tanaka, Tomotaka; Uno, Hisakazu; Miyashita, Kotaro; Nagatsuka, Kazuyuki

    2014-07-23

    Cerebral salt-wasting syndrome is a condition featuring hyponatremia and dehydration caused by head injury, operation on the brain, subarachnoid hemorrhage, brain tumor and so on. However, there are a few reports of cerebral salt-wasting syndrome caused by cerebral infarction. We describe a patient with cerebral infarction who developed cerebral salt-wasting syndrome in the course of hemorrhagic transformation. A 79-year-old Japanese woman with hypertension and arrhythmia was admitted to our hospital for mild consciousness disturbance, conjugate deviation to right, left unilateral spatial neglect and left hemiparesis. Magnetic resonance imaging revealed a broad ischemic change in right middle cerebral arterial territory. She was diagnosed as cardiogenic cerebral embolism because atrial fibrillation was detected on electrocardiogram on admission. She showed hyponatremia accompanied by polyuria complicated at the same time with the development of hemorrhagic transformation on day 14 after admission. Based on her hypovolemic hyponatremia, she was evaluated as not having syndrome of inappropriate secretion of antidiuretic hormone but cerebral salt-wasting syndrome. She fortunately recovered with proper fluid replacement and electrolyte management. This is a rare case of cerebral infarction and cerebral salt-wasting syndrome in the course of hemorrhagic transformation. It may be difficult to distinguish cerebral salt-wasting syndrome from syndrome of inappropriate antidiuretic hormone, however, an accurate assessment is needed to reveal the diagnosis of cerebral salt-wasting syndrome because the recommended fluid management is opposite in the two conditions.

  6. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect

    Wishau, R.; Ramsey, K.B.; Montoya, A.

    1998-12-31

    This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

  7. Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

    2010-08-01

    In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol

  8. [Salt, renal function and high blood pressure--reflections on a current issue].

    PubMed

    Aurell, Mattias

    2002-11-21

    The role of salt intake for blood pressure control has been discussed for a long time. A brief review is given of some pertinent physiological facts to explain this relationship and evolutionary aspects of renal function are emphasized. Salt intake is very high in the modern society, often as high as 15 g sodium chloride per 24 hours while 3-6 g may be more than enough to maintain an adequate salt balance. If the kidneys cannot cope with this severe sodium overload, blood pressure will rise. Therefore, the kidneys' ability to excrete sodium is a key factor and the salt excretion capacity is the kidneys' major barostatic function. As barostats, the kidneys control the blood pressure by ultimately determining the sodium excretion. Reducing sodium intake is, however, difficult as more than 50% of the intake is contained in the food we buy such as bread, sausages, canned food, chips and fast-food. Food products should therefore be "salt declared", but information on this aspect is generally lacking. If the population's salt intake could be reduced by 50%, the prevalence of hypertension will be much reduced, perhaps also by as much as 50%. The cost to society for treating hypertension would be reduced accordingly. Salt intake is also an important aspect of the overweight problem among today's youth. Salt and overweight impose great health risks later in life. Preventive measures in this area must be given high priority in future health care work.

  9. Renal medullary endothelin-1 is decreased in Dahl salt-sensitive rats

    PubMed Central

    Speed, Joshua S.; LaMarca, Babbette; Berry, Hunter; Cockrell, Kathy; George, Eric M.

    2011-01-01

    Although it is well established that the renal endothelin (ET-1) system plays an important role in regulating sodium excretion and blood pressure through activation of renal medullary ETB receptors, the role of this system in Dahl salt-sensitive (DS) hypertension is unclear. The purpose of this study was to determine whether the DS rat has abnormalities in the renal medullary endothelin system when maintained on a high sodium intake. The data indicate that Dahl salt-resistant rats (DR) on a high-salt diet had a six-fold higher urinary endothelin excretion than in the DR rats with low Na+ intake (17.8 ± 4 pg/day vs. 112 ± 44 pg/day). In sharp contrast, urinary endothelin levels increased only twofold in DS rats in response to a high Na+ intake (13 ± 2 pg/day vs. 29.8 ± 5.5 pg/day). Medullary endothelin concentration in DS rats on a high-Na+ diet was also significantly lower than DR rats on a high-Na+ diet (31 ± 2.8 pg/mg vs. 70.9 ± 5 pg/mg). Furthermore, DS rats had a significant reduction in medullary ETB receptor expression compared with DR rats while on a high-Na+ diet. Finally, chronic infusion of ET-1 directly into the renal medulla blunted Dahl salt-sensitive hypertension. These data indicate that a decrease in medullary production of ET-1 in the DS rat could play an important role in the development of salt-sensitive hypertension observed in the DS rat. PMID:21613578

  10. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-12-31

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  11. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P. ); Wicks, G.G. ); Clark, D.E. ); Lodding, A.R. )

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  12. Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.

    PubMed

    Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

    2011-08-01

    Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered.

  13. Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension.

    PubMed

    Ling, Yeong Hann; Krishnan, Shalini M; Chan, Christopher T; Diep, Henry; Ferens, Dorota; Chin-Dusting, Jaye; Kemp-Harper, Barbara K; Samuel, Chrishan S; Hewitson, Timothy D; Latz, Eicke; Mansell, Ashley; Sobey, Christopher G; Drummond, Grant R

    2017-02-01

    To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. By 10days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3±2.4mmHg) compared to control mice (121.7±2.7mmHg; n=18, P<0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by ∼20mmHg (n=16, P<0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced (∼30%) renal expression of some (CCL5, CCL2; n=7-8; P<0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P>0.05). Anakinra reduced renal collagen content (n=6, P<0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P<0.001) that accompanied 1K/DOCA/salt-induced hypertension. Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    SciTech Connect

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification.

  15. [Cerebral salt wasting syndrome in a patient with viral meningoencephalitis].

    PubMed

    Namba, Tomoko; Harada, Tamaki; Sakai, Kanaki; Takeji, Masanobu; Takahara, Ken; Uzu, Takashi; Yamauchi, Atsushi

    2006-01-01

    A 53-year-old male was admitted to our hospital for a high fever. He suffered a change in personality, memory loss and disorientation as well. The findings of cerebrospinal fluid showed monocytosis, but the titers of glucose, C1 and ADA were all normal. Although there was no bacterium in the CSF, the patient's electroencephalography finding was abnormal. We diagnosed his condition as viral meningoencephalitis and started treatment with antiviral agents. Blood chemistry showed serum sodium of 130 mEq/l and plasma osmolarity was reduced to 272 mOsm/kg, while urine osmolarity was high at 353 mOsm/kg. Two potential causes of hyponatremia in this patient were the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) or cerebral salt wasting syndrome (CSWS). Physical findings revealed a contracted extracellular fluid volume, strongly suggesting the presence of CSWS. The massive urine sodium loss overcoming sodium intake supported this diagnosis. After treatment with vigorous sodium and volume replacement for over 4 weeks, hyponatremia as well as meningoencephalitis were improved without any complication. To the best of our knowledge, this is the first report on CSWS in a patient with viral meningoencephalitis.

  16. Cerebral salt wasting syndrome after calvarial remodeling in craniosynostosis.

    PubMed

    Byeon, Jun-Hee; Yoo, Gyeol

    2005-10-01

    Hyponatremia and increased urine output after calvarial remodeling have been noted in pediatric patients with craniosynostosis. If not treated properly, patients develop hypoosmotic conditions that can lead to cerebral edema, increased intracranial pressure, and collapsed circulation. Postoperative hyponatremia after central nervous system surgery is considered as the syndrome of inappropriate antidiuretic hormone (SIADH) secretion. Recently, however, cerebral salt wasting syndrome (CSWS) instead of SIADH has been reported frequently. CSWS is associated with a decreased serum sodium level, increased urinary sodium level, increased urine output, decreased ECF volume, increased atrial natriuretic peptide (ANP) level, and increased brain natriuretic peptide (BNP) level. We experienced nine patients with craniosynostosis who underwent calvarial remodeling. By postoperative day 1, the ANP and BNP levels increased by 3-6 folds compared with the preoperative levels. They returned to the normal levels by postoperative day 5. The ADH level was within the normal range even after operation. The urinary sodium level increased in all patients by postoperative day 1 and 3. But the serum sodium level, and serum and urine osmolarity were normal due to appropriate replacement of sodium and fluid. After calvarial remodeling, the potential development of CSWS should be considered and distinguished from SIADH. The patients with CSWS require normal saline resuscitation and should prophylactically receive normal saline.

  17. Reconsolidation of salt as applied to permanent seals for the Waste Isolation Pilot Plant

    SciTech Connect

    Hansen, F.D.; Callahan, G.D.; Van Sembeek, L.L.

    1993-07-01

    Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work.

  18. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  19. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    DOE PAGES

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...

    2017-08-30

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy.more » These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  20. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect

    Wishau, R.

    1998-05-01

    Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

  1. Modified phosphate ceramics for stabilization and solidification of salt mixed wastes.

    SciTech Connect

    Singh, D.

    1998-06-26

    Novel chemically bonded phosphate ceramics have been investigated for stabilization and solidification of chloride and nitrate salt wastes. Using low-temperature processing, we stabilized and solidified chloride and nitrate surrogate salts (with hazardous metals) in magnesium potassium phosphate ceramics up to waste loadings of 70-80 wt.%. A variety of characterizations, including strength, microstructure, and leaching, were then conducted on the waste forms. Leaching tests show that all heavy metals in the leachant are well below the EPAs universal treatment standard limits. Long-term leaching tests, per ANS 16. 1 procedure, yields leachability index for nitrate ions > 12. Chloride ions are expected to have an even higher (i.e., better) leachability index. Structural performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfies the regulatory criteria. Thus, based on the results of this study, it seems that phosphate ceramics are viable option for containment of salt wastes.

  2. Characterization of the development of renal injury in Type-1 diabetic Dahl salt-sensitive rats

    PubMed Central

    Slaughter, Tiffani N.; Paige, Adrienne; Spires, Denisha; Kojima, Naoki; Kyle, Patrick B.; Garrett, Michael R.; Roman, Richard J.

    2013-01-01

    The present study compared the progression of renal injury in Sprague-Dawley (SD) and Dahl salt-sensitive (SS) treated with streptozotocin (STZ). The rats received an injection of STZ (50 mg/kg ip) and an insulin pellet (2 U/day sc) to maintain the blood glucose levels between 400 and 600 mg/dl. Twelve weeks later, arterial pressure (143 ± 6 vs. 107 ± 8 mmHg) and proteinuria (557 ± 85 vs. 81 ± 6 mg/day) were significantly elevated in STZ-SS rats compared with the values observed in STZ-SD rats, respectively. The kidneys from STZ-SS rats exhibited thickening of glomerular basement membrane, mesangial expansion, severe glomerulosclerosis, renal interstitial fibrosis, and occasional glomerular nodule formation. In additional studies, treatment with a therapeutic dose of insulin (4 U/day sc) attenuated the development of proteinuria (212 ± 32 mg/day) and renal injury independent of changes in arterial pressure in STZ-SS rats. Since STZ-SS rats developed severe renal injury, we characterized the time course of changes in renal hemodynamics during the progression of renal injury. Nine weeks after diabetes onset, there was a 42% increase in glomerular filtration rate in STZ-SS rats vs. time-control SS rats with reduced renal blood flow. These results indicate that SS rats treated with STZ develop hyperfiltration and progressive proteinuria and display renal histological lesions characteristic of those seen in patients with diabetic nephropathy. Overall, this model may be useful to study signaling pathways and mechanisms that play a role in the progression of diabetes-induced renal disease and the development of new therapies to slow the progression of diabetic nephropathy. PMID:23926133

  3. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  4. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I.

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  5. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity.

    PubMed

    Xu, Chuanming; Lu, Aihua; Lu, Xiaohan; Zhang, Linlin; Fang, Hui; Zhou, Li; Yang, Tianxin

    2017-02-01

    A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.

  6. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    SciTech Connect

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-12-01

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  7. Cerebral salt wasting syndrome: postoperative complication in tumours of the cerebellopontine angle.

    PubMed

    Ruiz-Juretschke, Fernando; Arístegui, Miguel; García-Leal, Roberto; Fernández-Carballal, Carlos; Lowy, Alejandro; Martin-Oviedo, Carlos; Panadero, Teresa

    2012-02-01

    Cerebral salt wasting (CSW) is a rare complication in posterior fossa tumour surgery. We present two patients with cerebellopontine angle (CPA) tumours who developed cerebral salt wasting postoperatively. Both patients deteriorated in spite of intensive fluid and salt replacement. On CT scan the patients presented mild to moderate ventricular dilation, which was treated with an external ventricular drainage. After the resolution of hydrocephalus, fluid balance rapidly returned to normal in both patients and the clinical status improved. Identification and treatment of secondary obstructive hydrocephalus may contribute to the management of CSW associated to posterior fossa tumour surgery.

  8. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    SciTech Connect

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

  9. Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury.

    PubMed

    Ding, Wei; Yang, Lei; Zhang, Minmin; Gu, Yong

    2012-04-20

    Recent studies suggested that nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of renal injury. This study investigated whether NF-κB inhibition attenuates progressive renal damage in aldosterone/salt-induced renal injury and its mechanisms. Adult male rats were uninephrectomized and treated with one of the following for 4 weeks: vehicle (0.5% ethanol, subcutaneously); vehicle/1% NaCl (1% NaCl in drinking solution); aldosterone/1% NaCl (1% NaCl in drinking solution and aldosterone, 0.75 μg/h, subcutaneously); or aldosterone/1%NaCl+pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB (100 mg/kg/day, by gavage). The activity of NF-κB was measured by EMSA and immunohistochemistry, CTGF and ICAM-1 were measured by Western blot and real-time PCR, and TGF-β and CTGF were measured by immunohistochemistry. Rats that received aldosterone/1% NaCl exhibited hypertension and severe renal injury. Renal cortical mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, protein expression of CTGF and ICAM-1, and NF-κB-DNA binding activity were significantly upregulated in rats that received aldosterone/1% NaCl. Treatment with PDTC significantly decreased the percentage of cells positive for CTGF and TGF-β; mRNA levels of CTGF, TGF-β, ICAM-1 and collagen IV, and protein levels of CTGF and ICAM-1 were also inhibited by PDTC. These data suggest that the NF-κB signal pathway plays a role in the progression of aldosterone/salt-induced renal injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice.

    PubMed

    Tanino, Akiko; Okura, Takafumi; Nagao, Tomoaki; Kukida, Masayoshi; Pei, Zuowei; Enomoto, Daijiro; Miyoshi, Ken-Ichi; Okamura, Haruki; Higaki, Jitsuo

    2016-10-01

    Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18(-/-) and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.

  11. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension

    PubMed Central

    Morris, R. Curtis; Schmidlin, Olga; Sebastian, Anthony; Tanaka, Masae; Kurtz, Theodore W.

    2016-01-01

    Prevailing theory holds that abnormally large increases in renal salt retention and cardiac output are early pathophysiologic events mediating initiation of most instances of salt-induced hypertension. This theory has come under increasing scrutiny because it is based on studies that lack measurements of sodium balance and cardiac output obtained during initiation of salt-loading in proper normal controls, i.e., salt-resistant subjects with normal blood pressure. Here we make the case for a “vasodysfunction” theory for initiation of salt-induced hypertension: In response to an increase in salt intake, a subnormal decrease in total peripheral resistance that involves a subnormal decrease in renal vascular resistance, in the absence of abnormally large increases in sodium retention and cardiac output, is the hemodynamic abnormality that usually mediates initiation of salt-induced increases in blood pressure (BP). It is the failure to normally decrease vascular resistance in response to salt loading that enables a normal increase of cardiac output to initiate the salt-induced increase in blood pressure. This theory is based on the results of properly controlled studies which consistently demonstrate that in salt-sensitive subjects, salt-loading initiates increased BP through a hemodynamic mechanism that: 1) does not usually involve early increases in sodium retention and cardiac output greater than those which occur with salt-loading in normal controls, and 2) usually involves an early failure to decrease vascular resistance to the same extent as that observed during salt-loading in normal controls. Multiple mechanisms including disturbances in nitric oxide and sympathetic nervous system activity likely underlie this subnormal vasodilatory response to salt that usually precedes and initiates salt-induced hypertension. PMID:26927006

  12. Superiority of salt restriction over diuretics in reducing renal hypertrophy and injury in uninephrectomized SHR.

    PubMed

    Benstein, J A; Feiner, H D; Parker, M; Dworkin, L D

    1990-06-01

    Spontaneously hypertensive rats (SHR) were uninephrectomized (UNX) at 6 wk of age and given either standard chow (CON), low-sodium chow (LSC), or standard chow and hydrochlorothiazide (HCTZ) added to the drinking water. Severe hypertension developed in all three groups. Forty-two weeks after UNX, proteinuria and glomerular sclerosis were significantly lower in LSC than in CON or HCTZ. The protective effect of salt restriction did not depend upon alterations in plasma renin concentration or glomerular hemodynamics. Micropuncture revealed that glomerular pressure was high in all three groups. Renal hypertrophy assessed by kidney weight, kidney-to-body weight ratio, glomerular volume, and glomerular capillary radius were reduced by salt restriction. These findings suggest that, in the setting of glomerular hypertension, hypertrophy promotes sclerosis. Salt restriction inhibits compensatory kidney growth and protects the kidney.

  13. HIF Prolyl-Hydoxylase-2 Senses High Salt Intake to Increase Hypoxia Inducible Factor-1α Levels in the Renal Medulla

    PubMed Central

    Wang, Zhengchao; Zhu, Qing; Xia, Min; Li, Pin-Lan; Hinton, Shante J.; Li, Ningjun

    2010-01-01

    High salt induces the expression of transcription factor hypoxia-inducible factor (HIF)-1α and its target genes in the renal medulla, which is an important renal adaptive mechanism to high salt intake. HIF prolyl hydroxylase domain-containing proteins (PHDs) have been identified as major enzymes to promote the degradation of HIF-1α. PHD2 is the predominant isoform of PHDs in the kidney and primarily expressed in the renal medulla. The present study tested the hypothesis that PHD2 responds to high salt and mediates high salt-induced increase in HIF-1α levels in the renal medulla. In normotensive rats, high salt intake (4% NaCl, 10 days) significantly inhibited PHD2 expressions and enzyme activities in the renal medulla. Renal medullary overexpression of PHD2 transgene significantly decreased HIF-1α levels. PHD2 transgene also blocked high salt-induced activation of HIF-1α target genes heme oxygenase-1 and nitric oxide synthase-2 in the renal medulla. In Dahl salt-sensitive hypertensive rats, however, high salt intake did not inhibit the expression and activities of PHD2 in the renal medulla. Correspondingly, renal medullary HIF-1α levels were not up-regulated by high salt intake in these rats. After transfection of PHD2 shRNA, HIF-1α and its target genes were significantly up-regulated by high salt intake in Dahl S rats. Overexpression of PHD2 transgene in the renal medulla impaired renal sodium excretion after salt loading. These data suggest that high salt intake inhibits PHD2 in the renal medulla, thereby upregulating the HIF-1α expression. The lack of PHD-mediated response to high salt may represent a pathogenic mechanism producing salt sensitive hypertension. PMID:20308610

  14. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    SciTech Connect

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

  15. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    SciTech Connect

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  16. Mizoribine Ameliorates Renal Injury and Hypertension along with the Attenuation of Renal Caspase-1 Expression in Aldosterone-Salt-Treated Rats

    PubMed Central

    Doi, Toshiki; Doi, Shigehiro; Nakashima, Ayumu; Ueno, Toshinori; Yokoyama, Yukio; Kohno, Nobuoki; Masaki, Takao

    2014-01-01

    Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension. PMID:24695748

  17. Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488

    SciTech Connect

    Nelson, Roger A.; Buschman, Nancy

    2012-07-01

    A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years

  18. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  19. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats.

  20. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Ji, Xu; Naito, Yukiko; Weng, Huachun; Endo, Kosuke; Ma, Xiao; Iwai, Naoharu

    2012-10-15

    The P2X(7) receptor is a ligand-gated ion channel, and genetic variations in the P2X(7) gene significantly affect blood pressure. P2X(7) receptor expression is associated with renal injury and inflammatory diseases. Uninephrectomized wild-type (WT) and P2X(7)-deficient (P2X(7) KO) mice were subcutaneously implanted with deoxycorticosterone acetate (DOCA) pellets and fed an 8% salt diet for 18 days. Their blood pressure was assessed by a telemetry system. The mice were placed in metabolic cages, and urine was collected for 24 h to assess renal function. After 18 days of DOCA-salt treatment, P2X(7) mRNA and protein expression increased in WT mice. Blood pressure in P2X(7) KO mice was less than that of WT mice (mean systolic blood pressure 133 ± 3 vs. 150 ± 2 mmHg). On day 18, urinary albumin excretion was lower in P2X(7) KO mice than in WT mice (0.11 ± 0.07 vs. 0.28 ± 0.07 mg/day). Creatinine clearance was higher in P2X(7) KO mice than in WT mice (551.53 ± 65.23 vs. 390.85 ± 32.81 μl·min(-1)·g renal weight(-1)). Moreover, renal interstitial fibrosis and infiltration of immune cells (macrophages, T cells, B cells, and leukocytes) were markedly attenuated in P2X(7) KO mice compared with WT mice. The levels of IL-1β, released by macrophages, in P2X(7) KO mice had decreased dramatically compared with that in WT mice. These results strongly suggest that the P2X(7) receptor plays a key role in the development of hypertension and renal disease via increased inflammation, indicating its potential as a novel therapeutic target.

  1. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  2. Renal sodium transport in renin-deficient Dahl salt-sensitive rats.

    PubMed

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-07-01

    The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Renin knockout (Ren(-/-)) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na(+) transporters. It has been described previously that Ren(-/-) rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na(+)/H(+) exchanger involved in Na(+) absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren(-/-) rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren(-/-) rats which was mediated via changes in the channel open probability. These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. © The Author(s) 2016.

  3. Salt intake and blood pressure response to percutaneous renal denervation in resistant hypertension.

    PubMed

    de Beus, Esther; de Jager, Rosa L; Beeftink, Martine M; Sanders, Margreet F; Spiering, Wilko; Vonken, Evert-Jan; Voskuil, Michiel; Bots, Michiel L; Blankestijn, Peter J

    2017-09-19

    The effect of lowering sympathetic nerve activity by renal denervation (RDN) is highly variable. With the exception of office systolic blood pressure (BP), predictors of the BP-lowering effect have not been identified. Because dietary sodium intake influences sympathetic drive, and, conversely, sympathetic activity influences salt sensitivity in hypertension, we investigated 24-hour urinary sodium excretion in participants of the SYMPATHY trial. SYMPATHY investigated RDN in patients with resistant hypertension. Both 24-hour ambulatory and office BP measurements were end points. No relationship was found for baseline sodium excretion and change in BP 6 months after RDN in multivariable-adjusted regression analysis. Change in the salt intake-measured BP relationships at 6 months vs baseline was used as a measure for salt sensitivity. BP was 8 mm Hg lower with similar salt intake after RDN, suggesting a decrease in salt sensitivity. However, the change was similar in the control group, and thus not attributable to RDN. ©2017 Wiley Periodicals, Inc.

  4. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  5. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  6. Cerebral salt wasting in tuberculous meningitis: Two cases and review of the literature. Case Report.

    PubMed

    Celik, Umit; Celik, Tamer; Tolunay, Orkun; Başpınar, Hüseyin; Kömür, Mustafa; Levent, Fatma

    2015-01-01

    Cerebral salt wasting syndrome (CSWS) is characterized by severe natriuresis and volume depletion in the presence of cerebral pathology. In literature, there are few reports about tuberculous meningitis and cerebral CSWS. In this article, we report two tuberculous meningitis cases with CSWS and present a review of the literature on this topic. Cerebral salt wasting diagnosis was based on hyponatraemia associated with high urinary sodium excretion and inappropriately high urine output in the presence of dehydration. Treatment was made with sodium-fluid replacement plus fludrocortisone therapy in both cases. In agreement with the literature we argue that cerebral salt wasting syndrome might be more common than the syndromes of inappropriate antidiuretic hormone secretion (SIADH) in cerebral disorders. Differentiating the cerebral salt wasting syndrome from the SIADH is very important because unrecognized cerebral salt wasting syndrome can lead to inadequate management and result in unnecessary hyponatremia-related morbidity. The electrolyte and hydration status of patients should be monitored closely in patients with tuberculous meningitis.

  7. Failure of renal dopamine response to salt loading in chronic renal disease.

    PubMed Central

    Casson, I F; Lee, M R; Brownjohn, A M; Parsons, F M; Davison, A M; Will, E J; Clayden, A D

    1983-01-01

    Eight patients with chronic glomerulonephritis and five age-matched normal volunteers were given additional sodium chloride by mouth under conditions of metabolic balance. Whereas in the normal volunteers plasma renin activity was suppressed and urinary excretion of free dopamine increased, in the patients dopamine was not mobilised and plasma renin activity was not completely suppressed. Abnormal retention of sodium and water in glomerulonephritis may be due partly to a failure to mobilise dopamine in the kidney. Specific renal dopamine agonists may be natriuretic and hypotensive in chronic glomerulonephritis. PMID:6402127

  8. An Orally Active Epoxide Hydrolase Inhibitor Lowers Blood Pressure and Provides Renal Protection in Salt-Sensitive Hypertension

    PubMed Central

    Imig, John D.; Zhao, Xueying; Zaharis, Constantine Z.; Olearczyk, Jeffrey J.; Pollock, David M.; Newman, John W.; Kim, In-Hae; Watanabe, Takaho; Hammock, Bruce D.

    2006-01-01

    The present study tested the hypothesis that increasing epoxyeicosatrienoic acids by inhibition of soluble epoxide hydrolase (sEH) would lower blood pressure and ameliorate renal damage in salt-sensitive hypertension. Rats were infused with angiotensin and fed a normal-salt diet or an 8% NaCl diet for 14 days. The sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), was given orally to angiotensin-infused animals during the 14-day period. Plasma AUDA metabolite levels were measured, and they averaged 10±2 ng/mL in normal-salt angiotensin hypertension and 19±3 ng/mL in high-salt angiotensin hypertension on day 14 in the animals administered the sEH inhibitor. Mean arterial blood pressure averaged 161±4 mm Hg in normal-salt and 172±5 mmHg in the high-salt angiotensin hypertension groups on day 14. EH inhibitor treatment significantly lowered blood pressure to 140±5 mm Hg in the normal-salt angiotensin hypertension group and to 151±6 mm Hg in the high-salt angiotensin hypertension group on day 14. The lower arterial blood pressures in the AUDA-treated groups were associated with increased urinary epoxide-to-diol ratios. Urinary microalbumin levels were measured, and ED-1 staining was used to determine renal damage and macrophage infiltration in the groups. Two weeks of AUDA treatment decreased urinary microalbumin excretion in the normal-salt and high-salt angiotensin hypertension groups and macrophage number in the high-salt angiotensin hypertension group. These data demonstrate that sEH inhibition lowers blood pressure and ameliorates renal damage in angiotensin-dependent, salt-sensitive hypertension. PMID:16157792

  9. Stabilization/Solidification of radioactive molten salt waste via gel-route pretreatment.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Kim, Hwan-Young; Ryu, Seung-Kon; Kim, Joon-Hyung

    2007-02-15

    The volatilization of radionuclides during the stabilization/solidification of radioactive wastes at high temperatures is one of the major problems to be considered in choosing suitable wasteforms, process, material systems, etc. This paper reports a novel method to convert volatile wastes into nonvolatile compounds via a sol-gel process, which is different from the conventional method using metal-alkoxides and organic solvents. The material system was designed with sodium silicate (Si) as a gelling agent, phosphoric acid (P) as a catalyst/stabilizer, aluminum nitrate (Al) as a property promoter, and H20 as a solvent. A novel structural model for the chemical conversion of molten salt waste, named RPRM (Reaction Product in Reaction Module), was established, and the waste could be solidified with glass matrix via a simple procedure. The leached fraction of Cs and Sr by a PCT leaching method was 0.72% and 0.014%, respectively. In conclusion, the RPRM model isto converttargetwastes into stable and manageable products, not to obtain a specific crystalline product for each radionuclide. This paper suggested a new stabilization/solidification method for salt wastes by establishing the gel-forming material system and showing a practical example, not a new synthesis method of stable crystalline phase. This process, named "gel-route stabilization/solidification (GRSS)", will be a prospective alternative with stable chemical process on the immobilization of salt wastes and various mixed radioactive waste for final disposal.

  10. Potential vertical movement of large heat-generating waste packages in salt.

    SciTech Connect

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest.

    2013-05-01

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  11. Conditioning of Waste LiCl Salt from Pyrochemical Process Using Zeolite A

    SciTech Connect

    Kim, J.G.; Lee, J.H.; Kim, E.H.; Ahn, D.H.; Kim, J.H.

    2006-07-01

    The electrolytic (LiCl-Li{sub 2}O) reduction process (Advanced spent fuel Conditioning Process; ACP) and the electrorefining process, which are being developed by the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as a LiCl salt and a LiCl-KCl eutectic salt, respectively. These waste salts must meet certain criteria for a disposal. A conditioning process composed of an immobilization and then a thermal treatment, for LiCl salt waste from the ACP has been developed using zeolite A. The immobilization of molten LiCl salt waste was conducted in a blender by mixing it with zeolite A at 923 K, producing a salt-loaded zeolite (SLZ). During the immobilization, the zeolite A was transformed to zeolite Li-A [Li{sub 2}Al{sub 2}Si{sub 2}O{sub 80}], with some minor phases such as a Li-type sodalite [Li{sub 8}Cl{sub 2}-Sod; Li{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2}] and Nepheline for some zeolite-rich condition. In order to obtain a final ceramic waste form with Na-type sodalite [Na{sub 8}Cl{sub 2}-Sod; Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2}], the very highly leach-resistant crystal phase, the SLZ with r (=LiCl/zeolite) < 0.3 should be treated in a high temperature furnace above 1173 K, which was independent from an addition of glass frit during a mixing. (authors)

  12. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  13. Reduction of salt cake waste by removing low value oxide fines

    SciTech Connect

    Skoch, J.T.; Collins, R.L.

    1995-12-31

    With the ongoing pressure on the secondary aluminum business to limit the amount of waste generated from processing aluminum dross, it becomes very advantageous to preprocess the dross to reduce waste. The advantage of preprocessing is that it significantly reduces the oxides and salt cake generated when melted. Various products can be produced from the oxides for the steel industry. The paper will demonstrate that removal of oxide fines before melting will result in large volumes of material not being landfilled. The authors will show that the end result of this technology is to significantly reduce the amount of salt cake sent to a landfill while maximizing the recyclability of the aluminum dross.

  14. Acute hyponatraemia secondary to cerebral salt wasting syndrome in a patient with tuberculous meningitis.

    PubMed

    Ti, L K; Kang, S C; Cheong, K F

    1998-08-01

    A 30-year-old HIV-positive man presented with acute hydrocephalus secondary to tuberculous meningitis, for which an external ventricular drain was inserted. He developed marked natriuresis in the postoperative period, which resulted in acute hyponatraemia (131 to 122 mmol/l) and a contraction of his intravascular volume. A diagnosis of cerebral salt wasting syndrome was made, and he responded to sodium and fluid loading. This case highlights the differentiation of cerebral salt wasting syndrome from the more commonly occurring syndrome of inappropriate anti-diuretic hormone secretion as the aetiology of the hyponatraemia.

  15. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    SciTech Connect

    Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  16. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    SciTech Connect

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  17. High-calcium diet prevents salt-induced hypertension and impairment of renal hemodynamics in young spontaneously hypertensive rats.

    PubMed

    Ono, A; Ando, K; Fujita, T

    1994-04-01

    We studied the effects of a high Ca (4.07%) diet on mean arterial pressure (MAP) and renal hemodynamics in young (6 weeks) spontaneously hypertensive rats (SHR) fed a normal (0.66%) or a high-salt (8.00%) diet for 4 weeks. The high-salt diet accelerated development of hypertension (213 +/- 5 vs. 159 +/- 2 mm Hg, p < 0.01) and increased renal vascular resistance (RVR) (26.4 +/- 2.3 vs. 18.2 +/- 1.2 U, p < 0.01) in young SHR. Simultaneous Ca supplementation prevented the salt-induced increase in MAP (158 +/- 3 mm Hg, p < 0.01) and in RVR (17.3 +/- 1.1 U, p < 0.01). The high-Ca diet did not affect MAP (151 +/- 3 mm Hg, NS) and RVR (17.4 +/- 1.3 U, NS) in young SHR fed a normal salt diet. RVR and MAP were positively correlated in all rats (r = 0.634, n = 38, p < 0.001). The high-Ca diet also prevented salt-induced left ventricular (LV) hypertrophy. Dietary Ca supplementation attenuated the increased salt sensitivity of arterial pressure, possibly by normalizing renal hemodynamics, in salt-loaded young SHR.

  18. Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure

    PubMed Central

    Li, Ningjun

    2012-01-01

    Many enzymes that produce natriuretic factors such as nitric oxide synthase (NOS), hemeoxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) are highly expressed in the renal medulla. These enzymes in the renal medulla are up-regulated in response to high salt intake. Inhibition of these enzymes within the renal medulla reduces sodium excretion and increases salt sensitivity of arterial blood pressure, indicating that these enzymes play important roles in kidney salt handling and renal adaptation to high salt challenge. However, it remains a question what mechanisms mediate the activation of these enzymes in response to high salt challenge in the renal medulla. Interestingly, these enzymes are oxygen sensitive genes and regulated by transcription factor hypoxia-inducible factor (HIF)-1α. Our recent serial studies have demonstrated that: 1) High salt intake stimulates HIF-1α-mediated gene expression, such as NOS, HO-1 and COX-2, in the renal medulla, which may augment the production of different antihypertensive factors in the renal medulla, mediating renal adaptation to high salt intake and regulating salt sensitivity of arterial blood pressure. 2) HIF prolyl-hydroxylase 2 (PHD2), an enzyme that promotes the degradation of HIF-1α, is highly expressed in renal medulla. High salt intake suppresses the expression of PHD2 in the renal medulla, which increases HIF-1α-mediated gene expressions in the renal medulla, thereby participates in the control of salt sensitivity of blood pressure. 3) The high salt-induced inhibition in PHD2 and the consequent activation of HIF-1α in the renal medulla is not observed in Dahl salt sensitive hypertensive (Dahl/ss) rats. Correction of these defects in PHD2/HIF-1α-associated molecular adaptation in the renal medulla improves sodium excretion, reduces sodium retention and attenuates saltsensitive hypertension in Dahl/ss rats. In conclusion, PHD2 regulation of HIF-1α-mediated gene activation in the renal medulla is an important

  19. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    SciTech Connect

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  20. A case of cerebral salt-wasting syndrome associated with aseptic meningitis in an 8-year-old boy.

    PubMed

    Inatomi, Jun; Yokoyama, Yoshiki; Sekine, Takashi; Igarashi, Takashi

    2008-04-01

    Cerebral salt-wasting syndrome is a disorder in which excessive natriuresis and subsequent hyponatremic dehydration occur in patients with intracranial diseases. Cerebral salt-wasting syndrome often develops in patients with severe neurosurgical disorders, such as hydrocephalus, cerebral infarction, and tuberculous meningitis. Here, we report on the case of an 8-year-old boy with cerebral salt-wasting syndrome associated with aseptic meningitis. He showed mild developmental retardation and had a history of convulsion. Four days after his admission, cerebral salt-wasting syndrome abruptly started: natriuresis and hyponatremia gradually improved over 10 days. To the best of our knowledge, this is the first report on cerebral salt-wasting syndrome associated with clinically benign aseptic meningitis.

  1. Hypertension induced by high salt intake in absence of volume retention in reduced renal mass rats.

    PubMed

    Cowley, A W; Skelton, M M; Papanek, P E; Greene, A S

    1994-11-01

    Reduction of renal mass (RRM) combined with a high-salt diet results in volume retention, a rise of cardiac output, and hypertension. The present studies were designed to determine whether prevention of volume retention would alter the rise of mean arterial pressure (MAP) in RRM rats given high salt. Rats were studied in a modified metabolic cage to permit continuous determination of total body weight (TBW). In group 1, NaCl was increased from 1 to 14.5 meq/day and delivered isotonically. In group 2, NaCl was increased while TBW was servo-controlled to a constant level. Group 3 was also servo-controlled, but rats received an intravenous infusion of an arginine vasopressin V1 antagonist throughout the study. MAP in group 1 rose 24 mmHg by day 4 of high salt with a parallel increase of TBW of 26 g. In group 2, MAP rose 48 mmHg by day 4 of high salt, while TBW was controlled to within 0.6% of control body weight. With inhibition of vasopressin V1 receptors (group 3), MAP rose 39 mmHg. Nearly equivalent amounts of NaCl were retained in all groups, which was associated with no change of plasma Na in group 1 but an increase of nearly 7 meq/ml in groups 2 and 3. Hematocrit fell nearly 9% in groups 2 and 3 compared with a 4% reduction in group 1. The results suggest that under conditions where net retention cannot occur, high salt intake increases MAP by an osmotically driven fluid transfer from cells, which results in an even greater expansion of blood volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Prolonged cerebral salt wasting syndrome associated with the intraventricular dissemination of brain tumors. Report of two cases and review of the literature.

    PubMed

    Oruckaptan, H H; Ozisik, P; Akalan, N

    2000-07-01

    Hyponatremia is a frequent event in neurosurgery practice and is usually associated with subarachnoid hemorrhage, head trauma, infections and neoplasms. The two common clinical manifestations are the inappropriate secretion of antidiuretic hormone (SIADH) and the cerebral salt wasting syndrome (CSWS), which were usually attributed to each other due to identical clinical presentation. In contrast to the better-recognized SIADH, there has not been a uniform consensus over the humoral and neural mechanisms of CSWS and functional aspects of renal response. In this article, we report on 2 cases of a primitive neuroectodermal tumor with prolonged CSWS manifested during the intraventricular dissemination of primary disease and the high catabolic stage.

  3. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

    PubMed

    Ronzaud, Caroline; Loffing-Cueni, Dominique; Hausel, Pierrette; Debonneville, Anne; Malsure, Sumedha Ram; Fowler-Jaeger, Nicole; Boase, Natasha A; Perrier, Romain; Maillard, Marc; Yang, Baoli; Stokes, John B; Koesters, Robert; Kumar, Sharad; Hummler, Edith; Loffing, Johannes; Staub, Olivier

    2013-02-01

    The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

  4. Grape seed proanthocyanidins prevent DOCA-salt hypertension-induced renal injury and its mechanisms in rats.

    PubMed

    Lan, Chao-Zong; Ding, Ling; Su, Yi-Lin; Guo, Kun; Wang, Li; Kan, Hong-Wei; Ou, Yu-Rong; Gao, Shan

    2015-07-01

    Renal dysfunction is one of the major effects of DOCA (deoxycorticosterone acetate)-salt hypertension and there is an increasing amount of evidence that oxidative stress damages the function of the kidney. Grape seed proanthocyanidins (GSPE) have been reported to be potent anti-oxidants and free radical scavengers. The present study sought to investigate the ability of GSPE to prevent renal injury in DOCA-salt hypertensive rats and to explore the molecular mechanisms underlying its protective effects. A total of 54 Sprague Dawley (SD) rats were randomly divided into 7 groups: Sham group (n = 7), UnX-sham group (n = 8), DOCA-salt group (n = 8), GSPE150 group (150 mg kg(-1), n = 7), GSPE240 group (240 mg kg(-1), n = 8), GSPE384 group (384 mg kg(-1), n = 8) and ALM (amlodipine besylate tablets) group (5 mg kg(-1), n = 8), and treated for 4 weeks. Compared to sham group rats, renal injury was observed in DOCA-salt hypertensive group rats as the urine protein, KW/BW (kidney weight/body weight), degree of renal fibrosis, renal MDA (malondialdehyde) and Hyp (hydroxyproline) contents significantly increased (P < 0.01). Moreover, SOD (Superoxide Dismutase) activities decreased in the model group (P < 0.01). In contrast, DOCA-salt hypertensive rats treated with different dose of GSPE or ALM showed a significant improvement of renal injury with decreased urine protein, KW/BW, degree of renal fibrosis, renal total MDA and Hyp contents compared to the untreated group. In addition, SOD activities increased in the treatment group. Since the experimental modeling time was short, kidney damage occurs to a lesser extent. BUN (Blood Urea Nitrogen), Scr (Serum Creatinine) and UA (Uric Acid) contents did not appear significantly changed in all groups. Finally, the activation of JNK and p38 kinases in the kidney was suppressed in rats treated with GSPEs or ALM compared to the untreated group, suggesting that the inhibition of these kinase pathways by GSPE contributes to the improvement

  5. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  6. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension.

    PubMed

    Kurtz, Theodore W; DiCarlo, Stephen E; Pravenec, Michal; Schmidlin, Olga; Tanaka, Masae; Morris, R Curtis

    2016-11-01

    It is widely held that in response to high salt diets, normal individuals are acutely and chronically resistant to salt-induced hypertension because they rapidly excrete salt and retain little of it so that their blood volume, and therefore blood pressure, does not increase. Conversely, it is also widely held that salt-sensitive individuals develop salt-induced hypertension because of an impaired renal capacity to excrete salt that causes greater salt retention and blood volume expansion than that which occurs in normal salt-resistant individuals. Here we review results of both acute and chronic salt-loading studies that have compared salt-induced changes in sodium retention and blood volume between normal subjects (salt-resistant normotensive control subjects) and salt-sensitive subjects. The results of properly controlled studies strongly support an alternative view: during acute or chronic increases in salt intake, normal salt-resistant subjects undergo substantial salt retention and do not excrete salt more rapidly, retain less sodium, or undergo lesser blood volume expansion than do salt-sensitive subjects. These observations: (i) directly conflict with the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension, and (ii) have implications for contemporary understanding of how various genetic, immunologic, and other factors determine acute and chronic blood pressure responses to high salt diets.

  7. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  8. Fluid Transport Driven by Heat-Generating Nuclear Waste in Bedded Salt

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Harp, D. R.; Stauffer, P. H.; Ten Cate, J. A.; Labyed, Y.; Boukhalfa, H.; Lu, Z.; Person, M. A.; Robinson, B. A.

    2013-12-01

    The question of where to safely dispose high-level nuclear waste (HLW) provides ample motivation for scientific research on deep geologic disposal options. The goal of this study is to model the dominant heat and mass transport processes that would be driven by heat generating nuclear waste buried in bedded salt. The interaction between liquid brine flow towards the heat source, establishment of a heat pipe in the mine-run salt backfill, boiling, and vapor condensation leads to changes in porosity, permeability, saturation, thermal conductivity, and rheology of the salt surrounding potential waste canisters. The Finite Element Heat and Mass transfer code (FEHM) was used to simulate these highly coupled thermal, hydrological, and chemical processes. The numerical model has been tested against recent and historical experimental data to develop and improve the salt material model. We used the validated numerical model to make predictions of temperature gradients, porosity changes, and tracer behavior that will be testable in a future 2-year field-scale heater experiment to be carried out in an experimental test bed at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, NM.

  9. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    SciTech Connect

    Funk, David John; Clark, David Lewis

    2015-01-07

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan is designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.

  10. Combined central diabetes insipidus and cerebral salt wasting syndrome in children.

    PubMed

    Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong

    2009-02-01

    Central diabetes insipidus, a common consequence of acute central nervous system injury, causes hypernatremia; cerebral salt wasting syndrome can cause hyponatremia. The two conditions occurring simultaneous are rarely described in pediatric patients. Pediatric cases of combined diabetes insipidus and cerebral salt wasting after acute central nervous system injury between January 2000 and December 2007 were retrospectively reviewed, and clinical characteristics were systemically assessed. Sixteen patients, aged 3 months to 18 years, met study criteria: 11 girls and 5 boys. The most common etiologies were severe central nervous system infection (n = 7, 44%) and hypoxic-ischemic event (n = 4, 25%). In 15 patients, diabetes insipidus was diagnosed during the first 3 days after acute central nervous system injury. Onset of cerebral salt wasting syndrome occurred 2-8 days after the onset of diabetes insipidus. In terms of outcome, 13 patients died (81%) and 3 survived under vegetative status (19%). Central diabetes insipidus and cerebral salt wasting syndrome may occur after acute central nervous system injury. A combination of both may impede accurate diagnosis. Proper differential diagnoses are critical, because the treatment strategy for each entity is different.

  11. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  12. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  13. Direct Grout Stabilization of High Cesium Salt Waste: Cesium Leaching Studies

    SciTech Connect

    Langton, C.A.

    1999-09-19

    'The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The higher cesium concentrations in the direct grout also require that the cesium leaching be evaluated as a function of curing temperature. ANS 16.1 leaching results and distribution ratios (approximations of distribution coefficients) as a function of temperature are presented in this report.'

  14. Modeling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin A.

    2001-05-01

    Due to the low permeability and high ductility of rock salt, many salt diapirs, such as those in Germany and the Netherlands, are targeted as long-term repositories for disposal of high-level radioactive and chemical wastes. Geophysical and subsurface data show that the Gorleben salt diapir, which is one of the most extensively investigated diapirs in the world, and other salt diapirs of the Zechstein Formation in Germany contain large blocks (˜80 m thick) of high-density anhydrite inclusions. These blocks, which were carried upward by the rising salt, are considered to be detached segments of intercalated layers that initially were deposited with the salt. Results of physical and numerical models, presented here, show that such detached, high-density blocks, which were entrained and carried upward by the diapir at an earlier stage, tend to sink in the late stages of diapiric evolution when the rate of diapiric rise slows down. During their descent, these high- density competent blocks deform by folding and create shear zones at the immediate contact with the less competent salt. The descending blocks initiate a secondary internal flow within the salt diapirs they descend, and they may deform any repository built within such diapirs, which would otherwise be considered as tectonically inactive.

  15. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  16. New information on disposal of oil field wastes in salt caverns

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  17. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  18. X-ray diffraction of slag-based sodium salt waste forms

    SciTech Connect

    Langton, C. A.; Missimer, D. M.

    2014-09-30

    The attached report documents sample preparation and x-ray diffraction results for a series of cement and blended cement matrices prepared with either water or a 4.4 M Na salt solution. The objective of the study was to provide initial phase characterization for the Cementitious Barriers Partnership reference case cementitious salt waste form. This information can be used to: 1) generate a base line for the evolution of the waste form as a function of time and conditions, 2) potentially to design new binders based on mineralogy of the binder, 3) understand and predict anion and cation leaching behavior of contaminants of concern, and 4) predict performance of the waste forms for which phase solubility and thermodynamic data are available.

  19. Role of renal medullary oxidative and/or carbonyl stress in salt-sensitive hypertension and diabetes.

    PubMed

    Mori, Takefumi; Ogawa, Susumu; Cowely, Allen W; Ito, Sadayoshi

    2012-01-01

    1. Salt-sensitive hypertension is commonly associated with diabetes, obesity and chronic kidney disease. The present review focuses on renal mechanisms involved in the development of this type of hypertension. 2. The renal medullary circulation plays an important role in the development of salt-sensitive hypertension. In vivo animal studies have demonstrated that the balance between nitric oxide (NO) and reactive oxygen species (ROS) in the renal medulla is an important element of salt-sensitive hypertension. The medullary thick ascending limb (mTAL) in the outer medulla is an important source of NO and ROS production and we have explored the mechanisms that stimulate their production, as well as the effects of NO superoxide and hydrogen peroxide on mTAL tubular sodium reabsorption and the regulation of medullary blood flow. 3. Angiotensin II-stimulated NO produced in the mTAL is able to diffuse from the renal mTAL to the surrounding vasa recta capillaries, providing a mechanism by which to increase medullary blood flow and counteract the direct vasoconstrictor effects of angiotensin II. Enhanced oxidative stress attenuates NO diffusion in this region. 4. Carbonyl stress, like oxidative stress, can also play an important role in the pathogenesis of chronic kidney disease, such as insulin resistance, salt-sensitive hypertension and renal vascular complications. 5. Despite the large number of studies undertaken in this area, there is as yet no drug available that directly targets renal ROS. Oxidative and/or carbonyl stress may be the next target of drug discovery to protect against salt-sensitive hypertension and associated end-organ damage.

  20. Room closure response to gas generation and mechanical strength of different waste forms in a bedded salt repository

    SciTech Connect

    Mendenhall, F.T.; Stone, C.M.

    1993-05-01

    Finite element calculations of the porosity history of a nuclear waste disposal room in a bedded salt formation have been completed. The analyses include an elastic/secondary creep model for the host halite and a nonlinear consolidation model for the crushed salt backfill. Separate gas generation and constitutive models were used for three distinct waste forms, (1) unaltered defense related CH-TRU waste, (2) shredded and cemented CH-TRU waste, and (3) incinerated and vitrified CH-TRU waste. Solutions were determined for a 2000 year time period starting from the decommissioning of the repository. The resulting room porosities varied from roughly 55% to less than 10%.

  1. Distal Renal Tubular Acidosis in Infancy: A Bicarbonate Wasting State

    ERIC Educational Resources Information Center

    Rodriguez-Soriano, J.; And Others

    1975-01-01

    Studied were three unrelated infants with distal renal tubular acidosis (a condition characterized by an inability to acidify the urine to minimal pH levels resulting in the loss of bicarbonates). (DB)

  2. Distal Renal Tubular Acidosis in Infancy: A Bicarbonate Wasting State

    ERIC Educational Resources Information Center

    Rodriguez-Soriano, J.; And Others

    1975-01-01

    Studied were three unrelated infants with distal renal tubular acidosis (a condition characterized by an inability to acidify the urine to minimal pH levels resulting in the loss of bicarbonates). (DB)

  3. Transient hyperkalemic distal renal tubular acidosis with bicarbonate wasting in a young child.

    PubMed

    Khositseth, Sookkasem

    2011-12-01

    Distal renal tubular acidosis is a clinical syndrome characterized by inability to acidify urine in the presence of metabolic acidosis. Classic dRTA patients exhibit failure to thrive, polyuria, metabolic acidosis and hypokalemia. Hyperkalemic dRTA without underlying disease is very rare. Transient bicarbonate wasting accompanied with hypokalemic dRTA was reported in infants. Herein, a transient hyperkalemic dRTA with bicarbonate wasting was reported in a young child.

  4. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    SciTech Connect

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 {degrees}C) at {ge} 900{degrees}C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL`s studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO{sub x}, emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO{sub x}, emissions are relatively low ( < 5 ppm) at temperatures < 1000{degrees}C. However, most (85--100%) of the nitrogen in the feed as organic nitrate or amine was released as NO{sub x}, The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls.

  5. Expression and function of COX isoforms in renal medulla: evidence for regulation of salt sensitivity and blood pressure.

    PubMed

    Ye, Wenling; Zhang, Hui; Hillas, Elaine; Kohan, Donald E; Miller, R Lance; Nelson, Raoul D; Honeggar, Matthew; Yang, Tianxin

    2006-02-01

    Expression of cyclooxygenase (COX)-2, but not COX-1, in the renal medulla is stimulated by chronic salt loading; yet the functional implication of this phenomenon is incompletely understood. The present study examined the cellular localization and antihypertensive function of high-salt-induced COX-2 expression in the renal medulla, with a parallel assessment of the function of COX-1. COX-2 protein expression in response to high-salt loading, assessed by immunostaining, was found predominantly in inner medullary interstitial cells, whereas COX-1 protein was abundant in collecting duct (CD) and inner medullary interstitial cells and was not affected by high salt. We compared mRNA expressions of COX-1 and COX-2 in CD vs. non-CD cells isolated from aquaporin 2-green fluorescent protein transgenic mice. A low level of COX-2 mRNA, but a high level of COX-1 mRNA, as determined by real-time RT-PCR, was detected in CD compared with non-CD segments. During high-salt intake, chronic infusions of the COX-2 blocker NS-398 and the COX-1 blocker SC-560 into the renal medulla of Sprague-Dawley rats for 5 days induced approximately 30- and 15-mmHg increases in mean arterial pressure, respectively. During similar high-salt intake, COX-1 knockout mice exhibited a gradual, but significant, increase in systolic blood pressure that was associated with a marked suppression of urinary PGE2 excretion. Therefore, we conclude that the two COX isoforms in the renal medulla play a similar role in the stabilization of arterial blood pressure during salt loading.

  6. Celecoxib does not alter cardiovascular and renal function during dietary salt loading.

    PubMed

    Wenner, Megan M; Edwards, David G; Ray, Chester A; Rose, William C; Gardner, Timothy J; Stillabower, Michael; Farquhar, William B

    2011-08-01

    1. Cyclo-oxygenase-2 (COX-2)-derived prostaglandins are important in controlling sodium excretion and renin release. In the present study, we tested the hypothesis that a clinical dose of celecoxib would impair urinary sodium excretion and elevate blood pressure (BP) during dietary salt loading. 2. Twelve normotensive individuals (mean (± SEM) age 35 ± 2 years) completed two separate 17 day dietary perturbations, one taking 200 mg/day celecoxib (CX2) and the other taking placebo (PL), randomized with a 1 month wash out. The controlled 17 day diet consisted of a 3 day run-in diet, 7 days of a low-salt (LS, 20 mmol sodium/day) diet and 7 days of a high-salt diet (HS, 350 mmol sodium/day) diet. The order in which the diets were applied was randomized. Data were collected on the last day of the LS and HS diets. 3. Plasma and urinary prostaglandins were modestly lower during celecoxib (P < 0.05). Urinary sodium excretion was greater (P < 0.01) during the HS diet (253 ± 10 vs 281 ± 27 mmol/24 h for PL vs CX2, respectively) compared with the LS diet (14 ± 3 vs 17 ± 7 mmol/24 h for PL vs CX2, respectively; P(drug) = 0.26). Celecoxib did not alter creatinine clearance (P > 0.50). Twenty-four hour mean arterial BP was similar during PL (87 ± 2 vs 87 ± 2 mmHg for LS and HS, respectively) and CX2 (88 ± 2 vs 87 ± 2 mmHg for LS and HS, respectively; P = 0.85), with no effect of dietary salt (P > 0.80). Plasma renin activity, angiotensin II and aldosterone were all suppressed with dietary salt loading (P < 0.05), with no effect of drug (P > 0.35). 4. In conclusion, blood pressure and renal function were not adversely affected by celecoxib, even during dietary salt loading. These findings support current guidelines suggesting minimal cardiovascular risks associated with short-term, low-dose use of celecoxib in young to middle-aged adults. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  7. Disposal of Soluble Salt Waste from Coal Gasification,

    DTIC Science & Technology

    1980-06-01

    tion of high equipment ( membrane and cell) cost. Electrodialysis generates only a minimum amount of wastes and these can be handled downstream...PROCESS The proposed disposal-recovery process is shown in Figure 1. Use is made of electrodialysis to recover a large amount of water for reuse in the...as wet oxidation, electrodialysis , evapora- tion and encapsulation) has been proved separately in commercial applications. A paper study was

  8. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    SciTech Connect

    Butcher, B.M.; Novak, C.F. ); Jercinovic, M. )

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

  9. Waste segregation analysis for salt well pumping in the 200 W Area -- Task 3.4

    SciTech Connect

    Reynolds, D.A.

    1995-04-28

    There is an estimated 7 million liters (1.9 million gallons) of potentially complexed waste that need to be pumped from single-shell tanks (SST) in the 200 West Area. This represents up to 40% of the salt well liquor that needs to be pumped in the 200 West Area. There are three double-shell (DST) tanks in the 241-SY tank farm in the 200 West Area. Tank 241-SY-101 is full and not usable. Tank 241-SY-102 has a transuranic (TRU) sludge in the bottom. Current rules prohibit mixing complexed waste with TRU waste. Tank 241-SY-103 has three major problems. First, 241-SY-103 is on the Flammable Watch list. Second, adding waste to tank 241-SY-103 has the potential for an episodic release of hydrogen gas. Third, 241-SY-103 will not hold all of the potentially complexed waste from the SSTs. This document looks at more details regarding the salt well pumping of the 200 West Area tank farm. Some options are considered but it is beyond the scope of this document to provide an in-depth study necessary to provide a defensible solution to the complexed waste problem.

  10. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity.

    PubMed

    Giani, Jorge F; Eriguchi, Masahiro; Bernstein, Ellen A; Katsumata, Makoto; Shen, Xiao Z; Li, Liang; McDonough, Alicia A; Fuchs, Sebastien; Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A

    2017-04-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.

  11. Responses of mean arterial pressure to pressor agents and diuretics in renal hypertensive and salt hypertensive rats

    PubMed Central

    Nicholas, T. E.

    1971-01-01

    1. The responses of the mean arterial pressure to (—)-noradrenaline, tyramine, angiotensin II-val5-amide, vasopressin and rat renin have been contrasted in renal hypertensive and in salt plus desoxycorticosterone hypertensive rats. The responses were measured in rats both unanaesthetized and rats anaesthetized with pentobarbitone. 2. Responses of unanaesthetized, ganglion blocked renal hypertensive rats to noradrenaline, tyramine and vasopressin markedly exceeded, and to angiotensin II and renin were markedly smaller than, those of unanaesthetized ganglion blocked salt + DOC hypertensive animals. Responses to angiotensin and to renin were apparently enhanced in the latter animals. 3. Hydrochlorothiazide and frusemide markedly reduced mean arterial pressure in salt + DOC hypertensive rats before and after ganglionic blockade. 4. Neither diuretic caused significant reduction in the mean arterial pressures of unanaesthetized, renal hypertensive rats in the absence of ganglionic blockade: frusemide did so in anaesthetized and unanaesthetized rats after ganglionic blockade. 5. Whereas the diuretics did not affect the responses of the renal hypertensive rats to pressor agents, frusemide and to a lesser extent hydrochlorothiazide tended to depress the responses to pressor agents in salt induced hypertension. 6. Hydrochlorothiazide did not influence mean arterial pressure in unanaesthetized rats with neurogenic hypertension. PMID:4326321

  12. Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.

    PubMed

    Park, Hwan-Seo; Cho, In-Hak; Eun, Hee Chul; Kim, In-Tae; Cho, Yong Zun; Lee, Han-Soo

    2011-03-01

    In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 μm and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2)· day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt.

  13. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  14. Molten salt destruction of energetic material wastes as an alternative to open burning. Revision 1

    SciTech Connect

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.; Watkins, B.E.

    1994-11-02

    As a result of the end of the Cold War and the shift in emphasis to a smaller stockpile, many munitions, both conventional and nuclear, are scheduled for retirement and rapid dismantlement and demilitarization. Major components of these munitions are the explosives and propellants, or energetic materials. The Molten Salt Destruction (MSD) Process has been demonstrated for the destruction of HE and HE-containing wastes. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. LLNL has built a small-scale (about 1 kg/hr throughput) unit to test the destruction of HE using the MSD process. The authors have demonstrated that HE`s and liquid propellants can be safely and fully destroyed using the molten salt destruction process. The authors are currently working on a number of improvements to the process. They are modifying the design of unit to obtain more throughput without any increase in salt entrainment. They are implementing an advanced nozzle design for injection of larger particles. They are defining operating envelopes for a number of high explosives and formulations. They are developing models to study the temperature profile of a top-feed nozzle for feeding larger particles into the unit.

  15. Atorvastatin improves sodium handling and decreases blood pressure in salt-loaded rats with chronic renal insufficiency.

    PubMed

    Juncos, Luis I; Martín, Fernando L; Baigorria, Sandra T; Pasqualini, María E; Fiore, María C; Eynard, Aldo R; Juncos, Luis A; García, Néstor H

    2012-09-01

    Oxidative stress and inflammation seem to mediate the cardiovascular risks associated with salt sensitivity. Because hydroxymethyl glutaryl coenzyme A reductase inhibitors decrease oxidation and increase nitric oxide (NO) synthesis, we examined the effects of atorvastatin (ator) on tissue injury in rats with a reduced renal mass produced by 5/6 nephrectomy. This salt-sensitive hypertension model causes kidney and cardiovascular injuries. After undergoing 5/6 nephrectomy or sham surgery, male Sprague-Dawley rats were randomized into five groups: sham, reduced renal mass and a normal salt diet (NNaD), NNaD+ator (50 mg · kg(-1) · d(-1)), reduced renal mass and a high salt diet (HNaD), and HNaD+ator. After assessing the sodium balance for 7 d, we measured blood pressure (BP), creatinemia, proteinuria, nitrites, and 12(S)-hydroxy 5,8,10-heptadecatrienoic acid, the renal cortical expression of endothelial NO synthase, and the ratio of left ventricular weight to body weight. In NNaD rats, creatinine, proteinuria, and 12(S)-hydroxy 5,8,10-heptadecatrienoic acid increased, renal NO indices decreased, but the Na(+) balance, BP, and the left ventricular weight/body weight ratio remained unchanged. In the NNaD group, atorvastatin normalized the NO indices and decreased BP and proteinuria, although the remaining parameters continued unchanged. In contrast, HNaD increased creatinemia, proteinuria, and 12(S)-hydroxy 5,8,10-heptadecatrienoic acid excretion rates and decreased renal endothelial NO synthase. Salt retention was accompanied by increased BP and ventricular weight. In this HNaD group, atorvastatin prevented a BP increase, partly decreased sodium retention, but failed to improve NO indices, proteinuria, oxidant stress, and the left ventricular weight/body weight ratio. Atorvastatin exerts beneficial effects on renal function, injury, and salt sensitivity in rats with a reduced renal mass on an NNaD. The HNaD hampers these beneficial effects. Copyright © 2012 Elsevier

  16. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    SciTech Connect

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  17. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves.

    PubMed

    Kandlikar, Sachin S; Fink, Gregory D

    2011-05-01

    Excess sympathetic nervous system activity (SNA) is linked to human essential and experimental hypertension. To test whether sympathetic activation is associated with a model of deoxycorticosterone acetate (DOCA)-salt hypertension featuring two kidneys and a moderate elevation of blood pressure, we measured whole body norepinephrine (NE) spillover as an index of global SNA. Studies were conducted in chronically catheterized male Sprague-Dawley rats drinking water containing 1% NaCl and 0.2% KCl. After a 7-day surgical recovery and a 3-day control period, a DOCA pellet (50 mg/kg) was implanted subcutaneously in one group of rats (DOCA), while the other group underwent sham implantation (Sham). NE spillover was measured on control day 2 and days 7 and 14 after DOCA administration or sham implantation. During the control period, mean arterial pressure (MAP) was similar in Sham and DOCA rats. MAP was significantly increased in the DOCA group compared with the Sham group after DOCA administration (day 14: Sham = 109 ± 5.3, DOCA = 128 ± 3.6 mmHg). However, plasma NE concentration, clearance, and spillover were not different in the two groups at any time. To determine whether selective sympathetic activation to the kidneys contributes to hypertension development, additional studies were performed in renal denervated (RDX) and sham-denervated (Sham-DX) rats. MAP, measured by radiotelemetry, was similar in both groups during the control and DOCA treatment periods. In conclusion, global SNA is not increased during the development of mild DOCA-salt hypertension, and fully intact renal nerves are not essential for hypertension development in this model.

  18. Cerebral salt-wasting syndrome in a child with Wernicke encephalopathy treated with fludrocortisone therapy

    PubMed Central

    Han, Min Jeong; Kim, Soon Chul; Joo, Chan Uhng; Kim, Sun Jun

    2016-01-01

    Abstract Rationale for this case report: Cerebral Salt-Wasting Syndrome (CSWS) is characterized by hyponatremia and sodium wasting in the urine.[1] These conditions are triggered by various neurosurgical disorders such as subarachnoid hemorrhage, brain tumor, head injury, and brain surgery.[2,3] To our knowledge, CSWS caused by Wernicke encephalopathy (WE) has been rarely reported. Presenting concerns of the patient: A 2-year-old male patient presented to our hospital due to a seizure attack. He had been neglected and refused to take food for a long time (body weight < 3rd percentile). During admission, the patient showed low serum osmolality, high urine osmolality, dehydration state, increased urine output, and negative water balance, a diagnosis of CSWS was made. Diagnoses, interventions, and outcomes: Brain MRI displayed symmetrical lesions of T2WI and FLAIR high signal intensity in the peri-aqueductal and hypothalamic areas, which suggests Wernicke encephalopathy. For the early diagnosis of WE, neuroimaging studies can be an important marker. Thiamine hydrochloride was administered at a dose of 100 mg/day for 3 weeks. Cerebral salt-wasting syndrome was subsequently diagnosed due to persistent hyponatremia, dehydrated state, and high urine sodium with massive urination. Main lessons learned from this case: Wernicke encephalopathy is a very rare cause of cerebral salt-wasting syndrome in pediatrics patients. The patient had a good outcome after hypertonic solution and fludrocortisone therapy. PMID:27603336

  19. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    PubMed

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  20. Recurrent bone fractures due to tenofovir-induced renal phosphate wasting.

    PubMed

    Koenig, Katrin F; Kalbermatter, Stefan; Menter, Thomas; Graber, Peter; Kiss, Denes

    2014-03-01

    A 42-y-old HIV-infected man suffered from several stress fractures due to tenofovir-induced proximal tubular injury. Laboratory examination revealed hypophosphatemia due to renal phosphate wasting. Therefore, more attention has to be paid to the monitoring of serum phosphate and alkaline phosphatase levels, since tenofovir-related nephrotoxicity increases the risk of osteomalacia.

  1. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting

    PubMed Central

    Riminucci, Mara; Collins, Michael T.; Fedarko, Neal S.; Cherman, Natasha; Corsi, Alessandro; White, Kenneth E.; Waguespack, Steven; Gupta, Anurag; Hannon, Tamara; Econs, Michael J.; Bianco, Paolo; Gehron Robey, Pamela

    2003-01-01

    FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS. PMID:12952917

  2. Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant

    SciTech Connect

    Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.; Logsdon, B.W.; Oldham, J.H.; Saiki, D.M.; Yudnich, R.J.

    1993-08-30

    Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heated compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.

  3. Testing of low temperature stabilization alternatives for salt-containing mixed wastes -- approach and results to date

    SciTech Connect

    Maio, V.; Loomis, G.; Biyani, R.K.; Smith, G.; Spence, R.; Wagh, A.

    1998-07-01

    Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The following five alternative salt waste stabilization technologies were selected for MWFA development funding in FY97 and FY98: (1) Phosphate Bonded Ceramics, (2) Sol-gel, (3) Polysiloxane, (4) Polyester Resin, and (5) Enhanced Concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates as specified by the MWFA. Final waste form performance data such as compressive strength, waste loading, and leachability can then be equally compared to the requirements originally specified. In addition to the selected test results provided in this paper, the performance of each alternative stabilization technology, will be documented in formal MWFA Innovative Technology Summary Reports (ITSRs).

  4. Non-Radiological Air Quality Modeling for the High-Level Waste Salt Disposition

    SciTech Connect

    Hunter, C.H.

    1999-11-29

    Dispersion modeling of non-radiological airborne emissions associated with the construction and operation of three alternatives for high-level waste salt disposition at the Savannah River Site has been completed. The results will be used by Department of Energy-Savannah River in the preparation of the salt disposition supplemental environmental impact statement. Estimated maximum ground-level concentrations of applicable regulated air pollutants of the site boundary and at the distance to a hypothetical, co-located onsite worker are summarized in tables. In all cases, model estimated ambient concentrations are less than regulatory standards.

  5. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  6. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    SciTech Connect

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  7. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    SciTech Connect

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  8. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.

    PubMed

    Aoki, Hirotaka; Nakata, Masanori; Dezaki, Katsuya; Lu, Ming; Gantulga, Darambazar; Yamamoto, Keiji; Shimada, Kazuyuki; Kario, Kazuomi; Yada, Toshihiko

    2013-01-01

    Ghrelin is the endogenous ligand for the growth hormone-secretagogue receptor expressed in various tissues including the heart, blood vessels and kidney. This study sought to determine the effects of long-term treatment with ghrelin (10 nmol/kg, twice a day, intraperitoneally) on the hypertension induced by high salt (8.0% NaCl) diet in Dahl salt-sensitive hypertensive (DS) rats. Systolic blood pressure (SBP) was measured by a tail cuff method. During the treatment period for 3 weeks, high salt diet increased blood pressure compared to normal salt (0.3% NaCl) diet, and this hypertension was partly but significantly (P<0.01) attenuated by simultaneous treatment with ghrelin. Ghrelin significantly increased urine volume and tended to increase urine Na⁺ excretion. Furthermore, ghrelin increased urine nitric oxide (NO) excretion and tended to increase renal neuronal nitric oxide synthase (nNOS) mRNA expression. Ghrelin did not alter the plasma angiotensin II level and renin activity, nor urine catecholamine levels. Furthermore, ghrelin prevented the high salt-induced increases in heart thickness and plasma ANP mRNA expression. These results demonstrate that long-term ghrelin treatment counteracts salt-induced hypertension in DS rats primarily through diuretic action associated with increased renal NO production, thereby exerting cardio-protective effects.

  9. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    SciTech Connect

    Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  10. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.

    PubMed

    Flandinet, L; Tedjar, F; Ghetta, V; Fouletier, J

    2012-04-30

    Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery [1]. Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH-NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    SciTech Connect

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-07-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF{sub 3} medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  12. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  13. Test Results and Comparison of Triaxial Strength Testing of Waste Isolation Pilot Plant Clean Salt

    SciTech Connect

    Buchholz, Stuart A.

    2016-12-01

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined, the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.

  14. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect

    CHANG, ROBERT

    2006-02-02

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  15. Hyponatraemia secondary to cerebral salt wasting syndrome following routine pituitary surgery.

    PubMed

    Atkin, S L; Coady, A M; White, M C; Mathew, B

    1996-08-01

    A female aged 53 years was found to have a suprasellar lesion, which was shown to be a Rathke's cyst after removal by transsphenoidal surgery. She presented 16 days postoperatively, and following two grand mal seizures was found to be profoundly hyponatraemic (sodium 101 nmol/l). She was initially thought to have the syndrome of inappropriate antidiuretic hormone and was treated accordingly, but central venous pressure measurement revealed the hypovolaemia of cerebral salt wasting syndrome. The patient subsequently developed severe neurological sequelae after the correction of her hyponatraemia, following the development of extrapontine myelinolysis. Cerebral salt wasting syndrome is a rare cause of hyponatraemia following pituitary transsphenoidal surgery, which may mimic the syndrome of inappropriate antidiuretic hormone secretion. This case emphasizes the poor prognosis that may result from the rapid correction of profound hyponatraemia.

  16. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  17. Deficiency of Renal Cortical EGF Increases ENaC Activity and Contributes to Salt-Sensitive Hypertension

    PubMed Central

    Pavlov, Tengis S.; Levchenko, Vladislav; O’Connor, Paul M.; Ilatovskaya, Daria V.; Palygin, Oleg; Mori, Takefumi; Mattson, David L.; Sorokin, Andrey; Lombard, Julian H.; Cowley, Allen W.

    2013-01-01

    Various stimuli, including hormones and growth factors, modulate epithelial sodium channels (ENaCs), which fine-tune Na+ absorption in the kidney. Members of the EGF family are important for maintaining transepithelial Na+ transport, but whether EGF influences ENaC, perhaps mediating salt-sensitive hypertension, is not well understood. Here, the ENaC inhibitor benzamil attenuated the development of hypertension in Dahl salt-sensitive rats. Feeding these salt-sensitive rats a high-salt diet led to lower levels of EGF in the kidney cortex and enhanced the expression and activity of ENaC compared with feeding a low-salt diet. To directly evaluate the role of EGF in the development of hypertension and its effect on ENaC activity, we infused EGF intravenously while continuously monitoring BP of the salt-sensitive rats. Infusion of EGF decreased ENaC activity, prevented the development of hypertension, and attenuated glomerular and renal tubular damage. Taken together, these findings indicate that cortical EGF levels decrease with a high-salt diet in salt-sensitive rats, promoting ENaC-mediated Na+ reabsorption in the collecting duct and the development of hypertension. PMID:23599382

  18. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  19. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  20. Cerebral Salt Wasting Syndrome following Head Injury in a Child Managed Successfully with Fludrocortisone.

    PubMed

    Chaudhary, Nagendra; Pathak, Santosh; Gupta, Murli Manohar; Agrawal, Nikhil

    2016-01-01

    Cerebral salt wasting (CSW) syndrome is an important cause of hyponatremia in head injuries apart from syndrome of inappropriate antidiuretic hormone (SIADH). Proper diagnosis and differentiation between these two entities are necessary for management as the treatment is quite opposite in both conditions. Fludrocortisone can help in managing CSW where alone saline infusion does not work. We report a 17-month-old female child with head injury managed successfully with saline infusion and fludrocortisone.

  1. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  2. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats

    PubMed Central

    Hoffmann, Linda S.; Kretschmer, Axel; Lawrenz, Bettina; Hocher, Berthold; Stasch, Johannes-Peter

    2015-01-01

    The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. PMID:26717150

  3. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  4. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats.

    PubMed

    Liu, Que; Adams, Lisa; Broyde, Anatoly; Fernandez, Rayne; Baron, Alain D; Parkes, David G

    2010-08-03

    Activation of glucagon-like peptide-1 (GLP-1) receptors improves insulin sensitivity and induces vasodilatation and diuresis. AC3174 is a peptide analogue with pharmacologic properties similar to the GLP-1 receptor agonist, exenatide. Hypothetically, chronic AC3174 treatment could attenuate salt-induced hypertension, cardiac morbidity, insulin resistance, and renal dysfunction in Dahl salt-sensitive (DSS) rats. DSS rats were fed low salt (LS, 0.3% NaCl) or high salt (HS, 8% NaCl) diets. HS rats were treated with vehicle, AC3174 (1.7 pmol/kg/min), or GLP-1 (25 pmol/kg/min) for 4 weeks via subcutaneous infusion. Other HS rats received captopril (150 mg/kg/day) or AC3174 plus captopril. HS rat survival was improved by all treatments except GLP-1. Systolic blood pressure (SBP) was lower in LS rats and in GLP-1, AC3174, captopril, or AC3174 plus captopril HS rats than in vehicle HS rats (p < 0.05). AC3174 plus captopril attenuated the deleterious effects of high salt on posterior wall thickness, LV mass, and the ratio of LV mass to body weight (P < or = 0.05). In contrast, GLP-1 had no effect on these cardiovascular parameters. All treatments reduced LV wall stress. GLP-1, AC3174, captopril, or AC3174 plus captopril normalized fasting insulin and HOMA-IR (P < or = 0.05). AC3174, captopril, or AC3174 plus captopril improved renal function (P < or = 0.05). Renal morphology in HS rats was associated with extensive sclerosis. Monotherapy with AC3174, captopril, or GLP-1 attenuated renal damage. However, AC3174 plus captopril produced the most effective improvement. Thus, AC3174 had antihypertensive, cardioprotective, insulin-sensitizing, and renoprotective effects in the DSS hypertensive rat model. Furthermore, AC3174 improved animal survival, an effect not observed with GLP-1.

  5. ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions ({number_sign}3053)

    SciTech Connect

    Jones, V.D.

    1997-11-01

    High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency.

  6. Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations

    SciTech Connect

    Nikitin, A. N. Pocheptsova, O. A.; Matthies, S.

    2010-05-15

    Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

  7. Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations

    NASA Astrophysics Data System (ADS)

    Nikitin, A. N.; Pocheptsova, O. A.; Matthies, S.

    2010-05-01

    Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

  8. Expected environments for a defense high-level waste repository in salt

    SciTech Connect

    Rickertsen, L.D.; Claiborne, H.C.

    1981-03-01

    Expected environments for a defense high-level waste (DHLW) repository in salt have been predicted analogously to previous analyses for spent fuel (SF) and reprocessed commercial high-level wastes (CHLW). Environments predicted include near-field and far-field temperatures, fluid, pressure, and nuclear radiation fields. Some sensitivity studies have also been performed. The main results of the calculations reported here include the following: (1) rock temperatures, canister wall temperatures, and waste temperatures do not exceed 86, 94, and 101/sup 0/C, respectively; (2) the maximum brine inflow rate to an emplacement hole is 0.015 L/yr, occurring in the first 30 yr after emplacement. The total accumulation of brine migrating to the emplacement hole after 1000 yr is < 0.5 L; (3) gas pressures encountered by the waste package do not exceed 0.36 MPa prior to mine closure. After this time, it is conceivable that stress on the canister could approach the lithostatic rock stresses; (4) maximum dose rates in the salt are < 1400 rads/h.

  9. Method for utilization of oil field waste brine to develop a salt gradient solar pond

    SciTech Connect

    Manning, R. A.; Wisneski, T. P.

    1984-10-30

    A process and method is disclosed for utilizing oil field waste brine to develop and maintain a salt gradient solar pond which in turn provides thermal energy for doing work, including improved separation of oil/brine emulsions into waste brine, crude oil, and natural gas; hot brine from the storage layer of the developed solar pond provides heat to a process heat exchanger which is intended to elevate the temperature of a working fluid such as an emulsion of crude oil and brine coming from producing oil wells prior to a separation process within a conventional heater treater. Waste brine from the crude oil process is utilized to develop and maintain the solar pond rather than simply being disposed.

  10. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2005-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  11. Harvesting capacitive carbon by carbonization of waste biomass in molten salts.

    PubMed

    Yin, Huayi; Lu, Beihu; Xu, Yin; Tang, Diyong; Mao, Xuhui; Xiao, Wei; Wang, Dihua; Alshawabkeh, Akram N

    2014-07-15

    Conversion of waste biomass to value-added carbon is an environmentally benign utilization of waste biomass to reduce greenhouse gas emissions and air pollution caused by open burning. In this study, various waste biomasses are converted to capacitive carbon by a single-step molten salt carbonization (MSC) process. The as-prepared carbon materials are amorphous with oxygen-containing functional groups on the surface. For the same type of waste biomass, the carbon materials obtained in Na2CO3-K2CO3 melt have the highest Brunauer-Emmett-Teller (BET) surface area and specific capacitance. The carbon yield decreases with increasing reaction temperature, while the surface area increases with increasing carbonization temperature. A working temperature above 700 °C is required for producing capacitive carbon. The good dissolving ability of alkaline carbonate molten decreases the yield of carbon from waste biomasses, but helps to produce high surface area carbon. The specific capacitance data confirm that Na2CO3-K2CO3 melt is the best for producing capacitive carbon. The specific capacitance of carbon derived from peanut shell is as high as 160 F g(-1) and 40 μF cm(-2), and retains 95% after 10,000 cycles at a rate of 1 A g(-1). MSC offers a simple and environmentally sound way for transforming waste biomass to highly capacitive carbon as well as an effective carbon sequestration method.

  12. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  13. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  14. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass

    SciTech Connect

    Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

    2013-04-01

    This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

  15. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  16. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA)

    PubMed Central

    Sebastian, Anthony; McSherry, Elisabeth; Morris, R. Curtis

    1971-01-01

    The mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA) was investigated in 10 patients, each of whom had impaired proximal renal tubular reabsorption of bicarbonate as judged from a greater than 15-20% reduction of renal tubular bicarbonate reabsorption (THCO3-) at normal plasma bicarbonate concentrations. When the plasma bicarbonate concentration ([HCO3-]p) was experimentally increased to normal levels in three patients with a fractional potassium excretion (CK/Cin) of less than 1.0 during acidosis, CK/Cin and urinary potassium excretion (UKV/Cin) increased strikingly and concurrently with a striking increase in urinary sodium (UNaV/Cin) and bicarbonate (UHCO3-V/Cin) excretion. When [HCO3-]p was increased to normal levels in two patients with a CK/Cin of greater than 1.0 during acidosis and in whom UNaV/Cin and UHCO3-V/Cin were already markedly increased, CK/Cin did not increase further. When [HCO3-]p was decreased to subnormal levels in a patient given ammonium chloride, UKV/Cin, CK/Cin, and UHCO3-V/Cin decreased concurrently. In the six patients in whom [HCO3-]p was maintained at normal levels (oral alkali therapy) for 2 months or longer, CK/Cin was directly related to the urinary excretion rates of sodium and bicarbonate, hence was directly related to the magnitude of reduction of THCO3- at normal [HCO3-]p; CK/Cin was greater than 0.55 in all six patients and greater than 1.0 in four. In eight patients with classic RTA (type 1 RTA), proximal renal tubular reabsorption of bicarbonate was largely intact as judged from a trivial reduction of THCO3- at normal [HCO3-]p. When [HCO3-]p was either increased from subnormal to normal levels, or decreased from normal to subnormal levels, UHCO3-V/Cin remained essentially constant, and UKV/Cin did not change significantly. When correction of acidosis was sustained, UHCO3-V/Cin remained a trivial fraction of that filtered, and CK/Cin was consistently less than 0

  17. Risk Assessment Study of Fluoride Salts: Probability-Impact Matrix of Renal and Hepatic Toxicity Markers.

    PubMed

    Usuda, Kan; Ueno, Takaaki; Ito, Yuichi; Dote, Tomotaro; Yokoyama, Hirotaka; Kono, Koichi; Tamaki, Junko

    2016-09-01

    The present risk assessment study of fluoride salts was conducted by oral administration of three different doses of sodium and potassium fluorides (NaF, KF) and zinc fluoride tetrahydrate (ZnF2 •4H2O) to male Wistar rats. The rats were divided into control and nine experimental groups, to which oral injections of 0.5 mL distilled water and 0.5 mL of fluoride solutions, respectively, were given. The dosage of fluoride compounds was adjusted to contain 2.1 mg (low-dose group, LG), 4.3 mg (mid-dose group, MG), and 5.4 mg fluoride per 200 g rat body weight (high-dose group, HG) corresponding to 5, 10, and 12.5 % of LD50 values for NaF. The 24-h urine volume, N-acetyl-β-D-glucosaminidase (NAG) and creatinine clearance (Ccr) were measured as markers of possible acute renal impact. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined in serum samples as markers of acute hepatic impact. The levels of serum and urinary fluoride were determined to evaluate fluoride bioavailability. The results reveal that higher doses of NaF, KF, and ZnF2 induced renal damage as indicated by higher urinary NAG (p < 0.05 with ≥90th percentile of control). High doses of ZnF2 also induced a significant Ccr decrease (p < 0.05 with ≤10th percentile of control). Low doses of NaF and mid-doses of ZnF2 induced polyuria (p < 0.05 with ≥90th percentile of control) while medium doses of NaF and low doses of KF also induced liver damage, as indicated by a high level of AST (p < 0.05 with ≥90th percentile of control). These findings suggest that oral administration of fluoride is a potential, dose-dependent risk factor of renal tubular damage.

  18. UK-Nuclear decommissioning authority and US Salt-stone waste management issues

    SciTech Connect

    Lawless, William; Whitton, John

    2007-07-01

    Available in abstract form only. Full text of publication follows: We update two case studies of stakeholder issues in the UK and US. Earlier versions were reported at Waste Management 2006 and 2007 and at ICEM 2005. UK: The UK nuclear industry has begun to consult stakeholders more widely in recent years. Historically, methods of engagement within the industry have varied, however, recent discussions have generally been carried out with the explicit understanding that engagement with stakeholders will be 'dialogue based' and will 'inform' the final decision made by the decision maker. Engagement is currently being carried out at several levels within the industry; at the national level (via the Nuclear Decommissioning Authority's (NDA) National Stakeholder Group (NSG)); at a local site level (via Site Stakeholder Groups) and at a project level (usually via the Best Practicable Environmental Option process (BPEO)). This paper updates earlier results by the co-author with findings from a second questionnaire issued to the NSG in Phase 2 of the engagement process. An assessment is made regarding the development of stakeholder perceptions since Phase 1 towards the NDA process. US: The US case study reviews the resolution of issues on salt-stone by Department of Energy's (DOE) Savannah River Site (SRS) Citizens Advisory Board (CAB), in Aiken, SC. Recently, SRS-CAB encouraged DOE and South Carolina's regulatory Department of Health and Environmental Control (SC-DHEC) to resolve a conflict preventing SC-DHEC from releasing a draft permit to allow SRS to restart salt-stone operations. It arose with a letter sent from DOE blaming the Governor of South Carolina for delay in restarting salt processing. In reply, the Governor blamed DOE for failing to assure that Salt Waste Processing Facility (SWPF) would be built. SWPF is designed to remove most of the radioactivity from HLW prior to vitrification, the remaining fraction destined for salt-stone. (authors)

  19. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    SciTech Connect

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  20. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    SciTech Connect

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos; Wang, Yifeng

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studies for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration emphasizes key

  1. A SPAK isoform switch modulates renal salt transport and blood pressure

    PubMed Central

    McCormick, James A.; Mutig, Kerim; Nelson, Joshua H.; Saritas, Turgay; Hoorn, Ewout J.; Yang, Chao-Ling; Rogers, Shaunessy; Curry, Joshua; Delpire, Eric; Bachmann, Sebastian; Ellison, David H.

    2011-01-01

    The renal thick ascending limb (TAL) and distal convoluted tubule (DCT) play central roles in salt homeostasis and blood pressure regulation. An emerging model suggests that bumetanide and thiazide-sensitive NaCl transporters (NKCC2 and NCC) along these segments are phosphorylated and activated by WNK kinases, via SPAK and OSR1. Here, we show that a kidney-specific SPAK isoform, which lacks the kinase domain, inhibits phosphorylation of NCC and NKCC2 by full-length SPAK, in vitro. Kidney-specific SPAK is highly expressed along the TAL, whereas full-length SPAK is more highly expressed along the DCT. As predicted from the differential expression, SPAK knockout in animals has divergent effects along TAL and DCT, with increased phosphorylated NKCC2 along TAL and decreased phosphorylated NCC along DCT. In mice, extracellular fluid volume depletion shifts SPAK isoform abundance to favor NaCl retention along both segments, indicating that a SPAK isoform switch modulates sodium avidity along the distal nephron. PMID:21907141

  2. THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)

    SciTech Connect

    Smith, W.; Feizollahi, F.

    2002-02-25

    A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

  3. Effects of SC-56525, a potent, orally active renin inhibitor, in salt-depleted and renal hypertensive dogs.

    PubMed

    McMahon, E G; Yang, P C; Babler, M A; Bittner, S E; Suleymanov, O D; Cain-Janicki, K J; Bedell, L J; Hanson, G J; Cook, C S

    1995-07-01

    SC-56525 is a nanomolar inhibitor of plasma renin activity in human, cynomolgus monkey, dog, guinea pig, Yucatan micropig, and rabbit but is less active in rat. The oral bioavailability of SC-56525 in conscious dogs at doses of 5 mg/kg IV and 30 mg/kg PO was 66.1 +/- 16.4%. Oral dosing with SC-56525 at 3, 10, and 30 mg/kg in salt-depleted dogs induced a dose-dependent reduction in mean arterial pressure and inhibition of plasma renin activity with no significant effect on heart rate. In two-kidney, one clip renal hypertensive dogs, SC-56525 given orally at 10, 30, and 60 mg/kg daily for 4 days lowered blood pressure significantly. In conscious dogs monitored in their home cages via radiotelemetry, no significant changes in heart rate occurred in response to large drops in blood pressure in both renal hypertensive and salt-depleted dogs with the renin inhibitor SC-56525. SC-56525 is a nanomolar, orally active inhibitor of renin and effectively lowers blood pressure in both salt-depleted and renal hypertensive dogs.

  4. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  5. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting.

    PubMed

    Ferrè, Silvia; de Baaij, Jeroen H F; Ferreira, Patrick; Germann, Roger; de Klerk, Johannis B C; Lavrijsen, Marla; van Zeeland, Femke; Venselaar, Hanka; Kluijtmans, Leo A J; Hoenderop, Joost G J; Bindels, René J M

    2014-03-01

    Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg(2+) loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg(2+) levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg(2+)-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg(2+) reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes.

  6. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-09-26

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  7. [Cerebral salt wasting. Half a century of a largely undefined syndrome].

    PubMed

    López Gastón, O D; Jorge, M

    2001-01-01

    Peters made the original description of the cerebral salt wasting syndrome (CSWS) in 1950 in three patients with hyponatremia that he assumed to be secondary to natriuresis of cerebral mechanism. Few years later, Schwartz describe the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in two patients with bronchial carcinoma, with characteristics similar to CSWS. Wijdicks gave clinical entity to CSWS when referring that it is the prevalent cause of hyponatremia in patients with subarachnoid hemorrhage, and stressed the risk of secondary cerebral infarction if restrictive plans of water and salt were used as a consequence of a miss diagnosis. However, CSWS has been recently questioned because of its atypical characteristics, not shared by other saline wasting syndromes. The volume status of patients with hyponatremia and natriuresis determines whether the cause of this disorder is SIADH or CSWS. Nevertheless the evidence are contradictory, the vasopressin level can be recognized only in relation to the tonicity of body fluids, and the natriuresis is a common final pathway for both syndromes. In this literature review, some issues of CSWS that are associated or opposed with SIADH and other saline wasting syndrome are discussed. We conclude that the reports that sustain CSWS are insufficient in their methodology and interpretation of the results. The absence of strict metabolic studies has been negatively replaced by the original information casually quoted, and the strength of tradition. Thereafter, the paradigm generates unfounded ethical dilemmas which render difficult any further investigations with appropriate controls.

  8. Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats.

    PubMed

    Worou, Morel E; Liao, Tang-Dong; D'Ambrosio, Martin; Nakagawa, Pablo; Janic, Branislava; Peterson, Edward L; Rhaleb, Nour-Eddine; Carretero, Oscar A

    2015-10-01

    N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Its effect on salt-sensitive (SS) hypertension is unknown. We hypothesized that in Dahl SS rats on high-salt (HS) diet, Ac-SDKP prevents loss of nephrin expression and renal immune cell infiltration, leading to a decrease in albuminuria, renal inflammation, fibrosis, and glomerulosclerosis. To test this, Dahl SS rats and consomic SS13BN controls were fed either a low-salt (0.23% NaCl) or HS (4% NaCl) diet and treated for 6 weeks with vehicle or Ac-SDKP at either low or high dose (800 or 1600 μg/kg per day, respectively). HS increased systolic blood pressure in SS rats (HS+vehicle, 186±5 versus low salt+vehicle, 141±3 mm Hg; P<0.005) but not in SS13BN rats. Ac-SDKP did not affect blood pressure. Compared with low salt, HS-induced albuminuria, renal inflammation, fibrosis, and glomerulosclerosis in both strains, but the damages were higher in SS than in SS13BN. Interestingly, in SS13BN rats, Ac-SDKP prevented albuminuria induced by HS (HS+vehicle, 44±8 versus HS+low Ac-SDKP, 24±3 or HS+high Ac-SDKP, 8±1 mg/24 h; P<0.05), whereas in SS rats, only high Ac-SDKP dose significantly attenuated albuminuria (HS+vehicle, 94±10 versus HS+high Ac-SDKP, 57±7 mg/24 h; P<0.05). In both strains, Ac-SDKP prevented HS-induced inflammation, interstitial fibrosis, and glomerulosclerosis. In summary, in SS rats on HS diet, at low and high doses, Ac-SDKP prevented renal damage without affecting the blood pressure. Only the high dose of Ac-SDKP attenuated HS-induced albuminuria. Conversely, in SS13BN rats, both doses of Ac-SDKP prevented HS-induced renal damage and albuminuria.

  9. Suitability of Palestine salt dome, Anderson Co. , Texas for disposal of high-level radioactive waste

    SciTech Connect

    Patchick, P.F.

    1980-01-01

    The suitability of Palestine salt dome, in Anderson County, Texas, is in serious doubt for a repository to isolate high-level nuclear waste because of abandoned salt brining operations. The random geographic and spatial occurrence of 15 collapse sinks over the dome may prevent safe construction of the necessary surface installations for a repository. The dissolution of salt between the caprock and dome, from at least 15 brine wells up to 500 feet deep, may permit increased rates of salt dissolution long into future geologic time. The subsurface dissolution is occurring at a rate difficult, if not impossible, to assess or to calculate. It cannot be shown that this dissolution rate is insignificant to the integrity of a future repository or to ancillary features. The most recent significant collapse was 36 feet in diameter and took place in 1972. The other collapses ranged from 27 to 105 feet in diameter and from 1.5 to more than 15 feet in depth. ONWI recommends that this dome be removed from consideration as a candidate site.

  10. Study on LiCl waste salt treatment process by layer melt crystallization

    SciTech Connect

    Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il

    2013-07-01

    Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

  11. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    PubMed

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  12. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  13. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    SciTech Connect

    Knauss, K.G.; Steinborn, T.L.

    1980-05-22

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed.

  14. Cerebral salt wasting syndrome in a patient affected of spontaneous frontoparietal subdural haematoma.

    PubMed

    Cerdá-Esteve, Mariaina; Badia, Mariona; Trujillano, Javier; Vilanova, Cecília; Maravall, Javier; Mauricio, Dídac

    2009-01-01

    Ever since cerebral salt wasting syndrome (CSW) was first described in 1950, there have been debates over its existence and whether it has an important place in the differential diagnosis of hyponatraemia. We report the case of a neurosurgical patient with sustained hyponatraemia and abnormally high sodium loss in the urine, with signs of fluid volume depletion. Hyponatraemia was not corrected after an intravenous infusion of saline solution. Stable concentrations of blood sodium above 130 mmol/l were achieved with the administration of 100 mg of hydrocortisone daily, with an ensuing reduction in sodium elimination through the urine.

  15. Cerebral salt wasting in a patient with head trauma: management with saline hydration and fludrocortisone.

    PubMed

    Askar, Akram; Tarif, Nauman

    2007-03-01

    Hyponatremia secondary to the syndrome of inappropriate anti-diuretic hormone secretion is commonly observed in patients with various neurological disorders. Cerebral salt wasting (CSW), although uncommon, has also been reported to frequently result in hyponatremia. Here, we report a case of CSW in a patient with head trauma without evidence of cerebrovascular injury or brain edema. He was diagnosed on the basis of high fractional excretion of urinary sodium and uric acid along with extremely low serum uric acid. Improvements in serum sodium levels after saline hydration and fludrocortisone administration further supported the diagnosis, even in the presence of normal brain and atrial natriuretic peptide levels.

  16. [A case of acute limbic encephalitis with cerebral salt wasting syndrome].

    PubMed

    Nishio, Motonobu; Nishitani, Nobuyuki; Tanaka, Keiko

    2014-01-01

    A 37-year-old woman presented with psychiatric symptoms. Cerebrospinal fluid analysis revealed pleocytosis and increased protein. The patient was diagnosed with limbic encephalitis on the basis of the clinical course. However, remarkable hyponatremia was noted throughout the clinical course, leading to a diagnosis of cerebral salt wasting syndrome (CSWS). The hyponatremia was alleviated by supplementation with sodium and water. The findings seen in this case indicate that differentiation between syndrome of inappropriate of antidiuretic hormone and CSWS is important in cases of hyponatremia accompanied by central nervous system disease.

  17. Cerebral Salt-wasting Syndrome and Inappropriate Antidiuretic Hormone Syndrome after Subarachnoid Hemorrhaging.

    PubMed

    Nakajima, Hanako; Okada, Hiroshi; Hirose, Kazuki; Murakami, Toru; Shiotsu, Yayoi; Kadono, Mayuko; Inoue, Mamoru; Hasegawa, Goji

    2017-01-01

    Hyponatremia is a common finding after subarachnoid hemorrhaging (SAH) and can be caused by either cerebral salt-wasting syndrome (CSWS) or syndrome of inappropriate antidiuretic hormone (SIADH). Distinguishing between these two entities can be difficult because they have similar manifestations, including hyponatremia, serum hypo-osmolality, and high urine osmolality. We herein report the case of a 60-year-old man who suffered from SAH complicated by hyponatremia. During his initial hospitalization, he was diagnosed with CSWS. He was readmitted one week later with hyponatremia and was diagnosed with SIADH. This is the first report of SAH causing CSWS followed by SIADH. These two different sources of hyponatremia require different treatments.

  18. High level nuclear waste repository in salt: Sealing systems status and planning report: Draft report

    SciTech Connect

    1985-09-01

    This report documents the initial conceptual design studies for a repository sealing system for a high-level nuclear waste repository in salt. The first step in the initial design studies was to review the current design level, termed schematic designs. This review identified practicality of construction and development of a design methodology as two key issues for the conceptual design. These two issues were then investigated during the initial design studies for seal system materials, seal placement, backfill emplacement, and a testing and monitoring plan. The results of these studies have been used to develop a program plan for completion of the sealing system conceptual design. 60 refs., 26 figs., 18 tabs.

  19. DEGRADED TBP SOLVENT REGENERATION TECHNOLOGY USING BUTYLAMINE AS A SOLVENT WASHING TO REDUCE SOLID SALT WASTE

    SciTech Connect

    Asakura, T.; Itoh, Y.; Hotoku, S.; Morita, Y.; Uchiyama, G.

    2003-02-27

    Normal butylamine compounds are studied as salt-free wash reagents for degraded solvent used in PUREX process in spent fuel reprocessing. The solvent wash tests were carried out with two types of butylamine compounds, n-butylamine oxalate and n-butylamine bicarbonate, by counter-current mode using a small size mixer-settler composed of two 4-stage wash steps. Di-n-butyl phosphoric acid (HDBP), the main degradation product from TBP, was removed from real degraded solvent with decontamination factor of 2.5 {approx} 7.9. The study on electrolytic decomposition of butylamine compounds was also conducted for waste treatment.

  20. Prediction of contaminant migration around radioactive waste repositories in salt formations in Germany

    SciTech Connect

    Wollrath, J.

    1995-12-31

    With rock salt as host formation of a radioactive waste repository density effects on the groundwater movement have to be considered. Therefore, the assumptions, results and difficulties of modelling groundwater movement and taking into account density effects are presented and discussed with reference to the calculations performed for the Gorleben repository. The results are compared to results obtained in the safety analyses for the Konrad repository. It is shown that the consideration of variable groundwater density increases groundwater travel times and hence slows down the transport of contaminants from the repository location to the ground surface.

  1. Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan

    SciTech Connect

    Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

    1984-07-01

    The following recommendations have been abstracted from the body of this report. The Office of Nuclear Waste Isolation's Socioeconomic Program Plan for the Establishment of Mined Geologic Repositories to Isolate Nuclear Waste should be modified to: (1) encourage active public participation in the decision-making processes leading to repository site selection; (2) clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process. In addition, the Office of Nuclear Waste Isolation should carefully review the overall role that these persons and groups, including local pressure groups organized in the face of potential repository development, will play in the siting process; (3) place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; (4) include additional approaches to solving socioeconomic problems. For example, a reluctance to acknowledge that solutions to socioeconomic problems need to be found jointly with interested parties is evident in the plan; (5) recognize that mitigation mechanisms other than compensation and incentives may be effective; (6) as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and (7) comply fully with the pertinent provisions of NWPA.

  2. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  3. Renal Overexpression of Atrial Natriuretic Peptide and Hypoxia Inducible Factor-1α as Adaptive Response to a High Salt Diet

    PubMed Central

    Della Penna, Silvana Lorena; Cao, Gabriel; Carranza, Andrea; Zotta, Elsa; Gorzalczany, Susana; Cerrudo, Carolina Susana; Rukavina Mikusic, Natalia Lucía; Correa, Alicia; Trida, Verónica; Toblli, Jorge Eduardo; Fernández, Belisario Enrique

    2014-01-01

    In the kidney, a high salt intake favors oxidative stress and hypoxia and causes the development of fibrosis. Both atrial natriuretic peptide (ANP) and hypoxia inducible factor (HIF-1α) exert cytoprotective effects. We tested the hypothesis that renal expression of ANP and HIF-1α is involved in a mechanism responding to the oxidative stress produced in the kidneys of rats chronically fed a high sodium diet. Sprague-Dawley rats were fed with a normal salt (0.4% NaCl) (NS) or a high salt (8% NaCl) (HS) diet for 3 weeks, with or without the administration of tempol (T), an inhibitor of oxidative stress, in the drinking water. We measured the mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa). We evaluated the expression of ANP, HIF-1α, and transforming growth factor (TGF-β1) in renal tissues by western blot and immunohistochemistry. The animals fed a high salt diet showed increased MAP and UVNa levels and enhanced renal immunostaining of ANP, HIF-1α, and TGF-β1. The administration of tempol together with the sodium overload increased the natriuresis further and prevented the elevation of blood pressure and the increased expression of ANP, TGF-β1, and HIF-1α compared to their control. These findings suggest that HIF-1α and ANP, synthesized by the kidney, are involved in an adaptive mechanism in response to a sodium overload to prevent or attenuate the deleterious effects of the oxidative stress and the hypoxia on the development of fibrosis. PMID:24689065

  4. Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility

    SciTech Connect

    Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

    2002-02-26

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This

  5. A study of separation and solidification of group II nuclides in waste salt delivered from the pyrochemical process of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Jang, S. A.; Kim, T. J.; Park, H. S.; Ahn, D. H.

    2017-08-01

    If group II nuclides, which contain high heat-generative elements, in waste salt are fabricated into a waste form rich in group II nuclides, the waste form can be used in radionuclide thermoelectric generator applications. For this reason, the separation of group II nuclides in salt (LiCl, LiCl-KCl) was conducted, after which a waste form rich in them was fabricated. In this study, group II nuclide chlorides in salt were effectively separated into a carbonate or oxychloride form, and the separated nuclides were successfully fabricated into a homogenous and stable glass waste form with high contents (45-50 wt%) of these nuclides.

  6. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect

    J. T. Case; M. L. Renfro

    1998-12-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  7. Summary strategy for compliance with postclosure requirements for the waste package for the Salt Repository Project: Final report

    SciTech Connect

    Not Available

    1988-03-01

    This document presents a summary of the strategy of the Salt Repository Project (SRP) to show compliance with the requirements for the waste package after permanent closure of the repository at the site in Deaf Smith County, Texas. The postclosure requirements that govern the performance of the waste package are those in 10 CFR 60.113 for substantially complete containment of the waste and for gradual release of radionuclides after the containment period, and for the postclosure design requirements in 10 CFR 60.135. Also, the waste package plays a role in showing compliance with the total system release requirement in 40 CFR 191.13. 12 refs.

  8. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats

    PubMed Central

    Yang, Shao-Yu; Lin, Shuei-Liong; Chen, Yung-Ming; Wu, Vin-Cent; Yang, Wei-Shiung; Wu, Kwan-Dun

    2016-01-01

    Previous studies have shown that sirtuin 1 (Sirt1) is renoprotective; however, details regarding its distribution and functions in the kidney remain unknown. Here, we demonstrated that Sirt1 was mainly expressed in the tubulointerstitial cells of normal rat kidneys and was co-localized with aquaporin 2, indicating it may be involved in water/salt regulation. Renal Sirt1 expression increased in the non-glomerular cytoplasmic portion of the kidney after a 24-h fast, but no significant changes in Sirt1 expression occurred after water loading (50 mL/kg) or 24-h water deprivation. After consuming a low-salt (0.075%) or 60% calorie restriction diet for 7 days, Sirt1 expression in the rat kidney was significantly increased, whereas a high-salt (8%) diet did not change the level of Sirt1 expression. The low-salt diet also increased Sirt1 expression in the heart, muscle, brain, and fat tissues. The increased Sirt1 that was observed in rats on a low-salt diet was associated with increased ghrelin expression in the distal nephron, with both molecules exhibiting similar distribution patterns. An in vitro experiment suggested that ghrelin increases Sirt1 expression in cortical collecting duct cells by activating ghrelin receptors. Our study indicates that this ‘ghrelin-Sirt1 system’ may participate in regulating sodium reabsorption in the distal nephron. PMID:27600292

  9. Endothelin receptor blockade ameliorates renal injury by inhibition of RhoA/Rho-kinase signalling in deoxycorticosterone acetate-salt hypertensive rats.

    PubMed

    Lee, Tsung-Ming; Chung, Tun-Hui; Lin, Shinn-Zong; Chang, Nen-Chung

    2014-04-01

    Excessive production of fibrosis is a feature of hypertension-induced renal injury. Activation of RhoA/Rho-kinase (ROCK) axis has been shown in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed whether selective endothelin receptor blockers can attenuate renal fibrosis by inhibiting RhoA/ROCK axis in DOCA-salt rats. At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 4 weeks: vehicle, ABT-627 (endothelin-A receptor inhibitor) and A192621 (endothelin-B receptor inhibitor). DOCA-salt was characterized by increased blood pressure, decreased renal function, increased proteinuria, increased glomerulosclerosis and tubulointerstitial fibrosis with myofibroblast accumulation, increased renal endothelin-1 levels and RhoA activity along with increased expression of connective tissue growth factor at both mRNA and protein levels as compared with uninephrectomized control male Wistar rats. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone, ameliorated proteinuria. Impaired renal function and histological changes were overcome by treatment with ABT-627, but not with A192621. The beneficial effects of bosentan, a nonspecific endothelin receptor blocker, on proteinuria, RhoA activity, and connective tissue growth factor levels were similar to ABT-627. Furthermore, in an isolated perfuse kidney, a RhoA inhibitor, C3 exoenzyme, and two ROCK inhibitors, fasudil and Y-27632, significantly attenuated connective tissue growth factor levels. These results indicate that DOCA-salt elevates renal endothelin-1 levels and RhoA activity via activation of mineralocorticoid receptor, resulting in renal fibrosis and proteinuria. Endothelin-A receptor blockade can attenuate DOCA-salt-induced renal fibrosis probably through the inhibition of RhoA/ROCK activity and connective tissue growth factor expression.

  10. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension.

    PubMed

    Wei, Xing; Gao, Peng; Pu, Yunfei; Li, Qiang; Yang, Tao; Zhang, Hexuan; Xiong, Shiqiang; Cui, Yuanting; Li, Li; Ma, Xin; Liu, Daoyan; Zhu, Zhiming

    2017-04-01

    Hypertension-induced renal fibrosis contributes to the progression of chronic kidney disease, and apigenin, an anti-hypertensive flavone that is abundant in celery, acts as an agonist of transient receptor potential vanilloid 4 (TRPV4). However, whether apigenin reduces hypertension-induced renal fibrosis, as well as the underlying mechanism, remains elusive. In the present study, the deoxycorticosterone acetate (DOCA)-salt hypertension model was established in male Sprague-Dawley rats that were treated with apigenin or vehicle for 4 weeks. Apigenin significantly attenuated the DOCA-salt-induced structural and functional damage to the kidney, which was accompanied by reduced expression of transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway and extracellular matrix proteins. Immunochemistry, cell-attached patch clamp and fluorescent Ca(2+) imaging results indicated that TRPV4 was expressed and activated by apigenin in both the kidney and renal cells. Importantly, knockout of TRPV4 in mice abolished the beneficial effects of apigenin that were observed in the DOCA-salt hypertensive rats. Additionally, apigenin directly inhibited activation of the TGF-β1/Smad2/3 signaling pathway in different renal tissues through activation of TRPV4 regardless of the type of pro-fibrotic stimulus. Moreover, the TRPV4-mediated intracellular Ca(2+) influx activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway, which inhibited the TGF-β1/Smad2/3 signaling pathway. In summary, dietary apigenin has beneficial effects on hypertension-induced renal fibrosis through the TRPV4-mediated activation of AMPK/SIRT1 and inhibition of the TGF-β1/Smad2/3 signaling pathway. This work suggests that dietary apigenin may represent a promising lifestyle modification for the prevention of hypertension-induced renal damage in populations that consume a high-sodium diet. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. A Retrospective Analysis of the Growth Pattern in Patients with Salt-wasting 21-Hydroxylase Deficiency

    PubMed Central

    Kawano, Atsuko; Kohno, Hitoshi; Miyako, Kenichi

    2014-01-01

    Abstract The objective of this study was to investigate the growth pattern of children with the salt-wasting form of congenital adrenal hyperplasia caused by 21-hydroxylase deficiency (21-OHD). We reviewed the medical records of 13 patients in whom salt-wasting 21-OHD was diagnosed during the first 2 mo of life at our hospital from 1980 through 2008. Six reached adult height. Growth patterns, bone age, biochemical data, and the hydrocortisone dose at each growth stage were analyzed retrospectively. The mean adult height was 155.1 ± 6.5 cm (mean ± SD) in females and 158.1 ± 7.1 cm in males. Although length at birth was normal or longer than the national mean in almost all patients, the mean height SD score of both boys and girls decreased to below 0 SD during infancy. Subsequently, both boys and girls transiently showed growth acceleration and reached their peak growth velocity at 3–10 yr of age. In conclusion, in addition to suppression of growth during infancy, there was inappropriate growth acceleration during childhood. Especially from 3 mo to 3 yr of age, decreasing the hydrocortisone dose in patients who exhibit slower growth may lead to satisfactory height outcomes. Also, strict adjustment of the hydrocortisone dose to avoid accelerated growth from childhood to adolescence might improve adult height outcomes of patients with 21-OHD. PMID:24790384

  12. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  13. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  14. CS-3150, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, Shows Preventive and Therapeutic Effects On Renal Injury in Deoxycorticosterone Acetate/Salt-Induced Hypertensive Rats.

    PubMed

    Arai, Kiyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiroyuki; Homma, Tsuyoshi

    2016-09-01

    The present study was designed to assess both preventive and therapeutic effects of (S)-1-(2-Hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl) phenyl]-5-[2-(trifluoromethyl) phenyl]-1H-pyrrole-3-carboxamide (CS-3150), a novel nonsteroidal mineralocorticoid receptor antagonist, on renal injury in deoxycorticosterone acetate (DOCA)/salt-induced hypertensive rats (DOCA rats). From 7 weeks of age, DOCA was subcutaneously administered once a week for 4 weeks to uninephrectomized rats fed a high-salt diet. In experiment 1, CS-3150 (0.3-3 mg/kg) was orally administered once a day for 4 weeks coincident with DOCA administration. In experiment 2, after establishment of renal injury by 4 weeks of DOCA/salt loading, CS-3150 (3 mg/kg) was orally administered once a day for 4 weeks with or without continuous DOCA administration. In experiment 1, DOCA/salt loading significantly increased systolic blood pressure (SBP), which was prevented by CS-3150 in a dose-dependent manner. Development of renal injury (proteinuria, renal hypertrophy, and histopathological changes in glomeruli and tubule) was also suppressed by CS-3150 with inhibition of mRNA expression of fibrosis, inflammation, and oxidative stress markers. In experiment 2, under continuous DOCA treatment, CS-3150 clearly ameliorated existing renal injury without lowering SBP, indicating that CS-3150 regressed renal injury independent of its antihypertensive action. Moreover, CS-3150 treatment in combination with withdrawal of DOCA showed further therapeutic effect on renal injury accompanied by reduction in SBP. These results demonstrate that CS-3150 not only prevents but also ameliorates hypertension and renal injury in DOCA rats. Therefore, CS-3150 could be a promising agent for the treatment of hypertension and renal disorders, and may have potential to promote regression of renal injury. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan

    SciTech Connect

    Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

    1984-02-01

    The ONWI Socioeconomic Program Plan spells out DOE's approach to analyzing the socioeconomic impacts from siting, constructing, and operating radioactive waste repositories and discusses mitigation strategies. The peer review indicated the following modifications should be made to the Plan: encourage active public participation in the decision-making processes leading to repository site selection; clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process; place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; recognize that mitigation mechanisms other than compensation and incentives may be effective; as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and comply fully with the pertinent provisions of NWPA.

  16. Dechlorination and stabilization of radioactive chloride salt waste in a molten state

    SciTech Connect

    In-Tae Kim; Hwan-Seo Park; Yong-Jun Cho; Hwan-Young Kim; Seong-Won Park; Eung-Ho Kim

    2007-07-01

    This study suggests a new method to stabilize the molten salt wastes generated from he pyro-processing of a LWR spent fuel. Using a conventional sol-gel process, an inorganic material (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, SAP) reactive to metal chlorides was prepared. In this paper, the reactivity of the SAP on the metal chlorides at 650-850 deg. C, the thermal stability of the reaction products and their leach-resistance under the PCT-A leach test were investigated. In the SAP, three different kinds of chains are available; Si-O-Si (main chain), Si-O-Al (side chain) and Al-O-P/P-O-P (reactive chain). Alkali metal chlorides were converted into metal aluminosilicate (Li{sub x}Al{sub x}Si{sub 1-x}O{sub 2-x}) and metal phosphate(Li{sub 3}PO{sub 4} and Cs{sub 2}AlP{sub 3}O{sub 10}) while the alkaline earth and rare earth chlorides were changed into only metal phosphates (Sr{sub 5}(PO{sub 4}){sub 3}Cl and CePO{sub 4}). The conversion rate was about 96% at a salt waste/SAP weight ratio of 0.5 and a weight loss up to 1100 deg. C measured by the thermo-gravimetric analysis was below 1 Wt%. The leach rates of Cs and Sr under the PCT-A leaching condition were about 10{sup -2} and 10{sup -4} g/m{sup 3}.day, respectively. From these results, it could be concluded that the SAP developed in this study can be considered as an effective stabilizer for metal chlorides and the method of using the SAP could provide a chance to minimize the final waste volume to be disposed off. (authors)

  17. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders

    PubMed Central

    Bai, Xiuying; Miao, Dengshun; Xiao, Sophia; Qiu, Dinghong; St-Arnaud, René; Petkovich, Martin; Gupta, Ajay; Goltzman, David; Karaplis, Andrew C.

    2016-01-01

    CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment. PMID:26784541

  18. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension.

    PubMed

    Carlström, Mattias; Persson, A Erik G; Larsson, Erik; Hezel, Michael; Scheffer, Peter G; Teerlink, Tom; Weitzberg, Eddie; Lundberg, Jon O

    2011-02-15

    Reduced bioavailability of endogenous nitric oxide (NO) is a central pathophysiological event in hypertension and other cardiovascular diseases. Recently, it was demonstrated that inorganic nitrate from dietary sources is converted in vivo to form nitrite, NO, and other bioactive nitrogen oxides. We tested the hypothesis that dietary inorganic nitrate supplementation may have therapeutic effects in a model of renal and cardiovascular disease. Sprague-Dawley rats subjected to unilateral nephrectomy and chronic high-salt diet from 3 weeks of age developed hypertension, cardiac hypertrophy and fibrosis, proteinuria, and histological as well as biochemical signs of renal damage and oxidative stress. Simultaneous nitrate treatment (0.1 or 1 mmol nitrate kg⁻¹ day⁻¹), with the lower dose resembling the nitrate content of a diet rich in vegetables, attenuated hypertension dose-dependently with no signs of tolerance. Nitrate treatment almost completely prevented proteinuria and histological signs of renal injury, and the cardiac hypertrophy and fibrosis were attenuated. Mechanistically, dietary nitrate restored the tissue levels of bioactive nitrogen oxides and reduced the levels of oxidative stress markers in plasma (malondialdehyde) and urine (Class VI F2-isoprostanes and 8-hydroxy-2-deoxyguanosine). In addition, the increased circulating and urinary levels of dimethylarginines (ADMA and SDMA) in the hypertensive rats were normalized by nitrate supplementation. Dietary inorganic nitrate is strongly protective in this model of renal and cardiovascular disease. Future studies will reveal if nitrate contributes to the well-known cardioprotective effects of a diet rich in vegetables.

  19. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    SciTech Connect

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-09-30

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex{trademark}-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO{sub 4}{sup -}). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH){sub 3}, and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)].

  20. Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt

    SciTech Connect

    Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

    1987-01-01

    This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

  1. Nuclear waste repositories in salt mines: a new approach to safety assessment.

    PubMed

    Memmert, G

    1996-08-01

    The long-term safety of radioactive waste repositories in rock-salt mines in the deep underground benefits significantly from the barrier effect of overlying rocks. The concentrations of radioactive substances released from the repository and migrating in the aquifer up to the biosphere are greatly reduced during passage through these rocks. In former safety analyses of waste repositories this transport has generally been modelled as a combination of the involved phenomena, e.g. convection, dispersion, adsorption, etc. The data required for a numerical evaluation of the overall effect are obtained either as (conservative) estimates based on experience or are empirical, based mainly on laboratory experiments. The approach presented here is much simpler and entirely empirical, and therefore more transparent. It makes use of the fact that the groundwater in the overlying rocks always contains dissolved salt from the salt formation and carries it continuously into the receiving channels or the drainage system. The relation between the total amount of dissolved solids present in a certain subsurface catchment area and their steady-state concentration in the receiving channels is assumed to be equivalent to the relation between the given amount of radionuclides released from the repository and their concentration in the receiving channels, the latter leading to a certain radiation exposure of the population. Two versions of this approach are discussed: version (a) assumes a continuous stream of radionuclides released from the repository, and version (b) assumes a pulse release of radionuclides from the repository. A simple calculation using data from the Gorleben exploration leads to the inequality [equation: see text] where Cmax is the maximum radionuclide concentration (with respect to time) in the receiving channels and W (Bq) is the amount of radionuclides released from the respository in a very short time. Cmax obtained from (1), is supposed to be an upper limit of

  2. 76 FR 47613 - Board Meeting: September 13-14, 2011-Salt Lake City, UT; the U.S. Nuclear Waste Technical Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical... Technical Review Board will hold a public meeting in Salt Lake City, Utah, on Tuesday, September 13, and....m. and will be held at the Little America Hotel; 500 South Main Street; Salt Lake City, Utah...

  3. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    which are investigating methods to produce energy from waste . One particular process being investigated is a hydrothermal process which converts...Bio-fuels motivation Another application for hydrothermal treatment is a catalytic reaction process where a variety of biomass feedstocks...the hydrothermal biomass gasification process are twofold. First, salts which can interfere with the catalytic conversion process of the organic

  4. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Ya-Nan; Wang, Gui-Shi; Tan, Tu; Cai, Ting-Dong; Liu, Kun; Wang, Lei; Zhu, Gong-Dong; Mei, Jiao-Xu

    2016-10-01

    Quantitative analysis of ammonium salts in the process of coking industrial liquid waste treatment is successfully performed based on a compact Raman spectrometer combined with partial least square (PLS) method. Two main components (NH4SCN and (NH4)2S2O3) of the industrial mixture are investigated. During the data preprocessing, wavelet denoising and an internal standard normalization method are employed to improve the predicting ability of PLS models. Moreover, the PLS models with different characteristic bands for each component are studied to choose a best resolution. The internal and external calibration results of the validated model show a mass percentage error below 1% for both components. Finally, the repeatabilities and reproducibilities of Raman and reference titration measurements are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 41405022 and 61475068).

  6. Cerebral salt wasting syndrome following atlantoaxial fracture dislocation in Down syndrome.

    PubMed

    Abdel-Latif, Mohamed El-Amin; Chan, Patrick W-K; Goh, Adrian Yu-Teik; Lum, Lucy Chai-See

    2009-01-01

    We describe cerebral salt wasting syndrome (CSWS) in a 5-year-old female child with Down syndrome who had acute myelopathy secondary to chronic atlantoaxial subluxation and fracture dislocation of the odontoid process. The patient developed hyponatraemia associated with excessive urine output and elevated urine sodium concentration following her injury. An administered volume-for-volume replacement of urine loss with 0.9% sodium chloride resulted in an excellent outcome. This patient illustrates the importance of ascertaining CSWS in children with spinal cord disorders, in addition to the syndrome of inappropriate antidiuretic hormone (SIADH) secretion and diabetes insipidus (DI) commonly encountered following a central nervous system (CNS) injury, as the specific treatment approaches is clearly associated with an excellent outcome.

  7. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports.

    PubMed

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin; Suh, Byung-Kyu

    2015-12-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration.

  8. Cerebral salt wasting syndrome due to tuberculous meningitis; a case report.

    PubMed

    Ahmad, Syed; Majid, Zain; Mehdi, Mehwish; Mubarak, Muhammed

    2016-01-01

    A 58-year-old male presented with fever, nausea, and vomiting since 15 days along with irritability and confusion since 5 days. His laboratory reports showed low serum sodium, serum osmolality and uric acid. Computerized tomography (CT) scan of brain revealed age-related changes. While on lumbar puncture (LP) and cerebrospinal fluid (CSF) examination, CSF protein, lactate dehydrogenase (LDH) and total leukocyte count (predominant lymphocytes) were all increased. On his 14th day of admission, his serum sodium was 116 mEq/l and he had a high urine output. Fluid restriction was tried in order to rule out syndrome of inappropriate antidiuretic hormone secretion (SIADH) but the patient did not respond to it. Keeping in view the above findings, a final diagnosis of tuberculous meningitis leading to cerebral salt wasting syndrome was made. The patient was started on 3% hypertonic saline, mineralocorticoids and anti-tuberculous therapy (ATT), to which he responded favorably and was later discharged.

  9. [Cerebral salt wasting syndrome associated with Listeria monocytogenes encephalitis. Report of one case].

    PubMed

    Vega, Jorge; Matamala, Gonzalo

    2013-01-01

    Hyponatremia is common in patients with severe neurological diseases and is often secondary to a syndrome of inappropriate antidiuretic hormone secretion (SIADH). However, in some patients, hyponatremia is due to cerebral salt wasting syndrome (CSWS). SIADH and CSWS treatments are opposite and misdiagnosis can lead to increased morbidity and mortality. We report a 52 years old female with a rhom-boencephalitis caused by Listeria Monocytogenes (LM), ventriculitis and abscesses in cerebellum and brainstem. It was associated with hyponatremia, hypotension, increased natriuresis, hypouricemia, and low creatinine and blood urea nitrogen levels. Large amounts of sodium were needed and the condition persisted after hospital discharge. Hyponatremia is common in central nervous system involvement by LM, however we are not aware of CSWS reports of this condition.

  10. [Cerebral salt wasting syndrome in a patient with posttraumatic brain injury].

    PubMed

    Krysiak, Robert; Okopień, Bogusław

    2012-01-01

    In patients with central nervous system disease, life-threatening hyponatremia can result from either the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) or cerebral salt wasting syndrome (CSWS). Both clinical entities share many similar laboratory and clinical findings, and are characterized by low serum osmolality, inappropriately high urine osmolality, and high urine sodium levels. Despite outward similarities, the pathophysiology and treatment of these two conditions are very different. The former is treated with fluid restriction because of the increased level of free water and its dilutional effect causing hyponatremia, whereas the latter is treated with fluid and sodium resuscitation because of the increased loss of high urinary sodium. We present a 24-year-old man who developed CSWS after traumatic brain injury, showing diagnostic and treatment strategies undertaken in this patient and their impact on the course of CSWS. This case report illustrates the need for clinical awareness of CSWS in patients after head trauma.

  11. Progress in validation of structural codes for radioactive waste repository applications in bedded salt

    SciTech Connect

    Munson, D.E. ); DeVries, K.L. )

    1990-08-01

    Over the last nine years, coordinated activities in laboratory database generation, constitutive model formulation, and numerical code capability development have led to an improved ability of thermal/structural codes to predict the creep deformation of underground rooms in bedded salt deposits. In the last year, these codes have been undergoing preliminary validation against an extensive database collected from the large scale underground structural in situ tests at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico. This validation exercise has allowed prediction capabilities to be evaluated for accuracy. We present here a summary of the predictive capability and the nature of the in situ database involved in the validation exercise. The WIPP validation exercise has proven to be especially productive. 7 refs., 4 figs., 1 tab.

  12. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports

    PubMed Central

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin

    2015-01-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration. PMID:26817009

  13. Reduced NO production rapidly aggravates renal function through the NF-κB/ET-1/ETA receptor pathway in DOCA-salt-induced hypertensive rats.

    PubMed

    Kimura, Kimihiro; Ohkita, Mamoru; Koyama, Maki; Matsumura, Yasuo

    2012-10-15

    It has been reported that endothelin-1 (ET-1) overproduction and reduced nitric oxide (NO) production are closely related to the progression of renal diseases. In the present study, we examined the interrelation between ET-1 and NO system using rats treated with the combination of deoxycorticosterone acetate (DOCA)-salt and a non selective NO synthase inhibitor N(ω)-nitro-L-arginine (NOARG). Rats were treated with DOCA-salt (15 mg/kg, plus drinking water containing 1% NaCl) for two weeks, and then additional treatment of NOARG (0.6 mg/ml in the drinking water) was performed for three days. Combined treatment of DOCA-salt and NOARG drastically developed the severe renal dysfunction and tissue injury. This treatment additionally enhanced renal ET-1 production compared to the rats treated with DOCA-salt alone, whereas a selective ET(A) receptor antagonist ABT-627 completely prevented renal dysfunction and tissue injury. On the other hand, combined treatment of DOCA-salt and NOARG induced the phosphorylation of inhibitory protein kappa B (IκB), followed by the activation of nuclear factor-kappa B (NF-κB) in the kidney. In addition, pyrrolidine-dithiocarbamate completely suppressed not only NF-κB activation but also renal dysfunction and ET-1 overproduction. These results suggest that NF-κB/ET-1/ET(A) receptor-mediated actions are responsible for the increased susceptibility to DOCA-salt induced renal injuries in the case of reduced NO production. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Splicing mutation in CYP21 associated with delayed presentation of salt-wasting congenital adrenal hyperplasia

    SciTech Connect

    Kohn, B.; Patel, S.V.; Pelczar, J.V.

    1995-07-03

    Patients with salt-wasting congenital adrenal hyperplasia (SW-CAH) most commonly carry an A-G transition at nucleotide 656 (nt 656 A{r_arrow}G), causing abnormal splicing of exons 2 and 3 in CYP21, the gene encoding active steroid 21-hydroxylase. Affected infants are severely deficient in cortisol and aldosterone, and usually come to medical attention during the neonatal period. We report on 2 affected boys, homozygous for the nt 656 mutation, who thrived in early infancy, but suffered salt-wasting crises unusually late in infancy, at 3.5 and 5.5 months, respectively. Laboratory studies at presentation showed hyponatremia, hyperkalemia, dehydration, and acidosis; serum aldosterone was low in spite of markedly elevated plasma renin activity. Basal 17-hydroxyprogesterone levels were only moderately elevated, yet the stimulated levels were more typical of severe, classic CAH due to 21-hydroxylase deficiency. Genomic DNA from the patients was analyzed. Southern blot showed no major deletions or rearrangements. CYP21-specific amplification by polymerase chain reaction, coupled with allele-specific hybridization using wild-type and mutant probes at each of 9 sites for recognized disease-causing mutations, revealed a single, homozygous mutation in each patient: nt 656 A{r_arrow}G. These results were confirmed by sequence analysis. We conclude that the common nt 656 A{r_arrow}G mutation is sometimes associated with delayed phenotypic expression of SW-CAH. We speculate that variable splicing of the mutant CYP21 may modify the clinical manifestation of this disease. 22 refs., 1 fig., 1 tab.

  15. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.

    PubMed

    Tenenhouse, Harriet S; Sabbagh, Yves

    2002-06-01

    Over the past decade, three classes of Na/Pi cotransporters have been identified in mammalian kidney. The type IIa Na/Pi cotransporter, Npt2, is the most abundant and is expressed in the brush-border membrane of renal proximal tubular cells where the bulk of filtered inorganic phosphate (Pi) is reabsorbed. Disruption of the Npt2 gene in mice underscored the importance of Npt2 in the overall maintenance of Pi homeostasis and demonstrated that Npt2 is the target for regulation of proximal tubular Pi reabsorption by parathyroid hormone and dietary Pi. The regulation is post-transcriptional and largely occurs by brush-border membrane retrieval and insertion of Npt2 protein. Of great interest is the recent identification of novel Pi regulating genes, PHEX and FGF23, that play a role in the pathophysiology of inherited (X-linked hypophosphatemia and autosomal dominant hypophosphatemic rickets) and acquired (oncogenic hypophosphatemic rickets) disorders characterized by renal Pi wasting and associated skeletal abnormalities. Studies are currently underway to elucidate the molecular basis for impaired renal Pi reabsorption in these disorders and to determine the precise physiological role of PHEX and FGF-23 in the regulation of Pi homeostasis.

  16. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  17. Creep tests on clean and argillaceous salt from the Waste Isolation Pilot Plant

    SciTech Connect

    Mellegard, K.D.; Pfeifle, T.W.

    1993-05-01

    Fifteen triaxial compression creep tests were performed on clean and argillaceous salt from the Waste Isolation Pilot Plant (WIPP). The temperatures in the tests were either 25{degrees}C or 100{degrees}C while the stress difference ranged from 3.5 MPa to 21.0 MPa. In all tests, the confining pressure was 15 MPa. Test duration ranged from 23 to 613 days with an average duration of 300 days. The results of the creep tests supplemented earlier testing and were used to estimate two parameters in the Modified Munson-Dawson constitutive law for the creep behavior of salt. The two parameters determined from each test were the steady-state strain rate and the transient strain limit. These estimates were combined with parameter estimates determined from previous testing to study the dependence of both transient and steady-state creep deformation on stress difference. The exponents on stress difference determined in this study were found to be consistent with revised estimates of the exponents reported by other investigators.

  18. Radioactive Waste Isolation in Salt: Peer review of documents dealing with geophysical investigations

    SciTech Connect

    McGinnis, L.D.; Bowen, R.H.

    1987-03-01

    The Salt Repository Project, a US Department of Energy program to develop a mined repository in salt for high-level radioactive waste, is governed by a complex and sometimes inconsistent array of laws, administrative regulations, guidelines, and position papers. In conducting multidisciplinary peer reviews of contractor documents in support of this project, Argonne National Laboratory has needed to inform its expert reviewers of these governmental mandates, with particular emphasis on the relationship between issues and the technical work undertaken. This report acquaints peer review panelists with the regulatory framework as it affects their reviews of site characterization plans and related documents, including surface-based and underground test plans. Panelists will be asked to consider repository performance objectives and issues as they judge the adequacy of proposed geophysical testing. All site-specific discussions relate to the Deaf Smith County site in Texas, which was approved for site characterization by the President in May 1986. Natural processes active at the Deaf Smith County site and the status of geophysical testing near the site are reviewed briefly. 25 refs., 4 figs., 5 tabs.

  19. Molten salt destruction as an alternative to open burning of energetic material wastes

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-07-05

    LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions.

  20. Mitigation of Salinity Buildup and Recovery of Wasted Salts in a Hybrid Osmotic Membrane Bioreactor-Electrodialysis System.

    PubMed

    Lu, Yaobin; He, Zhen

    2015-09-01

    The osmotic membrane bioreactor (OMBR) is an emerging technology that uses water osmosis to accomplish separation of biomass from the treated effluent; however, accumulation of salts in the wastewater due to water flux and loss of draw solute because of reverse salt flux seriously hinder OMBR development. In this study, a hybrid OMBR-electrodialysis (ED) system was proposed and investigated to alleviate the salinity buildup. The use of an ED (3 V applied) could maintain a relatively low conductivity of 8 mS cm(-1) in the feed solution, which allowed the OMBR to operate for 24 days, about 6 times longer than a conventional OMBR without a functional ED. It was found that the higher the voltage applied to the ED, the smaller area of ion-exchange membrane was needed for salt separation. The salts recovered by the ED were successfully reused as a draw solute in the OMBR. At an energy consumption of 1.88-4.01 kWh m(-3), the hybrid OMBR-ED system could achieve a stable water flux of about 6.23 L m(-2) h(-1) and an efficient waste salt recovery of 1.26 kg m(-3). The hybrid OMBR-ED system could be potentially more advantageous in terms of less waste saline water discharge and salt recovery compared with a combined OMBR and reverse osmosis system. It also offers potential advantages over the conventional OMBR+post ED treatment in higher water flux and less wastewater discharge.

  1. Cytochrome P450 1B1 gene disruption minimizes deoxycorticosterone acetate-salt-induced hypertension and associated cardiac dysfunction and renal damage in mice.

    PubMed

    Jennings, Brett L; Estes, Anne M; Anderson, Larry J; Fang, Xiao R; Yaghini, Fariborz A; Fan, Zheng; Gonzalez, Frank J; Campbell, William B; Malik, Kafait U

    2012-12-01

    Previously, we showed that the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene reversed deoxycorticosterone acetate (DOCA)-salt-induced hypertension and minimized endothelial and renal dysfunction in the rat. This study was conducted to test the hypothesis that cytochrome P450 1B1 contributes to cardiac dysfunction, and renal damage and inflammation associated with DOCA-salt-induced hypertension, via increased production of reactive oxygen species and modulation of neurohumoral factors and signaling molecules. DOCA-salt increased systolic blood pressure, cardiac and renal cytochrome P450 1B1 activity, and plasma levels of catecholamines, vasopressin, and endothelin-1 in wild-type (Cyp1b1(+/+)) mice that were minimized in Cyp1b1(-/-) mice. Cardiac function, assessed by echocardiography, showed that DOCA-salt increased the thickness of the left ventricular posterior and anterior walls during diastole, the left ventricular internal diameter, and end-diastolic and end-systolic volume in Cyp1b1(+/+) but not in Cyp1b1(-/-) mice; stroke volume was not altered in either genotype. DOCA-salt increased renal vascular resistance and caused vascular hypertrophy and renal fibrosis, increased renal infiltration of macrophages and T lymphocytes, caused proteinuria, increased cardiac and renal nicotinamide adenine dinucleotide phosphate-oxidase activity, caused production of reactive oxygen species, and increased activities of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and cellular-Src; these were all reduced in DOCA-salt-treated Cyp1b1(-/-) mice. Renal and cardiac levels of eicosanoids were not altered in either genotype of mice. These data suggest that, in DOCA-salt hypertension in mice, cytochrome P450 1B1 plays a pivotal role in cardiovascular dysfunction, renal damage, and inflammation, and increased levels of catecholamines, vasopressin, and endothelin-1, consequent to generation of reactive oxygen species and activation of

  2. Effect of high salt diet on blood pressure and renal damage during vascular endothelial growth factor inhibition with sunitinib.

    PubMed

    Lankhorst, Stephanie; Baelde, Hans J; Clahsen-van Groningen, Marian C; Smedts, Frank M M; Danser, A H Jan; van den Meiracker, Anton H

    2016-06-01

    Antiangiogenic treatment with the multitargeted vascular endothelial growth factor (VEGF) receptor inhibitor sunitinib associates with a blood pressure (BP) rise and glomerular renal injury. Recent evidence indicates that VEGF derived from tubular cells is required for maintenance of the peritubular vasculature. In the present study, we focussed on tubular and glomerular pathology induced by sunitinib and explored whether a high salt (HS) diet augments the BP rise and renal abnormalities. Normotensive Wistar Kyoto (WKY) rats were exposed to a normal salt (NS) or HS diet for 2 weeks and subsequently for 8 days to sunitinib or vehicle administration after which the rats were euthanized and kidneys excised. Mean arterial pressure (MAP) was telemetrically measured. Urine was sampled for proteinuria and endothelinuria, and blood for measurement of endothelin-1, creatinine and cystatin C. Compared with the NS diet, MAP rapidly rose by 27 ± 3 mmHg with the HS diet. On sunitinib, MAP rose further by 15 ± 1 with the NS and by 23 ± 4 mmHg with the HS diet (P < 0.05). The HS diet itself had no effect on proteinuria, endothelinuria or the plasma levels of endothelin-1, creatinine and cystatin C. Only with the HS diet, sunitinib administration massively increased proteinuria and endothelinuria and these two parameters were related (r = 0.50, P < 0.01). Likewise, renal glomerular pathology was enhanced during sunitinib with the HS diet, whereas tubulointerstitial injury or reduced peritubular capillary density did not occur. An HS diet induces a marked BP rise in WKY rats and exacerbates both the magnitude of the BP rise and glomerular injury induced by sunitinib. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  3. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    SciTech Connect

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses.

  4. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    SciTech Connect

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

  5. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    SciTech Connect

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.

  6. Development of Technology for Immobilization of Waste Salt from Electrorefining Spent Nuclear Fuel in Zeolite-A for Eventual Disposition in a Ceramic Waste Form

    SciTech Connect

    Michael F. Simpson; Prateek Sachdev

    2008-04-01

    The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

  7. Development of Spheroidal Inorganic Sorbents for Treatment of Acidic Salt-Bearing Liquid Waste

    SciTech Connect

    Collins, J.L.

    2001-09-07

    A spheroidal composite inorganic sorbent was developed for U.S. Department of Energy-Efficient Separations and Processing Crosscutting Program (USDOE-ESP) for potential use in removing radioactive cesium isotopes from acidic high-salt waste streams such as those at Idaho National Engineering and Environmental Laboratory (INEEL). The sorbent, zirconium monohydrogen phosphate (ZrHP) embedded with fine powder of ammonium molybdophosphate (AMP), was prepared using a unique internal gelation process which can be used to make porous reproducible microspheres that are structurally strong, have a low tendency for surface erosion, and improve the flow dynamics for column operations. Both ZrHP and AMP are excellent sorbent materials and, being inorganic, are stable in high radiation fields. AMP is a very effective sorbent for removing cesium from salt-bearing waste streams for a wide range of acidity. In the pH range of 2 to 10, ZrHP is also a very effective sorbent for removing Cs, Sr, Th, U(VI), Pu(IV), Am(III), Hg, and Pb from streams of lower ionic concentrations. Crucial to developing the spheroidal AMP-ZrHP sorbent was to determine the ideal weight percentage of AMP that could be embedded in the ZrHP microspheres in order to maintain the structural integrity of the microspheres and also achieve a good cesium separation. A total of 12 preparations were made. The dry weight percentage of AMP ranged from 30 to 60. Overall, the best composite microspheres prepared contained 50% AMP (by dry weight measurement). Another composite microsphere, which was composed of titanium monohydrogen phosphate (TiHP) embedded with 18 wt % (air-dried weight) potassium cobalt hexacyanoferrate (KCoCF) and developed for a different separations application, was also batch tested for comparison. It proved to be as effective in removing,the cesium as the air-dried AMP (50 wt %)-ZrHP. Granular KCoCF was also prepared and was very effective. Large samples of each of these materials were sent to

  8. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  9. Modeling of the T S D E Heater Test to Investigate Crushed Salt Reconsolidation and Rock Salt Creep for the Underground Disposal of High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.; Wolters, R.; Lux, K. H.

    2014-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal induced fractures and its high thermal conductivity as compared to other shallow-crustal rocks. In addition, the run-of-mine, granular salt, may be used to backfill the mined open spaces. We present simulation results associated with coupled thermal, hydraulic and mechanical processes in the TSDE (Thermal Simulation for Drift Emplacement) experiment, conducted in the Asse salt mine in Germany [1]. During this unique test, conceived to simulate reference repository conditions for spent nuclear fuel, a significant amount of data (temperature, stress changes and displacements, among others) was measured at 20 cross-sections, distributed in two drifts in which a total of six electrical heaters were emplaced. The drifts were subsequently backfilled with crushed salt. This test has been modeled in three-dimensions, using two sequential simulators for flow (mass and heat) and geomechanics, TOUGH-FLAC and FLAC-TOUGH [2]. These simulators have recently been updated to accommodate large strains and time-dependent rheology. The numerical predictions obtained by the two simulators are compared within the framework of an international benchmark exercise, and also with experimental data. Subsequently, a re-calibration of some parameters has been performed. Modeling coupled processes in saliniferous media for nuclear waste disposal is a novel approach, and in this study it has led to the determination of some creep parameters that are very difficult to assess at the laboratory-scale because they require extremely low strain rates. Moreover, the results from the benchmark are very satisfactory and validate the capabilities of the two simulators used to study coupled thermal, mechanical and hydraulic (multi-component, multi-phase) processes relative to the underground disposal of high

  10. New Design for an HLW Repository (for Spent Fuel and Waste from Reprocessing) in a Salt Formation in Germany - 12213

    SciTech Connect

    Bollingerfehr, Wilhelm; Filbert, Wolfgang; Lerch, Christian; Mueller-Hoeppe, Nina; Charlier, Frank

    2012-07-01

    In autumn 2010, after a 10-year moratorium, exploration was resumed in Gorleben, the potential site for a German HLW repository. At the same time, the Federal Government launched a two-year preliminary safety analysis to assess whether the salt dome at Gorleben is suitable to host all heat-generating radioactive waste generated by German NPPs based on the waste amounts expected at that time. The revised Atomic Energy Act of June 2011 now stipulates a gradual phase-out of nuclear energy production by 2022, which is 13 years earlier than expected in 2010. A repository design was developed which took into account an updated set of data on the amounts and types of expected heat-generating waste, the documented results of the exploration of the Gorleben salt dome, and the new 'Safety Requirements Governing the Final Disposal of Heat-Generating Radioactive Waste' of 30 September, 2010. The latter has a strong influence on the conceptual designs as it requires that retrievability of all waste containers is possible within the repository lifetime. One design considered that all waste containers will be disposed of in horizontal drifts of a geologic repository, while the other design considered that all waste containers will be disposed of in deep vertical boreholes. For both options (emplacement in drifts/emplacement in vertical boreholes), the respective design includes a selection of waste containers, the layout of drifts, respectively lined boreholes, a description of emplacement fields, and backfilling and sealing measures. The design results were described and displayed and the differences between the two main concepts were elaborated and discussed. For the first time in both repository designs the requirement was implemented to retrieve waste canisters during the operational phase. The measures to fulfill this requirement and eventually the consequences were highlighted. It was pointed out that there arises the need to keep transport- and storage casks in adequate

  11. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  12. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    SciTech Connect

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  13. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  14. Collecting Duct Renin Does Not Mediate DOCA-Salt Hypertension or Renal Injury

    PubMed Central

    Song, Kai; Stuart, Deborah; Abraham, Nikita; Wang, Fei; Wang, Shuping; Yang, Tianxin; Sigmund, Curt D.; Kohan, Donald E.; Ramkumar, Nirupama

    2016-01-01

    Collecting duct (CD)-derived renin is involved in the hypertensive response to chronic angiotensin-II (Ang-II) administration. However, whether CD renin is involved in Ang-II independent hypertension is currently unknown. To begin to examine this, 12 week old male and female CD-specific renin knock out (KO) mice and their littermate controls were subjected to uni-nephrectomy followed by 2 weeks of deoxycorticosterone acetate (DOCA) infusion combined with a high salt diet. Radiotelemetric blood pressure (BP) was similar between KO and control mice at baseline; BP increased in both groups to a similar degree throughout the 2 weeks of DOCA-salt treatment. Urinary albumin excretion and plasma blood urea nitrogen were comparable between the two groups after DOCA-salt treatment. Fibrosis as assessed by Masson’s Trichrome stain/Sirius Red stain and collagen-1 mRNA expression was similar between control and KO mice. Compared to baseline, DOCA-salt treatment decreased plasma renin concentration (PRC), urinary renin excretion and medullary renin mRNA expression in both floxed and CD renin KO mice with no detectable differences between the two groups. Further, in primary culture of rat inner medullary CD, aldosterone treatment did not change renin activity or total renin content. Taken together, these data suggest that CD derived renin does not play a role in DOCA-salt hypertension. PMID:27467376

  15. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization

    SciTech Connect

    Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

    1986-12-01

    At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

  16. Diagnosis and Treatment of Cerebral Salt Wasting Syndrome With Cryptococcal Meningitis in HIV Patient.

    PubMed

    Lee, Sunggeun; Collado, Anitsira; Singla, Montish; Carbajal, Roger; Chaudhari, Ashok; Baumstein, Donald

    2016-01-01

    Hyponatremia is one of the most common electrolyte imbalances in HIV patients. The differential diagnosis may include hypovolemic hyponatremia, syndrome of inappropriate antidiuretic hormone secretion (SIADH), and adrenal insufficiency. Here, we describe a case of hyponatremia secondary to cerebral salt wasting syndrome (CSWS) in an HIV patient with cryptococcal meningitis. A 52-year-old man with a history of diabetes and HIV was admitted for headache and found to have cryptococcal meningitis. He was also found to have asymptomatic hyponatremia. He had signs of hypovolemia, such as orthostatic hypotension, dry mucosa, decreased skin turgor, hemoconcentration, contraction alkalosis, and high BUN/Cr ratio. The laboratory findings revealed sodium of 125 mmol/L, potassium of 5.5 mmol/L, urine osmolality of 522 mOsm/kg, urine sodium of 162 mmol/L, and urine chloride of 162 mmol/L. We started normal saline for hypovolemia, each 1 L prior and after amphotericin therapy. However, hypovolemia did not improve significantly despite IV fluid. Cosyntropin stimulation test was negative, and renin level was 0.25 ng·mL·h, with the aldosterone level of <1 ng/dL, the serum brain natriuretic peptide of 15 pg/mL, and serum uric acid of 2.8 mg/dL. The diagnosis of CSWS was suspected, fludrocortisone was tried, and hypovolemia and hyponatremia improved. Cryptococcal meningitis in HIV patients can present with CSWS, and the distinction between CSWS and SIADH is important because the treatment for CSWS is different than that of SIADH. Both share a similar clinical picture except that CSWS presents with constant hypovolemia despite volume replacement. Salt tablets, normal saline, or fludrocortisone can be used for treatment.

  17. Accumulation of COGEMA-La Hague-derived reprocessing wastes in French salt marsh sediments.

    PubMed

    Cundy, Andrew B; Croudace, Ian W; Warwick, Phillip E; Oh, Jung-Suk; Haslett, Simon K

    2002-12-01

    Over the past five decades, authorized low-level discharges from coastal nuclear facilities have released significant quantities of artificial radionuclides into the marine environment. In northwest Europe, the majority of the total discharge has derived from nuclear reprocessing activities at Sellafield in the United Kingdom and COGEMA-La Hague in France. At the Sellafield site, a significant amount of the discharges has been trapped in offshore fine sediment deposits, and notably in local coastal and estuarine sediments, and much research has been focused on understanding the distribution, accumulation, and reworking of long-lived radionuclides in these deposits. In contrast, there are few high-resolution published data on the vertical distribution of radionuclides in fine-grained estuarine sediments near, and downstream of, COGEMA-La Hague. This paper therefore examines the vertical distribution of a range of anthropogenic radionuclides in dated salt marsh cores from two estuaries, one adjacent to, and the other downstream of, the COGEMA-La Hague discharge point (the Havre de Carteret at Barneville-Carteret and the Baie de Somme, respectively). The radionuclides examined show a vertical distribution which predominantly reflects variations in input from COGEMA-La Hague (albeit much more clearly at Barneville-Carteret than at the Baie de Somme site), and Pu isotopic ratios are consistent with a La Hague, rather than weapons' fallout, source. Because of sediment mixing, the marshes apparently retain an integrated record of the La Hague discharges, rather than an exact reproduction of the discharge history. Sorption of radionuclides increases in the order 90Sr < 137Cs < 60Co < 239,240Pu, which is consistent with Kd values reported in the literature. In general, the radionuclide activities observed at the sites studied are low (particularly in comparison with salt marsh sediments near the Sellafield facility), but are similar to those found in areas of fine

  18. Renal physiology of two southern African Mastomys species (Rodentia: Muridae): a salt-loading experiment to assess concentrating ability.

    PubMed

    Ntshotsho, Phumza; van Aarde, Rudi J; Nicolson, Sue W; Jackson, Tim P

    2004-12-01

    Aspects of renal physiology were examined to test the hypothesis that two cryptic species of the genus Mastomys (Mastomys natalensis and Mastomys coucha) are geographically separated by differences in aridity tolerance. Laboratory-bred females of each species were subjected to different levels of salinity in their water source (distilled water, 0.9% NaCl, and 1.5% NaCl; 10 conspecifics in each group) from weaning until sexual maturity. Individuals of the two species exhibited similar rates of water consumption and urine production. The salinity treatments caused sodium diuresis in both species, evident in increased urine volume, decreased osmolality and increased osmotic output. Urine concentration, kidney mass and kidney relative medullary area (RMA) did not differ between species. The results of our study do not support the hypothesis that differences in osmoregulatory ability separate these two cryptic species. Nor do they support the use of salt loading to elicit maximum urine concentrations in mammals.

  19. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all.

    PubMed

    Rodríguez-Iturbe, Bernardo; Vaziri, Nosratola D; Herrera-Acosta, Jaime; Johnson, Richard J

    2004-04-01

    Recent evidence indicates that interstitial infiltration of T cells and macrophages plays a role in the pathogenesis of salt-sensitive hypertension. The present review examines this evidence and summarizes the investigations linking the renal accumulation of immune cells and oxidative stress in the development of hypertension. The mechanisms involved in the hypertensive effects of oxidant stress and tubulointerstitial inflammation, in particular intrarenal ANG II activity, are discussed, focusing on their potential for sodium retention. The possibility of autoimmune reactivity in hypertension is raised in the light of the proinflammatory and immunogenic pathways stimulated by the interrelationship between oxidant stress and inflammatory response. Finally, we present some clinical considerations derived from the recognition of this interrelationship.

  20. Dietary potassium and the renal control of salt balance and blood pressure.

    PubMed

    Penton, David; Czogalla, Jan; Loffing, Johannes

    2015-03-01

    Dietary potassium (K(+)) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K(+) diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na(+)) balance. Indeed, several studies demonstrate that dietary K(+) intake induces renal Na(+) loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K(+) on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K(+) and Na(+) excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K(+) intake on renal K(+) and Na(+) handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K(+)-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K(+) intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K(+) intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.

  1. Mineralocorticoid receptor blockade but not steroid withdrawal reverses renal fibrosis in deoxycorticosterone/salt rats.

    PubMed

    Lam, Emily Y M; Funder, John W; Nikolic-Paterson, David J; Fuller, Peter J; Young, Morag J

    2006-07-01

    The pathophysiologic effects of nonepithelial mineralocorticoid receptor (MR) activation include vascular inflammation followed by renal and cardiac remodeling in experimental animals. We have recently shown that MR blockade can reverse established cardiac fibrosis and vascular inflammation; the present study explores whether a similar protection is seen in renal tissue. Rats were uninephrectomized and maintained on 0.9% NaCl solution to drink and treated as follows: control, vehicle; deoxycorticosterone (DOC), 20 mg/wk sc for 4 wk and then killed; DOC for 8 wk; DOC for 4 wk and no steroid for wk 5-8; DOC for 8 wk and eplerenone 100 mg/kg.d in the food for wk 5-8. DOC increased renal collagen at 4 and 8 wk; rats given DOC for 4 wk and killed at 8 wk showed levels of fibrosis identical with those killed at 4 wk, whereas rats given DOC for 8 wk plus eplerenone for wk 5-8 were indistinguishable from control. The inflammatory markers ED-1, osteopontin, and cyclooxygenase-2 remained significantly elevated despite the withdrawal of DOC (DOC404), whereas eplerenone restored cyclooxygenase-2 expression (but not that of ED-1 or osteopontin) to control levels. In addition, markers of oxidative stress and TGFbeta were determined. We hypothesize that continuing tubular inflammation and fibrosis despite DOC withdrawal indicates that the renal tissue may reflect MR activation in the context of tissue damage.

  2. Rosuvastatin pretreatment suppresses distant organ injury following unilateral renal ischemia-reperfusion in hypertensive Dahl salt-sensitive rats.

    PubMed

    Kanno, Makoto; Nakayama, Masaaki; Zhu, Wan-Jun; Hayashi, Yoshimitsu; Kazama, Junichiro James

    2017-09-22

    Ischemia-reperfusion (I/R) induces distant organ injury (DOI) via inflammation and oxidative stress. Statins have anti-inflammatory and anti-oxidant effects independent of their cholesterol-lowering properties. To clarify whether statins could suppress DOI, we investigated the effect of rosuvastatin (RO) on the contralateral kidney following unilateral renal I/R. Dahl salt-sensitive rats (6-week-old) were randomly divided into four groups: sham, sham with RO, I/R, and I/R with RO. All rats were fed a high-salt (8%) diet for six weeks. RO (10 mg/kg/day) was pre-administered by supplementation to the drinking water for two weeks before I/R. The rats then underwent unilateral renal I/R (ischemia for 45 min). Three days after I/R, laboratory data, histological changes and protein expression levels of the contralateral kidney were assessed. I/R significantly elevated serum creatinine and malondialdehyde levels and induced a significantly higher glomerular sclerosis index and tubular dilation area of the contralateral kidney, with about 2-fold infiltration of ED-1-positive cells. In the I/R group, protein expression of superoxide dismutase (SOD) of the contralateral kidney was reduced to about 50% of the sham group. RO-pretreatment significantly suppressed all of these changes following I/R. RO-pretreatment diminished contralateral kidney injury with the suppression of ED-1-positive cell infiltration and SOD reduction after I/R. RO appears to have a protective effect on DOI by its anti-inflammatory and anti-oxidant effects. This article is protected by copyright. All rights reserved.

  3. Effects of potassium on expression of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Kim, Sejoong; Lee, Jay Wook; Jung, Eun Sook; Heo, Nam Ju; Son, Min-Jeong; Oh, Yun Kyu; Na, Ki Young; Han, Jin Suk; Joo, Kwon Wook

    2011-06-01

    Dietary potassium is an important modulator of systemic blood pressure (BP). The purpose of this study was to determine whether dietary potassium is associated with an altered abundance of major renal sodium transporters that may contribute to the modulation of systemic BP. A unilateral nephrectomy (uNx) was performed in male Sprague-Dawley rats, and the rats were fed a normal-salt diet (0.3% NaCl) for 4 wk. Thereafter, the rats were fed a high-salt (HS) diet (3% NaCl) for the entire experimental period. The potassium-repleted (HS+KCl) group was given a mixed solution of 1% KCl as a substitute for drinking water. We examined the changes in the abundance of major renal sodium transporters and the expression of mRNA of With-No-Lysine (WNK) kinases sequentially at 1 and 3 wk. The systolic BP of the HS+KCl group was decreased compared with the HS group (140.3 ± 2.97 vs. 150.9 ± 4.04 mmHg at 1 wk; 180.3 ± 1.76 vs. 207.7 ± 6.21 mmHg at 3 wk). The protein abundances of type 3 Na(+)/H(+) exchanger (NHE3) and Na(+)-Cl(-) cotransporter (NCC) in the HS+KCl group were significantly decreased (53 and 45% of the HS group at 1 wk, respectively; 19 and 8% of HS group at 3 wk). WNK4 mRNA expression was significantly increased in the HS+KCl group (1.4-fold of control at 1 wk and 1.9-fold of control at 3 wk). The downregulation of NHE3 and NCC may contribute to the BP-attenuating effect of dietary potassium associated with increased urinary sodium excretion.

  4. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    SciTech Connect

    Duckworth, G.D.; Fuller, M.E.

    1980-06-10

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given.

  5. [Case of cerebral salt wasting syndrome with difficulty in controling excessive urine volume].

    PubMed

    Fujiki, Sakiko; Kooguch, Kunihiko; Fukui, Michihiko; Osawa, Takeshi; Beppu, Satoru; Inoue, Shizuka; Yamada, Tomoki

    2007-03-01

    Symptoms of hyponatremia and diuresis due to cerebral salt wasting syndrome (CSWS) are often observed after aneurysmal subarachnoid hemorrhage (SAH). Inadequately treated CSWS is known to work as a trigger of symptomatic vasospasm in SAH patients. Therefore, it is indispensable to detect and treat CSWS as early as possible in ICU. A 36-year-old man with SAH was admitted to our ICU. His urine volume increased excessively 3 days after ICU admission, and it reached a peak (39,250 ml x day(-1)) on the 6th day in ICU. Since infusion volume was controlled with regard to daily urinary output, hyponatremia was not noticeable and excessive urine volume stood out conspicuously. Though vasopressin and desmopressin were administered, the symptoms of natriuresis and hyponatremia were aggravated, associated with hyper secretion of natriuretic peptides (ANP 160 pg x dl(-1), BNP 172 pg x dl(-1)). Recent studies revealed that hyponatremia and hypovolemia following SAH might be caused by exaggerated secretion of natriuretic peptides. Experimental studies showed that the administration of vasopressin and desmopressin cause excessive secretion of natriuretic peptides under the circumstance of volume expansion in rats. We infer that the administration of vasopressin and desmopressin to our patient deterionated natriuresis in CSWS as in the previous experimental findings.

  6. Prevalence and clinical demographics of cerebral salt wasting in patients with aneurysmal subarachnoid hemorrhage.

    PubMed

    Kao, Lily; Al-Lawati, Zahraa; Vavao, Joli; Steinberg, Gary K; Katznelson, Laurence

    2009-01-01

    Hyponatremia is a frequent complication following subarachnoid hemorrhage (SAH), and is commonly attributed either to the syndrome of inappropriate antidiuretic hormone secretion (SIADH) or cerebral salt wasting syndrome (CSW). The object of this study is to elucidate the clinical demographics and sequelae of hyponatremia due to CSW in subjects with aneurysmal SAH. Retrospective chart review of patients >18 years with aneurysmal SAH admitted between January 2004 and July 2007 was performed. Subjects with moderate to severe hyponatremia (serum sodium <130 mmol l(-1)) were divided into groups consistent with CSW and SIADH based on urine output, fluid balance, natriuresis, and response to saline infusion. Clinical demographics were compared. Of 316 subjects identified, hyponatremia (serum sodium <135 mmol l(-1)) was detected in 187 (59.2%) subjects and moderate to severe hyponatremia in 48 (15.2%). Of the latter group, 35.4% were categorized with SIADH and 22.9% with CSW. Compared to eunatremic subjects, hyponatremia was associated with significantly longer hospital stay (15.7 +/- 1.9 vs. 9.6 +/- 1.1 days, p < 0.001). Subjects with CSW had similar mortality and duration of hospital stay vs. those with SIADH. Though less common than SIADH, CSW was detected in approximately 23% of patients with history of aneurysmal SAH and was not clearly associated with enhanced morbidity and mortality compared to subjects with SIADH. Further studies regarding the pathogenesis and management, along with the medical consequences, of CSW are important.

  7. Syndrome of inappropriate antidiuresis and cerebral salt wasting syndrome: are they different and does it matter?

    PubMed

    Moritz, Michael L

    2012-05-01

    The syndrome of inappropriate antidiudresis (SIAD) and cerebral salt wasting (CSW) are similar conditions with the main difference being the absence or presence of volume depletion. The two conditions may be indistinguishable at presentation, as volume status is difficult to assess, which can lead to under-diagnosis of CSW in patients with central nervous system (CNS) disease. Carefully conducted studies in patients with CNS disease have indicated that CSW may be more common than SIAD. CSW may be differentiated from SIAD based on the persistence of hypouricemia and increased fractional excretion of urate following the correction of hyponatremia. Hyponatremia should be prevented if possible and treated promptly when discovered in patients with CNS disease as even mild hyponatremia could lead to neurological deterioration. Fluid restriction should not be used for the prevention or treatment of hyponatremia in hospitalized patients with CNS disease as it could lead to volume depletion especially if CSW is present. 0.9% sodium chloride may not be sufficiently hypertonic for the prevention of hyponatremia in hospitalized patients with CNS disease and a more hypertonic fluid may be required. The preferred therapy for the treatment of hyponatremia in patients with CNS disease is 3% sodium chloride.

  8. Cerebral salt wasting after traumatic brain injury: a review of the literature.

    PubMed

    Leonard, Jan; Garrett, Raymond E; Salottolo, Kristin; Slone, Denetta S; Mains, Charles W; Carrick, Matthew M; Bar-Or, David

    2015-11-11

    Electrolyte imbalances are common among patients with traumatic brain injury (TBI). Cerebral salt wasting (CSW) is an electrolyte imbalance characterized by hyponatremia and hypovolemia. Differentiating the syndrome of inappropriate antidiuretic hormone and CSW remains difficult and the pathophysiological mechanisms underlying CSW are unclear. Our intent was to review the literature on CSW within the TBI population, in order to report the incidence and timing of CSW after TBI, examine outcomes, and summarize the biochemical changes in patients who developed CSW. We searched MEDLINE through 2014, hand-reviewed citations, and searched abstracts from the American Association for the Surgery of Trauma (2003-2014). Publications were included if they were conducted within a TBI population, presented original data, and diagnosed CSW. Publications were excluded if they were review articles, discussed hyponatremia but did not differentiate the etiology causing hyponatremia, or presented cases with chronic disease. Fifteen of the 47 publications reviewed met the selection criteria; nine (60%) were case reports, five (33%) were prospective and 1 (7%) was a retrospective study. Incidence of CSW varied between 0.8 - 34.6%. The populations studied were heterogeneous and the criteria used to define hyponatremia and CSW varied. Though believed to play a role in the development of CSW, increased levels of natriuretic peptides in patients diagnosed with CSW were not consistently reported. These findings reinforce the elusiveness of the CSW diagnosis and the need for strict and consistent diagnostic criteria.

  9. Two cases of cerebral salt wasting syndrome developing after cranial vault remodeling in craniosynostosis children.

    PubMed

    Lee, Soon-Ju; Huh, Eun-Ju; Byeon, Jun-Hee

    2004-08-01

    Hyponatremia has been recognized as an important postoperative metabolic complication after central nervous system (CNS) operations in children. If not appropriately treated, the postoperative hyponatremia can cause several types of CNS and circulatory disorders such as cerebral edema, increased intracranial pressure. The postoperative hyponatremia after CNS surgery has been considered as one of the underlying causes of the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). In some cases, however, the cerebral salt wasting (CSW) syndrome has been detected. CSW syndrome is far less well-known than SIADH and also different from SIADH in diagnosis and treatment. It causes an increase in urine output and urine sodium after a trauma of CNS and dehydration symptoms. The appropriate treatment of CSW syndrome is opposite the usual treatment of hyponatremia caused by SIADH. The latter is treated with fluid restriction because of the increased level of free water and its dilutional effect causing hyponatremia, whereas the former is treated with fluid and sodium resuscitation because of the unusual loss of high urinary sodium. Early diagnosis and treatment of CSW syndrome after CNS surgery are, therefore, essential. We made a diagnosis of CSW syndrome in two craniosynostosis children manifesting postoperative hyponatremia and supplied them an appropriate amount of water and sodium via intravenous route. The hyponatremia or natricuresis of the children improved and neurologic and circulatory sequelae could be prevented.

  10. Cerebral salt wasting in subarachnoid hemorrhage rats: model, mechanism, and tool.

    PubMed

    Kojima, Jun; Katayama, Yoichi; Moro, Nobuhiro; Kawai, Hiroyuki; Yoneko, Maki; Mori, Tatsuro

    2005-04-01

    Cerebral salt wasting (CSW) frequently occurs concomitantly with aneurysmal subarachnoid hemorrhage (SAH). CSW induces excessive natriuresis and osmotic diuresis, and reduces total blood volume. As a result, the risk of symptomatic cerebral vasospasm may be elevated. Therefore, it is important to determine the mechanism of CSW. The purpose of this study was to evaluate whether the rat SAH model exhibits CSW and to investigate the relationship between CSW and natriuretic peptides. A SAH model was produced in 24 rats by perforating a cerebral artery with a nylon thread up through the common carotid artery. To evaluate CSW, urine was cumulatively collected from SAH onset to 12 hours and sodium (Na) excretion was analyzed. Body weight and hematocrit were analyzed before and after SAH onset. Concentrations of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in plasma were also analyzed. Urine volume and total Na excretion of SAH rats were significantly higher than those of sham rats (p<0.05). Body weight of SAH rats significantly decreased and hematocrit significantly increased (p < 0.05). ANP concentration was significantly decreased in SAH rats (p<0.05). However, BNP concentrations did not change. This study demonstrated for the first time that a rat SAH model exhibited CSW. It was suggested that the cause of CSW was neither ANP nor BNP. In addition, this rat SAH model will be useful for study of CSW after SAH.

  11. Exophytic bulbar pilocytic astrocytoma and post-operative cerebral salt wasting syndrome.

    PubMed

    Champagne, P O; Sajadi, A; Huot, C; Traistaru, M; Mercier, C; Weil, A G; Crevier, L

    2017-05-01

    Cerebral salt wasting syndrome (CSWS) is a well-described consequence of several neurological disorders. Although the exact etiology of CSWS is still not completely elucidated, it is believed that the hypothalamus plays a pivotal role in the genesis of this disorder. We report for the first time 3 cases of CSWS occurring during the post-operative course following surgical resection of exophytic bulbar pilocytic astrocytomas in children. Since these 3 cases shared in common a medial implication of the medulla, we suggest that specific interconnectivity between the dorso-medial portion of the medulla oblongata and the hypothalamus might thus represent an anatomical pathway of interest in the pathogenesis of CSWS. Our findings suggest that the resection of medially located exophytic bulbar tumors might constitutes a risk factor in the development of CSWS. Particular care should thus be carried towards the prompt detection and treatment of CSWS in the post-operative courses of exophytic bulbar tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Central neurogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome in traumatic brain injury.

    PubMed

    John, Cynthia A; Day, Michael W

    2012-04-01

    Central neurogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome are secondary events that affect patients with traumatic brain injury. All 3 syndromes affect both sodium and water balance; however, they have differences in pathophysiology, diagnosis, and treatment. Differentiating between hypernatremia (central neurogenic diabetes insipidus) and the 2 hyponatremia syndromes (syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome) is critical for preventing worsening neurological outcomes in patients with head injuries.

  13. Chronic Inhibition of Renal Outer Medullary Potassium Channel Not Only Prevented but Also Reversed Development of Hypertension and End-Organ Damage in Dahl Salt-Sensitive Rats.

    PubMed

    Zhou, Xiaoyan; Forrest, Michael J; Sharif-Rodriguez, Wanda; Forrest, Gail; Szeto, Daphne; Urosevic-Price, Olga; Zhu, Yonghua; Stevenson, Andra S; Zhou, Yuchen; Stribling, Sloan; Dajee, Maya; Walsh, Shawn P; Pasternak, Alexander; Sullivan, Kathleen A

    2017-02-01

    The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups-control, high-salt diet alone; ROMKi B 3 mg·kg(-)(1)·d(-)(1); ROMKi B 10 mg·kg(-)(1)·d(-)(1); and hydrochlorothiazide 25 mg·kg(-)(1)·d(-)(1)-were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population. © 2016 American Heart Association, Inc.

  14. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  15. Combined Utilization of Cation Exchanger and Neutral Receptor to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.

    2004-03-29

    In this report, novel approaches to the selective liquid-liquid extraction separation of sodium hydroxide and sodium nitrate from high-level alkaline tank waste will be discussed. Sodium hydroxide can be successfully separated from alkaline tank-waste supernatants by weakly acidic lipophilic hydroxy compounds via a cation-exchange mechanism referred to as pseudo hydroxide extraction. In a multi-cycle process, as sodium hydroxide in the aqueous phase becomes depleted, it is helpful to have a neutral sodium receptor in the extraction system to exploit the high nitrate concentration in the waste solution to promote sodium removal by an ion-pair extraction process. Simultaneous utilization of an ionizable organic hydroxy compound and a neutral extractant (crown ether) in an organic phase results in the synergistic enhancement of ion exchange and improved separation selectivity due to the receptor's strong and selective sodium binding. Moreover, combination of the hydroxy compound and the crown ether provides for mutually increased solubility, even in a non-polar organic solvent. Accordingly, application of Isopar{reg_sign} L, a kerosene-like alkane solvent, becomes feasible. This investigation involves examination of such dual-mechanism extraction phases for sodium extraction from simulated and actual salt cake waste solutions. Sodium salts can be regenerated upon the contact of the loaded extraction phases with water. Finally, conditions of potential extraction/strip cycling will be discussed.

  16. [Cerebrovascular and renal effects of cerebrolysin and dependence on salt intake].

    PubMed

    Sadin, A V; Shtrygol', S Iu

    2001-01-01

    Experiments on rats with occluded common carotid arteries showed that an excess sodium chloride consumption increased the loss of test animals as a result of the maximum decrease in the local cerebral blood flow and sharply pronounced brain swelling. The sodium chloride substitute hyposol (giposol) reduced the extent of cerebral ischemia and brain swelling effect and increased the renal perfusion and diuresis levels. In the test animals receiving a high-Na diet, the efficacy of cerebrolysine was less pronounced. In contrast, hyposol increased the antiischemic, saluretic and antiswelling effects of cerebrolysine under the carotid artery occlusion.

  17. Treatment of a waste salt delivered from an electrorefining process by an oxidative precipitation of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Yang, Hee-Chul; Park, Gil-Ho; Lee, Han-Soo; Kim, In-Tae

    2009-02-01

    For the reuse of a waste salt from an electrorefining process of a spent oxide fuel, a separation of rare earth elements by an oxidative precipitation in a LiCl-KCl molten salt was tested without using precipitate agents. From the results obtained from the thermochemical calculations by HSC Chemistry software, the most stable rare earth compounds in the oxygen-used rare earth chlorides system were oxychlorides (EuOCl, NdOCl, PrOCl) and oxides (CeO 2, PrO 2), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides and oxides were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes: small cubic (oxide) and large plate-like (tetragonal) structures. The conversion efficiencies of the rare earth elements to their molten salt-insoluble precipitates were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of 650 °C of the molten salt temperature and 420 min of the sparging time, the final conversion efficiencies were over 99.9% for all the investigated rare earth chlorides.

  18. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    NASA Astrophysics Data System (ADS)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  19. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  20. Dialysis vintage and parathyroid hormone level, not fibroblast growth factor-23, determines chronic-phase phosphate wasting after renal transplantation.

    PubMed

    Tomida, Kodo; Hamano, Takayuki; Ichimaru, Naotsugu; Fujii, Naohiko; Matsui, Isao; Nonomura, Norio; Tsubakihara, Yoshiharu; Rakugi, Hiromi; Takahara, Shiro; Isaka, Yoshitaka

    2012-10-01

    Fibroblast growth factor 23 (FGF23), rather than parathyroid hormone (PTH), has been shown to be the major factor behind hypophosphatemia in the early period after renal transplantation. However, it is not clear whether phosphate wasting persists in the chronic phase. Purpose of our study is to elucidate whether FGF23 can also explain phosphate wasting, if any, in the chronic phase. In this cross-sectional observational study, we enrolled 247 recipients who had received a graft more than 1 year prior to this study. We compared the phosphate metabolism of recipients and predialysis chronic kidney disease (CKD) patients who are matched on age and estimated glomerular filtration rate (eGFR). We also investigated the determinants of tubular reabsorption of phosphate normalized for glomerular filtration rate (TmP/GFR), as an index of renal threshold for phosphate. Recipients had a median dialysis vintage of 27.0 months and eGFR 41.2 mL/min/1.73 m(2). Whereas hypophosphatemia (<2.4 mg/dL) was observed in 6.1% of the recipients, 55.2% had TmP/GFR lower than 2.4 mg/dL. Recipients showed significantly lower TmP/GFR in all CKD stages than their predialysis counterparts, indicating that phosphate wasting persists in the chronic phase. Compared to predialysis patients, the recipients in stages 2T and 3T showed lower phosphate and higher intact PTH levels, despite a higher percentage being active vitamin D users. However, in stage 4T, phosphate retention masked relative hypophosphatemia. FGF23 was higher in the recipients across all CKD stages, but adjustment for vitamin D prescription revealed that transplantation had no effect on FGF23. Multiple regression analysis in the recipients showed significant negative associations of intact PTH and dialysis vintage with TmP/GFR. Renal phosphate wasting persists in the chronic-phase renal transplantation recipients even with normophosphatemia. Persistent hyperparathyroidism and longer dialysis vintage, not FGF23, was associated with

  1. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  2. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  3. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    SciTech Connect

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

  4. Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository

    SciTech Connect

    Martell, M.A.; Hansen, F.; Weiner, R.

    1998-10-01

    Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

  5. Results of screening activities in salt states prior to the enactment of the Nationall Waste Policy Act

    SciTech Connect

    Carbiener, W.A.

    1983-01-01

    The identification of potential sites for a nuclear waste repository through screening procedures in the salt states is a well-established, deliberate process. This screening process has made it possible to carry out detailed studies of many of the most promising potential sites, and general studies of all the sites, in anticipation of the siting guidelines specified in the Nuclear Waste Policy Act. The screening work completed prior to the passage of the Act allowed the Secretary of Energy to identify seven salt sites as potentially acceptable under the provisions of Section 116(a) of the Act. These sites were formally identified by letters from Secretary Hodel to the states of Texas, Utah, Mississippi, and Louisiana on February 2, 1983. The potentially acceptable salt sites were in Deaf Smith and Swisher Counties in Texas; Davis and Lavender Canyons in the Gibson Dome location in Utah; Richton and Cypress Creek Domes in Mississippi; and Vacherie Dome in Louisiana. Further screening will include comparison of each potentially acceptable site against disqualification factors and selection of a preferred site in each of the three geohydrologic settings from those remaining, in accordance with the siting guidelines. These steps will be documented in statutory Environmental Assessments prepared for each site to be nominated for detailed characterization. 9 references.

  6. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  7. Alternative methods to manage waste salt from repository excavation in the Deaf Smith County and Swisher County locations, Texas: A scoping study: Technical report. [Salt and salt-laden material

    SciTech Connect

    Not Available

    1987-01-01

    This report describes and qualitatively evaluates eight options for managing the large volumes of salt and salt-laden rock that would result from the excavation of a high-level radioactive waste repository in Deaf Smith County or Swisher County, Texas. The options are: distribution for commercial use; ocean disposal; deep-well injection; disposal in multilevel mines on the site; disposal in abandoned salt mines off the site; disposal off the site in abandoned mines developed for minerals other than salt; disposal in excavated landfills; and surface disposal on alkali flats. The main features of each option are described, as well as the associated environmental and economic impacts, and regulatory constraints. The options are evaluated in terms of 11 factors that jointly constitute a test of relative suitability. The results of the evaluation and implications for further study are indicated. This document does not consider or include the actual numbers, findings, or conclusions contained in the final Deaf Smith County Environmental Assessment (DOE, 1986). 43 refs., 8 tabs.

  8. Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation

    NASA Astrophysics Data System (ADS)

    Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

    2000-07-01

    Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  10. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  11. Problems in determination of the water content of rock-salt samples and its significance in nuclear-waste storage siting

    NASA Astrophysics Data System (ADS)

    Roedder, Edwin; Bassett, R. L.

    1981-11-01

    The in situ water content of rock salt in beds or domes and the exact nature of its occurrence are of considerable importance for the safe design and operation of nuclear-waste storage facilities in salt deposits. Most published determinations of the “water content” of salt are not comparable. Many determinations contain serious, and in part systematic, errors. The multiplicity of water sources in salt samples, the methods of sample selection and preparation, and the analytical methods used are such that some of these results may be low by as much as an order of magnitude. There is no panacea, but most of the sources of error can be minimized.

  12. Emissions from energetic material waste during the Molten Salt Destruction process

    SciTech Connect

    Watkins, B.E.; Upadhye, R.S.; Pruneda, C.O.; Brummond, W.A.

    1994-07-05

    The Molten Salt Destruction (MSD) process is an alternative to open burn/open detonation for destroying energetic materials; MSD has inherently low gaseous emissions, and the salt bath can scrub both acidic gases and particulates. It was demonstrated that high explosives and a liquid propellant can be safely and completely destroyed using MSD. Gaseous emissions of NOx and CO are very low. Nitrate builds up in the salt bath when nitrate-rich materials are destroyed, but addition fuel reduces the nitrate to NO. A program has been begun to add catalytic materials to the bed to further reduce emissions; a small molten salt bath has been constructed for chemical kinetic studies.

  13. Cerebral salt wasting syndrome following brain injury in three pediatric patients: suggestions for rapid diagnosis and therapy.

    PubMed

    Berkenbosch, John W; Lentz, Christopher W; Jimenez, David F; Tobias, Joseph D

    2002-02-01

    The association between hyponatremia and intracranial pathology has been well described. When accompanied by natriuresis, hyponatremia has most commonly been attributed to inappropriate secretion of antidiuretic hormone. However, there is growing evidence to suggest that many of these patients may actually have cerebral mediated salt losses, a disorder referred to as the cerebral salt wasting syndrome (CSWS). While this syndrome has been reasonably well described in adults, data regarding CSWS in pediatric-aged patients remains sparse. Since fluid management of these disorders is different, it is important that the clinician be able to rapidly differentiate between them. We report three cases of CSWS in acutely brain-injured children and comment on the role that early quantitation of urine volume and urine sodium concentration had in rapidly establishing the correct diagnosis.

  14. Zr electrorefining process for the treatment of cladding hull waste in LiCl-KCl molten salts

    SciTech Connect

    Lee, Chang Hwa; Lee, You Lee; Jeon, Min Ku; Kang, Kweon Ho; Choi, Yong Taek; Park, Geun Il

    2013-07-01

    Zr electrorefining for the treatment of Zircaloy-4 cladding hull waste is demonstrated in LiCl-KCl-ZrCl{sub 4} molten salts. Although a Zr oxide layer thicker than 5 μm strongly inhibits the Zr dissolution process, pre-treatment processes increases the dissolution kinetics. For 10 g-scale experiments, the purities of the recovered Zr were 99.54 wt.% and 99.74 wt.% for fresh and oxidized cladding tubes, respectively, with no electrical contact issue. The optimal condition for Zr electrorefining has been found to improve the morphological feature of the recovered Zr, which reduces the salt incorporation by examining the effect of the process parameters such as the ZrCl{sub 4} concentration and the applied potential.

  15. Diagnosis and Management of Combined Central Diabetes Insipidus and Cerebral Salt Wasting Syndrome After Traumatic Brain Injury.

    PubMed

    Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu

    2016-04-01

    Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Development of hypertension in a pyelonephritis-induced model: the effect of salt intake and inability of renal sodium handling.

    PubMed

    de Magalhães Sartim, Ricardo; Fantinato Menegon, Leonardo; de Almeida, Amanda Roberta; Rocha Gontijo, José Antonio; Aline Boer, Patricia

    2006-01-01

    The role of the kidney in the control of blood pressure has been convincingly demonstrated by several studies. Recent evidence has suggested that subtle acquired tubulointerstitial injury may cause a defect in sodium excretion function, thus leading to salt-sensitive hypertension. There are no reports, however, examining the effect of experimental chronic pyelonephritis on renal sodium handling and arterial pressure. Thus, to examine the influence of salt intake and unilateral nephrectomy, unanesthetized, unrestrained rats were randomly assigned to one of two separate groups: sham-operated rats (CO) or chronic unilateral pyelonephritic rats (CP). After twenty one days, the pyelonephritic group was subdivided in two: one subgroup continued with water intake (CPw), while the other was changed to 0.9% NaCl intake (CPs), like the control group (COs). After seven days, all rats were submitted to unilateral nephrectomy of the left normal kidney. Data presented herein show that chronic pyelonephritis produced an increase in mean arterial pressure (CO: 121.4 +/- 1.0 mmHg to CP: 127.0 +/- 0.9 mmHg, p = 0.000) that was enhanced by saline ingestion (COs: 121.6 +/- 1.4 mmHg; CPw: 127.0 +/- 1.8 mmHg; CPs: 132.1 +/- 1.2 mmHg, p = 0.000) and further aggravated by unilateral nephrectomy (CO: 125.2 +/- 2.6 mmHg; CPw: 127.5 +/- 0.9 mmHg; CPs: 139.2 +/- 1.1 mmHg, p = 0.000). Unchanged blood pressure measurements (120.2 +/- 2.3 mmHg) were observed beyond 21 days in control rats maintained on water regimen when compared with saline-drinking groups. These changes in mean arterial pressure were observed despite an increased fractional sodium excretion in the CPs group compared to the other groups before uninephrectomy (COs: 0.125 +/- 0.025%; CPw: 0.045 +/- 0.013%; CPs: 0.292 +/- 0.046%; p = 0.000), as compared to CPw after uninephrectomy (COs: 0.249 +/- 0.077%; CPw: 0.062 +/- 0.011%; CPs: 0.363 +/- 0.195%, p = 0.019). In addition, it was shown that daily liquid intake was higher in CPs

  17. Observations regarding the stability of bentonite backfill in a high-level waste (HLW) repository in rock salt

    SciTech Connect

    Krumhansl, J.L.

    1986-01-01

    Consideration of bentonite as a component of the engineered barrier system surrounding high-level nuclear waste (HLW) canisters in rock salt raised several questions regarding the stability of this clay. Dehydration studies pertinent to the period immediately following waste emplacement showed a partial loss in swelling ability, the extent of which depended on the composition of the rehydrating brine and increased with temperature from 150/sup 0/ to 320/sup 0/C. At a later date, hydrothermal reactions between brine and bentonite may occur as pressure in the repository rises and the backfill saturates with brine. In pure sodium chloride brines little change in the bentonite was observed after two months at 250/sup 0/C. In the same amount of time, brines rich in potassium formed mixed-layer, illite-smectite clays. Adding magnesium to the brine arrested mixed-layer clay formation; instead, a magnesium-enriched montmorillonite formed and the brine pH dropped. Radiation stability studies to 10/sup 10/ rads were conducted in both wet and dry environments, but caused no detectable alteration of the clay. In contrast, fluid-phase compositions changed significantly. Gamma irradiation of dry bentonite produced an oxygen-depleted atmosphere which was enriched in both hydrogen and carbon dioxide. Mixed bentonite-brine slurries produced copious amounts of both hydrogen and oxygen gas when irradiated. These irradiated slurries generally had posttest pH values between 4 and 6. Solutions made by exposing preirradiated salt and bentonite to unirradiated water, or brine, had pH values between 6 and 8.5 and, in the case of salt solutions, were highly oxidizing. Although more research is needed for a complete performance assessment, it appears that such backfills may prove useful in a variety of rock-salt environments.

  18. Effect of kefir and low-dose aspirin on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet.

    PubMed

    Kanbak, Güngör; Uzuner, Kubilay; Kuşat Ol, Kevser; Oğlakçı, Ayşegül; Kartkaya, Kazım; Şentürk, Hakan

    2014-01-01

    Abstract We aim to study the effect of low-dose aspirin and kefir on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Forty adult male Sprague-Dawley rats were divided into five groups: control, high-salt (HS) (8.0% NaCl), HS+aspirin (10 mg/kg), HS+kefir (10.0%w/v), HS+aspirin +kefir. We measured sistolic blood pressure (SBP), mean arterial pressure (MAP), diastolic pressure, pulse pressure in the rats. Cathepsin B, L, DNA fragmentation and caspase-3 activities were determined from rat kidney tissues and rats clearance of creatinine calculated. Although HS diet increased significantly SBP, MAP, diastolic pressure, pulse pressure parameters compared the control values. They were not as high as accepted hypertension levels. When compared to HS groups, kefir groups significantly decrease Cathepsin B and DNA fragmentation levels. Caspase levels were elevated slightly in other groups according to control group. While, we also found that creatinine clearance was higher in HS+kefir and HS+low-dose aspirin than HS group. Thus, using low-dose aspirin had been approximately decreased of renal function damage. Kefir decreased renal function damage playing as Angiotensin-converting enzyme inhibitor. But, low-dose aspirin together with kefir worsened rat renal function damage. Cathepsin B might play role both apoptosis and prorenin-processing enzyme. But not caspase pathway may be involved in the present HS diet induced apoptosis. In conclusion, kefir and low-dose aspirin used independently protect renal function and renal damage induced by HS diet in rats.

  19. Myelodysplastic syndrome complicated by central diabetes insipidus and cerebral salt wasting syndrome with peculiar change in magnetic resonance images.

    PubMed

    Sano, Soichi; Yamagami, Keiko; Morikawa, Takashi; Yoshioka, Katsunobu

    2010-01-01

    Central diabetes insipidus (CDI) could occurs in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), because of infiltration of leukemic cells into the neurohypophysis or some other reason and it is closely associated with abnormalities of chromosome 7. We report a case of MDS with abnormalities of chromosome 7, presenting as CDI followed by deterioration of polyuria and hyponatremia with a decreased extracellular fluid volume. Magnetic resonance imaging (MRI) revealed symmetrically enhanced lesions in the hypothalamus. Fludrocortisone treatment normalized his serum sodium level and cerebral salt wasting syndrome (CSWS) was suspected.

  20. Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts

    NASA Astrophysics Data System (ADS)

    Lepry, William C.; Riley, Brian J.; Crum, Jarrod V.; Rodriguez, Carmen P.; Pierce, David A.

    2013-11-01

    Three different solution-based approaches were taken to make sodalite minerals as a host for a mixed salt simulating the waste in the electrochemical separations process of nuclear fuel reprocessing. The methods used an aqueous solution of mixed chlorides (simulated waste) but the other reactants varied: (1) Al(OH)3 + NaOH + CS, (2) NaAlO2 + CS, and (3) Al2Si2O7 + NaOH, (CS = colloidal silica). The products were dried, ground, pressed into pellets, and fired at 650-950 °C. In some cases, either 5 or 10 mass% of a Si-Na-B oxide glass sintering aid was introduced at different stages in the process. Method (2) proved the most successful at producing high sodalite fractions (up to 100%) with minimal sintering aid additions and showed high consolidation potential (up to 91.4% of theoretical density) at reduced firing temperatures.

  1. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures

  2. A comparative study of renal function in the desert-adapted spiny mouse and the laboratory-adapted C57BL/6 mouse: response to dietary salt load.

    PubMed

    Dickinson, Hayley; Moritz, Karen; Wintour, E Marelyn; Walker, David W; Kett, Michelle M

    2007-10-01

    The desert-adapted spiny mouse has a significantly lower glomerular number, increased glomerular size, and a more densely packed renal papillae compared with the similar-sized laboratory-adapted C57BL/6 mouse. In the present study we examined the functional consequences of these structural differences in young adult male spiny and C57BL/6 mice and detailed the impact of 1 wk of a high-salt (10% wt/wt NaCl) diet. Basal food and water intake, urine and feces production, and urinary electrolyte concentrations were not different between species, although urinary urea concentrations were higher in spiny mice (P < 0.05). On normal salt, MAP of the anesthetized spiny mouse was approximately 18 mmHg lower, effective renal plasma flow (ERPF) was 40% lower (P < 0.001), and glomerular filtration rate (GFR) tended to be lower than in the C57BL/6 mouse. On the high-salt diet, both species had similar 24-h NaCl excretions; but C57BL/6 mice required a significantly increased amount of water (lower urine NaCl concentration) than the spiny mice. Filtration fraction was greater in both species on the high-salt diet. Spiny mice had greater GFR and ERPF after the high-salt diet, whereas the C57BL/6 mouse showed little change in GFR. The ability of the spiny mouse to tolerate a significantly higher plasma osmolality after salt, measured by a decreased drinking response, and the ability to increase ERPF at a lower MAP are features that allow this species to conserve water more efficiently than can be done in the C57BL/6 mouse. These features are important, particularly since the desert mouse has a smaller kidney, with fewer nephrons.

  3. Transcription factor avian erythroblastosis virus E26 oncogen homolog-1 is a novel mediator of renal injury in salt-sensitive hypertension.

    PubMed

    Feng, Wenguang; Chumley, Phillip; Prieto, Minolfa C; Miyada, Kayoko; Seth, Dale M; Fatima, Huma; Hua, Ping; Rezonzew, Gabriel; Sanders, Paul W; Jaimes, Edgar A

    2015-04-01

    Transcription factor E26 transformation-specific sequence-1 (ETS-1) is a transcription factor that regulates the expression of a variety of genes, including growth factors, chemokines, and adhesion molecules. We recently demonstrated that angiotensin II increases the glomerular expression of ETS-1 and that blockade of ETS-1 ameliorates the profibrotic and proinflammatory effects of angiotensin II. The Dahl salt-sensitive rat is a paradigm of salt-sensitive hypertension associated with local activation of the renin-angiotensin system. In these studies, we determined whether: (1) salt-sensitive hypertension is associated with renal expression of ETS-1 and (2) ETS-1 participates in the development of end-organ injury in salt-sensitive hypertension. Dahl salt-sensitive rats were fed a normal-salt diet (0.5% NaCl diet) or a high-salt diet (4% NaCl) for 4 weeks. Separate groups on high-salt diet received an ETS-1 dominant-negative peptide (10 mg/kg/d), an inactive ETS-1 mutant peptide (10 mg/kg/d), the angiotensin II type 1 receptor blocker candesartan (10 mg/kg/d), or the combination high-salt diet/dominant-negative peptide/angiotensin II type 1 receptor blocker for 4 weeks. High-salt diet rats had a significant increase in the glomerular expression of the phosphorylated ETS-1 that was prevented by angiotensin II type 1 receptor blocker. ETS-1 blockade reduced proteinuria, glomerular injury score, fibronectin expression, urinary transforming growth factor-β excretion, and macrophage infiltration. Angiotensin II type 1 receptor blocker reduced proteinuria, glomerular injury score, and macrophage infiltration, whereas concomitant ETS-1 blockade and angiotensin II type 1 receptor blocker had additive effects and reduced interstitial fibrosis. Our studies demonstrated that salt-sensitive hypertension results in increased glomerular expression of phosphorylated ETS-1 and suggested that ETS-1 plays an important role in the pathogenesis of end-organ injury in salt

  4. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas

    SciTech Connect

    Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

    1984-04-01

    Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references.

  5. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension.

    PubMed

    Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro

    2017-07-01

    Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na(+)-Cl(-) cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na(+)-Cl(-) cotransporter phosphorylation. Accordingly, a Na(+)-Cl(-) cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na(+)-Cl(-) cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na(+)-Cl(-) cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the

  6. High-salt diets during pregnancy increases renal vascular reactivity due to altered soluble guanylyl cyclase-related pathways in rat offspring.

    PubMed

    Jiang, Lin; Yin, Xiaohui; He, Axin; Li, Lingjun; Bo, Le; Zhou, Xiuwen; Tang, Jiaqi; Gu, Xiuxia; Wu, Jue; Gao, Qinqin; Lv, Juanxiu; Mao, Caiping; Xu, Zhice

    2016-02-01

    Adverse prenatal factors such as overtake of salt or fat food are potential risks for cardiovascular diseases in offspring. This study tested the hypothesis that prenatal high-salt (HS) diets may influence renal vascular tone and attenuates signaling pathways related to soluble guanylyl cyclase (sGC) or/and large-conductance Ca(2+)-activated K(+) (BKCa) channels in the offspring. Pregnant rats were fed either normal salt (NS) (1% NaCl) or HS (8% NaCl) diet for the whole gestation. Offspring were maintained on NS diets. Renal interlobar arteries in offspring were tested for vascular responses to phenylephrine (Phe), K(+) channels and signal pathways related to sGC. Phe induced higher vessel tension in interlobar arteries of the HS offspring. Following pretreatment with BKCa channel inhibitor iberiotoxin, Phe-mediated vasoconstrictions were decreased in HS offspring compared to NS. Phe-mediated constrictions following pretreatment with NO synthase inhibitor N(G)-nitro-l-arginine methyl ester or sGC inhibitor 1H-1,2,4-oxadiazolo-4,3-quinoxalin-1-one in the HS offspring were less sensitive than NS. The whole-cell K(+) currents and the component of BKCa channels were not changed in smooth muscle cells from interlobar arteries, whereas the K(+) currents stimulated by sGC activator BAY41-2272 were reduced in the HS offspring. The protein expressions of sGC β1 and β2 in the interlobar arteries of HS offspring were reduced. The results showed that chronic overintake of salt during pregnancy could increase renal vascular tone in the offspring. The affected signal pathways included down-regulation of sGC function and expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Radiolytic bubble formation and level changes in simulated high-level waste salts and sludges -- application to Savannah River Site and Hanford Storage tanks

    SciTech Connect

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-12-31

    Radiolytically-produced bubbles of trapped gas are observed in simulated high-level waste (HLW) damp salt cake exposed to Co-60 gamma radiation. As the damp salt cake is irradiated, its volume increases due to the formation of trapped gas bubbles. Based on the increase in volume, the rate of trapped gas generation varies between 0.04 and 0.2 molecules/100 eV of energy deposited in the damp salt cake. The maximum volume of trapped gas observed in experiments is in the range 21--26 vol %. After reaching these volumes, the gas bubbles begin to escape. The generated gas includes hydrogen, oxygen, and nitrous oxide. The ratio in which these components are produced depends on the composition of the waste. Nitrous oxide production increases with the amount of sodium nitrite. Gases trapped by this mechanism may account for some of the observed level changes in Savannah River Site and Hanford waste tanks.

  8. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Lee, Han-Soo

    2008-12-15

    The molten salt waste from the pyroprocess is one of the problematic wastes to directly apply a conventional process such as vitrification or ceramization. This study suggested a novel method using a reactive material for metal chlorides at a molten temperature of salt waste, and then converting them into manageable product at a high temperature. The inorganic composite, SAP (SiO2-Al2O3-P2O5), synthesized by a conventional sol-gel process has three or four distinctive domains that are bonded sequentially, Si-O-Si-O-A-O-P-O-P. The P-rich phase in the SAP composite is unstable for producing a series of reactive sites when in contact with a molten LiCl salt. After the reaction, metal aluminosilicate, metal aluminophosphate, metal phosphates and gaseous chlorines are generated. From this process, the volatile salt waste is stabilized and it is possible to apply a high temperature process. The reaction products were fabricated successfully by using a borosilicate glass with an arbitrary composition as a chemical binder. There was a low possibility for the valorization of radionuclides up to 1200 degrees C, based on the result of the thermo gravimetric analysis. The Cs and Sr leach rates by the PCT-A method were about 1 x 10(-3) g/(m2 day). For the final disposal of the problematic salt waste, this approach suggested the design concept of an effective stabilizer for metal chlorides and revealed the chemical route to the fabrication of monolithic wasteform by using a composite as an example. Using this method, we could obtain a higher disposal efficiency and lower waste volume, compared with the present immobilization methods.

  9. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  10. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification.

    PubMed

    Moodley, Preshanthan; Kana, E B Gueguim

    2017-07-01

    This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed with high coefficients of determination (R(2) >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. Copyright © 2017. Published by Elsevier Ltd.

  11. Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses.

    PubMed

    Zahar, M; Benkerroum, N; Guerouali, A; Laraki, Y; El Yakoubi, K

    2002-04-01

    Conditions for a natural fermentation during ensilage of sardines or their waste in sugarcane molasses (60:40 w/w) were evaluated regarding the effect of temperature (15, 25 and 35 degrees C), anaerobiosis (closed vs. open jars), daily stirring of the mixture, and salt addition to the initial mix at 5% (w/w) level. Successful natural fermentation took place in sardine silages incubated at 25 or 35 degrees C in open jars to reach a pH of 4.4 in about 2 and 1 weeks, respectively. For samples kept at 15 degrees C, the pH decline was very slow and pH did not decrease below 5.5 after one month of incubation. At 25 degrees C, the most favorable conditions for silage of sardine waste in cane molasses, as evidenced by the fastest decline in pH to a stable value of about 4.4, were achieved in closed jars and with daily stirring of the mix. The pH 4.4 was reached in one week with an advance of at least 3 days compared to the other conditions (open jars and closed jars without daily stirring). Addition of salt at 5% (w/w) in the mix before incubation inhibited the fermentation process.

  12. Renal Proximal Tubule Na,K-ATPase is Controlled by CREB Regulated Transcriptional CoActivators as well as Salt Inducible Kinase 1

    PubMed Central

    Taub, Mary; Garamella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-01-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that Protein Kinase A (PKA) and Calcium mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that 1) both the recently discovered cAMP-Regulated Transcriptional Coactivators (CRTCs), and Salt Inducible Kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells, and 2) that renal effectors including norepinephrine, dopamine, prostaglandins and sodium play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant negative SIK1, and in addition, regulation by dopamine, norepinephrine and monensin was disrupted by a dominant negative SIK1. These latter observations can be explained, if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase. PMID:26432356

  13. Tank Waste Transport Stability: Summary of Slurry and Salt-Solution Studies for FY 2001

    SciTech Connect

    Welch, T.D.

    2002-06-07

    Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  14. Recycle waste salt as reagent: a one-pot substitution/Krapcho reaction sequence to α-fluorinated esters and sulfones.

    PubMed

    Zhu, Feng; Xu, Peng-Wei; Zhou, Feng; Wang, Cui-Hong; Zhou, Jian

    2015-02-20

    A "one-pot" tandem substitution/Krapcho reaction is reported for the facile synthesis of α-fluorinated esters and sulfones, which utilizes the byproduct salt formed in the substitution step as an indispensible reagent to facilitate the Krapcho reaction step. This represents the first sustainable tandem reaction that internally recycles the waste salt formed in the upstream step as the reagent for the downstream step.

  15. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Simpson, Mike

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  16. Intake of water with high levels of dissolved hydrogen (H2) suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats.

    PubMed

    Zhu, Wan-Jun; Nakayama, Masaaki; Mori, Takefumi; Nakayama, Keisuke; Katoh, Junichiro; Murata, Yaeko; Sato, Toshinobu; Kabayama, Shigeru; Ito, Sadayoshi

    2011-07-01

    Hydrogen (H(2)) reportedly produces an antioxidative effect by quenching cytotoxic oxygen radicals. We studied the biological effects of water with dissolved H(2) on ischemia-induced cardio-renal injury in a rat model of chronic kidney disease (CKD). Dahl salt-sensitive rats (7 weeks old) were allowed ad libitum drinking of filtered water (FW: dissolved H(2), 0.00 ± 0.00 mg/L) or water with dissolved H(2) produced by electrolysis (EW: dissolved H(2), 0.35 ± 0.03 mg/L) for up to 6 weeks on a 0.5% salt diet. The rats then underwent ischemic reperfusion (I/R) of one kidney and were killed a week later for investigation of the contralateral kidney and the heart. In the rats given FW, unilateral kidney I/R induced significant increases in plasma monocyte chemoattractant protein-1, methylglyoxal and blood urea nitrogen. Histologically, significant increases were found in glomerular adhesion, cardiac fibrosis, number of ED-1 (CD68)-positive cells and nitrotyrosine staining in the contralateral kidney and the heart. In rats given EW, those findings were significantly ameliorated and there were significant histological differences between rats given FW and those given EW. Consumption of EW by ad libitum drinking has the potential to ameliorate ischemia-induced cardio-renal injury in CKD model rats. This indicates a novel strategy of applying H(2) produced by water electrolysis technology for the prevention of CKD cardio-renal syndrome.

  17. Protective effect of TRPV1 against renal fibrosis via inhibition of TGF-β/Smad signaling in DOCA-salt hypertension.

    PubMed

    Wang, Youping; Wang, Donna H

    2011-01-01

    To investigate the effects of the transient receptor potential vanilloid type 1 (TRPV1) channel on renal extracellular matrix (ECM) protein expression including collagen deposition and the transforming growth factor β (TGF-β)/Smad signaling pathway during salt-dependent hypertension, wild-type (WT) and TRPV1-null (TRPV1⁻/⁻) mutant mice were uninephrectomized and given deoxycorticosterone acetate (DOCA)-salt for 4 wks. TRPV1 gene ablation exaggerated DOCA-salt-induced impairment of renal function as evidenced by increased albumin excretion (μg/24 h) compared with WT mice (83.7 ± 7.1 versus 28.3 ± 4.8, P < 0.05), but had no apparent effect on mean arterial pressure (mmHg) as determined by radiotelemetry (141 ± 4 versus 138 ± 3, P > 0.05). Morphological analysis showed that DOCA-salt-induced glomerulosclerosis, tubular injury and macrophage infiltration (cells/mm²) were increased in TRPV1⁻/⁻ compared with WT mice (0.74 ± 0.08 versus 0.34 ± 0.04; 3.14 ± 0.26 versus 2.00 ± 0.31; 68 ± 5 versus 40 ± 4, P < 0.05). Immunostaining studies showed that DOCA-salt treatment decreased nephrin but increased collagen type I and IV as well as phosphorylated Smad2/3 staining in kidneys of TRPV1⁻/⁻ compared with WT mice. Hydroxyproline assay and Western blot showed that DOCA-salt treatment increased collagen content (μg/mg dry tissue) and fibronectin protein expression (%β-actin arbitrary units) in the kidney of TRPV1⁻/⁻ compared with WT mice (26.7 ± 2.7 versus 17.4 ± 1.8; 0.93 ± 0.07 versus 0.65 ± 0.08, P < 0.05). Acceleration of renal ECM protein deposition in DOCA-salt-treated TRPV1⁻/⁻ mice was accompanied by increased TGF-β1, as well as phosphorylation of Smad2/3 protein expression (%β-actin arbitrary units) compared with DOCA-salt-treated WT mice (0.61 ± 0.07 versus 0.32 ± 0.05; 0.57 ± 0.07 versus 0.25 ± 0.05; 0.71 ± 0.08 versus 0.40 ± 0.06, P < 0.05). These results show that exaggerated renal functional and structural injuries are

  18. Separation of CsCl from a Ternary CsCl-LiCl-KCl Salt via a Melt Crystallization Technique for Pyroprocessing Waste Minimization

    SciTech Connect

    Ammon Williams; Supathorn Phongikaroon; Michael Simpson

    2013-02-01

    A parametric study has been conducted to identify the effects of several parameters on the separation of CsCl from molten LiCl-KCl salt via a melt crystallization process. A reverse vertical Bridgman technique was used to grow the salt crystals. The investigated parameters were: (1) the advancement rate, (2) the crucible lid configuration, (3) the amount of salt mixture, (4) the initial composition of CsCl, and (5) the temperature difference between the high and low furnace zones. From each grown crystal, samples were taken axially and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results show that CsCl concentrations at the top of the crystals were low and increased to a maximum at the bottom of the salt. Salt (LiCl-KCl) recycle percentages for the experiments ranged from 50% to 75% and the CsCl composition in the waste salt was low. To increase the recycle percentage and the concentration of CsCl in the waste form, the possibility of using multiple crystallization stages was explored to further optimize the process. Results show that multiple crystallization stages are practical and the optimal experimental conditions should be operated at 5.0 mm/hr rate with a lid configuration and temperature difference of 200 °C for a total of five crystallization stages. Under these conditions, up to 88% of the salt can be recycled.

  19. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    SciTech Connect

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  20. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions

    PubMed Central

    Xu, Peng; Carlson, Julia M.; Gaglione, Robert T.; Bigler Wang, Dora; Kemp, Brandon A.; Reyes, Camellia M.; McGrath, Helen E.; Carey, Robert M.; Jose, Pedro A.; Felder, Robin A.

    2015-01-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2′-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. PMID:26447209

  1. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. Copyright © 2015 the American Physiological Society.

  2. Molten Salt Oxidation: A Thermal Technology for Waste Treatment and Demilitarization

    SciTech Connect

    Hsu, P C; Watkins, B; Pruneda, C; Kwak, S

    2001-08-23

    MSO is a good alternative to incineration for the treatment of a variety of organic wastes including obsolete explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. The Lawrence Livermore National Laboratory (LLNL) has demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5 kg/hr bench-scale unit and in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. LLNL, under the direction and support of the Joint Demilitarization Technology (JDT) program, is currently building an integrated MSO plant for destroying explosives, explosives-contaminated sludge and explosives-contaminated activated charcoal. In a parallel effort, LLNL also provides technical support to DOE for the implementation of the MSO technology at industrial scale at Richland, Washington. Over 30 waste streams have been demonstrated with LLNL-built MSO systems. In this paper we will present our latest experimental data, our operational experience with MSO and also discuss its process capabilities.

  3. The influence of previous salt ingestion on the renal function of sheep subjected to intravenous hypertonic saline

    PubMed Central

    Potter, B. J.

    1968-01-01

    1. Sheep, which had access to a solution containing 1·3% sodium chloride as their sole source of drinking water for 6 months or more, were infused with a hypertonic solution (10%) of sodium chloride, and their ability to tolerate this salt load was compared with that of a similar group of sheep which drank only rain water. 2. The sheep which drank the rain water were often affected by the infusion and exhibited signs resembling potassium deficit. No such signs were apparent in the animals which consumed saline water. 3. Glomerular filtration rates were increased in all sheep by the hypertonic saline infusion, the increases being greater in the sheep which were maintained on the saline water. Effective renal plasma flow rates, though extremely variable, behaved in a similar manner. 4. Plasma values for sodium and chloride were increased in all sheep, but remained at a higher level for a longer period in the sheep which consumed rain water. The diuresis produced by hypertonic saline appeared to persist for a longer period in the sheep which drank rain water, while the excretion of sodium and chloride tended to be greater in the sheep maintained on saline water. 5. Plasma potassium was reduced in all sheep and urinary excretion of potassium increased. The latter response was more pronounced in the sheep which drank the rain water. 6. Filtered loads of sodium, chloride and potassium were greater in the sheep which were accustomed to drinking saline water. However, the amounts of potassium excreted were greater than those filtered in the rain water sheep and less than those filtered in the sheep which drank saline water. It therefore seems that secretion of potassium into the kidney tubules predominated in the former group and reabsorption prevailed in the latter. 7. Reabsorption of free water in excess of solute was greater in the kidney tubules of the sheep which drank saline water. 8. Increased blood volume and greater dilution of plasma proteins occurred in the

  4. Protective effects of Brassica oleracea sprouts extract toward renal damage in high-salt-fed SHRSP: role of AMPK/PPARα/UCP2 axis.

    PubMed

    Rubattu, Speranza; Di Castro, Sara; Cotugno, Maria; Bianchi, Franca; Mattioli, Roberto; Baima, Simona; Stanzione, Rosita; Madonna, Michele; Bozzao, Cristina; Marchitti, Simona; Gelosa, Paolo; Sironi, Luigi; Pignieri, Alice; Maldini, Mariateresa; Giusti, Anna Maria; Nardini, Mirella; Morelli, Giorgio; Costantino, Paolo; Volpe, Massimo

    2015-07-01

    Renal damage precedes occurrence of stroke in high-sodium/low-potassium-fed stroke-prone spontaneously hypertensive rat (SHRSP). We previously reported a marked suppression of uncoupling protein-2 (UCP2) upon high-salt Japanese-style diet in SHRSP kidneys. Vegetable compounds are known to exert protective effects in cardiovascular diseases. We aimed at evaluating the impact of Brassica oleracea sprouts juice toward renal damage in Japanese diet-fed SHRSP and exploring the role of 5'-adenosine monophosphate-activated protein kinase (AMPK)/NAD-dependent deacetylase sirtuin-1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α)/peroxisome proliferator-activated receptor-α (PPARα)/UCP2 axis. SHRSP received Japanese diet for 4 weeks. A group of SHRSP received Japanese diet and B. oleracea. A third group received Japanese diet, B. oleracea, and PPARα inhibitor (GW6471). A group of SHRSP fed with regular diet served as control. Japanese diet induced marked increases of oxidative stress, inflammation, and proteinuria, along with glomerular and tubular damage, as compared with regular diet. A significant suppression of AMPK/UCP2 pathway was observed. Despite Japanese diet feeding, concomitant administration of B. oleracea prevented oxidative stress accumulation, inflammation, renal damage, and proteinuria. All components of the UCP2 regulatory pathway were significantly increased by B. oleracea. Superoxide dismutase 2 and phosphoendothelial nitric oxide synthase were also stimulated. Addition of PPARα inhibitor to B. oleracea and Japanese diet significantly reduced the B. oleracea beneficial effects. SBP levels were comparable among the different groups of rats.In vitro, UCP2 inhibition by genipin offset the antioxidant effect of B. oleracea in renal mesangial and proximal tubular cells. B. oleracea administration prevented renal damage in salt-loaded SHRSP, independently from SBP, with parallel stimulation of AMPK/SIRT1/PGC1α/PPARα/UCP2 axis

  5. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on multifactor life testing of waste package materials

    SciTech Connect

    McPheeters, C.C.; Harrison, W.; Ditmars, J.D.; Lerman, A.; Rote, D.M.; Edgar, D.E.; Hambley, D.F.

    1984-09-01

    Two documents that provide the approaches in designing a test program to investigate uniform corrosion of low-carbon cash steel in a salt repository environment were reviewed. Recommendations are made by the Peer Review Panel for improving the two reports.

  6. Radioactive waste isolation in salt: rationale and methodology for Argonne-conducted reviews of site characterization programs

    SciTech Connect

    Harrison, W.; Ditmars, J.D.; Tisue, M.W.; Hambley, D.F.; Fenster, D.F.; Rote, D.M.

    1985-07-01

    Both regulatory and technical concerns must be addressed in Argonne-conducted peer reviews of site characterization programs for individual sites for a high-level radioactive waste repository in salt. This report describes the regulatory framework within which reviews must be conducted and presents background information on the structure and purpose of site characterization programs as found in US Nuclear Regulatory Commission (NRC) Regulatory Guide 4.17 and Title 10, Part 60, of the Code of Federal Regulations. It also presents a methodology to assist reviewers in addressing technical concerns relating to their respective areas of expertise. The methodology concentrates on elements of prime importance to the US Department of Energy's advocacy of a given salt repository system during the NRC licensing process. Instructions are given for reviewing 12 site characterization program elements, starting with performance objectives, performance issues, and levels of performance of repository subsystem components; progressing through performance assessment; and ending with plans for data acquisition and evaluation. The success of a site characterization program in resolving repository performance issues will be determined by judging the likelihood that the proposed data acquisition activities will reduce uncertainties in the performance predictions. 8 refs., 3 figs., 5 tabs.

  7. Costs for Off-Site Disposal of Nonhazardous Oil Field Wastes: Salt Caverns Versus other Disposal Methods.

    DTIC Science & Technology

    1997-04-01

    May. IOGCC, 1995, Natural Gas Storage in Salt Caverns - A Guide for State Regulators, Interstate Oil and Gas Compact Commission, Oklahoma City...Idealized Cavern in a Salt Dome Formation -- Incoming wastem I Displaced brine Fia aigSurface casing Top of salt formation Overlying formations...Major U.S. Rock Salt Deposits ................................... 15 2 Idealized Cavern in a Salt Dome Formation

  8. Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts

    SciTech Connect

    Lepry, William C.; Riley, Brian J.; Crum, Jarrod V.; Rodriguez, Carmen P.; Pierce, David A.

    2013-08-29

    Three different solution-based approaches were taken to make sodalite minerals as a host for a mixed salt simulating the waste generated during the electrochemical separations process of nuclear fuel reprocessing that contains alkali, alkaline earth, and lanthanide chlorides plus trace iodine and actinides. All of the approaches included an aqueous solution of mixed chlorides (simulated waste) but the other reactants varied: (1) Al(OH)3 + NaOH + CS, (2) NaAlO2 + CS, and (3) Al2Si2O7 + NaOH, (CS = colloidal silica). The products were dried, ground, pressed into pellets, fired (650–950 °C), and characterized. Both 5 and 10 mass% of a Si-Na-B glass binder were introduced at different stages in the process. Route (2) proved the most successful at producing high sodalite fractions (up to 100%) with minimal glass binder additions and showed high consolidation potential (up to 91.4% of theoretical density). Detailed comparisons are provided of the results.

  9. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    SciTech Connect

    Anast, Kurt Roy; Funk, David John

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  10. Properties of salt-saturated concrete and grout after six years in situ at the Waste Isolation Pilot Plant

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Weiss, C.A. Jr.

    1993-06-01

    Samples of concrete and grout were recovered from short boreholes in the repository floor at the Waste Isolation Pilot Plant more than six years after the concrete and grout were placed. Plugs from the Plug Test Matrix of the Plugging and Sealing Program of Sandia National Laboratories were overcored to include a shell of host rock. The cores were analyzed at the Waterways Experiment Station to assess their condition after six years of service, having potentially been exposed to those aspects of their service environment (salt, brine, fracturing, anhydrite, etc.) that could cause deterioration. Measured values of compressive strength and pulse velocity of both the grout and the concrete equaled or exceeded values from tests performed on laboratory-tested samples of the same mixtures at ages of one month to one year after casting. The phase assemblages had changed very little. Materials performed as intended and showed virtually no chemical or physical evidence of deterioration. The lowest values for strength and pulse velocity were measured for samples taken from the Disturbed Rock Zone, indicating the influence of cracking in this zone on the properties of enclosed seal materials. There was evidence of movement of brine in the system. Crystalline phases containing magnesium, potassium, sulfate, and other ions had been deposited on free surfaces in fractures and pilot holes. There was a reaction rim in the anhydrite immediately surrounding each recovered borehole plug, suggesting interaction between grout or concrete and host rock. However, the chemical changes apparent in this reaction rim were not reflected in the chemical composition of the adjacent concrete or grout. The grout and concrete studied here showed no signs of the deterioration found to have occurred in some parts of the concrete liner of the Waste Isolation Pilot Plant waste handling shaft.

  11. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012

  12. Expedited demonstration of molten salt mixed waste treatment technology. Addendum 1

    SciTech Connect

    Holtz, E.H. von; Hopper, R.W.; Adamson, M.G.

    1995-04-27

    The Final Forms portion (Section 4) of the TTP SF-2410-03 final report was incomplete. This was noted under the subsection ``Task Variances.`` The present report documents the work that was unfinished at that time, arranged in accord with the subsections of the Final Report. An assessment of the overall immobilization efficacy of polymer microencapsulation, as supported by this study, has been added. The study and demonstration of the polyethylene microencapsulation of salt residues is continuing under other auspices. A stand-alone report combining the results of the continuation with the contents of this memorandum and of Section 4 of the Final Report will be issued in later this year.

  13. Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4.

    PubMed

    Yang, Yanqiang; Gomez, Jose A; Herrera, Marcela; Perez-Marco, Romelia; Repenning, Peter; Zhang, Zhiping; Payne, Alan; Pratt, Richard E; Koller, Beverly; Beierwaltes, William H; Coffman, Thomas; Mirotsou, Maria; Dzau, Victor J

    2015-05-01

    Despite the importance of juxtaglomerular cell recruitment in the pathophysiology of cardiovascular diseases, the mechanisms that underlie renin production under conditions of chronic stimulation remain elusive. We have previously shown that CD44+ mesenchymal-like cells (CD44+ cells) exist in the adult kidney. Under chronic sodium deprivation, these cells are recruited to the juxtaglomerular area and differentiate to new renin-expressing cells. Given the proximity of macula densa to the juxtaglomerular area and the importance of macula densa released prostanoids in renin synthesis and release, we hypothesized that chronic sodium deprivation induces macula densa release of prostanoids, stimulating renal CD44+ cell activation and differentiation. CD44+ cells were isolated from adult kidneys and cocultured with the macula densa cell line, MMDD1, in normal or low-sodium medium. Low sodium stimulated prostaglandin E2 production by MMDD1 and induced migration of CD44+ cells. These effects were inhibited by addition of a cyclooxygenase 2 inhibitor (NS398) or an E-prostanoid receptor 4 antagonist (AH23848) to MMDD1 or CD44+ cells, respectively. Addition of prostaglandin E2 to CD44+ cells increased cell migration and induced renin expression. In vivo activation of renal CD44+ cells during juxtaglomerular recruitment was attenuated in wild-type mice subjected to salt restriction in the presence of cyclooxygenase 2 inhibitor rofecoxib. Similar results were observed in E-prostanoid receptor 4 knockout mice subjected to salt restriction. These results show that the prostaglandin E2/E-prostanoid receptor 4 pathway plays a key role in the activation of renal CD44+ mesenchymal stromal cell-like cells during conditions of juxtaglomerular recruitment; highlighting the importance of this pathway as a key regulatory mechanism of juxtaglomerular recruitment.

  14. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep

  15. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12.

    PubMed

    Muhammad, Emad; Leventhal, Neta; Parvari, Galit; Hanukoglu, Aaron; Hanukoglu, Israel; Chalifa-Caspi, Vered; Feinstein, Yael; Weinbrand, Jenny; Jacoby, Harel; Manor, Esther; Nagar, Tal; Beck, John C; Sheffield, Val C; Hershkovitz, Eli; Parvari, Ruti

    2011-04-01

    Genetic disorders of excessive salt loss from sweat glands have been observed in pseudohypoaldosteronism type I (PHA) and cystic fibrosis that result from mutations in genes encoding epithelial Na+ channel (ENaC) subunits and the transmembrane conductance regulator (CFTR), respectively. We identified a novel autosomal recessive form of isolated salt wasting in sweat, which leads to severe infantile hyponatremic dehydration. Three affected individuals from a small Bedouin clan presented with failure to thrive, hyponatremic dehydration and hyperkalemia with isolated sweat salt wasting. Using positional cloning, we identified the association of a Glu143Lys mutation in carbonic anhydrase 12 (CA12) with the disease. Carbonic anhydrase is a zinc metalloenzyme that catalyzes the reversible hydration of carbon dioxide to form a bicarbonate anion and a proton. Glu143 in CA12 is essential for zinc coordination in this metalloenzyme and lowering of the protein-metal affinity reduces its catalytic activity. This is the first presentation of an isolated loss of salt from sweat gland mimicking PHA, associated with a mutation in the CA12 gene not previously implicated in human disorders. Our data demonstrate the importance of bicarbonate anion and proton production on salt concentration in sweat and its significance for sodium homeostasis.

  16. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    SciTech Connect

    Not Available

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  17. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    SciTech Connect

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  18. Influence of progressive salt restriction on urinary bicarbonate wasting in uremic acidosis.

    PubMed

    Lameire, N; Matthys, E

    1986-09-01

    In steady state, the acidosis in the majority of 17 uremic patients was characterized by a persistent bicarbonaturia (FEHCO3 ranging between 0% and 17.65%). An NH4Cl loading test in 17 patients revealed two distinct groups: group A (n = 11) with complete disappearance of the urinary bicarbonate loss and a mean UpH of 5.39 +/- 0.10 at a PHCO3 level of 13.3 +/- 0.5 mEq/L; and group B (n = 6) with urinary acidification disturbances with a persistent FEHCO3 ranging between 1.06% and 3.15% and a mean UpH of 6.53 +/- 0.06 at a PHCO3 level of 13.5 +/- 0.7 mEq/L. Between the two groups, there were no differences in CCr, plasma Na, K, Cl, Ca, PO4, PCO2, and aldosterone levels. Calculation of the THCO3/TNa reabsorption ratio over a wide range of PHCO3 levels revealed no differences between the two groups. The mean levels of circulating PTH were significantly higher in group B compared with group A (40.1 +/- 10.8 mU/dL v 19.3 +/- 4.4 mU/dL; P less than .05), and the spontaneous steady-state FENa was more pronounced in group B than in group A (12.1% +/- 1.5% v 4.9% +/- 0.7%; P less than .05). Four patients from group B with a well-documented salt-losing nephropathy (FENa ranging from 10.20% to 15.10%) were submitted to a progressive dietary salt restriction over several weeks. At this stage, the four patients no longer had bicarbonaturia, and the urinary pH decreased to levels between 5.15 and 5.65 during NH4Cl-induced acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite

    SciTech Connect

    Cole, C.R.; Bond, F.W.

    1980-12-01

    Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful.

  20. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's plan to decommission and reclaim exploratory shafts and related facilities

    SciTech Connect

    Fenster, D.F.; Schubert, J.P.; Zellmer, S.D.; Harrison, W.; Simpson, D.G.; Busch, J.S.

    1984-07-01

    The following recommendations are made for improving the Office of Nuclear Waste Isolation's plan for decommissioning and reclaiming exploratory shafts and other facilities associated with site characterization: (1) Discuss more comprehensively the technical aspects of activities related to decommissioning and reclamation. More detailed information will help convince the staff of the US Nuclear Regulatory Commission and others that the activities as outlined in the plan are properly structured and that the stated goals can be achieved. (2) Address in considerably greater detail how the proposed activities will satisfy specific federal, state, and local laws and regulations. (3) State clearly the precise purpose of the plan, preferably at the beginning and under an appropriate heading. (4) Also under an appropriate heading and immediately after the section on purpose, describe the scope of the plan. The tasks covered by this plan and closely related tasks covered by other appropriate plans should be clearly differentiated. (5) Discuss the possible environmental effects of drilling the exploratory shaft, excavating drifts in salt, and drilling boreholes as part of site characterization. Mitigation activities should be designed to counter specific potential impacts. High priority should be given to minimizing groundwater contamination and restoring the surface to a condition consistent with the proposed land use following completion of characterization activities at sites not chosen for repository construction. (6) Define ambiguous technical terms, either in the text when first introduced or in an appended glossary.

  1. Effects of combustion and operating conditions on PCDD/PCDF emissions from power boilers burning salt-laden wood waste.

    PubMed

    Leclerc, Denys; Duo, Wen Li; Vessey, Michelle

    2006-04-01

    This paper discusses the effects of combustion conditions on PCDD/PCDF emissions from pulp and paper power boilers burning salt-laden wood waste. We found no correlation between PCDD/PCDF emissions and carbon monoxide emissions. A good correlation was, however, observed between PCDD/PCDF emissions and the concentration of stack polynuclear aromatic hydrocarbons (PAHs) in the absence of TDF addition. Thus, poor combustion conditions responsible for the formation of products of incomplete combustion (PICs), such as PAHs and PCDD/PCDF precursors, increase PCDD/PCDF emissions. PAH concentrations increased with higher boiler load and/or low oxygen concentrations at the boiler exit, probably because of lower available residence times and insufficient excess air. Our findings are consistent with the current understanding that high ash carbon content generally favours heterogeneous reactions leading to either de novo synthesis of PCDD/PCDFs or their direct formation from precursors. We also found that, in grate-fired boilers, a linear increase in the grate/lower furnace temperature produces an exponential decrease in PCDD/PCDF emissions. Although the extent of this effect appears to be mill-specific, particularly at low temperatures, the results indicate that increasing the combustion temperature may decrease PCDD/PCDF emissions. It must be noted, however, that there are other variables, such as elevated ESP and stack temperatures, a high hog salt content, the presence of large amounts of PICs and a high Cl/S ratio, which contribute to higher PCDD/PCDFs emissions. Therefore, higher combustion temperatures, by themselves, will not necessarily result in low PCDD/PCDFs emissions.

  2. A linear relationship between the ex-vivo sodium mediated expression of two sodium regulatory pathways as a surrogate marker of salt sensitivity of blood pressure in exfoliated human renal proximal tubule cells: The virtual renal biopsy

    PubMed Central

    Gildea, John J.; Lahiff, Dylan T.; Van Sciver, Robert E.; Weiss, Ryan S.; Shah, Neema; McGrath, Helen E.; Schoeffel, Cynthia D.; Jose, Pedro A.; Carey, Robert M.; Felder, Robin A.

    2013-01-01

    Background Salt sensitivity (SS) of blood pressure (BP) affects 25% of adults, shares comorbidity with hypertension, and has no convenient diagnostic test. We tested the hypothesis that urine-derived exfoliated renal proximal tubule cells (RPTCs) could diagnose the degree of an individual's SS of BP. Methods Subjects were selected who had their SS of BP determined 5 y prior to this study (salt-sensitive: ≥7 mm Hg increase in mean arterial pressure (MAP) following transition from a random weekly diet of low (10 mmol/day) to high (300 mmol/day) sodium (Na+) intake, N = 4; inverse salt-sensitive (ISS): ≥7 mm Hg increase in MAP transitioning from a high to low Na+ diet, N = 3, and salt-resistant (SR): <7 mm Hg change in MAP transitioned on either diet, N = 5). RPTC responses to 2 independent Na+ transport pathways were measured. Results There was a negative correlation between the degree of SS and dopamine-1 receptor (D1R) plasma membrane recruitment (y = −0.0107x + 0.68 relative fluorescent units (RFU), R2 = 0.88, N = 12, P < 0.0001) and angiotensin II-stimulated intracellular Ca++ (y = −0.0016x + 0.0336, R2 = 0.7112, P < 0.001, N = 10) concentration over baseline. Conclusions Isolating RPTCs from urine provides a personalized cell-based diagnostic test of SS index that offers advantages over a 2-week controlled diet with respect to cost and patient compliance. Furthermore, the linear relationship between the change in MAP and response to 2 Na+ regulatory pathways suggests that an individual's RPTC response to intracellular Na+ is personalized and predictive. PMID:23454474

  3. A linear relationship between the ex-vivo sodium mediated expression of two sodium regulatory pathways as a surrogate marker of salt sensitivity of blood pressure in exfoliated human renal proximal tubule cells: the virtual renal biopsy.

    PubMed

    Gildea, John J; Lahiff, Dylan T; Van Sciver, Robert E; Weiss, Ryan S; Shah, Neema; McGrath, Helen E; Schoeffel, Cynthia D; Jose, Pedro A; Carey, Robert M; Felder, Robin A

    2013-06-05

    Salt sensitivity (SS) of blood pressure (BP) affects 25% of adults, shares comorbidity with hypertension, and has no convenient diagnostic test. We tested the hypothesis that urine-derived exfoliated renal proximal tubule cells (RPTCs) could diagnose the degree of an individual's SS of BP. Subjects were selected who had their SS of BP determined 5 y prior to this study (salt-sensitive: ≥7 mm Hg increase in mean arterial pressure (MAP) following transition from a random weekly diet of low (10 mmol/day) to high (300 mmol/day) sodium (Na(+)) intake, N=4; inverse salt-sensitive (ISS): ≥7 mm Hg increase in MAP transitioning from a high to low Na(+) diet, N=3, and salt-resistant (SR): <7 mm Hg change in MAP transitioned on either diet, N=5). RPTC responses to 2 independent Na(+) transport pathways were measured. There was a negative correlation between the degree of SS and dopamine-1 receptor (D1R) plasma membrane recruitment (y=-0.0107x+0.68 relative fluorescent units (RFU), R(2)=0.88, N=12, P<0.0001) and angiotensin II-stimulated intracellular Ca(++) (y=-0.0016x+0.0336, R(2)=0.7112, P<0.001, N=10) concentration over baseline. Isolating RPTCs from urine provides a personalized cell-based diagnostic test of SS index that offers advantages over a 2-week controlled diet with respect to cost and patient compliance. Furthermore, the linear relationship between the change in MAP and response to 2 Na(+) regulatory pathways suggests that an individual's RPTC response to intracellular Na(+) is personalized and predictive. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Role of bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 activator, in aldosterone- and salt-induced renal injury.

    PubMed

    Hisamichi, Mikako; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hoshino, Seiko; Kimura, Kenjiro; Shibagaki, Yugo

    2017-10-05

    The aim of this study was to investigate the renoprotective effect of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator with an antioxidant effect, in a salt-sensitive hypertension model induced by aldosterone (Ald) and salt. Tubulointerstitial damage with urinary liver-type fatty acid-binding protein (L-FABP) was evaluated using human L-FABP chromosomal transgenic (L-FABP(+/-)) male mice. The mice in the Ald group (n=7) received systemic Ald infusions via an osmotic minipump and were given 1% NaCl water for 35 days. Those in the Ald-BM group (n=8) were administered BM intraperitoneally in addition to an injection of Ald and salt. The dose of BM was gradually increased every 7 days up to 10 mg kg(-1) per day, which was maintained for 14 days. The administration of BM significantly increased renal expression of the Nrf2 target antioxidant gene. Tubulointerstitial damage was significantly ameliorated in the Ald-BM group compared to the Ald group. The increase in reactive oxygen species (ROS) and upregulation of angiotensinogen expression in the kidneys of the Ald group was significantly prevented in the Ald-BM group. The upregulation of human L-FABP expression induced in the kidneys and increase in urinary L-FABP in the Ald group were significantly suppressed by BM administration. In conclusion, BM ameliorated tubulointerstitial damage in the Ald- and salt-induced hypertension model through suppression of both ROS production and intrarenal renin-angiotensin system activation. Urinary L-FABP may be a useful marker reflecting the therapeutic efficacy of BM.Hypertension Research advance online publication, 5 October 2017; doi:10.1038/hr.2017.83.

  5. Potential for the localized corrosion of alloy 22 Waste Packages in Multiple-Salt Deliquescent Brines in the Yucca Mountain Repository

    SciTech Connect

    King, F.; Arthur, R.; Apted, M.; Kessler, J.H.

    2007-07-01

    It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did, that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)

  6. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho-Gil; Choi, Jeong-Hun; Yi, Kyung-Woo; Lee, Jong-Hyeon

    2017-08-01

    The purification of a LiCl-KCl salt mixture was carried out by a zone-refining process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone-refining method was used to grow pure LiCl-KCl salt ingots from a LiCl-KCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. From each zone-refined salt ingot, samples were collected axially along the salt ingot and the concentrations of Sr and Cs were determined. Experimental results show that the Sr and Cs concentrations at the initial region of the ingot were low and increased to a maximum at the final freezing region of the salt ingot. Concentration results of the zone-refined salt were compared with theoretical results furnished by the proposed model to validate its predictions. The keff values for Sr and Cs were 0.55 and 0.47, respectively. The correlation between the salt composition and separation behavior was also investigated. The keff values of the Sr in LiCl-KCl-SrCl2 and the Cs in LiCl-KCl-CsCl were found to be 0.53 and 0.44, respectively, by fitting the experimental data into the proposed model.

  7. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  8. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake.

    PubMed

    Ibarra, Mariano E; Albertoni Borghese, Maria F; Majowicz, Mónica P; Ortiz, María C; Loidl, Fabián; Rey-Funes, Manuel; Di Ciano, Luis A; Ibarra, Fernando R

    2017-03-01

    Under high sodium intake renal dopamine (DA) increases while NOS I expression in macula densa cells (MD) decreases. To explore whether renal DA and NOS I, linked to natriuresis and to the stability of the tubuloglomerular feedback, respectively, act in concert to regulate renal plasma flow (RPF) and glomerular filtration rate (GFR). Male Wistar rats were studied under a normal sodium intake (NS, NaCl 0.24%) or a high sodium intake (HS, NaCl 1% in drinking water) during the 5 days of the study. For the last two days, the specific D1-like receptor antagonist SCH 23390 (1 mg kg bwt(-1) day(-1), sc) or a vehicle was administered. HS intake increased natriuresis, diuresis, and urinary DA while it decreased cortical NOS I expression (P < 0.05 vs. NS), Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in MD (P < 0.001 vs. NS) and cortical nitrates+nitrites (NOx) production (NS 2.04 ± 0.22 vs. HS 1.28 ± 0.10 nmol mg protein(-1), P < 0.01). Treatment with SCH 23390 to rats on HS sharply decreased hydroelectrolyte excretion (P < 0.001 vs. HS) while NOS I expression, NADPH-d activity and NOx production increased (P < 0.05 vs. HS for NOS I and P < 0.001 vs. HS for NADPH-d and NOx). SCH 23390 increased RPF and GFR in HS rats (P < 0.01 HS+SCH vs. HS). It did not cause variations in NS rats. Results indicate that when NS intake is shifted to a prolonged high sodium intake, renal DA through the D1R, and NOS I in MD cells act in concert to regulate RPF and GFR to stabilize the delivery of NaCl to the distal nephron. © 2017 Universidad De Buenos Aires. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Waste form evaluation for RECl3 and REOx fission products separated from used electrochemical salt

    DOE PAGES

    Riley, Brian J.; Pierce, David A.; Crum, Jarrod V.; ...

    2017-09-22

    The work presented here is based off the concept that the rare earth chloride (RECl3) fission products within the used electrorefiner (ER) salt can be selectively removed as RECl3 (not yet demonstrated) or precipitated out as a mixture of REOCl and REOx through oxygen sparging (has been demonstrated). This paper presents data showing the feasibility of immobilizing a mixture of RECl3s at 10 mass% into a 78%TeO2-22%PbO glass while also showing that this same mixture of RECl3s can be oxidized to REOCl at 300 °C and then to REOx by 1200 °C, evolving Cl2(g). When the REOx mixture is heatedmore » at temperatures >1200 °C, the ratios of REOxs change. The mixture of REOx was then immobilized in a lanthanide borosilicate (LABS) glass at a high loading of 60 mass%. Both the 78%TeO2-22%PbO glass and LABS glass systems show good chemical durability. In conclusion, the advantages and disadvantages of tellurite and LABS glasses are compared.« less

  10. MEDULLARY THICK ASCENDING LIMB BUFFER VASOCONSTRICTION OF RENAL OUTER-MEDULLARY VASA RECTA IN SALT-RESISTANT BUT NOT SALT-SENSITIVE RATS

    PubMed Central

    O’Connor, Paul M.; Cowley, Allen W.

    2013-01-01

    We have previously demonstrated that paracrine signaling occurs between medullary thick ascending limb (mTAL) and the contractile pericytes of outer-medullary vasa recta (VR) termed ‘tubular-vascular cross talk’. The aim of the current study was to determine whether tubular-vascular cross talk has a functional effect on vasoconstrictor responses to angiotensin II, and to determine whether this is altered in the Dahl salt-sensitive (SS) rat. Studies were performed on salt-resistant consomic SS.13BN and SS rats using a novel outer medullary tissue strip preparation in which freshly isolated VR within VR bundles were perfused either alone or in combination with nearby mTAL. In VR from SS.13BN rats, angiotensin II (1μM) increased VR bundle intracellular Ca2+ concentration ([Ca2+]VR) 19±9nM (n=8) and reduced focal diameter in perfused VR by (−20±7%;n=5). In the presence of nearby mTAL however, [Ca2+]VR (−9±8nM; n=8) and VR diameter (−1±4%, n=7) in SS.13BN rats was unchanged by angiotensin II. In contrast, in Dahl SS rats, angiotensin II resulted in rapid and sustained increase in [Ca2+]VR (89±48 n=7;50±24% n=8) and a reduction in VR diameter of (−17±7;n=7 and −11±4%;n=5) in both isolated VR and VR with nearby mTAL, respectively. In VR with mTAL from SS13BN rats, inhibiton of purinergic receptors resulted in an increase in [Ca2+]VR, indicating purinergic signaling buffers vasoconstriction. Importantly, our in vitro data were able to predict medullary blood flow responses to angiotensin II in SS and SS.13BN rats in vivo. We conclude that paracrine signaling from mTAL buffers angiotensin II vasoconstriction in Dahl salt-resistant SS.13BN rats but not SS rats. PMID:22926950

  11. [Successful treatment for cryptococcal meningoencephalitis complicated by cerebral salt-wasting syndrome in a patient with chronic lymphocytic leukemia: A clinical case].

    PubMed

    Potapenko, V G; Konovalenko, I B; Oksema, E V; Filippova, L N; Dulaeva, E N; Derevyannykh, N A; Krasnoruzhsky, A I; Klimovich, A V; Klimko, N N; Medvedeva, N V

    2015-01-01

    Cryptococcus neoformans is a common agent of fungal meningoencephalitis in immunocompromised patients. Cerebral salt-wasting syndrome is one of the rare causes of severe hyponatremia in patients with CNS diseases. The paper describes the first clinical case of a patient, whose onset of chronic lymphocytic leukemia was complicated by cryptococcal meningoencephalitis presenting with mental disorders and severe electrolytic imbalance. Antifungal treatment with amphotericin B and fluconazole could alleviate an infectious process and metabolic disturbances.

  12. [Increased urinary sodium excretion in the early phase of aneurysmal subarachnoid hemorrhage as a predictor of cerebral salt wasting syndrome].

    PubMed

    Nakagawa, Ichiro; Kurokawa, Shinichiro; Takayama, Katsutoshi; Wada, Takeshi; Nakase, Hiroyuki

    2009-12-01

    Cerebral salt wasting syndrome (CSWS) in patients with aneurysmal subarachnoid hemorrhage (SAH) is considered to correlate with delayed ischemic neurological deficits (DIND) induced by cerebral vasospasm; however, its exact mechanism is still not well-known. The purpose of the present study is to evaluate the relationship between hyponatremia caused by CSWS and the increase of the urinary sodium excretion in early phase following SAH. Fifty-four patients with SAH were divided into 2 groups, normonatremia group and hyponatremia group which suffered hyponatremia after SAH. The hyponatremia group comprise 14 patients (26%) in whom the hyponatremia developed of the SAH. In this group, the serum level of sodium significantly decreased 7 days after SAH and then gradually normalised. Further, excretion of sodium in the urine tended to increase 3 days after SAH and significantly increased 7 days after SAH. In conclusion, the increased urinary sodium excretion in the early phase of SAH would serve as a predictive factor for CSWS after SAH. We consider that it is important to start sodium and fluid supplementation and inhibit natriuresis by fludrocortisone acetate administration before hyponatremia occurs in order to prevention delayed ischemic neurological deficits in SAH patients.

  13. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge.

    PubMed

    Abbott, Timothy; Eskicioglu, Cigdem

    2015-12-01

    Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension.

  15. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats

    PubMed Central

    Walsh, Kathryn R.; Kuwabara, Jill T.; Shim, Joon W.

    2015-01-01

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. PMID:26608659

  16. TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice.

    PubMed

    Singh, Purnima; Bahrami, Laleh; Castillo, Alexander; Majid, Dewan S A

    2013-04-01

    Tumor necrosis factor-alpha (TNF-α) has been implicated in salt-sensitive hypertension and renal injury (RI) induced by angiotensin II (ANG II). To determine the receptor type of TNF-α involved in this mechanism, we evaluated the responses to chronic ANG II infusion (25 ng/min by implanted minipump) given with high-salt diet (HS; 4% NaCl) for 2 wk in gene knockout mice for TNF-α receptor type 1 (TNFR1KO; n = 6) and type 2 (TNFR2KO; n = 6) and compared the responses with those in wild-type (WT; C57BL/6; n = 6) mice. Blood pressure in these mice was measured by implanted radiotelemetry as well as by tail-cuff plethysmography. RI responses were assessed by measuring macrophage cell infiltration (CD68(+) immunohistochemistry), glomerulosclerosis (PAS staining), and interstitial fibrosis (Gomori's trichrome staining) in renal tissues at the end of the treatment period. The increase in mean arterial pressure induced by ANG II + HS treatment was not different in these three groups of mice (TNFR1KO, 114 ± 1 to 161 ± 7 mmHg; TNFR2KO, 113 ± 1 to 161 ± 3 mmHg; WT, 110 ± 3 to 154 ± 3 mmHg). ANG II + HS-induced RI changes were similar in TNFR1KO mice but significantly less in TNFR2KO mice (macrophage infiltration, 0.02 ± 0.01 vs. 1.65 ± 0.45 cells/mm(2); glomerulosclerosis, 26.3 ± 2.6 vs. 35.7 ± 2.2% area; and interstitial fibrosis, 5.2 ± 0.6 vs. 8.1 ± 1.1% area) compared with the RI changes in WT mice. The results suggest that a direct activation of TNF-α receptors may not be required in inducing hypertensive response to chronic ANG II administration with HS intake, but the induction of inflammatory responses leading to renal injury are mainly mediated by TNF-α receptor type 2.

  17. Recommended new criteria for the selection of nuclear waste repository sites in Columbia River basalt and US Gulf Coast domed salt

    SciTech Connect

    Steinborn, T.L.; Wagoner, J.L.; Qualheim, B.; Fitts, C.R.; Stetkar, R.E.; Turnbull, R.W.

    1980-06-16

    Screening criteria and specifications are recommended to aid in the evaluation of sites proposed for nuclear waste disposal in basalt and domed salt. The recommended new criteria proposed in this report are intended to supplement existing repository-related criteria for nuclear waste disposal. The existing criteria are contained in 10 CFR 60 sections which define siting criteria of the Nuclear Regulatory Commission (NRC), and ONWI 33(2) which defines siting criteria of the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy. The specifications are conditions or parameter values that the authors recommend be applied in site acceptance evaluations. The siting concerns covered in this report include repository depth, host rock extent, seismic setting, structural and tectonic conditions, groundwater and rock geochemistry, volcanism, surface and subsurface hydrology, and socioeconomic issues, such as natural resources, land use, and population distribution.

  18. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis.

    PubMed

    Sabatino, A; Regolisti, G; Karupaiah, T; Sahathevan, S; Sadu Singh, B K; Khor, B H; Salhab, N; Karavetian, M; Cupisti, A; Fiaccadori, E

    2017-06-01

    Protein-Energy Wasting (PEW) is the depletion of protein/energy stores observed in the most advanced stages of Chronic Kidney Disease (CKD). PEW is highly prevalent among patients on chronic dialysis, and is associated with adverse clinical outcomes, high morbidity/mortality rates and increased healthcare costs. This narrative review was aimed at exploring the pathophysiology of PEW in end-stage renal disease (ESRD) on hemodialysis. The main aspects of nutritional status evaluation, intervention and monitoring in this clinical setting were described, as well as the current approaches for the prevention and treatment of ESRD-related PEW. An exhaustive literature search was performed, in order to identify the relevant studies describing the epidemiology, pathogenesis, nutritional intervention and outcome of PEW in ESRD on hemodialysis. The pathogenesis of PEW is multifactorial. Loss of appetite, reduced intake of nutrients and altered lean body mass anabolism/catabolism play a key role. Nutritional approach to PEW should be based on a careful and periodic assessment of nutritional status and on timely dietary counseling. When protein and energy intakes are reduced, nutritional supplementation by means of specific oral formulations administered during the hemodialysis session may be the first-step intervention, and represents a valid nutritional approach to PEW prevention and treatment since it is easy, effective and safe. Omega-3 fatty acids and fibers, now included in commercially available preparations for renal patients, could lend relevant added value to macronutrient supplementation. When oral supplementation fails, intradialytic parenteral nutrition can be implemented in selected patients. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable

  20. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension.

    PubMed

    Katori, Makoto; Majima, Masataka

    2003-02-01

    The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.

  1. Adaptive strategies for post-renal handling of urine in birds.

    PubMed

    Laverty, Gary; Skadhauge, Erik

    2008-03-01

    Birds are a diverse vertebrate class in terms of diet and habitat, but they share several common physiological features, including the use of uric acid as the major nitrogenous waste product and the lack of a urinary bladder. Instead, ureteral urine refluxes from the urodeum into the more proximal coprodeum and portions of the hindgut (colon or rectum and ceca). This presents a potential problem in that hyperosmotic ureteral urine in contact with the permeable epithelia of these tissues would counteract renal osmotic work. This review describes and provides examples of different strategies used by avian species to balance renal and post-renal changes in urine composition. The strategies described include: 1. a "reptilian" mode, with moderate renal concentrating ability, but high rates of post-renal salt and water resorption; 2. the "mammalian" strategy, in which the coprodeum effectively functions like a mammalian urinary bladder, preserving the osmotic concentrating work of the kidney; 3. an interaction strategy, in which post-renal transport processes are hormonally regulated in order to optimize renal function under varying conditions of salt or water stress; 4. the salt gland strategy seen in marine or estuarine birds with functional salt glands, in which post-renal transport mechanisms are used to conserve urinary water and to recycle excess NaCl to the nasal