Science.gov

Sample records for renal tubular damage

  1. Renal Tubular Acidosis

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Renal Tubular Acidosis KidsHealth > For Parents > Renal Tubular Acidosis Print A A A What's in ... Causes Symptoms Diagnosis Treatment en español Acidosis tubular renal Each time our internal organs do something, such ...

  2. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    PubMed

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.

  3. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.

    PubMed

    Marchant, Vanessa; Droguett, Alejandra; Valderrama, Graciela; Burgos, M Eugenia; Carpio, Daniel; Kerr, Bredford; Ruiz-Ortega, Marta; Egido, Jesús; Mezzano, Sergio

    2015-09-15

    Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.

  4. Proximal renal tubular acidosis

    MedlinePlus

    ... References Krapf R, Seldin DW, Alpern RJ. Clinical syndromes of metabolic acidosis. In: Alpern RJ, Caplan M, Moe OW, ... 529. Read More Distal renal tubular acidosis Fanconi syndrome Low potassium level Metabolic acidosis Osteomalacia Respiratory acidosis Rickets Review Date 10/ ...

  5. Distal renal tubular acidosis

    MedlinePlus

    ... get better with treatment. When to Contact a Medical Professional Call your health care provider if you have symptoms of distal renal tubular acidosis. Get medical help right away if you develop emergency symptoms ...

  6. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model

    PubMed Central

    Hüter, Lars; Simon, Tim-Philipp; Weinmann, Lenard; Schuerholz, Tobias; Reinhart, Konrad; Wolf, Gunter; Amann, Kerstin Ute; Marx, Gernot

    2009-01-01

    Introduction The aim of the study was to evaluate some of the underlying pathomechanisms of hydroxyethylstarch (HES) induced adverse effects on renal function using 24 porcine kidneys in an isolated perfusion model over six hours. Methods Infusion of either 10% HES 200/0.5, 6% HES 130/0.42 or Ringer's lactate (RL) was performed to achieve an haematocrit of 20% in eight kidneys from four animals per group. Physiological and pathophysiological parameters were determined (including N-acetyl-beta-aminoglucosidase as a marker for lysosomal tubular damage). Histological investigations and immunohistological stainings of the kidneys were performed. Results Initially after haemodilution, HES 130/0.42 and HES 200/0.5 reduced urine output compared with RL (P < 0.01). After six hours, N-acetyl-beta-aminoglucosidase was significantly higher in HES 200/0.5 (81 ± 23 U/L) compared with HES 130/0.42 (38 ± 12 U/L) and RL (21 ± 13 U/L; P < 0.001). Osmotic nephrosis-like lesions (OL) of the tubuli were present in all groups showing a significantly lower number of OL in RL (1.1 ± 0.4; P = 0.002) compared with both HES groups (HES 200/0.5 = 2.1 ± 0.6; HES 130/0.42 = 2.0 ± 0.5). Macrophage infiltration was significantly higher in HES 200/0.5 compared with HES 130/0.42 (1.3 ± 1.0 vs. 0.2 ± 0.04; P = 0.044). There was a significant increase in interstitial cell proliferation in the HES 200/0.5 group vs. HES 130/0.42 (18.0 ± 6.9 vs. 6.5 ± 1.6; P = 0.006) with no significant difference in RL (13.5 ± 4.0). Conclusions We observed impaired diuresis and sodium excretion by HES and identified renal interstitial proliferation, macrophage infiltration and tubular damage as potential pathological mechanisms of HES-induced adverse effects on renal function using an isolated porcine renal perfusion model. Furthermore, we demonstrated that 10% HES 200/0.5 had more of a pro-inflammatory effect compared with 6% HES 130/0.42 and caused more pronounced tubular damage than 6% HES 130/0.42 and

  7. [Inherited tubular renal acidosis].

    PubMed

    Bouzidi, Hassan; Hayek, Donia; Nasr, Dhekra; Daudon, Michel; Fadhel Najjar, Mohamed

    2011-01-01

    Renal tubular acidosis (RTA) is a tubulopathy characterized by metabolic acidosis with normal anion gap secondary to abnormalities of renal acidification. RTA can be classified into four main subtypes: distal RTA, proximal RTA, combined proximal and distal RTA, and hyperkalemic RTA. Distal RTA (type 1) is caused by the defect of H(+) secretion in the distal tubules and is characterized by the inability to acidify the urine below pH 5.5 during systemic acidemia. Proximal RTA (type 2) is caused by an impairment of bicarbonate reabsorption in the proximal tubules and characterized by a decreased renal bicarbonate threshold. Combined proximal and distal RTA (type 3) secondary to a reduction in tubular reclamation of bicarbonate and an inability to acidify the urine in the face of severe acidemia. Hyperkalemic RTA (type 4) may occur as a result of aldosterone deficiency or tubular insensitivity to aldosterone. Clinicians should be alert to the presence of RTA in patients with an unexplained normal anion gap acidosis, hypokalemia, recurrent nephrolithiasis and nephrocalcinosis. The mainstay of treatment of RTA remains alkali replacement.

  8. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells.

    PubMed

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury.

  9. [Tubular renal acidosis].

    PubMed

    Seidowsky, A; Moulonguet-Doleris, L; Hanslik, T; Yattara, H; Ayari, H; Rouveix, E; Massy, Z A; Prinseau, J

    2014-01-01

    Renal tubular acidosis (RTAs) are a group of metabolic disorders characterized by metabolic acidosis with normal plasma anion gap. There are three main forms of RTA: a proximal RTA called type II and a distal RTA (type I and IV). The RTA type II is a consequence of the inability of the proximal tubule to reabsorb bicarbonate. The distal RTA is associated with the inability to excrete the daily acid load and may be associated with hyperkalaemia (type IV) or hypokalemia (type I). The most common etiology of RTA type IV is the hypoaldosteronism. The RTAs can be complicated by nephrocalcinosis and obstructive nephrolithiasis. Alkalinization is the cornerstone of treatment.

  10. Renal ischaemia, transient glomerular leak and acute renal tubular damage in patients envenomed by Russell's vipers (Daboia russelii siamensis) in Myanmar.

    PubMed

    Tin-Nu-Swe; Tin-Tun; Myint-Lwin; Thein-Than; Tun-Pe; Robertson, J I; Leckie, B J; Phillips, R E; Warrell, D A

    1993-01-01

    Fifty-two patients who had been bitten by Russell's vipers in Myanmar developed acute renal failure (serum creatinine exceeding 1.3 mg/dL). Thirty-four of them (65%) became oliguric, but the other 18 (35%) maintained a urine output of more than 400 mL/24 h. In oliguric patients, gastrointestinal haemorrhages, renal angle tenderness and conjunctival oedema occurred more commonly, and peak serum creatinine, blood urea nitrogen and the fractional excretion of sodium were significantly higher (P < 0.01) than in non-oliguric patients, indicating a greater degree of renal damage. Urinary concentrations of beta 2 microglobulin and retinol binding protein were raised in most of the patients indicating failure of proximal tubular reabsorption of these proteins, while high urinary N-acetyl glucosaminidase concentrations were consistent with renal tubular damage. Plasma concentrations of active renin were very high, suggesting that renal ischaemia, associated with activation of the renin-angiotensin system, was involved in the development of renal dysfunction.

  11. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.

    PubMed

    Yildirim, Zeki; Sogut, Sadik; Odaci, Ersan; Iraz, Mustafa; Ozyurt, Huseyin; Kotuk, Mahir; Akyol, Omer

    2003-02-01

    The effect of oral erdosteine on tissue malondialdehyde (MDA) and nitric oxide (NO) levels, and catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are investigated in the cisplatin model of acute renal failure in rats. A single dose of cisplatin caused kidney damage manifested by kidney histology as well as increases in plasma creatinine and blood urea nitrogen (BUN) levels. Treatment with free radical scavenger erdosteine attenuated increases in plasma creatinine and BUN, and tissue MDA and NO levels, and provided a histologically-proven protection against cisplatin-induced acute renal failure. Erdosteine also reduced depletion in the tissue CAT, GSH-Px, and SOD activities. These results show that erdosteine may be a promising drug for protection against cisplatin-induced nephrotoxicity. However, further studies with different doses of erdosteine are warranted for clarifying the issue.

  12. Renal tubular function in hyperparathyroidism.

    PubMed Central

    van 't Hoff, W.; Bicknell, E. J.

    1989-01-01

    Renal tubular function was assessed in a group of patients with mild hyperparathyroidism before and after a mean period of 2.7 years conservative management. It was also assessed, before and after a mean of 3.3 years following surgery in a group of patients with initially higher plasma calcium concentration. Mean maximum urine osmolality was within the accepted range as was the maximum urine plasma hydrogen ion gradient in both groups at the time of diagnosis. No significant change in renal tubular function was observed in either group over the periods of this study. Although deterioration after a long period cannot be excluded, we do not consider that regular assessment of renal tubular function is necessary in the conservative management of primary hyperparathyroidism. PMID:2616415

  13. Pharmacogenetics may Influence Tacrolimus Daily Dose, but not Urinary Tubular Damage Markers in the Long-Term Period after Renal Transplantation

    PubMed Central

    Stefanović, Nikola Z.; Cvetković, Tatjana P.; Veličković-Radovanović, Radmila M.; Jevtović-Stoimenov, Tatjana M.; Vlahović, Predrag M.; Stojanović, Ivana R.; Pavlović, Dušica D.

    2015-01-01

    Summary Background The primary goal of this study was to evaluate the influence of cytochrome P450 (CYP) 3A5 (6986A>G) and ABCB1 (3435C>T) polymorphisms on tacrolimus (TAC) dosage regimen and exposure. Second, we evaluated the influence of TAC dosage regimen and the tested polymorphisms on renal oxidative injury, as well as the urinary activities of tubular ectoenzymes in a long-term period after transplantation. Also, we aimed to determine the association between renal oxidative stress and tubular damage markers in the renal transplant patients. Methods The study included 72 patients who were on TAC based immunosuppression. Allele-specific PCR was used for polymorphism determination. We measured the urinary thiobarbituric acid reactive substances (TBARS) and reactive carbonyl derivates (RCD) in order to evaluate oxidative injury, as well as the urinary activities of ectoenzymes (N-acetyl-β-D-glucosaminidase, aminopeptidase N and dipeptidyl peptidase IV) to evaluate tubular damage. Results The carriers of CYP 3A5*1 allele required statistically higher daily doses of TAC than CYP *3/*3 carriers, as well as the carriers of C allele of ABCB1 gene compared to those with TT genotype. Also, there were no differences in TBARS, RCD and the activities of ectoenzymes between the patients’ genotypes. Our results showed significant correlations between urinary TBARS and RCD and the ectoenzymes’ activities. Conclusions Our findings suggest that CYP 3A5 and ABCB1 3435 polymorphism may affect TAC daily doses, but not the drug’s tubular toxicity. Furthermore, tubular damage may be associated with increased renal oxidative stress. PMID:28356851

  14. Renal tubular acidosis type 4 in pregnancy.

    PubMed

    Jakes, Adam Daniel; Baynes, Kevin; Nelson-Piercy, Catherine

    2016-03-17

    We describe the clinical course of renal tubular acidosis (RTA) type 4 in pregnancy, which has not been previously published. Renal tubular acidosis type 4 is a condition associated with increased urinary ammonia secondary to hypoaldosteronism or pseudohypoaldosteronism. Pregnancy may worsen the hyperkalaemia and acidosis of renal tubular acidosis type 4, possibly through an antialdosterone effect. We advise regular monitoring of potassium and pH throughout pregnancy to ensure safe levels are maintained.

  15. Hyperammonaemia with distal renal tubular acidosis.

    PubMed

    Miller, S G; Schwartz, G J

    1997-11-01

    The case is reported of an infant with hyperammonaemia secondary to severe distal renal tubular acidosis. A clinical association between increased concentrations of ammonia in serum and renal tubular acidosis has not previously been described. In response to acidosis the infant's kidneys presumably increased ammonia synthesis but did not excrete ammonia, resulting in hyperammonaemia. The patient showed poor feeding, frequent vomiting, and failure to thrive, but did not have an inborn error of metabolism. This case report should alert doctors to consider renal tubular acidosis in the differential diagnosis of severely ill infants with metabolic acidosis and hyperammonaemia.

  16. Sex Differences in Renal Proximal Tubular Cell Homeostasis.

    PubMed

    Seppi, Thomas; Prajczer, Sinikka; Dörler, Maria-Magdalena; Eiter, Oliver; Hekl, Daniel; Nevinny-Stickel, Meinhard; Skvortsova, Iraida; Gstraunthaler, Gerhard; Lukas, Peter; Lechner, Judith

    2016-10-01

    Studies in human patients and animals have revealed sex-specific differences in susceptibility to renal diseases. Because actions of female sex hormones on normal renal tissue might protect against damage, we searched for potential influences of the female hormone cycle on basic renal functions by studying excretion of urinary marker proteins in healthy human probands. We collected second morning spot urine samples of unmedicated naturally ovulating women, postmenopausal women, and men daily and determined urinary excretion of the renal tubular enzymes fructose-1,6-bisphosphatase and glutathione-S-transferase-α Additionally, we quantified urinary excretion of blood plasma proteins α1-microglobulin, albumin, and IgG. Naturally cycling women showed prominent peaks in the temporal pattern of urinary fructose-1,6-bisphosphatase and glutathione-S-transferase-α release exclusively within 7 days after ovulation or onset of menses. In contrast, postmenopausal women and men showed consistently low levels of urinary fructose-1,6-bisphosphatase excretion over comparable periods. We did not detect changes in urinary α1-microglobulin, albumin, or IgG excretion. Results of this study indicate that proximal tubular tissue architecture, representing a nonreproductive organ-derived epithelium, undergoes periodical adaptations phased by the female reproductive hormone cycle. The temporally delimited higher rate of enzymuria in ovulating women might be a sign of recurring increases of tubular cell turnover that potentially provide enhanced repair capacity and thus, higher resistance to renal damage.

  17. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    NASA Astrophysics Data System (ADS)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  18. Mechanisms of renal tubular defects in old age.

    PubMed Central

    Dontas, A. S.; Marketos, S. G.; Papanayiotou, P.

    1972-01-01

    The mechanisms of renal tubular dysfunction in old age have been examined in twenty-eight clinically healthy elderly subjects without infection, and in fourteen subjects of similar age with laboratory evidence of intrarenal infection. The data were compared with those from thirteen clinically healthy young subjects. Studied were: proximal tubular (Tm(PAH)) and distal tubular (CH2O) activity, minimal and maximal osmolal U/P ratios, maximal osmolal excretion in hydropenia, and GFR levels under standard hydration and under water-loading. The reduction of GFR in old age is evident particularly in men under conditions of standard hydration: it is accentuated in the presence of renal infection. Proximal tubular activity is also significantly lower in elderly men, especially if they have chronic bacteriuria. The reduction is closely related to GFR levels, with identical Tm(PAH):C(in) ratios in all groups. This supports the intact nephron hypothesis for this part of the nephron. Distal tubular activity is depressed in old age in both sexes proportionately more than proximal tubular activity or the GFR. The lower CH2O: GFR ratios imply a selective distal tubular damage. Maximal osmolal U/P ratios in hydropenia are significantly higher in the young (mean 367) than in either the elderly non-infected (mean 279) or the elderly infected subjects (mean 212). Conversely, minimal U/P ratios in water-loading are lower in the young (mean 0.247) than in either elderly group (means 0.418 and 0.668). Osmolal excretion in hydropenia is not different between the groups, but urine flows in water-loading clearly separate them. The data indicate that simple functions of the distal-collecting tubule (e.g. the CH2O), are less affected in old age than are functions involving several medullary structures (as is the maximal U(osm) or U/P ratio). They suggest that the main impairment of the distal tubular cell involves the failure to achieve a proper osmotic gradient between tubular fluid and

  19. Renal tubular acidosis: an immunopathological study on four patients

    PubMed Central

    Pasternack, A.; Linder, E.

    1970-01-01

    Renal biopsies and sera of four patients with distal renal tubular acidosis were examined. The findings consisted of immunoglobulin containing mononuclear cellular infiltrates around the distal tubules, bound immunoglobulin and complement in tubules. The sera of the patients contained antibodies reacting with various tissue antigens, among them renal tubular antigens. The results suggest that autoimmunity was involved in the pathogenesis of the renal tubular acidosis in these patients. ImagesFig. 1Fig. 2 PMID:5202740

  20. Mechanisms in hyperkalemic renal tubular acidosis.

    PubMed

    Karet, Fiona E

    2009-02-01

    The form of renal tubular acidosis associated with hyperkalemia is usually attributable to real or apparent hypoaldosteronism. It is therefore a common feature in diabetes and a number of other conditions associated with underproduction of renin or aldosterone. In addition, the close relationship between potassium levels and ammonia production dictates that hyperkalemia per se can lead to acidosis. Here I describe the modern relationship between molecular function of the distal portion of the nephron, pathways of ammoniagenesis, and hyperkalemia.

  1. Distal renal tubular acidosis with hereditary spherocytosis.

    PubMed

    Sinha, Rajiv; Agarwal, Indira; Bawazir, Waleed M; Bruce, Lesley J

    2013-07-01

    Hereditary spherocytosis (HS) and distal renal tubular acidosis (dRTA), although distinct entities, share the same protein i.e. the anion exchanger1 (AE1) protein. Despite this, their coexistence has been rarely reported. We hereby describe the largest family to date with co-existence of dRTA and HS and discuss the molecular basis for the co-inheritance of these conditions.

  2. Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy

    PubMed Central

    Xiao, Li; Zhu, Xuejing; Yang, Shikun; Liu, Fuyou; Zhou, Zhiguang; Zhan, Ming; Xie, Ping; Zhang, Dongshan; Li, Jun; Song, Panai; Kanwar, Yashpal S.; Sun, Lin

    2014-01-01

    Rap1b ameliorates high glucose (HG)-induced mitochondrial dysfunction in tubular cells. However, its role and precise mechanism in diabetic nephropathy (DN) in vivo remain unclear. We hypothesize that Rap1 plays a protective role in tubular damage of DN by modulating primarily the mitochondria-derived oxidative stress. The role and precise mechanisms of Rap1b on mitochondrial dysfunction and of tubular cells in DN were examined in rats with streptozotocin (STZ)-induced diabetes that have Rap1b gene transfer using an ultrasound microbubble-mediated technique as well as in renal proximal epithelial tubular cell line (HK-2) exposed to HG ambiance. The results showed that Rap1b expression decreased significantly in tubules of renal biopsies from patients with DN. Overexpression of a constitutively active Rap1b G12V notably ameliorated renal tubular mitochondrial dysfunction, oxidative stress, and apoptosis in the kidneys of STZ-induced rats, which was accompanied with increased expression of transcription factor C/EBP-β and PGC-1α. Furthermore, Rap1b G12V also decreased phosphorylation of Drp-1, a key mitochondrial fission protein, while boosting the expression of genes related to mitochondrial biogenesis and antioxidants in HK-2 cells induced by HG. These effects were imitated by transfection with C/EBP-β or PGC-1α short interfering RNA. In addition, Rap1b could modulate C/EBP-β binding to the endogenous PGC-1α promoter and the interaction between PGC-1α and catalase or mitochondrial superoxide dismutase, indicating that Rap1b ameliorates tubular injury and slows the progression of DN by modulation of mitochondrial dysfunction via C/EBP-β–PGC-1α signaling. PMID:24353183

  3. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    SciTech Connect

    Sun, Yuan; Fujigaki, Yoshihide; Sakakima, Masanori; Hishida, Akira

    2010-02-15

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PT cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.

  4. [Effect of the chelator BPCBG on the decorporation of uranium in vivo and uranium-induced damage of human renal tubular epithelial cells in vitro].

    PubMed

    Bao, Yi-zhong; Wang, Dan; Hu, Yu-xing; Xu, Ai-hong; Sun, Mei-zhen; Chen, Hong-hong

    2011-11-01

    This study is to assess the efficacy of BPCBG on the decorporation of uranium (VI) and protecting human renal proximal tubular epithelial cells (HK-2) against uranium-induced damage. BPCBG at different doses was injected intramuscularly to male SD rats immediately after a single intraperitoneal injection of UO2(CH3COO)2. Twenty-four hours later uranium contents in urine, kidneys and femurs were measured by ICP-MS. After HK-2 cells were exposed to UO2(CH3COO)2 immediately or for 24 h followed by BPCBG treatment at different doses for another 24 or 48 h, the uranium contents in HK-2 cells were measured by ICP-MS, the cell survival was assayed by cell counting kit-8 assay, formation of micronuclei was determined by the cytokinesis-block (CB) micronucleus assay and the production of intracellular reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) oxidation. DTPA-CaNa3 was used as control. It was found that BPCBG at dosages of 60, 120, and 600 micromol kg(-1) resulted in 37%-61% increase in 24 h-urinary uranium excretion, and significantly decreased the amount of uranium retention in kidney and bone to 41%-31% and 86%-42% of uranium-treated group, respectively. After HK-2 cells that had been pre-treated with UO2(CH3COO)2 for 24 h were treated with the chelators for another 24 h, 55%-60% of the intracellular uranium was removed by 10-250 micromol L(-1) of BPCBG. Treatment of uranium-treated HK-2 cells with BPCBG significantly enhanced the cell survival, decreased the formation of micronuclei and inhibited the production of intracellular ROS. Although DTPA-CaNa3 markedly reduced the uranium retention in kidney of rats and HK-2 cells, its efficacy of uranium removal from body was significantly lower than that of BPCBG and it could not protect uranium-induced cell damage. It can be concluded that BPCBG effectively decorporated the uranium from UO2(CH3COO)2-treated rats and HK-2 cells, which was better than DTPA-CaNa3. It could also

  5. Renal tubular acidosis in chronic liver disease

    PubMed Central

    Golding, Peter L.

    1975-01-01

    Renal tubular acidosis of the gradient or classic type, thought to be due to a disorder of the distal tubule, has been found to occur in 32% of 117 patients with chronic liver disease. Whilst the cause of this disorder is probably multifactorial, immunological mechanisms are considered to play a major role. The presence of this disorder might well be a cause, rather than the result of, the various electrolyte abnormalities seen in patients with chronic liver disease. ImagesFig. 1Fig. 6 PMID:1234340

  6. Transient Distal Renal Tubular Acidosis in Organophosphate Poisoning

    PubMed Central

    Narayan, Ram; Abdulla, Mansoor C.; Alungal, Jemshad

    2017-01-01

    Renal complications due to organophosphate poisoning are very rare. We are presenting a unique case of transient distal renal tubular acidosis due to organophosphate poisoning, which to the best of our knowledge is the first of its kind. An elderly female after deliberate self-harm with ingestion of chlorpyrifos had multiple ventricular arrhythmias due to hypokalemia secondary to distal renal tubular acidosis which improved completely after treatment.

  7. Tubular reabsorption in normal renal function.

    PubMed

    O'Connor, W J

    1984-01-01

    The purpose here is to examine in relation to normal renal function three factors which might affect tubular reabsorption: (1) The reabsorption of SO4, PO4, K, Cl, HCO3 and water are all linked to the reabsorption of Na. This would amount to the reabsorption by the tubules of a net reabsorbate of a composition similar to Locke's fluid. Fixed linkage of the reabsorption of a substance to the reabsorption of Na would be a very effective way of maintaining its plasma concentration within a narrow range. The substance would be retained unless its plasma concentration exceeds a threshold value and then small increase in plasma concentration determines its excretion. (2) The rate of reabsorption of Na and substances linked to it is increased when the volume of the intraluminal fluid is increased. This would explain why there is only a small increase in the excretion of Na and other electrolytes when glomerular filtration rate is increased after a meal of meat. (3) Plasma protein concentration affects tubular reabsorption. This would explain why fall in plasma protein is a main agent determining Na excretion in normal animals. Trying to see 'how far the observed facts can be brought into accord with a theory' reveals the difficulty of applying critical tests. On the one hand, the theories are not stated quantitatively in reference to the small changes of normal life; rather the evidence is from experiments with large changes. On the other hand, the small changes within the range of normal function, while themselves statistically significant, are too small for effective investigation of circumstances which may modify them. In the examples discussed here, we cannot say more than that the theories could explain the facts and their participation cannot be excluded.

  8. Responses of proximal tubular cells to injury in congenital renal disease: fight or flight.

    PubMed

    Chevalier, Robert L; Forbes, Michael S; Galarreta, Carolina I; Thornhill, Barbara A

    2014-04-01

    Most chronic kidney disease in children results from congenital or inherited disorders, which can be studied in mouse models. Following 2 weeks of unilateral ureteral obstruction (UUO) in the adult mouse, nephron loss is due to proximal tubular mitochondrial injury and cell death. In neonatal mice, proximal tubular cell death is delayed beyond 2 weeks of complete UUO, and release of partial UUO allows remodeling of remaining nephrons. Progressive cyst expansion develops in polycystic kidney disease (PKD), a common inherited renal disorder. The polycystic kidney and fibrosis (pcy)-mutant mouse (which develops late-onset PKD) develops thinning of the glomerulotubular junction in parallel with growth of cysts in adulthood. Renal insufficiency in nephropathic cystinosis, a rare inherited renal disorder, results from progressive tubular cystine accumulation. In the Ctns knockout mouse (a model of cystinosis), proximal tubular cells become flattened, with loss of mitochondria and thickening of tubular basement membrane. In each model, persistent obstructive or metabolic stress leads ultimately to the formation of atubular glomeruli. The initial "fight" response (proximal tubular survival) switches to a "flight" response (proximal tubular cell death) with ongoing oxidative injury and mitochondrial damage. Therapies should be directed at reducing proximal tubular mitochondrial oxidative injury to enhance repair and regeneration.

  9. Distal Renal Tubular Acidosis in Infancy: A Bicarbonate Wasting State

    ERIC Educational Resources Information Center

    Rodriguez-Soriano, J.; And Others

    1975-01-01

    Studied were three unrelated infants with distal renal tubular acidosis (a condition characterized by an inability to acidify the urine to minimal pH levels resulting in the loss of bicarbonates). (DB)

  10. Benchmark Dose Estimation for Cadmium-Induced Renal Tubular Damage among Environmental Cadmium-Exposed Women Aged 35–54 Years in Two Counties of China

    PubMed Central

    Hu, Jia; Li, Mei; Han, Tian-xu; Chen, Jian-wei; Ye, Lin-xiang; Wang, Qi; Zhou, Yi-kai

    2014-01-01

    Background A number of factors, including gender, age, smoking habits, and occupational exposure, affect the levels of urinary cadmium. Few studies have considered these influences when calculating the benchmark dose (BMD) of cadmium. In the present study, we aimed to calculate BMDs and their 95% lower confidence bounds (BMDLs) for cadmium-induced renal tubular effects in an age-specific population in south-central China. Methods In this study, urinary cadmium, β2-microglobulin, and N-acetyl-β-D-glucosaminidase levels were measured in morning urine samples from 490 randomly selected non-smoking women aged 35–54 years. Participants were selected using stratified cluster sampling in two counties (counties A and B) in China. Multiple regression and logistic regression analyses were used to investigate the dose-response relationship between urinary cadmium levels and tubular effects. BMDs/BMDLs corresponding to an additional risk (benchmark response) of 5% and 10% were calculated with assumed cut-off values of the 84th and 90th percentile of urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase levels of the controls. Results Urinary levels of β2-microglobulin and N-acetyl-β-D-glucosaminidase increased significantly with increasing levels of urinary cadmium. Age was not associated with urinary cadmium levels, possibly because of the narrow age range included in this study. Based on urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase, BMDs and BMDLs of urinary cadmium ranged from 2.08 to 3.80 (1.41–2.18) µg/g cr for subjects in county A and from 0.99 to 3.34 (0.74–1.91) µg/g cr for those in county B. The predetermined benchmark response of 0.05 and the 90th percentiles of urinary β2-microglobulin and N-acetyl-β-D-glucosaminidase levels of the subjects not exposed to cadmium (i.e., the control group) served as cut-off values. Conclusions The obtained BMDs of urinary cadmium were similar to the reference point of 1 µg/g cr, as suggested by the

  11. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate.

  12. P53 inhibitor pifithrin-α prevents the renal tubular epithelial cells against injury

    PubMed Central

    Shen, Yun-Lin; Sun, Lei; Hu, Yu-Jie; Liu, Hua-Jie; Kuang, Xin-Yu; Niu, Xiao-Ling; Huang, Wen-Yan

    2016-01-01

    The injury and repair of renal tubular epithelial cells play an important role in the pathological process of acute kidney injury (AKI). This study aimed to clarify the role of cell cycle change in renal tubular epithelial cell injury and repair in vivo and in vitro. Sprague-Dawley rats received bilateral renal pedicle clamping for 45 min (ischemia) followed by reperfusion. Pifithrin-α, a p53 inhibitor, was administered at 24 h before renal ischemia and 3 and 14 days after reperfusion. Results showed the tubular epithelial cells in M phase increased significantly at 2 h to 72 h after ischemia/reperfusion (I/R), while pifithrin-α decreased them. Renal I/R caused renal tubular epithelial damage in rats, which was improved by pifithrin-α. The α-SMA mRNA expression was up-regulated significantly after I/R, while it was down-regulated by pifithrin-α.NRK-52E cells were cultured in vitro, cell damage was induced by addition of TNF-α, and then cells were treated with pifithrin-α. Cells treated with TNF-α alone in G2/M phase increased significantly, but they were reduced in the presence of pifithrin-α. In NRK-52E cells treated with pifithrin-α for 6 h, NGAL mRNA expression was significantly lower than in cells without pifithrin-α treatment. After NRK-52E cells were treated with pifithrin-α for 24 h, α-SMA and FN mRNA expression was significantly lower than in cells without the treatment. In summary, pifithrin-α can facilitate the progression of renal tubular epithelial cells through G2/M phase, protecting them against injury. PMID:27829991

  13. Renal pathophysiologic role of cortical tubular inclusion bodies.

    PubMed

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  14. Klinefelter's syndrome with renal tubular acidosis: impact on height.

    PubMed

    Jebasingh, F; Paul, T V; Spurgeon, R; Abraham, S; Jacob, J J

    2010-02-01

    A 19-year-old Indian man presented with a history of proximal muscle weakness, knock knees and gynaecomastia. On examination he had features of rickets and bilateral small testes. Karyotyping revealed a chromosomal pattern of 47,XXX, confirming the diagnosis of Klinefelter's syndrome. He was also found to have hyperchloraemic metabolic acidosis with hypokalaemia, hypophosphataemia, phosphaturia and glycosuria, which favoured a diagnosis of proximal renal tubular acidosis. Patients with Klinefelter's syndrome typically have a tall stature due to androgen deficiency, resulting in unfused epiphyses and an additional X chromosome. However, this patient had a short stature due to associated proximal renal tubular acidosis. To the best of our knowledge, this is the second case of Klinefelter's syndrome with short stature due to associated renal tubular acidosis reported in the literature. This report highlights the need to consider other causes when patients with Klinefelter's syndrome present with a short stature.

  15. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  16. sup 99m Tc renal tubular function agents: Current status

    SciTech Connect

    Eshima, D.; Fritzberg, A.R.; Taylor, A. Jr. )

    1990-01-01

    Orthoiodohippuric (OIH) acid labeled with 131I is a widely used renal radiopharmaceutical agent and has been the standard radiopharmaceutical agent for the measurement of effective renal plasma flow (EPRF). Limitations to the routine clinical use of 131I OIH are related to the suboptimal imaging properties of the 131I radionuclide and its relatively high radiation dose. 123I has been substituted for 131I; however, its high cost and short shelf-life have limited its widespread use. Recent work has centered on the development of a new 99mTc renal tubular function agent, which would use the optimal radionuclidic properties and availability of 99mTc and combine the clinical information provided by OIH. The search for a suitable 99mTc renal tubular function agent has focused on the diamide dithiolate (N2S2), the paraaminohippuric iminodiacetic acid (PAHIDA), and the triamide mercaptide (N3S) donor ligand systems. To date, the most promising 99mTc tubular function agent is the N3S complex: 99mTc mercaptoacetyltriglycine (99mTc MAG3). Studies in animal models in diuresis, dehydration, acid or base imbalance, ischemia, and renal artery stenosis demonstrate that 99mTc MAG3 behaves similarly to 131I OIH. A simple kit formulation is available that yields the 99mTc MAG3 complex in high radiochemical purity. Studies in normal subjects and patients indicate that 99mTc MAG3 is an excellent 99mTc renal tubular agent, but its plasma clearance is only 50% to 60% that of OIH. In an effort to develop an improved 99mTc renal tubular function agent, changes have been made in the core N3S donor ligand system, but to date no agent has been synthesized that is clinically superior to 99mTc MAG3. 61 references.

  17. Comparative physiology of renal tubular transport mechanisms.

    PubMed Central

    Long, S.; Giebisch, G.

    1979-01-01

    This manuscript discusses current concepts of glomerular filtration and tubular transport of sodium, water, potassium, and urinary acidification by vertebrate kidneys in a comparative context. Work in mammalian and amphibian nephrons receives major emphasis due to our interest in application of new techniques for investigation of cellular mechanisms; when available, data from other vertebrate classes are discussed. Images FIG. 3 PMID:395765

  18. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats

    PubMed Central

    Zhu, Yongjun; Cui, Hongwang; Xia, Yunfeng; Gan, Hua

    2016-01-01

    Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains unclear. We sought to explore the mechanisms of renal tubular cell death during the early and intermediate stages of chronic renal damage of subtotal nephrectomied (SNx) rats. The results of tissue histological assays indicated that the numbers of necrotic dying cells and apoptotic cells were significantly higher in kidney tissues derived from a rat model of CKD. In addition, there was a significant increase in necroptosis observed by transmission electron microscopy (TEM) and an increase in the proportion of TUNEL-positive cells in kidney tissues from SNx rats compared with control rats, and necrostatin-1 (Nec-1) could inhibit necroptosis and reduce the proportion of TUNEL-positive cells. More importantly, we observed a significant increase in the incidence of necroptosis compared with apoptosis by TEM in vivo and in vitro and a significant increase in the proportion of TUNEL-positive tubular epithelial cells that did not express caspase-3 compared with those expressing cleaved caspase-3 in vitro. Furthermore, treatment with Nec-1 and zVAD strongly reduced necroptosis- and apoptosis-mediated renal tubular cell death and decreased the levels of blood urea nitrogen and serum creatinine and tubular damage scores of SNx rats. These results suggest that necroptotic cell death plays a more significant role than apoptosis in mediating the loss of renal tubular cells in SNx rats and that effectively blocking both necroptosis and apoptosis improves renal function and tubular damage at early and intermediate stages of CKD. PMID:27281190

  19. Osteomalacia associated with increased renal tubular resorption of phosphate (hypohyperparathyroidism)

    PubMed Central

    Kanis, J. A.; Walton, R. J.

    1976-01-01

    A 12-year-old girl, who presented with joint pains, was found to have hypocalcaemia, hyperphosphataemia due to increased renal tubular reabsorption, increased serum alkaline phosphatase activity, and osteomalacia. These features, which resemble those found in so-called hypohyperparathyroidism, were all rapidly reversed by small doses of cholecalciferol. PMID:183195

  20. Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue.

    PubMed Central

    Hammond, P. J.; Wade, A. F.; Gwilliam, M. E.; Peters, A. M.; Myers, M. J.; Gilbey, S. G.; Bloom, S. R.; Calam, J.

    1993-01-01

    The Indium-labelled somatostatin analogue pentetreotide has been successfully developed for imaging of somatostatin receptor positive tumours. However there is significant renal tubular uptake of the radiolabelled peptide, which can obscure upper abdominal tumours and would preclude its use for targeted radiotherapy. The aim of this study was to determine whether amino acid infusion, which has been shown to block renal tubular peptide reabsorption, diminishes renal parenchymal uptake of this radiolabelled analogue. Eight patients being scanned with the 111In-labelled somatostatin analogue, pentetreotide, for localisation of gastroenteropancreatic tumours received an infusion of synthetic amino acids. The ratio of isotope uptake in kidney to that in spleen was assessed, and compared to the ratio for matched control patients, to determine if amino acid infusion reduced renal parenchymal uptake of the radiopharmaceutical. The amount of isotope in the urine was determined to ensure that any effect of the amino acid infusion was unrelated to changes in clearance. Infusion of amino acids significantly reduced renal parenchymal uptake of isotope at 4 h. There was a non-significant increase in urinary clearance of isotope over the 4 h, consistent with reduced reuptake and a lack of effect on glomerular filtration rate. This technique, by preventing renal damage, may allow the use of this somatostatin analogue for local radiotherapy, and could be of wider value in blocking tubular re-uptake of potentially nephrotoxic agents, such as radiolabelled Fab fragments. Images Figure 1 PMID:8099808

  1. Developmental changes in renal tubular transport-an overview.

    PubMed

    Gattineni, Jyothsna; Baum, Michel

    2015-12-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.

  2. Synchronized renal tubular cell death involves ferroptosis.

    PubMed

    Linkermann, Andreas; Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus; Weinberg, Joel M; Reichel, Christoph A; Bräsen, Jan Hinrich; Kunzendorf, Ulrich; Anders, Hans-Joachim; Stockwell, Brent R; Green, Douglas R; Krautwald, Stefan

    2014-11-25

    Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.

  3. Tubular Peroxiredoxin 3 as a Predictor of Renal Recovery from Acute Tubular Necrosis in Patients with Chronic Kidney Disease.

    PubMed

    Wu, Chia-Lin; Su, Tzu-Cheng; Chang, Chia-Chu; Kor, Chew-Teng; Chang, Chung-Ho; Yang, Tao-Hsiang; Chiu, Ping-Fang; Tarng, Der-Cherng

    2017-02-27

    Peroxiredoxin 3 (PRX3) is a mitochondrial antioxidant that regulates apoptosis in various cancers. However, whether tubular PRX3 predicts recovery of renal function following acute kidney injury (AKI) remains unknown. This retrospective cohort study included 54 hospitalized patients who had AKI with biopsy-proven acute tubular necrosis (ATN). The study endpoint was renal function recovery within 6 months. Of the 54 enrolled patients, 25 (46.3%) had pre-existing chronic kidney disease (CKD) and 33 (61%) recovered renal function. Tubular PRX3 expression was higher in patients with ATN than in those without renal function recovery. The level of tubular but not glomerular PRX3 expression predicted renal function recovery from AKI (AUROC = 0.76). In multivariate Cox regression analysis, high PRX3 expression was independently associated with a higher probability of renal function recovery (adjusted hazard ratio = 8.99; 95% CI 1.13-71.52, P = 0.04). Furthermore, the discriminative ability of the clinical model for AKI recovery was improved by adding tubular PRX3. High tubular PRX3 expression was associated with a higher probability of renal function recovery from ATN. Therefore, tubular PRX3 in combination with conventional predictors can further improve recovery prediction and may help with risk stratification in AKI patients with pre-existing CKD.

  4. Tubular Peroxiredoxin 3 as a Predictor of Renal Recovery from Acute Tubular Necrosis in Patients with Chronic Kidney Disease

    PubMed Central

    Wu, Chia-Lin; Su, Tzu-Cheng; Chang, Chia-Chu; Kor, Chew-Teng; Chang, Chung-Ho; Yang, Tao-Hsiang; Chiu, Ping-Fang; Tarng, Der-Cherng

    2017-01-01

    Peroxiredoxin 3 (PRX3) is a mitochondrial antioxidant that regulates apoptosis in various cancers. However, whether tubular PRX3 predicts recovery of renal function following acute kidney injury (AKI) remains unknown. This retrospective cohort study included 54 hospitalized patients who had AKI with biopsy-proven acute tubular necrosis (ATN). The study endpoint was renal function recovery within 6 months. Of the 54 enrolled patients, 25 (46.3%) had pre-existing chronic kidney disease (CKD) and 33 (61%) recovered renal function. Tubular PRX3 expression was higher in patients with ATN than in those without renal function recovery. The level of tubular but not glomerular PRX3 expression predicted renal function recovery from AKI (AUROC = 0.76). In multivariate Cox regression analysis, high PRX3 expression was independently associated with a higher probability of renal function recovery (adjusted hazard ratio = 8.99; 95% CI 1.13–71.52, P = 0.04). Furthermore, the discriminative ability of the clinical model for AKI recovery was improved by adding tubular PRX3. High tubular PRX3 expression was associated with a higher probability of renal function recovery from ATN. Therefore, tubular PRX3 in combination with conventional predictors can further improve recovery prediction and may help with risk stratification in AKI patients with pre-existing CKD. PMID:28240739

  5. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  6. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  7. Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia

    PubMed Central

    Sanz, Ana B; Sanchez-Niño, Maria Dolores; Izquierdo, Maria Concepcion; Jakubowski, Aniela; Justo, Pilar; Blanco-Colio, Luis M; Ruiz-Ortega, Marta; Egido, Jesús; Ortiz, Alberto

    2009-01-01

    The tumour necrosis factor (TNF) family member TWEAK activates the Fn14 receptor and has pro-apoptotic, proliferative and pro-inflammatory actions that depend on the cell type and the microenvironment. We explored the proliferative actions of TWEAK on cultured tubular cells and in vivo on renal tubules. Additionally, we studied the role of TWEAK in compensatory proliferation following unilateral nephrectomy and in an inflammatory model of acute kidney injury (AKI) induced by a folic acid overdose. TWEAK increased the proliferation, cell number and cyclin D1 expression of cultured tubular cells, in vitro. Exposure to serum increased TWEAK and Fn14 expression and the proliferative response to TWEAK. TWEAK activated the mitogen-activated protein kinases ERK and p38, the phosphatidyl-inositol 3-kinase (PI3K)/Akt pathway and NF-κB. TWEAK-induced proliferation was prevented by inhibitors of these protein kinases and by the NF-κB inhibitor parthenolide. TWEAK-induced tubular cell proliferation as assessed by PCNA and cyclin D1 expression in the kidneys of adult healthy mice in vivo. By contrast, TWEAK knock-out mice displayed lower tubular cell proliferation in the remnant kidney following unilateral nephrectomy, a non-inflammatory model. This is consistent with TWEAK-induced proliferation on cultured tubular cells in the absence of inflammatory cytokines. Consistent with our previously published data, in the presence of inflammatory cytokines TWEAK promoted apoptosis, not proliferation, of cultured tubular cells. In this regard, TWEAK knock-out mice with AKI displayed less tubular apoptosis and proliferation, as well as improved renal function. In conclusion, TWEAK actions in tubular cells are context dependent. In a non-inflammatory milieu TWEAK induces proliferation of tubular epithelium. This may be relevant for compensatory renal hyperplasia following nephrectomy. PMID:19426154

  8. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury.

    PubMed

    Sörensen-Zender, Inga; Rong, Song; Susnik, Nathan; Zender, Steffen; Pennekamp, Petra; Melk, Anette; Haller, Hermann; Schmitt, Roland

    2014-04-15

    The aging kidney has a diminished regenerative potential and an increased tendency to develop tubular atrophy and fibrosis after acute injury. In this study, we found that activation of tubular epithelial Notch1 signaling was prolonged in the aging kidney after ischemia/reperfusion (IR) damage. To analyze the consequences of sustained Notch activation, we generated mice with conditional inducible expression of Notch1 intracellular domain (NICD) in proximal tubules. NICD kidneys were analyzed 1 and 4 wk after renal IR. Conditional NICD expression was associated with aggravated tubular damage, a fibrotic phenotype, and the expression of cellular senescence markers p21 and p16(INK4a). In wild-type mice pharmacological inhibition of Notch using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) improved tubulo-interstitial damage and antagonized the prosenescent pathway activation after IR. In vitro, activation of Notch signaling with delta-like-ligand-4 caused prosenescent changes in tubular cells while inhibition with DAPT attenuated these changes. In conclusion, our data suggest that sustained epithelial Notch activation after IR might contribute to the inferior outcome of old kidneys after injury. Sustained epithelial activation of Notch is associated with a prosenescent phenotype and maladaptive repair.

  9. Erythropoietin reduces cumulative nephrotoxicity from cisplatin and enhances renal tubular cell proliferation.

    PubMed

    Zafirov, Dimce; Petrusevska, G; Sikole, Aleksandar; Trojacanec, J; Labacevski, N; Kostova, E; Jakovski, K; Atanasovska, E; Petrov, S

    2008-12-01

    Cisplatin, a heavy metal complex, is one of the most active drugs used in the treatment of several human malignancies. However, high-dose therapy with cisplatin is limited by its cumulative nephrotoxicity. The main objectives of this study were to determine the role of recombinant human erythropoietin (Epoetin alfa) in the prevention of nephrotoxicity induced experimentally in Wistar rats by long-term administration of cisplatin (2 mg/kg/b.w./week) over eight weeks, and an evaluation of its effect on renal tubular cell proliferation. The animals were randomly assigned into three groups, each including 25 rats. Group 1 (CP) received only cisplatin (2 mg/kg/b.w./week), group 2 (CP+EPO) received cisplatin (2 mg/kg/b.w./week) and epoetin alfa (150 IE/kg/b.w./three times a week), and group 3 (control group) received only saline. During the study, the following tests for the assessment of the renal function and renal damages were performed: determination of concentration of serum creatinine and BUN and determination of total protein quantity in 24-hour urine samples. At the end of the study, the abdomen was opened and both kidneys of the rats were removed and sent for histological and morphometric analysis. Ki-67 was used as a tool to determine a proliferative index. The results obtained have shown that epoetin alfa significantly reduced the functional renal failures and renal damages, and increased toleration of high doses of cisplatin. At the same time, our results with regard to tubular proliferative index have confirmed that one of the possible mechanisms by which erythropoietin accomplishes its renoprotective effect is stimulation of tubular cell proliferation and regeneration.

  10. Hyperammonaemia in a child with distal renal tubular acidosis.

    PubMed

    Seracini, D; Poggi, G M; Pela, I

    2005-11-01

    A 5-month-old girl with distal renal tubular acidosis (RTA) and hyperammonaemia that had lasted for 12 days, despite metabolic acidosis correction, is presented in this report. The patient showed failure to thrive, poor feeding, hypotonia and vomiting crisis in absence of inborn errors of metabolism. Probably, hyperammonaemia was the result of an imbalance between the increased ammonia synthesis, in response to metabolic acidosis, and the impaired ammonia excretion, typical of distal RTA. Our case confirms that hyperammonaemia may be observed in distal RTA, mimicking an inborn error of metabolism, and it underlines that hyperammonaemia may persist several days after metabolic acidosis correction.

  11. Type 4 renal tubular acidosis in a kidney transplant recipient.

    PubMed

    Kulkarni, Manjunath

    2016-02-01

    We report a case of a 66-year-old diabetic patient who presented with muscle weakness 2 weeks after kidney transplantation. Her immunosuppressive regimen included tacrolimus, mycophenolate mofetil, and steroids. She was found to have hyperkalemia and normal anion gap metabolic acidosis. Tacrolimus levels were in therapeutic range. All other drugs such as beta blockers and trimethoprim - sulfamethoxazole were stopped. She did not respond to routine antikalemic measures. Further evaluation revealed type 4 renal tubular acidosis. Serum potassium levels returned to normal after starting sodium bicarbonate and fludrocortisone therapy. Though hyperkalemia is common in kidney transplant recipients, determining exact cause can guide specific treatment.

  12. [Case of distal renal tubular acidosis complicated with renal diabetes insipidus, showing aggravation of symptoms with occurrence of diabetes mellitus].

    PubMed

    Liu, Hexing; Tomoda, Fumihiro; Koike, Tsutomu; Ohara, Maiko; Nakagawa, Taizo; Kagitani, Satoshi; Inoue, Hiroshi

    2011-01-01

    We report herein a 27-year-old male case of inherited distal renal tubular acidosis complicated with renal diabetes insipidus, the symptoms of which were aggravated by the occurrence of diabetes mellitus. At 2 months after birth, he was diagnosed as having inherited distal renal tubular acidosis and thereafter supplementation of both potassium and alkali was started to treat his hypokalemia and metabolic acidosis. At the age of 4 years, calcification of the bilateral renal medulla was detected by computed tomography. Subsequently his urinary volume gradually increased and polyuria of approximately 4 L/day persisted. At the age of 27 years, he became fond of sugar-sweetened drinks and also often forgot to take the medicine. He was admitted to our hospital due to polyuria of more than 10 L day, muscle weakness and gait disturbance. Laboratory tests disclosed worsening of both hypokalemia and metabolic acidosis in addition to severe hyperglycemia. It seemed likely that occurrence of diabetes mellitus and cessation of medications can induce osmotic diuresis and aggravate hypokalemia and metabolic acidosis. Consequently, severe dehydration, hypokalemia-induced damage of his urinary concentration ability and enhancement of the renin angiotensin system occurred and thereby possibly worsened his hypokalemia and metabolic acidosis. As normalization of hyperglycemia and metabolic acidosis might have exacerbated hypokalemia further, dehydration and hypokalemia were treated first. Following intensive treatment, these abnormalities were improved, but polyuria persisted. Elevated plasma antidiuretic hormone (12.0 pg/mL) and deficit of renal responses to antidiuretic hormone suggested that the polyuria was attributable to the preexisting renal diabetes insipidus possibly caused by bilateral renal medulla calcification. Thiazide diuretic or nonsteroidal anti-inflammatory drugs were not effective for the treatment of diabetes insipidus in the present case.

  13. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis.

    PubMed

    Topcu-Tarladacalisir, Yeter; Sapmaz-Metin, Melike; Karaca, Turan

    2016-11-01

    Curcumin has several biological functions particularly antioxidant and anti-inflammatory. The aims of this study are determination of the protective effects of curcumin on cisplatin-induced renal tubular cell apoptosis and related pathways in kidney. Eighteen male Wistar albino rats were randomly divided into three groups (n = 6): the control, cisplatin (CP), and cisplatin + curcumin (CP + CUR). Acute renal damage was induced by single dose of cisplatin (7.5 mg/kg) injected by intraperitoneally (i.p). The animals of curcumin-treated group were received daily 200 mg/kg curcumin per os (po), starting from 2 days before the injection of cisplatin to the day of sacrifice. Forty-eight hours after cisplatin injection, samples of cardiac blood and kidneys were harvested from the animals. In this study, the major finding is that curcumin treatment ameliorates the following conditions associated with cisplatin-induced nephrotoxicity: (1) the development of kidney injury (histopathology), (2) inflammatory responses [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10 levels], (3) the degree of lipid peroxidation [malondialdehyde (MDA) level], (4) renal tubular cell apoptosis (active caspase-3) and expression of related proteins [p53, Fas, and Fas ligand (Fas-L)] by immunohistochemistry, (5) renal dysfunction (serum urea and creatinine). In a conclusion, this study suggests that curcumin has antiapoptotic effect against cisplatin nephrotoxicity, in addition to anti-inflammatory and antioxidant properties.

  14. Pathogenesis of renal calculi in distal renal tubular acidosis. Possible role of parathyroid hormone.

    PubMed

    Lee, D B; Drinkard, J P; Gonick, H C; Coulson, W F; Cracchiolo, A

    1976-01-01

    Elevated circulating levels of immunoreactive parathyroid hormone (PTH), hypercalciuria and renal calculi were found in 3 patients with distal renal tubular acidosis (RTA). Treatment with alkali resulted in a fall of PTH toward normal and a reduction in urinary calcium, but the frequency of urolithiasis was unchanged. In one patient in whom prolonged follow-up was possible, a subtotal parathyroidectomy was performed. This was followed by virtual cessation of stone formation despite persistence of the acidification defect. This study suggests that RTA may be associated with secondary hyperparathyroidism and that the consequent elevation in PTH may play a contributory role in the pathogenesis of renal calculi.

  15. Micropatterning control of tubular commitment in human adult renal stem cells.

    PubMed

    Sciancalepore, Anna G; Portone, Alberto; Moffa, Maria; Persano, Luana; De Luca, Maria; Paiano, Aurora; Sallustio, Fabio; Schena, Francesco P; Bucci, Cecilia; Pisignano, Dario

    2016-07-01

    The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.

  16. Changes in free and esterified cholesterol: hallmarks of acute renal tubular injury and acquired cytoresistance.

    PubMed

    Zager, R A; Kalhorn, T F

    2000-09-01

    Acute tubular cell injury is accompanied by plasma membrane phospholipid breakdown. Although cholesterol is a dominant membrane lipid which interdigitates with, and impacts, phospholipid homeostasis, its fate during the induction and recovery phases of acute renal failure (ARF) has remained ill defined. The present study was performed to ascertain whether altered cholesterol expression is a hallmark of evolving tubular damage. Using gas chromatographic analysis, free cholesterol (FC) and esterified cholesterol (CE) were quantified in: 1) isolated mouse proximal tubule segments (PTS) after 30 minutes of hypoxic or oxidant (ferrous ammonium sulfate) injury; 2) cultured proximal tubule (HK-2) cells after 4 or 18 hours of either ATP depletion/Ca(2+) ionophore- or ferrous ammonium sulfate-mediated injury; and 3) in renal cortex 18 hours after induction of glycerol-induced myoglobinuric ARF, a time corresponding to the so-called "acquired cytoresistance" state (ie, resistance to further renal damage). Hypoxic and oxidant injury each induced approximately 33% decrements in CE (but not FC) levels in PTS, corresponding with lethal cell injury ( approximately 50 to 60% LDH release). When comparable CE declines were induced in normal PTS by exogenous cholesterol esterase treatment, proportionate lethal cell injury resulted. During models of slowly evolving HK-2 cell injury, progressive CE increments occurred: these were first noted at 4 hours, and reached approximately 600% by 18 hours. In vivo myoglobinuric ARF produced comparable renal cortical CE (and to a lesser extent FC) increments. Renal CE accumulation strikingly correlated with the severity of ARF (eg, blood urea nitrogen versus CE; r, 0.84). Mevastatin blocked cholesterol accumulation in injured HK-2 cells, indicating de novo synthesis was responsible. Acute tubule injury first lowers, then raises, tubule cholesterol content. Based on previous observations that cholesterol has cytoprotectant properties, the present

  17. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats

    PubMed Central

    PENG, TAO; WANG, JIE; ZHEN, JUNHUI; HU, ZHAO; YANG, XIANGDONG

    2014-01-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (p<0.01). Except for blood glucose and kidney/body weight, the remaining indices were lower in the B group compared with those in the DM group (p<0.01). Immunohistochemical staining results revealed the expression of α-SMA in renal tubular epithelial cells to be significantly higher in the DM and B groups compared with the control (N) group (p<0.01). Western blot analysis revealed that the expression of α-SMA in diabetic renal tissue increased 3.27-fold compared with that of the N group, while the expression of α-SMA in the B group decreased 45% compared with that in the DM group. In conclusion, benazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection. PMID:24944793

  18. Lethal activity of FADD death domain in renal tubular epithelial cells.

    PubMed

    Justo, P; Sanz, A B; Lorz, C; Egido, J; Ortiz, A

    2006-06-01

    Fas-associated death domain (FADD) is an adaptor protein that is required for the transmission of the death signal from lethal receptors of the tumor necrosis factor superfamily. FADD contains a death domain (DD) and a death effector domain (DED). As death receptors contribute to renal tubular injury and tubular cell FADD increases in acute renal failure, we have studied the function of FADD in tubular epithelium. FADD expression was studied in kidney samples from mice. In order to study the contribution of FADD to renal tubular cell survival, FADD or FADD-DD were overexpressed in murine tubular epithelium. FADD is expressed in renal tubules of the healthy kidney. Both FADD and FADD-DD induce apoptosis in primary cultures of murine tubular epithelium and in the murine cortical tubular cell line. Death induced by FADD-DD has apoptotic morphology, but differs from death receptor-induced apoptosis in that it is not blocked by inhibitors of caspases. Neither an inhibitor of serine proteases nor overexpression of antiapoptotic BclxL prevented cell death. However, the combination of caspase and serine protease inhibition was protective. FADD and FADD-DD overexpression decreased nuclear factor kappa B activity. These data suggest that FADD has a death regulatory function in renal tubular cells that is independent of death receptors. FADD-DD is sufficient to induce apoptosis in these cells. This information is relevant to understanding the role of FADD in tubular injury.

  19. Clinical approach to renal tubular acidosis in adult patients.

    PubMed

    Reddy, P

    2011-03-01

    Renal tubular acidosis (RTA) is a group of disorders observed in patients with normal anion gap metabolic acidosis. There are three major forms of RTA: A proximal (type II) RTA and two types of distal RTAs (type I and type IV). Proximal (type II) RTA originates from the inability to reabsorb bicarbonate normally in the proximal tubule. Type I RTA is associated with inability to excrete the daily acid load and may present with hyperkalaemia or hypokalaemia. The most prominent abnormality in type IV RTA is hyperkalaemia caused by hypoaldosteronism. This article extensively reviews the mechanism of hydrogen ion generation from metabolism of normal diet and various forms of RTA leading to disruptions of normal acid-base handling by the kidneys.

  20. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    PubMed

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  1. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    SciTech Connect

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan; Jacobo-Estrada, Tania; López-Bayghen, Esther; and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  2. Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease

    PubMed Central

    Zhan, Ming; Usman, Irtaza M.; Sun, Lin

    2015-01-01

    Diabetic kidney disease (DKD) is associated with oxidative stress and mitochondrial injury. Myo-inositol oxygenase (MIOX), a tubular-specific enzyme, modulates redox imbalance and apoptosis in tubular cells in diabetes, but these mechanisms remain unclear. We investigated the role of MIOX in perturbation of mitochondrial quality control, including mitochondrial dynamics and autophagy/mitophagy, under high-glucose (HG) ambience or a diabetic state. HK-2 or LLC-PK1 cells subjected to HG exhibited an upregulation of MIOX accompanied by mitochondrial fragmentation and depolarization, inhibition of autophagy/mitophagy, and altered expression of mitochondrial dynamic and mitophagic proteins. Furthermore, dysfunctional mitochondria accumulated in the cytoplasm, which coincided with increased reactive oxygen species generation, Bax activation, cytochrome C release, and apoptosis. Overexpression of MIOX in LLC-PK1 cells enhanced the effects of HG, whereas MIOX siRNA or d-glucarate, an inhibitor of MIOX, partially reversed these perturbations. Moreover, decreasing the expression of MIOX under HG ambience increased PTEN-induced putative kinase 1 expression and the dependent mitofusin-2–Parkin interaction. In tubules of diabetic mice, increased MIOX expression and mitochondrial fragmentation and defective autophagy were observed. Dietary supplementation of d-glucarate in diabetic mice decreased MIOX expression, attenuated tubular damage, and improved renal functions. Notably, d-glucarate administration also partially attenuated mitochondrial fragmentation, oxidative stress, and apoptosis and restored autophagy/mitophagy in the tubular cells of these mice. These results suggest a novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD and suggest d-glucarate as a potential therapeutic agent for the amelioration of DKD. PMID:25270067

  3. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload

    PubMed Central

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD. PMID:27545472

  4. Role of CDK5/cyclin complexes in ischemia-induced death and survival of renal tubular cells.

    PubMed

    Guevara, Tatiana; Sancho, Mónica; Pérez-Payá, Enrique; Orzáez, Mar

    2014-01-01

    Ischemia reperfusion processes induce damage in renal tubules and compromise the viability of kidney transplants. Understanding the molecular events responsible for tubule damage and recovery would help to develop new strategies for organ preservation. CDK5 has been traditionally considered a neuronal kinase with dual roles in cell death and survival. Here, we demonstrate that CDK5 and their regulators p35/p25 and cyclin I are also expressed in renal tubular cells. We show that treatment with CDK inhibitors promotes the formation of pro-survival CDK5/cyclin I complexes and enhances cell survival upon an ischemia reperfusion pro-apoptotic insult. These findings support the benefit of treating with CDK inhibitors for renal preservation, assisting renal tubule protection.

  5. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  6. Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.

    PubMed

    El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben

    2014-09-01

    Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  7. Increased oxidative DNA damage seen in renal biopsies adjacent stones in patients with nephrolithiasis.

    PubMed

    Kittikowit, Wipawee; Waiwijit, Uraiwan; Boonla, Chanchai; Ruangvejvorachai, Preecha; Pimratana, Chaowat; Predanon, Chagkrapan; Ratchanon, Supoj; Tosukhowong, Piyaratana

    2014-10-01

    Urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, is significantly higher in nephrolithiasis patients than in healthy individuals, indicating that these patients have higher degree of oxidative stress. In the present study, we investigated 8-OHdG expression in renal biopsies of patients with nephrolithiasis and in renal tubular cells (HK-2 cells) exposed to calcium oxalate monohydrate (COM). We performed immunohistochemical staining for 8-OHdG in renal biopsies adjacent stones obtained from 28 patients with nephrolithiasis. Controls were noncancerous renal tissues from nephrectomies of patients with renal cancer. 8-OHdG was overexpressed in the nucleus of renal tubular cells in patients with nephrolithiasis compared with controls. Only one nephrolithiasis biopsy was negative for 8-OHdG, whereas in 19 cases 8-OHdG was highly expressed. The level of expression of 8-OHdG among patients with calcium oxalate (mostly mixed with calcium phosphate) and uric acid stones was not significantly different. Increased leukocyte infiltration was observed in renal tissues from patients with nephrolithiasis. Exposure of HK-2 cells to COM caused increased intracellular reactive oxygen species and nuclear expression of 8-OHdG. To our knowledge, this is the first report of increased 8-OHdG expression in renal tubular cells of patients with nephrolithiasis. In vitro, COM crystals were capable of inducing oxidative damage of DNA in the proximal renal tubular cells.

  8. Hypokalemic quadriparesis and rhabdomyolysis as a rare presentation of distal renal tubular acidosis

    PubMed Central

    Ahmad Bhat, Manzoor; Ahmad Laway, Bashir; Mustafa, Farhat; Shafi Kuchay, Mohammad; Mubarik, Idrees; Ahmad Palla, Nazir

    2014-01-01

    Distal renal tubular acidosis is a syndrome of abnormal urine acidification and is characterized by hyperchloremic metabolic acidosis, hypokalemia, hypercalciurea, nephrocalcinosis and nephrolithiasis. Despite the presence of persistent hypokalemia, acute muscular paralysis is rarely encountered in males. Here, we will report an eighteen year old male patient who presented with flaccid quadriparesis and was subsequently found to have rhabdomyolysis, severe short stature, skeletal deformities and primary distal renal tubular acidosis. PMID:25250276

  9. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation

    PubMed Central

    Chou, Hsiu-Chu; Chang, Chih-Cheng; Lo, Hau-Yin; Juan, Shu-Hui

    2016-01-01

    Perfluorinated chemicals (PFCs) are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS) caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs). In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1) by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP) assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α) by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE) in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation. PMID:27171144

  10. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension. PMID:27698757

  11. Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy

    PubMed Central

    Wong, D W L; Yiu, W H; Wu, H J; Li, R X; Liu, Y; Chan, K W; Leung, J C K; Chan, L Y Y; Lai, K N; Tang, S C W

    2016-01-01

    Studies on the role of Wnt/β-catenin signaling in different forms of kidney disease have yielded discrepant results. Here, we report the biphasic change of renal β-catenin expression in mice with overload proteinuria in which β-catenin was upregulated at the early stage (4 weeks after disease induction) but abrogated at the late phase (8 weeks). Acute albuminuria was observed at 1 week after bovine serum albumin injection, followed by partial remission at 4 weeks that coincided with overexpression of renal tubular β-catenin. Interestingly, a rebound in albuminuria at 8 weeks was accompanied by downregulated tubular β-catenin expression and heightened tubular apoptosis. In addition, there was an inverse relationship between Dickkopf-3 (Dkk-3) and renal tubular β-catenin expression at these time points. In vitro, a similar trend in β-catenin expression was observed in human kidney-2 (HK-2) cells with acute (upregulation) and prolonged (downregulation) exposure to albumin. Induction of a proapoptotic phenotype by albumin was significantly enhanced by silencing β-catenin in HK-2 cells. Finally, Dkk-3 expression and secretion was increased after prolonged exposure to albumin, leading to the suppression of intracellular β-catenin signaling pathway. The effect of Dkk-3 on β-catenin signaling was confirmed by incubation with exogenous Dkk-3 in HK-2 cells. Taken together, these data suggest that downregulation of tubular β-catenin signaling induced by Dkk-3 has a detrimental role in chronic proteinuria, partially through the increase in apoptosis. PMID:27010856

  12. Decreased renal uptake of (99m)Tc-DMSA in patients with tubular proteinuria.

    PubMed

    Lee, Beom Hee; Lee, So Hee; Choi, Hyun Jin; Kang, Hee Gyung; Oh, So Won; Lee, Dong Soo; Ha, Il Soo; Choi, Yong; Cheong, Hae Il

    2009-11-01

    Although technetium-99m-dimercaptosuccinic acid ((99m)Tc-DMSA) renal scans are widely used to evaluate renal tubular mass function, the mechanism by which renal uptake of DMSA occurs is still the subject of debate. Patients with various proximal tubular disorders show markedly decreased renal DMSA uptake, even when there is normal creatinine clearance. We measured the renal uptake of (99m)Tc-DMSA 3 h after its injection in 13 patients with Dent disease or Lowe syndrome, both of which are typical proximal tubular disorders with defective megalin and cubilin-mediated endocytosis. Serial images of three patients were also obtained at 0.5, 1, 2 and 3 h post-injection. The correlations between renal uptake of (99m)Tc-DMSA and creatinine clearance and the degrees of acidemia and tubular proteinuria were then evaluated. The renal uptake of (99m)Tc-DMSA was markedly decreased in all patients, and the decreased uptake was detected in all serial images. In contrast, bladder radioactivity was higher than normal in all of the serial images when compared to renal radioactivity. Additionally, the uptake of (99m)Tc-DMSA was inversely proportional to the amount of urine beta(2)-microglobulin. These results strongly suggest that DMSA is filtered in the glomeruli and subsequently undergoes megalin- and cubilin-mediated endocytosis in the proximal tubules.

  13. Genomic damage in chronic renal failure--potential therapeutic interventions.

    PubMed

    Stopper, Helga; Schupp, Nicole; Klassen, André; Sebekova, Katarina; Heidland, August

    2005-01-01

    In end-stage renal failure, genomic damage is enhanced. This has been shown both in the predialysis and dialysis phase by various biomarkers, such as micronuclei frequency and single cell gel electrophoresis in lymphocytes as well as with 8-hydroxy-2'-deoxyguanosine in leukocytes. There are also data about mitochondrial DNA deletions and chromosomal abnormalities. Genomic damage may be induced by a multitude of toxic factors and mutagens, in particular via enhanced generation of reactive oxygen species. In in vitro studies, incubation of tubular cells with various AGEs (carboxymethyllysine-BSA, AGE-BSA, and methylglyoxal-BSA) and angiotensin II resulted in a marked DNA damage. Coincubation with various antioxidants as well as the angiotensin II receptor blocker, candesartan, suppressed the toxic action. Moreover, an improved uremic state by daily hemodialysis ameliorated the genomic damage in lymphocytes, as compared to patients on conventional hemodialysis.

  14. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury.

    PubMed

    Xu, Yan; Guo, Min; Jiang, Wei; Dong, Hui; Han, Yafei; An, Xiao-Fei; Zhang, Jisheng

    2016-06-01

    Ischemia is the most frequent cause of acute kidney injury (AKI), which is characterized by apoptosis of renal tubular cell. A common result of ischemia in AKI is dysfunction of endoplasmic reticulum (ER), which causes the protein-folding capacity to lag behind the protein-folding load. The abundance of misfolded proteins stressed the ER and results in induction of the unfolded protein response (UPR). While the UPR is an adaptive response, over time it can result in apoptosis when cells are unable to recover quickly. Recent research suggests that ER stress is a major factor in renal tubular cell apoptosis resulting from ischemic AKI. Thus, ER stress may be an important new progression factor in the pathology of ischemic AKI. In this article, we review UPR signaling, describe pathology and pathophysiology mechanisms of ischemic AKI, and highlight the dual function of ER stress on renal tubular cell apoptosis.

  15. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport.

    PubMed

    Ramkumar, Nirupama; Stuart, Deborah; Mironova, Elena; Bugay, Vladislav; Wang, Shuping; Abraham, Nikita; Ichihara, Atsuhiro; Stockand, James D; Kohan, Donald E

    2016-07-01

    The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.

  16. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  17. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-02

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases.

  18. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure

    PubMed Central

    Zager, Richard A.; Johnson, Ali C. M.; Becker, Kirsten

    2013-01-01

    Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, −0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death. PMID:23825563

  19. Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ maintains the epithelial phenotype and antagonizes renal fibrogenesis

    PubMed Central

    Ding, Guixia; Xu, Ying; Bai, Mi; Zhang, Yue; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2016-01-01

    Accumulating evidence suggests that loss of the renal tubular epithelial phenotype plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. Systemic activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to be protective against renal fibrosis, although the mechanisms are poorly understood. The present study aimed to define the role of renal tubular epithelium-targeted PPAR-γ in protection of the epithelial phenotype and the antagonism of renal fibrosis and to define the underlying mechanisms. In response to TGF-β1 challenge, PPAR-γ expression and activity in the renal proximal tubule epithelial cells (RPTECs) were significantly reduced, and the reduction was accompanied by decreased E-cadherin and elevated α-SMA, indicating a loss of the epithelial phenotype. Oxidative stress induced by TGF-β1 was shown to be attributed to the alteration of the epithelial phenotype and PPAR-γ inhibition. Activation of PPAR-γ by its agonists of rosiglitazone and 15d-PGJ2 or genetic overexpression of PPAR-γ prevented the loss of the epithelial phenotype induced by TGF-β1 in line with the inhibition of oxidative stress. To explore the role of PPAR-γ in renal tubular epithelial in antagonizing fibrogenesis, PPAR-γ was specifically deleted from RPTECs in mice. Following unilateral ureteral obstruction, the fibrosis was markedly deteriorated in mice with PPAR-γ invalidation in RPTECs. Treatment with rosiglitazone attenuated tubulointerstitial fibrosis and epithelial phenotype transition in WT but not proximal tubule PPAR-γ KO mice. Taken together, these findings identified an important role of renal tubular epithelium-targeted PPAR-γ in maintaining the normal epithelial phenotype and opposing fibrogenesis, possibly via antagonizing oxidative stress. PMID:27602490

  20. Rhein Inhibits Autophagy in Rat Renal Tubular Cells by Regulation of AMPK/mTOR Signaling

    PubMed Central

    Tu, Yue; Gu, Liubao; Chen, Diping; Wu, Wei; Liu, Hong; Hu, Hao; Wan, Yigang; Sun, Wei

    2017-01-01

    Rhubarb and its bioactive component rhein are frequently used for the treatment of chronic kidney diseases (CKD) in eastern Asia countries. However, the potential therapeutic mechanism remains unclear. Autophagy plays an important role in CKD. However, there were some important related issues that remained unresolved in the role of autophagy in CKD and treatment by rhubarb and rhein. We designed a number of experiments to examine whether rhubarb may reduce renal fibrosis and autophagy in rats with adenine (Ade)-induced renal tubular injury, and whether rhein could affect autophagic pathways in rat renal tubular cells. We found that, autophagic activation accompanied with renal fibrosis in rats with Ade-induced renal tubular injury, and both autophagy and renal fibrosis were attenuated by rhubarb. In addition, we observed that rhein could inhibit autophagy through regulating the key molecules in the AMPK-dependent mTOR signaling pathways, as well as the Erk and p38 MAPKs signaling pathways. These findings may partly explain the therapeutic mechanisms of rhubarb and rhein in treating CKD patients in clinic, and further suggest that targeting autophagy and related signaling pathways may provide new strategies for the treatment of renal fibrosis in CKD. PMID:28252052

  1. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis.

    PubMed

    Federico, Giuseppina; Meister, Michael; Mathow, Daniel; Heine, Gunnar H; Moldenhauer, Gerhard; Popovic, Zoran V; Nordström, Viola; Kopp-Schneider, Annette; Hielscher, Thomas; Nelson, Peter J; Schaefer, Franz; Porubsky, Stefan; Fliser, Danilo; Arnold, Bernd; Gröne, Hermann-Josef

    2016-01-21

    Renal tubular atrophy and interstitial fibrosis are common hallmarks of etiologically different progressive chronic kidney diseases (CKD) that eventually result in organ failure. Even though these pathological manifestations constitute a major public health problem, diagnostic tests, as well as therapeutic options, are currently limited. Members of the dickkopf (DKK) family, DKK1 and -2, have been associated with inhibition of Wnt signaling and organ fibrosis. Here, we identify DKK3 as a stress-induced, tubular epithelia-derived, secreted glycoprotein that mediates kidney fibrosis. Genetic as well as antibody-mediated abrogation of DKK3 led to reduced tubular atrophy and decreased interstitial matrix accumulation in two mouse models of renal fibrosis. This was facilitated by an amplified, antifibrogenic, inflammatory T cell response and diminished canonical Wnt/β-catenin signaling in stressed tubular epithelial cells. Moreover, in humans, urinary DKK3 levels specifically correlated with the extent of tubular atrophy and interstitial fibrosis in different glomerular and tubulointerstitial diseases. In summary, our data suggest that DKK3 constitutes an immunosuppressive and a profibrotic epithelial protein that might serve as a potential therapeutic target and diagnostic marker in renal fibrosis.

  2. Trimethoprim related Hyperkalaemia in a patient with Renal Tubular Acidosis Type 4.

    PubMed

    Patel, M C

    2009-01-01

    Hyperkalaemia is a common, treatable, medical emergency, often with an iatrogenic cause. This case illustrates the vulnerability of patients with pre-existing renal tubular acidosis type 4 to medications that further inhibit renin-aldosterone action. The case also illustrates the danger of keeping entirely separate case notes between different hospital disciplines.

  3. Type IV renal tubular acidosis and spironolactone therapy in the elderly.

    PubMed Central

    O'Connell, J. E.; Colledge, N. R.

    1993-01-01

    Spironolactone therapy is a well-known cause of hyperkalaemia, but in susceptible patient, it may also be associated with metabolic acidosis. We report a case of severe renal tubular acidosis (Type IV) with life-threatening hyperkalaemia caused by spironolactone, and discuss the mechanisms by which this may occur. PMID:8290440

  4. Ghrelin Protects against Renal Damages Induced by Angiotensin-II via an Antioxidative Stress Mechanism in Mice

    PubMed Central

    Fujimura, Keiko; Wakino, Shu; Minakuchi, Hitoshi; Hasegawa, Kazuhiro; Hosoya, Koji; Komatsu, Motoaki; Kaneko, Yuka; Shinozuka, Keisuke; Washida, Naoki; Kanda, Takeshi; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2014-01-01

    We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney. PMID:24747517

  5. Angiotensin II natriuresis and antinatriuresis: role of renal artery pressure, renal hemodynamics, and tubular reabsorption.

    PubMed

    Olsen, M E; Hall, J E; Montani, J P; Guyton, A C

    1985-01-01

    The aim of this study was to determine the role of changes in renal artery pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (AII). In anesthetized dogs, endogenous AII formation was blocked with SQ-14225 and AII was infused i.v. at rates of 5-1215 ng/kg/min while RAP was either servo-controlled at the normal level or permitted to increase. When RAP was servo-controlled to prevent a rise i RAP, AII infusion at all rates from 5-1215 ng/kg/min decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa), while increasing fractional reabsorption of lithium (FRLi), an index of proximal tubule fractional sodium reabsorption and distal fractional sodium reabsorption (FRDNa): When RAP was permitted to increase, AII infusion rates up to 45 ng/kg/min decreased UNaV, and FENa, while increasing FRLi and FRDNa. However, at 135 ng/kg/min and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though RBF and FF were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during AII infusion, compared to the dogs in which RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of AII cause antinatriuresis when RAP was prevented from increasing. The natriuretic effect of high dose of AII is caused by increased RAP which decreases fractional sodium reabsorption in proximal and distal tubules and causes slight increases in sodium delivery to the tubules.

  6. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells

    PubMed Central

    Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P.; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium. PMID:26146837

  7. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  8. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.

    PubMed

    Wu, Hao Jia; Yiu, Wai Han; Li, Rui Xi; Wong, Dickson W L; Leung, Joseph C K; Chan, Loretta Y Y; Zhang, Yuelin; Lian, Qizhou; Lin, Miao; Tse, Hung Fat; Lai, Kar Neng; Tang, Sydney C W

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-α, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-κB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and α-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFα-stimulating gene (TSG)-6 via P38 and NF-κB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-α overexpression were suppressed by recombinant HGF treatment, while the upregulation of α-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, α-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.

  9. Renal tubular acidosis type IV as a complication of lupus nephritis.

    PubMed

    Sánchez-Marcos, C; Hoffman, V; Prieto-González, S; Hernández-Rodríguez, J; Espinosa, G

    2016-03-01

    Renal tubular acidosis (RTA) is a rare complication of renal involvement of systemic lupus erythematosus (SLE). We describe a 24-year-old male with type IV lupus nephropathy as a presenting manifestation of SLE. He presented with improvement of renal function following induction therapy with three pulses of methylprednisolone and 500 mg biweekly pulses of cyclophosphamide. However, a week after the first pulse of cyclophosphamide, the patient presented with a significant increase in legs edema and severe hyperkalemia. Type IV RTA associated with hyporeninemic hypoaldosteronism was suspected in the presence of metabolic acidosis with a normal anion gap, severe hyperkalemia without worsening renal function, and urinary pH of 5. RTA was confirmed with a transtubular potassium concentration gradient of 2 and low levels of plasma aldosterone, renin, angiotensin II, and cortisol. Intravenous bicarbonate, high-dose furosemide, and fludrocortisone were administered with normalization of potassium levels and renal function.

  10. Renal differentiation of Mesenchymal stem cells seeded on nanofibrous scaffolds improved by Human renal tubular cell lines conditioned medium.

    PubMed

    Ardeshirylajimi, Abdolreza; Vakilian, Saeid; Salehi, Mohammad

    2016-11-09

    Kidney injuries and renal dysfunctions are one of the most important clinical problems and tissue engineering could be a valuable method for solving it. The objective of this study was to investigate the synergistic effect of renal cell line conditioned medium and Polycaprolactone nanofibers on renal differentiation of human mesenchymal stem cells. In the present study, after stem cells isolation and characterization, Polycaprolactone nanofibrous scaffold was fabricated using electrospinning methods and characterized morphologically, mechanically and biocompatibility. And then the renal differentiation of seeded mesenchymal stem cells on the surface of Polycaprolactone nanofibers with and without human renal tubular cell lines conditioned medium was investigated by evaluation of eight important renal related genes expression by Real-time RT-PCR and immunocytochemistry. Fabricated nanofibrous scaffolds were good in all characterized items. Almost highest expression of all genes was detected in stem cells seeded on Polycaprolactone under conditioned media in comparison with the stem cells seeded on Polycaprolactone, tissue culture polystyrene under renal induction medium and tissue culture polystyrene under conditioned medium. According to the results, Polycaprolactone nanofibers in contribution with conditioned medium can provide the optimal conditions for renal differentiation of mesenchymal stem cells and could be a promising candidate for renal tissue engineering application.

  11. An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis.

    PubMed

    Morris, R C

    1968-06-01

    In three unrelated patients with hereditary fructose intolerance (HFI), but in none of five normal subjects, the experimental administration of fructose invariably induced a reversible dysfunction of the renal tubule with biochemical and physiological characteristics of renal tubular acidosis. During a state of ammonium chloride-induced acidosis, (a) urinary pH was greater than six and the rate of excretion of net acid (titratable acid plus ammonium minus bicarbonate) was inappropriately low, (b) the glomerular filtration rate remained unchanged or decreased modestly, and (c) urinary excretion of titratable acid increased briskly with diuresis of infused phosphate, although urinary pH changed little. The tubular dysfunction, which also includes impaired tubular reabsorption of alpha amino nitrogen and phosphate, persisted throughout administration of fructose and disappeared afterward. The tubular dysfunction was not causally dependent on hypoglucosemia, ammonium chloride-induced acidosis or osmotic diuresis. Rather, it appeared causally related to the fructose-induced metabolic abnormality of patients with HFI. The causal enzymatic defect, the virtual absence of fructose-1-phosphate aldolase, occurs in the kidney as well as in the liver of patients with HFI.

  12. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  13. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression.

    PubMed

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2012-11-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in tubulointerstitial damage in diabetic nephropathy. Recently, metformin has been shown to ameliorate tubular injury both in cell culture and diabetic animal model. However, effects of metformin on AGEs-induced tubular cell apoptosis and damage remain unknown. We examined here whether and how metformin could block the AGEs-RAGE-elicited tubular cell injury in vitro. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. Reactive oxygen species (ROS) generation was measured with dihydroethidium staining. Apoptosis was evaluated by DNA fragmentation and annexin V expression level. AGEs upregulated RAGE mRNA levels and subsequently increased ROS generation and intercellular adhesion molecule-1, monocyte chemoattractant protein-1 and transforming growth factor-β gene expression in human renal proximal tubular cells, all of which were significantly blocked by the treatment of 0.01 and 0.1 mM metformin. Compound C, an inhibitor of AMP-activated protein kinase significantly blocked the effects of metformin on RAGE gene expression and ROS generation in AGEs-exposed tubular cells. Furthermore, metformin dose-dependently inhibited the AGEs-induced apoptotic cell death of tubular cells; 1 mM metformin completely suppressed the pro-apoptotic effects of AGEs in 2 different assay systems. Our present study suggests that metformin could inhibit the AGEs-induced apoptosis and inflammatory and fibrotic reactions in tubular cells probably by reducing ROS generation via suppression of RAGE expression through AMP-activated protein kinase activation. Metformin may protect against tubular cell injury in diabetic nephropathy by blocking the AGEs-RAGE-ROS axis.

  14. Glomerular and Tubular Renal Function after Repeated Once-Daily Tobramycin Courses in Cystic Fibrosis Patients

    PubMed Central

    Büscher, Rainer; Grosse-Onnebrink, Jörg; Hoyer, Peter F.; Mellies, Uwe

    2017-01-01

    Introduction. Antibiotic treatment regimens against Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients often include aminoglycoside antibiotics that may cause chronic renal failure after repeated courses. Aminoaciduria is an early marker of acute aminoglycoside-induced renal tubular dysfunction. We hypothesized that urinary amino acid reabsorption is decreased after repeated once-daily tobramycin therapies. Methods. In this prospective cross-sectional study creatinine clearance was estimated by the Schwartz and the Cockcroft-Gault formula. Tubular amino acid reabsorption was determined by ion exchange chromatography in 46 patients with CF who received multiple tobramycin courses (6.3 ± 10.1 (1–57)) in a once-daily dosing regimen and 10 who did not. Results. Estimated creatinine clearance employing the Cockcroft-Gault was mildly reduced in 17/46 (37%) of the patients who received tobramycin and 5/10 (50%) of the patients who did not but in none using the Schwartz formula. No association with lifetime tobramycin courses was found. Tubular amino acid reabsorption was not influenced by the amount of once-daily tobramycin courses. Conclusion. Clinically not significant reduction of eCCL occurred in a minority of CF patients. However, chronic tubular dysfunction was not present in patients with CF repeatedly treated with tobramycin in the once-daily dosing scheme. PMID:28133546

  15. Transient hyperkalemic distal renal tubular acidosis with bicarbonate wasting in a young child.

    PubMed

    Khositseth, Sookkasem

    2011-12-01

    Distal renal tubular acidosis is a clinical syndrome characterized by inability to acidify urine in the presence of metabolic acidosis. Classic dRTA patients exhibit failure to thrive, polyuria, metabolic acidosis and hypokalemia. Hyperkalemic dRTA without underlying disease is very rare. Transient bicarbonate wasting accompanied with hypokalemic dRTA was reported in infants. Herein, a transient hyperkalemic dRTA with bicarbonate wasting was reported in a young child.

  16. Renal tubular dysgenesis, absent nipples, and multiple malformations in three brothers: a new, lethal syndrome.

    PubMed

    Hisama, F M; Reyes-Mugica, M; Wargowski, D S; Thompson, K J; Mahoney, M J

    1998-12-04

    We report on three brothers with renal tubular dysgenesis and absent nipples, each also had other malformations including pre-auricular pits and a preauricular tag, branchial clefts, choanal atresia, pulmonary lobation anomaly, ventricular septal defect, type IIB interrupted aortic arch, absent gallbladder, absent thymus, parathyroid gland, accessory spleen, imperforate anus, clinodactyly, and broad digits and small nails. All three infants died neonatally. This pattern of clinical malformations appears to be a previously unreported syndrome.

  17. [Sjögren syndrome associated with renal tubular acidosis type I].

    PubMed

    Górriz, L; Molino, R; Arjona, D; Estripeaut, D

    2000-01-01

    Primary Sjögren's Syndrome complicated with a renal tubular acidosis type 1 and hypocalcemic paralysis, as the principal clinical manifestation, is uncommon. Although the initial manifestations of the nephropathy are not well understood, it is believed that the invasion of mononuclear cells and the high level of circulating antibodies, play an important role in the pathogenesis of the disease. We present a patient with hypocalcemic paralysis as an initial manifestation of a latent Sjögren's disease. The glandular biopsy was normal, suggesting a mayor participation of an immunological humoral factor in the renal lesion.

  18. Hyperosmolarity Induces Armanni-Ebstein-like Renal Tubular Epithelial Swelling and Cytoplasmic Vacuolization.

    PubMed

    Zhou, Chong; Vink, Robert; Byard, Roger W

    2017-01-01

    Armanni-Ebstein lesions have been considered pathognomonic for diabetes mellitus and appear as markedly swollen renal tubular epithelial cells with cytoplasmic clearing and glycogen accumulation. However, the extent to which hyperosmolarity contributes to the Armanni-Ebstein phenotype is unclear. Ten sheep were injected intravenously with 20% mannitol at 11 mOsm/kg, and subsequent histological evaluation of the kidneys showed variable degrees of osmotic nephrosis and cytoplasmic clearing of renal tubular epithelial cells similar to that seen with Armanni-Ebstein lesions. However, although morphological changes similar to Armanni-Ebstein lesions could be produced, no intracytoplasmic glycogen was demonstrated with periodic Acid-Schiff (PAS) stain. This suggests that while hyperosmolarity may contribute to the development of an Armanni-Ebstein phenotype, glycogen accumulation may result from the more complex metabolic effects of glucose on renal tubular epithelial cells. Thus, when Armanni/Ebstein-like vacuolizations are seen at autopsy, a confirmatory PAS stain is recommended because of the potential effect of hyperosmolar states.

  19. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes

    PubMed Central

    Zhang, Jing; Fan, Ying; Zeng, Chuchu; He, Li; Wang, Niansong

    2016-01-01

    Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN). Endoplasmic reticulum (ER) stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid (TUDCA) is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg intraperitoneal injection (i.p.) twice a day, diabetic db/db mice had significantly reduced blood glucose, albuminuria and attenuated renal histopathology. These changes were associated with a significant decreased expression of ER stress markers. At the same time, diabetic db/db mice had more TUNEL-positive nuclei in the renal tubule, which were attenuated by TUDCA treatment, along with decreases in ER stress–associated apoptotic markers in the kidneys. In summary, the effect of TUDCA on tubular injury, in part, is associated with inhibition of ER stress in the kidneys of diabetic db/db mice. TUDCA shows potential as a therapeutic target for the prevention and treatment of DN. PMID:27669287

  20. Associations of Low Environmental Exposure to Multiple Metals with Renal Tubular Impairment in Korean Adults

    PubMed Central

    Lim, Hyungryul; Lim, Ji-ae; Choi, Jong Hyuk; Kwon, Ho-jang; Ha, Mina; Kim, Heon; Park, Jung-duck

    2016-01-01

    Recently several studies reported that the renal toxicity of lead (Pb) and cadmium (Cd) may exist in even a low level exposure. In terms of the deterioration of tubular function, it affects the loss of divalent metals and leads to other complications, so renal tubular effect of heavy metals should be well managed. Considering the exposure to heavy metals in reality, it is hard to find the case that human is exposed to only one heavy metal. We designed a cross-sectional study using Korean Research Project on the Integrated Exposure Assessment (KRIEFS) data to investigate the renal effects of multiple metal exposure in general population. We used blood Pb and urinary Cd as exposure measures, and urinary N-acetyl-β-D-glucosaminidase (NAG) and β2-microglobulin (β2-MG) as renal tubular impairment outcome. We conducted linear regression to identify the association between each heavy metal and urinary NAG and β2-MG. And then, we conducted linear regression including the interaction term. Of 1953 adults in KRIEFS (2010~2011), the geometric mean of blood Pb and urinary Cd concentration was 2.21 μg/dL (geometric SD = 1.49 μg/dL) and 1.08 μg/g cr (geometric SD = 1.98 μg/g cr), respectively. In urinary Cd, the strength of the association was also high after adjusting (urinary NAG: β = 0.44, p < 0.001; urinary β2-MG: β = 0.13, p = 0.002). Finally, we identified the positive interactions for the two renal biomarkers. The interaction effect of the two heavy metals of β2-MG was greater than that of NAG. It is very important in public health perspective if the low level exposure to multiple heavy metals has an interaction effect on kidney. More epidemiological studies for the interaction and toxicological studies on the mechanism are needed. PMID:26977259

  1. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis

    NASA Astrophysics Data System (ADS)

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-10-01

    Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.

  2. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    SciTech Connect

    Wu, Cheng Tien; Weng, Te I.; Chen, Li Ping; Chiang, Chih Kang; Liu, Shing Hwa

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  3. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia.

    PubMed

    Meldrum, K K; Meldrum, D R; Hile, K L; Yerkes, E B; Ayala, A; Cain, M P; Rink, R C; Casale, A J; Kaefer, M A

    2001-08-01

    Ischemia causes renal tubular cell loss through apoptosis; however, the mechanisms of this process remain unclear. Using the renal tubular epithelial cell line LLC-PK(1), we developed a model of simulated ischemia (SI) to investigate the role of p38 MAPK (mitogen-activated protein kinase) in renal cell tumor necrosis factor-alpha (TNF-alpha) mRNA production, protein bioactivity, and apoptosis. Results demonstrate that 60 min of SI induced maximal TNF-alpha mRNA production and bioactivity. Furthermore, 60 min of ischemia induced renal tubular cell apoptosis at all substrate replacement time points examined, with peak apoptotic cell death occurring after either 24 or 48 h. p38 MAPK inhibition abolished TNF-alpha mRNA production and TNF-alpha bioactivity, and both p38 MAPK inhibition and TNF-alpha neutralization (anti-porcine TNF-alpha antibody) prevented apoptosis after 60 min of SI. These results constitute the initial demonstration that 1) renal tubular cells produce TNF-alpha mRNA and biologically active TNF-alpha and undergo apoptosis in response to SI, and 2) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis after SI.

  4. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway

    PubMed Central

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Purpose: Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. Methods: NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Results: Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Conclusion: Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway. PMID:27994511

  5. Proximal renal tubular function in myelomatosis: observations in the fourth Medical Research Council trial.

    PubMed Central

    Cooper, E H; Forbes, M A; Crockson, R A; MacLennan, I C

    1984-01-01

    Proximal renal tubular function was studied in 522 consecutive patients entered into the Medical Research Council's fourth myelomatosis trial. Assessment was made at presentation after a 48 h period of hydration but before administration of chemotherapy. The most common abnormalities in the urine other than light chain proteinuria were raised concentrations of the low molecular weight proteins alpha 1-microglobulin and alpha 1-acid glycoprotein. These were usually accompanied by increases in urinary beta-N-acetyl-D-glucosaminidase concentrations. The concentration of these substances in the urine directly correlated with urinary free light chain output. This tubular proteinuria was seen whether or not patients had impaired glomerular function, as assessed by a rise in serum creatinine concentration. Urinary concentrations of retinol binding protein, however, were generally increased only when serum creatinine concentrations were raised. This applied even when there were high concentrations of light chains, alpha 1-microglobulin, alpha 1-acid glycoprotein, and beta-N-acetyl-D-glucosaminidase in the urine. There is therefore a selective tubular proteinuria in myelomatosis which is seen in almost all patients with urinary light chain values greater than 1 u/l. This proteinuria is generally reversible, when light chains no longer appear in the urine. Patients whose serum creatinine was greater than 200 mumol/l, however, had increased urinary output of retinol binding protein in addition to increased excretion of alpha 1-microglobulin, alpha 1-acid glycoprotein, and beta-N-acetyl-D-glucosaminidase. Tubular proteinuria in many of these patients presenting in renal failure persisted even when light chain output was reduced after chemotherapy. PMID:6206095

  6. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    SciTech Connect

    Huang, J.-S. Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.

  7. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    PubMed

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix.

  8. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.

    PubMed

    Chaiyarit, Sakdithep; Singhto, Nilubon; Thongboonkerd, Visith

    2016-02-25

    Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 μg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation.

  9. Effects of "in vivo" administration of baclofen on rat renal tubular function.

    PubMed

    Donato, Verónica; Pisani, Gerardo Bruno; Trumper, Laura; Monasterolo, Liliana Alicia

    2013-09-05

    The effects of the in vivo administration of baclofen on renal tubular transport and aquaporin-2 (AQP2) expression were evaluated. In conscious animals kept in metabolic cages, baclofen (0.01-1mg/kg, s.c.) induced a dose-dependent increment in the urine flow rate (UFR) and in sodium and potassium excretion, associated with an increased osmolal clearance (Closm), a diminished urine to plasma osmolality ratio (Uosm/Posm) and a decrease in AQP2 expression. The above mentioned baclofen effects on functional parameters were corroborated by using conventional renal clearance techniques. Additionally, this model allowed the detection of a diminution in glucose reabsorption. Some experiments were performed with water-deprived or desmopressin-treated rats kept in metabolic cages. Either water deprivation or desmopressin treatment decreased the UFR and increased the Uosm/Posm. Baclofen did not change the Uosm/Posm or AQP2 expression in desmopressin-treated rats; but it increased the UFR and diminished the Uosm/Posm and AQP2 expression in water-deprived animals. These results indicate that in vivo administration of baclofen promotes alterations in proximal tubular transport, since glucose reabsorption was decreased. The distal tubular function was also affected. The increased Closm indicates an alteration in solute reabsorption at the ascending limb of the Henle's loop. The decreased Uosm/Posm and AQP2 expression in controls and in water-deprived, but not in desmopressin-treated rats, lead us to speculate that some effect of baclofen on endogenous vasopressin availability could be responsible for the impaired urine concentrating ability, more than any disturbance in the responsiveness of the renal cells to the hormone.

  10. Downregulation of miR-205 Modulates Cell Susceptibility to Oxidative and Endoplasmic Reticulum Stresses in Renal Tubular Cells

    PubMed Central

    Muratsu-Ikeda, Shiyo; Nangaku, Masaomi; Ikeda, Yoichiro; Tanaka, Tetsuhiro; Wada, Takehiko; Inagi, Reiko

    2012-01-01

    Background Oxidative stress and endoplasmic reticulum (ER) stress play a crucial role in tubular damage in both acute kidney injury (AKI) and chronic kidney disease (CKD). While the pathophysiological contribution of microRNAs (miRNA) to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. Methods We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS) level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3′-UTR-luciferase assay. Results We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3′-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2) gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. Conclusions miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules. PMID:22859986

  11. Mechanisms of Inflammatory Injury of Renal Tubular Cells in a Cellular Model of Pyelonephritis.

    PubMed

    Morosanova, M A; Plotnikov, E Y; Zorova, L D; Pevzner, I B; Popkov, V A; Silachev, D N; Jankauskas, S S; Babenko, V A; Zorov, D B

    2016-11-01

    Previously, we have assembled a cellular model of pyelonephritis which contains a primary culture of renal tubular epithelial cells, mononuclear leukocytes, and bacterial lysate or lipopolysaccharide. After cocultivation of renal cells with leukocytes and bacterial lysate, proinflammatory changes were observed in the renal cells, followed by nitrosative and oxidative stress and cell death. The interaction of bacterial antigens not only with leukocytes, but also with epithelial cells of the renal tubules, was partially mediated by signaling pathways involving Toll-like receptors (TLR2 and TLR4). Activation of these receptors led to increased levels of oxidative stress and synthesis of proinflammatory cytokines (TNF, IL-6, IL-1α) in the renal epithelium, while TLR4 blockade decreased the severity of these processes. Apart from the fact that activation of inflammatory signaling in response to bacterial antigens is observed directly in the renal cells, the presence of leukocytes significantly amplifies the inflammatory response as measured by the level of cytokines generated in the ensemble. In the presence of activated leukocytes, higher expression of TLR2 on the surface of renal cells was observed in response to exposure to bacterial components, which might explain the increased inflammatory response in the presence of leukocytes. The synthesis of IL-1α in the epithelial cells of the renal tubules in this inflammatory model leads to its accumulation in the nuclei, which has been reduced by the TLR4 antagonist polymyxin. TLR2 agonists also led to increased levels of IL-1α. The elevation in the content of IL-1α in nuclei was accompanied by increased acetylation of nuclear proteins, which has been reduced to control values after exposure to protective agents (Trolox, mitochondria-targeted antioxidant SkQR1 or LiCl). The high level of acetylation of histones is probably regulated by proinflammatory cytokines, and to some extent it is a marker of inflammation, which

  12. Severe hypophosphatemic osteomalacia with Fanconi syndrome, renal tubular acidosis, vitamin D deficiency and primary biliary cirrhosis.

    PubMed

    Bando, Hironori; Hashimoto, Naoko; Hirota, Yushi; Sakaguchi, Kazuhiko; Hisa, Itoko; Inoue, Yoshifumi; Imanishi, Yasuo; Seino, Susumu; Kaji, Hiroshi

    2009-01-01

    A 49-year-old woman was admitted to our hospital for back pain with marked thoracic and extremity deformities leading to bed-rest for three years. She was diagnosed with hypophosphatemic osteomalacia based on her symptoms, X-ray and bone scintigram, high serum alkaline phosphatase level, and low serum levels of both phosphorus and 1,25 dihydroxyvitamin D(3) with inhibition of phosphorus reabsorption. Fanconi syndrome with renal tubular acidosis, vitamin D deficiency and primary biliary cirrhosis were related to the pathogenesis of osteomalacia in this case. Several causal diseases may be concomitantly responsible for acceleration of the severity of osteomalacia in this patient.

  13. Anesthetic Management of a Surgical Patient with Chronic Renal Tubular Acidosis Complicated by Subclinical Hypothyroidism

    PubMed Central

    Yamazaki, Haruyuki; Yasumura, Rie; Wada, Kosuke

    2016-01-01

    A 53-year-old man with chronic renal tubular acidosis and subclinical hypothyroidism underwent lower leg amputation surgery under general anesthesia. Perioperative acid-base management in such patients poses many difficulties because both pathophysiologies have the potential to complicate the interpretation of capnometry and arterial blood gas analysis data; inappropriate correction of chronic metabolic acidosis may lead to postoperative respiratory deterioration. We discuss the management of perioperative acidosis in order to achieve successful weaning from mechanical ventilation and promise a complete recovery from anesthesia. PMID:27648310

  14. The need for genetic study to diagnose some cases of distal renal tubular acidosis.

    PubMed

    Heras Benito, Manuel; Garcia-Gonzalez, Miguel A; Valdenebro Recio, María; Molina Ordás, Álvaro; Callejas Martínez, Ramiro; Rodríguez Gómez, María Astrid; Calle García, Leonardo; Sousa Silva, Lisbeth; Fernández-Reyes Luis, María José

    We describe the case of a young woman who was diagnosed with advanced kidney disease, with an incidental finding of nephrocalcinosis of unknown aetiology, having been found asymptomatic throughout her life. The genetic study by panels of known genes associated with tubulointerstitial disease allowed us to discover autosomal dominant distal renal tubular acidosis associated with a de novo mutation in exon 14 of the SLC4A1 gene, which would have been impossible to diagnose clinically due to the advanced nature of the kidney disease when it was discovered.

  15. [Distal renal tubular acidosis with rhabdomyolysis as the presenting form in 4 pregnant women].

    PubMed

    Carminati, G; Chena, A; Orlando, J M; Russo, S; Salomón, S; Carena, J A

    2001-01-01

    We describe four pregnant patients with distal renal tubular acidosis (type I) (DRTA) whose initial presentation was rhabdomyolysis (RML) secondary to severe hypokalemia. We draw attention to the unusual presentation of DRTA during pregnancy, the low frequency of DRTA in adult patients and RML as initial manifestation. In one case the DRTA was secondary to Sjögren Syndrome and the etiology was unknown in the rest of the cases. We discuss the potential pathogenic mechanisms to explain hypokalemic RML and the various causes of DRTA in adult patients.

  16. Primary sclerosing cholangitis: a new cause of distal renal tubular acidosis

    PubMed Central

    Goutaudier, Valentin; Szwarc, Ilan; Serre, Jean-Emmanuel; Pageaux, Georges-Philippe; Argilés, Àngel

    2016-01-01

    We describe the first case of distal renal tubular acidosis (dRTA) associated with primary sclerosing cholangitis. A 26-year-old Lao-Thai male patient presented with severe jaundice, metabolic acidosis and hypokalaemia. He was diagnosed of dRTA. Liver transplantation resulted in correction of electrolyte disturbances and hyperbilirubinaemia. A fludrocortisone-furosemide test revealed normal urinary acidification, demonstrating no residual dRTA. This observation suggests that dRTA may be an early manifestation of bilirubin-associated nephropathy or the consequence of an immune mechanism. PMID:27994859

  17. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA)

    PubMed Central

    Sebastian, Anthony; McSherry, Elisabeth; Morris, R. Curtis

    1971-01-01

    The mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA) was investigated in 10 patients, each of whom had impaired proximal renal tubular reabsorption of bicarbonate as judged from a greater than 15-20% reduction of renal tubular bicarbonate reabsorption (THCO3-) at normal plasma bicarbonate concentrations. When the plasma bicarbonate concentration ([HCO3-]p) was experimentally increased to normal levels in three patients with a fractional potassium excretion (CK/Cin) of less than 1.0 during acidosis, CK/Cin and urinary potassium excretion (UKV/Cin) increased strikingly and concurrently with a striking increase in urinary sodium (UNaV/Cin) and bicarbonate (UHCO3-V/Cin) excretion. When [HCO3-]p was increased to normal levels in two patients with a CK/Cin of greater than 1.0 during acidosis and in whom UNaV/Cin and UHCO3-V/Cin were already markedly increased, CK/Cin did not increase further. When [HCO3-]p was decreased to subnormal levels in a patient given ammonium chloride, UKV/Cin, CK/Cin, and UHCO3-V/Cin decreased concurrently. In the six patients in whom [HCO3-]p was maintained at normal levels (oral alkali therapy) for 2 months or longer, CK/Cin was directly related to the urinary excretion rates of sodium and bicarbonate, hence was directly related to the magnitude of reduction of THCO3- at normal [HCO3-]p; CK/Cin was greater than 0.55 in all six patients and greater than 1.0 in four. In eight patients with classic RTA (type 1 RTA), proximal renal tubular reabsorption of bicarbonate was largely intact as judged from a trivial reduction of THCO3- at normal [HCO3-]p. When [HCO3-]p was either increased from subnormal to normal levels, or decreased from normal to subnormal levels, UHCO3-V/Cin remained essentially constant, and UKV/Cin did not change significantly. When correction of acidosis was sustained, UHCO3-V/Cin remained a trivial fraction of that filtered, and CK/Cin was consistently less than 0

  18. Arthrogryposis-renal tubular dysfunction-cholestasis syndrome: a cause of neonatal cholestasis. Case report.

    PubMed

    Ilhan, Ozkan; Ozer, Esra A; Ozdemir, Senem A; Akbay, Sinem; Memur, Seyma; Kanar, Berat; Tatli, Mustafa M

    2016-02-01

    Arthrogryposis-renal dysfunction-cholestasis syndrome is a rare lethal disorder that involves multipl organ system. It is inherited autosomal recessive and caused by defects in the VPS33B and VIPAR genes. Three cardinal findings of this syndrome are arthrogryposis, renal tubular dysfunction and cholestasis.The other organ involvements including ichthyosis, central nervous system malformation, platelet anomalies, congenital heart defects and severe failure to thrive are sometimes associated with this syndrome. Clinical findings, organ biopsy and mutational analysis can help for diagnosing but there is no curative treatment except supportive care. Several symptoms of this condition are already usually present in the neonatal period: arthrogryposis, neonatal cholestasis, skin lesions, among others. Usually survival is until the first year of life. We present a newborn whose evolution was rapidly fatal.

  19. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption.

    PubMed

    Birn, H; Fyfe, J C; Jacobsen, C; Mounier, F; Verroust, P J; Orskov, H; Willnow, T E; Moestrup, S K; Christensen, E I

    2000-05-01

    Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low-molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.

  20. Homozygosity mapping of the locus responsible for renal tubular dysplasia of cattle on bovine chromosome 1.

    PubMed

    Ohba, Y; Kitagawa, H; Kitoh, K; Asahina, S; Nishimori, K; Yoneda, K; Kunieda, T; Sasaki, Y

    2000-04-01

    Renal tubular dysplasia is a hereditary disease of Japanese black cattle showing renal failure and growth retardation with an autosomal recessive trait. In the present study, we mapped the locus responsible for the disease (RTD) by linkage analysis with an inbred paternal half-sib pedigree obtained from commercial herds. By analyzing segregation of microsatellite markers in the half-sibs, significant linkage was observed between the RTD locus and markers on bovine Chromosome (Chr) 1 with the highest lod score of 11.4. Homozygosity mapping with the inbred pedigree further defined the localization of the RTD locus in a 4-cM region between microsatellite markers BMS4003 and INRA119. Mapping of the RTD locus on bovine Chr 1 will facilitate cloning and characterization of the gene responsible for this disease.

  1. Tubular kidney damage and centrilobular liver injury after intratracheal instillation of dimethyl selenide.

    PubMed

    Cherdwongcharoensuk, Duangrudee; Henrique, Rui; Upatham, Suchart; Pereira, António Sousa; Aguas, Artur P

    2005-01-01

    Accidental inhalation of selenium (Se) derivatives, such as dimethyl selenide (DMSe), has been associated with damage of respiratory tissues. However, systemic effects of inhaled Se have not been thoroughly established. We have investigated whether mouse kidney and liver show cellular pathology as a result of a single intratracheal instillation of two different doses of DMSe (0.05 and 0.1 mg Se/kg BW). The animals were sacrificed 1, 7, 14, and 28 days after either 1 of the 2 DMSe treatments; samples were studied by light microscopy. Instillation of the low DMSe dose resulted in acute and transient tubular disease of the kidney expressed by swelling and vacuolation of epithelial cells of proximal tubules; in some mice, tubular necrosis was observed. After 14 days of the DMSe treatment, these lesions were ameliorated and, by day 28, the kidney tubular epithelium depicted a normal morphology. The same low dose of DMSe caused sustained damage to centrilobular hepatocytes characterized by swollen and vacuolized liver cells. After the instillation of the high DMSe dose, the mice presented sustained liver and kidney focal necrosis. Our data suggest that inhalation of DMSe results in: (i) acute tubular injury of the kidney and damage to centrilobular liver cells and (ii) this systemic pathology induced by DMSe is a dose-dependent phenomenon.

  2. Differential uptake of Tc-99m DMSA and Tc-99m EC in renal tubular disorders: Report of two cases and review of the literature

    PubMed Central

    Reddy Gorla, Arun Kumar; Agrawal, Kanhaiyalal; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-01-01

    Tc-99m DMSA and Tc-99m EC studies are invaluable functional imaging modalities for renal structural and functional assessment. Normally, the relative renal function estimated by the two methods correlates well with each other. We here present two patients with renal tubular acidosis who showed impaired/altered DMSA uptake with normal EC renal dynamic study depicting the pitfall of DMSA imaging in tubular disorders. The two presented cases also depict distinct pattern of Tc-99m DMSA scintigraphic findings in patients with proximal and distal renal tubular acidosis, thus highlighting the factors affecting DMSA kinetics. PMID:25210282

  3. Differential uptake of Tc-99m DMSA and Tc-99m EC in renal tubular disorders: Report of two cases and review of the literature.

    PubMed

    Reddy Gorla, Arun Kumar; Agrawal, Kanhaiyalal; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-07-01

    Tc-99m DMSA and Tc-99m EC studies are invaluable functional imaging modalities for renal structural and functional assessment. Normally, the relative renal function estimated by the two methods correlates well with each other. We here present two patients with renal tubular acidosis who showed impaired/altered DMSA uptake with normal EC renal dynamic study depicting the pitfall of DMSA imaging in tubular disorders. The two presented cases also depict distinct pattern of Tc-99m DMSA scintigraphic findings in patients with proximal and distal renal tubular acidosis, thus highlighting the factors affecting DMSA kinetics.

  4. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury

    SciTech Connect

    Zalups, R.K.; Minor, K.H.

    1995-09-01

    The present study provides evidence for the existence of both a luminal and a basolateral mechanism involved in the renal tubular uptake of inorganic mercury. The researchers compared the disposition of inorganic mercury in groups of surgical control rats, rats that underwent a unilateral ureteral ligation, and rats that underwent a bilateral ureteral ligation that were pretreated with either normal saline or a 7.5 mmol/kg intravenous dose of PAH 5 min prior to receiving a nontoxic 0.5-{mu}mol/kg intravenous dose of mercuric chloride. The {open_quotes}stop-flow{close_quotes} conditions induced by either unilateral or bilateral ureteral ligation caused a significant reduction in the uptake and content of mercury in the kidneys (whose ureter was ligated) both at 1 h and 24 h after the intravenous injection of the nontoxic dose of mercuric chloride. This decreased renal uptake of mercury was due specifically to decreased uptake of mercury in the renal cortex and outer stripe of the outer medulla. The amount of mercury has not taken up during ureteral ligation represents the portion of mercury that is presumably taken up by a luminal mechanism. Pretreatment with PAH also caused a significant reduction in the renal uptake of mercury in the cortex and outer stripe of the outer medulla. When either unilateral or bilateral ureteral ligation was combined with PAH pretreatment, an additive inhibitory effect occurred with respect to the renal uptake of mercury. In fact, the renal uptake of mercury was reduced by approximately 85% at 1 h after the injection of mercuric chloride. Since the luminal uptake of mercury was blocked by ureteral ligation, the effect of PAH on the renal uptake of mercury must have occurred at the basolateral membrane. Two distinct mechanisms are involved in mercury uptake, with one mechanism located on the luminal membrane and another located on the basolateral membrane. 22 refs., 11 figs., 2 tabs.

  5. Hyperkalemic distal renal tubular acidosis caused by immunosuppressant treatment with tacrolimus in a liver transplant patient: case report.

    PubMed

    Riveiro-Barciela, M; Campos-Varela, I; Tovar, J L; Vargas, V; Simón-Talero, M; Ventura-Cots, M; Crespo, M; Bilbao, I; Castells, L

    2011-12-01

    Nephrotoxicity is one of the most common side effects of long-term immunosuppressive therapy with calcineurin inhibitors. We describe a case of distal renal tubular acidosis secondary to tacrolimus administration. A 43-year-old man with end-stage liver disease due to hepatitis C and B virus infections and alcoholic cirrhosis received a liver transplantation under immunosuppressive treatment with tacrolimus and mycophenolate mofetil. In the postoperative period, the patient developed hyperkalemic hyperchloremic metabolic acidosis, with a normal serum anion gap and a positive urinary anion gap, suggesting distal renal tubular acidosis. We excluded other causes of hyperkalemia. Administration of intravenous bicarbonate, loop diuretics, and oral resin exchanger corrected the acidosis and potassium levels. Distal renal tubular acidosis is one of several types of nephrotoxicity induced by tacrolimus treatment, resulting from inhibition of potassium secretion in the collecting duct. Treatment to correct the acidosis and hyperkalemia should be promptly initiated, and the tacrolimus dose adjusted when possible.

  6. Genotype-phenotype correlations in normotensive patients with primary renal tubular hypokalemic metabolic alkalosis.

    PubMed

    Bettinelli, A; Vezzoli, G; Colussi, G; Bianchetti, M G; Sereni, F; Casari, G

    1998-01-01

    Among the different forms of hereditary renal tubulopathies associated with hypokalemia, metabolic alkalosis and normotension, two main types of disorders have been identified: Gitelman disease, which appears to be a homogeneous post-Henle's loop disorder, and Bartter syndrome, a heterogeneous Henle loop disorder. A specific gene has been found responsible for Gitelman disease, encoding the thiazide-sensitive Na-Cl cotransporter (TSC) of the distal convoluted tubule. From a phenotypic point of view the characteristic findings of this disease are hypocalciuria, hypomagnesemia and tetanic crises appearing during childhood or later. Many subjects are asymptomatic. At least three different genes have been shown to be responsible for Bartter syndrome, characterized by mutations in the proteins encoding respectively the bumetanide-sensitive Na-K-2Cl cotransporter, the inwardly-rectifying renal potassium channel and a renal chloride channel, all protein transports located in the ascending limb of Henle's loop. Mutations in the first two transport proteins have been demonstrated in patients with the hypercalciuric forms of Bartter syndrome associated with nephrocalcinosis (respectively Bartter syndrome type I and II), who were often born after pregnancies complicated by polyhydramnios and premature delivery. Mutations in the gene encoding a renal chloride channel were recently recognized in patients with a Henle tubular defect not associated with nephrocalcinosis (Bartter syndrome type III). Most of the latter group of patients were normo-hypercalciuric and presented dehydration and life-threatening hypotension in the first year of life. However, these three genes do not explain all the patients with Bartter syndrome which unlike Gitelman disease, appears to be a very heterogeneous disorder. Clearance studies, especially if done during furosemide and/or hydrochlorothiazide administration, have been helpful in identifying the site of tubular involvement. Considering both

  7. Stereoselective renal tubular secretion of levocetirizine and dextrocetirizine, the two enantiomers of the H1-antihistamine cetirizine.

    PubMed

    Strolin Benedetti, M; Whomsley, R; Mathy, F-X; Jacques, P; Espie, P; Canning, M

    2008-02-01

    Competition for uptake and/or efflux transporters can be responsible for drug interactions. Cetirizine is mainly eliminated unchanged in urine through both glomerular filtration and tubular secretion. The aim of this study was to investigate whether the eutomer, levocetirizine, and the distomer, dextrocetirizine, have a similar tubular secretion. The renal clearance associated with tubular secretion was calculated from the renal clearance of levocetirizine and dextrocetirizine obtained in a study in healthy volunteers. The values of the unbound fraction in plasma were obtained in an in vitro study of the binding of (14)C-cetirizine and (14)C-levocetirizine to human plasma proteins using equilibrium dialysis and chiral high-performance liquid chromatography (HPLC) with on-line liquid scintillation counting. The unbound fraction was 0.074 for levocetirizine and 0.141 for dextrocetirizine. The tubular secretion of dextrocetirizine (44.5 mL/min) is higher than that of levocetirizine (23.1 mL/min), which may have consequences for drug interactions at the renal level. The higher tubular secretion for dextrocetirizine may be due to the higher free fraction available for secretion or to a higher affinity for (a) renal transporter(s) mediating the secretion pathway.

  8. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    SciTech Connect

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. The accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.

  9. IL-6 Augments Angiotensinogen in Primary Cultured Renal Proximal Tubular Cells

    PubMed Central

    Satou, Ryousuke; Gonzalez-Villalobos, Romer A.; Miyata, Kayoko; Ohashi, Naro; Urushihara, Maki; Acres, Omar W.; Navar, L. Gabriel; Kobori, Hiroyuki

    2009-01-01

    In human kidneys, the mechanisms underlying angiotensinogen (AGT) augmentation by interleukin 6 (IL-6) are poorly understood and the only information available is in HK-2, immortalized human renal proximal tubular epithelial cells. Therefore, the present study was performed to elucidate the effects of IL-6 on AGT expression in primary cultured human renal proximal tubular epithelial cells (RPTEC) after characterization of HK-2 and RPTEC. RPTEC showed low basal AGT mRNA (11±1%) and protein (7.0±0.9%) expression, high IL-6 receptor (IL-6R) expression (282±17%), and low basal NF-κB (43±7%) and STAT3 (43±7%) activities compared to those in HK-2. In RPTEC, AGT mRNA and protein expressions were enhanced by IL-6 (172±31% and 378±39%, respectively). This AGT augmentation was attenuated by an IL-6R antibody. STAT3 phosphorylation (366±55% at 30 min) and translocation were enhanced by IL-6. The AGT augmentation was attenuated by a STAT3 inhibitor. These data indicate that IL-6 increases AGT expression via STAT3 pathway in RPTEC. PMID:19583994

  10. Chronic glucose infusion causes sustained increases in tubular sodium reabsorption and renal blood flow in dogs.

    PubMed

    Brands, Michael W; Bell, Tracy D; Rodriquez, Nancy A; Polavarapu, Praveen; Panteleyev, Dmitriy

    2009-02-01

    This study tested the hypothesis that inducing hyperinsulinemia and hyperglycemia in dogs, by infusing glucose chronically intravenously, would increase tubular sodium reabsorption and cause hypertension. Glucose was infused for 6 days (14 mg.kg(-1).min(-1) iv) in five uninephrectomized (UNX) dogs. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured 18 h/day using DSI pressure units and Transonic flow probes, respectively. Urinary sodium excretion (UNaV) decreased significantly on day 1 and remained decreased over the 6 days, coupled with a significant, sustained increase in RBF, averaging approximately 20% above control on day 6. Glomerular filtration rate and plasma renin activity (PRA) also increased. However, although MAP tended to increase, this was not statistically significant. Therefore, the glucose infusion was repeated in six dogs with 70% surgical reduction in kidney mass (RKM) and high salt intake. Blood glucose and plasma insulin increased similar to the UNX dogs, and there was significant sodium retention, but MAP still did not increase. Interestingly, the increases in PRA and RBF were prevented in the RKM dogs. The decrease in UNaV, increased RBF, and slightly elevated MAP show that glucose infusion in dogs caused a sustained increase in tubular sodium reabsorption by a mechanism independent of pressure natriuresis. The accompanying increase in PRA, together with the failure of either RBF or PRA to increase in the RKM dogs, suggests the site of tubular reabsorption was before the macula densa. However, the volume retention and peripheral edema suggest that systemic vasodilation offsets any potential renal actions to increase MAP in this experimental model in dogs.

  11. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways.

    PubMed

    Nagai, Junya; Takano, Mikihisa

    2014-08-15

    Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.

  12. Hyperlipidemia-Associated Renal Damage Decreases Klotho Expression in Kidneys from ApoE Knockout Mice

    PubMed Central

    Sastre, Cristina; Rubio-Navarro, Alfonso; Buendía, Irene; Gómez-Guerrero, Carmen; Blanco, Julia; Mas, Sebastian; Egido, Jesús; Blanco-Colio, Luis Miguel; Ortiz, Alberto; Moreno, Juan Antonio

    2013-01-01

    Background Klotho is a renal protein with anti-aging properties that is downregulated in conditions related to kidney injury. Hyperlipidemia accelerates the progression of renal damage, but the mechanisms of the deleterious effects of hyperlipidemia remain unclear. Methods We evaluated whether hyperlipidemia modulates Klotho expression in kidneys from C57BL/6 and hyperlipidemic apolipoprotein E knockout (ApoE KO) mice fed with a normal chow diet (ND) or a Western-type high cholesterol-fat diet (HC) for 5 to 10 weeks, respectively. Results In ApoE KO mice, the HC diet increased serum and renal cholesterol levels, kidney injury severity, kidney macrophage infiltration and inflammatory chemokine expression. A significant reduction in Klotho mRNA and protein expression was observed in kidneys from hypercholesteromic ApoE KO mice fed a HC diet as compared with controls, both at 5 and 10 weeks. In order to study the mechanism involved in Klotho down-regulation, murine tubular epithelial cells were treated with ox-LDL. Oxidized-LDL were effectively uptaken by tubular cells and decreased both Klotho mRNA and protein expression in a time- and dose-dependent manner in these cells. Finally, NF-κB and ERK inhibitors prevented ox-LDL-induced Klotho downregulation. Conclusion Our results suggest that hyperlipidemia-associated kidney injury decreases renal expression of Klotho. Therefore, Klotho could be a key element explaining the relationship between hyperlipidemia and aging with renal disease. PMID:24386260

  13. Renal tubular receptor imaging with iodine-131-labeled peanut lectin: pharmacokinetics and renal clearance mechanism in animals

    SciTech Connect

    Boniface, G.R.; Suresh, M.R.; Willans, D.J.; Tam, Y.K.; Shysh, A.; Longenecker, B.M.; Noujaim, A.A.

    1986-05-01

    Intravenously administered peanut lectin (PNA), iodinated with /sup 131/I ((/sup 131/I)PNA), is rapidly cleared from the plasma by the kidneys in dogs (clearance (total body) = 17.52 +/- 8.74 ml/min). Dynamic gamma camera renal scintigraphy demonstrated renal accumulation and excretion phases of the (/sup 131/I)PNA renogram in dogs and rabbits (% injection dose-at-peak = 21.8 +/- 3.3% and 19.6 +/- 4.3%, time-to-peak = 44.6 +/- 4.8 min and 37.2 +/- 6.9 min, respectively). Immunoperoxidase staining of kidney sections, following i.v. administered PNA, demonstrated predominant accumulation by the proximal tubules of mice, rabbits, and dogs. The basement membrane was intensely stained at early times p.i. while intracellular and luminal PNA was evident within 1 hr. Urine analysis confirmed the presence of intact (/sup 131/I)PNA in the bladder contents, while protein degradation products, and a small percentage of the free iodide (less than 5%) were noted within 1 hr p.i. The relative proportion of free iodide increased at later times p.i. (greater than 6 hr). A receptor mediated excretion mechanism is proposed for the clearance of PNA and may be useful for the study of renal tubular function.

  14. Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells.

    PubMed

    Romanov, Victor; Whyard, Terry; Bonala, Radha; Johnson, Francis; Grollman, Arthur

    2011-12-01

    Ingestion of aristolochic acids (AA) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adduct formation, is well-documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. Epithelial cell death is a critical characteristic of these pathological conditions. To elucidate the mechanisms of AA-induced cytotoxicity, we explored AA-interacting proteins in tubular epithelial cells (TEC). We found that AA interacts with a mitochondrial enzyme glutamate dehydrogenase (GDH) and moderately inhibits its activity. We report that AA induces cell death in GDH-knockdown TEC preferentially via non-apoptotic means, whereas in GDH-positive cells, death was executed by both the non-apoptotic and apoptotic mechanisms. Apoptosis is an energy-reliant process and demands higher adenosine 5'-triphosphate (ATP) consumption than does the non-apoptotic cell death. We found that, after AAI treatment, the ATP depletion is more pronounced in GDH-knockdown cells. When we reduced ATP in TEC cells by inhibition of glycolysis and mitochondrial respiration, cell death mode switched from apoptosis and necrosis to necrosis only. In addition, in cells incubated at low glucose and no glutamine conditions, oxaloacetate and pyruvate reduced AAI-induced apoptosis our data suggest that AAI-GDH interactions in TEC are critical for the induction of apoptosis by direct inhibition of GDH activity. AA binding may also induce changes in GDH conformation and promote interactions with other molecules or impair signaling by GDH metabolic products, leading to apoptosis.

  15. Medullary sponge kidney presenting in a neonate with distal renal tubular acidosis and failure to thrive: a case report

    PubMed Central

    2009-01-01

    Introduction Medullary sponge kidney is a congenital anomaly characterized by diffuse ectasy of the collecting tubules of one or both kidneys. It is usually diagnosed in the second or third decade of life. Case presentation Distal renal tubular acidosis is commonly observed in patients with medullary sponge kidney. We describe here a 50-day-old Egyptian Caucasian girl with medullary sponge kidney who had features of distal renal tubular acidosis, (persistent alkaline urine, hypercalciuria, hypocitraturia) and failure to thrive. Renal ultrasound revealed left renal increased medullary echogenicity and bilateral nephrocalcinosis. Conclusion Early gene(s) expression of medullary sponge kidney disease might be responsible for persistent metabolic acidosis during the neonatal period. PMID:19830120

  16. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    PubMed Central

    Flynn, F. V.; Lapsley, M.; Sansom, P. A.; Cohen, S. L.

    1992-01-01

    AIM: To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. METHODS: Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. RESULTS: All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. CONCLUSIONS: Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive

  17. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    SciTech Connect

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2014-07-01

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.

  18. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  19. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  20. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies

    PubMed Central

    Haque, Syed K.; Ariceta, Gema; Batlle, Daniel

    2012-01-01

    Proximal renal tubular acidosis (RTA) (Type II RTA) is characterized by a defect in the ability to reabsorb HCO3 in the proximal tubule. This is usually manifested as bicarbonate wastage in the urine reflecting that the defect in proximal tubular transport is severe enough that the capacity for bicarbonate reabsorption in the thick ascending limb of Henle's loop and more distal nephron segments is overwhelmed. More subtle defects in proximal bicarbonate transport likely go clinically unrecognized owing to compensatory reabsorption of bicarbonate distally. Inherited proximal RTA is more commonly autosomal recessive and has been associated with mutations in the basolateral sodium-bicarbonate cotransporter (NBCe1). Mutations in this transporter lead to reduced activity and/or trafficking, thus disrupting the normal bicarbonate reabsorption process of the proximal tubules. As an isolated defect for bicarbonate transport, proximal RTA is rare and is more often associated with the Fanconi syndrome characterized by urinary wastage of solutes like phosphate, uric acid, glucose, amino acids, low-molecular-weight proteins as well as bicarbonate. A vast array of rare tubular disorders may cause proximal RTA but most commonly it is induced by drugs. With the exception of carbonic anhydrase inhibitors which cause isolated proximal RTA, drug-induced proximal RTA is associated with Fanconi syndrome. Drugs that have been recently recognized to cause severe proximal RTA with Fanconi syndrome include ifosfamide, valproic acid and various antiretrovirals such as Tenofovir particularly when given to human immunodeficiency virus patients receiving concomitantly protease inhibitors such as ritonavir or reverse transcriptase inhibitors such as didanosine. PMID:23235953

  1. Evaluation of the ability of bone marrow derived cells to engraft the kidney and promote renal tubular regeneration in mice following exposure to cisplatin.

    PubMed

    Bataille, Aurélien; Galichon, Pierre; Wetzstein, Morgane; Legouis, David; Vandermeersch, Sophie; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    It has been suggested that bone marrow derived stem cells have the ability to engraft the kidney and improve the outcome of severe acute kidney injury (AKI) in mice exposed to high doses of cisplatin, providing hope for cancer patients in whom irreversible renal damage occasionally occurs following the use of this highly effective anti-tumor drug. We tested the therapeutic potential of bone marrow derived cells injected during the acute phase (day 3 after cisplatin administration) of experimentally-induced AKI in C57Bl6/J mice, characterized by massive tubular necrosis, apoptosis, and a low proliferation capacity. We failed to show any benefit of bone marrow derived cells versus a regular homogenate of intact renal cells, or normal saline. Using cell tracers and flow cytometry, we demonstrated that bone marrow derived cells did indeed home to the bone marrow of the recipients but failed to settle in the kidney. Conversely, renal cells homed to injured kidneys. However, neither cell therapy protected the animals against cisplatin-induced death. We therefore question the short-term efficacy of bone marrow derived cells used to repair established injuries of the tubular epithelium.

  2. Intracellular trafficking pathway of BK virus in human renal proximal tubular epithelial cells

    PubMed Central

    Moriyama, Takahito; Sorokin, Andrey

    2009-01-01

    Intracellular trafficking of BK Virus (BKV) in human renal proximal tubular epithelial cells (HRPTEC) is critical for BKV nephritis. However, the major trafficking components utilized by BKV remain unknown. Co-incubation of HRPTEC with BKV and microtubule disrupting agents prevented BKV infection as detected by immunofluorescence and western blot analysis with antibodies which recognize BKV large T antigen. However, inhibition of a dynein, cellular motor protein, did not interfere with BKV infection in HRPTEC. A colocalization study of BKV with the markers of the endoplasmic reticulum (ER) and the Golgi apparatus (GA), indicated that BKV reached the ER from 6 to 10 hours, while bypassing the GA or passing through the GA too transiently to be detected. This study contributes to the understanding of mechanisms of intracellular trafficking used by BKV in the infection of HRPTEC. PMID:17976677

  3. Long-term follow-up in distal renal tubular acidosis with sensorineural deafness.

    PubMed

    Peces, R

    2000-11-01

    A 20-year-old man presented with failure to thrive and bilateral genu valgum. On the basis of growth failure, skeletal deformity, hyperchloremic metabolic acidosis with alkaline urine and hypokalemia, nephrocalcinosis, and hearing loss, a diagnosis of distal renal tubular acidosis (DRTA) with sensorineural deafness was made. The genu valgum was treated by corrective osteotomy. Skeletal deformity was corrected and impaired growth improved after sustained therapy of metabolic acidosis with alkali supplementation. During an 8-year follow-up period the patient's glomerular filtration rate remained stable, the nephrocalcinosis did not progress, and his height increased 10 cm. Although nephrolithiasis led to atrophy of the right kidney, at last follow-up, when the patient was 44 years old, his creatinine clearance was 50 ml/min per 1.73 m2 body surface.

  4. Successful treatment of proximal renal tubular acidosis and Fanconi syndrome with vitamin D replacement.

    PubMed

    Ali, Syed Ahsan; Tariq, Muhammad

    2016-01-01

    Proximal renal tubular acidosis (RTA), also known as Type II RTA, is characterized by a defect in the ability to reabsorb bicarbonate (HCO 3 ) in the proximal tubule. It is usually associated with generalized dysfunction of the proximal tubule as part of Fanconi syndrome. Very few case reports in the literature support Vitamin D deficiency as a cause of proximal RTA. We present a case of a young female who presented with proximal RTA and Fanconi syndrome and excellently responded to Vitamin D replacement. Thus, work-up for the etiology of proximal RTA should include Vitamin D levels since replacement of this vitamin in those who are deficient can lead to cure of such patients.

  5. Unusual Case of Coexisting Renal Malignancies: Mucinous Tubular and Spindle Cell Carcinoma Kidney With Sarcomatoid Dedifferentiation

    PubMed Central

    Agnihotri, Pragati; Alam, Kiran; Raza, Kashif

    2016-01-01

    Mucinous tubular and spindle cell carcinoma (MTSCC) is a recent entity introduced in the World Health Organization 2004 Classification. It is a tumour of low malignant potential. MTSCC is a subtype of renal cell carcinoma (RCC), which is characterized by a polymorphous histology, wherein the spindled epithelial cell is an inherent carcinomatous component. We report the case of a 57-year-old man presenting with loin pain and dragging sensation. Imaging revealed a large mass arising from the left kidney. Radical nephrectomy was performed, and histopathology revealed spindle cell elements of MTSCC with low-grade cytology, which occasionally blended with tubular structures in variable mucinous stroma admixed with spindle sarcomatoid cells with marked nuclear pleomorphism, associated with significant necrosis and mitoses of up to 5/10 high-power field. A final diagnosis of MTSCC along with high-grade areas consistent with sarcomatoid dedifferentiation was made. Sarcomatoid dedifferentiation has been well documented in various subtypes of RCC, and its presence signifies a worse prognosis in RCC.

  6. Cadmium activates extracellular signal-regulated kinase 5 in HK-2 human renal proximal tubular cells

    SciTech Connect

    Kondo, Mio; Inamura, Hisako; Matsumura, Ken-ichi; Matsuoka, Masato

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cadmium exposure induces ERK5 phosphorylation in HK-2 renal proximal tubular cells. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced ERK5 but not ERK1/2 phosphorylation. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced CREB and c-Fos phosphorylation. Black-Right-Pointing-Pointer ERK5 activation by cadmium exposure may play an anti-apoptotic role in HK-2 cells. -- Abstract: We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the phosphorylation and functionality of extracellular signal-regulated kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, in HK-2 human renal proximal tubular cells. Following exposure to CdCl{sub 2}, ERK5 phosphorylation increased markedly, but the level of total ERK5 was unchanged. ERK5 phosphorylation following CdCl{sub 2} exposure was rapid and transient, similar to the time course of ERK1/2 phosphorylation. Treatment of HK-2 cells with the MAPK/ERK kinase 5 inhibitor, BIX02189, suppressed CdCl{sub 2}-induced ERK5 but not ERK1/2 phosphorylation. The CdCl{sub 2}-induced increase of phosphorylated cAMP response element-binding protein (CREB) and activating transcription factor-1 (ATF-1), as well as the accumulation of mobility-shifted c-Fos protein, were suppressed by BIX02189 treatment. Furthermore, BIX02189 treatment enhanced cleavage of poly(ADP-ribose) polymerase and increased the level of cytoplasmic nucleosomes in HK-2 cells exposed to CdCl{sub 2}. These findings suggest that ERK5 pathway activation by CdCl{sub 2} exposure might induce the phosphorylation of cell survival-transcription factors, such as CREB, ATF-1, and c-Fos, and may exert a partial anti-apoptotic role in HK-2 cells.

  7. Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells.

    PubMed

    Cernaro, Valeria; Medici, Maria Antonietta; Leonello, Giuseppa; Buemi, Antoine; Kohnke, Franz Heinrich; Villari, Antonino; Santoro, Domenico; Buemi, Michele

    2015-06-01

    Indole-3-acetic acid is the main auxin produced by plants and plays a key role in the plant growth and development. This hormone is also present in humans where it is considered as a uremic toxin deriving from tryptophan metabolism. However, beyond this peculiar aspect, the involvement of auxin in human pathophysiology has not been further investigated. Since it is a growth hormone, we evaluated its proliferative properties in an in vitro model of mammalian renal tubular epithelial cells. We employed an experimental model of renal tubular epithelial cells belonging to the LLC-PK1 cell line that is derived from the kidney of healthy male pig. Growth effects of auxin against LLC-PK1 cell lines were determined by a rapid colorimetric assay. Increasing concentrations of auxin (to give a final concentration from 1 to 1000 ng/mL) were added and microplates were incubated for 72 h. Each auxin concentration was assayed in four wells and repeated four times. Cell proliferation significantly increased, compared to control cells, 72 h after addition of auxin to cultured LLC-PK1 cells. Statistically significant values were observed when 100 ng/mL (p < 0.01) and 1000 ng/mL (p < 0.05) were used. In conclusion, auxin influences cell growth not only in plants, where its role is well documented, but also in mammalian cell lines. This observation opens new scenarios in the field of tissue regeneration and may stimulate a novel line of research aiming at investigating whether this hormone really influences human physiology and pathophysiology and in particular, kidney regeneration.

  8. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  9. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation

    PubMed Central

    Piret, Sian E.; Gorvin, Caroline M.; Trinh, Anne; Taylor, John; Lise, Stefano; Taylor, Jenny C.; Ebeling, Peter R.

    2016-01-01

    The aim of this study was to identify the causative mutation in a family with an unusual presentation of autosomal dominant osteopetrosis (OPT), proximal renal tubular acidosis (RTA), renal stones, epilepsy, and blindness, a combination of features not previously reported. We undertook exome sequencing of one affected and one unaffected family member, followed by targeted analysis of known candidate genes to identify the causative mutation. This identified a missense mutation (c.643G>A; p.Gly215Arg) in the gene encoding the chloride/proton antiporter 7 (gene CLCN7, protein CLC‐7), which was confirmed by amplification refractory mutation system (ARMS)‐PCR, and to be present in the three available patients. CLC‐7 mutations are known to cause autosomal dominant OPT type 2, also called Albers–Schonberg disease, which is characterized by osteosclerosis, predominantly of the spine, pelvis and skull base, resulting in bone fragility and fractures. Albers–Schonberg disease is not reported to be associated with RTA, but autosomal recessive OPT type 3 (OPTB3) with RTA is associated with carbonic anhydrase type 2 (CA2) mutations. No mutations were detected in CA2 or any other genes known to cause proximal RTA. Neither CLCN7 nor CA2 mutations have previously been reported to be associated with renal stones or epilepsy. Thus, we identified a CLCN7 mutation in a family with autosomal dominant osteopetrosis, RTA, renal stones, epilepsy, and blindness. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:27540713

  10. Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis

    PubMed Central

    Li, Yingjian; Wen, Xiaoyan; Liu, Youhua

    2011-01-01

    During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis. PMID:22278018

  11. Renal Damage in Obstructive Nephropathy Is Decreased in Skp2-Deficient Mice

    PubMed Central

    Suzuki, Sayuri; Fukasawa, Hirotaka; Kitagawa, Kyoko; Uchida, Chiharu; Hattori, Takayuki; Isobe, Tomoyasu; Oda, Toshiaki; Misaki, Taro; Ohashi, Naro; Nakayama, Keiko; Nakayama, Keiichi I.; Hishida, Akira; Yamamoto, Tatsuo; Kitagawa, Masatoshi

    2007-01-01

    Ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27 mediated by SCF-Skp2 ubiquitin ligase is involved in cell cycle regulation. Proliferation of tubular cells is a characteristic feature in obstructed kidneys of unilateral ureteral obstruction. Comparing Skp2+/+ mice with Skp2−/− mice, we investigated the involvement of Skp2, a component of SCF-Skp2 ubiquitin ligase for p27, in the progression of renal lesions in unilateral ureteral obstructed kidneys. mRNA expression of Skp2 was markedly increased in the obstructed kidneys from Skp2+/+ mice and peaked 3 days after unilateral ureteral obstruction. Renal atrophy, tubular dilatation, tubulointerstitial fibrosis, and increases in α-smooth muscle actin expression, the number of tubular cells, and proliferating tubular cells positive for Ki67 were observed in the obstructed kidneys from Skp2+/+ mice; however, these findings were significantly attenuated in Skp2−/− mice. The p27 protein level was increased in the obstructed kidneys but was significantly greater in Skp2−/− mice. The number of Ki67-positive p27-negative cells was lower in obstructed kidneys from Skp2−/− mice than Skp2+/+ mice, whereas that of Ki67-negative p27-positive cells was greater in Skp2−/− mice. These findings suggest that p27 accumulation, which results from SCF-Skp2 ubiquitin ligase deficiency in Skp2−/− mice, is involved in the amelioration of renal damage induced by obstructive nephropathy. PMID:17620370

  12. Filterable plasma concentration, glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances in metal workers

    SciTech Connect

    Araki, S.; Aono, H.; Yokoyama, K.; Murata, K.

    1986-07-01

    To estimate filterable plasma concentration (FPx), glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances, the authors examined the regressions of the 24-hr urinary excretion on glomerular filtration rate (GFR, 24-hr endogenous creatinine (Cn) clearance) in 19 gun-metal foundry workers with blood lead (Pb) concentrations of 25-59 micrograms/dl. It was estimated that the proportion of FPx to total plasma concentration was on average 15, 7, 3, 0.6, 0.06, and 0.008% for Pb, cadmium (Cd), manganese (Mn), zinc (Zn), chromium (Cr), and copper (Cu), respectively. The estimated FPx value was 2.8 X 10(2), 4, 0.08, and 2.8 X 10(4) micrograms/dl for hippuric acid (HA), delta-aminolevulinic acid (ALA), coproporphyrin (CP), and total urinary solutes (TUS), respectively. The estimated glomerular filtration was significantly greater than the zero level for all substances but inorganic mercury (Hg). Similarly, the estimated net tubular secretion was significantly greater than the zero level for Cr, Cu, and TUS; the net tubular reabsorption was significantly greater than the zero level for Pb, ALA, and CP. The renal clearance of ''filterable'' plasma substance was significantly greater than GFR for Cr, Cu, and TUS and was significantly smaller for Pb, ALA, and CP. Thus the renal excretory mechanisms of substances were classified into four major categories: glomerular filtration for Cd, Mn, Zn, HA, and Cn; glomerular filtration and net tubular secretion for Cr, Cu, and TUS; glomerular filtration and net tubular reabsorption for Pb, ALA, and CP; and no glomerular filtration, i.e., suspected tubular secretion, for Hg.

  13. Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury

    NASA Astrophysics Data System (ADS)

    Zhou, Tian-Biao; Qin, Yuan-Han; Lei, Feng-Ying; Huang, Wei-Fang; Drummen, Gregor P. C.

    2013-11-01

    Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increased renal interstitial fibrosis. Here we investigated the role of oxidative stress and prohibitin expression in a hypoxia/reoxygenation injury system in renal tubular epithelial cells with lentivirus-based delivery vectors to knockdown or overexpress prohibitin. Our results show that increased prohibitin expression was negatively correlated with reactive oxygen species, malon dialdehyde, transforming-growth-factor-β1, collagen-IV, fibronectin, and apoptosis (r = -0.895, -0.764, -0.798, -0.826, -0.817, -0.735 each P < 0.01), but positively correlated with superoxide dismutase, glutathione and mitochondrial membrane potential (r = 0.807, 0.815, 0.739; each P < 0.01). We postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.

  14. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice

    PubMed Central

    Yang, Guannan; Zhao, Zongjiang; Zhang, Xinxue; Wu, Amin; Huang, Yawei; Miao, Yonghui; Yang, Meijuan

    2017-01-01

    Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.

  15. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    PubMed

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  16. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    PubMed Central

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  17. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.

    PubMed

    Sipos, Arnold; Vargas, Sarah L; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus; Peti-Peterdi, János

    2009-08-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na(+) excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel-dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption.

  18. Connexin 30 Deficiency Impairs Renal Tubular ATP Release and Pressure Natriuresis

    PubMed Central

    Sipos, Arnold; Vargas, Sarah L.; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus

    2009-01-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na+ excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel–dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption. PMID:19478095

  19. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    SciTech Connect

    Liao, Xiao-hui; Zhang, Ling; Chen, Guo-tao; Yan, Ru-yu; Sun, Hang; Guo, Hui; Liu, Qi

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  20. Mitochondrial dysfunction contributes to the cytotoxicity induced by tentacle extract from the jellyfish Cyanea capillata in rat renal tubular epithelial NRK-52E cells.

    PubMed

    Wang, Tao; He, Qian; Xiao, Liang; Wang, Qianqian; Zhang, Bo; Wang, Beilei; Liu, Guoyan; Zheng, Jiemin; Yu, Bentong; Zhang, Liming

    2013-11-01

    Our previous studies have shown that tentacle extract (TE) from the jellyfish Cyanea capillata could induce a delayed jellyfish envenomation syndrome with severe multiple organ dysfunctions, among which renal injury with tubular necrosis seemed to be most serious. So, in this study, we aimed to explore the toxic effect of TE on rat renal tubular epithelial NRK-52E cells. Based on the previous findings that TE could cause oxidative damage in erythrocytes, the effects of TE on cell oxidative stress conditions, including ROS production and lipid peroxidation, and mitochondrial dysfunction associated with cell death were investigated in NRK-52E cells. The results showed that TE caused cell morphological change and decreased cell viability through induction of apoptosis and necrosis in NRK-52E cells. Meanwhile, ROS overproduction and mitochondrial membrane potential decrease were found before the cell death occurred. It was concluded that TE could induce cytotoxicity, especially apoptosis and necrosis, in NRK-52E cells, and mitochondrial dysfunction and ROS overproduction might play important roles in the process of cell injury and death.

  1. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression

    PubMed Central

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF. PMID:27602565

  2. Significant Accumulation of Polymyxin in Single Renal Tubular Cells: A Medicinal Chemistry and Triple Correlative Microscopy Approach

    PubMed Central

    2016-01-01

    Polymyxin is the last-line therapy against Gram-negative ‘superbugs’; however, dose-limiting nephrotoxicity can occur in up to 60% of patients after intravenous administration. Understanding the accumulation and concentration of polymyxin within renal tubular cells is essential for the development of novel strategies to ameliorate its nephrotoxicity and to develop safer, new polymyxins. We designed and synthesized a novel dual-modality iodine-labeled fluorescent probe for quantitative mapping of polymyxin in kidney proximal tubular cells. Measured by synchrotron X-ray fluorescence microscopy, polymyxin concentrations in single rat (NRK-52E) and human (HK-2) kidney tubular cells were approximately 1930- to 4760-fold higher than extracellular concentrations. Our study is the first to quantitatively measure the significant uptake of polymyxin in renal tubular cells and provides crucial information for the understanding of polymyxin-induced nephrotoxicity. Importantly, our approach represents a significant methodological advancement in determination of drug uptake for single-cell pharmacology. PMID:25553489

  3. Arg tyrosine kinase modulates TGF-β1 production in human renal tubular cells under high-glucose conditions.

    PubMed

    Torsello, Barbara; Bianchi, Cristina; Meregalli, Chiara; Di Stefano, Vitalba; Invernizzi, Lara; De Marco, Sofia; Bovo, Giorgio; Brivio, Rinaldo; Strada, Guido; Bombelli, Silvia; Perego, Roberto A

    2016-08-01

    Renal tubular cells are involved in the tubular interstitial fibrosis observed in diabetic nephropathy. It is debated whether epithelial-mesenchymal transition (EMT) affects tubular cells, which under high-glucose conditions overproduce transforming growth factor-β (TGF-β), a fibrogenic cytokine involved in interstitial fibrosis development. Our study investigated the involvement of non-receptor tyrosine kinase Arg (also called Abl2) in TGF-β production. Human primary tubular cell cultures exposed to high-glucose conditions were used. These cells showed an elongated morphology, stress fibers and vimentin increment but maintained most of the epithelial marker expression and distribution. In these cells exposed to high glucose, which overexpressed and secreted active TGF-β1, Arg protein and activity was downregulated. A further TGF-β1 increase was induced by Arg silencing with siRNA, as with the Arg tyrosine kinase inhibitor Imatinib. In the cells exposed to high glucose, reactive oxygen species (ROS)-dependent Arg kinase downregulation induced both RhoA activation, through p190RhoGAPA (also known as ARHGAP35) modulation, and proteasome activity inhibition. These data evidence a new specific involvement of Arg kinase into the regulation of TGF-β1 expression in tubular cells under high-glucose conditions and provide cues for new translational approaches in diabetic nephropathy.

  4. Characterization of hyaluronan cable structure and function in renal proximal tubular epithelial cells.

    PubMed

    Selbi, W; de la Motte, C A; Hascall, V C; Day, A J; Bowen, T; Phillips, A O

    2006-10-01

    Alteration in the glycosaminoglycan hyaluronan (HA) has been demonstrated in numerous renal diseases. We have demonstrated that renal proximal tubular epithelial cells (PTCs) surround themselves in vitro with HA in an organized pericellular matrix or 'coat', which is associated with cell migration, and also form pericellular HA cable-like structures which modulate PTC-mononuclear leukocytes interactions. The aim of this study was to characterize potential regulatory mechanism in the assembly of PTC-HA into pericellular cables. HA cables are generated by PTCs in the absence of serum. Immunohistochemical analysis demonstrates the incorporation of components of the inter-alpha-inhibitor (IalphaI) family of proteins and versican into HA cables. Addition of an antibody to IalphaI/PalphaI (pre-alpha-inhibitor) inhibits cable formation. In contrast, inhibition of tumor necrosis factor-alpha-stimulated gene 6 (TSG-6) has no effect on cable formation, suggesting that their generation is independent of the known heavy-chain transfer activity of TSG-6. Overexpression of HAS3 is associated with induction of HA cable formation, and also increased incorporation of HA into pericellular coats. Functionally, this resulted in enhanced HA-dependent monocyte binding and cell migration, respectively. Cell surface expression of CD44 and trypsin-released cell-associated HA were increased in HAS3-overexpressing cells. In addition, hyaluronidase (hyal1 and hyal2) and bikunin mRNA expression were increased, whereas PalphaI HC3 mRNA expression was unchanged in the transfected cells. The data demonstrate the importance of IalphaI/PalphaI in cable formation and suggest that expression of HAS3 may be critical for HA cable assembly.

  5. Renal distal tubular handling of sodium in central fluid volume homoeostasis in preascitic cirrhosis

    PubMed Central

    Sansoe, G; Ferrari, A; Baraldi, E; Castellana, C; De Santis, M C; Manenti, F

    1999-01-01

    BACKGROUND/AIMS—Patients with preascitic liver cirrhosis have an increased central plasma volume, and, for any given plasma aldosterone concentration, they excrete less sodium than healthy controls. A detailed study of the distribution of sodium reabsorption along the segments of the renal tubule, especially the distal one, is still lacking in preascitic cirrhosis.
METHODS—Twelve patients with Child-Pugh class A cirrhosis and nine control subjects (both groups on a normosodic diet) were submitted to the following investigations: (a) plasma levels of active renin and aldosterone; (b) four hour renal clearance of lithium (an index of fluid delivery to the loop of Henle), creatinine, sodium, and potassium; (c) dopaminergic activity, as measured by incremental aldosterone response to intravenous metoclopramide.
RESULTS—Metoclopramide induced higher incremental aldosterone responses, indicating increased dopaminergic activity in patients than controls, which is evidence of an increased central plasma volume (+30 min: 160.2 (68.8) v 83.6 (35.2) pg/ml, p<0.01; +60 min: 140.5 (80.3) v 36.8 (36.1) pg/ml, p<0.01). Patients had increased distal fractional sodium reabsorption compared with controls (26.9 (6.7)% v 12.5 (3.4)% of the filtered sodium load, p<0.05). In the patient group there was an inverse correlation between: (a) absolute distal sodium reabsorption and active renin (r −0.59, p<0.05); (b) fractional distal sodium reabsorption and sodium excretion (r −0.66, p<0.03).
CONCLUSIONS—These data suggest that in preascitic cirrhosis the distal fractional tubular reabsorption of sodium is increased and critical in regulating both central fluid volume and sodium excretion.


Keywords: kidney; sodium handling; lithium clearance; liver cirrhosis; dopamine; central fluid volume PMID:10517915

  6. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells.

    PubMed

    Braun, Michael C; Reins, Rose Y; Li, Tong-Bin; Hollmann, Travis J; Dutta, Ranjan; Rick, Wetsel A; Teng, Ba-Bie; Ke, Baozhen

    2004-09-15

    Although complement activation and deposition have been associated with a variety of glomerulopathies, the pathogenic mechanisms by which complement directly mediates renal injury remain to be fully elucidated. Renal parenchymal tissues express a limited repertoire of receptors that directly bind activated complement proteins. We report the renal expression of the receptor for the C3 cleavage product C3a, a member of the anaphylatoxin family. C3aR is highly expressed in normal human and murine kidney, as demonstrated by immunohistochemistry and in situ hybridization. Its distribution is limited to epithelial cells only, as glomerular endothelial and mesangial cells showed no evidence of C3aR expression. The C3aR is also expressed by primary renal proximal tubular epithelial cells in vitro as demonstrated by FACS, Western blot, and RT-PCR. In vitro C3aR is functional in terms of its capacity to bind 125I-labeled C3a and generate inositol triphosphate. Finally, using microarray analysis, four novel genes were identified and confirmed as transcriptionally regulated by C3aR activation in proximal tubular cells. These studies define a new pathway by which complement activation may directly modulate the renal response to immunologic injury.

  7. Numb Protects Human Renal Tubular Epithelial Cells From Bovine Serum Albumin-Induced Apoptosis Through Antagonizing CHOP/PERK Pathway.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Shao, Fengmin; Wu, Erxi; Wang, Xuejing

    2016-01-01

    In recent studies, we found that Numb is involved in oxidative stress-induced apoptosis of renal proximal tubular cells; however, its function on ER stress-induced apoptosis in proteinuric kidney disease remains unknown. The objective of the present study is to explore the role of Numb in urinary albumin-induced apoptosis of human renal tubular epithelial cells (HKCs). In this study, we demonstrate that incubation of HKCs with bovine serum albumin (BSA) resulted in caspase three-dependent cell death. Numb expression was down-regulated by BSA in a time- and dose-dependent manner. Knockdown of Numb by siRNA sensitized HKCs to BSA-induced apoptosis, whereas overexpression of Numb protected HKCs from BSA-induced apoptosis. Moreover, BSA activated CHOP/PERK signaling pathway in a time- and dose-dependent manner as indicated by increased expression of CHOP, PERK, and P-PERK. Furthermore, knockdown of CHOP or PERK significantly attenuated the promoting effect of Numb on BSA-induced apoptosis, while overexpression of CHOP impaired the protective effect of Numb on BSA-induced apoptosis. Taken together, our findings demonstrate that Numb plays a protective role on BSA-induced apoptosis through inhibiting CHOP/PERK signaling pathway in human renal tubular epithelial cells. Therefore, the results from this study provides evidence that Numb is a new target of ER-associated apoptotic signaling networks and Numb may serve as a promising therapeutic target for proteinuric diseases.

  8. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  9. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury

    PubMed Central

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-01-01

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2–3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO. PMID:27754425

  10. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury.

    PubMed

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-10-14

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2-3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO.

  11. Renal Artery Vasodilation May Be An Indicator of Successful Sympathetic Nerve Damage During Renal Denervation Procedure

    PubMed Central

    Chen, Weijie; Du, Huaan; Lu, Jiayi; Ling, Zhiyu; Long, Yi; Xu, Yanping; Xiao, Peilin; Gyawali, Laxman; Woo, Kamsang; Yin, Yuehui; Zrenner, Bernhard

    2016-01-01

    Autonomic nervous system plays a crucial role in maintaining and regulating vessel tension. Renal denervation (RDN) may induce renal artery vasodilation by damaging renal sympathetic fibers. We conducted this animal study to evaluate whether renal artery vasodilation could be a direct indicator of successful RDN. Twenty-eight Chinese Kunming dogs were randomly assigned into three groups and underwent RDN utilizing temperature-controlled catheter (group A, n = 11) or saline-irrigated catheter (group B, n = 11) or sham procedure (group C, n = 6). Renal angiography, blood pressure (BP) and renal artery vasodilation measurements were performed at baseline, 30-minute, 1-month, and 3-month after interventions. Plasma norepinephrine concentrations were tested at baseline and 3-month after intervention. Results showed that, in addition to significant BP reduction, RDN induced significant renal artery vasodilation. Correlation analyses showed that the induced renal artery vasodilation positively correlated with SBP reduction and plasma norepinephrine reduction over 3 months after ablation. Post hoc analyses showed that saline-irrigated catheter was superior to TC catheter in renal artery vasodilation, especially for the acute dilatation of renal artery at 30-minute after RDN. In conclusion, renal artery vasodilation, induced by RDN, may be a possible indicator of successful renal nerve damage and a predictor of blood pressure response to RDN. PMID:27849014

  12. Role of calcitonin gene-related peptide in hypertension-induced renal damage.

    PubMed

    Bowers, Mark C; Katki, Khurshed A; Rao, Arundhati; Koehler, Michael; Patel, Parag; Spiekerman, Alvin; DiPette, Donald J; Supowit, Scott C

    2005-07-01

    Calcitonin gene-related peptide, a potent vasodilator neuropeptide, is localized in perivascular sensory nerves. We have reported that alpha-calcitonin gene-related peptide knockout mice have elevated baseline blood pressure and enhanced hypertension-induced renal damage compared with wild-type controls. Thus, the aim of this study was to determine the mechanism and functional significance of this increased hypertension-induced renal damage. We previously demonstrated by telemetric recording that the deoxycorticosterone-salt protocol produces a 35% increase in mean arterial pressure in both alpha-calcitonin gene-related peptide knockout and wild-type mice. Both strains of mice were studied at 0, 14, and 21 days after deoxycorticosterone-salt hypertension. Renal sections from hypertensive wild-type mice showed no pathological changes at any time point studied. However, on days 14 and 21, hypertensive knockout mice displayed progressive increases in glomerular proliferation, crescent formation, and tubular protein casts, as well as the inflammatory markers intercellular adhesion molecule-1, vascular adhesion molecule-1, and monocyte chemoattractant protein-1. There was a significant increase in 24-hour urinary isoprostane, a marker of oxidative stress-induced lipid peroxidation, levels at days 14 and 21 in the hypertensive knockout compared with hypertensive wild-type mice. Urinary microalbumin was significantly higher (2-fold) at day 21 and creatinine clearance was significantly decreased 4-fold in the hypertensive knockout compared with hypertensive wild-type mice. Therefore, in the absence of alpha-calcitonin gene-related peptide, deoxycorticosterone-salt hypertension induces enhanced oxidative stress, inflammation, and renal histopathologic damage, resulting in reduced renal function. Thus, sensory nerves, via alpha-calcitonin gene-related peptide, appear to be renoprotective against hypertension-induced damage.

  13. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors.

    PubMed

    Kiss, Eva; Kränzlin, Bettina; Wagenblaβ, Katja; Bonrouhi, Mahnaz; Thiery, Joachim; Gröne, Elisabeth; Nordström, Viola; Teupser, Daniel; Gretz, Norbert; Malle, Ernst; Gröne, Hermann-Josef

    2013-03-01

    Dyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients. As liver X receptors (LXRα,β) regulate genes linked to lipid and carbohydrate homeostasis and inhibit inflammatory gene expression in macrophages, the effects of systemic and macrophage-specific LXR activation were analyzed on renal damage in hyperlipidemic-hyperglycemic mice. LXR stimulation by GW3965 up-regulated genes involved in cholesterol efflux and down-regulated proinflammatory/profibrotic cytokines, inhibiting the pathomorphology of diabetic nephropathy, renal lipid accumulation, and improving renal function. Xanthine oxidoreductase and nitrotyrosine levels were reduced. In macrophages, GW3965 or LXRα overexpression significantly suppressed glycated or acetylated low-density lipoprotein-induced cytokines and reactive oxygen species. Specifically, in mice, transgenic expression of LXRα in macrophages significantly ameliorated hyperlipidemic-hyperglycemic nephropathy. The results demonstrate the presence of lipid droplet-induced oxidative mechanisms and the pathophysiologic role of macrophages in diabetic kidneys and indicate the potent regulatory role of LXRs in preventing renal damage in diabetes.

  14. Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells

    PubMed Central

    Chuang, Sung-Ting; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2014-01-01

    Accumulating evidence suggests that renal tubulointerstitial fibrosis is a main cause of end-stage renal disease. Clinically, there are no beneficial treatments that can effectively reverse the progressive loss of renal functions. Caffeic acid phenethyl ester is a natural phenolic antifibrotic agent, but rapid decomposition by an esterase leads to its low bioavailability. In this study, we evaluated the effects of KS370G, a caffeic acid phenylethyl amide, on murine renal fibrosis induced by unilateral renal ischemia-reperfusion injury (IRI) and in TGF-β1 stimulated renal tubular epithelial cells (NRK52E and HK-2). In the animal model, renal fibrosis was evaluated at 14 days post-operation. Immediately following the operation, KS370G (10 mg/kg) was administered by oral gavage once a day. Our results show that KS370G markedly attenuates collagen deposition and inhibits an IRI-induced increase of fibronectin, vimentin, α-SMA and TGF-β1 expression and plasma TGF-β1 levels in the mouse kidney. Furthermore, KS370G reverses TGF-β1-induced downregulation of E-cadherin and upregulation of α-SMA and also decreases the expression of fibronectin, collagen I and PAI-1 and inhibits TGF-β1-induced phosphorylation of Smad2/3. These findings show the beneficial effects of KS370G on renal fibrosis in vivo and in vitro with the possible mechanism being the inhibition of the Smad2/3 signaling pathway. PMID:25056456

  15. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity.

    PubMed

    Giani, Jorge F; Eriguchi, Masahiro; Bernstein, Ellen A; Katsumata, Makoto; Shen, Xiao Z; Li, Liang; McDonough, Alicia A; Fuchs, Sebastien; Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A

    2017-04-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.

  16. Glomerular lipidosis accompanied by renal tubular oxalosis in wild and laboratory-reared Japanese rock ptarmigans (Lagopus mutus japonicus).

    PubMed

    Murai, Atsuko; Murakami, Mami; Sakai, Hiroki; Shimizu, Hiroaki; Murata, Koichi; Yanai, Tokuma

    2011-12-01

    Glomerular lipidosis is a disease characterized by lipid accumulation in mesangial cells but that has not been fully investigated in avian species. We examined four wild and two laboratory-reared Japanese rock ptarmigans (Lagopus mutus japonicus)--an endangered avian species--presenting vacuolar deposits in the glomeruli. All cases had vacuolar deposits in the glomeruli. In the wild cases, fewer than 30% of all glomeruli were affected, compared with more than 90% in the laboratory-reared cases. In the wild cases, most deposits were mild and restricted to the mesangial areas of glomeruli. In the laboratory-reared cases, nearly all of the deposits covered entire glomeruli. Electron microscopy of mild deposits revealed vacuoles in the cytoplasm of mesangial cells. These vacuoles were positive for Sudan III, Sudan black B, oil red O, Nile blue, periodic acid-Schiff, Schultz test, and digitonin stain and were negative for performaric acid-Schiff stains. Based on these results, we diagnosed the glomerular lesion as glomerular lipidosis caused by uptake of low-density lipoprotein in mesangial cells. Except for one wild case, all cases exhibited renal tubular oxalosis. The severity of tubular oxalosis tended to be related to the severity of glomerular lipidosis: In cases of mild glomerular lipidosis, tubular oxalosis was also mild or absent. We therefore diagnosed the primary lesion as glomerular lipidosis accompanied by tubular oxalosis. The four wild cases came from different zones and therefore had no opportunities to interbreed and no common relatives. We believe these data support the hypothesis that glomerular lipidosis is a disease of the general population ofJapanese rock ptarmigans. This is the first report of glomerular lipidosis accompanied by renal tubular oxalosis in an avian species.

  17. Effect of felodipine on renal haemodynamics and tubular sodium handling after single-dose cyclosporin infusion in renal transplant recipients treated with azathioprine and prednisolone.

    PubMed

    Madsen, J K; Kornerup, H J; Pedersen, E B

    1995-11-01

    A total of 25 renal transplant recipients, treated solely with prednisolone and azathioprine, were investigated in a randomized, double-blind, placebo-controlled, cross-over study. The effect of a single oral dose of felodipine 5 mg or placebo on: glomerular filtration rate (GFR); renal plasma flow (RPF); renal vascular resistance (RVR); renal tubular sodium and water handling, measured by the lithium clearance technique; plasma levels of angiotensin II (AngII), aldosterone (Aldo), atrial natriuretic factor (ANF) and arginine vasopressin (AVP); blood pressure (BP), and heart rate (HR) was studied before, during, and after an intravenous infusion of cyclosporin (CyA). Three consecutive clearance periods were performed, each lasting 1 h. During the second period, CyA (0.75 mg kg-1 body weight) was infused. Before infusion of CyA, felodipine caused a significant rise (6.7%) in RPF and lowered RVR, but did not change GFR significantly. The rise in RPF was abolished by infusion of CyA. After infusion, both GFR (7.8%) and RPF (9.4%) were significantly higher and RVR lower after felodipine than after placebo. Proximal tubular output and total sodium excretion were higher on the felodipine day before and after, but not during CyA infusion. In all three periods felodipine reduced both systolic and diastolic BP. In conclusion, a single dose of felodipine increases RPF and decreases blood pressure in renal transplant recipients not treated with CyA. Although some of these changes are abolished by an acute intravenous infusion of CyA, the effects of felodipine are present again also during the 1st hour after the infusion and thereby indicate at least in part some renal protective effect of felodipine. It is suggested that a higher dose of felodipine might also have been preventive against CyA renal side-effects during the acute infusion.

  18. Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway.

    PubMed

    Chen, Yen-Cheng; Chen, Cheng-Hsien; Hsu, Yung-Ho; Chen, Tso-Hsiao; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Tzen-Wen

    2011-05-11

    Leptin, a circulating hormone secreted mainly from adipose tissues, possesses protective effects on many cell types. Serum leptin concentration increases in patients with chronic renal failure and those undergoing maintenance dialysis. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. In the present study, we intended to investigate the influence of leptin on apoptotic pathways and its mechanism in rat renal tubular cells treated with gentamicin. By using Annexin V-FITC/propidium iodide double staining, we found that leptin expressed a dose-dependent protective effect against gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) within 24h. Pretreatment of the cells with 50 or 100 ng/ml of leptin induced Bcl-2 and Bcl-x(L), increased the phosphorylation of Bad, and decreased the cleaved caspase-3 and caspase-9 in gentamicin-treated NRK-52E cells. Leptin also suppressed the activation of the transcription factor NF-κB and upregulated Akt activation in gentamicin-treated NRK-52E cells. We found that leptin activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway as demonstrated by the suppression of the anti-apoptotic effect of leptin by wortmannin. The treatment of wortmannin suppressed the leptin-induced phospho-Akt, Bcl-2, phospho-Bad as well as Bcl-x(L), and recovered the leptin-reduced cleaved caspase-3 and caspase-9. Based on our results, we suggested that leptin can attenuate gentamicin-induced apoptotic injury in rat renal tubular cells through PI3K/Akt signaling pathway.

  19. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  20. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    SciTech Connect

    Hasegawa, Kazuhiro; Wakino, Shu Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.

  1. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    PubMed

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-04-03

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3(loxloxCre)) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3(loxloxCre) mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3(loxloxCre) mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3(loxloxCre) mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3(loxloxCre) mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3(loxloxCre) mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified.

  2. Calcitriol Directly Sensitizes Renal Tubular Cells to ATP-Depletion- and Iron-Mediated Attack

    PubMed Central

    Zager, Richard A.

    1999-01-01

    Vitamin Ds have been reported to have diverse effects on cell homeostasis, leading to suggestions that they have therapeutic applications extending beyond their traditional actions on the Ca2+/parathyroid/bone axis. As some of these potential indications carry an inherent risk of acute renal failure (ARF; eg, cancer chemotherapy and organ transplantation), the goal of this study was to assess whether vitamin Ds directly affect renal tubule injury responses. Cultured human proximal tubular (HK-2) cells were exposed to physiological or pharmacological doses of either calcitriol (D3) or a synthetic vitamin D2 analogue (19-nor) for 3 to 48 hours. Their impact on cell integrity (percent lactate dehydrogenase (LDH) release and tetrazolium dye MTT uptake) under basal conditions and during superimposed injuries (ATP depletion/Ca2+ ionophore or iron-mediated oxidant stress) were determined. As vitamin Ds can be anti-proliferative, cell outgrowth ([3H]thymidine uptake and crystal violet staining) was also tested. Finally, the action of D3 on in vivo ARF (glycerol-induced myoglobinuria) and isolated proximal tubule injury responses were assessed. D3 induced a rapid, dose-dependent increase in HK-2 susceptibility to both ATP-depletion/Ca2+-ionophore- and Fe-mediated attack without independently affecting cell integrity or proliferative responses. In contrast, D2 negatively affected only Fe toxicity and only after relatively prolonged exposure (48 hours). D3 dramatically potentiated in vivo ARF (two- to threefold increase in azotemia), suggesting potential in vivo relevance of the above HK-2 cell results. Proximal tubules, isolated from these glycerol-exposed mice, suggested that D3 can worsen tubule injury despite a parodoxic suppression of H2O2 production. In contrast, D3 had a mild negative impact on cellular energetics (depressed ATP/ADP ratios), and it accentuated plasma membrane phospholipid breakdown. The latter was observed in both glycerol-treated and control tubules

  3. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  4. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis

    PubMed Central

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings. PMID:24040435

  5. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

    PubMed

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings.

  6. Expression and Function of Interleukin-1β-Induced Neutrophil Gelatinase-Associated Lipocalin in Renal Tubular Cells

    PubMed Central

    Mamiya, Ryo; Tsuchiya, Hisashi; Kitanaka, Taku; Namba, Shinichi; Kitanaka, Nanako; Okabayashi, Ken; Narita, Takanori; Sugiya, Hiroshi

    2016-01-01

    Acute kidney injury (AKI) is characterized by a sudden loss of renal function. Early recognition of AKI, especially in critically ill patients, is essential for adequate therapy. Currently, neutrophil gelatinase-associated lipocalin (NGAL) is considered to be an effective biomarker of AKI; however, the regulation of its expression and function in renal tubular cells remains unclear. In this study, we investigated the regulation of the expression and function of NGAL in IL-1β-treated Madin–Darby canine kidney (MDCK) cells as a model of renal tubular cells. IL-1β induced a disturbance in the localization of E-cadherin and zonaoccludin-1 (ZO-1). The transepithelial electrical resistance (TER) also decreased 5 days after IL-1β treatment. IL-1β induced NGAL mRNA expression and protein secretion in a time- and dose-dependent manner, which occurred faster than the decrease in TER. In the presence of ERK1/2 and p38 inhibitors, IL-1β-induced NGAL mRNA expression and protein secretion were significantly attenuated. In the presence of recombinant NGAL, IL-1β-induced disturbance in the localization of E-cadherin and ZO-1 was attenuated, and the decrease in TER was partially maintained. These results suggest that NGAL can be used as a biomarker for AKI and that it functions as a protector from AKI. PMID:27851800

  7. Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions.

    PubMed

    Jia, Weiwei; Du, Feifei; Liu, Xinwei; Jiang, Rongrong; Xu, Fang; Yang, Junling; Li, Li; Wang, Fengqing; Olaleye, Olajide E; Dong, Jiajia; Li, Chuan

    2015-05-01

    Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by human organic anion transporter 1 (OAT1) (Km, 121 μM), OAT2 (859 μM), OAT3 (1888 μM), and OAT4 (1880 μM) and rat Oat1 (117 µM), Oat2 (1207 μM), and Oat3 (1498 μM). Other renal transporters (human organic anion-transporting polypeptide 4C1 [OATP4C1], organic cation transporter 2 [OCT2], carnitine/organic cation transporter 1 [OCTN1], multidrug and toxin extrusion protein 1 [MATE1], MATE2-K, multidrug resistance-associated protein 2 [MRP2], MRP4, and breast cancer resistance protein [BCRP], and rat Oct1, Oct2, Octn1, Octn2, Mate1, Mrp2, Mrp4, and Bcrp) showed either ambiguous ability to transport tanshinol or no transport activity. Rats may be a useful model, to investigate the contribution of the renal transporters on the systemic and renal exposure to tanshinol. Probenecid-induced impairment of tubular secretion resulted in a 3- to 5-fold increase in the rat plasma area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of tanshinol. Tanshinol exhibited linear plasma pharmacokinetic properties over a large intravenous dose range (2-200 mg/kg) in rats. The dosage adjustment could result in increases in the plasma AUC0-∞ of tanshinol of about 100-fold. Tanshinol exhibited very little dose-related nephrotoxicity. In summary, renal tubular secretion of tanshinol consists of uptake from blood, primarily by OAT1/Oat1, and the subsequent luminal efflux into urine mainly by passive diffusion. Dosage adjustment appears to be an efficient and safe way to manipulate systemic exposure to tanshinol. Tanshinol shows low propensity to cause renal transporter

  8. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    PubMed

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  9. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices.

  10. Role of TNF-associated cytokines in renal tubular cell apoptosis induced by hyperoxaluria.

    PubMed

    Horuz, Rahim; Göktaş, Cemal; Çetinel, Cihangir A; Akça, Oktay; Aydın, Hasan; Ekici, Işın D; Albayrak, Selami; Sarıca, Kemal

    2013-06-01

    Crystal-cell interaction has been reported as one of the most crucial steps in urinary stone formation. Hyperoxaluria-induced apoptotic changes in renal tubular epithelial cells is the end-stage of this interaction. We aimed to evaluate the possible pathways responsible in the induction of apoptosis within the involved cells by assessing the receptoral expression of three different pathways. 16 male Spraque-Dowley rats were divided into two groups: Group 1 (n:8) received only distilled water; Group 2 (n:8) received 0.75 % ethylene glycol (EG) in their daily water to induce hyperoxaluria for 2 weeks. After 24 h urine collection, all animals were euthenized and right kidneys were removed and fixed for immunohistochemical evaluation. Oxalate and creatinine levels (in 24 h-urine) and FAS, tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor-2 expressions (in tissue) have been assessed. In addition to TNF (p = 0.0007) expression; both FAS (p = 0.0129 ) and FASL (p = 0.032) expressions significantly increased in animals treated with EG. The expressions of TRAIL (p = 0.49) and TRAIL-R2 (p = 0.34) receptors did not change statistically after hyperoxaluria induction. Although a positive correlation with cytokine expression density and 24 h-urinary oxalate expression (mg oxalate/mg creatinine) has been assessed with TNF (p = 0.04, r = 0.82), FAS (p = 0.05, r = 0.80), FAS-L (p = 0.04, r = 0.82); no correlation could be demonstrated between TRAIL and TRAIL R2 expressions. Our results indicate that apoptosis induced by oxalate is possibly mediated via TNF and FAS pathways. However, TRAIL and TRAIL-R2 seemed to have no function in the cascade. Correlation with urinary oxalate levels did further strengthen the findings.

  11. Renal tubular dysfunction presenting as recurrent hypokalemic periodic quadriparesis in systemic lupus erythematosus

    PubMed Central

    Prasad, D.; Agarwal, D.; Malhotra, V.; Beniwal, P.

    2014-01-01

    We report recurrent hypokalemic periodic quadriparesis in a 30-year-old woman. Patient had also symptoms of multiple large and small joint pain, recurrent oral ulceration, photosensitivity and hair loss that were persisting since last 6 months and investigations revealed systemic lupus erythematosus (SLE) with distal tubular acidosis. Our patient was successfully treated with oral potassium chloride, sodium bicarbonate, hydroxychloroquine and a short course of steroids. Thus, tubular dysfunction should be carefully assessed in patients with SLE. PMID:25249723

  12. Total Coumarins from Hydrangea paniculata Protect against Cisplatin-Induced Acute Kidney Damage in Mice by Suppressing Renal Inflammation and Apoptosis

    PubMed Central

    Jie, Ma; Jingzhi, Yang; Dongjie, Wang; Dongming, Zhang

    2017-01-01

    Aim. Hydrangea paniculata (HP) Sieb. is a medical herb which is widely distributed in southern China, and current study is to evaluate renal protective effect of aqueous extract of HP by cisplatin-induced acute kidney injury (AKI) in animal model and its underlying mechanisms. Materials and Methods. HP extract was prepared and the major ingredients were coumarin glycosides. AKI mouse models were established by single i.p. injection of 20 mg/kg cisplatin, and HP was orally administrated for total five times. The renal biochemical functions, pathological staining, kidney oxidative stress, and inflammatory status were measured. Apoptosis of tubular cells and infiltration of macrophages and neutrophils were also tested. Results. HP administration could improve the renal function by decreasing concentration of blood urea nitrogen (BUN) and creatinine and attenuates renal oxidative stress and tubular pathological injury and apoptosis; further research demonstrated that HP could inhibit the overproduction of proinflammatory cytokines and regulate caspase and BCL-2 family proteins. HP also reduced renal infiltration of macrophages and neutrophils, and its effect might be by downregulating phosphorylation of ERK1/2 and stat3 signaling pathway. Conclusions. This present study suggests that HP could ameliorate cisplatin induced kidney damage by antioxidation and suppressing renal inflammation and tubular cell apoptosis. PMID:28367225

  13. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    SciTech Connect

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S. ); Li, S.A.; Li, J.J. )

    1989-03-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17{beta}-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17{beta}-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17{beta}-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17{beta}-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17{beta}-estradiol, ({sup 3}H)thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney.

  14. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    NASA Astrophysics Data System (ADS)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  15. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells.

    PubMed

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2011-09-01

    Compelling evidence indicates that polyphenolic antioxidants protect against diabetic nephropathy. Pycnogenol is made up of flavonoids, mainly procyanidins and phenolic compounds, and is a known powerful antioxidant. Hyperglycemia is characteristic of diabetic nephropathy and induces renal tubular cell apoptosis. Thus, in this study, we used high glucose-treated renal tubular cells to investigate the protective action of pycnogenol against high glucose-induced apoptosis and diabetic nephropathy. We also sought to further delineate the underlying mechanisms elicited by oxidative stress and inflammation and suppressed by pycnogenol. Results show that pycnogenol significantly suppressed the high glucose-induced morphological changes and the reduction in cell viability associated with cytotoxicity. Bcl2/Bax protein levels indicated pycnogenol's anti-apoptotic effect against high glucose-induced apoptotic cell death. In addition, several key markers of oxidative stress and inflammation were measured for pycnogenol's beneficial effects. Results indicate pycnogenol's anti-oxidative and anti-inflammatory efficacy in suppressing lipid peroxidation, total reactive species (RS), superoxide ((·)O(2)), nitric oxide (NO(·)), peroxynitrite (ONOO(-)), pro-inflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) nuclear translocation. Based on these results, we conclude that pycnogenol's anti-oxidative and anti-inflammatory properties underlie its anti-apoptotic effects, suggesting further investigation of pycnogenol as a promising treatment against diabetic nephropathy.

  16. Increased hematocrit mitigates ischemic renal damage in the splenectomized dog.

    PubMed

    Bell, R D; Mandal, A K

    1989-03-01

    Splenectomy (SPLX) prevents ischemic acute tubular necrosis (ATN) and peritubular capillary (PTC) congestion. This study attempts to reverse the protective effect of splenectomy in the ischemic model of ATN by increasing hematocrit before inducing ATN. Sham-SPLX, SPLX, and SPLX dogs given packed red cells to elevate hematocrit by 30% (SPLX-high hematocrit) received bilateral renal artery obstruction (RAO) for 120 minutes. Renal function was tested for 6 days post-RAO. Hematocrit in the SPLX-high hematocrit group was greater (p less than .05) than the SPLX-RAO group but did not differ from the non-SPLX group. All groups had different (p less than .05) serum creatinine levels for 48 hours post-RAO, and untreated animals differed from all the others at 144 hours. Serum creatinine was highest in untreated, lowest in SPLX-high hematocrit, and intermediate in noninfused SPLX animals. The same pattern was observed in blood urea nitrogen, creatinine clearance and renal histopathology. Fractional excretion of sodium in the SPLX groups was six times that in the intact animals (p less than .05), irrespective of hematocrit level. We conclude that increased hematocrit is protective in ischemic ATN, and does not promote PTC congestion or ATN in the SPLX animal. In addition, the protective effect of splenectomy may be mediated, in part, by mechanism(s) that alter sodium transport or osmolar excretion.

  17. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease.

    PubMed

    Rudnicki, Michael; Perco, Paul; Enrich, Julia; Eder, Susanne; Heininger, Dorothea; Bernthaler, Andreas; Wiesinger, Martin; Sarközi, Rita; Noppert, Susie-Jane; Schramek, Herbert; Mayer, Bernd; Oberbauer, Rainer; Mayer, Gert

    2009-03-01

    Proteinuria, inflammation, chronic hypoxia, and rarefaction of peritubular capillaries contribute to the progression of renal disease by affecting proximal tubular epithelial cells (PTECs). To study the transcriptional response that separates patients with a stable course from those with a progressive course of disease, we isolated PTECs by laser capture microdissection from cryocut tissue sections of patients with proteinuric glomerulopathies (stable n=20, progressive n=11) with a median clinical follow-up of 26 months. Gene-expression profiling and a systems biology analysis identified activation of intracellular vascular endothelial growth factor (VEGF) signaling and hypoxia response pathways in progressive patients, which was associated with upregulation of hypoxia-inducible-factor (HIF)-1alpha and several HIF target genes, such as transferrin, transferrin-receptor, p21, and VEGF-receptor 1, but downregulation of VEGF-A. The inverse expression levels of HIF-1alpha and VEGF-A were significantly superior in predicting clinical outcome as compared with proteinuria, renal function, and degree of tubular atrophy and interstitial fibrosis at the time of biopsy. Interactome analysis showed the association of attenuated VEGF-A expression with the downregulation of genes that usually stimulate VEGF-A expression, such as epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and HIF-2alpha. In vitro experiments confirmed the positive regulatory effect of EGF and IGF-1 on VEGF-A transcription in human proximal tubular cells. Thus, in progressive but not in stable proteinuric kidney disease, human PTECs show an attenuated VEGF-A expression despite an activation of intracellular hypoxia response and VEGF signaling pathways, which might be due to a reduced expression of positive coregulators, such as EGF and IGF-1.

  18. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  19. Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study

    SciTech Connect

    Pallet, Nicolas Rabant, Marion; Xu-Dubois, Yi-Chun; LeCorre, Delphine; Mucchielli, Marie-Helene; Imbeaud, Sandrine; Agier, Nicolas; Thervet, Eric; Legendre, Christophe; Beaune, Philippe; Anglicheau, Dany

    2008-06-01

    The molecular mechanisms involved in the potentially nephrotoxic response of tubular cells to immunosuppressive drugs remain poorly understood. Transcriptional profiles of human proximal tubular cells exposed to cyclosporine A (CsA), sirolimus (SRL) or their combination, were established using oligonucleotide microarrays. Hierarchical clustering of genes implicated in fibrotic processes showed a clear distinction between expression profiles with CsA and CsA + SRL treatments on the one hand and SRL treatment on the other. Functional analysis found that CsA and CsA + SRL treatments preferentially alter biological processes located at the cell membrane, such as ion transport or signal transduction, whereas SRL modifies biological processes within the nucleus and related to transcriptional activity. Genome wide expression analysis suggested that CsA may induce an endoplasmic reticulum (ER) stress in tubular cells in vitro. Moreover we found that CsA exposure in vivo is associated with the upregulation of the ER stress marker BIP in kidney transplant biopsies. In conclusion, this toxicogenomic study highlights the molecular interaction networks that may contribute to the tubular response to CsA and SRL. These results may also offer a new working hypothesis for future research in the field of CsA nephrotoxicity. Further studies are needed to evaluate if ER stress detection in tubular cells in human biopsies can predict CsA nephrotoxicity.

  20. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  1. Kidney Injury Molecule-1 Protects against Gα12 Activation and Tissue Damage in Renal Ischemia-Reperfusion Injury

    PubMed Central

    Ismail, Ola Z.; Zhang, Xizhong; Wei, Junjun; Haig, Aaron; Denker, Bradley M.; Suri, Rita S.; Sener, Alp; Gunaratnam, Lakshman

    2016-01-01

    Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear. Here, we report for the first time that Kim-1 inhibits Gα12 activation and protects mice against renal ischemia-reperfusion injury. We reveal that Kim-1 physically interacts with and inhibits cellular Gα12 activation after inflammatory stimuli, including reactive oxygen species, by blocking GTP binding to Gα12. Compared with Kim-1+/+ mice, Kim-1−/− mice exhibited greater Gα12 and downstream Src activation both in primary tubular epithelial cells after in vitro stimulation with H2O2 and in whole kidneys after unilateral renal artery clamping. Finally, we show that Kim-1–deficient mice had more severe kidney dysfunction and tissue damage after bilateral renal artery clamping, compared with wild-type mice. Our results suggest that KIM-1 is an endogenous protective mechanism against renal ischemia-reperfusion injury through inhibition of Gα12. PMID:25759266

  2. Galectin-3 Blockade Reduces Renal Fibrosis in Two Normotensive Experimental Models of Renal Damage

    PubMed Central

    Martinez-Martinez, Ernesto; Ibarrola, Jaime; Calvier, Laurent; Fernandez-Celis, Amaya; Leroy, Celine; Cachofeiro, Victoria; Rossignol, Patrick; Lopez-Andres, Natalia

    2016-01-01

    Background Galectin-3 (Gal-3), a β-galactoside-binding lectin, is increased in kidney injury and its pharmacological blockade reduces renal damage in acute kidney injury, hyperaldosteronism or hypertensive nephropathy. We herein investigated the effects of pharmacological Gal-3 inhibition by modified citrus pectin (MCP) in early renal damage associated with obesity and aortic stenosis (AS). Results Gal-3 was upregulated in kidneys from high fat diet (HFD) rats and in animals with partial occlusion of ascending aorta (AS). Urinary and plasma neutrophil gelatinase-associated lipocalin (NGAL) and urinary albumin were enhanced in HFD and AS rats. In kidney from obese rats, fibrotic markers (collagen, TFG-β), epithelial-mesenchymal transition molecules (α-smooth muscle actin, E-cadherin), inflammatory mediator (osteopontin) and kidney injury marker (kidney injury molecule-1) were modified. In kidney from AS rats, fibrotic markers (collagen, CTGF), epithelial-mesenchymal transition molecules (fibronectin, α-smooth muscle actin, β-catenin, E-cadherin) and kidney injury markers (NGAL, kidney injury molecule-1) were altered. Histologic observations of obese and AS rat kidneys revealed tubulointerstitial fibrosis. The pharmacological inhibition of Gal-3 with MCP normalized renal Gal-3 levels as well as functional, histological and molecular alterations in obese and AS rats. Conclusions In experimental models of mild kidney damage, the increase in renal Gal-3 expression paralleled with renal fibrosis, inflammation and damage, while these alterations were prevented by Gal-3 blockade. These data suggest that Gal-3 could be a new player in renal molecular, histological and functional alterations at early stages of kidney damage. PMID:27829066

  3. Urinary N-acetyl-beta-D-glucosaminidase and malondialdehyde as a markers of renal damage in burned patients.

    PubMed Central

    Kang, H. K.; Kim, D. K.; Lee, B. H.; Om, A. S.; Hong, J. H.; Koh, H. C.; Lee, C. H.; Shin, I. C.; Kang, J. S.

    2001-01-01

    This study was aimed to evaluate renal dysfunction during three weeks after the burn injuries in 12 patients admitted to the Hallym University Hankang Medical Center with flame burn injuries (total body surface area, 20-40%). Parameters assessed included 24-hr urine volume, blood urea nitrogen, serum creatinine, creatinine clearance, total urinary protein, urinary microalbumin, 24-hr urinary N-acetyl-beta-D-glucosaminidase (NAG) activity, and urinary malondialdehyde (MDA). Statistical analysis was performed using repeated measures ANOVA test. The 24-hr urine volume, creatinine clearance, and urinary protein significantly increased on day 3 post-burn and fell thereafter. The urine microalbumin excretion showed two peak levels on day 0 post-burn and day 3. The 24-hr urinary NAG activity significantly increased to its maximal level on day 7 post-burn and gradually fell thereafter. The urinary MDA progressively increased during 3 weeks after the burn injury. Despite recovery of general renal function through an intensive care of burn injury, renal tubular damage and lipid peroxidation of the renal tissue suggested to persist during three weeks after the burn. Therefore, a close monitoring and intensive management of renal dysfunction is necessary to prevent burn-induced acute renal failure as well as to lower mortality in patients with major burns. PMID:11641529

  4. Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice.

    PubMed

    Shen, Hong; Ocheltree, Scott M; Hu, Yongjun; Keep, Richard F; Smith, David E

    2007-07-01

    The aim of this study was to examine the role of PEPT2, a proton-coupled oligopeptide transporter of the SLC15 family, on the disposition of the antibiotic cefadroxil in the body, particularly the kidney and brain. Pharmacokinetic, tissue distribution, and renal clearance studies were performed in wild-type and PEPT2 null mice after intravenous bolus administration of [(3)H]cefadroxil at 1, 12.5, 50, and 100 nmol/g body weight. Studies were also performed in the absence and presence of probenecid and quinine. Cefadroxil disposition kinetics was clearly nonlinear over the dose range studied (1-100 nmol/g), which was attributed to both saturable renal tubular secretion and reabsorption of the antibiotic. After an intravenous bolus dose of 1 nmol/g cefadroxil, PEPT2 null mice exhibited a 3-fold greater total clearance and 3-fold lower systemic concentrations of drug compared with wild-type animals. Renal clearance studies further demonstrated that the renal reabsorption of cefadroxil was almost completely abolished in PEPT2 null versus wild-type mice (3% versus 70%, p < 0.001). Of the 70% of cefadroxil reabsorbed in wild-type mice, PEPT2 accounted for 95% and PEPT1 accounted for 5% of reabsorbed substrate. Tissue distribution studies indicated that PEPT2 had a dramatic effect on cefadroxil tissue exposure, especially in brain where the cerebrospinal fluid (CSF)-to-blood concentration ratio of cefadroxil was 6-fold greater in PEPT2 null mice compared with wild-type animals. These findings demonstrate that renal PEPT2 is almost entirely responsible for the reabsorption of cefadroxil in kidney and that choroid plexus PEPT2 limits the exposure of cefadroxil (and perhaps other aminocephalosporins) in CSF.

  5. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  6. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    PubMed

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  7. Ibuprofen-Induced Hypokalemia and Distal Renal Tubular Acidosis: A Patient's Perceptions of Over-the-Counter Medications and Their Adverse Effects.

    PubMed

    Salter, Mark D

    2013-01-01

    We highlight a case of distal renal tubular acidosis secondary to ibuprofen and codeine use. Of particular interest in this case are the patient's perception of over-the-counter (OTC) medication use, her own OTC use prior to admission, and her knowledge of adverse reactions or side effects of these medications prior to taking them.

  8. Ibuprofen-Induced Hypokalemia and Distal Renal Tubular Acidosis: A Patient's Perceptions of Over-the-Counter Medications and Their Adverse Effects

    PubMed Central

    Salter, Mark D.

    2013-01-01

    We highlight a case of distal renal tubular acidosis secondary to ibuprofen and codeine use. Of particular interest in this case are the patient's perception of over-the-counter (OTC) medication use, her own OTC use prior to admission, and her knowledge of adverse reactions or side effects of these medications prior to taking them. PMID:24829833

  9. WNT/β-Catenin Signaling Is Required for Integration of CD24+ Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules

    PubMed Central

    Zhang, Zhao; Iglesias, Diana M.; Corsini, Rachel; Chu, LeeLee; Goodyer, Paul

    2015-01-01

    During development, nephron progenitor cells (NPC) are induced to differentiate by WNT9b signals from the ureteric bud. Although nephrogenesis ends in the perinatal period, acute kidney injury (AKI) elicits repopulation of damaged nephrons. Interestingly, embryonic NPC infused into adult mice with AKI are incorporated into regenerating tubules. Since WNT/β-catenin signaling is crucial for primary nephrogenesis, we reasoned that it might also be needed for the endogenous repair mechanism and for integration of exogenous NPC. When we examined glycerol-induced AKI in adult mice bearing a β-catenin/TCF reporter transgene, endogenous tubular cells reexpressed the NPC marker, CD24, and showed widespread β-catenin/TCF signaling. We isolated CD24+ cells from E15 kidneys of mice with the canonical WNT signaling reporter. 40% of cells responded to WNT3a in vitro and when infused into glycerol-injured adult, the cells exhibited β-catenin/TCF reporter activity when integrated into damaged tubules. When embryonic CD24+ cells were treated with a β-catenin/TCF pathway inhibitor (IWR-1) prior to infusion into glycerol-injured mice, tubular integration of cells was sharply reduced. Thus, the endogenous canonical β-catenin/TCF pathway is reactivated during recovery from AKI and is required for integration of exogenous embryonic renal progenitor cells into damaged tubules. These events appear to recapitulate the WNT-dependent inductive process which drives primary nephrogenesis. PMID:26089915

  10. Calcium Dobesilate Prevents Diabetic Kidney Disease by Decreasing Bim and Inhibiting Apoptosis of Renal Proximal Tubular Epithelial Cells.

    PubMed

    Cai, Tian; Wu, Xiao-Yun; Zhang, Xiao-Qian; Shang, Hong-Xia; Zhang, Zhong-Wen; Liao, Lin; Dong, Jian-Jun

    2017-04-01

    Apoptosis of renal proximal tubular epithelial cells (PTECs) plays a vital role in the pathogenesis and progression of diabetic kidney disease (DKD). Calcium dobesilate is a vascular protective compound used for treatment of diabetic retinopathy and chronic venous insufficiency. The aim of this study was to determine whether calcium dobesilate can protect PTECs from glucose-induced apoptosis and the potential mechanism of this effect. It is indicated that high glucose promoted abnormal apoptosis of HK2 cells, which was inhibited by treatment of calcium dobesilate, while Bim expression decreased in response to calcium dobesilate in high-glucose-treated HK2 cells. These findings confirmed the therapeutic effects of calcium dobesilate on DKD and emphasized the importance of it as a potentially crucial drug in treatment of DKD.

  11. Using Tc-99m DMSA renal cortex scan to detect renal damage in women with type 2 diabetes.

    PubMed

    Wu, Hsi-Chin; Chang, Chao-Hsiang; Lai, Ming-May; Lin, Cheng-Chieh; Lee, Cheng-Chun; Kao, Albert

    2003-01-01

    Women with diabetes mellitus (DM) have urinary tract infection (UTI) more often than women without DM. It is unknown, however, what the prevalence and type of renal damage due to UTI is in these women. Therefore, in this study, we compared type 2 DM women with or without UTI history for the prevalence and type of renal damage by technetium-99m dimercapto-succinic acid (Tc-99m DMSA) renal scan. A total of 128 type 2 DM women with or without UTI history received Tc-99m DMSA renal scan were included in this study. The patients were separated into three groups: (1) 43 patients without UTI history, (2) 42 patients with only lower UTI (cystitis) history and (3) 43 patients with upper UTI (pyelonephritis) history. The renal scan findings were separated into three types: (A) normal, (B) inflammation and (C) scar. The 31.9% (50/128) of type 2 DM patients had renal damages. Group 1 patients had a significantly lower prevalence of renal damages including inflammation and scar as compared to Groups 2 and 3 patients. In addition, the prevalence of renal damage was significantly higher in Group 3 than in Group 2 patients. Renal scars only were visualized in Group 3 patients. However, other clinical data were not statistically different among the three group patients. Type 2 DM women with UTI history, especially if they had upper UTI have a significantly higher prevalence of renal damage than in those without UTI.

  12. Damage analysis of CFRP-confined circular concrete-filled steel tubular columns by acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi; Feng, Quanming; Wang, Yanlei

    2015-08-01

    Damage properties of carbon fiber-reinforced polymer (CFRP) confined circular concrete-filled steel tubular (CCFT) columns were analyzed through acoustic emission (AE) signals. AE characteristic parameters were obtained through axial compression tests. The severity of damage to CFRP-CCFT columns was estimated using the growing trend of AE accumulated energy as basis. The bearing capacity of CFRP-CCFT columns and AE accumulated energy improved as CFRP layers increased. The damage process was studied using a number of crucial AE parameters. The cracks’ mode can be differentiated through the ratio of the rise time to the waveform amplitude and through average frequency analysis. With the use of intensity signal analysis, the damage process of the CFRP-CCFT columns can be classified into three levels that represent different degrees. Based on b-value analysis, the development of the obtained cracks can be defined. Thus, identifying an initial yielding and providing early warning is possible.

  13. Exaggerated natriuretic response to isotonic volume expansion in hypertensive renal transplant recipients: evaluation of proximal and distal tubular reabsorption by simultaneous determination of renal plasma clearance of lithium and 51Cr-EDTA.

    PubMed

    Nielsen, A H; Knudsen, F; Danielsen, H; Pedersen, E B; Fjeldborg, P; Madsen, M; Brøchner-Mortensen, J; Kornerup, H J

    1987-02-01

    In fourteen hypertensive and fourteen normotensive renal transplant recipients, and in a group of thirteen healthy controls, changes in natriuresis, glomerular filtration rate (GFR), and tubular reabsorption of sodium were determined in relation to intravenous infusion of 2 mmol isotonic sodium chloride per kg body weight. An exaggerated natriuresis was demonstrated in the hypertensive renal transplant recipients. This new finding indicates that the augmented natriuresis following plasma volume expansion, which is a characteristic finding in subjects with arterial hypertension, is not mediated by the renal nerves. Investigation of the tubular reabsorption rates of sodium by simultaneous determination of the renal clearance of 51Cr-EDTA and lithium showed that in the hypertensives the changes in tubular handling of sodium were different from those registered in the normotensive subjects. The increased sodium excretion in the hypertensive renal transplant recipients was caused by an increased output of sodium from the proximal tubules which was not fully compensated for by an increased distal reabsorption. Whether this increased delivery of sodium to the distal segments was caused by changes in GFR or in the proximal tubular reabsorption of sodium could not be clarified in the present study and warrants further investigations.

  14. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury.

  15. Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter's structure-functional properties

    PubMed Central

    Kurtz, Ira; Zhu, Quansheng

    2013-01-01

    NBCe1 belongs to the SLC4 family of base transporting membrane proteins that plays a significant role in renal, extrarenal, and systemic acid-base homeostasis. Recent progress has been made in characterizing the structure-function properties of NBCe1 (encoded by the SLC4A4 gene), and those factors that regulate its function. In the kidney, the NBCe1-A variant that is expressed on the basolateral membrane of proximal tubule is the key transporter responsible for overall transepithelial bicarbonate absorption in this nephron segment. NBCe1 mutations impair transepithelial bicarbonate absorption causing the syndrome of proximal renal tubular acidosis (pRTA). Studies of naturally occurring NBCe1 mutant proteins in heterologous expression systems have been very helpful in elucidation the structure-functional properties of the transporter. NBCe1 mutations are now known to cause pRTA by various mechanisms including the alteration of the transporter function (substrate ion interaction, electrogenicity), abnormal processing to the plasma membrane, and a perturbation in its structural properties. The elucidation of how NBCe1 mutations cause pRTA in addition to the recent studies which have provided further insight into the topology of the transporter have played an important role in uncovering its critically important structural-function properties. PMID:24391589

  16. Hypoxia reduces constitutive and TNF-{alpha}-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells

    SciTech Connect

    Li Xuan; Kimura, Hideki . E-mail: hkimura@fmsrsa.fukui-med.ac.jp; Hirota, Kiichi; Sugimoto, Hidehiro; Yoshida, Haruyoshi

    2005-10-07

    Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed that treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.

  17. Endolymphatic sac enlargement in a girl with a novel mutation for distal renal tubular acidosis and severe deafness.

    PubMed

    Nikki, Rink; Martin, Bitzan; Gus, O'Gorman; Mato, Nagel; Elena, Torban; Paul, Goodyer

    2012-01-01

    Hereditary distal renal tubular acidosis (dRTA) is caused by mutations of genes encoding subunits of the H(+)-ATPase (ATP6V0A4 and ATP6V1B1) expressed in α-intercalated cells of the distal renal tubule and in the cochlea. We report on a 2-year-old girl with distal RTA and profound speech delay which was initially misdiagnosed as autism. Genetic analysis showed compound heterozygous mutations with one known and one novel mutation of the ATP6V1B1 gene; cerebral magnetic resonance imaging (MRI) revealed bilateral enlargement of the endolymphatic sacs of the inner ear. With improved cooperation, audiometric testing showed that hearing loss was most profound on the right, where endolymphatic sac enlargement was greatest, demonstrating a clear link between the degree of deafness and the degree of inner ear abnormality. This case indicates the value of MRI for diagnosis of inner ear involvement in very young children with distal RTA. Although citrate therapy quickly corrects the acidosis and restores growth, early diagnosis of deafness is crucial so that hearing aids can be used to assist acquisition of speech and to provide enough auditory nerve stimulation to assure the affected infants remain candidates for cochlear implantation.

  18. Endocytotic Uptake of Zoledronic Acid by Tubular Cells May Explain Its Renal Effects in Cancer Patients Receiving High Doses of the Compound

    PubMed Central

    Verhulst, Anja; Sun, Shuting; McKenna, Charles E.; D’Haese, Patrick C.

    2015-01-01

    Zoledronic acid, a highly potent nitrogen-containing bisphosphonate used for the treatment of pathological bone loss, is excreted unmetabolized via the kidney if not bound to the bone. In cancer patients receiving high doses of the compound renal excretion may be associated with acute tubular necrosis. The question of how zoledronic acid is internalized by renal tubular cells has not been answered until now. In the current work, using a primary human tubular cell culture system, the pathway of cellular uptake of zoledronic acid (fluorescently/radiolabeled) and its cytotoxicity were investigated. Previous studies in our laboratory have shown that this primary cell culture model consistently mimics the physiological characteristics of molecular uptake/transport of the epithelium in vivo. Zoledronic acid was found to be taken up by tubular cells via fluid-phase-endocytosis (from apical and basolateral side) as evidenced by its co-localization with dextran. Cellular uptake and the resulting intracellular level was twice as high from the apical side compared to the basolateral side. Furthermore, the intracellular zoledronic acid level was found to be dependent on the administered concentration and not saturable. Cytotoxic effects however, were only seen at higher administration doses and/or after longer incubation times. Although zoledronic acid is taken up by tubular cells, no net tubular transport could be measured. It is concluded that fluid-phase-endocytosis of zoledronic acid and cellular accumulation at high doses may be responsible for the acute tubular necrosis observed in some cancer patients receiving high doses of the compound. PMID:25756736

  19. Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis.

    PubMed

    Yap, D Y H; Yung, S; Zhang, Q; Tang, C; Chan, T M

    2016-01-01

    In vitro data showed that immunoglobulin G (IgG) from lupus nephritis (LN) patients could bind to proximal renal tubular epithelial cells (PTEC), but the clinical relevance of such binding remained unclear. Binding of IgG and subclasses to PTEC was measured by cellular ELISA (expressed as OD index) in 189 serial serum samples from 23 Class III/IV ± V LN patients who had repeated renal flares (48 during renal flares, 141 during low level disease activity (LLDA)), and compared with 64 patients with non-lupus glomerular diseases (NLGD) and 23 healthy individuals. Total IgG PTEC-binding index was 0.34 ± 0.16, 0.29 ± 0.16, 0.62 ± 0.27 and 0.83 ± 0.38 in healthy controls, NLGD, LN patients during LLDA, and LN patients during nephritic flare, respectively (p < 0.001, LLDA vs. renal flare; p < 0.001, healthy controls or NLGD vs. LN during LLDA or renal flare). PTEC-binding index for IgG1 was 0.09 ± 0.05, 0.16 ± 0.12, 0.44 ± 0.34 and 0.71 ± 0.46 for the corresponding groups (p < 0.001, LLDA vs. renal flare; p < 0.001, healthy controls or NLGD vs. LN during LLDA or renal flare). Sixteen of 48 episodes (33.3%) of nephritic flare showed persistent PTEC-binding IgG seropositivity for more than 9.4 ± 3.1 months, despite clinical response to immunosuppressive treatment. Total IgG and IgG1 PTEC-binding correlated with anti-dsDNA level (r = 0.34 and 0.52, respectively, p < 0.001 for both), and inversely with C3 level (r = -0.26 and -0.50, respectively, p = 0.002 and<0.001). Sensitivity/specificity of PTEC-binding index in detecting renal flares was 45.8%/80.1% for total IgG (ROC AUC 0.630, p = 0.007) and 87.5%/35.5% for IgG1 (ROC AUC 0.615, p = 0.018). IgG1 PTEC-binding index correlated with tubulo-interstitial inflammation score in renal biopsy from corresponding patients. Our data suggested that total IgG and IgG1 PTEC-binding index in serum of LN patients correlate with serological activity, and in combination could predict renal flares. The correlation between IgG1

  20. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis.

    PubMed

    Morris, R C

    1968-07-01

    In adult patients with hereditary fructose intolerance (HFI) fructose induces a renal acidification defect characterized by (a) a 20-30% reduction in tubular reabsorption of bicarbonate (T HCO(3) (-)) at plasma bicarbonate concentrations ranging from 21-31 mEq/liter, (b) a maximal tubular reabsorption of bicarbonate (Tm HCO(3) (-)) of approximately 1.9 mEq/100 ml of glomerular filtrate, (c) disappearance of bicarbonaturia at plasma bicarbonate concentrations less than 15 mEq/liter, and (d) during moderately severe degrees of acidosis, a sustained capacity to maintain urinary pH at normal minima and to excrete acid at normal rates. In physiologic distinction from this defect, the renal acidification defect of patients with classic renal tubular acidosis is characterized by (a) just less than complete tubular reabsorption of bicarbonate at plasma bicarbonate concentrations of 26 mEq/liter or less, (b) a normal Tm HCO(3) (-) of approximately 2.8 mEq/100 ml of glomerular filtrate, and (c) during acidosis of an even severe degree, a quantitatively trivial bicarbonaturia, as well as (d) a urinary pH of greater than 6. That the fructose-induced renal acidification defect involves a reduced H(+) secretory capacity of the proximal nephron is supported by the magnitude of the reduction in T HCO(3) (-) (20-30%) and the simultaneous occurrence and the persistence throughout administration of fructose of impaired tubular reabsorption of phosphate, alpha amino nitrogen and uric acid.A reduced H(+) secretory capacity of the proximal nephron also appears operative in two unrelated children with hyperchloremic acidosis, Fanconi's syndrome, and cystinosis. In both, T HCO(3) (-) was reduced 20-30% at plasma bicarbonate concentrations ranging from 20-30 mEq/liter. The bicarbonaturia disappeared at plasma bicarbonate concentrations ranging from 15-18 mEq/liter, and during moderate degrees of acidosis, urinary pH decreased to less than 6, and the excretion rate of acid was normal.

  1. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium

    PubMed Central

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-01-01

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium. PMID:27045290

  2. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  3. Antioxidant properties of repaglinide and its protections against cyclosporine A-induced renal tubular injury

    PubMed Central

    Li, Dao; Li, Jin; Li, Hui; Wu, Qiong; Li, Qi-Xiong

    2016-01-01

    Objective(s): Repaglinide (RG) is an antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus. It has a good safety and efficacy profile in diabetic patients with complications in renal impairment and is an appropriate treatment choice, even for individuals with more severe degrees of renal malfunctions. The aim of the present study was to examine the protective effect of RG on cyclosporine A (CsA)-induced rat renal impairment and to evaluate the antioxidant mechanisms by which RG exerts its protective actions. Materials and Methods: Fifty male Sprague-Dawley rats weighing 250–300 g were randomly divided into five groups: administrations of olive oil (control, PO), RG (0.4 mg/kg, PO), CsA (30 mg/kg in olive oil, SC), RG (0.2 or 0.4 mg/kg, PO) plus CsA (30 mg/kg in olive oil SC) every day for 15 days. Results: SC administration of CsA (30 mg/kg) to rats produced marked elevations in the levels of renal impairment parameters such as urinary protein, N-acetyl-beta-D-glucosaminidase (NAG), serum creatinine (SCr), and blood urea nitrogen (BUN). It also caused histologic injury to the kidneys. Oral administration of RG (0.2 and 0.4 mg/kg) markedly decreased all the aforementioned changes. In addition, CsA caused increases in the levels of malondialdehyde (MDA) and decreases in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSR), glutathione-S-transferase (GST), and glutathione in kidney homogenate, which were reversed significantly by both doses of RG. Conclusion: The findings of our study indicate that RG may play an important role in protecting the kidney from oxidative insult. PMID:27635199

  4. Polar release of pathogenic Old World hantaviruses from renal tubular epithelial cells

    PubMed Central

    2012-01-01

    Background Epithelio- and endotheliotropic viruses often exert polarized entry and release that may be responsible for viral spread and dissemination. Hantaviruses, mostly rodent-borne members of the Bunyaviridae family infect epithelial and endothelial cells of different organs leading to organ dysfunction or even failure. Endothelial and renal epithelial cells belong to the target cells of Old World hantavirus. Therefore, we examined the release of hantaviruses in several renal epithelial cell culture models. We used Vero cells that are commonly used in hantavirus studies and primary human renal epithelial cells (HREpC). In addition, we analyzed MDCKII cells, an epithelial cell line of a dog kidney, which represents a widely accepted in vitro model of polarized monolayers for their permissiveness for hantavirus infection. Results Vero C1008 and primary HREpCs were grown on porous-support filter inserts for polarization. Monolayers were infected with hantavirus Hantaan (HTNV) and Puumala (PUUV) virus. Supernatants from the apical and basolateral chamber of infected cells were analyzed for the presence of infectious particles by re-infection of Vero cells. Viral antigen and infectious particles of HTNV and PUUV were exclusively detected in supernatants collected from the apical chamber of infected Vero C1008 cells and HREpCs. MDCKII cells were permissive for hantavirus infection and polarized MDCKII cells released infectious hantaviral particles from the apical surface corresponding to the results of Vero and primary human epithelial cells. Conclusions Pathogenic Old World hantaviruses are released from the apical surface of different polarized renal epithelial cells. We characterized MDCKII cells as a suitable polarized cell culture model for hantavirus infection studies. PMID:23194647

  5. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis

    PubMed Central

    Azimov, Rustam; Abuladze, Natalia; Sassani, Pakan; Newman, Debra; Kao, Liyo; Liu, Weixin; Orozco, Nicholas; Ruchala, Piotr; Pushkin, Alexander; Kurtz, Ira

    2008-01-01

    Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na+- and HCO3−-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that causes

  6. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis.

    PubMed

    Azimov, Rustam; Abuladze, Natalia; Sassani, Pakan; Newman, Debra; Kao, Liyo; Liu, Weixin; Orozco, Nicholas; Ruchala, Piotr; Pushkin, Alexander; Kurtz, Ira

    2008-09-01

    Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na(+)- and HCO(3)(-)-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that

  7. Freezing/Thawing without Cryoprotectant Damages Native but not Decellularized Porcine Renal Tissue

    PubMed Central

    Poornejad, Nafiseh; Frost, Timothy S; Scott, Daniel R; Elton, Brinden B; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2015-01-01

    abstract Whole organ decellularization of porcine renal tissue and recellularization with a patient's own cells would potentially overcome immunorejection, which is one of the most significant problems with allogeneic kidney transplantation. However, there are obstacles to achieving this goal, including preservation of the decellularized extracellular matrix (ECM), identifying the proper cell types, and repopulating the ECM before transplantation. Freezing biological tissue is the best option to avoid spoilage; however, it may damage the structure of the tissue or disrupt cellular membranes through ice crystal formation. Cryoprotectants have been used to repress ice formation during freezing, although cell toxicity can still occur. The effect of freezing/thawing on native (n = 10) and decellularized (n = 10) whole porcine kidneys was studied without using cryoprotectants. Results showed that the elastic modulus of native kidneys was reduced by a factor of 22 (P < 0.0001) by freezing/thawing or decellularization, while the elastic modulus for decellularized ECM was essentially unchanged by the freezing/thawing process (p = 0.0636). Arterial pressure, representative of structural integrity, was also reduced by a factor of 52 (P < 0.0001) after freezing/thawing for native kidneys, compared to a factor of 43 (P < 0.0001) for decellularization and a factor of 4 (P < 0.0001) for freezing/thawing decellularized structures. Both freezing/thawing and decellularization reduced stiffness, but the reductions were not additive. Investigation of the microstructure of frozen/thawed native and decellularized renal tissues showed increased porosity due to cell removal and ice crystal formation. Orcein and Sirius staining showed partial damage to elastic and collagen fibers after freezing/thawing. It was concluded that cellular damage and removal was more responsible for reducing stiffness than fibril destruction. Cell viability and growth were demonstrated on decellularized frozen

  8. Freezing/Thawing without Cryoprotectant Damages Native but not Decellularized Porcine Renal Tissue.

    PubMed

    Poornejad, Nafiseh; Frost, Timothy S; Scott, Daniel R; Elton, Brinden B; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2015-01-01

    Whole organ decellularization of porcine renal tissue and recellularization with a patient's own cells would potentially overcome immunorejection, which is one of the most significant problems with allogeneic kidney transplantation. However, there are obstacles to achieving this goal, including preservation of the decellularized extracellular matrix (ECM), identifying the proper cell types, and repopulating the ECM before transplantation. Freezing biological tissue is the best option to avoid spoilage; however, it may damage the structure of the tissue or disrupt cellular membranes through ice crystal formation. Cryoprotectants have been used to repress ice formation during freezing, although cell toxicity can still occur. The effect of freezing/thawing on native (n = 10) and decellularized (n = 10) whole porcine kidneys was studied without using cryoprotectants. Results showed that the elastic modulus of native kidneys was reduced by a factor of 22 (P < 0.0001) by freezing/thawing or decellularization, while the elastic modulus for decellularized ECM was essentially unchanged by the freezing/thawing process (p = 0.0636). Arterial pressure, representative of structural integrity, was also reduced by a factor of 52 (P < 0.0001) after freezing/thawing for native kidneys, compared to a factor of 43 (P < 0.0001) for decellularization and a factor of 4 (P < 0.0001) for freezing/thawing decellularized structures. Both freezing/thawing and decellularization reduced stiffness, but the reductions were not additive. Investigation of the microstructure of frozen/thawed native and decellularized renal tissues showed increased porosity due to cell removal and ice crystal formation. Orcein and Sirius staining showed partial damage to elastic and collagen fibers after freezing/thawing. It was concluded that cellular damage and removal was more responsible for reducing stiffness than fibril destruction. Cell viability and growth were demonstrated on decellularized frozen

  9. Brazilian Red Propolis Attenuates Hypertension and Renal Damage in 5/6 Renal Ablation Model

    PubMed Central

    Teles, Flávio; da Silva, Tarcilo Machado; da Cruz Júnior, Francisco Pessoa; Honorato, Vitor Hugo; de Oliveira Costa, Henrique; Barbosa, Ana Paula Fernandes; de Oliveira, Sabrina Gomes; Porfírio, Zenaldo; Libório, Alexandre Braga; Borges, Raquel Lerner; Fanelli, Camilla

    2015-01-01

    The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD) is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene) as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP), in the 5/6 renal ablation model (Nx). Adult male Wistar rats underwent Nx and were divided into untreated (Nx) and RP-treated (Nx+RP) groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection. PMID:25607548

  10. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model.

    PubMed

    Teles, Flávio; da Silva, Tarcilo Machado; da Cruz Júnior, Francisco Pessoa; Honorato, Vitor Hugo; de Oliveira Costa, Henrique; Barbosa, Ana Paula Fernandes; de Oliveira, Sabrina Gomes; Porfírio, Zenaldo; Libório, Alexandre Braga; Borges, Raquel Lerner; Fanelli, Camilla

    2015-01-01

    The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD) is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene) as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP), in the 5/6 renal ablation model (Nx). Adult male Wistar rats underwent Nx and were divided into untreated (Nx) and RP-treated (Nx+RP) groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection.

  11. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution.

    PubMed

    Alberti, C

    2012-02-01

    The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions

  12. Facilitation by serum albumin of renal tubular secretion of organic anions.

    PubMed

    Besseghir, K; Mosig, D; Roch-Ramel, F

    1989-03-01

    The role of albumin in tubular secretion of the organic anions p-aminohippurate (PAH, 21% albumin-bound at 1 microM) and methotrexate (MTX, 55% bound at 1 microM), and of the organic cation N1-methylnicotinamide (NMN, not bound), was investigated in isolated rabbit S2 proximal tubules. PAH or MTX secretory rates were low in the absence of colloids or in the presence of 1 g/dl dextran 40, and were reversibly two- to sevenfold stimulated by either 1 g/dl bovine (BSA, either regular, defatted, and/or dialyzed) or rabbit serum albumin, or by dialyzed native rabbit plasma. NMN secretion was not stimulated by either dextran or albumin. Luminal BSA had no effect, but stimulation of PAH secretion was observed when albumin was present in both lumen and bath. This secretion was BSA concentration-dependent up to a 1 g/dl BSA. Saturation experiments suggested that 1 g/dl BSA may increase PAH apparent affinity for secretion, with no change in its maximum velocity. Albumin appears therefore to facilitate organic anion proximal secretion by an effect unrelated to oncotic pressure or to the extent of organic anion binding.

  13. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney.

    PubMed

    Dankers, Patricia Y W; Boomker, Jasper M; Huizinga-van der Vlag, Ali; Smedts, Frank M M; Harmsen, Martin C; van Luyn, Marja J A

    2010-11-10

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability. We found that after 7 d, in comparison to conventional microporous membranes, renal tubular cells cultured on top of our fibrous supramolecular membranes formed polarized monolayers, which is prerequisite for a well-functioning bioartificial kidney. In future, these supramolecular membranes allow for incorporation of peptides that may increase cell function even further.

  14. Topological location and structural importance of the NBCe1-A residues mutated in proximal renal tubular acidosis.

    PubMed

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Newman, Debra; Liu, Weixin; Pushkin, Alexander; Abuladze, Natalia; Kurtz, Ira

    2010-04-30

    NBCe1-A electrogenically cotransports Na(+) and HCO(3)(-) across the basolateral membrane of renal proximal tubule cells. Eight missense mutations and 3 nonsense mutations in NBCe1-A cause severe proximal renal tubular acidosis (pRTA). In this study, the topologic properties and structural importance of the 8 endogenous residues mutated in pRTA and the in situ topology of NBCe1-A were examined by the substituted cysteine accessibility method. Of the 55 analyzed individually introduced cysteines, 8 were labeled with both membrane permeant (biotin maleimide (BM)) and impermeant (2-((5(6)-tetramethylrhodamine)carboxylamino)ethyl methanethiosulfonate (MTS-TAMRA)) sulfhydryl reagents, 4 with only BM, and 3 with only MTS-TAMRA. The location of the labeled and unlabeled introduced cysteines clearly indicates that the transmembrane region of NBCe1-A contains 14 transmembrane segments (TMs). In this in situ based NBCe1-A topology, residues mutated in pRTA (pRTA residues) are assigned as: Ser(427), TM1; Thr(485) and Gly(486), TM3; Arg(510) and Leu(522), TM4; Ala(799), TM10; and Arg(881), TM12. Substitution of pRTA residues with cysteines impaired the membrane trafficking of R510C and R881C, the remaining membrane-processed constructs had various impaired transport function. Surprisingly, none of the membrane-processed constructs was accessible to labeling with BM and MTS-TAMRA, nor were they functionally sensitive to the inhibition by (2-aminoethyl)methanethiosulfonate. Functional analysis of Thr(485) with different amino acid substitutions indicated it resides in a unique region important for NBCe1-A function. Our findings demonstrate that the pRTA residues in NBCe1-A are buried in the protein complex/lipid bilayer where they perform important structural roles.

  15. Topological Location and Structural Importance of the NBCe1-A Residues Mutated in Proximal Renal Tubular Acidosis*

    PubMed Central

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Newman, Debra; Liu, Weixin; Pushkin, Alexander; Abuladze, Natalia; Kurtz, Ira

    2010-01-01

    NBCe1-A electrogenically cotransports Na+ and HCO3− across the basolateral membrane of renal proximal tubule cells. Eight missense mutations and 3 nonsense mutations in NBCe1-A cause severe proximal renal tubular acidosis (pRTA). In this study, the topologic properties and structural importance of the 8 endogenous residues mutated in pRTA and the in situ topology of NBCe1-A were examined by the substituted cysteine accessibility method. Of the 55 analyzed individually introduced cysteines, 8 were labeled with both membrane permeant (biotin maleimide (BM)) and impermeant (2-((5(6)-tetramethylrhodamine)carboxylamino)ethyl methanethiosulfonate (MTS-TAMRA)) sulfhydryl reagents, 4 with only BM, and 3 with only MTS-TAMRA. The location of the labeled and unlabeled introduced cysteines clearly indicates that the transmembrane region of NBCe1-A contains 14 transmembrane segments (TMs). In this in situ based NBCe1-A topology, residues mutated in pRTA (pRTA residues) are assigned as: Ser427, TM1; Thr485 and Gly486, TM3; Arg510 and Leu522, TM4; Ala799, TM10; and Arg881, TM12. Substitution of pRTA residues with cysteines impaired the membrane trafficking of R510C and R881C, the remaining membrane-processed constructs had various impaired transport function. Surprisingly, none of the membrane-processed constructs was accessible to labeling with BM and MTS-TAMRA, nor were they functionally sensitive to the inhibition by (2-aminoethyl)methanethiosulfonate. Functional analysis of Thr485 with different amino acid substitutions indicated it resides in a unique region important for NBCe1-A function. Our findings demonstrate that the pRTA residues in NBCe1-A are buried in the protein complex/lipid bilayer where they perform important structural roles. PMID:20197274

  16. Curcumin Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through the Inhibition of Akt/mTOR Pathway.

    PubMed

    Zhu, Fang-Qiang; Chen, Min-Jia; Zhu, Ming; Zhao, Rong-Seng; Qiu, Wei; Xu, Xiang; Liu, Hong; Zhao, Hong-Wen; Yu, Rong-Jie; Wu, Xiong-Fei; Zhang, Keqin; Huang, Hong

    2017-01-01

    Curcumin has exhibited a protective effect against development of renal fibrosis in animal models, however, its underlying molecular mechanisms are largely unclear. Therefore, we investigated the anti-fibrosis effects of curcumin in transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT), and the mechanism by which it mediates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Human kidney tubular epithelial cells (HKCs) were treated with TGF-β1 or curcumin alone, or TGF-β1 in combination with curcumin. The effect of curcumin on cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of E-cadherin, cytokeratin, vimentin, alpha smooth muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1) and key proteins of Akt/mammalian target of rapamycin (mTOR) pathway were analyzed by immunocytochemistry, real-time PCR and Western blot. Low dose curcumin (3.125 and 25 µmol/L) effectively promoted HKC proliferation. When HKCs were co-incubated with TGF-β1 and curcumin for 72 h, curcumin maintained the epithelial morphology in a dose-dependent manner, decreased expression of vimentin, α-SMA and FSP1 normally induced by TGF-β1, and increased expression of E-cadherin, cytokeratin. Importantly, we found that curcumin reduced Akt, mTOR and P70S6K phosphorylation, effectively suppressing the activity of the Akt/mTOR pathway in HKCs. Curcumin also promoted HKC proliferation, and antagonized TGF-β1-driven EMT through the inhibition of Akt/mTOR pathway activity, which may suggest an alternative therapy for renal fibrosis.

  17. Cobalt Chloride Induces Expression and Function of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Renal Proximal Tubular Epithelial Cell Line HK-2.

    PubMed

    Nishihashi, Katsuki; Kawashima, Kei; Nomura, Takami; Urakami-Takebayashi, Yumiko; Miyazaki, Makoto; Takano, Mikihisa; Nagai, Junya

    2017-01-01

    The human breast cancer resistance protein (BCRP/ABCG2), a member of the ATP-binding cassette transporter family, is a drug transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. The cis-regulatory elements in the BCRP promoter include a hypoxia response element, i.e., the DNA binding site for hypoxia-inducible factor-1 (HIF-1). In this study, we investigated the effect of cobalt chloride, a chemical inducer of HIF-1α, on the expression and function of BCRP in human renal proximal tubular cell line HK-2. Cobalt chloride treatment significantly increased the mRNA expression of not only glucose transporter 1 (GLUT1), a typical HIF-1 target gene mRNA, but also ABCG2 mRNA in HK-2 cells. The BCRP inhibitor Ko143-sensitive accumulation of BCRP substrates such as Hoechst33342 and mitoxantrone was significantly enhanced by cobalt chloride treatment. In addition, treatment with cobalt chloride significantly increased the Ko143-sensitive accumulation of fluorescein isothiocyanate-labeled methotrexate in HK-2 cells. Furthermore, cobalt chloride treatment attenuated the cytotoxicity induced by mitoxantrone and methotrexate, which might be, at least in part, due to the increase in BCRP-mediated transport activity via HIF-1 activation. These findings indicate that HIF-1 activation protects renal proximal tubular cells against BCRP substrate-induced cytotoxicity by enhancing the expression and function of BCRP in renal proximal tubular cells.

  18. Histopathological characterization of renal tubular and interstitial changes in 5/6 nephrectomized marmoset monkeys (Callithrix jacchus).

    PubMed

    Suzuki, Yui; Yamaguchi, Itaru; Myojo, Kensuke; Kimoto, Naoya; Imaizumi, Minami; Takada, Chie; Sanada, Hiroko; Takaba, Katsumi; Yamate, Jyoji

    2015-01-01

    Common marmosets (Callithrix jacchus) have become a useful animal model, particularly for development of biopharmaceuticals. While various renal failure models have been established in rodents, there is currently no acceptable model in marmosets. We analyzed the damaged renal tubules and tubulointerstitial changes (inflammation and fibrosis) of 5/6 nephrectomized (Nx) common marmosets by histopathological/immunohistochemical methods, and compared these findings to those in 5/6 Nx SD rats. In Nx marmosets and rats sacrificed at 5 and 13 weeks after Nx, variously dilated and atrophied renal tubules were seen in the cortex in common; however, the epithelial proliferating activity was much less in Nx marmosets. Furthermore, the degrees of inflammation and fibrosis seen in the affected cortex were more severe and massive in Nx marmosets with time-dependent increase. Interestingly, inflammation in Nx marmosets, of which degree was less in Nx rats, consisted of a large number of CD3-positive T cells and CD20-positive B cells (occasionally forming follicles), and a few CD68-positive macrophages. Based on these findings, lymphocytes might contribute to the progressive renal lesions in Nx marmosets. Fibrotic areas in Nx marmosets comprised myofibroblasts expressing vimentin and α-smooth muscle actin (α-SMA), whereas along with vimentin and α-SMA expressions, desmin was expressed in myofibroblasts in Nx rats. This study shows that there are some differences in renal lesions induced by Nx between marmosets and rats, which would provide useful, base-line information for pharmacology and toxicology studies using Nx marmosets.

  19. Enhancing the Detection of Dysmorphic Red Blood Cells and Renal Tubular Epithelial Cells with a Modified Urinalysis Protocol

    PubMed Central

    Chu-Su, Yu; Shukuya, Kenichi; Yokoyama, Takashi; Lin, Wei-Chou; Chiang, Chih-Kang; Lin, Chii-Wann

    2017-01-01

    Urinary sediment is used to evaluate patients with possible urinary tract diseases. Currently, numerous protocols are applied to detect dysmorphic red blood cells (RBCs) and renal tubular epithelial cells (RTECs) in urinary sediment. However, distinct protocols are used by nephrologists and medical technologists for specimen concentration and observation, which leads to major discrepancies in the differential counts of formed elements such as dysmorphic RBCs and RTECs and might interfere with an accurate clinical diagnosis. To resolve these problems, we first tested a modified urinalysis protocol with an increased relative centrifuge force and concentration factor in 20 biopsy-confirmed glomerulonephritis patients with haematuria. We successfully improved the recovery ratio of dysmorphic RBCs in clinical specimens from 34.7% to 42.0% (P < 0.001). Furthermore, we confirmed the correlation between counts by the modified urinary protocol and Sysmex UF-1000i urinary flow cytometer (r ≥ 0.898, P < 0.001). A total of 28 types of isomorphic and dysmorphic RBCs were detected using a bright field microscope, with results comparable to those using a standard phase contrast microscope. Finally, we applied Sternheimer stain to enhance the contrast of RTECs in the urinary sediments. We concluded that this modified urinalysis protocol significantly enhanced the quality of urinalysis. PMID:28074941

  20. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene.

    PubMed Central

    Bruce, L J; Cope, D L; Jones, G K; Schofield, A E; Burley, M; Povey, S; Unwin, R J; Wrong, O; Tanner, M J

    1997-01-01

    All affected patients in four families with autosomal dominant familial renal tubular acidosis (dRTA) were heterozygous for mutations in their red cell HCO3-/Cl- exchanger, band 3 (AE1, SLC4A1) genes, and these mutations were not found in any of the nine normal family members studied. The mutation Arg589--> His was present in two families, while Arg589--> Cys and Ser613--> Phe changes were found in the other families. Linkage studies confirmed the co-segregation of the disease with a genetic marker close to AE1. The affected individuals with the Arg589 mutations had reduced red cell sulfate transport and altered glycosylation of the red cell band 3 N-glycan chain. The red cells of individuals with the Ser613--> Phe mutation had markedly increased red cell sulfate transport but almost normal red cell iodide transport. The erythroid and kidney isoforms of the mutant band 3 proteins were expressed in Xenopus oocytes and all showed significant chloride transport activity. We conclude that dominantly inherited dRTA is associated with mutations in band 3; but both the disease and its autosomal dominant inheritance are not related simply to the anion transport activity of the mutant proteins. PMID:9312167

  1. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4.

    PubMed

    Boettger, Thomas; Hübner, Christian A; Maier, Hannes; Rust, Marco B; Beck, Franz X; Jentsch, Thomas J

    2002-04-25

    Hearing depends on a high K(+) concentration bathing the apical membranes of sensory hair cells. K(+) that has entered hair cells through apical mechanosensitive channels is transported to the stria vascularis for re-secretion into the scala media(). K(+) probably exits outer hair cells by KCNQ4 K(+) channels(), and is then transported by means of a gap junction system connecting supporting Deiters' cells and fibrocytes() back to the stria vascularis. We show here that mice lacking the K(+)/Cl(-) (K-Cl) co-transporter Kcc4 (coded for by Slc12a7) are deaf because their hair cells degenerate rapidly after the beginning of hearing. In the mature organ of Corti, Kcc4 is restricted to supporting cells of outer and inner hair cells. Our data suggest that Kcc4 is important for K(+) recycling() by siphoning K(+) ions after their exit from outer hair cells into supporting Deiters' cells, where K(+) enters the gap junction pathway. Similar to some human genetic syndromes(), deafness in Kcc4-deficient mice is associated with renal tubular acidosis. It probably results from an impairment of Cl(-) recycling across the basolateral membrane of acid-secreting alpha-intercalated cells of the distal nephron.

  2. A single nucleotide polymorphism in kidney anion exchanger 1 gene is associated with incomplete type 1 renal tubular acidosis

    PubMed Central

    Takeuchi, Takumi; Hattori-Kato, Mami; Okuno, Yumiko; Kanatani, Atsushi; Zaitsu, Masayoshi; Mikami, Koji

    2016-01-01

    Various conditions including distal renal tubular acidosis (dRTA) can induce stone formation in the kidney. dRTA is characterized by an impairment of urine acidification in the distal nephron. dRTA is caused by variations in genes functioning in intercalated cells including SLC4A1/AE1/Band3 transcribing two kinds of mRNAs encoding the Cl−/HCO3− exchanger in erythrocytes and that expressed in α-intercalated cells (kAE1). With the acid-loading test, 25% of urolithiasis patients were diagnosed with incomplete dRTA. In erythroid intron 3 containing the promoter region of kAE1, rs999716 SNP showed a significantly higher minor allele A frequency in incomplete dRTA compared with non-dRTA patients. The promoter regions of the kAE1 gene with the minor allele A at rs999716 downstream of the TATA box showed reduced promoter activities compared that with the major allele G. Patients with the A allele at rs999716 may express less kAE1 mRNA and protein in the intercalated cells, developing incomplete dRTA. PMID:27767102

  3. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  4. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia.

    PubMed

    Toye, Ashley M; Parker, Mark D; Daly, Christopher M; Lu, Jing; Virkki, Leila V; Pelletier, Marc F; Boron, Walter F

    2006-10-01

    The human electrogenic renal Na-HCO(3) cotransporter (NBCe1-A; SLC4A4) is localized to the basolateral membrane of proximal tubule cells. Mutations in the SLC4A4 gene cause an autosomal recessive proximal renal tubular acidosis (pRTA), a disease characterized by impaired ability of the proximal tubule to reabsorb HCO(3)(-) from the glomerular filtrate. Other symptoms can include mental retardation and ocular abnormalities. Recently, a novel homozygous missense mutant (R881C) of NBCe1-A was reported from a patient with a severe pRTA phenotype. The mutant protein was described as having a lower than normal activity when expressed in Xenopus oocytes, despite having normal Na(+) affinity. However, without trafficking data, it is impossible to determine the molecular basis for the phenotype. In the present study, we expressed wild-type NBCe1-A (WT) and mutant NBCe1-A (R881C), tagged at the COOH terminus with enhanced green fluorescent protein (EGFP). This approach permitted semiquantification of surface expression in individual Xenopus oocytes before assay by two-electrode voltage clamp or measurements of intracellular pH. These data show that the mutation reduces the surface expression rather than the activity of the individual protein molecules. Confocal microscopy on polarized mammalian epithelial kidney cells [Madin-Darby canine kidney (MDCK)I] expressing nontagged WT or R881C demonstrates that WT is expressed at the basolateral membrane of these cells, whereas R881C is retained in the endoplasmic reticulum. In summary, the pathophysiology of pRTA caused by the R881C mutation is likely due to a deficit of NBCe1-A at the proximal tubule basolateral membrane, rather than a defect in the transport activity of individual molecules.

  5. MRP2 involvement in renal proximal tubular elimination of methylmercury mediated by DMPS or DMSA

    SciTech Connect

    Zalups, Rudolfs K. Bridges, Christy C.

    2009-02-15

    2, 3-Dimercaptopropane-1-sulfonic acid (DMPS) and meso-2, 3-Dimercaptosuccinic acid (DMSA) are dithiols used to treat humans exposed to methylmercury (CH{sub 3}Hg{sup +}). After treatment, significant amounts of mercury are eliminated rapidly from the kidneys and are excreted in urine. In the present study, we extended our previous studies by testing the hypothesis that MRP2 mediates the secretion of DMPS or DMSA S-conjugates of CH{sub 3}Hg{sup +}. To test this hypothesis, the disposition of mercury was assessed in control and Mrp2-deficient (TR{sup -}) rats exposed intravenously to a 5.0-mg/kg dose of CH{sub 3}HgCl. Twenty-four and 28 h after exposure, groups of four control and four TR{sup -} rats were injected with saline, DMPS, or DMSA. Tissues were harvested 48 h later. Renal and hepatic contents of mercury were greater in saline-injected TR{sup -} rats than in controls. In contrast, the amounts of mercury excreted in urine and feces by TR{sup -} rats were less than those by controls. DMPS and DMSA significantly reduced the renal and hepatic content of mercury in both groups of rats, with the greatest reduction in controls. A significant increase in urinary and fecal excretion of mercury (which was greater in the controls) was also observed. Our findings in inside-out membrane vesicles prepared from hMRP2-transfected Sf9 cells show that uptake of DMPS and DMSA S-conjugates of CH{sub 3}Hg{sup +} was greater in the vesicles containing hMRP2 than in control vesicles. Overall, these dispositional findings indicate that MRP2 does play a role in DMPS- and DMSA-mediated elimination of mercury from the kidney.

  6. MRP2 involvement in renal proximal tubular elimination of methylmercury mediated by DMPS or DMSA.

    PubMed

    Zalups, Rudolfs K; Bridges, Christy C

    2009-02-15

    2, 3-Dimercaptopropane-1-sulfonic acid (DMPS) and meso-2, 3-Dimercaptosuccinic acid (DMSA) are dithiols used to treat humans exposed to methylmercury (CH(3)Hg(+)). After treatment, significant amounts of mercury are eliminated rapidly from the kidneys and are excreted in urine. In the present study, we extended our previous studies by testing the hypothesis that MRP2 mediates the secretion of DMPS or DMSA S-conjugates of CH(3)Hg(+). To test this hypothesis, the disposition of mercury was assessed in control and Mrp2-deficient (TR(-)) rats exposed intravenously to a 5.0-mg/kg dose of CH(3)HgCl. Twenty-four and 28 h after exposure, groups of four control and four TR(-) rats were injected with saline, DMPS, or DMSA. Tissues were harvested 48 h later. Renal and hepatic contents of mercury were greater in saline-injected TR(-) rats than in controls. In contrast, the amounts of mercury excreted in urine and feces by TR(-) rats were less than those by controls. DMPS and DMSA significantly reduced the renal and hepatic content of mercury in both groups of rats, with the greatest reduction in controls. A significant increase in urinary and fecal excretion of mercury (which was greater in the controls) was also observed. Our findings in inside-out membrane vesicles prepared from hMRP2-transfected Sf9 cells show that uptake of DMPS and DMSA S-conjugates of CH(3)Hg(+) was greater in the vesicles containing hMRP2 than in control vesicles. Overall, these dispositional findings indicate that MRP2 does play a role in DMPS- and DMSA-mediated elimination of mercury from the kidney.

  7. [Definition and biomarkers of acute renal damage: new perspectives].

    PubMed

    Seijas, M; Baccino, C; Nin, N; Lorente, J A

    2014-01-01

    The RIFLE and AKIN criteria have definitely help out to draw attention to the relationship between a deterioration of renal function that produces a small increase in serum creatinine and a worse outcome. However, the specific clinical utility of using these criteria remains to be well-defined. It is believed that the main use of these criteria is for the design of epidemiological studies and clinical trials to define inclusion criteria and objectives of an intervention. AKI adopting term, re-summoning former ARF terminology, it is appropriate to describe the clinical condition characterized by damage to kidney, in the same way as the term is used to describe acute lung damage where the lung injury situation still has not increased to a situation of organ failure (dysfunction). The serum and urine biomarkers (creatinine, urea, and diuresis) currently in use are not sensitive or specific for detecting kidney damage, limiting treatment options and potentially compromising the outcome. New biomarkers are being studied in order to diagnose an earlier and more specific AKI, with the potential to change the definition criteria of AKI with different stages, currently based in diuresis and serum creatinine.

  8. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring

    PubMed Central

    Chowdhury, Sabiha S.; Lecomte, Virginie; Erlich, Jonathan H.; Maloney, Christopher A.; Morris, Margaret J.

    2016-01-01

    Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13–14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD. PMID:27563922

  9. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique

    NASA Astrophysics Data System (ADS)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu

    2016-11-01

    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  10. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique

    NASA Astrophysics Data System (ADS)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu

    2017-04-01

    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  11. Acute renal damage in infants after first urinary tract infection.

    PubMed

    Cascio, Salvatore; Chertin, Boris; Yoneda, Akihiro; Rolle, Udo; Kelleher, Jeremiah; Puri, Prem

    2002-07-01

    Urinary tract infection (UTI) is one of the most common causes of unexplained fever in neonates. The aim of this study was to determine the incidence of urinary tract anomalies and acute renal damage in neonates who presented with first urinary tract infection in the first 8 weeks of life. We reviewed the records of 95 infants, who were hospitalised with UTI during a 6-year period (1994-1999). Patients with antenatally diagnosed hydronephrosis and incomplete radiological investigations were excluded from the study. Of the remaining 57 patients, 42 were boys and 15 girls. The mean age at diagnosis was 32 days (range 5-60 days). All patients underwent renal ultrasonography (US), voiding cystourethrogram (VCUG) and (99m)Tc-dimercaptosuccinic acid (DMSA) scan. Urinary tract abnormalities were detected in 20 (35%) patients. Vesicoureteral reflux (VUR) was found in 19 (33%) neonates, 7 girls and 12 boys. Acute cortical defects on DMSA scan were present in 19 kidneys of patients with VUR and in 25 of those without reflux. Only one-third of neonates after first symptomatic UTI had VUR. We recommend that US, VCUG, and DMSA scan should be routinely performed after the first UTI in infants younger than 8 weeks.

  12. Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

    PubMed Central

    Wang, Bohan; Wu, Bolin; Liu, Jun; Yao, Weimin; Xia, Ding; Li, Lu; Chen, Zhiqiang; Ye, Zhangqun; Yu, Xiao

    2014-01-01

    Background Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. Objective The present study aimed to assess the potential changes in microRNAs of proximal renal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Methodology Lactate dehydrogenase (LDH) activity and DAPI staining were used to measure the toxic effects of HK-2 cells exposed to COM crystals. MicroRNA microarray and mRNA microarray were applied to evaluate the expression of HK-2 cells exposed to COM crystals. Quantitative real-time PCR (qRT-PCR) technology was used to validate the microarray results. Target prediction, Gene Ontology (GO) analysis and pathway analysis were applied to predict the potential roles of microRNAs in biological processes. Principal Findings Our study showed that COM crystals significantly altered the global expression profile of miRNAs in vitro. After 24 h treatment with a dose (1 mmol/L), 25 miRNAs were differentially expressed with a more than 1.5-fold change, of these miRNAs, 16 were up-regulated and 9 were down-regulated. A majority of these differentially expressed miRNAs were associated with cell death, mitochondrion and metabolic process. Target prediction and GO analysis suggested that these differentially expressed miRNAs potentially targeted many genes which were related to apoptosis, regulation of metabolic process, intracellular signaling cascade, insulin signaling pathway and type 2 diabetes. Conclusion Our study provides new insights into the role of miRNAs in the pathogenesis associated with nephrolithiasis. PMID:24983625

  13. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3.

    PubMed

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A; Rieg, Timo

    2015-06-15

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.

  14. Peroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na(+)/H(+) exchanger NHE1.

    PubMed

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chen, Jia-Rung; Tsai, Hwei-Fang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Yung-Ho

    2015-11-23

    Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor which has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na(+)/H(+) exchanger NHE1 expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na(+)/H(+) exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM siRNA transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the pro-survival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression, and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.

  15. Cobalt chloride attenuates oxidative stress and inflammation through NF-κB inhibition in human renal proximal tubular epithelial cells.

    PubMed

    Oh, Se Won; Lee, Yun-Mi; Kim, Sejoong; Chin, Ho Jun; Chae, Dong-Wan; Na, Ki Young

    2014-09-01

    We evaluated the effect of cobalt chloride (CoCl2) on TNF-α and IFN-γ-induced-inflammation and reactive oxygen species (ROS) in renal tubular epithelial cells (HK-2 cells). We treated HK-2 cells with CoCl2 before the administration of TNF-α/IFN-γ. To regulate hemeoxygenase-1 (HO-1) expression, the cells were treated CoCl2 or HO-1 siRNA. CoCl2 reduced the generation of ROS induced by TNF-α/IFN-γ. TNF-α/IFN-γ-treated-cells showed an increase in the nuclear translocation of phosphorylated NF-κBp65 protein, the DNA-binding activity of NF-κBp50 and NF-κB transcriptional activity and a decrease in IκBα protein expression. These changes were restored by CoCl2. We noted an intense increase in monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) production in TNF-α/IFN-γ-treated cells. We demonstrated that this effect was mediated through NF-κB signaling because an NF-κB inhibitor significantly reduced MCP-1 and RANTES production. CoCl2 effectively reduced MCP-1 and RANTES production. The expression of HO-1 was increased by CoCl2 and decreased by HO-1 siRNA. However, knockdown of HO-1 by RNA interference did not affect MCP-1 or RANTES production. We suggest that CoCl2 has a protective effect on TNF-α/IFN-γ-induced inflammation through the inhibition of NF-κB and ROS in HK-2 cells. However, CoCl2 appears to act in an HO-1-independent manner.

  16. Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction.

    PubMed

    Quiroz, Yasmir; Ferrebuz, Atilio; Romero, Freddy; Vaziri, Nosratola D; Rodriguez-Iturbe, Bernardo

    2008-02-01

    The progressive deterioration of renal function and structure resulting from renal mass reduction are mediated by a variety of mechanisms, including oxidative stress and inflammation. Melatonin, the major product of the pineal gland, has potent_antioxidant and anti-inflammatory properties, and its production is impaired in chronic renal failure. We therefore investigated if melatonin treatment would modify the course of chronic renal failure in the remnant kidney model. We studied rats followed 12 wk after renal ablation untreated (Nx group, n = 7) and treated with melatonin administered in the drinking water (10 mg/100 ml) (Nx + MEL group, n = 8). Sham-operated rats (n = 10) were used as controls. Melatonin administration increased 13-15 times the endogenous hormone levels. Rats in the Nx + MEL group had reduced oxidative stress (malondialdehyde levels in plasma and in the remnant kidney as well as nitrotyrosine renal abundance) and renal inflammation (p65 nuclear factor-kappaB-positive renal interstitial cells and infiltration of lymphocytes and macrophages). Collagen, alpha-smooth muscle actin, and transforming growth factor-beta renal abundance were all increased in the remnant kidney of the untreated rats and were reduced significantly by melatonin treatment. Deterioration of renal function (plasma creatinine and proteinuria) and structure (glomerulosclerosis and tubulointerstitial damage) resulting from renal ablation were ameliorated significantly with melatonin treatment. In conclusion, melatonin administration improves the course of chronic renal failure in rats with renal mass reduction. Further studies are necessary to define the potential usefulness of this treatment in other animal models and in patients with chronic renal disease.

  17. Furosemide renal excretion rate and the effects of the diuretic on different tubular sites are modified by endogenous dopamine in normohydrated rats.

    PubMed

    Nowicki, S; Opezzo, J A; Levin, G; Gonzalez, D; Elias, M M

    1995-09-01

    The present study was designed to explore the involvement of endogenous dopamine in furosemide excretion and in the actions of the diuretic on tubular sodium reabsorption. The dose-response relationship for the diuretic effect of furosemide given as i.v. bolus injections (0.2-7.5 mg.kg-1) was studied by clearance technique in pentobarbital-anesthetized rats treated with vehicle, benserazide (BZ) (25 mg.kg-1 i.v.) or SCH 23390 (50 micrograms.kg-1 + 10 micrograms.kg-1.min-1 i.v.). Furosemide induced the maximal diuresis 15 to 30 min after i.v. administration. The diuretic response was dose-dependent and was reduced in the animals treated with BZ and SCH 23390. Fractional sodium excretion was also increased by furosemide from 1.8 to 7.5% during the same period. This effect was reduced by both BZ or SCH 23390 by 35 to 50%. The effects of furosemide on proximal and distal renal tubules were dissected by measuring the renal lithium clearance (CLi+). Furosemide effective on proximal tubular sites (measured by FENa+ prox = CLi+/Cln) were completely abolished by BZ and SCH 23390, whereas both drugs reduced furosemide effects on distal tubular sites (measured by FENa+ distal = CNa+/CLi+) by 20 to 40%. Furosemide excretion rate during the peak response to the diuretic was measured in the urine. BZ and SCH 23390 diminished furosemide excretion by 45 to 80% as compared with vehicle-treated animals. The furosemide tubular effects and the proximal and distal functions measured by CLi+ determined during the peak response were correlated to the maximal excretion rate of furosemide in the urine.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells

    PubMed Central

    Kanlaya, Rattiyaporn; Khamchun, Supaporn; Kapincharanon, Chompunoot; Thongboonkerd, Visith

    2016-01-01

    This study evaluated effect of oxalate on epithelial mesenchymal transition (EMT) and potential anti-fibrotic property of epigallocatechin-3-gallate (EGCG). MDCK renal tubular cells were incubated with 0.5 mM sodium oxalate for 24-h with/without 1-h pretreatment with 25 μM EGCG. Microscopic examination, immunoblotting and immunofluorescence staining revealed that oxalate-treated cells gained mesenchymal phenotypes by fibroblast-like morphological change and increasing expression of vimentin and fibronectin, while levels of epithelial markers (E-cadherin, occludin, cytokeratin and ZO-1) were decreased. EGCG pretreatment could prevent all these changes and molecular mechanisms underlying the prevention by EGCG were most likely due to reduced production of intracellular ROS through activation of Nrf2 signaling and increased catalase anti-oxidant enzyme. Knockdown of Nrf2 by small interfering RNA (siRNA) abrogated all the effects of EGCG, confirming that the EGCG protection against oxalate-induced EMT was mediated via Nrf2. Taken together, our data indicate that oxalate turned on EMT of renal tubular cells that could be prevented by EGCG via Nrf2 pathway. These findings also shed light onto development of novel therapeutics or preventive strategies of renal fibrosis in the future. PMID:27452398

  19. Effects of supplemental recombinant bovine somatotropin and mist-fan cooling on the renal tubular handling of sodium in different stages of lactation in crossbred Holstein cattle.

    PubMed

    Boonsanit, Dolrudee; Chanpongsang, Somchai; Chaiyabutr, Narongsak

    2012-08-01

    The effect of supplementary administration of recombinant bovine somatotrophin (rbST) on the renal tubular handling of sodium in crossbred 87.5% Holstein cattle housed in normal shade (NS) or mist-fan cooled (MF) barns was evaluated. The cows were injected with 500 mg rbST at three different stages of lactation. The MF barn housed cows showed a slightly decreased ambient temperature and temperature humidity index, but an increased relative humidity. Rectal temperature and respiration rates were significantly lower in cooled cows. The rbST treated cows, housed in NS or MF barns, showed markedly increased milk yields, total body water, extracellular fluid and plasma volume levels, along with a reduced rate of urine flow and urinary excretion of sodium, potassium and chloride ions and osmolar clearance, in all three stages of lactation. Renal tubular sodium and water reabsorption were increased after rbST administration without any alteration in the renal hemodynamics. Lithium clearance data suggested that the site of response is in the proximal nephron segment, which may be mediated via increases in the plasma levels of aldosterone and IGF-1, but not vasopressin, during rbST administration.

  20. Attenuation of Tubular Injury and Renal Fibrosis by TI-HU-YIN via Reduction in Transforming Growth Factor-β1 Expression in Unilateral Ureteral Obstruction Mice.

    PubMed

    Tarng, Der-Cherng; Liu, I-Shan; Lin, Lie-Chwen; Chen, Nien-Jung

    2015-12-31

    TI-HU-YIN (JCKD), a compound composed of many Chinese herbs, is hypothesized to attenuate renal tubular injury and interstitial fibrosis. Moreover, its renoprotective effects were assessed in animal and in vitro studies. First, male C57BL/6 mice were under sham operation or unilateral ureteral obstruction (UUO) surgery, and then treated with phosphate buffer solution (PBS), aliskirin and valsartan (A+V), and JCKD for 14 days. At 7 and 14 days, mice were sacrificed and the kidney tissues were assessed for histopathological changes and transforming growth factor (TGF)-β1 expression. As compared to sham group, UUO-PBS group had more serious tubular dilatation and injury, α-smooth muscle actin-positive areas, F4/80-positive macrophages, and interstitial fibrosis. Impressively, these pathologic changes were significantly attenuated in UUO mice both treated with JCKD and A+V as compared to UUO-PBS group. At 14 days, TGF-β1 expression was significantly suppressed in kidney tissues of UUO-JCKD group as well as in UUO-A+V group. Second, TGF-β1 production was increased in macrophage J774 cells and NRK-52E proximal tubular cells stimulated by angiotensin (Ang)-II at 10 nM for 24 h and at 1 nM for 48 h, respectively. JCKD (≥ 400 μg/ml) inhibited the TGF-β1 production at baseline and stimulated by Ang II in both cell lines. Our study showed that JCKD reduced renal injury, macrophage infiltration and interstitial fibrosis possibly through suppressing the TGF-β1 expression in UUO mice. Accordingly, JCKD is potential to retard the progression of chronic kidney disease. Further studies are needed to validate its renoprotective effects in the inhibition of TGF-β1 expression and the amelioration of renal fibrosis.

  1. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    SciTech Connect

    Ueda, Kohei; Fujiki, Katsunori; Shirahige, Katsuhiko; Gomez-Sanchez, Celso E.; Fujita, Toshiro; Nangaku, Masaomi; Nagase, Miki

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  2. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    PubMed

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    . These findings indicated that the increased expression of SIRT1, mediated by RSV, is a possible mechanism by which RSV prevents renal tubular injury in diabetic nephropathy (DN). So RSV has great clinical significance and could provide the basis for the new way to effective treatment to contain the morbidity and mortality associated with DN.

  3. Electrolyte Imbalances and Nephrocalcinosis in Acute Phosphate Poisoning on Chronic Type 1 Renal Tubular Acidosis due to Sjögren's Syndrome

    PubMed Central

    Cho, Sung-Gun; Han, Sang-Woong; Kim, Ho-Jung

    2013-01-01

    Although renal calcium crystal deposits (nephrocalcinosis) may occur in acute phosphate poisoning as well as type 1 renal tubular acidosis (RTA), hyperphosphatemic hypocalcemia is common in the former while normocalcemic hypokalemia is typical in the latter. Here, as a unique coexistence of these two seperated clinical entities, we report a 30-yr-old woman presenting with carpal spasm related to hypocalcemia (ionized calcium of 1.90 mM/L) due to acute phosphate poisoning after oral sodium phosphate bowel preparation, which resolved rapidly after calcium gluconate intravenously. Subsequently, type 1 RTA due to Sjögren's syndrome was unveiled by sustained hypokalemia (3.3 to 3.4 mEq/L), persistent alkaline urine pH (> 6.0) despite metabolic acidosis, and medullary nephrocalcinosis. Through this case report, the differential points of nephrocalcinosis and electrolyte imbalances between them are discussed, and focused more on diagnostic tests and managements of type 1 RTA. PMID:23400265

  4. Renal Tubular Acidosis

    MedlinePlus

    ... possibly total kidney failure. The body's cells use chemical reactions to carry out tasks such as turning food into energy and repairing tissue. These chemical reactions generate acids. Some acid in the blood is ...

  5. Renal Tubular Acidosis

    MedlinePlus

    ... Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development ( ... may involve stopping use of the drug or changing the dosage. If an underlying disease or other ...

  6. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    PubMed

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine.

  7. Acyclovir is a substrate for the human breast cancer resistance protein (BCRP/ABCG2): implications for renal tubular transport and acyclovir-induced nephrotoxicity.

    PubMed

    Gunness, Patrina; Aleksa, Katarina; Koren, Gideon

    2011-09-01

    The human breast cancer resistance protein (BCRP/ABCG2) is widely expressed in human tissues, including the kidney. In mice, Bcrp1 (murine BCRP ortholog) mediates the transport of acyclovir into breast milk. It is plausible that acyclovir is also a substrate for the human BCRP. The objective of the study was to determine whether acyclovir is a substrate for human BCRP. Transfected human embryonic kidney (HEK293) cells (containing the wild-type ABCG2 gene) were exposed to [8-(14)C]acyclovir (1 µmol/L) in the presence or absence of the BCRP inhibitor fumitremorgin C (FTC). Intracellular acyclovir accumulation was assessed using a liquid scintillation counter. Coexposure to FTC resulted in a significant (5-fold) increase in the intracellular accumulation of acyclovir. The results suggest that acyclovir is a substrate for human BCRP. The study is the first to provide direct evidence for the role of human BCRP in acyclovir transport and its potential significance with respect to renal tubular transport of acyclovir and the direct renal tubular insult induced by the drug.

  8. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification.

    PubMed

    Sly, W S; Whyte, M P; Sundaram, V; Tashian, R E; Hewett-Emmett, D; Guibaud, P; Vainsel, M; Baluarte, H J; Gruskin, A; Al-Mosawi, M

    1985-07-18

    Osteopetrosis with renal tubular acidosis and cerebral calcification was identified as a recessively inherited syndrome in 1972. In 1983, we reported a deficiency of carbonic anhydrase II, one of the isozymes of carbonic anhydrase, in three sisters with this disorder. We now describe our study of 18 similarly affected patients with this syndrome in 11 unrelated families of different geographic and ethnic origins. Virtual absence of the carbonic anhydrase II peak on high-performance liquid chromatography, of the esterase and carbon dioxide hydratase activities of carbonic anhydrase II, and of immunoprecipitable isozyme II was demonstrated on extracts of erythrocyte hemolysates from all patients studied. Reduced levels of isozyme II were found in obligate heterozygotes. These observations demonstrate the generality of the findings that we reported earlier in one family and provide further evidence that a deficiency of carbonic anhydrase II is the enzymatic basis for the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. We also summarize the clinical findings in these families, propose mechanisms by which a deficiency of carbonic anhydrase II could produce this metabolic disorder of bone, kidney, and brain, and discuss the clinical evidence for genetic heterogeneity in patients from different kindreds with this inborn error of metabolism.

  9. Comparison of a tubular pulsatile pump and a volumetric pump for continuous venovenous renal replacement therapy in a pediatric animal model.

    PubMed

    Ruperez, Marta; López-Herce, Jesús; Sánchez, César; García, Cristina; García, Elena; Del Francisco, Cañizo Juan

    2005-01-01

    We compare the efficacy of a tubular pulsatile pump and a conventional volumetric pump (IVAC 571), connected to a neonatal hemofiltration circuit with an FH22 filter, for continuous renal replacement therapy in 54 Maryland pigs weighing 8-16 kg. Three different flow rates (30 ml/min in 12 cases, 15 ml/min in 22 cases, and 5 ml/min in 20 cases) were used over a 2-hour period. Hemofiltration and hemodiafiltration were performed, and measurements of ultrafiltrate flow, circuit pressures, heart rate, blood pressure, temperature, urea, creatinine, total proteins, Na, K, Cl, hematocrit, and hemolysis parameters (aspartate transaminase, lactic dehydrogenase, haptoglobin, indirect bilirubin, free hemoglobin) were made. There were no differences in ultrafiltrate flow between the two pumps. Ultrafiltrate volume was significantly higher with higher flows (p < 0.01). The technique was well tolerated by all pigs. When each blood flow was analyzed separately, cross-filter pressure drop was significantly higher in the volumetric pump than in the tubular pulsatile pump (p < 0.05). No significant differences in heart rate, blood pressure, or analytical determinations were seen between the two pumps. We conclude that pulsatile and volumetric pumps can be uses as an alternative to roller pumps for continuous venovenous renal replacement therapy in neonates and infants.

  10. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    PubMed

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  11. Urinary proteins of tubular origin: basic immunochemical and clinical aspects.

    PubMed

    Scherberich, J E

    1990-01-01

    A variety of tubular marker proteins, as compared to healthy controls, are excreted at an increased rate in the urine of patients with renal damage. Beside cytoplasmic glutathione-S-transferase and lysosomal beta-N-acetyl-glucosaminidase (beta-NAG) the majority of kidney-related urine proteins derives from membrane surface components of the most vulnerable proximal tubule epithelia, among them ala-(leu-gly)-aminopeptidase, gamma-glutamyl transpeptidase (GGT), the tubular portion of angiotensinase A, the major brush border glycoprotein 'SGP-240' and adenosine-deaminase-binding protein. Urinary tissue proteins, e.g. brush border (BB) microvilli, are immunologically identical with those antigens prepared from cell membranes of the human kidney itself. BB antigens are shed into the urine of patients with glomerulonephritis, interstitial nephritis, systemic diseases, e.g. systemic lupus erythematosus (SLE), diabetes mellitus and multiple myeloma, arterial hypertension, infectious diseases (malaria, AIDS) and after operations, renal grafting and administration of X-ray contrast media, aminoglycosides or certain cytostatics (cis-platinum). Tissue proteinuria of tubular proteins is determined by enzyme-kinetic or quantitative immunological assays applying either poly- or monoclonal antikidney antibodies. Clinical, ultrastructural and histochemical studies support the idea that both 'soluble' and high-molecular-weight membrane particles (vacuolar blebs, greater than 10(6) dalton) as well as microfilamental components of the epithelial cytoskeleton contribute to tubular 'histuria' which appears as a sensitive parameter in monitoring tubular damage under clinical conditions at a very early phase.

  12. Peroxisome proliferator-activated receptor {alpha} agonism prevents renal damage and the oxidative stress and inflammatory processes affecting the brains of stroke-prone rats.

    PubMed

    Gelosa, Paolo; Banfi, Cristina; Gianella, Anita; Brioschi, Maura; Pignieri, Alice; Nobili, Elena; Castiglioni, Laura; Cimino, Mauro; Tremoli, Elena; Sironi, Luigi

    2010-11-01

    A growing body of evidence suggests that chronic kidney disease is a significant risk for cardiovascular events and stroke regardless of traditional risk factors. The aim of this study was to examine the effects of peroxisome proliferator-activated receptor (PPAR) agonists on the tissue damage affecting salt-loaded spontaneously hypertensive stroke-prone rats ( SHRSPs), an animal model that develops a complex pathology characterized by systemic inflammation, hypertension, and proteinuria and leads to end-organ injury (initially renal and subsequently cerebral). Compared with the PPARγ agonist rosiglitazone, the PPARα ligands fenofibrate and clofibrate significantly increased survival (p < 0.001) by delaying the occurrence of brain lesions monitored by magnetic resonance imaging (p < 0.001) and delaying increased proteinuria (p < 0.001). Fenofibrate completely prevented the renal disorder characterized by severe vascular lesions, tubular damage, and glomerular sclerosis, reduced the number of ED-1-positive cells and collagen accumulation, and decreased the renal expression of interleukin-1β, transforming growth factor β, and monocyte chemoattractant protein 1. It also prevented the plasma and urine accumulation of acute-phase and oxidized proteins, suggesting that the protection induced by PPARα agonists was at least partially caused by their anti-inflammatory and antioxidative properties. The results of this study demonstrate that PPAR agonism has beneficial effects on spontaneous brain and renal damage in SHRSPs by inhibiting systemic inflammation and oxidative stress, and they support carrying out future studies aimed at evaluating the effect of PPARα agonists on proteinuria and clinical outcomes in hypertensive patients with renal disease at increased risk of stroke.

  13. Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells.

    PubMed

    Carvalho, Márcia; Hawksworth, Gabrielle; Milhazes, Nuno; Borges, Fernanda; Monks, Terrence J; Fernandes, Eduarda; Carvalho, Félix; Bastos, Maria Lourdes

    2002-10-01

    The metabolism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has recently been implicated in the mechanisms underlying ecstasy-induced neurotoxicity and hepatotoxicity. However, its potential role in ecstasy-induced kidney toxicity has yet to be investigated. Thus, primary cultures of rat and human renal proximal tubular cells (PTCs) were used to investigate the cytotoxicity induced by MDMA and its metabolites methylenedioxyamphetamine (MDA), alpha-methyldopamine (alpha-MeDA), and the glutathione (GSH) conjugates 5-(glutathion- S-yl)-alpha-MeDA and 2,5- bis(glutathion- S-yl)-alpha-MeDA. Cell viability was evaluated using the mitochondrial MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. MDMA and MDA were not found to be toxic to either rat or human PTCs at any concentration tested (100-800 micro M). In contrast, 800 micro M alpha-MeDA caused 60% and 40% cell death in rat and human PTCs, respectively. Conjugation of alpha-MeDA with GSH resulted in the formation of even more potent nephrotoxicants. Thus, exposure of rat and human PTC monolayers to 400 micro M 5-(glutathion- S-yl)-alpha-MeDA caused approximately 80% and 70% cell death, respectively. 5-(Glutathion- S-yl)-alpha-MeDA (400 micro M) was more toxic than 2,5- bis(glutathion- S-yl)-alpha-MeDA to rat renal PTCs but equally potent in human renal PTCs. Pre-incubation of rat PTCs with either acivicin, an inhibitor of gamma-glutamyl transpeptidase (gamma-GT), or bestatin, an inhibitor of aminopeptidase M, resulted in increased toxicity of 5-(glutathion- S-yl)-alpha-MeDA but had no effect on 2,5- bis(glutathion- S-yl)-alpha-MeDA-mediated cytotoxicity. The present data provide evidence that metabolism is required for the expression of MDMA-induced renal toxicity in vitro. In addition, metabolism of 5-(glutathion- S-yl)-alpha-MeDA by gamma-GT and aminopeptidase M to the corresponding cystein- S-yl-glycine and/or cystein- S-yl conjugates is likely to be associated with detoxication of

  14. Human Alpha-1-Antitrypsin (hAAT) therapy reduces renal dysfunction and acute tubular necrosis in a murine model of bilateral kidney ischemia-reperfusion injury

    PubMed Central

    Maicas, Nuria; van der Vlag, Johan; Bublitz, Janin; Florquin, Sandrine; Bakker-van Bebber, Marinka; Dinarello, Charles A.; Verweij, Vivienne; Masereeuw, Roos; Joosten, Leo A.

    2017-01-01

    Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions. PMID:28235038

  15. Nucleotide Analogue-Related Proximal Renal Tubular Dysfunction during Long-Term Treatment of Chronic Hepatitis B: A Cross-Sectional Study.

    PubMed

    Sobhonslidsuk, Abhasnee; Wanichanuwat, Jirachaya; Numthavaj, Pawin; Sophonsritsuk, Areepan; Petraksa, Supanna; Pugasub, Alongkorn; Jittorntam, Paisan; Kongsomgan, Anucha; Roytrakul, Sittiruk; Phakdeekitcharoen, Bunyong

    2016-01-01

    Background. There have been few reports of nucleotide analogue-related renal tubular dysfunction (RTD) in CHB patients. We assessed the prevalence and presentation of nucleotide analogue-related proximal RTD. Methods. A cross-sectional study was performed in CHB patients taking nucleotide analogues. Inclusion criteria were patients who were on adefovir or tenofovir as mono- or add-on therapy with lamivudine (LAM) >1 year. Serum and urine were collected. Fractional excretion of phosphate (FEPO4), uric acid (FEUA), and potassium was calculated. Renal losses were defined based on the criteria: protein (24-hour urine protein >150 mg), glucose (glycosuria with normoglycemia), phosphate (FEPO4 >18%), uric acid (FEUA >15%), potassium (renal potassium losses with hypokalemia), and bicarbonate (normal gap acidosis). Subclinical and overt proximal RTD were defined when 2 and ≥3 criteria presented. Results. Ninety-two patients were enrolled. The mean duration of nucleotide analogue taking was 55.1 ± 29.6 months. Proximal RTD was found in 24 (26.1%) patients (subclinical 15 (16.3%) and overt 9 (9.8%)). The severity of RTD was associated with the duration of nucleotide analogue (P = 0.01). Conclusions. The prevalence of proximal RTD in CHB patients taking nucleotide analogues was 26%. The severity of RTD was associated with the treatment duration. Comprehensive testing is necessary for early detecting nucleotide analogue-related nephrotoxicity.

  16. Tumor Cell-Derived Microvesicles Induced Not Epithelial-Mesenchymal Transition but Apoptosis in Human Proximal Tubular (HK-2) Cells: Implications for Renal Impairment in Multiple Myeloma

    PubMed Central

    Zhao, Aiqi; Kong, Fancong; Liu, Chun-Jie; Yan, Guoxin; Gao, Fei; Guo, Hao; Guo, An-Yuan; Chen, Zhichao; Li, Qiubai

    2017-01-01

    Renal impairment (RI) is one of the hallmarks of multiple myeloma (MM) and carries a poor prognosis. Microvesicles (MVs) are membrane vesicles and play an important role in disease progression. Here, we investigated the role of MVs derived from MM cells (MM-MVs) in RI of MM. We found that MM-MVs significantly inhibited viability and induced apoptosis, but not epithelial-mesenchymal transition in human kidney-2 (HK-2), a human renal tubular epithelial cell line. The protein levels of cleaved caspase-3, 8, and 9, and E-cadherin, were increased, but vementin levels were decreased in the HK-2 cells treated with MM-MVs. Through a comparative sequencing and analysis of RNA content between the MVs from RPMI8226 MM cells (RPMI8226-MVs) and K562 leukemia cells, RPMI8226-MVs were enriched with more renal-pathogenic miRNAs, in which the selective miRNAs may participate in the up-regulation of the levels of cleaved caspase-3. Furthermore, the levels of CD138+ circulating MVs (cirMVs) in the peripheral blood were positively correlated with the severity of RI in newly-diagnosed MM. Our study supports MM-MVs representing a previously undescribed factor and playing a potential role in the development of RI of MM patients, and sheds light on the potential application of CD138+ cirMV counts in precise diagnosis of RI in MM and exploring MM-MVs as a therapeutic target. PMID:28264449

  17. Cdc42-Interacting Protein 4 Represses E-Cadherin Expression by Promoting β-Catenin Translocation to the Nucleus in Murine Renal Tubular Epithelial Cells.

    PubMed

    Xu, Chuou; Zhou, Qiaodan; Liu, Lili; Liu, Ping; Pei, Guangchang; Zeng, Rui; Han, Min; Xu, Gang

    2015-08-14

    Renal fibrosis is an inevitable outcome of end-stage chronic kidney disease. During this process, epithelial cells lose E-cadherin expression. β-Catenin may act as a mediator by accumulation and translocation to the nucleus. Studies have suggested that CIP4, a Cdc42 effector protein, is associated with β-catenin. However, whether CIP4 contributes to E-cadherin loss in epithelial cells by regulating β-catenin translocation is unclear. In this study, we investigated the involvement of CIP4 in β-catenin translocation. Expression of CIP4 was upregulated in renal tissues of 5/6 nephrectomized rats and mainly distributed in renal tubular epithelia. In TGF-β1-treated NRK-52E cells, upregulation of CIP4 expression was accompanied by reduced expression of E-cadherin. CIP4 overexpression promoted the translocation of β-catenin to the nucleus, which was accompanied by reduced expression of E-cadherin even without TGF-β1 stimulation. In contrast, CIP4 depletion by using siRNA inhibited the translocation of β-catenin to the nucleus and reversed the decrease in expression of E-cadherin. The interaction between CIP4 and β-catenin was detected. We also show that β-catenin depletion could restore the expression of E-cadherin that was suppressed by CIP4 overexpression. In conclusion, these results suggest that CIP4 overexpression represses E-cadherin expression by promoting β-catenin translocation to the nucleus.

  18. Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients.

    PubMed

    Reátegui-Sokolova, C; Ugarte-Gil, Manuel F; Gamboa-Cárdenas, Rocío V; Zevallos, Francisco; Cucho-Venegas, Jorge M; Alfaro-Lozano, José L; Medina, Mariela; Rodriguez-Bellido, Zoila; Pastor-Asurza, Cesar A; Alarcón, Graciela S; Perich-Campos, Risto A

    2017-04-01

    This study aims to determine whether uric acid levels contribute to new renal damage in systemic lupus erythematosus (SLE) patients. This prospective study was conducted in consecutive patients seen since 2012. Patients had a baseline visit and follow-up visits every 6 months. Patients with ≥2 visits were included; those with end-stage renal disease (regardless of dialysis or transplantation) were excluded. Renal damage was ascertained using the SLICC/ACR damage index (SDI). Univariable and multivariable Cox-regression models were performed to determine the risk of new renal damage. Uric acid was included as a continuous and dichotomous (per receiving operating characteristic curve) variable. Multivariable models were adjusted for age at diagnosis, disease duration, socioeconomic status, SLEDAI, SDI, serum creatinine, baseline use of prednisone, antimalarials, and immunosuppressive drugs. One hundred and eighty-six patients were evaluated; their mean (SD) age at diagnosis was 36.8 (13.7) years; nearly all patients were mestizo. Disease duration was 7.7 (6.8) years. Follow-up time was 2.3 (1.1) years. The SLEDAI was 5.2 (4.3) and the SDI 0.8 (1.1). Uric acid levels were 4.5 (1.3) mg/dl. During follow-up, 16 (8.6%) patients developed at least one new point in the renal domain of the SDI. In multivariable analyses, uric acid levels (continuous and dichotomous) at baseline predicted the development of new renal damage (HR 3.21 (1.39-7.42), p 0.006; HR 18.28 (2.80-119.48), p 0.002; respectively). Higher uric acid levels contribute to the development of new renal damage in SLE patients independent of other well-known risk factors for such occurrence.

  19. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function

    SciTech Connect

    Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko; Dakeishi, Miwako; Iwata, Toyoto; Murata, Katsuyuki . E-mail: winestem@med.akita-u.ac.jp

    2007-02-15

    To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair, toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].

  20. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells.

    PubMed

    Fujii, Naoko; Matsuo, Yukinobu; Matsunaga, Toshiyuki; Endo, Satoshi; Sakai, Hideki; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-11-18

    Hypotonic stress decreased claudin-1 and -2 expression levels in renal tubular epithelial HK-2 and Madin-Darby canine kidney cells. Here, we examined the regulatory mechanism involved in this decrease. The hypotonicity-induced decrease in claudin expression was inhibited by the following: SB202190, a p38 MAPK inhibitor, but not by U0126, a MEK inhibitor; Go6983, a protein kinase C inhibitor; or SP600125, a Jun N-terminal protein kinase inhibitor. Hypotonic stress increased transepithelial electrical resistance, which was inhibited by SB202190. The mRNA expression level of claudin-1 was decreased by hypotonic stress but that of claudin-2 was not. Hypotonic stress decreased the protein stability of claudin-1 and -2. The hypotonicity-induced decrease in claudin expression was inhibited by the following: chloroquine, a lysosome inhibitor; dynasore and monodansylcadaverine, clathrin-dependent endocytosis inhibitors; and siRNA against clathrin heavy chain. Claudin-1 and -2 were mainly distributed in the cytosol and tight junctions (TJs) in the chloroquine- and monodansylcadaverine-treated cells, respectively. Hypotonic stress decreased the phosphorylation levels of claudin-1 and -2, which were inhibited by the protein phosphatase inhibitors okadaic acid and cantharidin. Dephosphorylated mutants of claudin-1 and -2 were mainly distributed in the cytosol, which disappeared in response to hypotonic stress. In contrast, mimicking phosphorylation mutants were distributed in the TJs, which were not decreased by hypotonic stress. We suggest that hypotonic stress induces dephosphorylation, clathrin-dependent endocytosis, and degradation of claudin-1 and -2 in lysosomes, resulting in disruption of the TJ barrier in renal tubular epithelial cells.

  1. Increased crystal-cell interaction in vitro under co-culture of renal tubular cells and adipocytes by in vitro co-culture paracrine systems simulating metabolic syndrome.

    PubMed

    Ichikawa, Jun; Okada, Atsushi; Taguchi, Kazumi; Fujii, Yasuhiro; Zuo, Li; Niimi, Kazuhiro; Hamamoto, Shuzo; Kubota, Yasue; Umemoto, Yukihiro; Itoh, Yasunori; Yasui, Takahiro; Kawai, Noriyasu; Tozawa, Keiichi; Kohri, Kenjiro

    2014-02-01

    We established an experimental co-culture system for renal tubular cells and adipocytes to investigate kidney stone formation mechanisms under metabolic syndrome (MetS) conditions and examined the interaction between these cells morphologically and genetically. M-1s and 3T3-L1s were cultured individually (control, CON), with 24-h culture media from each cell type added to the other cell type (replacement, RP) in 2-layer co-culture dishes for 24 h (transwell, TW). M-1s were then exposed to calcium oxalate monohydrate (COM) crystals, and attached (14)C-labeled COM crystals were quantified. Expression of kidney stone- and adipocyte-related genes was analyzed. The radioactivity of adherent COM crystals significantly increased in TW and was relatively higher in RP compared to CON. M-1s demonstrated significant upregulation of adiponectin (Adipoq) in RP and secreted phosphoprotein 1 (Spp1) in TW compared to CON before COM crystal exposure, and significant downregulation of Spp1 in TW and upregulation of tumor necrosis factor (Tnf), interleukin 6 (Il-6), and chemokine (C-C motif) ligand 2 (Ccl2) compared to CON after COM crystal exposure. 3T3-L1s showed significant upregulation of Spp1, Adipoq, Tnf-α, and Ccl2 compared to CON. Enzyme-linked immunosorbent assays of co-culture medium revealed significantly increased TNF-α in TW. Our results highlight the potential for paracrine interactions between renal tubular cells and adipocytes and suggest that MetS conditions may lead to kidney stone formation.

  2. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP-12.

    PubMed

    Hirsch, H H; Yakhontova, K; Lu, M; Manzetti, J

    2016-03-01

    BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV-specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)- and calcineurin-inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR-SP6-kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC-1 kinase inhibitor torin-1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP-12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP-12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation.

  3. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP‐12

    PubMed Central

    Yakhontova, K.; Lu, M.; Manzetti, J.

    2015-01-01

    BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV‐specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)‐ and calcineurin‐inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR–SP6‐kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC‐1 kinase inhibitor torin‐1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP‐12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP‐12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation. PMID:26639422

  4. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells.

    PubMed

    Liu, Xiujuan; Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2016-02-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial-mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis.

  5. Role of the glomerular-tubular imbalance with tubular predominance in the arterial hypertension pathophysiology.

    PubMed

    Fox, María Ofelia Barber; Gutiérrez, Ernesto Barber

    2013-09-01

    In previous investigations we caused renal tubular reabsorption preponderance relating to the glomerular filtration (Glomerular-tubular imbalance) and we observed that this fact conducted to volume expansion and development of arterial hypertension, in rats that previously were normotens. We based on this evidence and other which are reflected in the literature arrived at the following hypothesis: a greater proportion of tubular reabsorption relating to the filtered volume is the base of the establishment of the glomerular-tubular imbalance with tubular predominance (GTI-T), which favors to the Na(+)-fluid retention and volume expansion. All of which conduced to arterial hypertension. These facts explain a primary hypertensive role of the kidney, consistent with the results of renal transplants performed in different lines of hypertensive rats and their respective controls and in humans: hypertension can be transferred with the kidney. GTI-T aims to be, a common phenomenon involved in the hypertension development in the multiple ways which is manifested the hypertensive syndrome. In secondary hypertension, GTI-T is caused by significant disruptions of hormone secretions that control renal function, or obvious vascular or parenchymal damage of these organs. In primary hypertension the GTI-T has less obvious causes inherently developed in the kidney, including humoral, cellular and subcellular mechanisms, which may insidiously manifest under environmental factors influence, resulting in insidious development of hypertension. This would explain the state of prehypertension that these individuals suffer. So it has great importance to study GTI-T before the hypertension is established, because when hypertensive state is established, other mechanisms are installed and they contribute to maintain the hypertension. Our hypothesis may explaining the inability of the kidneys to excrete salt and water in hypertension, as Guyton and colleagues have expressed and constitutes a

  6. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  7. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    SciTech Connect

    Bridges, Christy C. Zalups, Rudolfs K.; Joshee, Lucy

    2015-06-01

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.

  8. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury

    PubMed Central

    Pressly, Jeffrey D.; Hama, Taketsugu; Brien, Shannon O’; Regner, Kevin R.; Park, Frank

    2017-01-01

    Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia‐reperfusion injury (IRI), a common type of renal stressor. In Trip13Gt/Gthypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co‐factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death. PMID:28256593

  9. Protective effects of salusin-α and salusin-β on renal ischemia/reperfusion damage and their levels in ischemic acute renal failure.

    PubMed

    Cakir, M; Duzova, H; Taslidere, A; Orhan, G; Ozyalin, F

    2017-01-01

    Salusin-α and salusin-β are expressed in many tissues including the central nervous system, vessels and kidneys; they have been shown to decrease endoplasmic reticulum stress during heart ischemia/reperfusion (I/R) and to decrease apoptosis. We investigated the relation of salusin-α and salusin-β levels to acute ischemic renal failure. We also investigated whether these peptides are protective against renal I/R damage. Fifty-three rats were divided into six groups: control, I/R, I/R + salusin-α1, I/R + salusin-α10, I/R + salusin-β1 and I/R + salusin-β10. After removing the right kidney, the left kidney was subjected to ischemia for 1 h and reperfusion for 23 h. The treatment groups were injected subcutaneously at the beginning of ischemia with 1 or 10 μg/kg salusin-α, and 1 or 10 μg/kg salusin-β. Histopathology was assessed at the end of the experiment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) levels were measured in the kidney tissue. Serum levels of blood urea nitrogen (BUN), creatinine (Cre), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) also were measured. Levels of salusin-α and salusin-β were measured in the serum and kidney tissues of the control and I/R groups. SOD, CAT and GSH-PX activities were decreased and the levels of MDA, TNF-α, IL-6, IL-1β, BUN and Cre were increased in the I/R group compared to controls. Severe glomerular and tubular damage was apparent in the I/R group compared to controls. The level of salusin-β was decreased in the serum and kidney tissue of the I/R group compared to controls, whereas the level of salusin-α was decreased in the serum and increased in the kidney tissue. Salusin-α and salusin-β administration increased SOD and GSH-PX enzyme activation and decreased the levels of MDA, TNF-α, IL-6 and IL-1β compared to the I/R group. BUN and Cre levels were decreased in the I/R + salusin-α1 group

  10. Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells.

    PubMed

    Guo, Yunshan; Li, Zhen; Ding, Raohai; Li, Hongdong; Zhang, Lei; Yuan, Weijie; Wang, Yanxia

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogenesis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induced EMT in human renal proximal tubular cells (HK-2 cells) and to determine the profile of gene expression associated with PTH-induced EMT. PTH could induce morphological changes and gene expression characteristic of EMT in cultured HK-2 cells. Suppressing β-catenin expression or DKK1 limited gene expression characteristic of PTH-induced EMT. Based on the PCR array analysis, PTH treatment resulted in the up-regulation of 18 genes and down-regulation of 9 genes compared with the control. The results were further supported by a western blot analysis, which showed the increased Wnt4 protein expression. Wnt4 overexpression also promotes PTH-induced EMT in HK-2 cells. The findings demonstrated that PTH-induced EMT in HK-2 cells is mediated by Wnt/β-catenin signal pathway, and Wnt4 might be a key gene during PTH-induced EMT.

  11. Effect of 1,25(OH)2D3 on transdifferentiation of rat renal tubular epithelial cells induced by high glucose

    PubMed Central

    Hu, Hongtao; Xu, Shen; Hu, Shuang; Gao, Yue; Shui, Hua

    2016-01-01

    Deficiency in vitamin D and its active metabolite is a characteristic of chronic kidney diseases (CKDs). Previous studies have reported that 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, can attenuate renal interstitial fibrosis. The present study aimed to explore the effect of 1,25(OH)2D3 on the transdifferentiation of NRK-52E rat renal tubular epithelial cells (RTECs) induced by high glucose, as well as the expression of vitamin D receptor (VDR) and production of angiotensin (Ang) II. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were performed to detect the protein and mRNA expression of α-smooth muscle actin (α-SMA), E-cadherin and VDR. Furthermore, the production of Ang II was analyzed by enzyme-linked immunosorbent assay (ELISA). Treatment with high glucose decreased E-cadherin and VDR, while increasing α-SMA and Ang II, and of note, these changes were attenuated by 1,25(OH)2D3 in a dose-dependent manner. In conclusion, the present study revealed that 1,25(OH)2D3 inhibits high glucose-induced transdifferentiation of rat RTECs in a dose-dependent manner, which may be associated with the downregulation of Ang II and upregulation of VDR. PMID:28101343

  12. Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation

    PubMed Central

    Forschbach, V; Goppelt-Struebe, M; Kunzelmann, K; Schreiber, R; Piedagnel, R; Kraus, A; Eckardt, K-U; Buchholz, B

    2015-01-01

    Primary cilia are antenna-like structures projected from the apical surface of various mammalian cells including renal tubular cells. Functional or structural defects of the cilium lead to systemic disorders comprising polycystic kidneys as a key feature. Here we show that anoctamin 6 (ANO6), a member of the anoctamin chloride channel family, is localized in the primary cilium of renal epithelial cells in vitro and in vivo. ANO6 was not essential for cilia formation and had no effect on in vitro cyst expansion. However, knockdown of ANO6 impaired cyst lumen formation of MDCK cells in three-dimensional culture. In the absence of ANO6, apoptosis was reduced and epithelial cells were incompletely removed from the center of cell aggregates, which form in the early phase of cystogenesis. In line with these data, we show that ANO6 is highly expressed in apoptotic cyst epithelial cells of human polycystic kidneys. These data identify ANO6 as a cilium-associated protein and suggest its functional relevance in cyst formation. PMID:26448322

  13. Iron-restricted pair-feeding affects renal damage in rats with chronic kidney disease

    PubMed Central

    Naito, Yoshiro; Senchi, Aya; Sawada, Hisashi; Oboshi, Makiko; Horimatsu, Tetsuo; Okuno, Keisuke; Yasumura, Seiki; Ishihara, Masaharu; Masuyama, Tohru

    2017-01-01

    Background We have previously shown that dietary iron restriction prevents the development of renal damage in a rat model of chronic kidney disease (CKD). However, iron deficiency is associated with appetite loss. In addition, calorie restriction is reported to prevent the development of end-stage renal pathology in CKD rats. Thus, the beneficial effect of iron restriction on renal damage may depend on calorie restriction. Here, we investigate the effect of pair-feeding iron restriction on renal damage in a rat model of CKD. Methods First, to determine the amount of food intake, Sprague-Dawley (SD) rats were randomly given an ad libitum normal diet or an iron-restricted diet, and the food intake was measured. Second, CKD was induced by a 5/6 nephrectomy in SD rats, and CKD rats were given either a pair-feeding normal or iron-restricted diet. Results Food intake was reduced in the iron-restricted diet group compared to the normal diet group of SD rats for 16 weeks (mean food intake; normal diet group and iron-restricted diet group: 25 and 20 g/day, respectively). Based on the initial experiments, CKD rats received either a pair-feeding normal or iron-restricted diet (20 g/day) for 16 weeks. Importantly, pair-feeding iron restriction prevented the development of proteinuria, glomerulosclerosis, and tubulointerstitial damage in CKD rats. Interestingly, pair-feeding iron restriction attenuated renal expression of nuclear mineralocorticoid receptor in CKD rats. Conclusions Pair-feeding iron restriction affected renal damage in a rat model of CKD. PMID:28196143

  14. Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells.

    PubMed

    Sakamoto, Yuya; Yano, Takahisa; Hanada, Yuki; Takeshita, Aki; Inagaki, Fumika; Masuda, Satohiro; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2017-04-05

    Vancomycin (VCM) is a first-line antibiotic for serious infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is one of the most complaint in VCM therapy. We previously reported that VCM induced apoptosis in a porcine proximal tubular epithelial cell line (LLC-PK1), in which mitochondrial complex I may generate superoxide, leading to cell death. In the present study, VCM caused production of mitochondrial reactive oxygen species and peroxidation of the mitochondrial phospholipid cardiolipin that was reversed by administration of the mitochondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). FCCP also significantly suppressed VCM-induced depolarization of the mitochondrial membrane and apoptosis. Moreover, the lipophilic antioxidant vitamin E and a mitochondria-targeted antioxidant, mitoTEMPO, also significantly suppressed VCM-induced depolarization of mitochondrial membrane and apoptosis, whereas vitamin C, n-acetyl cysteine, or glutathione did not provide significant protection. These findings suggest that peroxidation of the mitochondrial membrane cardiolipin mediated the VCM-induced production of intracellular reactive oxygen species and initiation of apoptosis in LLC-PK1 cells. Furthermore, regulation of mitochondrial function using a mitochondria-targeted antioxidant, such as mitoTEMPO, may constitute a potential strategy for mitigation of VCM-induced proximal tubular epithelial cell injury.

  15. Clinical and pathological analysis of renal damage in elderly patients with type 2 diabetes mellitus.

    PubMed

    Yan, Shuang-Tong; Liu, Jun-Yan; Tian, Hui; Li, Chun-Lin; Li, Jian; Shao, Ying-Hong; Shi, Huai-Yin; Liu, Yu; Gong, Yan-Ping; Fang, Fu-Sheng; Sun, Ban-Ruo

    2016-08-01

    The aim of this study was to investigate the causes and influential factors of renal damage in elderly patients with type 2 diabetes mellitus (T2DM). Clinical data and pathological findings at autopsy of 161 elderly T2DM patients died between October 1994 and August 2011 were retrospectively reviewed. The mean age of these patients was 80.8 ± 8.3 years (range 60-105 years). The incidences of diabetic nephropathy (DN), non-diabetic renal diseases (NDRD), and DN complicated with NDRD were 31.1, 62.7, and 16.2 %, respectively. In patients with NDRD, the incidence of hypertensive renal damage (HRD) was 54.7 %. In the factors causing renal damage, DN and NDRD accounted for 1/3 and 2/3, respectively. HRD accounted for the largest proportion of NDRD. Blood pressure control may provide additional benefits for elderly T2DM patients by preventing and delaying the occurrence and development of renal disease.

  16. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    PubMed

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  17. Elimination of etimicin in rat kidneys and alterations of its cytotoxicity to tubular epithelial cells.

    PubMed

    Li, Z-D; Zhang, X-L; Yi, N; Zhang, F-C

    2015-05-01

    Etimicin (ETM) can accumulate in kidneys and cause tubular epithelial cell cytotoxicity. This article aims to study ETM elimination in kidneys and its nephrotoxicity, apoptosis, and histopathological insults of renal tubular epithelial cells, after repeated administration. A total of 36 rats were randomly divided into ETM-treated group and vehicle control group. Rats in ETM-treated group were treated intraperitoneally (i.p.) with 100 mg/kg/day ETM and rats in control group received physiological saline (i.p.) for 5 consecutive days. Determination of ETM concentrations accumulated in rat kidneys was carried out by high-performance liquid chromatography on the basis of derivatization with o-phthalaldehyde and by ultraviolet detector. Apoptotic renal tubular epithelial cells were identified by a terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Histopathological insults in kidneys were evaluated by hematoxylin and eosin staining. On day 1 after cessation of ETM administration, the accumulation concentration was 347.50 ± 193.30 μg/g tissue; on day 15, ETM concentration became 16.71 ± 9.99 μg/g tissue. Elimination half-life of ETM in rat kidney was about 3.05 days. Apoptotic renal tubular epithelial cells induced by etimicin was recovered gradually from 1544 ± 138 n/mm(2) on day 1 to 716 ± 208 n/mm(2) on day 15. Histopathological damage was also gradually recovered from vacuolation of tubular epithelial cells as well as renal tubular edema on days 1, 3, and 7 to nearly normal on day 15. From these results, we concluded that renal tubular epithelial cell cytotoxicity induced by ETM can gradually restore with its decreasing concentration in rat kidneys.

  18. Increased concentration of serum TNF alpha and its correlations with arterial blood pressure and indices of renal damage in dogs infected with Babesia canis.

    PubMed

    Zygner, Wojciech; Gójska-Zygner, Olga; Bąska, Piotr; Długosz, Ewa

    2014-04-01

    Canine babesiosis is a tick-borne disease caused by parasites of the genus Babesia. Tumour necrosis factor alpha (TNF-α) is a cytokine that plays a role in the pathogenesis of canine babesiosis. In this study, the authors determined the concentration of serum TNF-α in 11 dogs infected with Babesia canis and calculated Spearman's rank correlations between the concentration of TNF-α and blood pressure, and between TNF-α and indices of renal damage such as: fractional excretion of sodium (FE(Na(+))), urinary creatinine to serum creatinine ratio (UCr/SCr), renal failure index (RFI), urine specific gravity (USG) and urinary protein to urinary creatinine ratio (UPC). The results demonstrated statistically significant strong negative correlations between TNF-α and systolic arterial pressure (r = -0.7246), diastolic arterial pressure (r = -0.6642) and mean arterial pressure (r = -0.7151). Serum TNF-α concentration was also statistically significantly correlated with FE(Na(+)) (r = 0.7056), UCr/SCr (r = -0.8199), USG (r = -0.8075) and duration of the disease (r = 0.6767). The results of this study show there is an increase of serum TNF-α concentration during canine babesiosis, and the increased TNF-α concentration has an influence on the development of hypotension and renal failure in canine babesiosis. This probably results from the fact that TNF-α is involved in the production of nitric oxide and induction of vasodilation and hypotension, which may cause renal ischaemia and hypoxia, and finally acute tubular necrosis and renal failure.

  19. Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation.

    PubMed

    Sun, Huaibin; Tian, Jun; Xian, Wanhua; Xie, Tingting; Yang, Xiangdong

    2015-10-01

    As one of the most important long-term complications of diabetes, diabetic nephropathy (DN) is the major cause of end-stage renal disease and high mortality in diabetic patients. The long pentraxin 3 (Ptx3) is a member of a superfamily of conserved proteins characterized by a cyclic multimeric structure and a conserved C-terminal domain. Several clinical investigations have demonstrated that elevated plasma Ptx3 levels are associated with cardiovascular and chronic kidney diseases (CKD). However, the therapeutic effect of Ptx3 on DN has never been investigated. In our current study, we showed a crucial role for Ptx3 in attenuating renal damage in DN. In our mouse hyperglycemia-induced nephropathy model, Ptx3 treatment showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with control. The number of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils, and CD11b(+) macrophages were all significantly lower in the Ptx3-treated group than that in the control group in DN. The IL-4 and IL-13 levels in the Ptx3-treated group were markedly higher than that in the control group in DN. Correspondingly, the Ptx3-treated group showed increased numbers of Arg1- or CD206-expressing macrophages compared with the control group. Furthermore, inhibition of Ptx3-treated macrophages abrogated the alleviated renal damage induced by Ptx3 treatment. In conclusion, Ptx3 attenuates renal damage in DN by promoting M2 macrophage differentiation.

  20. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  1. Antioxidant Activity of Tocotrienol Rich Fraction Prevents Fenitrothion-induced Renal Damage in Rats

    PubMed Central

    Budin, Siti Balkis; Han, Kim Jit; Jayusman, Putri Ayu; Taib, Izatus Shima; Ghazali, Ahmad Rohi; Mohamed, Jamaludin

    2013-01-01

    Fenitrothion (FNT) is an organophosphate compound widely used as pesticide in Malaysia. The present study aims to investigate effects of palm oil tocotrienol rich fraction (TRF) on the renal damage of FNT-treated rats. A total of 40 male Sprague Dawley rats were divided into 4 groups randomly, the control, TRF, FNT and FNT+TRF groups. FNT (20 mg/kg b.w.) and TRF (200 mg/kg b.w.) were given orally for 28 days continuously. Rats from the FNT+TRF group were supplemented with TRF 30 minutes prior to administration of FNT. Rats were sacrificed after 28 days, and the kidneys were removed for determination of oxidative stress and histological analysis. Plasma was collected for determination of blood creatinine and urea level. Statistical analysis showed that palm oil TRF has a protective effect against renal oxidative damage induced by FNT. In the FNT+TRF group, malondialdehyde and protein carbonyl levels were significantly lower, while the glutathione level as well as superoxide dismutase and catalase activities were significantly higher compared with the FNT-treated group (p<0.05). As for renal function, there was a markedly lower urea level (p<0.05) in the FNT+TRF group compared with the FNT-treated group, but there was no significant difference in creatinine level. Besides, total protein also showed no significant difference for all groups of rats (p>0.05). Histological evaluation also revealed that the FNT+TRF group had less glomerulus and renal tubule damage than the FNT-treated group. In conclusion, palm oil TRF was able to reduce oxidative stress and renal damage in FNT-treated rats. PMID:23914053

  2. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

    PubMed

    Lee, Wen-Chin; Chiu, Chien-Hua; Chen, Jin-Bor; Chen, Chiu-Hua; Chang, Hsueh-Wei

    2016-11-01

    The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (<13%). High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.

  3. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.

    PubMed

    Baek, Su Mi; Kwon, Chae Hwa; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun

    2003-09-01

    Reactive oxygen species (ROS) have been suggested as important mediators of cisplatin-induced acute renal failure in vivo. However, our previous studies have shown that cisplatin-induced cell death in vitro could not be prevented by scavengers of hydrogen peroxide and hydroxyl radical in rabbit renal cortical slices. This discrepancy may be attributed to differential roles of ROS in necrotic and apoptotic cell death. We therefore examined, in this study, the roles of ROS in necrosis and apoptosis induced by cisplatin in primary cultured rabbit proximal tubule. Cisplatin induced necrosis at high concentrations over a few hours and apoptosis at much lower concentrations over longer periods. Necrosis induced by high concentration of cisplatin was prevented by a cell-permeable superoxide scavenger (tiron), hydrogen peroxide scavengers (catalase and pyruvate), and antioxidants (Trolox and deferoxamine), whereas hydroxyl radical scavengers (dimethythiourea and thiourea) did not affect the cisplatin-induced necrosis. However, apoptosis induced by lower concentration of cisplatin was partially prevented by tiron and hydroxyl radical scavengers but not by hydrogen peroxide scavengers and antioxidants. Cisplatin-induced apoptosis was mediated by the signaling pathway that is associated with cytochrome c release from mitochondria and caspase-3 activation. These effects were prevented by tiron and dimethylthiourea but not by catalase. Dimethylthiourea produced a significant protection against cisplatin-induced acute renal failure, and the effect was associated with an inhibition of apoptosis. These results suggest that hydrogen peroxide is involved in the cisplatin-induced necrosis, whereas hydroxyl radical is responsible for the cisplatin-induced apoptosis. The protective effects of hydroxyl radical scavengers are associated with an inhibition of cytochrome c release and caspase activation.

  4. Renal function assessment in heart failure.

    PubMed

    Pérez Calvo, J I; Josa Laorden, C; Giménez López, I

    2017-03-01

    Renal function is one of the most consistent prognostic determinants in heart failure. The prognostic information it provides is independent of the ejection fraction and functional status. This article reviews the various renal function assessment measures, with special emphasis on the fact that the patient's clinical situation and response to the heart failure treatment should be considered for the correct interpretation of the results. Finally, we review the literature on the performance of tubular damage biomarkers.

  5. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss.

    PubMed

    Stover, E H; Borthwick, K J; Bavalia, C; Eady, N; Fritz, D M; Rungroj, N; Giersch, A B S; Morton, C C; Axon, P R; Akil, I; Al-Sabban, E A; Baguley, D M; Bianca, S; Bakkaloglu, A; Bircan, Z; Chauveau, D; Clermont, M-J; Guala, A; Hulton, S A; Kroes, H; Li Volti, G; Mir, S; Mocan, H; Nayir, A; Ozen, S; Rodriguez Soriano, J; Sanjad, S A; Tasic, V; Taylor, C M; Topaloglu, R; Smith, A N; Karet, F E

    2002-11-01

    Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mutations in genes encoding two different subunits of the renal alpha-intercalated cell's apical H(+)-ATPase that cause rdRTA. Defects in the B1 subunit gene ATP6V1B1, and the a4 subunit gene ATP6V0A4, cause rdRTA with deafness and with preserved hearing, respectively. We have investigated 26 new rdRTA kindreds, of which 23 are consanguineous. Linkage analysis of seven novel SNPs and five polymorphic markers in, and tightly linked to, ATP6V1B1 and ATP6V0A4 suggested that four families do not link to either locus, providing strong evidence for additional genetic heterogeneity. In ATP6V1B1, one novel and five previously reported mutations were found in 10 kindreds. In 12 ATP6V0A4 kindreds, seven of 10 mutations were novel. A further nine novel ATP6V0A4 mutations were found in "sporadic" cases. The previously reported association between ATP6V1B1 defects and severe hearing loss in childhood was maintained. However, several patients with ATP6V0A4 mutations have developed hearing loss, usually in young adulthood. We show here that ATP6V0A4 is expressed within the human inner ear. These findings provide further evidence for genetic heterogeneity in rdRTA, extend the spectrum of disease causing mutations in ATP6V1B1 and ATP6V0A4, and show ATP6V0A4 expression within the cochlea for the first time.

  6. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss

    PubMed Central

    Stover, E; Borthwick, K; Bavalia, C; Eady, N; Fritz, D; Rungroj, N; Giersch, A; Morton, C; Axon, P; Akil, I; Al-Sabban, E; Baguley, D; Bianca, S; Bakkaloglu, A; Bircan, Z; Chauveau, D; Clermont, M; Guala, A; Hulton, S; Kroes, H; Li, V; Mir, S; Mocan, H; Nayir, A; Ozen, S; Rodriguez, S; Sanjad, S; Tasic, V; Taylor, C; Topaloglu, R; Smith, A; Karet, F

    2002-01-01

    Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mutations in genes encoding two different subunits of the renal α-intercalated cell's apical H+-ATPase that cause rdRTA. Defects in the B1 subunit gene ATP6V1B1, and the a4 subunit gene ATP6V0A4, cause rdRTA with deafness and with preserved hearing, respectively. We have investigated 26 new rdRTA kindreds, of which 23 are consanguineous. Linkage analysis of seven novel SNPs and five polymorphic markers in, and tightly linked to, ATP6V1B1 and ATP6V0A4 suggested that four families do not link to either locus, providing strong evidence for additional genetic heterogeneity. In ATP6V1B1, one novel and five previously reported mutations were found in 10 kindreds. In 12 ATP6V0A4 kindreds, seven of 10 mutations were novel. A further nine novel ATP6V0A4 mutations were found in "sporadic" cases. The previously reported association between ATP6V1B1 defects and severe hearing loss in childhood was maintained. However, several patients with ATP6V0A4 mutations have developed hearing loss, usually in young adulthood. We show here that ATP6V0A4 is expressed within the human inner ear. These findings provide further evidence for genetic heterogeneity in rdRTA, extend the spectrum of disease causing mutations in ATP6V1B1 and ATP6V0A4, and show ATP6V0A4 expression within the cochlea for the first time. PMID:12414817

  7. TGF-β1 stimulates movement of renal proximal tubular epithelial cells in a three-dimensional cell culture via an autocrine TGF-β2 production.

    PubMed

    Luo, Deyi; Guan, Qiunong; Wang, Kunjie; Nguan, Christopher Y C; Du, Caigan

    2017-01-01

    TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF-β1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF-β1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF-β1stimulation. Knockdown of TGF-β2 expression disrupted TGF-β1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF-β1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9.

  8. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

    PubMed Central

    Radford, Robert; Slattery, Craig; Jennings, Paul; Blacque, Oliver; Pfaller, Walter; Gmuender, Hans; Van Delft, Joost; Ryan, Michael P.

    2012-01-01

    The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO3) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO3 resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO3 exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO3 cause significant deciliation in a model of the proximal tubule. With KBrO3, this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO3 exposure. PMID:22262483

  9. Localization of a Gene for Autosomal Recessive Distal Renal Tubular Acidosis with Normal Hearing (rdRTA2) to 7q33-34

    PubMed Central

    Karet, Fiona E.; Finberg, Karin E.; Nayir, Ahmet; Bakkaloglu, Aysin; Ozen, Seza; Hulton, Sally A.; Sanjad, Sami A.; Al-Sabban, Essam A.; Medina, Juan F.; Lifton, Richard P.

    1999-01-01

    Summary Failure of distal nephrons to excrete excess acid results in the “distal renal tubular acidoses” (dRTA). Early childhood features of autosomal recessive dRTA include severe metabolic acidosis with inappropriately alkaline urine, poor growth, rickets, and renal calcification. Progressive bilateral sensorineural hearing loss (SNHL) is evident in approximately one-third of patients. We have recently identified mutations in ATP6B1, encoding the B-subunit of the collecting-duct apical proton pump, as a cause of recessive dRTA with SNHL. We now report the results of genetic analysis of 13 kindreds with recessive dRTA and normal hearing. Analysis of linkage and molecular examination of ATP6B1 indicated that mutation in ATP6B1 rarely, if ever, accounts for this phenotype, prompting a genomewide linkage search for loci underlying this trait. The results strongly supported linkage with locus heterogeneity to a segment of 7q33-34, yielding a maximum multipoint LOD score of 8.84 with 68% of kindreds linked. The LOD-3 support interval defines a 14-cM region flanked by D7S500 and D7S688. That 4 of these 13 kindreds do not support linkage to rdRTA2 and ATP6B1 implies the existence of at least one additional dRTA locus. These findings establish that genes causing recessive dRTA with normal and impaired hearing are different, and they identify, at 7q33-34, a new locus, rdRTA2, for recessive dRTA with normal hearing. PMID:10577919

  10. Assessment of renal function in workers previously exposed to cadmium.

    PubMed Central

    Elinder, C G; Edling, C; Lindberg, E; Kågedal, B; Vesterberg, O

    1985-01-01

    Cadmium induced renal effects were examined in 60 workers (58 men, 2 women) previously exposed to cadmium. Tubular damage in the form of beta 2-microglobulinuria was found in 40%, and urinary albumin and orosomucoid increased significantly with increasing urinary cadmium and increasing relative clearance of beta 2-microglobulin. It is suggested that increased albumin excretion is secondary to the tubular damage. In no case was typical glomerular proteinuria found that could be related to cadmium. Histories of renal stones were more common among the workers with high urinary cadmium concentrations. The glomerular filtration rate was measured in 17 of the workers who had pronounced tubular dysfunction. The average glomerular filtration rate for these men was less than the age adjusted predicted value (mean = 84%). Furthermore, there was a significant (p less than 0.05) correlation (r = -0.47) between tubular reabsorption loss and a decreased glomerular filtration rate. PMID:3904816

  11. Urinary protein excretion profile: A contribution for subclinical renal damage identification among environmental heavy metals exposure in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Garlipp, C. R.; Bottini, P. V.; de Capitan, E. M.; Pinho, M. C.; Panzan, A. D. N.; Sakuma, A. M. A.; Paoliello, M. B.

    2003-05-01

    In Southeast Brazil. Ribeira Valley region has been a major public health concern due to he environmental heavy metals contamination indexes of vegetation, rocks and aquifers, caused by locai mining in the past. Human contamination low levels of heavy rnetals doesn't cause acute intoxication but ni chronic exposure, renal damage may occur with progressive tubuJointerstitial changes evolvil1g to glomemlar 1esiol1, ln this stndy we invesligated the relationship between thc profile of utillan, excreted proteins (glomerular or lubular origin) of arsenic and mercury and blood lead concentration in chiJdren and adults from highly e) qJosed regions of the Ribeira Valley. The subjects were classieed as GROUP 1 (GI; higher environmental risk n=333) and GROUP 2 (G2; lower risk of contamination. n=104). In order to determine the urinary excretion of total protein, albumin (MA, glomerular marker) and alpha i microglobulin (AIM, tubular marker) and the blood lead concentrations. random wine and blood samples were obtaiiied. Plasmatic lead levels were assessed by atomic absorption spectrometty with graphite fumace. Totai protein concentration (PROT) was assessed on a biochemical analyzer ,progallol red method). MA and AIM were determined by nephelometric method. Croup 1 showcd a higher frequency of altered urinary excretion of PROT (GI=3.4%; G2=1.0%), MA (Gl=9.0%; G2=5.1%) and AIM (Gt=7.5%, G2=3.8%), without significant differences between both groups. Elevated arscnic levels were more prevaient among subjects from Group 1 (2.8.8%) and demonstrated a significant corrolation with abiiormal iirinarv excretion of ilbumin and alpha-l-micrglobulin (p=0.019).Leadaand mercury levels showed no difference among the groups and no correlation will MAa and/or M. Oti-c dala suggests that abnormal itrinary protein excretion is relatively frequent in this population independently of the plasmatic or urinaryl heavy metal levels. The early detection of possible renal damage become necessary for

  12. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    PubMed

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  13. Chemically exacerbated chronic progressive nephropathy not associated with renal tubular tumor induction in rats: an evaluation based on 60 carcinogenicity studies by the national toxicology program.

    PubMed

    Melnick, Ronald L; Burns, Kathleen M; Ward, Jerrold M; Huff, James

    2012-08-01

    Chronic progressive nephropathy (CPN) is a common age-related degenerative-regenerative disease of the kidney that occurs in both sexes of most strains of rats. Recently, claims have been made that enhanced CPN is a mode of action for chemically induced kidney tumors in male rats and that renal tubular tumors (RTTs) induced by chemicals that concomitantly exacerbate CPN are not relevant for human cancer risk assessments. Although CPN is an observable histopathological lesion that may be modified by diet, the etiology of this disease and the mechanisms for its exacerbation by chemicals are unknown, and it fails to meet fundamental principles for defining carcinogenic modes of action and human relevance. Our comprehensive evaluation of possible relationships between exacerbated CPN and induction of RTTs in 58 carcinogenicity studies, conducted by the National Toxicology Program, in male and 11 studies in female F344 rats using 60 chemicals revealed widespread inconsistency in the claimed association. Because the proposed hypothesis lacks evidence of biological plausibility, and due to inconsistent relationships between exacerbated CPN and kidney tumor incidence in carcinogenicity studies in rats, dismissing the human relevance of kidney tumors induced by chemicals that also exacerbate CPN in rats would be wrong.

  14. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells.

    PubMed

    Huang, Jau-Shyang; Lee, Ying-Ho; Chuang, Lea-Yea; Guh, Jinn-Yuh; Hwang, Jean-Yu

    2015-06-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. It possesses anti-diabetic properties in vitro and in vivo and has anti-inflammatory and anti-cancer effects. To explore whether cinnamaldehyde was linked to altered advanced glycation end products (AGE)-mediated diabetic nephropathy, the molecular mechanisms of cinnamaldehyde responsible for inhibition of AGE-reduced nitric oxide (NO) bioactivity in human renal proximal tubular cells were examined. We found that raising the ambient AGE concentration causes a dose-dependent decrease in NO generation. Cinnamaldehyde significantly reverses AGE-inhibited NO generation and induces high levels of cGMP synthesis and PKG activation. Treatments with cinnamaldehyde, the NO donor S-nitroso-N-acetylpenicillamine, and the JAK2 inhibitor AG490 markedly attenuated AGE-inhibited NOS protein levels and NO generation. Moreover, AGE-induced the JAK2-STAT1/STAT3 activation, RAGE/p27(Kip1) /collagen IV protein levels, and cellular hypertrophy were reversed by cinnamaldehyde. The ability of cinnamaldehyde to suppress STAT activation was also verified by the observation that it significantly increased SCOS-3 protein level. These findings indicate for the first time that in the presence of cinnamaldehyde, the suppression of AGE-induced biological responses is probably mediated by inactivating the JAK2-STAT1/STAT3 cascade or activating the NO pathway.

  15. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule

    PubMed Central

    Hennings, J Christopher; Picard, Nicolas; Huebner, Antje K; Stauber, Tobias; Maier, Hannes; Brown, Dennis; Jentsch, Thomas J; Vargas-Poussou, Rosa; Eladari, Dominique; Hübner, Christian A

    2012-01-01

    The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms. PMID:22933323

  16. Immunohistochemical localization of galectins-1 and -3 and monitoring of tissue galectin-binding sites during tubular regeneration after renal ischemia reperfusion in the rat.

    PubMed

    Vansthertem, David; Cludts, Stéphanie; Nonclercq, Denis; Gossiaux, Annabel; Saussez, Sven; Legrand, Alexandre; Gabius, Hans-Joachim; Toubeau, Gérard

    2010-11-01

    Endogenous lectins act as effectors of cellular activities such as growth regulation, migration and adhesion. In this study, we report the histochemical detection of galectins and their binding sites in rat kidneys after ischemic injury (35 min) with regard to renal regeneration. In this context, we have shown in a previous publication (Vansthertem et al., 2008) that extrarenal cells (CD44+, vimentin +) could be involved in this process of tubular restoration. In controls, galectin-1 is expressed by fusiform-shaped cells within cortical and medullar interstitium. Two days after ischemia, the number of positive interstitial cells increased temporarily within OSOM in the vicinity of altered tubules to later reach control level. After ischemia, we identified a population of galectin-3 (+), CD44 (+), and vimentin (+) interstitial round cells located in the outer stripe of outer medulla (OSOM) in the vicinity of necrotic tubules, but also in the lumen of adjacent blood vessels. The immunocytochemical characteristics of theses cells, along with their distribution within OSOM, suggest the involvement of a unique cell population during kidney regeneration. On the other hand, the distribution and density of binding sites for galectins within OSOM were not modified after ischemia and remained similar to controls. Altogether, our observations suggest that galectin-3 may be involved in the complex process of kidney regeneration following ischemia/reperfusion injury.

  17. A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature.

    PubMed

    Ozkaya, Ozan; Genc, Gurkan; Bek, Kenan; Sullu, Yurdanur

    2010-01-01

    Acetaminophen (paracetamol) is a widely used drug and known as a safety antipyretic and analgesic drug in childhood. Acetaminophen-associated liver damage is more recognized than kidney damage. Nephrotoxicity and hepatotoxicity can be seen together after acetaminophen overdose, but renal damage without liver damage is a rarely seen entity in all age groups being reported more rarely in childhood. We present here a 16-year-old girl with renal failure without liver damage because of acetaminophen toxicity and a review of literature for pathophysiological mechanisms, clinical course, treatment, and outcome.

  18. Abnormalities of sodium excretion and other disorders of renal function in fulminant hepatic failure.

    PubMed Central

    Wilkinson, S P; Arroyo, V A; Moodie, H; Blendis, L M; Williams, R

    1976-01-01

    Renal function was evaluated in 40 patients with fulminant hepatic failure, They were divided into two groups on the basis of glomerular filtration rates greater than 40 ml/min or less than 25 ml/min. A number of patients in group 1 had markedly abnormal renal retention of sodium together with a reduced free water clearance and low potassium excretion which could be explained by increased proximal tubular reabsorption of sodium. The patients in group 2 had evidence that renal tubular integrity was maintained when the glomerular filtration rate was greater than or equal ml/min (functional renal failure), but evidence of tubular damage was present when this was less than 3 ml/min (acute tubular necrosis). PMID:964682

  19. A review of the impact of oxidative stress and some antioxidant therapies on renal damage.

    PubMed

    Tamay-Cach, F; Quintana-Pérez, J C; Trujillo-Ferrara, J G; Cuevas-Hernández, R I; Del Valle-Mondragón, L; García-Trejo, E M; Arellano-Mendoza, M G

    2016-01-01

    An increase in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to complications during chronic kidney disease (CKD). This increase essentially derives from the impairment of natural antioxidant systems of the organism. The resulting oxidative stress produces damage to kidney tissue, especially by affecting nephrons and more generally by disrupting the function and structure of the glomerulus and interstitial tubule. This leads to a rapid decline in the condition of the patient and finally renal failure. Possible causes of kidney tissue damage are explored, as are different therapies, especially those related to the administration of antioxidants.

  20. Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway.

    PubMed

    Fang, Yu-Wei; Yang, Sung-Sen; Cheng, Chih-Jen; Tseng, Min-Hua; Hsu, Hui-Min; Lin, Shih-Hua

    2016-01-05

    The mechanism by which chronic metabolic acidosis (CMA) regulates sodium (Na(+))-chloride (Cl(-)) cotransporter (NCC) in the renal distal convoluted tubules remains unexplored. We examined the role of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and with-no-lysine kinase 4 (WNK4) on expression of NCC in mouse models of CMA. CMA was induced by NH4Cl in wild type mice (WTA mice), SPAK, and WNK4 knockout mice. The quantities of Ncc mRNA, expression of total NCC, phosphorylated (p)-NCC, SPAK and WNK4 in the kidneys as well as NCC inhibition with hydrochlorothiazide and Na(+) balance were evaluated. Relative to WT mice, WTA mice had similar levels of Ncc mRNA, but increased expression of total and p-NCC, SPAK, and WNK4 and an exaggerated response to hydrochlorothiazide which could not be observed in SPAK or WNK4 knockout mice with CMA. In WTA mice, increased plasma renin activity, aldosterone and angiotensin II concentrations accompanied by a significantly negative Na(+) balance. High Na(+) diet abolished the enhanced NCC expression in WTA mice. Furthermore, an angiotensin II type 1 receptor blocker rather than a mineralocorticoid receptor antagonist exerted a marked inhibition on Na(+) reabsorption and NCC phosphorylation in WTA mice. CMA increases WNK4-SPAK-dependent NCC phosphorylation and appears to be secondary to previous natriuresis with volume-dependent angiotensin II activation.

  1. Differential Response of the Human Renal Proximal Tubular Epithelial Cell Line HK-2 to Shiga Toxin Types 1 and 2 ▿

    PubMed Central

    Lentz, Erin K.; Leyva-Illades, Dinorah; Lee, Moo-Seung; Cherla, Rama P.; Tesh, Vernon L.

    2011-01-01

    Shiga toxins (Stxs) are expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as an in vitro model of Stx-induced renal damage. We showed that these cells express abundant membrane Gb3 and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner. PMID:21708996

  2. Urinary Netrin-1: A New Biomarker for the Early Diagnosis of Renal Damage in Obese Children

    PubMed Central

    Övünç Hacıhamdioğlu, Duygu; Hacıhamdioğlu, Bülent; Altun, Demet; Müftüoğlu, Tuba; Karademir, Ferhan; Süleymanoğlu, Selami

    2016-01-01

    Objective: Urinary netrin-1 is a new marker to demonstrate early tubular damage. The aim of this study was to determine whether urinary netrin-1 is increased in obese children. Methods: A total of 68 normoalbuminuric and normotensive obese patients and 65 controls were included in the study. Urine samples were collected for assessment of urinary phosphorus, sodium, potassium, creatinine, albumin, and netrin-1. Blood samples were collected for measurements of fasting glucose, insulin, lipid, phosphorus, sodium, potassium, and creatinine levels. Homeostatic model assessment insulin resistance index was calculated. Results: Gender and age were similar between obese and control groups (12.01±3.03 vs. 11.7±3.2 years, p=0.568 and 33 vs. 35 girls, p=0.543, respectively). Obese patients had significantly higher netrin-1 excretion than the controls (841.68±673.17 vs. 228.94±137.25 pg/mg creatinine, p=0.000). Urinary netrin-1 level was significantly higher in obese subjects with insulin resistance compared to those without insulin resistance (1142±1181 vs. 604.9±589.91 pg/mg creatinine, p=0.001). Conclusion: In normotensive and normoalbuminuric obese children, urinary netrin-1 level can increase before onset of albuminuria. Urinary netrin-1 excretion appears to be affected predominantly by insulin resistance and hyperinsulinemia. Urinary netrin-1 may be a new biomarker for determining early tubular injury in obese children. PMID:27087488

  3. Tubular Dysfunction Mimicking Dent's Disease in 2 Infants Born with Extremely Low Birth Weight

    PubMed Central

    Awazu, Midori; Arai, Mie; Ohashi, Shoko; Takahashi, Hirotaka; Sekine, Takashi; Ikeda, Kazushige

    2017-01-01

    Two preterm infants, with extremely low birth weight born at gestational weeks 24 and 25, showed generalized proximal tubular dysfunction during their stay in the neonatal intensive care unit, including glucosuria, low molecular weight proteinuria, phosphaturia, uricosuria, enzymuria (elevated urine N-acetyl-β-D-glucosaminidase), panaminoaciduria, and hypercalciuria, associated with renal calcification. Renal tubular acidosis was not present in either patient. DNA mutation analysis for Dent's disease, performed in patient 1, was negative. Although both patients had rickets of prematurity, tubular dysfunction persisted after its resolution. Patient 2, who had severe chronic lung disease, also had elevated serum creatinine, proteinuria, and hypertension, suggesting glomerular damage. In patient 1, low molecular weight proteinuria, enzymuria, panaminoaciduria, hypercalciuria, and renal calcification were still present at the age of 8 years. In patient 2, tubular dysfunction resolved except for β2 microglobulinuria at the age of 5 years. While a reduced nephron number resulting in focal segmental glomerulosclerosis is well-known, generalized proximal tubular dysfunction can also occur in infants born preterm and/or with extremely low birth weight. PMID:28203565

  4. Urinary neutrophil gelatinase-associated lipocalin is a potential biomarker for renal damage in patients with systemic lupus erythematosus.

    PubMed

    Yang, Chun-Chen; Hsieh, Song-Chou; Li, Ko-Jen; Wu, Cheng-Han; Lu, Ming-Chi; Tsai, Chang-Youh; Yu, Chia-Li

    2012-01-01

    Neutrophil gelatinase-associated lipocalin (NGAL) has been demonstrated to be a novel biomarker in acute and chronic kidney disease. We hypothesized that 24-hour urinary NGAL excretion may be a predictor for renal damage in patients with systemic lupus erythematosus (SLE). Thirty-four SLE patients with renal involvement (SLE-renal group), 8 SLE patients without renal involvement (SLE-nonrenal group), 14 patients with non-SLE autoimmune diseases (disease control or DC group), and 12 healthy volunteers (normal control or NC group) were compared for 24-hour urinary excretion of NGAL and different cytokines. We found that the 24-hour urinary NGAL excretion in the SLE-renal group was higher than that in the SLE-non-renal, DC, and NC groups. However, the excretion of interleukin-10, transforming growth factor-β1, and tumor necrosis factor-α was not different between the SLE-renal and SLE-non-renal groups. Furthermore, NGAL excretion in the SLE-renal group was correlated with serum creatinine levels and creatinine clearance, but not with the SLE Disease Activity Index score. Multivariate logistic regression analysis and receiver operating characteristic curve analysis revealed that 24-hour urinary NGAL excretion is a potential biomarker for renal damage in SLE patients, with higher sensitivity and specificity than anti-dsDNA antibody titers.

  5. Inhibition of biliverdin reductase increases ANG II-dependent superoxide levels in cultured renal tubular epithelial cells

    PubMed Central

    Young, Shelby C.; Storm, Megan V.; Speed, Joshua S.; Kelsen, Silvia; Tiller, Chelsea V.; Vera, Trinity; Drummond, Heather A.

    2009-01-01

    Induction of heme oxygenase-1 (HO-1) in the renal medulla increases carbon monoxide and bilirubin production and decreases ANG II-mediated superoxide production. The goal of this study was to determine the importance of increases in bilirubin to the antioxidant effects of HO-1 induction in cultured mouse thick ascending loop of Henle (TALH) and inner medullary collecting duct (IMCD3) cells. Bilirubin levels were decreased by using small interfering RNAs (siRNAs) targeted to biliverdin reductase (BVR), which is the cellular enzyme responsible for the conversion of biliverdin to bilirubin. Treatment of cultured TALH or IMCD-3 cells with BVR siRNA (50 or 100 nM) resulted in an 80% decrease in the level of BVR protein and decreased cellular bilirubin levels from 46 ± 5 to 23 ± 4 nM (n = 4). We then determined the effects of inhibition of BVR on ANG II-mediated superoxide production. Superoxide production induced by ANG II (10−9 M) significantly increased in both TALH and IMCD-3 cells. Treatment of TALH cells with BVR siRNA resulted in a significant increase in ouabain-sensitive rubidium uptake from 95 ± 6 to 122 ± 5% control (n = 4, P < 0.05). Lastly, inhibition of BVR with siRNA did not prevent the decrease in superoxide levels observed in cells pretreated with the HO-1 inducer, hemin. We conclude that decreased levels of cellular bilirubin increase ANG II-mediated superoxide production and sodium transport; however, increases in bilirubin are not necessary for HO-1 induction to attenuate ANG II-mediated superoxide production. PMID:19759334

  6. Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis

    PubMed Central

    Al-Lamki, R S; Lu, W; Manalo, P; Wang, J; Warren, A Y; Tolkovsky, A M; Pober, J S; Bradley, J R

    2016-01-01

    We previously reported that renal clear cell carcinoma cells (RCC) express both tumor necrosis factor receptor (TNFR)-1 and -2, but that, in organ culture, a TNF mutein that only engages TNFR1, but not TNFR2, causes extensive cell death. Some RCC died by apoptosis based on detection of cleaved caspase 3 in a minority TUNEL-positive cells but the mechanism of death in the remaining cells was unexplained. Here, we underpin the mechanism of TNFR1-induced cell death in the majority of TUNEL-positive RCC cells, and show that they die by necroptosis. Malignant cells in high-grade tumors displayed threefold to four fold higher expression of both receptor-interacting protein kinase (RIPK)1 and RIPK3 compared with non-tumor kidney tubular epithelium and low-grade tumors, but expression of both enzymes was induced in lower grade tumors in organ culture in response to TNFR1 stimulation. Furthermore, TNFR1 activation induced significant MLKLSer358 and Drp1Ser616 phosphorylation, physical interactions in RCC between RIPK1-RIPK3 and RIPK3-phospho-MLKLSer358, and coincidence of phospho-MLKLser358 and phospho-Drp1Ser616 at mitochondria in TUNEL-positive RCC. A caspase inhibitor only partially reduced the extent of cell death following TNFR1 engagement in RCC cells, whereas three inhibitors, each targeting a different step in the necroptotic pathway, were much more protective. Combined inhibition of caspases and necroptosis provided additive protection, implying that different subsets of cells respond differently to TNF-α, the majority dying by necroptosis. We conclude that most high-grade RCC cells express increased amounts of RIPK1 and RIPK3 and are poised to undergo necroptosis in response to TNFR1 signaling. PMID:27362805

  7. Alisol A 24-Acetate and Alisol B 23-Acetate Induced Autophagy Mediates Apoptosis and Nephrotoxicity in Human Renal Proximal Tubular Cells

    PubMed Central

    Wang, Chunfei; Feng, Liang; Ma, Liang; Chen, Haifeng; Tan, Xiaobin; Hou, Xuefeng; Song, Jie; Cui, Li; Liu, Dan; Chen, Juan; Yang, Nan; Wang, Jing; Liu, Ying; Zhao, Bingjie; Wang, Gang; Zhou, Yuanli; Jia, Xiaobin

    2017-01-01

    Two natural compounds alisol A 24-acetate (24A) and alisol B 23-acetate (23B) are abundant in Rhizoma alismatis. In the present study, we evaluated the induction of 24A and 23B on apoptosis and possible nephrotoxicity of human renal proximal tubular (HK-2) cells by activating autophagy and also explored its regulation on PI3K/Akt/mTOR signaling pathway. Presently, Clusterin, Kim-1, and TFF-3 were considered to be new bioindicators of nephrotoxicity. Interestingly, the protein expression and mRNA levels of Clusterin, Kim-1 and TFF-3 could be significantly increased by 23B and 24A in vivo and in vitro. Furthermore, cell apoptosis could be triggered by 23B and 24A via significantly decreasing the protein expression and mRNA levels of Bcl-2 and Bcl-xl. Autophagy of HK-2 cells could be induced by both 23B and 24A via significantly enhancing the ratio of LC3II/LC3I, the protein expression of Beclin-1 as well as the mRNA levels of LC3 and Beclin-1. Meanwhile, PI3K/Akt/mTOR signaling pathway could be inhibited by these two compounds. An autophagy inhibitor, 3-methyladenine, could partially reverse cell viability and conversely change the ratio of LC3II/LC3I and the protein expression of Bcl-2 and Kim-1. Thus this study helped to understand that 23B and 24A induced autophagy resulted in apoptosis and nephrotoxicity through inhibiting PI3K/Akt/mTOR signaling pathway, facilitating further studies for nephrotoxicity induced by these two compounds and could be beneficial for safe use of Rhizoma alismatis in clinic.

  8. Transient Proteotoxicity of Bacterial Virulence Factor Pyocyanin in Renal Tubular Epithelial Cells Induces ER-Related Vacuolation and Can Be Efficiently Modulated by Iron Chelators

    PubMed Central

    Mossine, Valeri V.; Waters, James K.; Chance, Deborah L.; Mawhinney, Thomas P.

    2016-01-01

    Persistent infections of biofilm forming bacteria, such as Pseudomonas aeruginosa, are common among human populations, due to the bacterial resistance to antibiotics and other adaptation strategies, including release of cytotoxic virulent factors such as pigment pyocyanin (PCN). Urinary tract infections harbor P. aeruginosa strains characterized by the highest PCN-producing capacity, yet no information is available on PCN cytotoxicity mechanism in kidney. We report here that renal tubular epithelial cell (RTEC) line NRK-52E responds to PCN treatments with paraptosis-like activity features. Specifically, PCN-treated cells experienced dilation of endoplasmic reticulum (ER) and an extensive development of ER-derived vacuoles after about 8 h. This process was accompanied with hyper-activation of proteotoxic stress-inducible transcription factors Nrf2, ATF6, and HSF-1. The cells could be rescued by withdrawal of PCN from the culture media before the vacuoles burst and cells die of non-programmed necrosis after about 24–30 h. The paraptosis-like activity was abrogated by co-treatment of the cells with metal-chelating antioxidants. A microscopic examination of cells co-treated with PCN and agents aiming at a variety of the cellular stress mediators and pathways have identified iron as a single most significant co-factor of the PCN cytotoxicity in the RTECs. Among biologically relevant metal ions, low micromolar Fe2+ specifically mediated anaerobic oxidation of glutathione by PCN, but catechol derivatives and other strong iron complexing agents could inhibit the reaction. Our data suggest that iron chelation could be considered as a supplementary treatment in the PCN-positive infections. PMID:27613716

  9. Effect of photobiomodulation on ischemia/reperfusion-induced renal damage in diabetic rats.

    PubMed

    Asghari, Ahmad; Takhtfooladi, Mohammad Ashrafzadeh; Hoseinzadeh, Hesam Aldin

    2016-12-01

    This study was designed to investigate the possible effect of photobiomodulation (PBM) on renal damage induced by ischemia reperfusion (IR) in diabetic rats. Twenty streptozotocin-induced diabetic rats were randomly distributed into two groups, containing ten rats each: IR group (G1) and IR + PBM group (G2). After the right nephrectomy, the ischemia was produced in the left kidney for 30 min, followed by the reperfusion for 24 h. Then, a 685-nm laser diode with an output power of 15 mW (spot size = 0.28 cm(2) and energy density = 3.2 J/cm(2)) was employed. PBM was carried out by irradiating the rats over six points on the skin over the left kidney region three times, i.e., immediately after skin suturing and 1 and 2 h after initiating reperfusion for 6 min. At the end of reperfusion period, the rats were anesthetized, and blood samples were collected and used for the estimation of renal function (blood urea nitrogen (BUN) and creatinine). Then, the left kidney was harvested for histological and biochemical examination. The serum levels of BUN and creatinine were significantly higher in G1 compared to G2 (P < 0.05). G1 had higher renal malondialdehyde (MDA) levels compared to G2 (P < 0.05). Renal IR in diabetic rats (G1) resulted in a significant decrease in renal tissue glutathione (GSH) (P < 0.05) when compared to laser-treated rats (G2). A significant restoration was observed in the levels of superoxide dismutase (SOD) (P < 0.05) and catalase (CAT) (P < 0.05) in G2 as compared to G1. The levels of nitric oxide (NO) were increased in G1 in comparison to G2 (P < 0.05). The myeloperoxidase (MPO) activity was significantly higher in the renal tissue of G1 than that of G2 (P < 0.05). In addition, specimens from the G1 had a significantly greater histological injury than those from the G2 (P < 0.05). The results of present investigation revealed that PBM attenuated kidney damage induced by renal IR in diabetic rats.

  10. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  11. Hypohalous Acids Contribute to Renal Extracellular Matrix Damage in Experimental Diabetes

    PubMed Central

    Brown, Kyle L.; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A.; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G.

    2015-01-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid–derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W28 and W192 are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid–derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes. PMID:25605804

  12. Congenital renal damage associated with primary vesicoureteral reflux detected prenatally in male infants.

    PubMed

    Marra, G; Barbieri, G; Dell'Agnola, C A; Caccamo, M L; Castellani, M R; Assael, B M

    1994-05-01

    To assess the course of vesicoureteral reflux, we performed cystography, renal scintigraphy, and urography in all neonates with the prenatal diagnosis of renal pelvic dilation and revealed the presence of primary reflux (grades I to V) in 27 cases. Higher grades of reflux were associated with congenital renal damage, as shown by reduced tracer uptake during scintigraphy. Reflux was diagnosed more frequently in male infants (male/female ratio, 6:1), in many of whom bladder abnormalities were found by cystography. In another group of seven infants, in whom the reflux was associated with other urologic abnormalities, there was no sex prevalence. We conclude that severe primary reflux associated with hydronephrosis usually affects male infants and may be due to abnormal embryologic development of the male urethra, and that the kidney damage is primary and not the result of urinary tract infections. This pattern differs from that of vesicoureteric reflux diagnosed at an older age, which is observed most commonly in female patients.

  13. Metformin Ameliorates Podocyte Damage by Restoring Renal Tissue Podocalyxin Expression in Type 2 Diabetic Rats

    PubMed Central

    Zhai, Limin; Gu, Junfei; Yang, Di; Wang, Wei; Ye, Shandong

    2015-01-01

    Podocalyxin (PCX) is a signature molecule of the glomerular podocyte and of maintaining integrity of filtration function of glomerulus. The aim of this study was to observe the effect of different doses of metformin on renal tissue PCX expression in type 2 diabetic rats and clarify its protection on glomerular podocytes. Type 2 diabetic Sprague-Dawley (SD) rats in which diabetes was induced by high-fat diet/streptozotocin (HFD-STZ) were treated with different doses of metformin (150, 300, and 500 mg/kg per day, resp.) for 8 weeks. Various biochemical parameters, kidney histopathology, and renal tissue PCX expression levels were examined. In type 2 diabetic rats, severe hyperglycemia and hyperlipidemia were developed. Urinary albumin and PCX were markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, protein and mRNA expression of renal tissue PCX were highly decreased. However, treatment of rats with different doses of metformin restored all these changes to a varying degree. These results suggested that metformin can ameliorate glomerular podocyte damage in type 2 diabetic rats, which may be partly associated with its role in restoring PCX expression and inhibiting urinary excretion of PCX with dose dependence. PMID:26075281

  14. [Chronic occupational mercury exposure in renal damage in workers in the chlorine-alkali electrolysis industry].

    PubMed

    Pranjić, Nurka; Karamehić, Jasenko; Ascerić, Mensura

    2003-01-01

    The authors investigated renal damage in 46 chlorine-alkaly plant workers (mean age was 38.8 +/- 5.7 years) under conditions of continued occupational exposure to metallic mercury vapour. The mercury unexposed control group consisted of 32 workers who works in the plant area. Significantly low of serum globulin level was found in exposed evaluated group compared with control subjects (P < 0.001). The serum globulin level was in correlation with urine mercury level (P < 0.001). Analyses of urine chemistry indicated that exposed workers had cell death produces in sediment urine as the most common signs (P < 0.001). The proteinuria was found in 4 out 32 and high level of gamma-glutamyl-transpeptidase in 8 out 32 exposed workers to high mercury level workers. Additionally, disuria and ejaculatory pain as symptoms occurred without evidence of urological disease. Mercury induced nephropathy usually associated with proteinuria, but is not with renal insufficiency.

  15. Nephro-protective effect of a novel formulation of unopened coconut inflorescence sap powder on gentamicin induced renal damage by modulating oxidative stress and inflammatory markers.

    PubMed

    Jose, Svenia P; S, Asha; Im, Krishnakumar; M, Ratheesh; Santhosh, Savitha; S, Sandya; B, Girish Kumar; C, Pramod

    2017-01-01

    Fresh oyster white translucent sap obtained from the tender unopened inflorescence of coconut trees (Cocos nucifera) is identified to have great health benefits. Drug induced Nephrotoxicity is one of the major causes of renal damage in present generation. As a therapeutic agent, gentamicin imparts direct toxicity to kidney, resulting in acute tubular necrosis, glomerular and tubulointerstitial injury, haemodynamically mediated damage and obstructive nephropathy.There exists an increasing demand for safe and natural agents for the treatment and/or preventionofchronic nephrotoxicity and pathogenesis of kidney diseases. Our study shows the nephro protective/curing effect of a novel powder formulation of micronutrient enriched, unfermented coconut flower sap (CSP). The study was performed on adult male Wistar rats. The animals were grouped into three and treated separately with vehicle, gentamicin and gentamicin+CSP for 16days. Initially, gentamicin treatment significantly (p<0.05)reduced thelevels of antioxidant enzymes (SOD, CAT, GPx) and GSH and increased (p<0.05) the levels of creatinine, uric acid, urea, inflammatory markers (nitrite, IL-6, TNF- α, iNOS) and lipid peroxidation. Supplementation of coconut flower sap powder showed significant (p<0.05) reversal of all these biochemical parameters indicating an effective inhibition of the pathogenesis of nephrotoxicity and kidney disease.

  16. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism

    PubMed Central

    Kang, Ki Sung; Ham, Jungyeob; Kim, Young-Joo; Park, Jeong Hill; Cho, Eun-Ju; Yamabe, Noriko

    2013-01-01

    Diabetic nephropathy is one of the serious complications in patients with either type 1 or 2 diabetes mellitus but current treatments remain unsatisfactory. Results of clinical research studies demonstrate that Panax ginseng can help adjust blood pressure and reduce blood sugar and may be advantageous in the treatment of tuberculosis and kidney damage in people with diabetes. The heat-processing method to strengthen the efficacy of P. ginseng has been well-defined based on a long history of ethnopharmacological evidence. The protective effects of P. ginseng on pathological conditions and renal damage associated with diabetic nephropathy in the animal models were markedly improved by heat-processing. The concentrations of less-polar ginsenosides (20(S)-Rg3, 20(R)-Rg3, Rg5, and Rk1) and maltol in P. ginseng were significantly increased in a heat-processing temperature-dependent manner. Based on researches in animal models of diabetes, ginsenoside 20(S)-Rg3 and maltol were evaluated to have therapeutic potential against diabetic renal damage. These effects were achieved through the inhibition of inflammatory pathway activated by oxidative stress and advanced glycation endproducts. These findings indicate that ginsenoside 20(S)-Rg3 and maltol are important bioactive constituents of heat-processed ginseng in the control of pathological conditions associated with diabetic nephropathy. PMID:24233065

  17. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    PubMed

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  18. Up-regulation of Serum MiR-130b-3p Level is Associated with Renal Damage in Early Lupus Nephritis

    NASA Astrophysics Data System (ADS)

    Wang, Wanpeng; Mou, Shan; Wang, Ling; Zhang, Minfang; Shao, Xinghua; Fang, Wei; Lu, Renhua; Qi, Chaojun; Fan, Zhuping; Cao, Qin; Wang, Qin; Fang, Yan; Ni, Zhaohui

    2015-08-01

    Systemic lupus erythematosus (SLE) is a common but severe autoimmune systemic inflammatory disease. Lupus nephritis (LN) is a serious complication of SLE,affecting up to 70% of SLE patients. Circulating microRNAs (miRNA) are emerging as biomarkers for pathological conditions and play significant roles in intercellular communication. In present research, serum samples from healthy control, early and late stage LN patients were used to analyze the expression profile of miRNAs by microarray. Subsequent study demonstrated that miR-130b-3p in serum of patients with early stage LN were significantly up-regulated when compared with healthy controls. In addition,we have also observed that the expression of a large amount of circulating microRNAs significantly decreased in patients with late stage LN. The further analysis found that the expression of serum miR-130b-3p was positively correlated with 24-hour proteinuria and renal chronicity index in patients with early stage LN.Transfection of renal tubular cellline(HK-2)with miR-130b-3p mimics can promote epithelial-mesenchymal transition (EMT). The opposite effects were observed when transfected with miR-130b-3p inhibitors. MiR-130b-3p negatively regulated ERBB2IP expression by directly targeting the 3‧-UTR of ERBB2IP The circulating miR-130b-3p might serve as a biomarker and play an important role in renal damage in early stage LN patients.

  19. Markers of tubular dysfunction.

    PubMed

    Piscator, M

    1989-03-01

    Since the first description of tubular proteinuria in 1958, much progress has been made with regard to diagnostic means for detecting small changes in the function of the proximal tubule. Small increases in the excretion of low-molecular-weight proteins can now be determined with great accuracy. Determination of total protein is an economic way of screening large populations but does not give specific information on the type of damage. Determinations of glucose, phosphate and amino acids are relatively insensitive methods, since their excretion is also dependent on diet and nutritional status. Determination of high-molecular-weight enzymes released from damaged tubular cells may be of use for studies of acute as well as chronic effects of nephrotoxic agents, but more data are needed.

  20. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  1. The role of HIF-1 in up-regulating MICA expression on human renal proximal tubular epithelial cells during hypoxia/reoxygenation

    PubMed Central

    2010-01-01

    Background Human major histocompatibility complex class I-related chain A (MICA) plays a dual role in adaptive and innate immune responses. Increasing evidence demonstrates that MICA is closely correlated with acute and chronic kidney allograft rejection. Therefore, understanding the activation mechanisms of MICA is important in kidney transplantation. We previously demonstrated that ischemia/reperfusion injury (IRI) could up-regulate MICA expression on mouse kidney allografts. Since hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular adaptive responses to hypoxia during IRI, here we investigate whether HIF-1 could up-regulate MICA expression and its influence on NK cell cytotoxicity. Results We find that HIF-1alpha plays an important role in up-regulating MICA expression, inducing IFNgamma secretion and NK cell cytotoxicity during hypoxia/reoxygenation. First, we generated a HIF-1alphaDELTAODD-expressing adenovirus to stably and functionally express HIF-1alpha in human renal proximal tubular epithelial (HK-2) cells under normoxia conditions. HIF-1alpha over-expression in HK-2 cells induces MICA expression and enhances NK cell cytotoxic activity towards cells that express HIF-1alpha. Second, we used a hypoxia/reoxygenation cell model to simulate IRI in vitro and found that the suppression of HIF-1alpha by RNAi induces down-regulation of MICA expression and inhibits NK cytotoxicity. In antibody blocking experiments, an anti-MICA mAb was able to down-regulate NK cell cytotoxic activity towards HK-2 cells that over-expressed HIF-1alpha. Moreover, when NK cells were co-cultured with the HK-2 cells expressing MICA, which was up-regulated by over-expression of HIF-1alpha, there was a significant increase in the secretion of IFNgamma. In the presence of the blocking MICA mAb, IFNgamma secretion was significantly decreased. Conclusions These results demonstrate that hypoxia/reoxygenation-promoted MICA expression on HK-2 cells is through a HIF-1 pathway

  2. Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.

    PubMed

    Nowak, Grazyna; Soundararajan, Sridharan; Mestril, Ruben

    2013-09-01

    This study determined the role of PKC-α and associated inducible heat shock protein 70 (iHSP70) in the repair of mitochondrial function in renal proximal tubular cells (RPTCs) after oxidant injury. Wild-type PKC-α (wtPKC-α) and an inactive PKC-α [dominant negative dn; PKC-α] mutant were overexpressed in primary cultures of RPTCs, and iHSP70 levels and RPTC regeneration were assessed after treatment with the oxidant tert-butylhydroperoxide (TBHP). TBHP exposure increased ROS production and induced RPTC death, which was prevented by ferrostatin and necrostatin-1 but not by cyclosporin A. Overexpression of wtPKC-α maintained mitochondrial levels of active PKC-α, reduced cell death, and accelerated proliferation without altering ROS production in TBHP-injured RPTCs. In contrast, dnPKC-α blocked proliferation and monolayer regeneration. Coimmunoprecipitation and proteomic analysis demonstrated an association between inactive, but not active, PKC-α and iHSP70 in mitochondria. Mitochondrial iHSP70 levels increased as levels of active PKC-α decreased after injury. Overexpression of dnPKC-α augmented, whereas overexpression of wtPKC-α abrogated, oxidant-induced increases in mitochondrial iHSP70 levels. iHSP70 overexpression (1) maintained mitochondrial levels of phosphorylated PKC-α, (2) improved the recovery of state 3 respiration and ATP content, (3) decreased RPTC death (an effect abrogated by cyclosporine A), and (4) accelerated proliferation after oxidant injury. In contrast, iHSP70 inhibition blocked the recovery of ATP content and exacerbated RPTC death. Inhibition of PKC-α in RPTC overexpressing iHSP70 blocked the protective effects of iHSP70. We conclude that active PKC-α maintains mitochondrial function and decreases cell death after oxidant injury. iHSP70 is recruited to mitochondria in response to PKC-α dephosphorylation and associates with and reactivates inactive PKC-α, which promotes the recovery of mitochondrial function, decreases RPTC

  3. Protective effect of 1α,25-dihydroxyvitamin D3 on effector CD4+ T cell induced injury in human renal proximal tubular epithelial cells

    PubMed Central

    Chung, Byung Ha; Kim, Bo-Mi; Doh, Kyoung Chan; Cho, Mi-La

    2017-01-01

    Background The aim of this study was to investigate the protective effect of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on effector CD4+ T cells or on inflammatory cytokine-induced injury in human renal proximal tubular epithelial cells (HRPTEpiC). Methods First, we investigated the effect of 1,25(OH)2D3 on CD4+ T cell proliferation. Second, we examined the effect of 1,25(OH)2D3 on inflammatory cytokine secretion or fibrosis in HRPTEpiC induced by inflammatory cytokines or activated CD4+ T cells using ELISA and real-time PCR. Lastly, we compared urine inflammatory-cytokine (IL-6, IL-8) or KIM-1 levels in kidney transplant recipients low serum 25-hydroxyvitamin D (25(OH)D) group (< 20 ng/mL) (n = 40) and normal 25(OH)D group (n = 50). Results Pre-incubation with 1,25(OH)2D3 significantly reduced the percentages of Th1 and Th17 cells compared to that of Th0 condition (P < 0.05 for each). In contrast, 1,25(OH)2D3 increased the proportion of Th2 and Treg cells in a dose-dependent manner (P < 0.05 for each). Treatment of HRPTEpiC with inflammatory cytokines (TNF-α, IL-17, and TGF-β) or effector CD4+ T cells resulted in increased production of IL-6, IL-8, or KIM-1 from HRPTEpiC in a dose-dependent manner. However, treatment with 1,25(OH)2D3 significantly reduced the level of these cytokines (P < 0.05 for all). Western blot analysis demonstrated that the mTOR/STAT3/ERK pathway was downregulated by 1,25(OH)2D3 in HRPTEpiC. Furthermore, the concentrations of urine IL-6/creatinine (P < 0.05) and Kim-1/creatinine (P < 0.05) were higher in the low 25(OH)D group than in the normal 25(OH)D group in kidney transplant recipients. Conclusion The results of this study suggests that vitamin D may have a significant role in the regulation of inflammation in allograft tissue in kidney transplant recipients. Trial registration All participants provided written informed consent in accordance with the Declaration of Helsinki. This study was approved by the Institutional Review Board of

  4. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  5. Lead Induced Hepato-renal Damage in Male Albino Rats and Effects of Activated Charcoal

    PubMed Central

    Offor, Samuel J.; Mbagwu, Herbert O. C.; Orisakwe, Orish E.

    2017-01-01

    Lead is a multi-organ toxicant implicated in various cancers, diseases of the hepatic, renal, and reproductive systems etc. In search of cheap and readily available antidote this study has investigated the role of activated charcoal in chronic lead exposure in albino rats. Eighteen mature male albino rats were used, divided into three groups of six rats per group. Group 1 (control rats) received deionised water (10 ml/kg), group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg) followed by Activated charcoal, AC (1000 mg/kg) by oral gavage daily for 28 days. Rats in group 2 showed significant increases in serum Aspartate aminotransferase, Alkaline phosphatase, Alanine aminotransferase, urea, bilirubin, total cholesterol, triglycerides, Low Density Lipoprotein, Very Low Density Lipoproteins, Total White Blood Cell Counts, Malondialdehyde, Interleukin-6, and decreases in Packed Cell Volume, hemoglobin concentration, Red blood cell count, total proteins, albumins, superoxide dismutase, glutathione peroxidase and total glutathione. Co-administration of AC significantly decreased these biomarkers with the exception of the sperm parameters. Histopathology of liver and kidney also confirmed the protective effective of AC against lead induced hepato-renal damage. AC may be beneficial in chronic lead induced liver and kidney damage. PMID:28352230

  6. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

    PubMed

    Watanabe, Hiroshi

    2013-01-01

    Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

  7. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.

    PubMed

    Robertson, W G

    2015-01-01

    This article describes an updated computer model which attempts to simulate known renal reabsorption and secretion activity through the nephron (NEPHROSIM) and its possible relevance to the initiation of calcium-containing renal stones. The model shows that, under certain conditions of plasma composition, de novo nucleation of both calcium oxalate (CaOx) and calcium phosphate (CaP) can take place at the end of the descending limb of the Loop of Henle (DLH), particularly in untreated, recurrent idiopathic CaOx stone-formers (RSF). The model incorporates a number of hydrodynamic factors that may influence the subsequent growth of crystals nucleated at the end of the DLH as they progress down the renal tubules. These include the fact that (a) crystals of either CaOx or CaP nucleated at the end of the DLH and travelling close to the walls of the tubule travel at slower velocities than the fluid flowing at the central axis of the tubule, (b) the transit of CaOx crystals travelling close to the tubule walls may be delayed for up to at least 25 min, during which time the crystals may continue to grow if the relative supersaturation with respect to CaOx (RSS CaOx) is high enough and (c) such CaOx crystals may stop moving or even fall back in upward-draining collecting ducts (CD) owing to the Stokes gravitational effect. The model predicts, firstly, that for small, transient increases in plasma oxalate concentration, crystallisation only takes place in the CD and leads to the formation of small crystals which are comfortably passed in the urine and, secondly, that for slightly greater increases in the filtered load of oxalate, spontaneous and/or heterogeneous nucleation of CaOx may occur both at the end of the DLH and in the CD. This latter situation leads to the passage in the final urine of a mixture of large crystals of CaOx (arising from nucleation at the end of the DLH) and small crystals of CaOx (as a result of nucleation originating in the CD). As a result of the

  8. The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue.

    PubMed

    Suleyman, Zeynep; Sener, Ebru; Kurt, Nezahat; Comez, Mehmet; Yapanoglu, Turgut

    2015-03-01

    The objective of our study is to research biochemically and histopathologically the effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion (I/R) on the rat renal tissue. Twenty-four albino Wistar type of male rats were used for the experiment. The animals were divided into groups as: renal ischemia-reperfusion control (RIR), nimesulide+renal ischemia-reperfusion of 50 mg/kg (NRIR-50), nimesulide+renal ischemia-reperfusion of 100 mg/kg (NRIR-100), and sham groups (SG). In NRIR-50 and NRIR-100 groups were given nimesulide, and RIR and SG groups were given distilled water, an hour after anesthesia. Groups, except for the SG group, 1-h-ischemia and then 6-h-reperfusion were performed. In the renal tissue of the RIR group in which the malondialdehyde (MDA), myeloperoxidase (MPO), and 8-hydroxyguanine (8-OHGua) levels were measured, the COX-1 and COX-2 activities were recorded. Nimesulide at 100 mg/kg doses reduced the oxidant parameters more significantly than 50 mg/kg doses; on the other hand, it raised the antioxidant parameters. It has been shown that 100 mg/kg doses of nimesulide prevented the renal I/R damage more significantly than a dose of 50 mg/kg, which shows that nimesulide, in clinics, could be used in the prevention of I/R damage.

  9. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells.

    PubMed

    Kimura, Hideki; Mikami, Daisuke; Kamiyama, Kazuko; Sugimoto, Hidehiro; Kasuno, Kenji; Takahashi, Naoki; Yoshida, Haruyoshi; Iwano, Masayuki

    2014-11-14

    Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  10. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  11. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats.

    PubMed

    Lodovici, Maura; Bigagli, Elisabetta; Tarantini, Francesca; Di Serio, Claudia; Raimondi, Laura

    2015-11-01

    Increased reactive oxygen species (ROS) levels produced by hyperglycemia and angiotensin-II (AT-II) are considered among the pathogenic factors in the malignant transformation of diabetic renal cells. We aimed to investigate the potential role of AT-II in the increased cancer risk seen in diabetes; measuring oxidative damage to renal DNA and protective antioxidant defenses, including adiponectin (Adp) and plasma antioxidant capacity by the Ferric Reducing Ability of Plasma (FRAP) method. In the kidney of streptozotocin (STZ)-induced (55 mg/kg) diabetic rats either treated or not treated for 3 weeks with losartan, an AT-II type 1 receptor antagonist (20 mg/kg/day); we measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels, as an index of oxidative DNA damage, circulating Adp and FRAP. Diabetic rats showed significantly higher 8-oxodGuo levels in renal DNA (8.48 ± 0.98 × 10(-6) dG, mean ± SEM n = 11) than normoglycemic ones (1.18 ± 0.04 × 10(-6) dG, mean ± SEM, n=7) and lower plasma Adp and FRAP levels in comparison to normoglycemics. The treatment of diabetic rats with losartan significantly (P < 0.01) reduced 8-oxodGuo levels (5.4 ± 0.58 × 10(-6) dG, mean ± SEM n=9) in renal DNA and conserved FRAP values. Moreover, an inverse correlation was found between 8-oxodGuo in kidney DNA and circulating Adp levels in normoglycemic and diabetic rats. Losartan treatment preserves FRAP levels, reduces DNA oxidative injury and thus the carcinogenesis risk. Furthermore, our results indicate that Adp plasma levels are a further marker of oxidative injury to the kidney and confirm that it is an important part of the plasma antioxidant defense.

  12. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications.

    PubMed

    López-Novoa, José M; Rodríguez-Peña, Ana B; Ortiz, Alberto; Martínez-Salgado, Carlos; López Hernández, Francisco J

    2011-01-20

    Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed.

  13. Hepatocyte growth factor-stimulated renal tubular mitogenesis: effects on expression of c-myc, c-fos, c-met, VEGF and the VHL tumour-suppressor and related genes.

    PubMed Central

    Clifford, S. C.; Czapla, K.; Richards, F. M.; O'Donoghue, D. J.; Maher, E. R.

    1998-01-01

    Hepatocyte growth factor (HGF/SF) is a potent renal proximal tubular cell (PTEC) mitogen involved in renal development. HGF/SF is the functional ligand for the c-met proto-oncogene, and germline c-met mutations are associated with familial papillary renal cell carcinoma. Somatic von Hippel-Lindau disease tumour-suppressor gene (VHL) mutations are frequently detected in sporadic clear cell renal cell carcinomas (RCC), and germline VHL mutations are the commonest cause of familial clear cell RCC. pVHL binds to the positive regulatory components of the trimeric elongin (SIII) complex (elongins B and C) and has been observed to deregulate expression of the vascular endothelial growth factor (VEGF) gene. HGF/SF has similarly been reported to up-regulate expression of the VEGF gene in non-renal experimental systems. To investigate the mechanism of HGF/SF action in PTECs and, specifically, to examine potential interactions between the HGF/c-met and the VHL-mediated pathways for renal tubular growth control, we have isolated untransformed PTECs from normal kidneys, developed conditions for their culture in vitro and used these cells to investigate changes in mRNA levels of the VHL, elongin A, B and C, VEGF, c-myc, c-fos and c-met genes after HGF/SF exposure. Significant elevations in the mRNA levels of VEGF, c-myc, c-fos, c-met and elongins A, B and C, but not VHL, were detected after HGF/SF stimulation of human PTECs (P < 0.02), with a consistent order of peak levels observed over successive replicates (c-fos at 1 h, VEGF at 2-4 h, c-myc, at 4 h, followed by c-met and all three elongin subunits at 8 h). This study highlights the spectrum of changes in gene expression observed in PTECs after HGF/SF stimulation and has identified possible candidate mediators of the HGF/SF-induced mitogenic response. Our evidence would suggest that the changes in PTEC VEGF expression induced by HGF/SF are mediated by a VHL-independent pathway. Images Figure 1 PMID:9652757

  14. Erdosteine improves oxidative damage in a rat model of renal ischemia-reperfusion injury.

    PubMed

    Gurel, A; Armutcu, F; Cihan, A; Numanoglu, K V; Unalacak, M

    2004-01-01

    The aim of the present study was to determine the effects of erdosteine, a new antioxidant and anti-inflammatory agent, on lipid peroxidation, neutrophil infiltration, and antioxidant enzyme activities in a rat model of renal ischemia-reperfusion (I/R) injury. Twenty-eight rats were divided into three groups: sham operation, I/R, and I/R plus erdosteine groups. After the experimental procedure, rats were sacrificed and kidneys were removed and prepared for malondialdehyde (MDA) levels, myeloperoxidase (MPO), xanthine oxidase (XO), catalase (CAT) and superoxide dismutase (SOD) activities. MDA level, MPO and XO activities were significantly increased in the I/R group. On the other hand, SOD and CAT activities were found to be decreased in the I/R group compared to the sham group. Pretreatment with erdosteine significantly diminished tissue MDA level, MPO and XO activities. Our data support a role for erdosteine in attenuation in renal damage after I/R injury of the kidney, in part at least by inhibition of neutrophil sequestration and XO activity.

  15. Drug-induced renal damage in preterm neonates: state of the art and methods for early detection.

    PubMed

    Girardi, Anna; Raschi, Emanuel; Galletti, Silvia; Poluzzi, Elisabetta; Faldella, Giacomo; Allegaert, Karel; De Ponti, Fabrizio

    2015-06-01

    Only a small fraction of drugs widely used in neonatal intensive care units (NICU) are specifically authorized for this population. Even if unlicensed or off-label use is necessary, it is associated with increased adverse drug reactions, which must be carefully weighed against expected benefits. In particular, renal damage is frequent among preterm babies, and is considered a predisposing factor for the development of chronic kidney disease in adulthood. Apart from specific conditions affecting premature neonates (e.g. respiratory distress syndrome, perinatal asphyxia), drugs play an important role in impairing renal function because of well-known nephrotoxicity and/or interaction with renal developmental factors. From a review of the available studies on drug use in NICU patients, we identified and described the most commonly administered drugs that are correlated to renal damage. Early detection of kidney injury is becoming an essential aspects for clinicians because of the limited number of biomarkers applicable in the neonatal population. Postnatal changes of biochemical processes that influence pharmacokinetic and pharmacodynamic aspects need to be further investigated in order to better understand the mechanisms of drug toxicity in this population. The most promising strategies for dose adjustment and therapeutic schemes are discussed. The purpose of this review was to describe current knowledge on drug use among premature babies and their implication in kidney injury development, as well as to highlight available strategies for early detection of renal damage.

  16. Early Systemic Microvascular Damage in Pigs with Atherogenic Diabetes Mellitus Coincides with Renal Angiopoietin Dysbalance

    PubMed Central

    Khairoun, Meriem; van den Heuvel, Mieke; van den Berg, Bernard M.; Sorop, Oana; de Boer, Rients; van Ditzhuijzen, Nienke S.; Bajema, Ingeborg M.; Baelde, Hans J.; Zandbergen, Malu; Duncker, Dirk J.; Rabelink, Ton J.; Reinders, Marlies E. J.; Rotmans, Joris I.

    2015-01-01

    Background Diabetes mellitus (DM) is associated with a range of microvascular complications including diabetic nephropathy (DN). Microvascular abnormalities in the kidneys are common histopathologic findings in DN, which represent one manifestation of ongoing systemic microvascular damage. Recently, sidestream dark-field (SDF) imaging has emerged as a noninvasive tool that enables one to visualize the microcirculation. In this study, we investigated whether changes in the systemic microvasculature induced by DM and an atherogenic diet correlated spatiotemporally with renal damage. Methods Atherosclerotic lesion development was triggered in streptozotocin-induced DM pigs (140 mg/kg body weight) by administering an atherogenic diet for approximately 11 months. Fifteen months following induction of DM, microvascular morphology was visualized in control pigs (n = 7), non-diabetic pigs fed an atherogenic diet (ATH, n = 5), and DM pigs fed an atherogenic diet (DM+ATH, n = 5) using SDF imaging of oral mucosal tissue. Subsequently, kidneys were harvested from anethesized pigs and the expression levels of well-established markers for microvascular integrity, such as Angiopoietin-1 (Angpt1) and Angiopoietin-2 (Angpt2) were determined immunohistochemically, while endothelial cell (EC) abundance was determined by immunostaining for von Willebrand factor (vWF). Results Our study revealed an increase in the capillary tortuosity index in DM+ATH pigs (2.31±0.17) as compared to the control groups (Controls 0.89±0.08 and ATH 1.55±0.11; p<0.05). Kidney biopsies showed marked glomerular lesions consisting of mesangial expansion and podocyte lesions. Furthermore, we observed a disturbed Angpt2/ Angpt1balance in the cortex of the kidney, as evidenced by increased expression of Angpt2 in DM+ATH pigs as compared to Control pigs (p<0.05). Conclusion In the setting of DM, atherogenesis leads to the augmentation of mucosal capillary tortuosity, indicative of systemic microvascular damage

  17. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats.

    PubMed

    Yamabe, Noriko; Kang, Ki Sung; Hur, Jong Moon; Yokozawa, Takako

    2009-08-01

    Matcha, a powdered green tea produced by grinding with a stone mill, has been popularly used in the traditional tea ceremony and foods in Japan. Matcha is well known to be richer in some nutritional elements and epigallocatechin 3-O-gallate than other green teas. In our previous study, epigallocatechin 3-O-gallate exhibited protective effects against renal damage in a rat model of diabetic nephropathy. In the present study, we investigated the preventive effects of Matcha (50, 100, or 200 mg/kg/day) on the progression of hepatic and renal damage in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats were orally administered Matcha for 16 weeks, and we assessed biochemical parameters in the serum, liver, and kidney and expression levels of major products of advanced glycation end products (AGEs), N(6)-(carboxylmethyl)lysine (CML) and N(6)-(carboxylethyl)lysine (CEL), receptor for AGE (RAGE), and sterol regulatory element binding proteins (SREBPs)-1 and -2. Serum total protein levels were significantly increased by Matcha administration, whereas the serum albumin and glycosylated protein levels as well as the renal glucose and triglyceride levels were only slightly or not at all affected. However, Matcha treatment significantly lowered the glucose, triglyceride, and total cholesterol levels in the serum and liver, renal AGE levels, and the serum thiobarbituric acid-reactive substances levels. In addition, Matcha supplementation resulted in decreases in the renal CML, CEL, and RAGE expressions as well as an increase in hepatic SREBP-2 expression, but not that of SREBP-1. These results suggest that Matcha protects against hepatic and renal damage through the suppression of renal AGE accumulation, by decreases in hepatic glucose, triglyceride, and total cholesterol levels, and by its antioxidant activities.

  18. Mild ingestion of used frying oil damages hepatic and renal cells in Wistar rats.

    PubMed

    Totani, Nagao; Ojiri, Yuko

    2007-01-01

    Male Wistar rats were fed ad libitum a powdered diet (AIN93G; no fat) containing 7 wt% of fresh oil (control) or used frying oil recovered from Japanese food manufacturing companies (recovered oil) for 12 weeks and subjected to anthropometric measurements, hematological analyses, and observations of the liver and kidneys. All of the rats grew well, and no gross symptoms attributable to recovered oil were observed. There was a tendency toward higher consumption of the diet in the experimental group as compared to the control group. In the serum of the experimental group, no difference was detected in the levels of glucose, triacylglycerol, and phospholipids. But many dark-red patches, necrosis, and bleeding were found in the livers of 75% of the experimental rats; these rats had extremely high aspartate aminotransferase (AST) and alanine aminotransferase (ALT) values. Average AST and ALT values of the experimental group were significantly higher than those of the controls. The renal cells were also obviously damaged. These results raise the concern that frying oil contained in ready-made foods, snacks, etc., if deteriorated to an extent equal to or greater than that of the recovered oil, may be able to change human serum AST/ALT levels and damage the liver and kidneys.

  19. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats.

    PubMed

    Oyagbemi, Ademola Adetokunbo; Omobowale, Temidayo Olutayo; Akinrinde, Akinleye Stephen; Saba, Adebowale Bernard; Ogunpolu, Blessing Seun; Daramola, Oluwabusola

    2015-11-01

    Removal of lead from the environment of man or otherwise, the movement of man from lead-contaminated areas has been employed as a means of abatement of the toxic effects of lead. Whether toxic effects in already-exposed individuals subside after lead withdrawal remains unanswered. To understand the reversibility of nephrotoxicity induced by lead acetate, male Wistar rats were orally exposed to 0.25, 0.5, and 1.0 mg/mL of lead acetate for 6 weeks. Activities of glutathione-s-transferase, catalase (CAT), superoxide dismutase (SOD) and the concentrations of hydrogen peroxide (H2 O2 ), and malondialdehyde increased significantly (p < 0.05) in a dose-dependent manner, whereas reduced glutathione (GSH) level and glutathione peroxidase activity were significantly reduced. The pattern of alterations in most of the oxidative stress and antioxidant parameters remained similar in rats from the withdrawal period, although CAT and SOD activities reduced, in contrast to their elevation during the exposure period. Serum creatinine levels were significantly elevated in both exposure and withdrawal experiments whereas serum blood urea nitrogen levels were not significantly different from the control in both exposure and withdrawal periods. The histological damage observed include multifocal areas of inflammation, disseminated tubular necrosis, and fatty infiltration of the kidney tubules both at exposure and withdrawal periods. The results suggest that lead acetate-induced nephrotoxicity by induction of oxidative stress and disruption of antioxidant. The aforementioned alterations were not reversed in the rats left to recover within the time course of study.

  20. Papillary tubular adenoma with marked tubular vacuolization.

    PubMed

    Hattori, N; Imakado, S; Kikuchi, K; Murakami, T; Furue, M

    1997-12-01

    We report a case of papillary tubular adenoma, arising on the knee joint. The overall histologic structure of the tumor is consistent with that of papillary tubular adenoma with slight interluminal papillary changes, but most of the tumor cells present vacuolization outlined by carcinoembryonic antigen staining, suggesting that this adenoma may have resulted from microlumen formation. This is, to our knowledge, the first reported case of a papillary tubular adenoma with marked tubular vacuolization.

  1. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  2. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion

    PubMed Central

    Mulay, Shrikant R.; Kulkarni, Onkar P.; Rupanagudi, Khader V.; Migliorini, Adriana; Darisipudi, Murthy N.; Vilaysane, Akosua; Muruve, Daniel; Shi, Yan; Munro, Fay; Liapis, Helen; Anders, Hans-Joachim

    2012-01-01

    Nephrocalcinosis, acute calcium oxalate (CaOx) nephropathy, and renal stone disease can lead to inflammation and subsequent renal failure, but the underlying pathological mechanisms remain elusive. Other crystallopathies, such as gout, atherosclerosis, and asbestosis, trigger inflammation and tissue remodeling by inducing IL-1β secretion, leading us to hypothesize that CaOx crystals may induce inflammation in a similar manner. In mice, intrarenal CaOx deposition induced tubular damage, cytokine expression, neutrophil recruitment, and renal failure. We found that CaOx crystals activated murine renal DCs to secrete IL-1β through a pathway that included NLRP3, ASC, and caspase-1. Despite a similar amount of crystal deposits, intrarenal inflammation, tubular damage, and renal dysfunction were abrogated in mice deficient in MyD88; NLRP3, ASC, and caspase-1; IL-1R; or IL-18. Nephropathy was attenuated by DC depletion, ATP depletion, or therapeutic IL-1 antagonism. These data demonstrated that CaOx crystals trigger IL-1β–dependent innate immunity via the NLRP3/ASC/caspase-1 axis in intrarenal mononuclear phagocytes and directly damage tubular cells, leading to the release of the NLRP3 agonist ATP. Furthermore, these results suggest that IL-1β blockade may prevent renal damage in nephrocalcinosis. PMID:23221343

  3. Characterization of Renal Toxicity in Mice Administered the Marine Biotoxin Domoic Acid

    PubMed Central

    Funk, Jason A.; Janech, Michael G.; Dillon, Joshua C.; Bissler, John J.; Siroky, Brian J.

    2014-01-01

    Domoic acid (DA), an excitatory amino acid produced by diatoms belonging to the genus Pseudo-nitzschia, is a glutamate analog responsible for the neurologic condition referred to as amnesic shellfish poisoning. To date, the renal effects of DA have been underappreciated, although renal filtration is the primary route of systemic elimination and the kidney expresses ionotropic glutamate receptors. To characterize the renal effects of DA, we administered either a neurotoxic dose of DA or doses below the recognized limit of toxicity to adult Sv128/Black Swiss mice. DA preferentially accumulated in the kidney and elicited marked renal vascular and tubular damage consistent with acute tubular necrosis, apoptosis, and renal tubular cell desquamation, with toxic vacuolization and mitochondrial swelling as hallmarks of the cellular damage. Doses≥0.1 mg/kg DA elevated the renal injury biomarkers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and doses≥0.005 mg/kg induced the early response genes c-fos and junb. Coadministration of DA with the broad spectrum excitatory amino acid antagonist kynurenic acid inhibited induction of c-fos, junb, and neutrophil gelatinase-associated lipocalin. These findings suggest that the kidney may be susceptible to excitotoxic agonists, and renal effects should be considered when examining glutamate receptor activation. Additionally, these results indicate that DA is a potent nephrotoxicant, and potential renal toxicity may require consideration when determining safe levels for human exposure. PMID:24511141

  4. A novel heterozygous mutation in the ATP6V0A4 gene encoding the V-ATPase a4 subunit in an adult patient with incomplete distal renal tubular acidosis

    PubMed Central

    Imai, Eri; Kaneko, Shuzo; Mori, Takayasu; Okado, Tomokazu; Uchida, Shinichi; Tsukamoto, Yusuke

    2016-01-01

    A 40-year-old Japanese man who had a medical history of hypokalemic periodic paralysis 4 months prior was hospitalized to undergo a cholecystectomy. Hypokalemia, nephrocalcinosis and alkaluria suggesting distal renal tubular acidosis (dRTA) were detected, but metabolic acidosis was not evident. An ammonium chloride/furosemide–fludrocortisone/bicarbonate loading test demonstrated a remarkable disability in urinary H+ excretion. A novel heterozygous mutation in the ATP6V0A4 gene encoding the vacuolar H+-ATPase (V-ATPase) a4 subunit p.S544L was detected. Among cases of V-ATPase a4 mutations, this is the first case in which a heterozygous mutation developed to an incomplete or latent form of dRTA. PMID:27274828

  5. Role of Tumor Necrosis Factor Alpha in Disease Using a Mouse Model of Shiga Toxin-Mediated Renal Damage

    PubMed Central

    Lentz, Erin K.; Cherla, Rama P.; Jaspers, Valery; Weeks, Bradley R.; Tesh, Vernon L.

    2010-01-01

    Mice have been extensively employed as an animal model of renal damage caused by Shiga toxins. In this study, we examined the role of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in the development of toxin-mediated renal disease in mice. Mice pretreated with TNF-α and challenged with Shiga toxin type 1 (Stx1) showed increased survival compared to that of mice treated with Stx1 alone. Conversely, mice treated with Stx1 before TNF-α administration succumbed more quickly than mice given Stx1 alone. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with evidence of glomerular damage and the loss of renal function. No differences in renal histopathology were noted between animals treated with Stx1 alone and the TNF-α pretreatment group, although we noted a sparing of renal function when TNF-α was administered before toxin. Compared to that of treatment with Stx1 alone, treatment with TNF-α after toxin altered the renal cytokine profile so that the expression of proinflammatory cytokines TNF-α and interleukin-1β (IL-1β) increased, and the expression of the anti-inflammatory cytokine IL-10 decreased. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with higher numbers of dUTP-biotin nick end labeling-positive renal tubule cells, suggesting that increased lethality involved enhanced apoptosis. These data suggest that the early administration of TNF-α is a candidate interventional strategy blocking disease progression, while TNF-α production after intoxication exacerbates disease. PMID:20605983

  6. Primary vesicoureteric reflux and renal damage in the first year of life.

    PubMed

    Lama, G; Russo, M; De Rosa, E; Mansi, L; Piscitelli, A; Luongo, I; Esposito Salsano, M

    2000-12-01

    We retrospectively examined 93 children (47M/46F) with primary vesicoureteric reflux (VUR) followed for a mean period of 3.5 years. They were divided into two groups. Group A included 34 babies (25M/9F) with a prenatal diagnosis of pelvic dilatation. Mean age at presentation was 12 days and no urinary tract infection (UTI) occurred before our first examination. VUR was unilateral in 21 (62%) patients and bilateral in 13 (38%). It was mild (grades I-III) in 12 (25%) refluxing renal units (RRU) and severe (grades IV-V) in 35 (75%). Renal damage (RD) was present, at diagnosis, in 40 (85%) RRU. There was a greater prevalence of abnormal kidneys in male units (88%) than in female units (75%). Group B included 59 infants (22M/37F) less than 1 year old with UTI. The mean age at first examination was 7.6 months. VUR was unilateral in 32 (54%) infants and bilateral in 27 (46%), mild in 60 (70%) RRU and severe in 26 (30%). At diagnosis, 54 (63%) RRU presented RD, which was more common in females (66%) than in males (44%). Our study confirms that primary VUR associated with prenatal hydronephrosis usually affects males and is severe. VUR diagnosed after UTI, instead, is more common in females and is frequently mild. Although in the first type of reflux RD is often present at diagnosis, then probably congenital, it may always progress after UTI; hence the importance of early diagnosis and careful follow-up in each infant with primary VUR.

  7. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  8. Beneficial effects montelukast, cysteinyl-leukotriene receptor antagonist, on renal damage after unilateral ureteral obstruction in rats

    PubMed Central

    Otunctemur, Alper; Ozbek, Emin; Cakir, Suleyman Sami; Dursun, Murat; Cekmen, Mustafa; Polat, Emre Can; Ozcan, Levent; Somay, Adnan; Ozbay, Nurver

    2015-01-01

    Introductıon Ureteral obstruction is a common pathology and caused kidney fibrosis and dysfunction at late period. In this present, we investigated the antifibrotic and antiinflammatory effects of montelukast which is cysteinyl leukotriene receptor antagonist, on kidney damage after unilateral ureteral obstruction(UUO) in rats. Mateirıals and Methods 32 rats divided four groups. Group 1 was control, group 2 was sham, group 3 was rats with UUO and group 4 was rats with UUO which were given montelukast sodium (oral 10 mg/kg/day). After 14 days, rats were killed and their kidneys were taken and blood analysis was performed. Tubular necrosis, mononuclear cell infiltration and interstitial fibrosis scoring were determined histopathologically in a part of kidneys; nitric oxide(NO), malondialdehyde(MDA) and reduced glutathione(GSH) levels were determined in the other part of kidneys. Urea-creatinine levels were investigated at blood analysis. Statistical analyses were made by the Chi-square test and one-way analysis of variance (ANOVA). Results There was no difference significantly for urea-creatinine levels between groups. Pathologically, there was serious tubular necrosis and fibrosis in group 3 and there was significantly decreasing for tubular necrosis and fibrosis in group 4(p<0.005). Also, there was significantly increasing for NO and MDA levels; decreasing for GSH levels in group 3 compared the other groups(p<0.005). Conclusıon We can say that montelukast prevent kidney damage with antioxidant effect, independently of NO. PMID:26005969

  9. Amphotericin B-Induced Renal Tubular Cell Injury Is Mediated by Na+ Influx through Ion-Permeable Pores and Subsequent Activation of Mitogen-Activated Protein Kinases and Elevation of Intracellular Ca2+ Concentration▿

    PubMed Central

    Yano, Takahisa; Itoh, Yoshinori; Kawamura, Eiko; Maeda, Asuka; Egashira, Nobuaki; Nishida, Motohiro; Kurose, Hitoshi; Oishi, Ryozo

    2009-01-01

    Amphotericin B (AMB) is one of the most effective antifungal agents; however, its use is often limited by the occurrence of adverse events, especially nephrotoxicity. The present study was designed to determine the possible mechanisms underlying the nephrotoxic action of AMB. The exposure of a porcine proximal renal tubular cell line (LLC-PK1 cells) to AMB caused cell injury, as assessed by mitochondrial enzyme activity, the leakage of lactate dehydrogenase, and tissue ATP depletion. Propidium iodide uptake was enhanced, while terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was not affected by AMB, suggesting a lack of involvement of apoptosis in AMB-induced cell injury. The cell injury was inhibited by the depletion of membrane cholesterol with methyl-β-cyclodextrin, which lowered the extracellular Na+ concentration or the chelation of intracellular Ca2+. The rise in the intracellular Ca2+ concentration may be mediated through the activation of the ryanodine receptor (RyR) on the endoplasmic reticulum and the mitochondrial Na+-Ca2+ exchanger, since cell injury was attenuated by dantrolene (an RyR antagonist) and CGP37157 (an Na+-Ca2+ exchanger inhibitor). Moreover, AMB-induced cell injury was reversed by PD169316 (a p38 mitogen-activated protein [MAP] kinase inhibitor), c-Jun N-terminal kinase inhibitor II, and PD98059 (a MEK1/2 inhibitor). The phosphorylations of these MAP kinases were enhanced by AMB in a calcium-independent manner, suggesting the involvement of MAP kinases in AMB-induced cell injury. These findings suggest that Na+ entry through membrane pores formed by the association of AMB with membrane cholesterol leads to the activation of MAP kinases and the elevation of the intracellular Ca2+ concentration, leading to renal tubular cell injury. PMID:19139282

  10. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    SciTech Connect

    Kimura, Hideki; Mikami, Daisuke; Kamiyama, Kazuko; Sugimoto, Hidehiro; Kasuno, Kenji; Takahashi, Naoki; Yoshida, Haruyoshi; Iwano, Masayuki

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  11. [Complex etiology of acute renal failure in a newborn].

    PubMed

    Krzemień, Grazyna; Szmigielska, Agnieszka; Bieroza, Iwona; Roszkowska-Blaim, Maria

    2008-01-01

    Acute renal failure (ARF), which is diagnosed in 3.4-20% of newborns, is polyetiological in most cases. We present a newborn with non-oliguric ARF diagnosed in the first day of life, and caused by asphixia, intrauterine infection (IUI) and nephrotoxic effects of metotrexate treatment during pregnancy. Antibiotics, including netilmicin and vankomycin, were given because of IUI and infected central venous catheter. Dosage of drugs was adjusted to renal failure parameters, but monitoring of their serum levels was not available. It could cause augmented acute tubular necrosis and interstitial nephritis. Analysis of ARF risk factors in newborns helps in early diagnosis of renal damage and in prompt implementation of therapy.

  12. Characterization of kidney damage using several renal biomarkers in dogs with naturally occurring heatstroke.

    PubMed

    Segev, G; Daminet, S; Meyer, E; De Loor, J; Cohen, A; Aroch, I; Bruchim, Y

    2015-11-01

    Heatstroke is often associated with acute kidney injury (AKI). The objectives of this study were to characterize the kidney damage occurring in canine heatstroke using routine and novel biomarkers and to assess their diagnostic and prognostic performance. Thirty dogs with naturally occurring heatstroke were enrolled prospectively. Blood and urine specimens were collected at presentation, at 4 h post-presentation and every 12 h until discharge or death. The glomerular filtration rate (GFR) and electrolyte fractional excretion (FE) at 4 h post-presentation were also calculated, based on urinary clearances. AKI was further characterized by evaluating urine neutrophil gelatinase-associated lipocalin/creatinine ratio (UNGAL), urine retinol-binding protein/creatinine ratio (URBP), urine C-reactive protein/creatinine ratio (UCRP) and urine protein to creatinine ratio (UPC). These biomarkers were compared to those for 13 healthy dogs. Thirteen dogs (43%) died and 17 (57%) survived. Median serum creatinine concentration at presentation was 1.69 mg/dL (range, 0.5-4.7 mg/dL), while concurrent GFR was markedly decreased (median 0.60 mL/min/kg; range, 0.00-3.10 mL/min/kg). Median Na fractional excretion was 0.08 (range, 0.01-0.41) and was an accurate predictor of AKI (area under curve 0.89; 95% confidence intervals 0.76-1.00). Median UPC at presentation was 4.8 (range, 0.4-46.0). Median UCRP, URBP and UNGAL were increased in all dogs with heatstroke, and were mean 232, 133, and 1213-fold higher than healthy control dogs, respectively. In conclusion, although AKI occurs invariably in dogs with heatstroke, it is often subclinical at presentation. Damage occurs in both the renal tubules and the glomeruli. Novel kidney function tests for the characterization of renal injury and its severity are superior to conventional markers and could be used to facilitate early diagnosis of AKI.

  13. 30-MM Tubular Projectile

    DTIC Science & Technology

    1984-10-01

    Suiza tubular projectile 20 9. Inspection of Hispano Suiza sabot 21 10. Inspection of GAU-8 sabot 22 11. Firing data - 30-rn tubular projectile (Hispano... Suiza 23 copper banded) 12. Firing data - 30-m tubular projectile (GAU-8 plastic 24 banded) 13. Firing data - 30-m tubular projectile (GAU-8 copper 25...42 13. In-flight Hispano Suiza tubular projectiles 43 14. In-flight C4U-8 (plastic) tubular projectile 44 15. In-flight GCU-8 (copper) tubular

  14. Pentoxifylline Diminishes the Oxidative Damage to Renal Tissue Induced by Streptozotocin in the Rat

    PubMed Central

    Martínez-Morales, F.

    2004-01-01

    Oxidative damage has been suggested to be a contributing factor in the development to diabetic nephropathy (DN). Recently, there has been evidence that pentoxifylline (PTX) has free radical-scavenging properties; thus, its antiinflammatory and renoprotective effects may be related to a reduction in reactive oxygen species production. It is likely that the pharmacological effects of PTX include an antioxidant mechanism as shown in in vitro assays. The aim of this study was to evaluate whether the reported renoprotective effects of PTX could be the result of its antioxidant actions in streptozotocin (STZ)-induced DN in rats. The administration of PTX over a period of 8 weeks, in addition to displaying renoprotective effects, caused a significant reduction in lipoperoxide levels (LPOS) in the diabetic kidney (P < 0.05), compared to untreated rats. These levels were comparable to those in the healthy kidney of experimental animals (P > 0.05). All untreated STZ rats exhibited an increase in LPOS as opposed to healthy controls (H) (P < 0.001). The total antioxidant activity (TAA) in plasma was increased significantly already after 2 days of STZ (P < 0.05). When we examined the progression of TAA in STZ rats, there was a significant decrease over 8 weeks (P < 0.05). PTX treatment caused an increase in TAA when compared to untreated STZ rats (P < 0.05). Renal hypertrophy was less evident in PTX-treated STZ than in untreated STZ rats, evaluated by kidney weight/body weight ratio. These results indicate that PTX decreases the oxidative damage induced by these experimental procedures and may increase antioxidant defense mechanisms in STZ-induced diabetes in rats. PMID:15763938

  15. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage

    PubMed Central

    Li, Xiao-Qiang; Tian, Wen; Liu, Xiao-Xiao; Zhang, Kai; Huo, Jun-Cheng; Liu, Wen-Juan; Li, Ping; Xiao, Xiong; Zhao, Ming-Gao; Cao, Wei

    2016-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of GMCs by immunostaining and MTT assay. Further immunoblotting, siRNA, qPCR analysis, and detecting of NADPH oxidase activity and reactive oxygen species (ROS) generation were performed to explore relevant molecular mechanisms. In CA-treated diabetic animals, diabetes-induced albuminuria, increased serum creatinine and blood urea nitrogen were significantly attenuated, and glomerular hypertrophy, mesangial expansion and fibrosis were ameliorated. Furthermore, CA significantly inhibited proliferation of GMCs and phosphorylation of ERK1/2 and p38 MAPK in both diabetic animals and high glucose (HG)-induced GMCs. CA also normalized Δψm and inhibited HG-induced NADPH oxidase activity, ROS generation and NOX4, NOX2, p22phox and p47phox expression. More importantly, CA inhibited GMC proliferation mediated by NADPH/ERK1/2 and p38 MAPK signaling pathways. These findings suggest that CA exert the protective effect on DN by anti-proliferation resulted from inhibition of p38 MAPK- and NADPH-mediated inactivation of ERK1/2. PMID:27229751

  16. Delayed mTOR Inhibition with Low Dose of Everolimus Reduces TGFβ Expression, Attenuates Proteinuria and Renal Damage in the Renal Mass Reduction Model

    PubMed Central

    Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar

    2012-01-01

    Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849

  17. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  18. Revealing a Pre-neoplastic Renal Tubular Lesion by p-S6 Protein Immunohistochemistry after Rat Exposure to Aristolochic Acid

    PubMed Central

    Gruia, Alexandra; Gazinska, Patrycja; Herman, Diana; Ordodi, Valentin; Tatu, Calin

    2015-01-01

    Aristolochic acid (AA) has, in the last decade, become widely promoted as the cause of the Balkan endemic nephropathy and associated renal or urothelial tumours, although without substantial focal evidence of the quantitative dietary exposure via bread in specific households in hyperendemic villages. Occasional ethnobotanical use of Aristolochia clematitis might be a source of AA, and Pliocene lignite contamination of well-water is also a putative health risk factor. The aim of this study was two-fold: to verify if extracts of A. clematitis and Pliocene, or AA by itself, could induce the development of renal or urothelial tumours, and to test the utility of the ribosomal protein p-S6 to identify preneoplastic transformation. Rats were given extracts of A. clematitis in drinking water or AA I, by gavage. After seven months, renal morphology was studied using conventional haematoxylin and eosin and immunohistochemistry for ribosomal p-S6 protein. Plant extracts (cumulative AA approximately 1.8 g/kg b.w.) were tolerated and caused no gross pathology or renal histopathological change, with only faint diffuse p-S6 protein (except in the papilla) as in controls. Cumulative AA I (150 mg/kg b.w. given over 3 days) was also tolerated for seven months by all recipients, without gross pathology or kidney tumours. However, p-S6 protein over-expression was consistent particularly within the renal papilla. In one case given AA I, intense p-S6 protein staining of a proximal tubule fragment crucially matched the pre-neoplastic histology in an adjacent kidney section. We briefly discuss these findings, which compound uncertainty concerning the cause of the renal or upper urinary tract tumours of the Balkan endemic nephropathy. PMID:28326270

  19. Genomic damage in end-stage renal failure: potential involvement of advanced glycation end products and carbonyl stress.

    PubMed

    Stopper, Helga; Schupp, Nicole; Bahner, Udo; Sebekova, Katarina; Klassen, Andre; Heidland, August

    2004-09-01

    In patients with chronic renal failure, genomic damage has been shown by numerous biomarkers, such as micronuclei frequency and comet assay (single-cell gel electrophoresis) in peripheral lymphocytes, 8-hydroxy 2'-deoxyguanosine (8-OH-dG) content in leukocytes, mitochondrial DNA deletions in skeletal muscle tissue and hair follicles, as well as in DNA repair mechanisms in freshly isolated lymphocytes after ultraviolet light exposure. In the pathogenesis of DNA damage--besides genetic influences, enhanced reactive oxygen species (ROS), and lipid peroxidation-the genotoxic potential of advanced glycation end products (AGEs) and reactive carbonyl compounds deserve special attention. In fact, reactions of glucose with DNA can lead to mutagenic DNA AGEs. In vitro, incubation of tubulus cells with various AGEs and methylglyoxal induces DNA damage, which is suppressed by antioxidants. This underlines the role played by oxidative stress in DNA damage.

  20. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

    PubMed Central

    Churchill, P C; Churchill, M C; Bidani, A K; Griffin, K A; Picken, M; Pravenec, M; Kren, V; St Lezin, E; Wang, J M; Wang, N; Kurtz, T W

    1997-01-01

    To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat. PMID:9294102

  1. HCO3−-independent conductance with a mutant Na+/HCO3− cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis

    PubMed Central

    Parker, Mark D; Qin, Xue; Williamson, Rosalind C; Toye, Ashley M; Boron, Walter F

    2012-01-01

    The renal electrogenic Na+/HCO3− cotransporter (NBCe1-A) contributes to the basolateral step of transepithelial HCO3− reabsorption in proximal tubule epithelia, contributing to the buffering of blood pH. Elsewhere in the body (e.g. muscle cells) NBCe1 variants contribute to, amongst other processes, maintenance of intracellular pH. Others have described a homozygous mutation in NBCe1 (NBCe1-A p.Ala799Val) in an individual with severe proximal renal tubular acidosis (pRTA; usually associated with defective HCO3− reabsorption in proximal tubule cells) and hypokalaemic periodic paralysis (hypoPP; usually associated with leaky cation channels in muscle cells). Using biotinylation and two-electrode voltage-clamp on Xenopus oocytes expressing NBCe1, we demonstrate that the mutant NBCe1-A (AA799V) exhibits a per-molecule transport defect that probably contributes towards the observed pRTA. Furthermore, we find that AA799V expression is associated with an unusual HCO3−-independent conductance that, if associated with mutant NBCe1 in muscle cells, could contribute towards the appearance of hypokalaemic paralysis in the affected individual. We also study three novel lab mutants of NBCe1-A: p.Ala799Ile, p.Ala799Gly and p.Ala799Ser. All three exhibit a per-molecule transport defect, but only AA799I exhibits an AA799V-like ion conductance. AA799G and AA799S exhibit unusual outward rectification in their HCO3−-dependent conductance and AA799G exhibits reduced sensitivity to both DIDS and tenidap. A799G is the first mutation shown to affect the apparent tenidap affinity of NBCe1. Finally we show that AA799V and AA799I, which accumulate poorly in the plasma membrane of oocytes, exhibit signs of abnormal intracellular accumulation in a non-polarized renal cell-line. PMID:22331414

  2. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead.

    PubMed

    Stacchiotti, Alessandra; Morandini, Fausta; Bettoni, Francesca; Schena, Ilaria; Lavazza, Antonio; Grigolato, Pier Giovanni; Apostoli, Pietro; Rezzani, Rita; Aleo, Maria Francesca

    2009-10-29

    A close link between stress protein up-regulation and oxidative damage may provide a novel therapeutic tool to counteract nephrotoxicity induced by toxic metals in the human population, mainly in children, of industrialized countries. Here we analysed the time course of the expression of several heat shock proteins, glucose-regulated proteins and metallothioneins in a rat proximal tubular cell line (NRK-52E) exposed to subcytotoxic doses of inorganic mercury and lead. Concomitantly, we used morphological and biochemical methods to evaluate metal-induced cytotoxicity and oxidative damage. In particular, as biochemical indicators of oxidative stress we detected reactive oxygen species (ROS) and nitrogen species (RNS), total glutathione (GSH) and glutathione-S-transferase (GST) activity. Our results clearly demonstrated that mercury increases ROS and RNS levels and the expressions of Hsp25 and inducible Hsp72. These findings are corroborated by evident mitochondrial damage, apoptosis or necrosis. By contrast, lead is unable to up-regulate Hsp72 but enhances Grp78 and activates nuclear Hsp25 translocation. Furthermore, lead causes endoplasmic reticulum (ER) stress, vacuolation and nucleolar segregation. Lastly, both metals stimulate the over-expression of MTs, but with a different time course. In conclusion, in NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury. Indeed, different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.

  3. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4.

    PubMed

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana; Anders, Hans-Joachim

    2012-08-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI.

  4. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population

    PubMed Central

    Yun, Lin; Xu, Rui; Li, Guohua; Yao, Yucai; Li, Jiamin; Cong, Dehong; Xu, Xingshun; Zhang, Lihua

    2015-01-01

    Abstract The combined hyperhomocysteinemia condition is a feature of the Chinese hypertensive population. This study used the case-control method to investigate the association between plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme, 5, 10-methylenetetrahydrofolate reductase (MTHFR), and early renal damage in a hypertensive Chinese Han population. A total of 379 adult essential hypertensive patients were selected as the study subjects. The personal information, clinical indicators, and the C677T gene polymorphism of MTHFR were texted. This study used the urine microalbumin/urine creatinine ratio (UACR) as a grouping basis: the hypertension without renal damage group (NRD group) and the hypertension combined with early renal damage group (ERD group). Early renal damage in the Chinese hypertensive population was associated with body weight, systolic pressure, diastolic pressure, urea nitrogen, serum creatinine, cystatin C, uric acid, aldosterone, and glomerular filtration rate. The homocysteine level and the UACR in the TT genotype group were higher than those in the CC genotype group. The binary logistic regression analysis results showed that after sex and age were adjusted, the MTHFR C677T gene polymorphism was correlated with early renal damage in hypertension in both the recessive model and in the additive model. Plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR might be independent risk factors of early renal damage in the hypertensive Chinese Han population. PMID:26717388

  5. Prostaglandin-E1 has a protective effect on renal ischemia/reperfusion-induced oxidative stress and inflammation mediated gastric damage in rats.

    PubMed

    Gezginci-Oktayoglu, Selda; Orhan, Nurcan; Bolkent, Sehnaz

    2016-07-01

    Gastrointestinal complications are frequent in renal transplant recipients. In this regard, renal ischemia/reperfusion injury (IRI)-induced gastric damage seems to be important and there is no data available on the mechanism of this pathology. Because of its anti-inflammatory and anti-oxidant properties, it can be suggested that prostaglandin-E1 (PGE1) protects cells from renal IRI-induced gastric damage. The aim of this study was to investigate the molecular mechanisms of gastric damage induced by renal IRI and the effect of PGE1 on these mechanisms. We set an experiment with four different animal groups: physiological saline-injected and sham-operated rats, PGE1 (20μg/kg)-administered and sham operated rats, renal IRI subjected rats, and PGE1-administered and renal IRI subjected rats. The protective effect of PGE1 on renal IRI-induced gastric damage was determined based on reduced histological damage and lactate dehydrogenase activity. Moreover, we demonstrated that PGE1 shows its protective effect through reducing the production of reactive oxygen species and malondialdehyde levels. During histological examination, we observed the presence of common mononuclear cell infiltration. Therefore, pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β levels were measured and it has been shown that PGE1 suppressed both cytokines. Furthermore, it was found that PGE1 reduced the number of NF-κB(+) and caspase-3(+) inflammatory cells, and also NF-κB DNA-binding activity, while increasing proliferating cell nuclear antigen(+) epithelial cells in the stomach tissue of rats subjected to renal IR. Our data showed that PGE1 has a protective effect on renal IRI-induced oxidative stress and inflammation mediated gastric damage in rats.

  6. Comparison of two models for evaluation histopathology of experimental renal ischemia.

    PubMed

    Tirapelli, L F; Barione, D F; Trazzi, B F M; Tirapelli, D P C; Novas, P C; Silva, C S; Martinez, M; Costa, R S; Tucci, S; Suaid, H J; Cologna, A J; Martins, A C P

    2009-12-01

    Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARF. Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.

  7. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  8. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level.

    PubMed

    Ishibashi, Yuji; Yamagishi, Sho-ichi; Matsui, Takanori; Ohta, Keisuke; Tanoue, Ryuichiro; Takeuchi, Masayoshi; Ueda, Seiji; Nakamura, Kei-ichiro; Okuda, Seiya

    2012-08-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) axis play a role in diabetic nephropathy. Statins have been shown to ameliorate renal function and reduce proteinuria in patients with chronic kidney disease. However, the effects of statin on AGEs-induced tubular cell damage remain unknown. We examined here whether and how pravastatin could block the AGEs-RAGE-elicited tubular cell injury in vitro. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. Reactive oxygen species (ROS) generation was measured with dihydroethidium staining. Apoptosis was analyzed in an enzyme-linked immunosorbent assay. Asymmetric dimethylarginine (ADMA) expression was evaluated by immunostaining. Pravastatin dose-dependently inhibited the AGEs-induced up-regulation of RAGE mRNA level, ROS generation and apoptosis in human renal proximal tubular cells. Further, AGEs decreased mRNA level of dimethylarginine dimethylaminohydrolase-2, an enzyme that mainly degrades asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase and subsequently increased ADMA generation in tubular cells, both of which were also prevented by pravastatin. Geranylgeranyl pyrophosphate (GGPP) treatment blocked all of the effects of pravastatin on tubular cells. We found that rosuvastatin also significantly blocked the AGEs-induced increase in RAGE mRNA level and ROS generation, both of which were prevented by GGPP. Our present study suggests that pravastatin could inhibit the AGEs-induced apoptosis and ADMA generation in tubular cells by suppressing RAGE expression probably via inhibition of GGPP synthesis. Pravastatin may exert beneficial effects on tubular damage in diabetic nephropathy by blocking the AGEs-RAGE axis.

  9. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    PubMed

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  10. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells.

    PubMed

    Berkenkamp, Birgit; Susnik, Nathan; Baisantry, Arpita; Kuznetsova, Inna; Jacobi, Christoph; Sörensen-Zender, Inga; Broecker, Verena; Haller, Hermann; Melk, Anette; Schmitt, Roland

    2014-01-01

    Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC). Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a), senescence associated β-galactosidase, and γH2AX(+)/Ki-67(-) cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.

  11. Activation of PI3K-Akt-GSK3{beta} pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    SciTech Connect

    Gong Rujun . E-mail: rgong@Brown.edu; Rifai, Abdalla; Dworkin, Lance D.

    2005-04-29

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-{alpha}-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-{alpha}-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3{beta} or an uninhibitable mutant GSK3{beta}, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3{beta}) in HKC. Overexpression of wild type GSK3{beta} did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3{beta} abolished HGF inhibition of basal and TNF-{alpha} stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3{beta} are required for HGF-induced suppression of RANTES in HKC.

  12. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin.

    PubMed

    Wu, Duo; Wen, Wei; Qi, Chun-Li; Zhao, Ru-Xia; Lü, Jun-Hua; Zhong, Chun-Yan; Chen, Yi-Yu

    2012-06-15

    Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin.

  13. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits.

    PubMed

    Mohamed, Wafaa A M; Abd-Elhakim, Yasmina M; Farouk, Sameh M

    2016-09-01

    In traditional medicine, Rosmarinus officinalis L. leaf is used as a curative herbal therapy for the treatment of several diseases. The protective effects of rosemary in toxic effects of some environmental pollutants are known. However, there is paucity of information about its protective effects on lead acetate (LD) toxicity. To assess the protection of rosemary ethanolic extracts (REE) on LD-induced hepato- and nephro-toxicity, male albino rabbits were treated with REE (30mg/kg) and/or LD (30mg LD/kg) by gavage administration for 30 days. The total phenolic compound content in REE was estimated using Folin-Ciocalteu's assay and phyto-constituents were isolated and identified using gas chromatographic and mass spectrometry (GC-MS) analysis. The protective effect of REE in LD-induced liver and renal dysfunction and blood cells was evaluated by estimating blood biomarkers of liver and renal damage, histological, and biochemical examinations. Antioxidant enzyme activities, lipid peroxidation biomarker, protein and glycogen contents were estimated in both liver and kidney homogenates. The GC-MS analysis revealed that REE is rich in phenolic compounds including camphor, phytol, borneol, caryophyllene oxide, isopulegol, thymol, and verbenone. REE pre-treatment significantly (P<0.05) suppressed levels of LD induced hepatic and renal damage products as well as lipid peroxidation. In contrast, pre-treatment using REE significantly (P<0.05) decreased LD-induced depletion of antioxidant enzymes, protein, and glycogen content. Additionally, REE preserved blood cells and their structure and renal and hepatic architecture. In conclusion, these findings revealed that REE protects from toxic effects of LD possibly through its free radical-scavenging and antioxidant activities.

  14. Role of calcium in the regulation of bone morphogenetic protein 2, runt-related transcription factor 2 and Osterix in primary renal tubular epithelial cells by the vitamin D receptor.

    PubMed

    Jia, Zhaohui; Wang, Shaogang; He, Deng; Cui, Lei; Lu, Yuchao; Hu, Henglong; Qin, Baolong; Zhao, Zhenyu

    2015-08-01

    The aim of the present study was to investigate the effect of 1,25(OH)2D3/vitamin D receptor (VDR) and calcium on the expression levels of osteogenic factors in primary renal tubular epithelial cells (RTECs) using genetic hypercalciuric rats. The basal levels of osteogenic factors were detected in Sprague Dawley and genetic hypercalciuric rats. The gene and protein levels of bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2) and osterix were detected in the RTECs transduced with Lenti-VDR-sh and were incubated with calcium. Using the o-cresolphthalein complexone method, the calcium levels of the primary RTECs cultured with Lenti-VDR-sh and with 1,25(OH)2D3 were assessed. The basal levels of BMP2, Runx2 and Osterix in the cells were significantly higher in the genetic hypercalciuric rats compared with the control rats. VDR knockdown in the RTECs reduced the expression levels of BMP2, Runx2 and Osterix. The calcium depositions in the primary RTECs were also decreased following exposure to Lenti-VDR-sh, but increased following treatment with 1,25(OH)2D3. The expression levels of BMP2, Runx2 and Osterix were markedly increased in the cells incubated with calcium compared with the cells treated with normal saline and the untreated cells. These findings indicated that osteogenic factors, including BMP2, Runx2 and Osterix may be important in renal stone formation in idiopathic hypercalciuria. VDR may mediate the increased expression levels of BMP2, Runx2 and Osterix by positively regulating calcium levels in primary RTECs.

  15. A re-appraisal of volume status and renal function impairment in chronic heart failure: combined effects of pre-renal failure and venous congestion on renal function.

    PubMed

    Sinkeler, Steef J; Damman, Kevin; van Veldhuisen, Dirk J; Hillege, Hans; Navis, Gerjan

    2012-03-01

    The association between cardiac failure and renal function impairment has gained wide recognition over the last decade. Both structural damage in the form of systemic atherosclerosis and (patho) physiological hemodynamic changes may explain this association. As regards hemodynamic factors, renal impairment in chronic heart failure is traditionally assumed to be mainly due to a decrease in cardiac output and a subsequent decrease in renal perfusion. This will lead to a decrease in glomerular filtration rate and a compensatory increase in tubular sodium retention. The latter is a physiological renal response aimed at retaining fluids in order to increase cardiac filling pressure and thus renal perfusion. In heart failure, however, larger increases in cardiac filling pressure are needed to restore renal perfusion and thus more volume retention. In this concept, in chronic heart failure, an equilibrium exists where a certain degree of congestion is the price to be paid to maintain adequate renal perfusion and function. Recently, this hypothesis was challenged by new studies, wherein it was found that the association between right-sided cardiac filling pressures and renal function is bimodal, with worse renal function at the highest filling pressures, reflecting a severely congested state. Renal hemodynamic studies suggest that congestion negatively affects renal function in particular in patients in whom renal perfusion is also compromised. Thus, an interplay between cardiac forward failure and backward failure is involved in the renal function impairment in the congestive state, presumably along with other factors. Only few data are available on the impact of intervention in volume status on the cardio-renal interaction. Sparse data in cardiac patients as well as evidence from cohorts with primary renal disease suggest that specific targeting of volume overload may be beneficial for long-term outcome, in spite of a certain further decrease in renal function, at least

  16. Prolonged Subcutaneous Administration of Oxytocin Accelerates Angiotensin II-Induced Hypertension and Renal Damage in Male Rats.

    PubMed

    Phie, James; Haleagrahara, Nagaraja; Newton, Patricia; Constantinoiu, Constantin; Sarnyai, Zoltan; Chilton, Lisa; Kinobe, Robert

    2015-01-01

    Oxytocin and its receptor are synthesised in the heart and blood vessels but effects of chronic activation of this peripheral oxytocinergic system on cardiovascular function are not known. In acute studies, systemic administration of low dose oxytocin exerted a protective, preconditioning effect in experimental models of myocardial ischemia and infarction. In this study, we investigated the effects of chronic administration of low dose oxytocin following angiotensin II-induced hypertension, cardiac hypertrophy and renal damage. Angiotensin II (40 μg/Kg/h) only, oxytocin only (20 or 100 ng/Kg/h), or angiotensin II combined with oxytocin (20 or 100 ng/Kg/h) were infused subcutaneously in adult male Sprague-Dawley rats for 28 days. At day 7, oxytocin or angiotensin-II only did not change hemodynamic parameters, but animals that received a combination of oxytocin and angiotensin-II had significantly elevated systolic, diastolic and mean arterial pressure compared to controls (P < 0.01). Hemodynamic changes were accompanied by significant left ventricular cardiac hypertrophy and renal damage at day 28 in animals treated with angiotensin II (P < 0.05) or both oxytocin and angiotensin II, compared to controls (P < 0.01). Prolonged oxytocin administration did not affect plasma concentrations of renin and atrial natriuretic peptide, but was associated with the activation of calcium-dependent protein phosphatase calcineurin, a canonical signalling mechanism in pressure overload-induced cardiovascular disease. These data demonstrate that oxytocin accelerated angiotensin-II induced hypertension and end-organ renal damage, suggesting caution should be exercised in the chronic use of oxytocin in individuals with hypertension.

  17. Effects of cadmium and uranium on some in vitro renal targets.

    PubMed

    L'Azou, B; Henge-Napoli, M H; Minaro, L; Mirto, H; Barrouillet, M P; Cambar, J

    2002-01-01

    Metals are major pollutants not only in occupational settings but also in the general environment. Chronic exposure of workers has been related to severe damage, especially at the renal level. While toxic compounds such as metals are well known to severely impair tubular functions, it is clear that nephrotoxicants can act on various other renal targets, i.e., vascular and glomerular ones. In vitro models are available to assess these toxicities and can be used to better understand the different cell targets. This paper summarizes data obtained in our laboratory after exposure of isolated renal structures such as glomeruli, and cell cultures such as glomerular mesangial and tubular epithelial cells, to cadmium and uranium. Morphometric studies by image analysis of isolated glomeruli and mesangial cultured cells showed that cadmium and uranium induced a dose- and time-dependent glomerular contraction accompanied by disorganization of the cytoskeleton. Classical viability tests demonstrated various factors influencing the metal toxicity. The important roles of pH, extracellular protein concentrations and the nature of the anion accompanying the metal were demonstrated. These data obtained in in vitro models provide better understanding of the cytotoxicity after metal uptake and accumulation in glomerular and tubular cells. Moreover, the glomerular and tubular cytotoxicity they induce may be correlated with severe renal hemodynamic changes in vivo. Finally, we briefly present eventual improvements for in vitro renal models by the use of new cell models such as immortalized human cell lines or by the introduction of porous supports and perifusion devices.

  18. Indicators of Acute and Persistent Renal Damage in Adult Thrombotic Microangiopathy

    PubMed Central

    Sucker, Christoph; Kuhr, Kathrin; Hollenbeck, Markus; Hetzel, Gerd R.; Burst, Volker; Teschner, Sven; Rump, Lars C.; Benzing, Thomas; Grabensee, Bernd; Kurschat, Christine E.

    2012-01-01

    Background Thrombotic microangiopathies (TMA) in adults such as thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are life-threatening disorders if untreated. Clinical presentation is highly variable and prognostic factors for clinical course and outcome are not well established. Methods We performed a retrospective observational study of 62 patients with TMA, 22 males and 40 females aged 16 to 76 years, treated with plasma exchange at one center to identify clinical risk factors for the development of renal insufficiency. Results On admission, 39 of 62 patients (63%) had acute renal failure (ARF) with 32 patients (52%) requiring dialysis treatment. High systolic arterial pressure (SAP, p = 0.009) or mean arterial pressure (MAP, p = 0.027) on admission was associated with acute renal failure. Patients with SAP>140 mmHg on admission had a sevenfold increased risk of severe kidney disease (OR 7.464, CI 2.097–26.565). MAP>100 mmHg indicated a fourfold increased risk for acute renal failure (OR 4.261, CI 1.400–12.972). High SAP, diastolic arterial pressure (DAP), and MAP on admission were also independent risk factors for persistent renal insufficiency with the strongest correlation for high MAP. Moreover, a high C-reactive protein (CRP) level on admission correlated with renal failure in the course of the disease (p = 0.003). At discharge, renal function in 11 of 39 patients (28%) had fully recovered, 14 patients (23%) remained on dialysis, and 14 patients (23%) had non-dialysis-dependent chronic kidney disease. Seven patients (11%) died. We identified an older age as risk factor for death. Conclusions High blood pressure as well as high CRP serum levels on admission are associated with renal insufficiency in TMA. High blood pressure on admission is also a strong predictor of sustained renal insufficiency. Thus, adult TMA patients with high blood pressure may require special attention to prevent persistent renal failure

  19. NADPH oxidase 4 deficiency increases tubular cell death during acute ischemic reperfusion injury

    PubMed Central

    Nlandu-Khodo, Stellor; Dissard, Romain; Hasler, Udo; Schäfer, Matthias; Pircher, Haymo; Jansen-Durr, Pidder; Krause, Karl Heinz; Martin, Pierre-Yves; de Seigneux, Sophie

    2016-01-01

    NADPH oxidase 4 (NOX4) is highly expressed in kidney proximal tubular cells. NOX4 constitutively produces hydrogen peroxide, which may regulate important pro-survival pathways. Renal ischemia reperfusion injury (IRI) is a classical model mimicking human ischemic acute tubular necrosis. We hypothesized that NOX4 plays a protective role in kidney IRI. In wild type (WT) animals subjected to IRI, NOX4 protein expression increased after 24 hours. NOX4 KO (knock-out) and WT littermates mice were subjected to IRI. NOX4 KO mice displayed decreased renal function and more severe tubular apoptosis, decreased Bcl-2 expression and higher histologic damage scores compared to WT. Activation of NRF2 was decreased in NOX4 KO mice in response to IRI. This was related to decreased KEAP1 oxidation leading to decreased NRF2 stabilization. This resulted in decreased glutathione levels. In vitro silencing of NOX4 in cells showed an enhanced propensity to apoptosis, with reduced expression of NRF2, glutathione content and Bcl-2 expression, similar to cells derived from NOX4 KO mice. Overexpression of a constitutively active form of NRF2 (caNRF2) in NOX4 depleted cells rescued most of this phenotype in cultured cells, implying that NRF2 regulation by ROS issued from NOX4 may play an important role in its anti-apoptotic property. PMID:27924932

  20. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice

    PubMed Central

    Xin, Shao-bin; Yan, Hao; Ma, Jing; Sun, Qiang; Shen, Li

    2016-01-01

    Background Sepsis can cause serious acute kidney injury in bacterium-infected patients, especially in intensive care patients. Luteolin, a bioactive flavonoid, has renal protection and anti-inflammatory effects. This study aimed to investigate the effect and underlying mechanism of luteolin in attenuating lipopolysaccharide (LPS)-induced renal injury. Material/Methods ICR mice were treated with LPS (25 mg/kg) with or without luteolin pre-treatment (40 mg/kg for three days). The renal function, histological changes, degree of oxidative stress, and tubular apoptosis in these mice were examined. The effects of luteolin on LPS-induced expression of renal tumor necrosis factor-α (TNF-α), NF-κB, MCP-1, ICAM-1, and cleaved caspase-3 were evaluated. Results LPS resulted in rapid renal damage of mice, increased level of blood urea nitrogen (BUN), and serum creatinine (Scr), tubular necrosis, and increased oxidative stress, whereas luteolin pre-treatment could attenuate this renal damage and improve the renal functions significantly. Treatment with LPS increased TNF-α, NF-κB, IL-1β, cleaved caspase-3, MCP-1, and ICAM-1 expression, while these disturbed expressions were reversed by luteolin pre-treatment. Conclusions These results indicate that luteolin ameliorates LPS-mediated nephrotoxicity via improving renal oxidant status, decreasing NF-κB activation and inflammatory and apoptosis factors, and then disturbing the expression of apoptosis-related proteins. PMID:28029146

  1. RACK1 binds to Smad3 to modulate transforming growth factor-beta1-stimulated alpha2(I) collagen transcription in renal tubular epithelial cells.

    PubMed

    Okano, Kazuhiro; Schnaper, H William; Bomsztyk, Karol; Hayashida, Tomoko

    2006-09-08

    Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.

  2. Early detection of tubular dysfunction.

    PubMed

    Piscator, M

    1991-11-01

    The determination of low-molecular-weight proteins in urine as a tool for early detection of damage to the proximal tubules is briefly discussed. Beta 2-microglobulin, retinol-binding protein and alpha 1-microglobulin are at present the most widely used markers for tubular dysfunction. The determination of beta 2-microglobulin has earlier been the method of choice, but due to its instability at low pH there are certain disadvantages. Available data indicate that alpha 1-microglobulin may replace beta 2-microglobulin for screening purposes. The low-molecular-weight proteins are at present the best markers for early detection of tubular dysfunction; other constituents are not as well suited for this, even if the determination of urine enzymes has its supporters.

  3. [Effect of Astragali Radix in improving early renal damage in metabolic syndrome rats through ACE2/Mas pathway].

    PubMed

    Wang, Qiong-ying; Liang, Wei; Jiang, Cheng; Li, Ning-yin; Xu, Han; Yang, Mi-na; Lin, Xin; Yu, Heng; Chang, Peng; Yu, Jing

    2015-11-01

    To study the expression of angiotensin converting enzyme 2 (ACE2) and angiotensin (Ang) 1-7 specific receptor Mas protain in renal blood vessels of metabolic syndrome ( MS) rats and its anti-oxidative effect. A total of 80 male SD rats were divided into four groups: the normal control group (NC, the same volume of normal saline), the MS group (high fat diet), the MS + Astragali Radix group (MS + HQ, 6 g x kg(-1) x d(-1) in gavage) and the MS + Valsartan group (MS + XST, 30 mg x kg(-1) x d(-1) in gavage). After four weeks of intervention, their general indexes, biochemical indexes and blood pressure were measured; plasma and renal tissue Ang II, malondialdehyde (MDA) and superoxide demutase (SOD) levels were measured with radioimmunoassay. The protein expressions of Mas receptor, AT1R, ACE and ACE2 were detected by western blot analysis. According to the result, compared with the NC group, the MS group and the MS + HQ group showed significant increases in systolic and diastolic pressures, body weight, fasting glucose, fasting insulin, triglycerides, free fatty acid and Ang II level of MS rats (P < 0.05). The MS + XST group showed notable decreases in systolic and diastolic pressures than that of the MS group. The MS group showed significant increases in the SOD activity and NO level and decrease in the MDA level after being intervened with Astragali Radix. ACE and AT1R protein expressions in renal tissues of the MS group were higher than that in the NC group, but with lower ACE2 and -Mas receptor expressions (all P < 0.05). Compared with the MS group, the MS + HQ group showed significant increase in Mas receptor expression in renal tissues, whereas the MS + XST group showed notable decrease in AT1R (all P < 0.05). In conclusion, Astragali Radix can increase the Mas receptor expressions in renal tissues, decrease ACE expression and change local Ang II, MDA, NO and SOD in kidneys, so as to protect early damages in renal tissues.

  4. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources.

    PubMed

    Bergsdorf, Th; Thüroff, S; Chaussy, Ch

    2005-09-01

    Most of our knowledge of shockwave-induced renal damage is based on animal experiments and clinical observation. We developed a tissue model using isolated porcine kidneys perfused with Berliner Blau dye in physiologic saline using a Ureteromat Perez-Castro peristaltic pump connected to the renal artery. Reproducible results were obtained under a variety of experimental conditions. Further refinements of the model might consist of interposition of tissue layers in the shockwave path or simulation of ventilatory movements.

  5. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  6. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    PubMed

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  7. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  8. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.

    PubMed

    Molina-Jijón, Eduardo; Aparicio-Trejo, Omar Emiliano; Rodríguez-Muñoz, Rafael; León-Contreras, Juan Carlos; Del Carmen Cárdenas-Aguayo, María; Medina-Campos, Omar Noel; Tapia, Edilia; Sánchez-Lozada, Laura Gabriela; Hernández-Pando, Rogelio; Reyes, José L; Arreola-Mendoza, Laura; Pedraza-Chaverri, José

    2016-11-12

    We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •(-) ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.

  9. Rosiglitazone is effective to improve renal damage in type-1-like diabetic rats.

    PubMed

    Huang, K-C; Cherng, Y-G; Chen, L-J; Hsu, C-T; Cheng, J-T

    2014-04-01

    A marked decrease of klotho expression was observed in the kidney of streptozotocin-induced diabetic rats (STZ rats) showing diabetic nephropathy. It has been documented that klotho is the target gene of PPARγ. However, the effect of PPARγ agonist on klotho expression in kidney of STZ rats remains obscure. Thus, we used rosiglitazone (TZD) as PPARγ agonist to investigate the effect on renal dysfunction in STZ rats. Treatment of TZD reversed the lower levels of PPARγ, klotho, and FGFR1 expressions in kidneys of STZ rats without the correction of hyperglycemia. Also, renal functions and structural defeats were improved by TZD treatment. Taken together, oral administration of TZD may improve STZ-induced diabetic nephropathy due to restoration of the expression of klotho axis through an increase in PPARγ expression without changing blood glucose in rats.

  10. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    PubMed

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  11. Protective effects of icariin on cisplatin-induced acute renal injury in mice

    PubMed Central

    Ma, Pei; Zhang, Sen; Su, Xinlin; Qiu, Guixing; Wu, Zhihong

    2015-01-01

    Cisplatin chemotherapy often causes acute kidney injury in cancer patients. Icariin is a bioactive flavonoid, which has renal protection and anti-inflammation effects. This study investigated the mechanism underlying the attenuation of cisplatin-induced renal injury by icariin. BALB/c mice were treated with cisplatin (15 mg/kg) with or without treatment with icariin (30 or 60 mg/kg for 5 days). Renal function, histological changes, degree of oxidative stress and tubular apoptosis were examined. The effects of icariin on cisplatin-induced expression of renal TNF-α, NF-κB, cleaved caspase-3 and Bcl-2 family proteins were evaluated. Treatment of mice with cisplatin resulted in renal damage, showing an increase in blood urea nitrogen and creatinine levels, tubular damage, oxidative stress and apoptosis. These renal changes could be significantly improved by icariin treatment, especially in high dose of icariin group. Examination of molecules involving inflammation and apoptosis of the kidney revealed that treatment of icariin reduced expression of TNF-α, NF-κB, cleaved caspase-3, and Bax, increased the expression of BCL-2. These results indicate that icariin ameliorates the cisplatin-mediated nephrotoxicity via improving renal oxidant status, consequent NF-κB activation and inflammation cascade and apoptosis, and the following disturbed expression of apoptosis related proteins. PMID:26692955

  12. Occupational exposure to lead: effects on renal function

    SciTech Connect

    Hong, C.D.; Hanenson, I.B.; Lerner, S.; Hammond, P.B.; Pesce, A.J.; Pollak, V.E.

    1980-10-01

    Although nephrotoxicity is common following exposure to lead, the dose-response relationship in adults with occupational exposure is not well understood because information is lacking on early nephrotoxic effects. By the time serum urea nitrogen and creatinine levels are elevated, renal damage may be advanced and not fully reversible. Detailed investigations of renal glomerular and tubular function were performed in six adults with occupational exposure to lead. In all patients, the serum creatinine and urea nitrogen concentrations were within the normal range. GFR was decreased in all but two. Glucose reabsorptive capacity (TmG) was decreased in all, and this decrease was disproportionately greater than expected from the reduced GFR in all but one. Normal values for renal plasma flow (RFP) were observed in four of the six, and for rho-aminohippurate (PAH) secretory capacity (TmPAh) in all but one. Bicarbonate reabsorptive capacity (TmHCO3) and urinary excretion of beta2-microglobulin were normal in all. Routine clinical laboratory tests are insensitive for the detection of early renal effects of heavy metal exposure. Measurements of renal tubular reabsorptive capacity for glucose appears to be a sensitive method for the early detection of renal effect of lead.

  13. Tubular organ epithelialisation

    PubMed Central

    Saksena, Rhea; Gao, Chuanyu; Wicox, Mathew; de Mel, Achala

    2016-01-01

    Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell–scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts. PMID:28228931

  14. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis.

    PubMed

    Nakashima, S; Matsui, T; Takeuchi, M; Yamagishi, S-I

    2014-09-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We have recently found that linagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP-4) suppresses the AGE-induced oxidative stress generation and intercellular adhesion molecule-1 (ICAM-1) gene expression in endothelial cells. However, whether linagliptin could have beneficial effects on experimental diabetic nephropathy in a glucose-lowering independent manner remains unknown. To address the issue, this study examined the effects of linagliptin on renal damage in streptozotocin-induced diabetic rats. Serum levels of DPP-4 were significantly elevated in diabetic rats compared with control rats. Although linagliptin treatment for 2 weeks did not improve hyperglycemia in diabetic rats, linagliptin significantly reduced AGEs levels, RAGE gene expression, and 8-hydroxy-2'-deoxyguanosine, a marker of oxidative stress in the kidney of diabetic rats. Furthermore, linagliptin significantly reduced albuminuria, renal ICAM-1 mRNA levels, and lymphocyte infiltration into the glomeruli of diabetic rats. Our present study suggests that linagliptin could exert beneficial effects on diabetic nephropathy partly by blocking the AGE-RAGE-evoked oxidative stress generation in the kidney of streptozotocin-induced diabetic rats. Inhibition of DPP-4 by linagliptin might be a promising strategy for the treatment of diabetic nephropathy.

  15. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g.

  16. Whether Warfarin Therapy is Associated with Damage on Renal Function in Chinese Patients with Nonvalvular Atrial Fibrillation

    PubMed Central

    Kong, Yu; Du, Xin; Tang, Ri-Bo; Zhang, Ting; Guo, Xue-Yuan; Wu, Jia-Hui; Xia, Shi-Jun; Ma, Chang-Sheng

    2016-01-01

    Background: Warfarin is the most common oral anticoagulant to decrease the stroke risk associated with atrial fibrillation (AF). There are very few prospective studies that have explored whether warfarin has an association with damage on renal function in Chinese patients with nonvalvular AF (NVAF). The aim of this study was to evaluate the effects of warfarin on renal function and study the factors associated with kidney dysfunction in Chinese adult NVAF patients without dialysis therapy. Methods: From January 2011 to December 2013, a total of 951 NVAF patients from 18 hospitals were enrolled. The estimated glomerular filtration rate (eGFR) was calculated from baseline and follow-up serum creatinine levels. Kaplan–Meier survival curves compared the survival of a ≥25% decline in eGFR (hereafter, endpoint), while Cox models estimated hazard ratios (HRs) and 95% confidence intervals for this event after adjustment for age, gender, and selected potential risk factors for renal dysfunction. Cox regression analysis of the various clinical potential variables was performed to identify the predictors of a ≥25% decline in eGFR. Results: After a 58-month follow-up, 951 NVAF patients were divided by observation into warfarin (n = 655) and no anticoagulation groups (n = 296) and 120 (12.6%) patients experienced renal endpoint. Kaplan–Meier survival curves showed that the survival period was not different in the two groups (χ2 = 0.178, log-rank P = 0.67), but patients with systolic blood pressure (SBP) <140 mmHg have significant difference with patients with SBP ≥140 mmHg (χ2 = 4.903, log-rank P = 0.03). Multivariate Cox regression analysis revealed baseline eGFR and SBP as independent predictors of the endpoint, with HRs of 1.00, and 1.02, respectively. Conclusion: In patients with NVAF, eGFR and SBP are associated with the deterioration of kidney function while Warfarin is not the risk factor of the ≥25% decline in eGFR. Trial Registration: Chinese Clinical

  17. Renal podocyte apoptosis in Zucker diabetic fatty rats: involvement of methylglyoxal-induced oxidative DNA damage.

    PubMed

    Kim, J; Sohn, E; Kim, C-S; Kim, J S

    2011-01-01

    Methylglyoxal (MGO) is a cytotoxic metabolite produced by in-vivo glycolysis that may result in diabetic complications. The aim of this study was to determine whether MGO and oxidative stress caused apoptosis of renal podocytes in the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes mellitus. Male ZDF rats aged 21 weeks developed marked hyperglycaemia with proteinuria and albuminuria. Immunohistochemical evaluation of sections of kidney demonstrated expression of MGO and 8-hydroxydeoxyguanosine (8-OHdG) in the podocytes of both normoglycaemic and diabetic rats. Podocyte apoptosis was shown through application of the TUNEL method. These findings suggest that expression of MGO and 8-OHdG is caused by hyperglycaemia, and that this expression is associated with the observed apoptosis of podocytes and is related to diabetic nephropathy.

  18. Age as a main determinant of renal functional damage in urinary tract infection.

    PubMed Central

    Berg, U B; Johansson, S B

    1983-01-01

    Renal function was studied in 61 girls suffering from recurrent urinary tract infections, with at least one febrile infection. Clearance of inulin was determined. Intravenous urography and micturating cystourethrography were performed 1-6 months after the first infection and 0-6 months before or after the function test. A low glomerular filtration rate (GFR) was found only among children with their first pyelonephritis before the age of 3 years. A low GFR was found mostly in patients with small or scarred kidneys but was also seen in a few patients with normal intravenous urographs. Low GFR as well as radiologically small kidneys at the time of the function test were found independently of the presence or grade of vesicoureteral reflux at first infection. Patients with early onset pyelonephritis (before age 3 years) had a low capacity for early compensatory hypertrophy in contrast to patients with late onset pyelonephritis. PMID:6660895

  19. Carbon tetrachloride-induced hepatic and renal damages in rat: inhibitory effects of cacao polyphenol.

    PubMed

    Suzuki, Koichiro; Nakagawa, Kiyotaka; Yamamoto, Takayuki; Miyazawa, Taiki; Kimura, Fumiko; Kamei, Masanori; Miyazawa, Teruo

    2015-01-01

    Here, we investigated the protective effect of cacao polyphenol extract (CPE) on carbon tetrachloride (CCl4)-induced hepato-renal oxidative stress in rats. Rats were administered CPE for 7 days and then received intraperitoneal injection of CCl4. Two hours after injection, we found that CCl4 treatment significantly increased biochemical injury markers, lipid peroxides (phosphatidylcholine hydroperoxide (PCOOH) and malondialdehyde (MDA)) and decreased glutathione peroxidase activity in kidney rather than liver, suggesting that kidney is more vulnerable to oxidative stress under the present experimental conditions. CPE supplementation significantly reduced these changes, indicating that this compound has antioxidant properties against CCl4-induced oxidative stress. An inhibitory effect of CPE on CCl4-induced CYP2E1 mRNA degradation may provide an explanation for CPE antioxidant property. Together, these results provide quantitative evidence of the in vivo antioxidant properties of CPE, especially in terms of PCOOH and MDA levels in the kidneys of CCl4-treated rats.

  20. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  1. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  2. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  3. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  4. Renal tubulointerstitial changes after internal irradiation with alpha-particle-emitting actinium daughters.

    PubMed

    Jaggi, Jaspreet Singh; Seshan, Surya V; McDevitt, Michael R; LaPerle, Krista; Sgouros, George; Scheinberg, David A

    2005-09-01

    The effect of external gamma irradiation on the kidneys is well described. However, the mechanisms of radiation nephropathy as a consequence of targeted radionuclide therapies are poorly understood. The functional and morphologic changes were studied chronologically (from 10 to 40 wk) in mouse kidneys after injection with an actinium-225 (225Ac) nanogenerator, a molecular-sized, antibody-targeted, in vivo generator of alpha-particle-emitting elements. Renal irradiation from free, radioactive daughters of 225Ac led to time-dependent reduction in renal function manifesting as increase in blood urea nitrogen. The histopathologic changes corresponded with the decline in renal function. Glomerular, tubular, and endothelial cell nuclear pleomorphism and focal tubular cell injury, lysis, and karyorrhexis were observed as early as 10 wk. Progressive thinning of the cortex as a result of widespread tubulolysis, collapsed tubules, glomerular crowding, decrease in glomerular cellularity, interstitial inflammation, and an elevated juxtaglomerular cell count were noted at 20 to 30 wk after treatment. By 35 to 40 wk, regeneration of simplified tubules with tubular atrophy and loss with focal, mild interstitial fibrosis had occurred. A lower juxtaglomerular cell count with focal cytoplasmic vacuolization, suggesting increased degranulation, was also observed in this period. A focal increase in tubular and interstitial cell TGF-beta1 expression starting at 20 wk, peaking at 25 wk, and later declining in intensity with mild increase in the extracellular matrix deposition was noticed. These findings suggest that internally delivered alpha-particle irradiation-induced loss of tubular epithelial cells triggers a chain of adaptive changes that result in progressive renal parenchymal damage accompanied by a loss of renal function. These findings are dissimilar to those seen after gamma or beta irradiation of kidneys.