Science.gov

Sample records for renal tumor xenografts

  1. Nano-encapsulation of plitidepsin: in vivo pharmacokinetics, biodistribution, and efficacy in a renal xenograft tumor model.

    PubMed

    Oliveira, Hugo; Thevenot, Julie; Garanger, Elisabeth; Ibarboure, Emmanuel; Calvo, Pilar; Aviles, Pablo; Guillen, Maria Jose; Lecommandoux, Sébastien

    2014-04-01

    Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy. Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-b-PBLG or PTMC-b-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively). High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-b-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-b-PGA formulations. Additionally, the PEG-b-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate. Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.

  2. The Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitor Cediranib (Recentin; AZD2171) Inhibits Endothelial Cell Function and Growth of Human Renal Tumor Xenografts

    SciTech Connect

    Siemann, Dietmar W. Brazelle, W.D.; Juergensmeier, Juliane M.

    2009-03-01

    Purpose: The goal of this study was to examine the therapeutic potential of the vascular endothelial growth factor (VEGF) signaling inhibitor cediranib in a human model of renal cell carcinoma (Caki-1). Methods and Materials: The effects of cediranib treatment on in vitro endothelial cell function (proliferation, migration, and tube formation), as well as in vivo angiogenesis and tumor growth, were determined. Results: In vitro, cediranib significantly impaired the proliferation and migration of endothelial cells and their ability to form tubes, but had no effect on the proliferation of Caki-1 tumor cells. In vivo, cediranib significantly reduced Caki-1 tumor cell-induced angiogenesis, reduced tumor perfusion, and inhibited the growth of Caki-1 tumor xenografts. Conclusions: The present results are consistent with the notion that inhibition of VEGF signaling leads to an indirect (i.e., antiangiogenic) antitumor effect, rather than a direct effect on tumor cells. These results further suggest that inhibition of VEGF signaling with cediranib may impair the growth of renal cell carcinoma.

  3. Primary renal carcinoid tumor.

    PubMed

    Kanodia, K V; Vanikar, A V; Patel, R D; Suthar, K S; Kute, V B; Modi, P R; Trivedi, H L

    2013-09-01

    Primary renal carcinoid tumor is extremely rare and, therefore, its pathogenesis and prognosis is not well known. We report a primary renal carcinoid in a 26-year-old man treated by radical nephrectomy.

  4. Renal primitive neuroectodermal tumors.

    PubMed

    Bartholow, Tanner; Parwani, Anil

    2012-06-01

    Primitive neuroectodermal tumors exist as a part of the Ewing sarcoma/primitive neuroectodermal tumor family. These tumors most commonly arise in the chest wall and paraspinal regions; cases with a renal origin are rare entities, but have become increasingly reported in recent years. Although such cases occur across a wide age distribution, the average age for a patient with a renal primitive neuroectodermal tumor is the mid- to late 20s, with both males and females susceptible. Histologically, these tumors are characterized by pseudorosettes. Immunohistochemically, CD99 is an important diagnostic marker. Clinically, these are aggressive tumors, with an average 5-year disease-free survival rate of only 45% to 55%. Given that renal primitive neuroectodermal tumor bears many similarities to other renal tumors, it is important to review the histologic features, immunostaining profile, and genetic abnormalities that can be used for its correct diagnosis.

  5. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors.

    PubMed

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O'Halloran, Thomas V; Wei, Jian J; Mazar, Andrew P

    2015-09-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients' personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients' samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. CD8+ T-cell clones specific for the 5T4 antigen target renal cell carcinoma tumor-initiating cells in a murine xenograft model.

    PubMed

    Tykodi, Scott S; Satoh, Shoko; Deming, Janise D; Chou, Jeffrey; Harrop, Richard; Warren, Edus H

    2012-09-01

    The tumor antigen 5T4 is frequently expressed at high levels on renal cell carcinoma (RCC) and other epithelial carcinomas. Surveys of normal tissues demonstrate abundant 5T4 expression on placental trophoblast cells with limited expression elsewhere. 5T4 is the target for a therapeutic cancer vaccine (MVA-5T4) that elicits 5T4-specific serological, proliferative, and cytotoxic T lymphocyte (CTL) responses. However, the antitumor activity of 5T4-specific CTL has not been extensively characterized. CD8 T cells from HLA-A2 healthy donors (n=4) or RCC patients (n=2) were stimulated in vitro with the HLA-A2-binding nonamer peptides 5T417-25 or 5T497-105 and screened by flow cytometry with specific tetramers (TET). CD8/TET T-cell clones specific for 5T417-25 or 5T497-105 peptide were isolated from 4/6 and 1/4 donors, respectively. A subset of clones specific for 5T417-25 was cytolytic for MVA-5T4-infected HLA-A2 EBV-transformed lymphoblastoid cell line target cells and for constitutively HLA-A2-expressing and 5T4-expressing RCC tumor cell lines (including A498 RCC). In a xenoengraftment assay, the coinoculation of a representative 5T417-25-specific CTL clone with A498 RCC tumors cells into immune-deficient mice completely prevented growth of A498 tumors. Taken together, these data demonstrate high-avidity CD8 CTL able to recognize the naturally processed 5T417-25 epitope on RCC tumor cells including putative tumor-initiating cells are present in peripheral blood of both healthy donors and RCC patients. CD8T-cell immunity targeting 5T417-25 is therefore of substantial interest both as a potential target for further development of vaccination or adoptive cellular immunotherapy and for immune monitoring studies in association with nonspecific immunotherapies.

  7. Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors

    PubMed Central

    Priolo, Carmen; Agostini, Michelle; Vena, Natalie; Ligon, Azra H.; Fiorentino, Michelangelo; Shin, Eyoung; Farsetti, Antonella; Pontecorvi, Alfredo; Sicinska, Ewa; Loda, Massimo

    2010-01-01

    Serum prostate-specific antigen screening has led to earlier detection and surgical treatment of prostate cancer, favoring an increasing incidence-to-mortality ratio. However, about one third of tumors that are diagnosed when still confined to the prostate can relapse within 10 years from the first treatment. The challenge is therefore to identify prognostic markers of aggressive versus indolent tumors. Although several preclinical models of advanced prostate tumors are available, a model that recapitulates the genetic and growth behavior of primary tumors is still lacking. Here, we report a complete histopathological and genomic characterization of xenografts derived from primary localized low- and high-grade human prostate tumors that were implanted under the renal capsule of immunodeficient mice. We obtained a tumor take of 56% and show that these xenografts maintained the histological as well as most genomic features of the parental tumors. Serum prostate-specific antigen levels were measurable only in tumor xenograft-bearing mice, but not in those implanted with either normal prostate tissue or in tumors that likely regressed. Finally, we show that a high proliferation rate, but not the pathological stage or the Gleason grade of the original tumor, was a fundamental prerequisite for tumor take in mice. This mouse xenograft model represents a useful preclinical model of primary prostate tumors for their biological characterization, biomarker discovery, and drug testing. PMID:20167861

  8. The impact of tumor size on the efficacy of monoclonal antibody-targeted radiotherapy: studies using a nude mouse model with human renal cell carcinoma xenografts

    SciTech Connect

    Chiou, R.K. )

    1991-07-01

    Monoclonal antibody (Mab)-targeted radiotherapy is a unique approach in cancer therapy. Multiple factors affect the success of treatment. Internal radiation dosimetry and mini-dose Mab-targeted radiotherapy studies reveal that tumor size affects the efficacy of treatment. For tumors with calculated weight greater than 400 mg., intravenous administration of 131I-labeled A6H or A6H-C5H combination delivers significantly less tumor radiation dose (2070 +/- 580 cGy/100 microCi) than those for tumors of weight less than 200 mg. (5260 +/- 2460 cGy/100 microCi). In the mini-dose (an average of 73 to 86 microCi) Mab-targeted radiotherapy study of 109 mice with small tumors (six, 12, or 19 days after implantation), tumors 12 days after implantation (approximately 60 mg. in weight) showed regression in all mice and in 62% of mice gross tumor elimination was observed. In contrast, mini-dose therapy at day 19 (tumor weights approximately 170 mg.) resulted in tumor regression and tumor elimination rates of 33% and 17% respectively. These studies suggest that Mab-targeted radiotherapy is more suitable for treating small tumors.

  9. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts.

    PubMed

    Cassidy, John W; Caldas, Carlos; Bruna, Alejandra

    2015-08-01

    Preclinical models often fail to capture the diverse heterogeneity of human malignancies and as such lack clinical predictive power. Patient-derived tumor xenografts (PDX) have emerged as a powerful technology: capable of retaining the molecular heterogeneity of their originating sample. However, heterogeneity within a tumor is governed by both cell-autonomous (e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal heterogeneity) drivers. Although PDXs can largely recapitulate the polygenomic architecture of human tumors, they do not fully account for heterogeneity in the tumor microenvironment. Hence, these models have substantial utility in basic and translational research in cancer biology; however, study of stromal or immune drivers of malignant progression may be limited. Similarly, PDX models offer the ability to conduct patient-specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses may be under-represented. This review discusses the sources and consequences of intratumor heterogeneity and how these are recapitulated in the PDX model. Limitations of the current generation of PDXs are discussed and strategies to improve several aspects of the model with respect to preserving heterogeneity are proposed.

  10. Generation of orthotopic patient-derived xenografts from gastrointestinal stromal tumor

    PubMed Central

    2014-01-01

    Background Gastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease. Methods Fresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed. Results Herein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473±695-mm3 (median 199-mm3, range 12.6-2682.5-mm3) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also

  11. Avidin targeting of intraperitoneal tumor xenografts.

    PubMed

    Yao, Z; Zhang, M; Sakahara, H; Saga, T; Arano, Y; Konishi, J

    1998-01-07

    Lectins (proteins that bind specific sugar molecules on glycoproteins and glycolipids) are expressed at various levels on the surface of tumor cells. Conjugation of cytotoxic agents to glycoproteins recognized by lectins could be useful in the treatment of tumors. Avidin (a highly glycosylated, positively charged protein found in egg white) contains terminal N-acetylglucosamine and mannose residues that bind to some lectins. In this study, we tested the ability of avidin, labeled through conjugation to radioactive biotin (a B vitamin), to target intraperitoneal tumors. Biotin was radioactively labeled with 111In. Four tumor models (one ovarian, one lung, and two colon) were established in nude mice by intraperitoneal injection of cultured cancer cells. The following two approaches were used in the intraperitoneal administration of avidin: 1) radioactive biotin-avidin conjugates were injected and 2) avidin was injected 1-24 hours before the injection of radioactive biotin (avidin pretargeting; avidin-biotin conjugates formed in vivo). The distribution of injected radioactivity in the tissues of treated animals was assessed. Radiolabeled avidin localized highly and rapidly in the tumors. More than 50% of the administered dose of avidin-biotin conjugate accumulated per gram of tumor tissue 2 hours after injection; high tumor uptake of radioactivity was observed up to 24 hours after conjugate injection. In contrast, accumulation of radioactivity in normal tissues was low, yielding high tumor to nontumor ratios. With avidin pretargeting, accumulation of radioactivity in the liver, kidney, and spleen was reduced to a greater extent than that in the tumor, and tumor to nontumor ratios were increased. Avidin may be a promising vehicle for the delivery of radioisotopes, drugs, toxins, or therapeutic genes to intraperitoneal tumors.

  12. Malignant renal tumors in children

    PubMed Central

    Sanchez, Thomas Ray; Wootton-Gorges, Sandra

    2015-01-01

    Renal malignancies are common in children. While the majority of malignant renal masses are secondary to Wilms tumor, it can be challenging to distinguish from more aggressive renal masses. For suspicious renal lesions, it is crucial to ensure prompt diagnosis in order to select the appropriate surgical procedure and treatment. This review article will discuss the common differential diagnosis that can be encountered when evaluating a suspicious renal mass in the pediatric population. This includes clear cell sarcoma of the kidney, malignant rhabdoid tumor, renal medullary carcinoma and lymphoma. PMID:28326263

  13. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumors in patients

    PubMed Central

    Grisanzio, Chiara; Seeley, Apryle; Chang, Michelle; Collins, Michael; Di Napoli, Arianna; Cheng, Su-Chun; Percy, Andrew; Beroukhim, Rameen; Signoretti, Sabina

    2013-01-01

    Renal cell carcinoma (RCC) is an aggressive malignancy with limited responsiveness to existing treatments. In vivo models of human cancer, including RCC, are critical for developing more effective therapies. Unfortunately, current RCC models do not accurately represent relevant properties of the human disease. The goal of this study was to develop clinically relevant animal models of RCC for preclinical investigations. We transplanted intact human tumor tissue fragments orthotopically in immunodeficient mice. The xenografts were validated by comparing the morphologic, phenotypic, and genetic characteristics of the kidney tumor tissues before and after implantation. Twenty kidney tumors were transplanted into mice. Successful tumor growth was detected in 19 cases (95%). The histopathologic and immunophenotypic features of the xenografts and those of the original tumors largely overlapped in all the cases. Evaluation of genetic alterations in a subset of 10 cases demonstrated that the grafts largely retained the genetic features of the pre-implantation RCC tissues. Indeed, primary tumors and corresponding grafts displayed identical VHL mutations. Moreover, an identical pattern of DNA copy amplification or loss was observed in 6 of 10 cases (60%). In summary, orthotopic engrafting of RCC tissue fragments can be successfully used to generate animal models that closely resemble RCC in patients. These models will be invaluable for in vivo preclinical drug testing, and for deeper understanding of kidney carcinogenesis. PMID:21710693

  14. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  15. Primary renal primitive neuroectodermal tumor.

    PubMed

    Goel, V; Talwar, V; Dodagoudar, C; Singh, S; Sharma, A; Patnaik, N

    2015-01-01

    Primitive Neuroectodermal Tumor of the kidney is a rare entity. Very few cases of primary renal PNET have been reported to date. Most literature about rPNET is isolated case reports. We report a case of rPNET in a 39-year-old male with a pre-operative diagnosis of renal cell carcinoma with renal vein thrombosis. The patient underwent radical nephrectomy with thrombolectomy, and histopathological examination revealed a highly aggressive tumor composed of monotonous sheets of round cells. Tumor cells were positive for CD 99 and FLI-1, hence confirming the diagnosis of Primitive Neuroectodermal Tumor. Post-surgery, patient was given VAC/IE-based adjuvant chemotherapy. In view of highly aggressive nature of this tumor, prompt diagnosis and imparting effective chemotherapy regimen to the patient is required, and it is important to differentiate PNET from other small round-cell tumors because of different therapeutic approach.

  16. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  17. Detection of Rapalog-Mediated Therapeutic Response in Renal Cancer Xenografts Using 64Cu-bevacizumab ImmunoPET

    PubMed Central

    Chang, Albert J.; Sohn, Rebecca; Lu, Zhi Hong; Arbeit, Jeffrey M.; Lapi, Suzanne E.

    2013-01-01

    The importance of neovascularization for primary and metastatic tumor growth fostered numerous clinical trials of angiogenesis inhibitors either alone or in combination with conventional antineoplastic therapies. One challenge with the use of molecularly targeted agents has been the disconnection between size reduction and tumor biologic behavior, either when the drug is efficacious or when tumor resistance emerges. Here, we report the synthesis and characterization of 64Cu-NOTA-bevacizumab as a PET imaging agent for imaging intratumoral VEGF content in vivo. 64Cu-NOTA-bevacizumab avidly accumulated in 786-O renal carcinoma xenografts with lower levels in host organs. RAD001 (everolimus) markedly attenuated 64Cu-NOTA-bevacizumab accumulation within 786-O renal carcinoma xenografts. Tumor tissue and cellular molecular analysis validated PET imaging, demonstrating decreases in total and secreted VEGF content and VEGFR2 activation. Notably, 64Cu-NOTA-bevacizumab PET imaging was concordant with the growth arrest of RAD001 tumors. These data suggest that immunoPET targeting of angiogenic factors such as VEGF could be a new class of surrogate markers complementing the RECIST criteria in patients receiving molecularly targeted therapies. PMID:23516584

  18. Detection of rapalog-mediated therapeutic response in renal cancer xenografts using ⁶⁴Cu-bevacizumab immunoPET.

    PubMed

    Chang, Albert J; Sohn, Rebecca; Lu, Zhi Hong; Arbeit, Jeffrey M; Lapi, Suzanne E

    2013-01-01

    The importance of neovascularization for primary and metastatic tumor growth fostered numerous clinical trials of angiogenesis inhibitors either alone or in combination with conventional antineoplastic therapies. One challenge with the use of molecularly targeted agents has been the disconnection between size reduction and tumor biologic behavior, either when the drug is efficacious or when tumor resistance emerges. Here, we report the synthesis and characterization of (64)Cu-NOTA-bevacizumab as a PET imaging agent for imaging intratumoral VEGF content in vivo. (64)Cu-NOTA-bevacizumab avidly accumulated in 786-O renal carcinoma xenografts with lower levels in host organs. RAD001 (everolimus) markedly attenuated (64)Cu-NOTA-bevacizumab accumulation within 786-O renal carcinoma xenografts. Tumor tissue and cellular molecular analysis validated PET imaging, demonstrating decreases in total and secreted VEGF content and VEGFR2 activation. Notably, (64)Cu-NOTA-bevacizumab PET imaging was concordant with the growth arrest of RAD001 tumors. These data suggest that immunoPET targeting of angiogenic factors such as VEGF could be a new class of surrogate markers complementing the RECIST criteria in patients receiving molecularly targeted therapies.

  19. CpG oligodeoxynucleotide stimulates protective innate immunity against human renal cell carcinoma xenografted in nude mice.

    PubMed

    Zhou, Pei-jun; Ma, Bin-bin; He, Wei; Xu, Da; Wang, Xiang-hui

    2011-09-01

    Renal cell carcinoma easily develops metastasis, which is highly resistant to a variety of therapies. Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) are potent activators of innate and adaptive immunity. CpG ODN is inclined to be used as vaccine adjuvant or in combination with other therapies to exert antitumor effect mediated by the adaptive immunity. Herein, we examined the antitumor effect of CpG ODN monotherapy and the role of innate immunity on human RCC Caki-1 cells xenografted in nude mice. Our results indicated that the peritumoral subcutaneous injections of CpG ODN1826 once a week resulted in significant inhibition of the growth of Caki-1 xenografts compared with the control groups, and the survival of tumor-bearing mice were also prolonged significantly. When cytotoxicity of splenic cells from host mice was assessed, it was found that CpG ODN1826 significantly promoted the cytotoxicities of splenocytes targeting primary Caki-1 cells or YAC-1 cells, indicating that the activity of natural killer cells in tumor-bearing nude mice was enhanced by CpG ODN1826 monotherapy. The serum concentrations of interleukin-12 were increased in mice treated with CpG ODN1826. Thus, CpG ODN1826 monotherapy induces significant inhibitory effects on the growth of human RCC xenografted in athymic immunodeficient mice, and the tumor-bearing mice achieves long-term survival, which might be attributed to enhanced innate immunity.

  20. Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings

    PubMed Central

    2014-01-01

    Background Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. Methods To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. Results As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Conclusions Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies. PMID:24625025

  1. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor

    PubMed Central

    Cheng, Hongwei; Clarkson, Paul W.; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O.

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy. PMID:20981142

  2. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor.

    PubMed

    Cheng, Hongwei; Clarkson, Paul W; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy.

  3. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: Establishment and initial characterization

    PubMed Central

    MARKIDES, CONSTANTINE S.A.; COIL, DOUGLAS R.; LUONG, LINH H.; MENDOZA, JOHN; KOZIELSKI, TONY; VARDEMAN, DANA; GIOVANELLA, BEPPINO C.

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm, which mainly affects young males and generally presents as a widely disseminated tumor within the peritoneal cavity. Due to the rarity of the tumor, its younger and overall healthier patient population (compared with other tumor types) and the fact that it lacks definitive histological and immunohistological features, the diagnosis of DSRCT may be frequently delayed or the tumor may be entirely misdiagnosed as a different type of abdominal sarcoma. The present study aimed to rectify the lack of models that exist for this rare neoplasm, through the development of several DSRCT tissue cultures and xenograft lines. Samples were received from surgeries and biopsies from patients worldwide and were immediately processed for xenograft development in nude mice. Tumor tissues were minced and fragments were injected into the dorsal flanks of nude mice. Of the 14 samples received, nine were established into xenograft lines and five into tissue culture lines. Xenografts displayed the microscopic histology of their parent tumors and demonstrated two different growth rates among the established xenograft lines. Overall, the establishment of these xenograft and tissue culture lines provides researchers with tools to evaluate DSRCT responses to chemotherapy and to investigate DSRCT-specific signaling pathways or mechanisms. PMID:23759995

  4. Biodistribution and radioimmunoscintigraphy studies of renal cell carcinoma using tumor-preferential monoclonal antibodies and F(ab')2 fragments

    SciTech Connect

    Chiou, R.K. )

    1989-12-01

    The in vivo localization of renal cell carcinoma-preferential monoclonal antibodies A6H, D5D, and C5H was evaluated and the biodistribution of F(ab')2 antibody fragments of A6H and the intact Mab were compared in over 100 nude mice. A6H localized well to most renal cell carcinoma xenografts studied; the median tumor to blood ratios ranged from 6.4 to 11.5 for various xenografts. C5H also localized well to most renal cell carcinoma xenografts tested. However, D5D did not localize well to renal cell carcinoma xenografts in vivo despite its highly restrictive in vitro reactivity. The F(ab')2 fragments of A6H produced higher tumor to blood ratios, which probably resulted from fast clearance of the fragments from the circulation. Preliminary results showed that indium-111 labeling may further improve imaging.

  5. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study

    PubMed Central

    Hammers, Hans J; Verheul, Henk M; Salumbides, Brenda; Sharma, Rajni; Rudek, Michelle; Jaspers, Janneke; Shah, Preeti; Ellis, Leigh; Shen, Li; Paesante, Silvia; Dykema, Karl; Furge, Kyle; Teh, Bin T; Netto, George; Pili, Roberto

    2011-01-01

    Tyrosine kinase inhibitors (TKIs) targeting angiogenesis via inhibition of the vascular endothelial growth factor (VEGF) pathway have changed the medical management of metastatic renal cell carcinoma. While the treatment with TKIs has demonstrated clinical benefit these drugs will eventually fail patients. The potential mechanisms of resistance to TKIs are poorly understood. To address this question we obtained an excisional biopsy of a skin metastasis from a patient with clear cell renal carcinoma who initially had a response on sunitinib and eventually progressed on therapy. Tumor pieces were grafted subcutaneously in athymic nude mice. Established xenografts were treated with sunitinib. Tumor size, microvascular density and pericyte coverage were determined. Plasma as well as tissue levels for sunitinib were assessed. A tumor derived cell line was established and assessed in vitro for a potential direct antitumor effects of sunitinib. To our surprise, xenografts from the patient who progressed on sunitinib regained sensitivity to the drug. At a dose of 40 mg/kg sunitinib caused regression of the subcutaneous tumors. Histology showed a marked reduction in microvascular density and pericyte dysfunction. More interestingly, histological examination of the original skin metastasis revealed evidence of epithelial-to-mesenchymal-transition while the xenografts showed reversion to the clear cell phenotype. In vitro studies showed no inhibitory effect on tumor cell growth at pharmacologically relevant concentrations. In conclusion, the histological examination in this xenograft study suggests that reversible epithelial-to mesenchymal-transition may be associated with acquired tumor resistance to TKIs in patients with clear cell renal carcinoma. PMID:20501804

  6. Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice

    PubMed Central

    Chen, Ruibao; Zhao, Yunqi; Huang, Yan; Yang, Qiuhong; Zeng, Xing; Jiang, Wencong; Liu, Jihong; Thrasher, J. Brantley; Forrest, M. Laird; Li, Benyi

    2014-01-01

    Background Combination of androgen ablation along with early detection and surgery has made prostate cancer highly treatable at the initial stage. However, this cancer remains the second leading cause of cancer death among American men due to castration-resistant progression, suggesting that novel therapeutic agents are urgently needed for this life-threaten condition. Phosphatidylinositol 3-kinase p110β is a major cellular signaling molecule and has been identified as a critical factor in prostate cancer progression. In a recent report, we established a nanomicelle-based strategy to deliver p110β-specific inhibitor TGX221 to prostate cancer cells by conjugating the surface of nanomicelles with a RNA aptamer against prostate membrane specific antigen (PSMA) present in all clinical prostate cancers. In this study, we tested this nanomicellar TGX221 for its in vivo anti-tumor effect in mouse xenograft models. Methods Prostate cancer cell lines LAPC-4, LNCaP, C4-2 and 22RV1 were used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in immunohistochemistry assays to detect AKT phosphorylation, cell proliferation marker Ki67 and PCNA, as well as BrdU incorporation. Quantitative PCR assay was conducted to determine PSA gene expression in xenograft tumors. Results Although systemic delivery of unconjugated TGX221 significantly reduced xenograft tumor growth in nude mice compared to solvent control, the nanomicellar TGX221 conjugates completely blocked tumor growth of xenografts derived from multiple prostate cancer cell lines. Further analyses revealed that AKT phosphorylation and cell proliferation indexes were dramatically reduced in xenograft tumors received nanomicellar TGX221 compared to xenograft tumors received unconjugated TGX221 treatment. There was no noticeable side effect by gross observation or at microscopic level of organ tissue section. Conclusion These data strongly suggest that prostate

  7. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  8. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  9. Tubulocystic Renal Cell Carcinoma: A Rare Renal Tumor

    PubMed Central

    Bindroo, Sandiya; Varshney, Neha; Mittal, Vijay

    2014-01-01

    Tubulocystic renal cell carcinoma of the kidney is a rare entity with less than one hundred cases reported so far. It was previously considered to have some similarities to various other renal cancers although this tumor has distinct macroscopic, microscopic and immuno-histochemical features. It is now a well-established entity in renal neoplastic pathology and has been recognized as a distinct entity in the 2012 Vancouver classification of renal tumors. This review aims to give an overview of tubulocystic renal cell carcinoma after extensive literature search using PubMed and CrossRef.

  10. [Potential role of patient-derived tumor xenografts (PDTXs) in the selection of optimal therapeutic strategy].

    PubMed

    Tóvári, József

    2015-12-01

    The rapid selection of the efficient anticancer therapy may decrease the unwanted burden to patients and has financial consequences. Tumor models including xenografts in mice were used previously mostly in the development of new anticancer drugs. Nowadays xenografts from direct patient-derived tumor tissues (PDTT) in immune deficient mice yield better models than experimental tumors originating from cell cultures. The new method enables researchers to observe heterogeneous tumor cells with their surrounding tissue elements and matrices representing the clinical situation in humans much better. The cells in PDTT tumors are alive and functionally active through several generations after serial transplantation. Therefore using these models we may investigate tumor response to different therapies, the selection of resistant cell populations and the formation of metastasis predicting the outcomes in the personalized therapy.

  11. Tracking sub-clonal TP53 mutated tumor cells in human metastatic renal cell carcinoma

    PubMed Central

    Bousquet, Guilhem; Bouchtaoui, Morad El; Leboeuf, Christophe; Battistella, Maxime; Varna, Mariana; Ferreira, Irmine; Plassa, Louis-François; Hamdan, Diaddin; Bertheau, Philippe; Feugeas, Jean-Paul; Damotte, Diane; Janin, Anne

    2015-01-01

    Renal Cell Carcinomas (RCCs) are heterogeneous tumors with late acquisition of TP53 abnormalities during their evolution. They harbor TP53 abnormalities in their metastases. We aimed to study TP53 gene alterations in tissue samples from primary and metastatic RCCs in 36 patients followed up over a median of 4.2 years, and in xenografted issued from primary RCCs. In 36 primary RCCs systematically xenografted in mice, and in biopsies of metastases performed whenever possible during patient follow-up, we studied p53-expressing tumor cells and TP53 gene abnormalities. We identified TP53 gene alterations in primary tumors, metastases and xenografts. Quantification of tumors cells with TP53 gene alterations showed a significant increase in the metastases compared to the primary RCCs, and, strikingly, the xenografts were similar to the metastases and not to the primary RCCs from which they were derived. Using laser-microdissection of p53-expressing tumor cells, we identified TP53-mutated tumor cells in the xenografts derived from the primary RCC, and in a lung metastasis later developed in one patient. The mutation enabled us to track back their origin to a minority sub-clone in the primary heterogeneous RCC. Combining in situ and molecular analyses, we demonstrated a clonal expansion in a living patient with metastatic RCC. PMID:26002555

  12. Tracking sub-clonal TP53 mutated tumor cells in human metastatic renal cell carcinoma.

    PubMed

    Bousquet, Guilhem; El Bouchtaoui, Morad; Leboeuf, Christophe; Battistella, Maxime; Varna, Mariana; Ferreira, Irmine; Plassa, Louis-François; Hamdan, Diaddin; Bertheau, Philippe; Feugeas, Jean-Paul; Damotte, Diane; Janin, Anne

    2015-08-07

    Renal Cell Carcinomas (RCCs) are heterogeneous tumors with late acquisition of TP53 abnormalities during their evolution. They harbor TP53 abnormalities in their metastases. We aimed to study TP53 gene alterations in tissue samples from primary and metastatic RCCs in 36 patients followed up over a median of 4.2 years, and in xenografted issued from primary RCCs. In 36 primary RCCs systematically xenografted in mice, and in biopsies of metastases performed whenever possible during patient follow-up, we studied p53-expressing tumor cells and TP53 gene abnormalities.We identified TP53 gene alterations in primary tumors, metastases and xenografts. Quantification of tumors cells with TP53 gene alterations showed a significant increase in the metastases compared to the primary RCCs, and, strikingly, the xenografts were similar to the metastases and not to the primary RCCs from which they were derived.Using laser-microdissection of p53-expressing tumor cells, we identified TP53-mutated tumor cells in the xenografts derived from the primary RCC, and in a lung metastasis later developed in one patient. The mutation enabled us to track back their origin to a minority sub-clone in the primary heterogeneous RCC. Combining in situ and molecular analyses, we demonstrated a clonal expansion in a living patient with metastatic RCC.

  13. Infrared spectroscopic imaging of renal tumor tissue

    NASA Astrophysics Data System (ADS)

    Šablinskas, Valdas; Urbonienė, Vidita; Ceponkus, Justinas; Laurinavicius, Arvydas; Dasevicius, Darius; Jankevičius, Feliksas; Hendrixson, Vaiva; Koch, Edmund; Steiner, Gerald

    2011-09-01

    Fourier transform infrared (FTIR) spectroscopic imaging has been used to probe the biochemical composition of human renal tumor tissue and adjacent normal tissue. Freshly resected renal tumor tissue from surgery was prepared as a thin cryosection and examined by FTIR spectroscopic imaging. Tissue types could be discriminated by utilizing a combination of fuzzy k-means cluster analysis and a supervised classification algorithm based on a linear discriminant analysis. The spectral classification is compared and contrasted with the histological stained image. It is further shown that renal tumor cells have spread in adjacent normal tissue. This study demonstrates that FTIR spectroscopic imaging can potentially serve as a fast and objective approach for discrimination of renal tumor tissue from normal tissue and even in the detection of tumor infiltration in adjacent tissue.

  14. Reflex Anuria After Renal Tumor Embolization

    SciTech Connect

    Kervancioglu, Selim Sirikci, Akif; Erbagci, Ahmet

    2007-04-15

    We report a case of reflex anuria after transarterial embolization of a renal tumor. Anuria developed immediately after embolization and resolved 74 hr following the procedure. We postulate that reflux anuria in our case was related to mechanoreceptors, chemoreceptors, or both, as these are stimulated by the occluded blood vessels, ischemia, and edema of the normal renal tissue of an embolized kidney.

  15. Radiofrequency ablation for renal tumors: our experience.

    PubMed

    Hiraoka, Kenji; Kawauchi, Akihiro; Nakamura, Terukazu; Soh, Jintetsu; Mikami, Kazuya; Miki, Tsuneharu

    2009-11-01

    To report our results of percutaneous radiofrequency ablation (RFA) for renal tumors and to assess predictors of therapeutic efficacy. Forty patients (median age 73 years) with renal tumors were treated with RFA under local or epidural anesthesia. All of them had high surgical risk or refused radical surgery. Tumors were punctured percutaneously using the Radionics Cool-tip RF System under computed tomography or ultrasonographic guidance. Median tumor diameter was 24 mm. After RFA, contrast-enhanced computed tomography or magnetic resonance imaging was performed within 1 month. Complete response (CR) was defined as no enhancement inside the tumor. Factors related to the outcome and to renal function were assessed. Median follow up was 16 months. CR was observed in 34 cases (85.0%). A significant difference in CR rate was observed between tumors < or =30 mm and those >30 mm. Outcomes tended to be better for tumors in the mid to lower kidney, and those away from the renal hilum. Recurrence was observed in one case (2.9%), but a CR was obtained again by additional RFA. Out of a total of 77 RFA procedures, complications occurred in only three cases (3.9%), and conservative treatment was possible in all cases. Serum creatinine levels 3 months after RFA did not differ from those before RFA. Percutaneous RFA is a safe and effective treatment for small renal tumors in patients with high surgical risk or who refuse radical surgery.

  16. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    PubMed

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.

  17. Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts.

    PubMed

    Abraham, Dietmar; Abri, Samad; Hofmann, Michael; Höltl, Wolfgang; Aharinejad, Seyedhossein

    2003-10-01

    Low dose chemotherapy combined with angiogenesis inhibitors has been shown to be more effective for experimental tumor treatment than chemotherapy alone. To our knowledge whether germ cell tumors could benefit from this treatment strategy remains to be evaluated. We examined the efficacy of angiostatic thrombospondin-1 (TSP-1), endostatin and combined angiostatic/low dose carboplatin in mice xenografted with human nonseminomatous germ cell tumor. We monitored tumor progression and angiogenesis in the established model of human nonseminomatous germ cell tumor xenograft in 120 SCID mice using intravital video microscopy, immunocytochemistry and real-time polymerase chain reaction. Mice received TSP-1 (20 mg/kg daily) or endostatin (10 mg/kg daily) subcutaneously (via osmotic mini pumps) for 2 weeks starting 15 days after cancer cell grafting, carboplatin cycled twice (30 mg/kg intraperitoneally days 14 and 21 after cancer cell grafting), or a combination of carboplatin with TSP-1 or endostatin. Untreated, sham and tumor bearing mice treated with Ringer's solution served as controls. Primary tumor development was not affected in mice treated with TSP-1, endostatin or carboplatin alone. All animals had metastases at 6 months, while metastasis did not develop following the combination of carboplatin with TSP-1 or endostatin. This combined therapy suppressed tumor angiogenesis, enhanced apoptosis in tumor cells and decreased vascular endothelial growth factor-A tissue mRNA expression vs controls (p <0.05). These data indicate that angiostatic agents added to low dose carboplatin have the ability to suppress the progression of human germ cell tumor xenografts toward a metastatic phenotype. Therefore, this treatment strategy might be beneficial to prevent metastasis in germ cell tumors.

  18. Renal functional outcomes after surgery for renal cortical tumors

    PubMed Central

    Finkelstein, Julia B.; DeCastro, G. Joel; McKiernan, James M.

    2015-01-01

    Historically, radical nephrectomy represented the gold standard for the treatment of small (≤ 4cm) as well as larger renal masses. Recently, for small renal masses, the risk of ensuing chronic kidney disease and end stage renal disease has largely favored nephron-sparing surgical techniques, mainly partial nephrectomy. In this review, we surveyed the literature on renal functional outcomes after partial nephrectomy for renal tumors. The largest randomized control trial comparing radical and partial nephrectomy failed to show a survival benefit for partial nephrectomy. With regards to overall survival, surgically induced chronic kidney disease (GFR < 60 ml/min/ 1.73m2) caused by nephrectomy might not be as deleterious as medically induced chronic kidney disease. In evaluating patients who underwent donor nephrectomy, transplant literature further validates that surgically induced reductions in GFR may not affect patient survival, unlike medically induced GFR declines. Yet, because patients who present with a renal mass tend to be elderly with multiple comorbidities, many develop a mixed picture of medically, and surgically-induced renal disease after extirpative renal surgery. In this population, we believe that nephron sparing surgery optimizes oncological control while protecting renal function.

  19. CABOZANTINIB IS EFFECTIVE IN A SUBSET OF XENOGRAFT GBM TUMORS AND AFFECTS MULTIPLE SIGNALING PATHWAYS

    PubMed Central

    Mikkelsen, Tom; deCarvalho, Ana C.; Arnold, Kimberly; Mueller, Claudius; Petricoin, Emanuel F; Poisson, Laila M.; Irtenkauf, Susan; Hasselbach, Laura

    2014-01-01

    BACKGROUND: (blind field). METHODS: Neurospheres enriched in CSCs were cultured from resected GBM tumors. Sensitivity to cabozantinib was determined in vitro. Cells were treated (IC40) in triplicate, and cell lysates were analyzed by reverse phase protein microarrays (RPPAs). GBM CSCs were implanted intracranially into nude mice. Cabozantinib was administered by oral gavage at a dose of 60 mg/kg for 4 weeks (5 days/week) as a single agent or in combination with 40 mg/kg TMZ. Tumor growth and response to treatment were monitored by non-invasive in vivo bioluminescence imaging (BLI) using the Xenogen IVIS System (Caliper Life Sciences), and overall survival. RESULTS: Sensitivity to cabozantinib treatment varied for the different GBM CSCs. From 70 proteins and phosphoproteins measured, 29 distributed among several signaling pathways were significantly altered after treatment in both resistant and sensitive GBM CSCs, including Met, Ret, AKT, MAPK/ERK. Cabozantinib single agent treatment reduced GBM tumor growth and increased mouse survival in two xenograft lines. Cabozantinib monotherapy reduced tumor size, as measured by BLI, but had no significant effect on overall survival for another xenograft line, however, the combination treatment resulted in sensitization of these xenografts to TMZ treatment. RPPA confirmed downregulation of the described targets for XL184, including activated Met, VEGFR2 and Ret (in vitro). CONCLUSIONS: Consistent with the clinical experience, both sensitive and resistant GBMs are represented in our CSC xenografts. More extensive evaluation will likely identify baseline biomarkers which might be valuable in identifying potentially sensitive sub-populations for subsequent clinical trials. RPPA and next-gen sequencing (NGS) on terminal tumors is underway. SECONDARY CATEGORY: Tumor Biology.

  20. Analyzing spatiotemporal distribution of uniquely fluorescent nanoparticles in xenograft tumors.

    PubMed

    Stirland, Darren L; Matsumoto, Yu; Toh, Kazuko; Kataoka, Kazunori; Bae, You Han

    2016-04-10

    A dose circulating through the blood at one time will have different opportunities to access the tumor compared to a dose circulating hours later. Methods to test this hypothesis allowed us to differentiate two uniquely fluorescent doses of nanoparticles (administered as a mixture or sequentially) and to measure the distribution and correlation of these nanoparticle doses in three dimensions. Multiple colocalization analyses confirm that silica nanoparticles separated into different dose administrations will not accumulate in the same location. Decreased colocalization between separate doses implies dynamic extravasation events on the scale of microns. Further, the perfusion state of different blood vessels can change across the dosing period. Lastly, analyzing the distance traveled by these silica nanoparticles in two dimensions can be an overestimation when compared with three-dimensional distance analysis. Better understanding intratumoral distribution of delivered drugs will be crucial to overcoming the various barriers to transport in solid tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice

    PubMed Central

    Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi

    2012-01-01

    Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574

  2. Tumor-associated primo vascular system is derived from xenograft, not host.

    PubMed

    Islam, Md Ashraful; Thomas, Shelia D; Sedoris, Kara J; Slone, Stephen P; Alatassi, Houda; Miller, Donald M

    2013-02-01

    The primo vascular system (PVS), which is composed of very small primo-vessels (PV) and primo-nodes (PN), has recently emerged as a third component of circulatory system. Here, we report the presence of a tumor derived PVS in murine xenografts of human histiocytic lymphoma (U937) in close proximity to the tumor. Within this system, PNs are small (~500-600 μM diameter) membranous sac-like structures which contain numerous small cells which can be demonstrated by DAPI staining. Hematoxylin and Eosin (H&E) staining of the peri-tumoral PVS shows the presence of loose structures lined by fibroblasts but filled with dense fibers, cells, lacunae and nerve-like structures. The origin and type of cells within the PVS was characterized by immunostaining with antibodies for CD68, CD45 and lysozyme. The results of these studies reveal that the PVS of the xenograft originates from the human U937 tumor cells. qRT-PCR analysis of mRNA isolated from PVS cells reveals a striking predominance of human, rather than mouse, sequences. Of particular interest, human stem cell specific transcription factors were overexpressed, most notably KLF4, an upstream regulator of NANOG which maintains the pluripotent and undifferentiated state of stem cells. These results suggest that the cells present within the PVS are derived from the human xenograft and suggests that the primo-vessels associated with the xenografted tumor may provide a safe haven for a select population of cancer stem cells. Further understanding of the biological properties of these cells may allow the development of new anti-cancer interventions.

  3. Tumor Enucleation for Renal Cell Carcinoma

    PubMed Central

    Malkowicz, S. Bruce

    2015-01-01

    The increased number of small renal masses (SRMs) detected annually has led to a rise in the use of nephron-sparing surgery (NSS). These techniques aim to preserve the largest amount of healthy renal tissue possible while maintaining the same oncologic outcomes as radical nephrectomy (RN). Additionally, partial nephrectomy (PN) has been linked to a lower risk of chronic kidney disease, cardiovascular morbidity, and mortality when compared to RN. There has been continual progress toward resecting less renal parenchyma. While the predominant surgical method of performing NSS is through traditional PN, simple enucleation (SE) of the tumor has increased in popularity over recent years. SE is a technique that aims to preserve the maximal amount of renal parenchyma possible by utilizing the renal tumor pseudocapsule to bluntly separate the lesion from its underlying parenchyma, offering the smallest possible margin of excised healthy renal tissue. Several studies have demonstrated the oncological safety of SE compared with PN in the treatment of SRMs, with lower overall incidence of positive surgical margins. Additionally, SE has been shown to have similar 5- and 10-year progression-free and cancer-specific survival as PN. We present a review of the literature and an argument for SE to be a routine consideration in the treatment of all renal tumors amenable to NSS.

  4. Telomerase inhibition impairs tumor growth in glioblastoma xenografts.

    PubMed

    Falchetti, Maria Laura; Fiorenzo, Paolo; Mongiardi, Maria Patrizia; Petrucci, Giovanna; Montano, Nicola; Maira, Giulio; Pierconti, Francesco; Larocca, Luigi Maria; Levi, Andrea; Pallini, Roberto

    2006-07-01

    Telomerase is a specialized DNA polymerase that is required to replicate the ends of linear chromosomes, the telomeres. The majority of human cancers express high levels of telomerase activity that is permissive for tumor growth because it provides cells with an extended proliferative potential. Additionally, telomerase exerts cell growth promoting functions and favors cell survival. Human glioblastoma multiforme (GBM) cells express high level of telomerase activity owing to the overexpression of human telomerase reverse transcriptase (hTERT), the limiting subunit of the enzyme. Here we used retroviral mediated RNA interference to dampen down telomerase activity in two distinct human GBM cell lines, U87MG and TB10. Substantial decrease of hTERT mRNA and telomerase activity had only minimal effects on telomere length maintenance, cell growth and survival in vitro. On the contrary, development of tumors upon subcutaneously grafting of U87MG and TB10 cells and intracranial implantation of U87MG cells in nude athymic mice was strongly reduced by telomerase inhibition.

  5. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice.

    PubMed

    Aharinejad, Seyedhossein; Abraham, Dietmar; Paulus, Patrick; Abri, Hojatollah; Hofmann, Michael; Grossschmidt, Karl; Schäfer, Romana; Stanley, E Richard; Hofbauer, Reinhold

    2002-09-15

    Matrix metalloproteinases (MMPs) foster cellular invasion by disrupting extracellular matrix barriers and thereby facilitate tumor development. MMPs are synthesized by both cancer cells and adjacent stromal cells, primarily macrophages. The production of macrophages is regulated by colony-stimulating factor-1 (CSF-1). Tissue CSF-1 expression increased significantly in embryonic and colon cancer xenografts. We, therefore, hypothesized that blocking CSF-1 may suppress tumor growth by decelerating macrophage-mediated extracellular matrix breakdown. Cells expressing CSF-1 and mice xenografted with CSF-1 receptor (c-fms)- and CSF-1-negative malignant human embryonic or colon cancer cells were treated with mouse CSF-1 antisense oligonucleotides. Two weeks of CSF-1 antisense treatment selectively down-regulated CSF-1 mRNA and protein tissue expression in tumor lysates. CSF-1 blockade suppressed the growth of embryonic tumors to dormant levels and the growth of the colon carcinoma by 50%. In addition, tumor vascularity and the expression of MMP-2 and angiogenic factors were reduced. Six-month survival was observed in colon carcinoma mice only after CSF-1 blockade, whereas controls were all dead at day 65. These results suggest that human embryonic and colon cancer cells up-regulate host CSF-1 and MMP-2 expression. Because the cancer cells used were CSF-1 negative, CSF-1 antisense targeted tumor stromal cell CSF-1 production. CSF-1 blockade could be a novel strategy in treatment of solid tumors.

  6. Preoperative evaluation of renal artery in patients with renal tumor

    PubMed Central

    Zhu, Liangsong; Wu, Guangyu; Wang, Jianfeng; Huang, Jiwei; Kong, Wen; Chen, Yonghui; Xue, Wei; Huang, Yiran; Zhang, Jin

    2016-01-01

    Abstract To investigate the feasibility of the noncontrast-enhanced magnetic resonance angiography (NCE-MRA) to evaluate renal arteries before partial nephrectomy (PN). Retrospective analyzed 479 patients who underwent renal surgery between January 2013 and December 2015 with NCE-MRA or computed tomographic angiography (CTA) renal artery image reconstruction preoperative in our department. The renal artery reconstruction score (RARS) was based on the level of artery visualization in a 4-class criterion, and the R.E.N.A.L nephrometry score (R.E.N.A.L), arterial based complexity (ABC) were also analyzed. Of the 479 patients, the overall-lever RARS was 3.62, and the average in 2 groups was no significant difference (NCE-MRA vs CTA, P = 0.072). The performance of NCE-MRA in PN group was similar with CTA. Further comparison demonstrated that the efficiency of NCE-MRA in moderate- or low-degree tumor according to the R.E.N.A.L and ABC complexity less than 3S was equal to CTA. However, high degree (P < 0.001), 3S (P = 0.027), or 3H (P < 0.001) would affect the imaging of renal artery. Intragroup analysis showed that tumor complexity such as max tumor size (r = −o.351, P < 0.001), R.E.N.A.L (r = −0.439, P < 0.001), and ABC (r = −0.619, P < 0.001) were closely correlated with the NCE-MRA performance. The images of 2 sides of the kidney were compared in single person as well, which was meaningful for NCE-MRA patients only (NCE-MRA, P < 0.001; CTA, P = 0.182). The renal artery reconstruction performed by NCE-MRA is feasible and has a similar achievement in the PN potential recipients, with a lower side effect, and meets the requirements for making surgical decision. It has a broad application prospect in clinical practice; however, it still needs to further improve the ability in more complex tumors. PMID:27759632

  7. Bone marrow CFU-GM and human tumor xenograft efficacy of three antitumor nucleoside analogs.

    PubMed

    Bagley, Rebecca G; Roth, Stephanie; Kurtzberg, Leslie S; Rouleau, Cecile; Yao, Min; Crawford, Jennifer; Krumbholz, Roy; Lovett, Dennis; Schmid, Steven; Teicher, Beverly A

    2009-05-01

    Nucleoside analogs are rationally designed anticancer agents that disrupt DNA and RNA synthesis. Fludarabine and cladribine have important roles in the treatment of hematologic malignancies. Clofarabine is a next generation nucleoside analog which is under clinical investigation. The bone marrow toxicity, tumor cell cytotoxicity and human tumor xenograft activity of fludarabine, cladribine and clofarabine were compared. Mouse and human bone marrow were subjected to colony forming (CFU-GM) assays over a 5-log concentration range in culture. NCI-60 cell line screening data were compared. In vivo, a range of clofarabine doses was compared with fludarabine for efficacy in several human tumor xenografts. The IC90 concentrations for fludarabine and cladribine for mouse CFU-GM were >30 and 0.93 microM, and for human CFU-GM were 8 and 0.11 microM, giving mouse to human differentials of >3.8- and 8.5-fold. Clofarabine produced IC90s of 1.7 microM in mouse and 0.51 microM in human CFU-GM, thus a 3.3-fold differential between species. In the NCI-60 cell line screen, fludarabine and cladribine showed selective cytotoxicity toward leukemia cell lines while for clofarabine there was no apparent selectivity based upon origin of the tumor cells. In vivo, clofarabine produced a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI-8226 multiple myeloma, and HT-29 colon carcinoma models. The PC3 prostate carcinoma was equally responsive to clofarabine and fludarabine. Bringing together bone marrow toxicity data, tumor cell line cytotoxicity data, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic.

  8. Renal Primitive Neuroectodermal Tumor: A Case Report.

    PubMed

    Yang, Cheng; Xu, Hanjiang; Zhou, Jun; Hao, Zongyao; Wang, Jianzhong; Lin, Changmin; Zhang, Li; Zhu, Xia; Liang, Chaozhao

    2015-12-01

    Primitive neuroectodermal tumor (PNET) is a malignant small round cell tumor and typically arises from bone or soft tissue in adolescents and young adults. Renal PNET is extraordinarily rare and exhibits highly aggressive biological behavior with poor prognosis.We present here a new case of renal PNET in a 31-year-old female. The patients were referred to our hospital because of left flank pain with nausea and vomiting for 1 week. A computed tomography scan revealed a 14.7 × 12.7 cm well-defined, unevenly mass lesion with both solid and cystic components and the tumor was not enhanced uniformly.A preoperative diagnosis of cystic renal cell carcinoma and urinary tract infection was made. The patient undergone anti-inflammatory therapy followed by a left radical nephrectomy. Taken with morphological pattern and immunohistochemical markers, a diagnosis of renal PNET was made. Two cycles of combined chemotherapy were executed. At the 14-month follow-up, no evidence of metastasis or recurrence was indicated.This case reminds clinicians that for adolescents and young adults with a suspicious renal mass, a diagnosis of renal PNET should be always considered. An initial surgery followed by radiotherapy and chemotherapy is suggested for the therapeutic management.

  9. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  10. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity.

    PubMed

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  11. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    PubMed Central

    2014-01-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery. PMID:24685243

  12. The MET Inhibitor AZD6094 (Savolitinib, HMPL-504) Induces Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models.

    PubMed

    Schuller, Alwin G; Barry, Evan R; Jones, Rhys D O; Henry, Ryan E; Frigault, Melanie M; Beran, Garry; Linsenmayer, David; Hattersley, Maureen; Smith, Aaron; Wilson, Joanne; Cairo, Stefano; Déas, Olivier; Nicolle, Delphine; Adam, Ammar; Zinda, Michael; Reimer, Corinne; Fawell, Stephen E; Clark, Edwin A; D'Cruz, Celina M

    2015-06-15

    Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication. ©2015 American Association for Cancer Research.

  13. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model.

    PubMed

    Muselaers, Constantijn H J; Oosterwijk, Egbert; Bos, Desirée L; Oyen, Wim J G; Mulders, Peter F A; Boerman, Otto C

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT study in mice with intraperitoneally growing ccRCC lesions. Mice with intraperitoneal xenografts were injected with 1, 3, 10, 30, or 100 μg of G250 labeled with 10 MBq indium 111 (111In) to determine the optimal protein dose. The optimal protein dose determined with imaging and biodistribution studies was used in a subsequent RIT experiment in three groups of 10 mice with intraperitoneal SK-RC-52 tumors. One group received 13 MBq 177Lu-DOTA-G250, a control group received 13 MBq nonspecific 177Lu-MOPC21, and the second control group was not treated and received 20 MBq 111In-DOTA-G250. The optimal G250 protein dose to target ccRCC in this model was 10 μg G250. Treatment with 13 MBq 177Lu-DOTA-G250 was well tolerated and resulted in significantly prolonged median survival (139 days) compared to controls (49-53 days, p  =  .015), indicating that RIT has potential in this metastatic ccRCC model.

  14. Radiocurability Is Associated with Interstitial Fluid Pressure in Human Tumor Xenografts1

    PubMed Central

    Rofstad, Einar K; Gaustad, Jon-Vidar; Brurberg, Kjetil G; Mathiesen, Berit; Galappathi, Kanthi; Simonsen, Trude G

    2009-01-01

    Interstitial fluid pressure (IFP) has been shown to be an independent prognostic parameter for disease-free survival in cervical carcinoma patients treated with radiation therapy. However, the underlying mechanisms are not fully understood. The main aims of this study were to investigate whether tumor radiocurability may be associated with IFP and, if so, to identify possible mechanisms. Human melanoma xenografts transplanted intradermally or in window chamber preparations in BALB/c nu/nu mice were used as preclinical tumor models. Radiation dose resulting in 50% local tumor control was higher by a factor of 1.19 ± 0.06 in tumors with IFP ≥ 9 mm Hg than in tumors with IFP ≤ 7 mm Hg. Tumor IFP was positively correlated to vessel segment length and vessel tortuosity and was inversely correlated to vessel density. Compared with tumors with low IFP, tumors with high IFP showed high resistance to blood flow, high frequency of Po2 fluctuations, and high fractions of acutely hypoxic cells, whereas the fraction of radiobiologically hypoxic cells and the fraction of chronically hypoxic cells did not differ between tumors with high and tumors with low IFP. IFP showed a significant correlation to the fraction of acutely hypoxic cells, probably because both parameters were determined primarily by the microvascular resistance to blood flow. Therefore, the observed association between tumor radiocurability and IFP was most likely an indirect consequence of a strong relationship between IFP and the fraction of acutely hypoxic cells. PMID:19881960

  15. Interstitial Fluid Pressure and Vascularity of Intradermal and Intramuscular Human Tumor Xenografts

    SciTech Connect

    Gulliksrud, Kristine; Galappathi, Kanthi; Rofstad, Einar K.

    2011-05-01

    Purpose: High interstitial fluid pressure (IFP) in tumors has been shown to be associated with poor prognosis. Mechanisms underlying the intertumor heterogeneity in IFP were investigated in this study. Methods and Materials: A-07 melanoma xenografts were transplanted intradermally or intramuscularly in BALB/c nu/nu mice. IFP was measured in the center of the tumors with a Millar catheter. Tumor blood perfusion and extracellular volume fraction were assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The necrotic fraction, vascular density, and vessel diameters of the tumors were determined by image analysis of histological preparations. Results: Significant intertumor heterogeneity in IFP, blood perfusion, and microvascular morphology was observed whether the tumors were transplanted intradermally or intramuscularly. High IFP was mainly a consequence of high resistance to blood flow caused by low vessel diameters in either transplantation site. IFP decreased with increasing blood perfusion in intradermal tumors and increased with increasing blood perfusion in intramuscular tumors, mainly because the morphology of the tumor microvasculature differed systematically between the two tumor models. Conclusion: The potential of DCE-MRI as a noninvasive method for assessing the IFP of tumors may be limited because any relationship between IFP and blood perfusion may differ with the tumor growth site.

  16. Interpretation of male rat renal tubule tumors.

    PubMed Central

    Rodgers, I S; Baetcke, K P

    1993-01-01

    Based on an analysis of recent scientific studies, a Technical Panel of the U.S. Environmental Protection Agency's (EPA) Risk Assessment Forum recently advised EPA risk assessors against using information on certain male rat renal tubule tumors to assess human risk under conditions specified in a new Forum report. Risk assessment approaches generally assume that chemicals producing tumors in laboratory animals are a potential cancer hazard to humans. For most chemicals, including classical rodent kidney carcinogens such as N-ethyl-N-hydroxyethylnitrosamine, this extrapolation remains appropriate. Some chemicals, however, induce accumulation of alpha 2u-globulin (alpha 2u-g), a low molecular weight protein, in the male rat kidney. The alpha 2u-g accumulation initiates a sequence of events that appears to lead to renal tubule tumor formation. Female rats and other laboratory mammals administered the same chemicals do not accumulate low molecular weight protein in the kidney, and they do not develop renal tubule tumors. Because humans appear to be more like other laboratory animals than like the male rat, in this special situation, the male rat is not a good model for assessing human risk. The Forum report stresses the need for full scrutiny of a substantial set of data to determine when it is reasonable to presume that renal tumors in male rats are linked to a process involving alpha 2u-g accumulation and to select appropriate procedures for estimating human risks under such circumstances. PMID:7517352

  17. Renal tumors: diagnostic and prognostic biomarkers.

    PubMed

    Tan, Puay Hoon; Cheng, Liang; Rioux-Leclercq, Nathalie; Merino, Maria J; Netto, George; Reuter, Victor E; Shen, Steven S; Grignon, David J; Montironi, Rodolfo; Egevad, Lars; Srigley, John R; Delahunt, Brett; Moch, Holger

    2013-10-01

    The International Society of Urological Pathology convened a consensus conference on renal cancer, preceded by an online survey, to address issues relating to the diagnosis and reporting of renal neoplasia. In this report, the role of biomarkers in the diagnosis and assessment of prognosis of renal tumors is addressed. In particular we focused upon the use of immunohistochemical markers and the approach to specific differential diagnostic scenarios. We enquired whether cytogenetic and molecular tools were applied in practice and asked for views on the perceived prognostic role of biomarkers. Both the survey and conference voting results demonstrated a high degree of consensus in participants' responses regarding prognostic/predictive markers and molecular techniques, whereas it was apparent that biomarkers for these purposes remained outside the diagnostic realm pending clinical validation. Although no individual antibody or panel of antibodies reached consensus for classifying renal tumors, or for confirming renal metastatic disease, it was noted from the online survey that 87% of respondents used immunohistochemistry to subtype renal tumors sometimes or occasionally, and a majority (87%) used immunohistochemical markers (Pax 2 or Pax 8, renal cell carcinoma [RCC] marker, panel of pan-CK, CK7, vimentin, and CD10) in confirming the diagnosis of metastatic RCC. There was consensus that immunohistochemistry should be used for histologic subtyping and applied before reaching a diagnosis of unclassified RCC. At the conference, there was consensus that TFE3 and TFEB analysis ought to be requested when RCC was diagnosed in a young patient or when histologic appearances were suggestive of the translocation subtype; whereas Pax 2 and/or Pax 8 were considered to be the most useful markers in the diagnosis of a renal primary.

  18. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Gupta, Rohan; Vishwanatha, Jamboor K

    2013-09-01

    Liposome-based drug delivery has been successful in the past decade, with some formulations being Food and Drug Administration (FDA)-approved and others in clinical trials around the world. The major disadvantage associated with curcumin, a potent anticancer agent, is its poor aqueous solubility and hence low systemic bioavailability. However, curcumin can be encapsulated into liposomes to improve systemic bioavailability. We determined the antitumor effects of a liposomal curcumin formulation against human MiaPaCa pancreatic cancer cells both in vitro and in xenograft studies. Histological sections were isolated from murine xenografts and immunohistochemistry was performed. The in vitro (IC50) liposomal curcumin proliferation-inhibiting concentration was 17.5 μM. In xenograft tumors in nude mice, liposomal curcumin at 20 mg/kg i.p. three-times a week for four weeks induced 42% suppression of tumor growth compared to untreated controls. A potent antiangiogenic effect characterized by a reduced number of blood vessels and reduced expression of vascular endothelial growth factor and annexin A2 proteins, as determined by immunohistochemistry was observed in treated tumors. These data clearly establish the efficacy of liposomal curcumin in reducing human pancreatic cancer growth in the examined model. The therapeutic curcumin-based effects, with no limiting side-effects, suggest that liposomal curcumin may be beneficial in patients with pancreatic cancer.

  19. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  20. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  1. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  2. Primary renal carcinoid tumor: A radiologic review

    PubMed Central

    Lamb, Leslie; Shaban, Wael

    2015-01-01

    Carcinoid tumor is the classic famous anonym of neuroendocrine neoplasms. Primary renal carcinoid tumors are extremely rare, first described by Resnick and colleagues in 1966, with fewer than a total of 100 cases reported in the literature. Thus, given the paucity of cases, the clinical and histological behavior is not well understood, impairing the ability to predict prognosis. Computed tomography and (occasionally) octreotide studies are used in the diagnosis and followup of these rare entites. A review of 85 cases in the literature shows that no distinctive imaging features differentiate them from other primary renal masses. The lesions tend to demonstrate a hypodense appearance and do not usually enhance in the arterial phases, but can occasionally calcify. Octreotide scans do not seem to help in the diagnosis; however, they are more commonly used in the postoperative followup. In addition, we report a new case of primary renal carcinoid in a horseshoe kidney. PMID:27186242

  3. Folliculin Contributes to VHL Tumor Suppressing Activity in Renal Cancer through Regulation of Autophagy

    PubMed Central

    Kellner, Emily; Mikhaylova, Olga; Yi, Ying; Sartor, Maureen A.; Medvedovic, Mario; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2013-01-01

    Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. PMID:23922894

  4. [Combination of phenylbutyrate and 5-Aza-2'deoxycytidine inhibits human Kasumi-1 xenograft tumor growth in nude mice].

    PubMed

    Hao, Chang-lai; Lin, Dong; Wang, Li-hong; Xing, Hai-yan; Wang, Min; Wang, Jian-Xiang

    2004-11-01

    To investigate the tumor suppression efficacy of histone deacetylase inhibitor, phenylbutyrate (PB), in combination with DNA methylation inhibitor 5-Aza-2-deoxycytidine (5-Aza-CdR) in the treatment of Kasumi-1 xenograft tumor in nude mice and its mechanism. The nude mice model of Kasumi-1 xenograft tumor was established by subcutaneous inoculation. Latency of tumor formation, the ability of Kasumi-1 cells pre treated with PB to form the xenograft tumor, and the tumor suppression activity of PB and 5-Aza-CdR by intraperitoneal injection in xenografted mice model were detected. Cell differentiation and cell cycle parameters of the tumor cells were analyzed by flow cytometry analysis, apoptosis by TUNEL in situ hybridization, and tumor microvessel density (MVD) by immunohistochemistry study. The latency of tumor formation in mice with or without previous lienectomy was 17 approximately 23 and 40 approximately 50 days, respectively. Tumor cells xenografted could not be found in other tissues than in inoculation area, and still harbored the specific t(8;21) and AML1-ETO fusion gene. When the xenografted mice models treated with PB, 5-Aza-CdR, or both, the tumor growth inhibition rates were 49.07%, 25.69% and 87.46% (P < 0.05), the apoptosis indexes (AI) of tumor cells were (2.25 +/- 0.85)%, (1.32 +/- 0.68)%, and (5.41 +/- 1.56)% (P < 0.05), and the microvessel densities (MVD) were 21.69 +/- 6.25, 28.34 +/- 4.24 and 9.48 +/- 3.21 (P < 0.01), respectively. All the data above were significantly different from that in control (P < 0.05). The expression of CD11b and CD13 antigen of the tumor cells was increased in xenografted mice model treated with PB when compared with the control \\[(12.08 +/- 1.02)% and (54.91 +/- 2.72)%\\], respectively (P < 0.01), and tumor cells showed a cell cycle arrest with increased G(0)/G(1)-phase cells and decreased S-phase cells. PB inhibited the growth of Kasumi-1 xenograft tumor by inducing tumor cell apoptosis and differentiation, and

  5. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  6. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  7. Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate Corynebacterium bovis.

    PubMed

    Manuel, Christopher; Bagby, Stacey; Reisinger, Julie; Pugazhenthi, Umarani; Pitts, Todd; Keysar, Stephen; Arcaroli, John; Leszczynski, Jori

    2017-02-16

    Human patient-derived xenograft (PDX) tumors, propagated in immunodeficient mice, are rapidly growing in use as amodelfor cancer research. Horizontal transfer between mice, without in vitro cell culture, allows these tumors to retainmany of their unique characteristics from their individual patient of origin. However, the immunodeficient mouse strainsused to grow these tumors are susceptible to numerous opportunistic pathogens, including Corynebacterium bovis. At ourinstitution, 2 in vivo tumor banks of PDX tumors had been maintained within nude mouse colonies enzootically infectedwith C. bovis. Elimination of C. bovis from these colonies required the aseptic harvest and horizontal transfer of tumor tissue between infected and naïve recipient mice without cross-contamination. Out of necessity, we developed a standard operating procedure using enhancements to traditional aseptic surgical technique with concurrent application of both procedural and physical barriers to prevent C. bovis transmission. By using these methods, all 61 unique PDX tumor models were successfullyharvested from C. bovis-infected mice and transferred into recipient mice without transmission of infection. Our datademonstrate that, in situations where C. bovis-free colonies can be established and maintained, this procedure can successfullybe used to eliminate C. bovis from an in vivo tumor bank of valuable PDX tumors.

  8. Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate Corynebacterium bovis.

    PubMed

    Manuel, Christopher A; Bagby, Stacey M; Reisinger, Julie A; Pugazhenthi, Umarani; Pitts, Todd M; Keysar, Stephen B; Arcaroli, John J; Leszczynski, Jori K

    2017-03-01

    Human patient-derived xenograft (PDX) tumors, propagated in immunodeficient mice, are rapidly growing in use as a model for cancer research. Horizontal transfer between mice, without in vitro cell culture, allows these tumors to retain many of their unique characteristics from their individual patient of origin. However, the immunodeficient mouse strains used to grow these tumors are susceptible to numerous opportunistic pathogens, including Corynebacterium bovis. At our institution, 2 in vivo tumor banks of PDX tumors had been maintained within nude mouse colonies enzootically infected with C. bovis. Elimination of C. bovis from these colonies required the aseptic harvest and horizontal transfer of tumor tissue between infected and naïve recipient mice without cross-contamination. Out of necessity, we developed a standard operating procedure using enhancements to traditional aseptic surgical technique with concurrent application of both procedural and physical barriers to prevent C. bovis transmission. By using these methods, all 61 unique PDX tumor models were successfully harvested from C. bovis-infected mice and transferred into recipient mice without transmission of infection. Our data demonstrate that, in situations where C. bovis-free colonies can be established and maintained, this procedure can successfully be used to eliminate C. bovis from an in vivo tumor bank of valuable PDX tumors.

  9. Renal and adrenal tumors: Pathology, radiology, ultrasonography, therapy, immunology

    SciTech Connect

    Lohr, E.; Leder, L.D.

    1987-01-01

    Aspects as diverse as radiology, pathology, urology, pediatrics and immunology have been brought together in one book. The most up-do-date methods of tumor diagnosis by CT, NMR, and ultrasound are covered, as are methods of catheter embolization and radiation techniques in case of primarily inoperable tumors. Contents: Pathology of Renal and Adrenal Neoplasms; Ultrasound Diagnosis of Renal and Pararenal Tumors; Computed-Body-Tomography of Renal Carcinoma and Perirenal Masses; Magnetic Resonance Imaging of Renal Mass Lesions; I-125 Embolotherapy of Renal Tumors; Adrenal Mass Lesions in Infants and Children; Computed Tomography of the Adrenal Glands; Scintigraphic Studies of Renal and Adrenal Function; Surgical Management of Renal Cell Carcinoma; Operative Therapy of Nephroblastoma; Nonoperative Treatment of Renal Cell Carcinoma; Prenatal Wilms' Tumor; Congenital Neuroblastoma; Nonsurgical Management of Wilms' Tumor; Immunologic Aspects of Malignant Renal Disease.

  10. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  11. Growth rate analysis and efficient experimental design for tumor xenograft studies.

    PubMed

    Hather, Gregory; Liu, Ray; Bandi, Syamala; Mettetal, Jerome; Manfredi, Mark; Shyu, Wen-Chyi; Donelan, Jill; Chakravarty, Arijit

    2014-01-01

    Human tumor xenograft studies are the primary means to evaluate the biological activity of anticancer agents in late-stage preclinical drug discovery. The variability in the growth rate of human tumors established in mice and the small sample sizes make rigorous statistical analysis critical. The most commonly used summary of antitumor activity for these studies is the T/C ratio. However, alternative methods based on growth rate modeling can be used. Here, we describe a summary metric called the rate-based T/C, derived by fitting each animal's tumor growth to a simple exponential model. The rate-based T/C uses all of the data, in contrast with the traditional T/C, which only uses a single measurement. We compare the rate-based T/C with the traditional T/C and assess their performance through a bootstrap analysis of 219 tumor xenograft studies. We find that the rate-based T/C requires fewer animals to achieve the same power as the traditional T/C. We also compare 14-day studies with 21-day studies and find that 14-day studies are more cost efficient. Finally, we perform a power analysis to determine an appropriate sample size.

  12. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors.

    PubMed

    Mafuvadze, Benford; Liang, Yayun; Besch-Williford, Cynthia; Zhang, Xu; Hyder, Salman M

    2012-08-01

    Recent clinical and epidemiological evidence shows that hormone replacement therapy (HRT) containing both estrogen and progestin increases the risk of primary and metastatic breast cancer in post-menopausal women while HRT containing only estrogen does not. We and others previously showed that progestins promote the growth of human breast cancer cells in vitro and in vivo. In this study, we sought to determine whether apigenin, a low molecular weight anti-carcinogenic flavonoid, inhibits the growth of aggressive Her2/neu-positive BT-474 xenograft tumors in nude mice exposed to medroxyprogesterone acetate (MPA), the most commonly used progestin in the USA. Our data clearly show that apigenin (50 mg/kg) inhibits progression and development of these xenograft tumors by inducing apoptosis, inhibiting cell proliferation, and reducing expression of Her2/neu. Moreover, apigenin reduced levels of vascular endothelial growth factor (VEGF) without altering blood vessel density, indicating that continued expression of VEGF may be required to promote tumor cell survival and maintain blood flow. While previous studies showed that MPA induces receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rodent mammary gland, MPA reduced levels of RANKL in human tumor xenografts. RANKL levels remained suppressed in the presence of apigenin. Exposure of BT-474 cells to MPA in vitro also resulted in lower levels of RANKL; an effect that was independent of progesterone receptors since it occurred both in the presence and absence of the antiprogestin RU-486. In contrast to our in vivo observations, apigenin protected against MPA-dependent RANKL loss in vitro, suggesting that MPA and apigenin modulate RANKL levels differently in breast cancer cells in vivo and in vitro. These preclinical findings suggest that apigenin has potential as an agent for the treatment of progestin-dependent breast disease.

  13. Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts

    SciTech Connect

    Sambade, Maria J.; Kimple, Randall J.; Camp, J. Terese; Peters, Eldon; Livasy, Chad A.; Sartor, Carolyn I.; Shields, Janiel M.

    2010-06-01

    Purpose: To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts. Methods and Materials: Mice bearing xenografts of basal-like/EGFR+ SUM149 and HER2+ SUM225 breast cancer cells were treated with lapatinib and fractionated radiotherapy and tumor growth inhibition correlated with alterations in ERK1 and AKT activation by immunohistochemistry. Results: Basal-like/EGFR+ SUM149 breast cancer tumors were completely resistant to treatment with lapatinib alone but highly growth impaired with lapatinib plus radiotherapy, exhibiting an enhancement ratio average of 2.75 and a fractional tumor product ratio average of 2.20 during the study period. In contrast, HER2+ SUM225 breast cancer tumors were highly responsive to treatment with lapatinib alone and yielded a relatively lower enhancement ratio average of 1.25 during the study period with lapatinib plus radiotherapy. Durable tumor control in the HER2+ SUM225 model was more effective with the combination treatment than either lapatinib or radiotherapy alone. Immunohistochemical analyses demonstrated that radiosensitization by lapatinib correlated with ERK1/2 inhibition in the EGFR+ SUM149 model and with AKT inhibition in the HER2+ SUM225 model. Conclusion: Our data suggest that lapatinib combined with fractionated radiotherapy may be useful against EGFR+ and HER2+ breast cancers and that inhibition of downstream signaling to ERK1/2 and AKT correlates with sensitization in EGFR+ and HER2+ cells, respectively.

  14. The TCD[sub 50] and regrowth delay assay in human tumor xenografts: Differences and implications

    SciTech Connect

    Budach, W.; Budach, V.; Stuschke, M.; Dinges, S.; Sack, H. )

    1993-01-15

    The response to irradiation of five human xenograft cell lines - a malignant paraganglioma, a neurogenic sarcoma, a malignant histiocytoma, a primary lymphoma of the brain, and a squamous cell carcinoma - were tested in nude mice. All mice underwent 5 Gy whole body irradiation prior to xenotransplantation to minimize the residual immune response. The subcutaneous tumors were irradiated at a tumor volume of 120 mm[sup 3] under acutely hypoxic conditions with single doses between 8 Gy and 80 Gy depending on the expected radiation sensitivity of the tumor line. Endpoints of the study were the tumor control dose 50% (TCD[sub 50]) and the regrowth delay endpoints growth delay, specific growth delay, and the tumor bed effect corrected specific growth delay. Specific growth delay and corrected specific growth delay at 76% of the TCD[sub 50] was used in order to compare the data to previously published data from spheroids. The lowest TCD[sub 50] was found in the lymphoma with 24.9 Gy, whereas the TCD[sub 50] of the soft tissue sarcomas and the squamous cell carcinoma ranged from 57.8 Gy to 65.6 Gy. The isoeffective dose levels for the induction of 30 days growth delay, a specific growth delay of 3, and a corrected specific growth delay of 3 ranged from 15.5 Gy (ECL1) to 37.1 Gy (FADU), from 7.2 Gy (ENE2) to 45.6 Gy (EPG1) and from 9.2 Gy (ENE2) to 37.6 Gy (EPG1), respectively. The corrected specific growth delay at 76% of the TCD[sub 50] was correlated with the number of tumor rescue units per 100 cells in spheroids, which was available for three tumor lines, and with the tumor doubling time in xenografts (n = 5). The TCD[sub 50] values corresponded better to the clinical experience than the regrowth delay data. There was no correlation between TCD[sub 50] and any of the regrowth delay endpoints. This missing correlation was most likely a result of large differences in the number of tumor rescue units in human xenografts of the same size.

  15. Primary renal carcinoid tumor: A rare cystic renal neoplasm

    PubMed Central

    Yoon, Jung-Hee

    2013-01-01

    We present the case of a 21-year-old man with an incidentally detected cystic renal mass. A well-defined, solid mass measuring approximately 8 cm x 6 cm with a cystic component was identified in the left kidney by abdominal multidetector computed tomography (CT) and ultrasonography. The mass was well-enhanced on the corticomedullary CT phase and washout of enhancement occurred on the nephrographic phase. The mass contained peripheral wall and septal calcifications in the cystic component. The lesion was resected and diagnosed as a primary renal carcinoid tumor. Primary carcinoid tumors of the kidney are extremely rare. This case is notable because of the rarity of this neoplasm and its unique radiologic and pathologic findings. A review of previously reported cases in the literature is also presented. PMID:24003360

  16. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  17. [Gastrointestinal stromal tumor and renal transplant].

    PubMed

    Seculini Patiño, Carina E; Tabares, Aldo H; Laborie, Maria V; Diller, Ana

    2017-01-01

    Gastrointestinal stromal tumor (GIST) accounts for nearly 1% of all gastrointestinal tumors. Its association with renal transplantation is not frequent. Approximately 95% of GIST show staining for CD177. DOG1 is a recently described monoclonal antibody that shows positivity even in the absence of CD177 staining. The diagnosis of GIST should be pursued because of the availability of very effective treatments with tyrosine-kinase inhibitors. Herein, we describe the case of a woman with renal transplant who presented a small bowel GIST and weak positivity for CD177, treated initially with surgery. Tumor recurrence was documented 3 years later and histopatology showed loss of CD177 staining and positivity for DOG1. She was treated with imatimib without further recurrence after five years of follow up.

  18. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  19. Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts

    PubMed Central

    José, Anabel; Sobrevals, Luciano; Camacho-Sánchez, Juan Miguel; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p<0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors. PMID:23328228

  20. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model.

    PubMed

    Hofmann, Matthias; McCormack, Emmet; Mujić, Maja; Rossberg, Maila; Bernd, August; Bereiter-Hahn, Jürgen; Gjertsen, Bjørn Tore; Wiig, Helge; Kippenberger, Stefan

    2009-08-01

    Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20% HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  1. Assessment of Tumor Stiffness With Shear Wave Elastography in a Human Prostate Cancer Xenograft Implantation Model.

    PubMed

    Wang, Yiru; Yao, Binwei; Li, Hongfei; Zhang, Yan; Gao, Hanjing; Gao, Yabin; Peng, Ruiyun; Tang, Jie

    2017-05-01

    To investigate the stiffness of human prostate cancer in a xenograft implantation model using shear wave elastography and compare the pathologic features of tumors with varying elasticity. Human prostate cancer DU-145 cells were injected into 24 nude male mice. The mice were divided into 3 groups according to the time of transplantation (6, 8, and 10 weeks). The volume, elasticity, and Young modulus of tumors were recorded by 2-dimensional sonography and shear wave elastography. The tumors were collected for pathologic analyses: hematoxylin-eosin staining, Ponceau S, and aniline staining were used to stain collagen and elastic fibers, and picric acid-sirius red staining was used to indicate type I and III collagen. The area ratios of collagen I/III were calculated. The correlation between the Young modulus of the tumor and area ratio of collagen I/III were evaluated. Immunohistochemistry of vimentin and α-smooth muscle actin was performed. Nineteen tumors in 3 groups were collected. The volume and mean Young modulus increased with the time of transplantation. There were more collagen fibers in the stiff tumors, and there were significant differences in the area ratios of collagen I/III between groups 1 (mean ± SD, 0.50 ± 0.17) and 3 (1.97 ± 0.56; P < .01). The Young modulus of the tumors showed a very significant correlation with the area ratios of collagen I/III (r = 0.968; P < .05). The expression level of α-smooth muscle actin protein was higher in group 3 than in the other groups, but differences in vimentin expression were barely seen. Shear wave elastography is a novel useful technology for showing the elasticity of human prostate cancer xenograft implantation tumors. Collagen fibers, especially collagen type I, play a crucial role in the elasticity in the human prostate cancer xenograft implantation model. © 2017 by the American Institute of Ultrasound in Medicine.

  2. [Diagnosis and treatment of hydrocephalus-accompanied renal calculi complicated with renal tumor: 5 case reports].

    PubMed

    He, Chong-jun; Qin, Cai-peng; Li, Jian-xing; Xiong, Liu-lin; Xu, Qing-quan; Yang, Bo; Xu, Tao; Huang, Xiao-bo; Wang, Xiao-feng

    2014-08-18

    To investigate the diagnosis and treatment of renal pelvic tumor combined with renal urinary calculi and hydronephrosis. Five patients with renal pelvic tumor who underwent relief of the upper urinary obstruction were reviewed. One of the cases lost the opportunity of surgical therapy when pelvic tumor was detected at the advanced stage, and the other 4 cases had received surgery and were followed up. As pelvic tumor progresses rapidly after the renal blood flow is improved, and renal urinary calculi with hydronephrosis relieved; the patients with renal pelvic tumor need early diagnosis, aggressive treatment and close follow-up.

  3. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    PubMed Central

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  4. Cyclophilin A Enhances Cell Proliferation and Xenografted Tumor Growth of Early Gastric Cancer.

    PubMed

    Feng, Wenhua; Xin, Yan; Xiao, Yuping; Li, Wenhui; Sun, Dan

    2015-09-01

    Recently Cyclophilin A (CypA) was identified as a candidate target protein in gastric carcinoma. However, the role of CypA in gastric cancer (GC) has not been investigated extensively so far. The purpose of this study was to determine the expression pattern of CypA in human GC, and to explore the effects of suppressed CypA expression on cell proliferation and xenografted tumor growth of gastric cancer. In the present study, we detected the expression pattern of CypA in human GC by immunohistochemistry analysis. Further, the RNAi method was used to silence CypA, and colony formation assay, growth curves, cell cycle and mouse xenograft were analysed. An elevated expression of CypA in GC tissues compared with normal gastric mucosa was observed, especially in TNM stage-I and intestinal type of tumor. CypA was overexpressed in most GC cell lines and endogenous expression of CypA correlated with cell growth phenotypes. Transient suppression of CypA reduced the proliferation of BGC-823 and SGC-7901 GC cell lines. Exogenous CypA promoted the proliferation of NCI-N87 GC cells in a concentration dependent manner. Further study revealed that stable CypA silencing inhibited the proliferation, prevented cell cycle and reduced autophagy of BGC-823 GC cells in vitro through suppressing the ERK1/2 signal pathway. Stable CypA silencing also inhibited the growth of xenografted tumor of BGC-823 GC cell in nude mice. These results indicate a special function mode for CypA of playing more important roles in the early stage of gastric tumorigenesis and suggest CypA as a new molecular target of diagnosis and treatment for GC patients.

  5. The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets†

    PubMed Central

    Pode-Shakked, Naomi; Shukrun, Rachel; Mark-Danieli, Michal; Tsvetkov, Peter; Bahar, Sarit; Pri-Chen, Sara; Goldstein, Ronald S; Rom-Gross, Eithan; Mor, Yoram; Fridman, Edward; Meir, Karen; Simon, Amos; Magister, Marcus; Kaminski, Naftali; Goldmacher, Victor S; Harari-Steinberg, Orit; Dekel, Benjamin

    2013-01-01

    There are considerable differences in tumour biology between adult and paediatric cancers. The existence of cancer initiating cells/cancer stem cells (CIC/CSC) in paediatric solid tumours is currently unclear. Here, we show the successful propagation of primary human Wilms' tumour (WT), a common paediatric renal malignancy, in immunodeficient mice, demonstrating the presence of a population of highly proliferative CIC/CSCs capable of serial xenograft initiation. Cell sorting and limiting dilution transplantation analysis of xenograft cells identified WT CSCs that harbour a primitive undifferentiated – NCAM1 expressing – “blastema” phenotype, including a capacity to expand and differentiate into the mature renal-like cell types observed in the primary tumour. WT CSCs, which can be further enriched by aldehyde dehydrogenase activity, overexpressed renal stemness and genes linked to poor patient prognosis, showed preferential protein expression of phosphorylated PKB/Akt and strong reduction of the miR-200 family. Complete eradication of WT in multiple xenograft models was achieved with a human NCAM antibody drug conjugate. The existence of CIC/CSCs in WT provides new therapeutic targets. PMID:23239665

  6. The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets.

    PubMed

    Pode-Shakked, Naomi; Shukrun, Rachel; Mark-Danieli, Michal; Tsvetkov, Peter; Bahar, Sarit; Pri-Chen, Sara; Goldstein, Ronald S; Rom-Gross, Eithan; Mor, Yoram; Fridman, Edward; Meir, Karen; Simon, Amos; Magister, Marcus; Kaminski, Naftali; Goldmacher, Victor S; Harari-Steinberg, Orit; Dekel, Benjamin

    2013-01-01

    There are considerable differences in tumour biology between adult and paediatric cancers. The existence of cancer initiating cells/cancer stem cells (CIC/CSC) in paediatric solid tumours is currently unclear. Here, we show the successful propagation of primary human Wilms' tumour (WT), a common paediatric renal malignancy, in immunodeficient mice, demonstrating the presence of a population of highly proliferative CIC/CSCs capable of serial xenograft initiation. Cell sorting and limiting dilution transplantation analysis of xenograft cells identified WT CSCs that harbour a primitive undifferentiated-NCAM1 expressing-"blastema" phenotype, including a capacity to expand and differentiate into the mature renal-like cell types observed in the primary tumour. WT CSCs, which can be further enriched by aldehyde dehydrogenase activity, overexpressed renal stemness and genes linked to poor patient prognosis, showed preferential protein expression of phosphorylated PKB/Akt and strong reduction of the miR-200 family. Complete eradication of WT in multiple xenograft models was achieved with a human NCAM antibody drug conjugate. The existence of CIC/CSCs in WT provides new therapeutic targets.

  7. Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity.

    PubMed

    Cantor, Joshua P; Iliopoulos, Dimitrios; Rao, Atul S; Druck, Teresa; Semba, Shuho; Han, Shuang-Yin; McCorkell, Kelly A; Lakshman, Thiru V; Collins, Joshua E; Wachsberger, Phyllis; Friedberg, Joseph S; Huebner, Kay

    2007-01-01

    Epigenetic changes involved in cancer development, unlike genetic changes, are reversible. DNA methyltransferase and histone deacetylase inhibitors show antiproliferative effects in vitro, through tumor suppressor reactivation and induction of apoptosis. Such inhibitors have shown activity in the treatment of hematologic disorders but there is little data concerning their effectiveness in treatment of solid tumors. FHIT, WWOX and other tumor suppressor genes are frequently epigenetically inactivated in lung cancers. Lung cancer cell clones carrying conditional FHIT or WWOX transgenes showed significant suppression of xenograft tumor growth after induction of expression of the FHIT or WWOX transgene, suggesting that treatments to restore endogenous Fhit and Wwox expression in lung cancers would result in decreased tumorigenicity. H1299 lung cancer cells, lacking Fhit, Wwox, p16(INK4a) and Rassf1a expression due to epigenetic modifications, were used to assess efficacy of epigenetically targeted protocols in suppressing growth of lung tumors, by injection of 5-aza-2-deoxycytidine (AZA) and trichostatin A (TSA) in nude mice with established H1299 tumors. High doses of intraperitoneal AZA/TSA suppressed growth of small tumors but did not affect large tumors (200 mm(3)); lower AZA doses, administered intraperitoneally or intratumorally, suppressed growth of small tumors without apparent toxicity. Responding tumors showed restoration of Fhit, Wwox, p16(INKa), Rassf1a expression, low mitotic activity, high apoptotic fraction and activation of caspase 3. These preclinical studies show the therapeutic potential of restoration of tumor suppressor expression through epigenetic modulation and the promise of re-expressed tumor suppressors as markers and effectors of the responses.

  8. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  9. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models.

    PubMed

    Golas, Jennifer M; Lucas, Judy; Etienne, Carlo; Golas, Jonathan; Discafani, Carolyn; Sridharan, Latha; Boghaert, Erwin; Arndt, Kim; Ye, Fei; Boschelli, Diane H; Li, Fangbiao; Titsch, Craig; Huselton, Christine; Chaudhary, Inder; Boschelli, Frank

    2005-06-15

    Src up-regulation is a common event in human cancers. In colorectal cancer, increased Src levels are an indicator of poor prognosis, and progression to metastatic disease is associated with substantial increases in Src activity. Therefore, we examined the activity of SKI-606, a potent inhibitor of Src and Abl kinases, against colon tumor lines in vitro and in s.c. tumor xenograft models. SKI-606 inhibited Src autophosphorylation with an IC(50) of approximately 0.25 micromol/L in HT29 cells. Phosphorylation of Tyr(925) of focal adhesion kinase, a Src substrate, was reduced by similar concentrations of inhibitor. Antiproliferative activity on plastic did not correlate with Src inhibition in either HT29 or Colo205 cells (IC(50)s, 1.5 and 2.5 micromol/L, respectively), although submicromolar concentrations of SKI-606 inhibited HT29 cell colony formation in soft agar. SKI-606 also caused loosely aggregated Colo205 spheroids to condense into compact spheroids. On oral administration to nude mice at the lowest efficacious dose, peak plasma concentrations of approximately 3 micromol/L, an oral bioavailability of 18%, and a t(1/2) of 8.6 hours were observed. SKI-606 was orally active in s.c. colon tumor xenograft models and caused substantial reductions in Src autophosphorylation on Tyr(418) in HT29 and Colo205 tumors. SKI-606 inhibited HT29 tumor growth on once daily administration, whereas twice daily administration was necessary to inhibit Colo205, HCT116, and DLD1 tumor growth. These results support development of SKI-606 as a therapeutic agent for treatment of colorectal cancer.

  10. Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer

    PubMed Central

    Kalari, Krishna R.; Suman, Vera J.; Moyer, Ann M.; Yu, Jia; Visscher, Daniel W.; Dockter, Travis J.; Vedell, Peter T.; Sinnwell, Jason P.; Tang, Xiaojia; Thompson, Kevin J.; McLaughlin, Sarah A.; Moreno-Aspitia, Alvaro; Copland, John A; Northfelt, Donald W.; Gray, Richard J.; Hunt, Katie; Conners, Amy; Weinshilboum, Richard; Wang, Liewei; Boughey, Judy C.

    2017-01-01

    Background: Breast cancer patients with residual disease after neoadjuvant chemotherapy (NAC) have increased recurrence risk. Molecular characterization, knowledge of NAC response, and simultaneous generation of patient-derived xenografts (PDXs) may accelerate drug development. However, the feasibility of this approach is unknown. Methods: We conducted a prospective study of 140 breast cancer patients treated with NAC and performed tumor and germline sequencing and generated patient-derived xenografts (PDXs) using core needle biopsies. Chemotherapy response was assessed at surgery. Results: Recurrent “targetable” alterations were not enriched in patients without pathologic complete response (pCR); however, upregulation of steroid receptor signaling and lower pCR rates (16.7%, 1/6) were observed in triple-negative breast cancer (TNBC) patients with luminal androgen receptor (LAR) vs basal subtypes (60.0%, 21/35). Within TNBC, TP53 mutation frequency (75.6%, 31/41) did not differ comparing basal (74.3%, 26/35) and LAR (83.3%, 5/6); however, TP53 stop-gain mutations were more common in basal (22.9%, 8/35) vs LAR (0.0%, 0/6), which was confirmed in The Cancer Genome Atlas and British Columbia data sets. In luminal B tumors, Ki-67 responses were observed in tumors that harbored mutations conferring endocrine resistance (p53, AKT, and IKBKE). PDX take rate (27.4%, 31/113) varied according to tumor subtype, and in a patient with progression on NAC, sequencing data informed drug selection (olaparib) with in vivo antitumor activity observed in the primary and resistant (postchemotherapy) PDXs. Conclusions: In this study, we demonstrate the feasibility of tumor sequencing and PDX generation in the NAC setting. “Targetable” alterations were not enriched in chemotherapy-resistant tumors; however, prioritization of drug testing based on sequence data may accelerate drug development. PMID:28376176

  11. Growth of LAPC4 prostate cancer xenograft tumor is insensitive to 5α-reductase inhibitor dutasteride

    PubMed Central

    Garcia, Raquel Ramos; Masoodi, Khalid Z; Pascal, Laura E; Nelson, Joel B; Wang, Zhou

    2014-01-01

    Intermittent androgen deprivation therapy (IADT) allows prostate cancer patients a break from the side-effects of continuous androgen deprivation therapy (ADT). Although clinical studies suggest that IADT can significantly improve patient quality of life over ADT, it has not been demonstrated to improve patient survival. Recently, increased survival has been demonstrated when 5α-reductase inhibitors have been used during the off-cycle of IADT in animal xenograft tumor models LNCaP and LuCaP35. In the current study, the sensitivity of LAPC4 xenograft tumor regrowth to the 5ARI dutasteride was determined. Tumor regrowth and gene expression changes in LAPC4 tumors were compared to the previously determined response of LNCaP and LuCaP35 xenograft tumors to 5ARI treatment during the off-cycle of IADT, LAPC4, LNCaP and LuCaP35 tumors were sensitive to androgen manipulation. However, in contrast to LNCaP and LuCaP35, dutasteride treatment during testosterone-stimulated prostate regrowth did not affect tumor regrowth or the expression of androgen responsive genes. Tumor response to dutasteride during the off-cycle of IADT is variable in xenograft prostate tumor models. Future studies will be required to elucidate the mechanisms contributing to the dutasteride resistance observed in the LAPC4 model during the off-cycle. PMID:25374909

  12. Downregulation of c-Myc is involved in TLR3-mediated tumor death of neuroblastoma xenografts.

    PubMed

    Lin, Li-Ling; Huang, Chao-Cheng; Wu, Chia-Ling; Wu, Min-Tsui; Hsu, Wen-Ming; Chuang, Jiin-Haur

    2016-07-01

    Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its pleomorphic molecular characteristics. In the innate immune system, toll-like receptor 3 (TLR3) recognizes viral double-stranded RNAs to initiate immune signaling. Positive TLR3 expression indicates a favorable prognosis in NB patients, and is associated with MYCN-non-amplified. However, TLR3-mediated innate immune responses remain elusive in NB. In this study, we attempted to dissect the molecular mechanism underlying TLR3-agonist polyinosinic-polycytidylic acid [poly(I:C)] treatment in NB in vivo. We established NB xenograft models in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with MYCN-amplified SK-N-DZ (DZ) cells or MYCN-non-amplified SK-N-AS (AS) cells. Poly(I:C) treatment led to significant tumor regression in AS xenografts, but not in DZ xenografts. Through immunohistochemical analysis, significant suppression of tumor proliferation, downregulation of c-Myc expression, and upregulation of TLR3 expression were found in the treatment group. Poly(I:C) inducing activation of TLR3/IRF3-mediated innate immunity associated with downregulation of c-Myc can be found in MYCN-non-amplified SK-N-AS cells, but not in MYCN-amplified BE(2)-M17 cells. Knockdown of TLR3 disturbed poly(I:C)-induced suppression of c-Myc and upregulation of p-IRF3 in AS cells. Furthermore, poly(I:C) treatment upregulated active NF-κB, mitochondrial antioxidant manganese superoxide dismutase and 8-hydroxydeoxyguanosine, which works with reactive oxygen species (ROS) generation and DNA damage. Upregulation of active caspase 3 and cleaved poly [ADP-ribose] polymerase 1 were found in poly(I:C)-treated AS xenografts, which indicates the induction of apoptosis. Thus, our results suggest that c-Myc overexpression may increase sensitivity to poly(I:C)-induced tumor growth arrest and ROS-mediated apoptosis in NB. This study demonstrates that c-Myc protein expression has an important role in TLR3-induced innate

  13. Interpretation of male rat renal tubule tumors

    SciTech Connect

    Rodgers, I.S.; Baetcke, K.P.

    1993-12-01

    Based on an analysis of recent scientific studies, a Technical Panel of the U.S. Environmental Protection Agency`s (EPA) Risk Assessment Forum recently advised EPA risk assessors against using information on certain male rat renal tubule tumors to assess human risk under conditions specified in a new Forum report. Risk assessment approaches generally assume that chemicals producing tumors in laboratory animals are a potential cancer hazard to humans. For most chemicals, including classical rodent kidney carcinogens such as N-ethyl-N-hydroxyethylnitrosamine, this extrapolation remains appropriate. Some chemicals, however, induce accumulation of {alpha}{sub 2u}-globulin ({alpha}{sub 2u}-g), a low molecular weight protein, in the male rat kidney. The {alpha}{sub 2u}-g accumulation initiates a sequence of events that appears to lead to renal tubule tumor formation. Female rats and other laboratory mammals administered the same chemicals do not accumulate low molecular weight protein in the kidney, and they do not develop renal tubule tumors. Because humans appear to be more like other laboratory animals than like the male rat, in this special situation, the male rat is not a good model for assessing human risk. The Forum report stresses the need for full scrutiny of a substantial set of data to determine when it is reasonable to presume that renal tumors in male rats are linked to a process involving {alpha}{sub 2u}-g accumulation and to select appropriate procedures for estimating human risks under such circumstances. 92 refs.

  14. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  15. Small renal tumor with lymph nodal enlargement: A histopathological surprise

    PubMed Central

    Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf

    2016-01-01

    Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671

  16. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression

    PubMed Central

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P.; Shields, David J.; Olson, Peter; Rejto, Paul A.; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC. PMID:26555578

  17. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  18. Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts.

    PubMed

    Falchetti, Maria Laura; Mongiardi, Maria Patrizia; Fiorenzo, Paolo; Petrucci, Giovanna; Pierconti, Francesco; D'Agnano, Igea; D'Alessandris, Giorgio; Alessandri, Giulio; Gelati, Maurizio; Ricci-Vitiani, Lucia; Maira, Giulio; Larocca, Luigi Maria; Levi, Andrea; Pallini, Roberto

    2008-03-15

    Tumor angiogenesis is a complex process that involves a series of interactions between tumor cells and endothelial cells (ECs). In vitro, glioblastoma multiforme (GBM) cells are known to induce an increase in proliferation, migration and tube formation by the ECs. We have previously shown that in human GBM specimens the proliferating ECs of the tumor vasculature express the catalytic component of telomerase, hTERT, and that telomerase can be upregulated in human ECs by exposing these cells to GBM in vitro. Here, we developed a controlled in vivo assay of tumor angiogenesis in which primary human umbilical vascular endothelial cells (HUVECs) were subcutaneously grafted with or without human GBM cells in immunocompromised mice as Matrigel implants. We found that primary HUVECs did not survive in Matrigel implants, and that telomerase upregulation had little effect on HUVEC survival. In the presence of GBM cells, however, the grafted HUVECs not only survived in Matrigel implants but developed tubule structures that integrated with murine microvessels. Telomerase upregulation in HUVECs enhanced such effect. More importantly, inhibition of telomerase in HUVECs completely abolished tubule formation and greatly reduced survival of these cells in the tumor xenografts. Our data demonstrate that telomerase upregulation by the ECs is a key requisite for GBM tumor angiogenesis. (c) 2007 Wiley-Liss, Inc.

  19. Absence of preferential uptake of ( sup 125 I)iododihydrorhodamine 123 by four human tumor xenografts

    SciTech Connect

    Kinsey, B.M.; Van den Abbeele, A.D.; Adelstein, S.J.; Kassis, A.I. )

    1989-11-01

    The biodistribution of ({sup 125}I)iododihydrorhodamine 123 has been studied over a 96-h period in four human tumor xenograft models: HT-29 colon adenocarcinoma, PC-3 prostate carcinoma, HT-1080 fibrosarcoma, and PaCa-2 pancreatic carcinoma. Elimination of radioactivity in the tumor-bearing nude mice was rapid during the first 24 h and slow thereafter. The lack of uptake in the thyroid indicated there was little, if any, deiodination of the molecule. Activity was found mainly in the liver and spleen. Accumulation of radioactivity was low in all four tumors examined. At 4 h postinjection, as well as at 24 and 48 h, however, the total radioactive content in each of the four tumors was directly proportional to the weight of the tumor sample. This correlation was independent of tumor type, route of injection (i.v./i.p.) or dose (1.2-6 microCi/mouse). This was not true for any of the normal tissues, suggesting that this accumulation may be governed by certain intrinsic characteristics of the cancers tested.

  20. DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways

    PubMed Central

    Yin, Xiaoran; Zhang, Jun; Li, Xiaoning; Liu, Dong; Feng, Cheng; Liang, Rongrui; Zhuang, Kun; Cai, Chenlei; Xue, Xinghuan; Jing, Fuchun; Wang, Xijing; Wang, Jun; Liu, Xinlian; Ma, Hongbing

    2014-01-01

    Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma. PMID:25026173

  1. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  2. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  3. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation.

    PubMed

    Perrin, George Q; Li, Hua; Fishbein, Lauren; Thomson, Susanne A; Hwang, Min S; Scarborough, Mark T; Yachnis, Anthony T; Wallace, Margaret R; Mareci, Thomas H; Muir, David

    2007-11-01

    Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

  4. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models.

    PubMed

    Feng, Li-Li; Liu, Bing-Xia; Zhong, Jin-Yi; Sun, Li-Bin; Yu, Hong-Sheng

    2014-01-01

    In recent years a wide variety of flavonoids or polyphenolic substances have been reported to possess substantial anti-carcinogenic and antimutagenic activities. Grape proanthocyanidins (GPC) are considered as good examples for which there is evidence of potential roles as anti-carcinogenic agents. A xenograft model was established using H22 cells subcutaneously injected into mice and used to assess different concentrations of grape proanthocyanidins (GPC) and Endostar. Treatments were maintained for 10 days, then levels of vascular endothelial growth factor (VEGF) and microvessel density (MVD) were examined by immunohistochemistry, while VEGF mRNA was determined by real-time PCR in tumor tissue. The expression of MVD and VEGF decreased gradually as the concentration of GPC increased.There was a significant positive correlation between MVD and VEGF. These results suggest that GPC restrains the growth of tumor, possibly by inhibiting tumour angiogenesis.

  5. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  6. [Effect of valproic acid against angiogenesis of Kasumi-1 xenograft tumor in nude mice].

    PubMed

    Wang, Li-Hong; Zhang, Zhi-Hua; Zhao, Lei; Zhu, Cui-Min; Zhao, Li-Shuang; Hao, Chang-Lai

    2013-02-01

    This study was aimed to investigate the effect of valproic acid (VPA), a histone deacetylase inhibitor, on angiogenesis of acute myeloid leukemia in vivo and vitro, and to explore its molecular mechanism. Human t (8;21) AML cell line Kasumi-1 cells were treated with VPA at different concentration for 3 d, the mRNA and protein expression levels of Ang1 and Ang2 were determined by semi-quantitative RT-PCR and Western blot respectively. Nude mice model with xenograft Kasumi-1 tumor was established by subcutaneous inoculation of Kasumi-1 cells. The CD34, Ang1 and Ang2 protein levels were analyzed by immunohistochemistry method. The mRNA and protein expression levels of Ang1, Ang2 and VEGF were determined by semi-quantitative RT-PCR and Western blot. The results showed that in vitro, VPA at 3 mmol/L downregulated the Ang mRNA relative expression level for Ang1 from 0.360 ± 0.116 to 0.040 ± 0.008, Ang2 from 0.540 ± 0.049 to 0.146 ± 0.038. The animal experiment further verified that VPA 500 mg/kg, ip, for 14 d, reduced the relative expression of Ang1, Ang2 and VEGF mRNA and proteins in Kasumi-1 tumor of nude mice, and reduced microvascular density in xenograft tumor of nude mice (8.470 ± 0.300 vs 2.600 ± 0.200). It is concluded that VPA significantly inhibits tumor angiogenesis through the regulation of angiopoietins, thereby inhibits the proliferation and metastasis of leukemia cells.

  7. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts.

    PubMed

    Ntai, Ioanna; LeDuc, Richard D; Fellers, Ryan T; Erdmann-Gilmore, Petra; Davies, Sherri R; Rumsey, Jeanne; Early, Bryan P; Thomas, Paul M; Li, Shunqiang; Compton, Philip D; Ellis, Matthew J C; Ruggles, Kelly V; Fenyö, David; Boja, Emily S; Rodriguez, Henry; Townsend, R Reid; Kelleher, Neil L

    2016-01-01

    Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when

  8. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  9. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  10. [Inhibitory effect of valproic acid on xenografted Kasumi-1 tumor growth in nude mouse and its mechanism].

    PubMed

    Liu, Peng; Tian, Xia; Shi, Gui-Rong; Jiang, Feng-Yun; Liu, Bao-Qin; Zhang, Zhi-Hua; Zhao, Lei; Yan, Li-Na; Liang, Zhi-Qiang; Hao, Chang-Lai

    2011-07-01

    To investigate in vivo inhibitory effect of histone deacetylase (HDAC) inhibitor valproic acid (VPA) on xenografted Kasumi-1 tumor in nude mice and its mechanism. Xenografted Kasumi-1 tumor mouse model was established by subcutaneous inoculation of Kasumi-1 cells. Xenotransplanted nude mice were assigned into control or VPA treatment groups. Volume of the xenografted tumors was measured and compared between the two groups. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) was applied to detection of tumor cell apoptosis. The gene expression of GM-CSF, HDAC1, Ac-H3 and survivin was studied with semi-quantitative RT-PCR and Western blotting. ChIP method was used to assay the effects of VPA on acetylation of histone H3 within GM-CSF promoter region. (1) VAP significantly inhibited xenografted Kasumi-1 tumor growth. The calculated inhibition rate was 57.25%. (2) Morphologic study showed that VPA induced differentiation and apoptosis of Kasumi-1 tumor cells. The apoptosis index of VAP treatment group [(3.661 +/- 0.768)%] was significantly higher than that of control group [(0.267 +/- 0.110)%]. (3) Comparing to those in control group, the level of nuclear HDAC1 protein was significantly decreased, the Ac-H3 protein expression level was increased, the mRNA and protein expression levels of GM-CSF and acetylation of histone H3 were remarkably increased, and the gene expression level of survivin significantly decreased in VPA treatment group. VAP significantly inhibits xenografted Kasumi-1 tumor growth and induces tumor cell differentiation and apoptosis. The mechanism may be decrease of survivin gene expression, inhibition of nuclear expression of HDAC, promotion of histone protein acetylation level and acetylation of histone H3 within GM-CSF promoter region, and increase of GM-CSF transcription.

  11. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  12. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice.

    PubMed

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-03-08

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5-0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner.

  13. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  14. Incorporation of OSI-7836 into DNA of Calu-6 and H460 xenograft tumors.

    PubMed

    Richardson, Frank; Black, Chris; Richardson, Katherine; Franks, April; Wells, Edward; Karimi, Susan; Sennello, Gina; Hart, Karen; Meyer, Denny; Emerson, David; Brown, Eric; LeRay, Jeremy; Nilsson, Christy; Tomkinson, Blake; Bendele, Raymond

    2005-03-01

    OSI-7836 (4'-thio-beta-D-arabinofuranosylcytosine) is a novel nucleoside analog in phase I clinical development for the treatment of cancer. As with other nucleoside analogs, the proposed mechanism of action involves phosphorylation to the triphosphate form followed by incorporation into cellular DNA, leading to cell death. This hypothesis has been examined by measuring and comparing the incorporation of ara-C, OSI-7836, and gemcitabine (dFdC) into DNA of cultured cells and by investigating the role of deoxycytidine kinase in OSI-7836 toxicity. We report here additional studies in which the role of cell cycling on OSI-7836 toxicity was investigated and incorporation of OSI-7836 into DNA of xenograft tumors measured. The role of the cell cycle was examined by comparing the toxicity of OSI-7836 in A549 NSCLC cells that were either in log phase growth or had reached confluence. A novel validated LC-MS/MS assay was developed to quantify the concentrations of OSI-7836 in DNA from Calu-6 and H460 human tumor xenografts in mice. Results showed that apoptosis induced by OSI-7836 was markedly greater in cycling cells than in confluent non-cycling cells despite only a modest increase in intracellular OSI-7836 triphosphate concentration. The LC-MS/MS assay developed to measure OSI-7836 incorporation into DNA had an on-column detection limit of 0.25 fmol, a quantification limit of 0.5 fmol, and a sensitivity of approximately 0.1 pmol OSI-7836/micromol dThy. Concentrations of OSI-7836 in splenic DNA (0.4 pmol OSI-7836/micromol dThy) averaged fivefold less than the average concentration in Calu-6 and H460 xenograft DNA (3.0 pmol OSI-7836/micromol dThy) following a 400 mg/kg dose of OSI-7836. Concentrations of OSI-7836 in Calu-6 tumor DNA isolated 24 h following a dose of 400, 1000, or 1600 mg OSI-7836/kg were approximately 1.3, 1 and 1.3 pmol OSI-7836/micromol dThy, respectively. Concentrations of OSI-7836 in DNA from H460 and Calu-6 xenografts did not appear to increase during

  15. Therapeutic effect against human xenograft tumors in nude mice by the third generation microtubule stabilizing epothilones.

    PubMed

    Chou, Ting-Chao; Zhang, Xiuguo; Zhong, Zi-Yang; Li, Yong; Feng, Li; Eng, Sara; Myles, David R; Johnson, Robert; Wu, Nian; Yin, Ye Ingrid; Wilson, Rebecca M; Danishefsky, Samuel J

    2008-09-02

    The epothilones represent a promising class of natural product-based antitumor drug candidates. Although these compounds operate through a microtubule stabilization mechanism similar to that of taxol, the epothilones offer a major potential therapeutic advantage in that they retain their activity against multidrug-resistant cell lines. We have been systematically synthesizing and evaluating synthetic epothilone congeners that are not accessible through modification of the natural product itself. We report herein the results of biological investigations directed at two epothilone congeners: iso-fludelone and iso-dehydelone. Iso-fludelone, in particular, exhibits a number of properties that render it an excellent candidate for preclinical development, including biological stability, excellent solubility in water, and remarkable potency relative to other epothilones. In nude mouse xenograft settings, iso-fludelone was able to achieve therapeutic cures against a number of human cancer cell lines, including mammarian-MX-1, ovarian-SK-OV-3, and the fast-growing, refractory, subcutaneous neuroblastoma-SK-NAS. Strong therapeutic effect was observed against drug-resistant lung-A549/taxol and mammary-MCF-7/Adr xenografts. In addition, iso-fludelone was shown to exhibit a significant therapeutic effect against an intracranially implanted SK-NAS tumor.

  16. Clinically Relevant Doses of Candesartan Inhibit Growth of Prostate Tumor Xenografts In Vivo through Modulation of Tumor Angiogenesis

    PubMed Central

    Alhusban, Ahmed; Al-Azayzih, Ahmad; Goc, Anna; Gao, Fei; Fagan, Susan C.

    2014-01-01

    Angiotensin II receptor type 1 blockers (ARBs), widely used antihypertensive drugs, have also been investigated for their anticancer effects. The effect of ARBs on prostate cancer in experimental models compared with meta-analysis data from clinical trials is conflicting. Whereas this discrepancy might be due to the use of supratherapeutic doses of ARBs in cellular and animal models as compared with the clinical doses used in human trials, further investigation of the effects of clinical doses of ARBs on prostate cancer in experimental models is warranted. In the current study, we sought to determine the effects of candesartan on prostate cancer cellular function in vitro and tumor growth in vivo, and characterize the underlying mechanisms. Our analysis indicated that clinically relevant doses of candesartan significantly inhibited growth of PC3 cell tumor xenografts in mice. Interestingly, the same concentrations of candesartan actually promoted prostate cancer cellular function in vitro, through a modest but significant inhibition in apoptosis. Inhibition of tumor growth by candesartan was associated with a decrease in vascular endothelial growth factor (VEGF) expression in tumors and inhibition of tumor angiogenesis, but normalization of tumor vasculature. Although candesartan did not impair PC3 cell viability, it inhibited endothelial-barrier disruption by tumor-derived factors. Furthermore, candesartan significantly inhibited expression of VEGF in PC3 and DU145 cell lines independent of angiotensin II type 2 receptor, but potentially via angiotensin II type 1 receptor inhibition. Our findings clearly demonstrate the therapeutic potential of candesartan for prostate cancer and establish a link between ARBs, VEGF expression, and prostate tumor angiogenesis. PMID:24990940

  17. Effects of combining rapamycin and resveratrol on apoptosis and growth of TSC2-deficient xenograft tumors.

    PubMed

    Alayev, Anya; Salamon, Rachel S; Sun, Yang; Schwartz, Naomi S; Li, Chenggang; Yu, Jane J; Holz, Marina K

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is a rare neoplastic metastatic disease affecting women of childbearing age. LAM is caused by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) as a consequence of tuberous sclerosis complex (TSC) 1/2 inactivation. Clinically, LAM results in cystic lung destruction. mTORC1 inhibition using rapamycin analogs (rapalogs) is partially effective in reducing disease progression and improving lung function. However, cessation of treatment results in continued progression of the disease. In the present study, we investigated the effectiveness of the combination of rapamycin treatment with resveratrol, an autophagy inhibitor, in the TSC2-null xenograft tumor model. We determined that this combination inhibits phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/Akt/mTORC1 signaling and activates apoptosis. Therefore, the combination of rapamycin and resveratrol may be an effective clinical strategy for treatment of LAM and other diseases with mTORC1 hyperactivation.

  18. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation.

  19. Current standards of care and future directions for "high-risk" pediatric renal tumors: Anaplastic Wilms tumor and Rhabdoid tumor.

    PubMed

    Geller, James I

    2016-01-01

    'High risk' renal tumors of childhood generally includes anaplastic Wilms tumor, rhabdoid tumor, and metastatic renal sarcomas and carcinomas. In this review, the epidemiology, biology, treatment and prognosis of anaplastic Wilms tumor and rhabdoid tumor are presented. Future directions related to management of such cancers are discussed, with insights provided into possible clinical trials in development that consider integration of novel targeted therapies.

  20. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts

    PubMed Central

    Azad, Babak Behnam; Chatterjee, Samit; Lesniak, Wojciech G.; Lisok, Ala; Pullambhatla, Mrudula; Bhujwalla, Zaver M.; Pomper, Martin G.; Nimmagadda, Sridhar

    2016-01-01

    For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment. PMID:26848769

  1. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments. PMID:26881213

  2. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments.

  3. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    NASA Astrophysics Data System (ADS)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  4. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts.

    PubMed

    Xie, Huan; Wang, Zheng Jim; Bao, Ande; Goins, Beth; Phillips, William T

    2010-08-16

    Here we report the radiolabeling of gold nanoshells (NSs) for PET imaging in rat tumor model. A conjugation method was developed to attach NSs with the radionuclide, (64)Cu. The resulting conjugates showed good labeling efficiency and stability in PBS and serum. The pharmacokinetics of (64)Cu-NS and the controls ((64)Cu-DOTA and (64)Cu-DOTA-PEG2K) were determined in nude rats with a head and neck squamous cell carcinoma xenograft by radioactive counting. Using PET/CT imaging, we monitored the in vivo distribution of (64)Cu-NS and the controls in the tumor-bearing rats at various time points after their intravenous injection. PET images of the rats showed accumulation of (64)Cu-NSs in the tumors and other organs with significant difference from the controls. The organ biodistribution of rats at 46h post-injection was analyzed by radioactive counting and compared between the (64)Cu-NS and the controls. Different clearance kinetics was indicated. Neutron activation analysis (NAA) of gold concentration was performed to quantify the amount of NSs in major tissues of the dosed rats and the results showed similar distribution. Overall, PET images with (64)Cu had good resolution and therefore can be further applied to guide photothermal treatment of cancer. Published by Elsevier B.V.

  5. Near-Infrared Fluorescence Imaging of Carbonic Anhydrase IX in Athymic Mice Bearing HT-29 Tumor Xenografts

    PubMed Central

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging technology is a highly sensitive imaging modality and has been widely used in noninvasively studying the status of receptor expression in small animal models, with an appropriate NIRF probe targeting a specific receptor. In this report, Cy5.5-conjugated anti-CAIX monoclonal antibody (Mab-Cy5.5) was evaluated in athymic mice bearing HT-29 tumor xenografts in order to investigate the effect of conjugate on tumor targeting efficacy. In vitro binding studies showed that Mab-Cy5.5 could specifically bind to the cells which expressed CAIX. Results from in vivo imaging showed that HT-29 tumor xenografts can be clearly visualized at 48 h after injection of Mab-Cy5.5, and in the blocking experiment, free anti-CAIX antibody effectively blocked the concentration of Mab-Cy5.5 in the tumors. Western blotting and immunohistochemistry analysis of HT-29 tumor xenografts verified the expression of CAIX in HT-29 tumors. Mab-Cy5.5 could specifically bind to the tumors which expressed CAIX. These results suggested that Mab-Cy5.5 was suitable for CAIX expression imaging in the preclinical research. PMID:27652266

  6. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft.

    PubMed

    Govek, Steven P; Nagasawa, Johnny Y; Douglas, Karensa L; Lai, Andiliy G; Kahraman, Mehmet; Bonnefous, Celine; Aparicio, Anna M; Darimont, Beatrice D; Grillot, Katherine L; Joseph, James D; Kaufman, Joshua A; Lee, Kyoung-Jin; Lu, Nhin; Moon, Michael J; Prudente, Rene Y; Sensintaffar, John; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-11-15

    Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.

  7. Clear cell papillary renal cell carcinoma, renal angiomyoadenomatous tumor, and renal cell carcinoma with leiomyomatous stroma relationship of 3 types of renal tumors: a review.

    PubMed

    Hes, Ondrej; Compérat, Eva Maria; Rioux-Leclercq, Nathalie

    2016-04-01

    Renal angiomyoadenomatous tumor has been described in 2000, followed by description of clear cell papillary renal cell carcinoma in 2006. Discussions about possible relationship of both tumors were published since their description. The main differential diagnostic feature was considered presence/absence of fibroleiomyomatous stroma-relationship of renal angiomyoadenomatous tumor in stroma-rich tumors. However, it was shown that stroma is reactive and nonneoplastic by its nature and that all other histologic, immunohistochemical, and molecular-genetic features of both entities are identical. In upcoming World Health Organization classification of renal tumors (2016), both lesions are considered as a single entity (clear cell papillary renal cell carcinoma [CCPRCC]). Most published cases followed the benign/indolent clinical course. In addition, most tumors has normal status of VHL gene (methylation, LOH 3p, mutations); however, CCPRCC was referred in patients with VHL syndrome. Another issue covered by this review is possible relationship of CCPRCC and "renal cell carcinoma with leiomyomatous stroma" (RCCLS). Renal cell carcinoma with leiomyomatous stroma shows clear cell cytology and abundant leiomyomatous stroma. Some of RCCLS are positive for cytokeratin 7; some are negative. Similar situation exists for relation of RCCLS and VHL gene abnormalities. It is so far unclear whether any relation between CCPRCC and RCCLS exists. From all published studies, it seems that these tumors are less likely related to each other.

  8. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    PubMed Central

    Bradley, Daniel P; Tessier, Jean J; Ashton, Susan E; Waterton, John C; Wilson, Zena; Worthington, Philip L; Ryan, Anderson J

    2007-01-01

    Magnetic resonance imaging (MRI) can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA) induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24) bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000) before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0–10 mg/kg, i.v.). We measured effective transverse relaxation rate (R2*), initial area under the gadolinium concentration-time curve (IAUGC60/150), equivalent enhancing fractions (EHF60/150), time constant (Ktrans), proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI) in T2-weighted MRI (T2W). ZD6126 treatment induced > 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis. PMID:17534443

  9. Preclinical evaluation of new radioligand of cholecystokinin/gastrin receptors in endocrine tumors xenograft nude mice

    NASA Astrophysics Data System (ADS)

    Brillouet, S.; Caselles, O.; Dierickx, L. O.; Mestre, B.; Nalis, J.; Picard, C.; Favre, G.; Poirot, M.; Silvente-Poirot, S.; Courbon, F.

    2007-02-01

    The cholecystokinin(CCK)/gastrin 2 receptors (R-CCK2) are overexpressed in 90% of medullary thyroid cancers (MTC) and in 60% of small cell lung cancers but not or poorly in corresponding healthy tissues. They represent a relevant target for the diagnosis and internal targeted radiotherapy of these tumors. Although previous studies have demonstrated the feasibility of radiolabeled CCK/gastrin to target CCK-2 receptor-expressing tissues in animals and patients, some problems remained unsolved to identify an optimum candidate for in vivo targeting of R-CCK2-expressing tumors. By a rational approach and " in silico" drug design, we synthesized a new CCK-derivative with high affinity for the R-CCK2. The aim of this study was to achieve the radiolabeling of a new radioligand, to assess its efficacy using a published CCK radioligand ( 111In-DTPA-CCK8) as a control for the R-CCK2 targeting. This new CCK-derivative was radiolabeled with 111In. Nude mice, bearing the human MTC TT tumors and NIH-3T3 cell line expressing a tumorigenic mutant of the R-CCK2, were injected with this radiolabeled peptide. In vivo planar scintigraphies were acquired. Thereafter, biodistribution studies (%ID/g tissue) were done. The conditions of radiolabelling were optimized to obtain a radiochemical purity >90%. Scintigraphic images of xenograft mice showed significant tumor uptake with a target to nontarget ratio higher than two. These results were confirmed by the biodistribution studies which showed as expected a significant activity in the spleen, the liver and the kidneys. Therefore, this new radiolabeled compound is a promised new candidate for molecular imaging and internal radiotherapy for R-CCK2 tumor targeting.

  10. DCE-MRI Detects Early Vascular Response in Breast Tumor Xenografts Following Anti-DR5 Therapy

    PubMed Central

    Kim, Hyunki; Folks, Karri D.; Guo, Lingling; Stockard, Cecil R.; Fineberg, Naomi S.; Grizzle, William E.; George, James F.; Buchsbaum, Donald J.; Morgan, Desiree E.; Zinn, Kurt R.

    2014-01-01

    Purpose Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measured the early vascular changes after administration of TRA-8, bevacizumab, or TRA-8 combined with bevacizumab in breast tumor xenografts. Procedures Groups 1–4 of nude mice bearing human breast carcinoma were injected with phosphate-buffered saline, TRA-8, bevacizumab, and TRA-8 + bevacizumab on day0, respectively. DCE-MRI was performed on days0, 1, 2, and 3, and thereafter tumors were collected for terminal deoxynucleotidyl transferase-mediated dUT nick end labeling and CD31 staining. Results DCE-MRI measured a significant Ktrans change within 3 days after TRA-8 therapy that correlated with tumor growth arrest, whichwas not shown with statistical significance by histopathology at these early time points posttreatment. The Ktrans changes followed quadratic polynomial curves. Conclusion DCE-MRI detected significantly lower Ktrans levels in breast tumor xenografts following TRA-8 monotherapy or combined therapy with bevacizumab. PMID:20383593

  11. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  12. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors

    PubMed Central

    Friel, Anne M.; Zhang, Ling; Pru, Cindy A.; Clark, Nicole C.; McCallum, Melissa L.; Blok, Leen J.; Shioda, Toshi; Peluso, John J.; Rueda, Bo R.; Pru, James K.

    2014-01-01

    Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A Jentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4.To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1 μM), doxorubicin (Dox. 2 μg/ml). or P4 + Dox for 48 h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dex-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitonea l inoculation of immunocompromised NOD/SCIO and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol + 0.9% saline) or chemotherapy [Paclitaxel (15 mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (SO mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1 intact control tumors, suggesting that PGRMC1 promotes tumor cell viability during

  13. Successful establishment of patient-derived tumor xenografts from gastrointestinal stromal tumor-a single center experience

    PubMed Central

    Jiang, Quan; Tong, Han-Xing; Zhang, Yong; Hou, Ying-Yong; Li, Jing-Lei; Wang, Jiong-Yuan; Zhou, Yu-Hong; Lu, Wei-Qi

    2016-01-01

    Patient-derived tumor xenografts (PDTX) generally represent a kind of more reliable model of human disease, by which a potential drugs’ preclinical efficacy could be evaluated. To date, no stable gastrointestinal stromal tumor (GIST) PDTX models have been reported. In this study, we aimed to establish stable GIST PDTX models and to evaluate whether these models accurately reflected the histological feature of the corresponding patient tumors and create a reliable GIST PDTX models for our future experiment. By engrafting fresh patient GIST tissues into immune-compromised mice (BALB/c athymic mice), 4 PDTX models were established. Histological features were assessed by a qualified pathologist based on H&E staining, CD117 and DOG-1. We also conduct whole exome sequencing(WES) for the 4 established GIST PDTX models to test if the model still harbored the same mutation detected in corresponding patient tumors and get a more intensive vision for the genetic profile of the models we have established, which will help a lot for our future experiment. To explore the tumorigenesis mechanism for GIST, we also have a statistical analysis for the genes detected as nonsynchronous-mutated simultaneously in 4 samples. All 4 GIST PDTX models retained the histological features of the corresponding human tumors, with original morphology type and positive stains for CD117 and DOG-1. Between the GIST PDTX models and their parental tumors, a same mutation site was detected, which confirmed the genetic consistency. The stability of molecular profiles observed within the GIST PDTX models provides confidence in the utility and translational significance of these models for in vivo testing of personalized therapies. To date, we conducted the first study to successfully establish a GIST PDTX model whose genetic profiles were revealed by whole exome sequencing. Our experience could be of great use. PMID:27186422

  14. SPARC independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts

    PubMed Central

    Kim, Harrison; Samuel, Sharon L.; Lopez-Casas, Pedro P.; Grizzle, William E.; Hidalgo, Manuel; Kovar, Joy; Oelschlager, Denise K.; Zinn, Kurt R.; Warram, Jason M.; Buchsbaum, Donald J.

    2016-01-01

    The study goal was to examine the relationship between nab-paclitaxel delivery and SPARC (secreted protein acidic and rich in cysteine) expression in pancreatic tumor xenografts and to determine the anti-stromal effect of nab-paclitaxel, which may affect tumor vascular perfusion. SPARC positive and negative mice bearing Panc02 tumor xenografts (n=5–6/group) were injected with IRDye 800CW (IR800)-labeled nab-paclitaxel. After 24 hours, tumors were collected and stained with DL650-labeled anti-SPARC antibody, and the correlation between nab-paclitaxel and SPARC distributions was examined. Eight groups of mice bearing either Panc039 or Panc198 patient-derived xenografts (PDXs) (4 groups/model, 5 animals/group) were untreated (served as control) or treated with gemcitabine (100 mg/kg BW, i.p., twice per week), nab-paclitaxel (30 mg/kg BW, i.v., for 5 consecutive days), and these agents in combination, respectively, for 3 weeks, and tumor volume and perfusion changes were assessed using T2-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI, respectively. All tumors were collected and stained with Masson’s Trichrome Stain, followed by a blinded comparative analysis of tumor stroma density. IR800-nab-paclitaxel was mainly distributed in tumor stromal tissue, but nab-paclitaxel and SPARC distributions were minimally correlated in either SPARC positive or negative animals. Nab-paclitaxel treatment did not decrease tumor stroma nor increase tumor vascular perfusion in either PDX model when compared to control groups. These data suggest that the specific tumor delivery of nab-paclitaxel is not directly related to SPARC expression, and nab-paclitaxel does not deplete tumor stroma in general. PMID:26832793

  15. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  16. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo.

  17. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Miyauchi, Yutaka; Suzawa, Michiko; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-06-01

    Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.

  18. STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis

    PubMed Central

    Qiu, Qing-chao; Hu, Bo; He, Xiu-pei; Luo, Qiao; Tang, Guo-hua; Long, Zhi-feng; Chen, Zhu-chu; He, Xiu-sheng

    2012-01-01

    STGC3 is a potential tumor suppressor that inhibits the growth of the nasopharyngeal carcinoma cell line CNE2; the expression of this protein is reduced in nasopharyngeal carcinoma compared with normal nasopharyngeal tissue. In this study, we investigated the tumor-suppressing activity of STGC3 in nude mice injected subcutaneously with Tet/pTRE-STGC3/CNE2 cells. STGC3 expression was induced by the intraperitoneal injection of doxycycline (Dox). The volume mean of Tet/pTRE-STGC3/CNE2+Dox xenografts was smaller than that of Tet/pTRE/CNE2+Dox xenografts. In addition, Tet/pTRE-STGC3/CNE2+Dox xenografts showed an increase in the percentage of apoptotic cells, a decrease in Bcl-2 protein expression and an increase in Bax protein expression. A proteomic approach was used to assess the protein expression profile associated with STGC3-mediated apoptosis. Western blotting confirmed the differential up-regulation of prohibitin seen in proteomic analysis. These results indicate that overexpression of STGC3 inhibits xenograft growth in nude mice by enhancing apoptotic cell death through altered expression of apoptosis-related proteins such as Bcl-2, Bax and prohibitin. These data contribute to our understanding of the function of STGC3 in human nasopharyngeal carcinoma and provide new clues for investigating other STGC3-associated tumors. PMID:22481869

  19. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development

    PubMed Central

    Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D.

    2015-01-01

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting. PMID:26062443

  20. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  1. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    PubMed Central

    Zhang, Zhihua; Hao, Changlai; Wang, Lihong; Liu, Peng; Zhao, Lei; Zhu, Cuimin; Tian, Xia

    2013-01-01

    The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest. PMID:23836985

  2. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  3. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  4. Standardized Reporting of Microscopic Renal Tumor Margins: Introduction of the Renal Tumor Capsule Invasion Scoring System.

    PubMed

    Snarskis, Connor; Calaway, Adam C; Wang, Lu; Gondim, Dibson; Hughes, Ian; Idrees, Muhammad T; Kliethermes, Stephanie; Maniar, Viraj; Picken, Maria M; Boris, Ronald S; Gupta, Gopal N

    2017-01-01

    Renal tumor enucleation allows for maximal parenchymal preservation. Identifying pseudocapsule integrity is critically important in nephron sparing surgery by enucleation. Tumor invasion into and through the capsule may have clinical implications, although it is not routinely commented on in standard pathological reporting. We describe a system to standardize the varying degrees of pseudocapsule invasion and identify predictors of invasion. We performed a multicenter retrospective review between 2002 and 2014 at Indiana University Hospital and Loyola University Medical Center. A total of 327 tumors were evaluated following removal via radical nephrectomy, standard margin partial nephrectomy or enucleation partial nephrectomy. Pathologists scored tumors using our i-Cap (invasion of pseudocapsule) scoring system. Multivariate analysis was done to determine predictors of higher score tumors. Tumor characteristics were similar among surgical resection groups. Enucleated tumors tended to have thinner pseudocapsule rims but not higher i-Cap scores. Rates of complete capsular invasion, scored as i-Cap 3, were similar among the surgical techniques, comprising 22% of the overall cohort. Papillary histology along with increasing tumor grade was predictive of an i-Cap 3 score. A capsule invasion scoring system is useful to classify renal cell carcinoma pseudocapsule integrity. i-Cap scores appear to be independent of surgical technique. Complete capsular invasion is most common in papillary and high grade tumors. Further work is warranted regarding the relevance of capsular invasion depth as it relates to the oncologic outcome for local recurrence and disease specific survival. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. A New Apparatus and Surgical Technique for the Dual Perfusion of Human Tumor Xenografts in Situ in Nude Rats

    PubMed Central

    Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Belancio, Victoria P; Hill, Steven M; Blask, David E

    2012-01-01

    We present a new perfusion system and surgical technique for simultaneous perfusion of 2 tissue-isolated human cancer xenografts in nude rats by using donor blood that preserves a continuous flow. Adult, athymic nude rats (Hsd:RH-Foxn1rnu) were implanted with HeLa human cervical or HT29 colon adenocarcinomas and grown as tissue-isolated xenografts. When tumors reached an estimated weight of 5 to 6 g, rats were prepared for perfusion with donor blood and arteriovenous measurements. The surgical procedure required approximately 20 min to complete for each tumor, and tumors were perfused for a period of 150 min. Results showed that tumor venous blood flow, glucose uptake, lactic acid release, O2 uptake and CO2 production, uptake of total fatty acid and linoleic acid and conversion to the mitogen 13-HODE, cAMP levels, and activation of several marker kinases were all well within the normal physiologic, metabolic, and signaling parameters characteristic of individually perfused xenografts. This new perfusion system and technique reduced procedure time by more than 50%. These findings demonstrate that 2 human tumors can be perfused simultaneously in situ or ex vivo by using either rodent or human blood and suggest that the system may also be adapted for use in the dual perfusion of other organs. Advantages of this dual perfusion technique include decreased anesthesia time, decreased surgical manipulation, and increased efficiency, thereby potentially reducing the numbers of laboratory animals required for scientific investigations. PMID:22546915

  6. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  7. Jade-1, a candidate renal tumor suppressor that promotes apoptosis.

    PubMed

    Zhou, Mina I; Foy, Rebecca L; Chitalia, Vipul C; Zhao, Jin; Panchenko, Maria V; Wang, Hongmei; Cohen, Herbert T

    2005-08-02

    Medical therapies are lacking for advanced renal cancer, so there is a great need to understand its pathogenesis. Most renal cancers have defects in the von Hippel-Lindau tumor suppressor pVHL. The mechanism by which pVHL protein functions in renal tumor suppression remains unclear. Jade-1 is a short-lived, kidney-enriched transcription factor that is stabilized by direct interaction with pVHL. Loss of Jade-1 stabilization by pVHL correlates with renal cancer risk, making the relationship between Jade-1 and renal cancer compelling. We report that Jade-1 expression was barely detectable in all tested renal cancer cell lines, regardless of VHL status. Strikingly, proteasome inhibitor treatment increased endogenous Jade-1 expression up to 10-fold. Jade-1 inhibited renal cancer cell growth, colony formation, and tumor formation in nude mice. Intriguingly, Jade-1 also affected the pattern of cell growth in monolayer culture and 3D culture. Jade-1 increased apoptosis by 40-50% and decreased levels of antiapoptotic Bcl-2. Antisense Jade-1-expressing cells confirmed these results. Therefore, Jade-1 may suppress renal cancer cell growth in part by increasing apoptosis. Jade-1 may represent a proapoptotic barrier to proliferation that must be overcome generally in renal cancer, perhaps initially by pVHL inactivation and subsequently by increased proteasomal activity. Therefore, Jade-1 may be a renal tumor suppressor.

  8. Jade-1, a candidate renal tumor suppressor that promotes apoptosis

    PubMed Central

    Zhou, Mina I.; Foy, Rebecca L.; Chitalia, Vipul C.; Zhao, Jin; Panchenko, Maria V.; Wang, Hongmei; Cohen, Herbert T.

    2005-01-01

    Medical therapies are lacking for advanced renal cancer, so there is a great need to understand its pathogenesis. Most renal cancers have defects in the von Hippel-Lindau tumor suppressor pVHL. The mechanism by which pVHL protein functions in renal tumor suppression remains unclear. Jade-1 is a short-lived, kidney-enriched transcription factor that is stabilized by direct interaction with pVHL. Loss of Jade-1 stabilization by pVHL correlates with renal cancer risk, making the relationship between Jade-1 and renal cancer compelling. We report that Jade-1 expression was barely detectable in all tested renal cancer cell lines, regardless of VHL status. Strikingly, proteasome inhibitor treatment increased endogenous Jade-1 expression up to 10-fold. Jade-1 inhibited renal cancer cell growth, colony formation, and tumor formation in nude mice. Intriguingly, Jade-1 also affected the pattern of cell growth in monolayer culture and 3D culture. Jade-1 increased apoptosis by 40-50% and decreased levels of antiapoptotic Bcl-2. Antisense Jade-1-expressing cells confirmed these results. Therefore, Jade-1 may suppress renal cancer cell growth in part by increasing apoptosis. Jade-1 may represent a proapoptotic barrier to proliferation that must be overcome generally in renal cancer, perhaps initially by pVHL inactivation and subsequently by increased proteasomal activity. Therefore, Jade-1 may be a renal tumor suppressor. PMID:16046545

  9. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance

    PubMed Central

    O’Malley, Katherine J.; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L.; Wang, Zhou

    2011-01-01

    BACKGROUND Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression, however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting HSP90 regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. METHODS The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. RESULTS Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. CONCLUSIONS Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. PMID:22161776

  10. In vivo cell cycle profiling in xenograft tumors by quantitative intravital microscopy

    PubMed Central

    Chittajallu, Deepak R; Florian, Stefan; Kohler, Rainer H; Iwamoto, Yoshiko; Orth, James D; Weissleder, Ralph; Danuser, Gaudenz; Mitchison, Timothy J

    2015-01-01

    Quantification of cell-cycle state at a single-cell level is essential to understand fundamental three-dimensional biological processes such as tissue development and cancer. Analysis of 3D in vivo images, however, is very challenging. Today’s best practice, manual annotation of select image events, generates arbitrarily sampled data distributions, unsuitable for reliable mechanistic inferences. Here, we present an integrated workflow for quantitative in vivo cell-cycle profiling. It combines image analysis and machine learning methods for automated 3D segmentation and cell-cycle state identification of individual cell-nuclei with widely varying morphologies embedded in complex tumor environments. We applied our workflow to quantify cell-cycle effects of three antimitotic cancer drugs over 8 days in HT-1080 fibrosarcoma xenografts in living mice using a dataset of 38,000 cells and compared the induced phenotypes. In contrast to 2D culture, observed mitotic arrest was relatively low, suggesting involvement of additional mechanisms in their antitumor effect in vivo. PMID:25867850

  11. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Ruiz-Torres, Verónica; Artemenko, Konstantin A; Micol, Vicente; Bergquist, Jonas; Cifuentes, Alejandro

    2017-05-26

    The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts.

    PubMed

    Kemper, Kristel; Krijgsman, Oscar; Cornelissen-Steijger, Paulien; Shahrabi, Aida; Weeber, Fleur; Song, Ji-Ying; Kuilman, Thomas; Vis, Daniel J; Wessels, Lodewyk F; Voest, Emile E; Schumacher, Ton Nm; Blank, Christian U; Adams, David J; Haanen, John B; Peeper, Daniel S

    2015-09-01

    The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAF(V600E) metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug-resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAF(V600E), we identified a new activating insertion in MEK1. This MEK1(T55delins) (RT) mutation could be traced back to a fraction of the pre-treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient-derived xenografts (PDX) from therapy-refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter- and intra-tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patient's melanoma.

  13. CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis

    PubMed Central

    Bruno, Stefania; Bussolati, Benedetta; Grange, Cristina; Collino, Federica; Efrem Graziano, Manuela; Ferrando, Ugo; Camussi, Giovanni

    2006-01-01

    In the present study, we tested the hypothesis that resident progenitor cells may contribute to tumor vascularization and growth. CD133+ cells were isolated from 30 human renal carcinomas and characterized as renal resident progenitor cells on the basis of the expression of renal embryonic and mesenchymal stem cell markers. CD133+ progenitors differentiated into endothelial and epithelial cells as the normal CD133+ counterpart present in renal tissue. In the presence of tumor-derived growth factors, these cells were committed to differentiate into endothelial cells able to form vessels in vivo in SCID mice. Undifferentiated CD133+ progenitors were unable to form tumors when transplanted alone in SCID mice. When co-transplanted with renal carcinoma cells, CD133+ progenitors significantly enhanced tumor development and growth. This effect was not attributable to the tumorigenic nature of CD133+ progenitor cells because the same results were obtained with CD133+ cells from normal kidney. CD133+ progenitors contributed to tumor vascularization as the majority of neoformed vessels present within the transplanted tumors were of human origin and derived from the co-transplanted CD133+ progenitors. In conclusion, these results indicate the presence of a renal progenitor cell population in renal carcinomas that may differentiate in endothelial cells and favor vascularization and tumor growth. PMID:17148683

  14. Giant renal Angiomyolipoma masquerading as a Wilms tumor

    PubMed Central

    Dhua, Anjan Kumar; Ranjan, Abhishek; Agarwala, Sandeep; Bhatnagar, Veereshwar; Mathur, Sandeep R.; Devasenathipathy, Kandasamy

    2017-01-01

    Renal Angiomyolipoma (AML) is not commonly seen in the pediatric age group other than patients of tuberous sclerosis where in they can have renal AMLs within the first decade with bilateral in involvement. Diagnosis of renal AML can generally be made by the current radiological modalities in the appropriate clinical setting, but it can be mistaken for other tumors when it is large and has low-fat content. Herein we report a case of giant renal AML that was initially misdiagnosed as a Wilms tumor in a 12-year-old girl. PMID:28197035

  15. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  16. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Predictive potential of photoacoustic spectroscopy in breast tumor detection based on xenograft serum profiles

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Chandra, Subhas; Rao, Bola Sadashiva Satish; Ray, Satadru; Mahato, Krishna Kishore

    2015-02-01

    Breast cancer is the second most common cancer all over the world. Heterogeneity in breast cancer makes it a difficult task to detect with the existing serum markers at an early stage. With an aim to detect the disease early at the pre-malignant level, MCF-7 cells xenografts were developed using female nude mice and blood serum were extracted on days 0th, 10th, 15th & 20th post tumor cells injection (N=12 for each time point). Photoacoustic spectra were recorded on the serum samples at 281nm pulsed laser excitations. A total of 144 time domain spectra were recorded from 48 serum samples belonging to 4 different time points. These spectra were then converted into frequency domain (0-1250kHz) using MATLAB algorithms. Subsequently, seven features (mean, median, mode, variance, standard deviation, area under the curve & spectral residuals after 10th degree polynomial fit) were extracted from them and used for PCA. Further, using the first three Principal components (PCs) of the data, Linear Discriminate Analysis has been carried out. The performance of the analysis showed 82.64% accuracy in predicting various time points under study. Further, frequency-region wise analysis was also performed on the data and found 95 - 203.13 kHz region most suitable for the discrimination among the 4 time points. The analysis provided a clear discrimination in most of the spectral features under study suggesting that the photoacoustic technique has the potential to be a diagnostic tool for early detection of breast tumor development

  18. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.

    PubMed

    Griffin, Carly; Karnik, Aditya; McNulty, James; Pandey, Siyaram

    2011-01-01

    The naturally occurring Amaryllidaceae alkaloid pancratistatin exhibits potent apoptotic activity against a large panel of cancer cells lines and has an insignificant effect on noncancerous cell lines, although with an elusive cellular target. Many current chemotherapeutics induce apoptosis via genotoxic mechanisms and thus have low selectivity. The observed selectivity of pancratistatin for cancer cells promoted us to consider the hypothesis that this alkaloid targets cancer cell mitochondria rather than DNA or its replicative machinery. In this study, we report that pancratistatin decreased mitochondrial membrane potential and induced apoptotic nuclear morphology in p53-mutant (HT-29) and wild-type p53 (HCT116) colorectal carcinoma cell lines, but not in noncancerous colon fibroblast (CCD-18Co) cells. Interestingly, pancratistatin was found to be ineffective against mtDNA-depleted (ρ(0)) cancer cells. Moreover, pancratistatin induced cell death in a manner independent of Bax and caspase activation, and did not alter β-tubulin polymerization rate nor cause double-stranded DNA breaks. For the first time we report the efficacy of pancratistatin in vivo against human colorectal adenocarcinoma xenografts. Intratumor administration of pancratistatin (3 mg/kg) caused significant reduction in the growth of subcutaneous HT-29 tumors in Nu/Nu mice (n = 6), with no apparent toxicity to the liver or kidneys as indicated by histopathologic analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Altogether, this work suggests that pancratistatin may be a novel mitochondria-targeting compound that selectively induces apoptosis in cancer cells and significantly reduces tumor growth.

  19. [Case of primary renal carcinoid tumor with hemorrhage].

    PubMed

    Kubota, Yasuaki; Seike, Kensaku; Maeda, Shinichi; Tashiro, Kazuhiro

    2010-04-01

    Carcinoid tumors are low-grade malignant tumors that arise from neuroendocrine cells. Primary renal carcinoid tumors are extremely uncommon. A 63-year-old woman presented with a right abdominal mass and fever. Abdominal computed tomography demonstrated a mass in the right kidney; the mass measured 120 mm in diameter and showed hemorrhage. The patient underwent an uneventful right radical nephrectomy, and histological appearance was typical of carcinoid tumor. Immunohistochemistry demonstrated strong cytoplasmic labeling for neuron-specific enolase and synaptophysin. Additional examinations of the gastrointestinal tract did not show any evidence of carcinoid tumors. The patient remains free from disease recurrence at 8 months after the operation. The prognosis for primary renal carcinoid tumor is relatively optimistic. Complete surgical excision is the only recommended treatment for localized renal carcinoid tumor.

  20. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    PubMed Central

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Background Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Methods Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. Results CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. Conclusion CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in

  1. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model.

    PubMed

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC(50) of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in SO-Rb 50 cells, which may be

  2. Carcinoid tumor with bilateral renal involvement in a child.

    PubMed

    Warrier, Raj P; Varma, Aditi Vian; Chauhan, Aman; Ward, Ken; Craver, Randal

    2011-12-01

    Carcinoid tumors are uncommon in children. Kidneys are rarely involved as they do not possess neuro-endocrine cells. Work up of painless hematuria after abdominal trauma in a 10-year-old boy revealed primary carcinoid tumors with metastasis to both kidneys. We were unable to find any previous reports of renal involvement by carcinoid tumor in children.

  3. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  4. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer.

    PubMed

    Julien, Sylvia; Merino-Trigo, Ana; Lacroix, Ludovic; Pocard, Marc; Goéré, Diane; Mariani, Pascale; Landron, Sophie; Bigot, Ludovic; Nemati, Fariba; Dartigues, Peggy; Weiswald, Louis-Bastien; Lantuas, Denis; Morgand, Loïc; Pham, Emmanuel; Gonin, Patrick; Dangles-Marie, Virginie; Job, Bastien; Dessen, Philippe; Bruno, Alain; Pierré, Alain; De Thé, Hugues; Soliman, Hany; Nunes, Manoel; Lardier, Guillaume; Calvet, Loreley; Demers, Brigitte; Prévost, Grégoire; Vrignaud, Patricia; Roman-Roman, Sergio; Duchamp, Olivier; Berthet, Cyril

    2012-10-01

    Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models. From the 85 unsupervised surgical colorectal samples collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinoses and 14 metastases. Histologic and molecular characterization of patient tumors, first and late passages on mice includes the sequence of key genes involved in CRC (i.e., APC, KRAS, TP53), aCGH, and transcriptomic analysis. This comprehensive characterization shows that our collection recapitulates the clinical situation about the histopathology and molecular diversity of CRC. Moreover, patient tumors and corresponding models are clustering together allowing comparison studies between clinical and preclinical data. Hence, we conducted pharmacologic monotherapy studies with standard of care for CRC (5-fluorouracil, oxaliplatin, irinotecan, and cetuximab). Through this extensive in vivo analysis, we have shown the loss of human stroma cells after engraftment, observed a metastatic phenotype in some models, and finally compared the molecular profile with the drug sensitivity of each tumor model. Through an experimental cetuximab phase II trial, we confirmed the key role of KRAS mutation in cetuximab resistance. This new collection could bring benefit to evaluate novel targeted therapeutic strategies and to better understand the basis for sensitivity or resistance of tumors from individual patients.

  5. Percutaneous renal cryoablation: prospective experience treating 120 consecutive tumors.

    PubMed

    Buy, Xavier; Lang, Hervé; Garnon, Julien; Sauleau, Erik; Roy, Catherine; Gangi, Afshin

    2013-12-01

    The purpose of this study was to evaluate the safety and efficacy of percutaneous renal cryoablation. A prospective nonrandomized evaluation of 120 renal tumors in 95 patients treated with percutaneous cryoablation because their condition did not allow surgery focused on tumor characteristics, complications, hospital course, treatment success based on MRI follow-up, and effect on renal function. The mean follow-up period was 28 months (range, 6-63 months). The mean tumor size was 26 mm (range, 10-68 mm), including 20 tumors larger than 40 mm. Ninety-one tumors were treated with CT and 29 with MRI guidance. Fifty-six tumors were anterior, and thermal protection of adjacent organs with carbodissection or hydrodissection was used in 55 cases. According to the Clavien-Dindo classification, five grade II complications and four grade III-V complications occurred. The technical success rate was 94%. Two tumors required a second session of cryoablation because of recurrence or residual tumor. Twelve months after treatment the overall survival was 96.7%, and the disease-free survival rate was 96.4%, including patients with recurrent genetic tumors. Renal function remained unchanged even in the subgroup of patients with a single kidney. Midterm follow-up shows that percutaneous renal cryoablation is an effective and safe alternative technique for patients whose condition does not allow surgery and that renal function is preserved. Cryoablation combined with percutaneous thermal protection techniques allows treatment of more complex tumors (large central tumors and tumors close to vulnerable structures). However, T1b and central tumors are associated with higher risk of incomplete treatment.

  6. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis.

    PubMed

    Goldstein, Seth D; Hayashi, Masanori; Albert, Catherine M; Jackson, Kyle W; Loeb, David M

    2015-10-01

    Overall survival rates for pediatric high-grade sarcoma have improved greatly in the past few decades, but prevention and treatment of distant metastasis remain the most compelling problems facing these patients. Traditional preclinical mouse models have not proven adequate to study the biology and treatment of spontaneous distant sarcoma metastasis. To address this deficit, we developed an orthotopic implantation/amputation model in which patient-derived sarcoma xenografts are surgically implanted into mouse hindlimbs, allowed to grow, then subsequently amputated and the animals observed for development of metastases. NOD/SCID/IL-2Rγ-null mice were implanted with either histologically intact high grade sarcoma patient-derived xenografts or cell lines in the pretibial space and affected limbs were amputated after tumor growth. In contrast to subcutaneous flank tumors, we were able to consistently detect spontaneous distant spread of the tumors using our model. Metastases were seen in 27-90 % of animals, depending on the xenograft, and were repeatable and predictable. We also demonstrate the utility of this model for studying the biology of metastasis and present preliminary new insights suggesting the role of arginine metabolism and macrophage phenotype polarization in creating a tumor microenvironment that facilitates metastasis. Subcutaneous tumors express more arginase than inducible nitric oxide synthase and demonstrate significant macrophage infiltration, whereas orthotopic tumors express similar amounts of inducible nitric oxide synthase and arginase and have only a scant macrophage infiltrate. Thus, we present a model of spontaneous distant sarcoma metastasis that mimics the clinical situation and is amenable to studying the biology of the entire metastatic cascade.

  7. Gefitinib enhances radiotherapeutic effects of (131)I-hEGF targeted to EGFR by increasing tumor uptake of hEGF in tumor xenografts.

    PubMed

    Xia, Lu; Peng, He; Zhiqiang, Luo; Xiaoli, Zhang

    2017-02-04

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor which has been proven effective for cancer treatment. In this study, we sought to determine whether gefitinib could increase the in vivo tumor uptake of human (131)I-EGF ((131)I-hEGF), thereby enhancing the potential of hEGF as a vehicle for EGFR-targeted radionuclide therapy. Western blot analysis was conducted to detect the effects of gefitinib on EGFR expression in human head and neck squamous carcinoma cell line UM-SCC-22B. Nude mice bearing UM-SCC-22B tumor xenografts were pretreated via i.p. injection of gefitinib or DMSO (vehicle control), followed by i.v. injection of (125)I-hEGF; the animals were then subjected to ex vivo biodistribution or injection of (131)I-hEGF for planar γ-imaging using SPECT, respectively. Targeted radionuclide therapy using (131)I-hEGF combined with gefitinib as a vehicle targeting EGFR was also performed in UM-SCC-22B tumor xenografts. The EGFR level was unchangeable in cells pretreated with gefitinib, but after gefitinib pretreatment, the uptake of (125)I-hEGF in 22B tumor xenografts increased substantially while the uptake of (125)I-hEGF in normal organs was effectively unchanged. (131)I-hEGF as a vehicle for EGFR-targeting therapy combined with gefitinib therefore showed strong therapeutic effects against 22B tumor xenografts tolerant to gefitinib. The uptake of hEGF to EGFR-positive tumors was enhanced significantly after gefitinib pretreatment, suggesting that (131)I-hEGF is a potential vehicle for EGFR-targeting radionuclide therapy when combined with gefitinib.

  8. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  9. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  10. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors.

    PubMed

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen

    2016-12-01

    The first main aim of this study was to illustrate the absorbed dose rate distribution from (177)Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of (90)Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using (177)Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼10(7) LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with (177)LuCl3. The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq (177)Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0

  11. A 19F NMR Approach using Reporter Molecule Pairs to Assess β-Galactosidase in Human Xenograft Tumors in Vivo

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Liu, Li; Mason, Ralph P.

    2011-01-01

    Gene therapy has emerged as a promising strategy for treatment of various diseases. However, widespread implementation is hampered by difficulties in assessing the success of transfection in the target tissue and the longevity of gene expression. Thus, there is increasing interest in the development of non-invasive in vivo reporter techniques to assay gene expression. We recently demonstrated the ability to detect β-galactosidase activity in stably transfected human prostate tumor xenografts in mice in vivo using 19F NMR. We now extend the studies to human MCF7 breast cancer cells growing as xenografts in nude mice. Moreover, by using two spectrally resolved reporters (o-fluoro-p-nitrophenyl-β-D-galactopyranoside and an isomer) two tumors could be interrogated simultaneously revealing lacZ transgene activity in a stably transfected tumor versus no activity in a wild type tumor. Most significantly hydrolytic activity observed by 19F NMR corresponded with differential activity in lacZ expressing tumors. PMID:18288788

  12. Labeling of breast cancer patient-derived xenografts with traceable reporters for tumor growth and metastasis studies

    PubMed Central

    Hanna, Colton; Kwok, Letty; Finlay-Schultz, Jessica; Sartorius, Carol A; Cittelly, Diana M

    2017-01-01

    We describe a method for stable labeling of patient-derived xenografts (PDXs) with lentiviral particles expressing green-fluorescent protein and luciferase reporters. This method allows for tracking the growth of PDXs at the primary site, as well as detecting spontaneous and experimental metastases using in vivo imaging systems. The use of preclinical models to study tumor biology and response to treatment is central to cancer research. Long-established human cell lines, and many transgenic mouse models, often fail to recapitulate the key aspects of human malignancies. Thus, alternative models that better represent the heterogeneity of patients’ tumors and their metastases are being developed. Patient-derived xenograft (PDX) models in which surgically resected tumor samples are engrafted into immunocompromised mice have become an attractive alternative as they can be transplanted through multiple generations, and more efficiently reflect tumor heterogeneity than xenografts derived from human cancer cell lines. A limitation to the use of PDXs is that they are difficult to transfect or transduce to introduce traceable reporters or to manipulate gene expression. The current protocol describes methods to transduce dissociated tumor cells from PDXs with high transduction efficiency, and the use of labeled PDXs for experimental models of breast cancer metastases. The protocol also demonstrates the use of labeled PDXs in experimental metastasis models to study the organ-colonization process of the metastatic cascade. Metastases to different organs can be easily visualized and quantified using bioluminescent imaging in live animals, or GFP expression during dissection and in excised organs. These methods provide a powerful tool to extend the use of multiple types of PDXs to metastasis research. PMID:27929464

  13. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy

    PubMed Central

    Sui, Hongying; Shi, Caixia; Yan, Zhipeng; Li, Hucheng

    2015-01-01

    Background Ovarian cancer is the leading cause of death in women with gynecological malignancy worldwide. Despite multiple new approaches to treatment, relapse remains almost inevitable in patients with advanced disease. The poor outcome of advanced ovarian cancer treated with conventional therapy stimulated the search for new strategies to improve therapeutic efficacy. Although epidermal growth factor receptor (EGFR) and poly(ADP-ribose) polymerase (PARP) inhibitors have known activity in advanced ovarian cancer, the effect of combined therapy against EGFR and PARP in this population has not been reported. In the current study, we investigated the mechanisms of erlotinib used alone or in combination with olaparib (AZD2281), a potent inhibitor of PARP, in an EGFR-overexpressing ovarian tumor xenograft model. Methods A2780 (EGFR-overexpressing, BRCA1/2 wild-type) cells were subcutaneously injected into nude mice, which were then randomly assigned to treatment with vehicle, erlotinib, AZD2281, or erlotinib + AZD2281, for up to 3 weeks. All mice were then sacrificed and tumor tissues were subjected to Western blot analysis and monodansylcadervarine staining (for analysis of autophagy). Results Erlotinib could slightly inhibit growth of A2780 tumor xenografts, and AZD2281 alone had similar effects on tumor growth. However, the combination treatment had a markedly enhanced antitumor effect. Western blot analysis revealed that treatment with erlotinib could significantly reduce the phosphorylation level of ERK1/2 and AKT in A2780 tumor tissue. Of interest, monodansylcadervarine staining showed that the autophagic effects were substantially enhanced when the agents were combined, which may be due to downregulation of apoptosis. Conclusion These results suggest that combination of a selective EGFR inhibitor and a PARP inhibitor is effective in ovarian cancer A2780 xenografts, and depends on enhanced autophagy. PMID:26124641

  14. The somatostatin analog 188Re-P2045 inhibits the growth of AR42J pancreatic tumor xenografts.

    PubMed

    Nelson, Carol A; Azure, Michael T; Adams, Christopher T; Zinn, Kurt R

    2014-12-01

    P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor xenograft mice to determine whether (188)Re-P2045 could inhibit the growth of pancreatic cancer in an animal model. (188)Re-P2045 was intravenously administered every 3 d for 16 d to nude mice with AR42J tumor xenografts that were approximately 20 mm(3) at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy, all tissues were assessed for levels of radioactivity and evaluated for histologic abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of nonradioactive (185/187)Re-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor cell membranes expressing predominantly SSTR2. In the 1.85- and 5.55-MBq groups, tumor growth was inhibited in a dose-dependent fashion. In the 11.1-MBq group, tumor growth was completely inhibited throughout the dosing period and for 12 d after the last administered dose. The radioactivity level in tumors 4 h after injection was 10 percentage injected dose per gram, which was 2-fold higher than in the kidneys. (188)Re-P2045 was well tolerated in all dose groups, with no adverse clinical, histologic, or hematologic findings. The nonradioactive (185/187)Re-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes, suggesting that these studies are relevant to human studies. (188)Re-P2045 is a promising therapeutic candidate for patients with somatostatin receptor-positive cancer. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model.

    PubMed

    Hylander, Bonnie L; Sen, Arindam; Beachy, Sarah H; Pitoniak, Rose; Ullas, Soumya; Gibbs, John F; Qiu, Jingxin; Prey, Joshua D; Fetterly, Gerald J; Repasky, Elizabeth A

    2015-11-10

    Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.

  16. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect

  17. Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors

    PubMed Central

    Creighton, Chad J; Cordero, Kevin E; Larios, Jose M; Miller, Rebecca S; Johnson, Michael D; Chinnaiyan, Arul M; Lippman, Marc E; Rae, James M

    2006-01-01

    Background Estrogen plays a central role in breast cancer pathogenesis. Although many studies have characterized the estrogen regulation of genes using in vitro cell culture models by global mRNA expression profiling, it is not clear whether these genes are similarly regulated in vivo or how they might be coordinately expressed in primary human tumors. Results We generated DNA microarray-based gene expression profiles from three estrogen receptor α (ERα)-positive breast cancer cell lines stimulated by 17β-estradiol (E2) in vitro over a time course, as well as from MCF-7 cells grown as xenografts in ovariectomized athymic nude mice with E2 supplementation and after its withdrawal. When the patterns of genes regulated by E2 in vitro were compared to those obtained from xenografts, we found a remarkable overlap (over 40%) of genes regulated by E2 in both contexts. These patterns were compared to those obtained from published clinical data sets. We show that, as a group, E2-regulated genes from our preclinical models were co-expressed with ERα in a panel of ERα+ breast tumor mRNA profiles, when corrections were made for patient age, as well as with progesterone receptor. Furthermore, the E2-regulated genes were significantly enriched for transcriptional targets of the myc oncogene and were found to be coordinately expressed with Myc in human tumors. Conclusion Our results provide significant validation of a widely used in vitro model of estrogen signaling as being pathologically relevant to breast cancers in vivo. PMID:16606439

  18. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  19. Minimally Invasive Treatment of Small Renal Tumors: Trends in Renal Cancer Diagnosis and Management

    SciTech Connect

    Breen, David J. Railton, Nicholas J.

    2010-10-15

    Renal cell carcinoma is a common malignancy causing significant mortality. In recent years abdominal imaging, often for alternate symptomatology, has led the trend toward the detection and confirmation of smaller renal tumors. This has permitted the greater use of localized and nephron-sparing techniques including partial nephrectomy and image-guided ablation. This article aims to review the current role of image-guided biopsy and ablation in the management of small renal tumors. The natural history of renal cell carcinoma, the role of renal biopsy, the principles and procedural considerations of thermal energy ablation, and the oncological outcomes of these minimally invasive treatments are discussed and illustrated with cases from the authors' institution. Image-guided ablation, in particular, has changed the treatment paradigm and, by virtue of its increasingly evident efficacy and low morbidity, now favors the treatment of smaller tumors in patients previously unfit for surgery.

  20. [Metastatic renal tumor from oral floor cancer: a case report].

    PubMed

    Ishibashi, Yusuke; Hatakeyama, Shingo; Okamoto, Teppei; Suzuki, Yuichiro; Kudo, Shigemasa; Yoneyama, Takahiro; Koie, Takuya; Kamimura, Noritaka; Sakaki, Hirotaka; Kobayashi, Wataru; Kimura, Hiroto; Ohyama, Chikara

    2012-11-01

    A 61-year-old man with oral floor cancer (adenoid cystic carcinoma, T2N0M1) was treated with systemicc hemotherapy and radiation therapy at the department of dentistry and oral surgery in our hospital. He had three lung metastases and renal tumors detected by screening computed tomography. The oral floor cancer responded to the treatment to achieve partial response. However, lung and renal metastases did not respond to chemotherapy. Then, the patient was referred to our clinic to rule out the possibility of lung metastasis from renal cell carcinoma. Laparoscopic left nephrectomy was performed and pathological examination on the renal lesions revealed adenoid cystic carcinoma, which had identical histopathological features to the oral floor cancer. To our knowledge, this is the first report of metastatic renal tumor from oral floor cancer (adenoid cystic carcinoma).

  1. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer.

    PubMed

    Hao, Chuncheng; Wang, Li; Peng, Shaohua; Cao, Mengru; Li, Hongyu; Hu, Jing; Huang, Xiao; Liu, Wei; Zhang, Hui; Wu, Shuhong; Pataer, Apar; Heymach, John V; Eterovic, Agda Karina; Zhang, Qingxiu; Shaw, Kenna R; Chen, Ken; Futreal, Andrew; Wang, Michael; Hofstetter, Wayne; Mehran, Reza; Rice, David; Roth, Jack A; Sepesi, Boris; Swisher, Stephen G; Vaporciyan, Ara; Walsh, Garrett L; Johnson, Faye M; Fang, Bingliang

    2015-02-01

    Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. BRAF exon 15 mutations in pediatric renal stromal tumors: prevalence in metanephric stromal tumors.

    PubMed

    Marsden, Lily; Jennings, Lawrence J; Gadd, Samantha; Yu, Min; Perlman, Elizabeth J; Cajaiba, Mariana M

    2017-02-01

    Metanephric stromal tumors (MSTs) are rare renal stromal tumors that predominantly affect children. They belong to the metanephric family of tumors, along with metanephric adenofibroma and metanephric adenoma. The previous documentation of BRAF exon 15 mutations in 88% of metanephric adenomas and in isolated cases of metanephric adenofibroma prompted us to investigate the prevalence of these mutations in MSTs and in other pediatric renal stromal tumors. In this study, 17 MSTs, 22 congenital mesoblastic nephromas, and 6 ossifying renal tumors of infancy were selected for BRAF exon 15 testing. Tumor genomic DNA was extracted from formalin-fixed paraffin-embedded tissue, followed by polymerase chain reaction amplification and Sanger dideoxy sequencing with primers flanking the BRAF exon 15 gene. BRAF exon 15 mutations were found in 11 (65%) of the 17 cases of MST, all corresponding to a thymidine-to-adenine substitution at codon 600 (BRAF V600E). All other renal stromal tumors tested were negative for BRAF exon 15 mutations. In conclusion, BRAF V600E mutations are encountered in most MSTs, supporting a link with other metanephric tumors and suggesting a clonal event possibly affecting primordial renal cells. In addition, BRAF V600E mutations have been associated with oncogene-induced senescence in other benign tumors, providing clues to the pathogenesis of metanephric neoplasms in keeping with their overall benign behavior. Our results also suggest a potential diagnostic use for BRAF exon 15 mutations in differentiating MSTs from other pediatric renal stromal tumors, particularly in limited samples.

  3. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.

    PubMed

    Zhang, Haiyu; Cohen, Adam L; Krishnakumar, Sujatha; Wapnir, Irene L; Veeriah, Selvaraju; Deng, Glenn; Coram, Marc A; Piskun, Caroline M; Longacre, Teri A; Herrler, Michael; Frimannsson, Daniel O; Telli, Melinda L; Dirbas, Frederick M; Matin, A C; Dairkee, Shanaz H; Larijani, Banafshe; Glinsky, Gennadi V; Bild, Andrea H; Jeffrey, Stefanie S

    2014-04-07

    Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than doxorubicin; protein

  4. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition

    PubMed Central

    2014-01-01

    Introduction Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). Methods We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. Results Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than

  5. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice.

    PubMed

    Hurwitz, Selwyn J; Zhang, Hongzheng; Yun, Sujin; Batuwangala, Thil D; Steward, Michael; Holmes, Steve D; Rycroft, Daniel; Pan, Lin; Tighiouart, Mourad; Shin, Hyung Ju C; Koenig, Lydia; Wang, Yuxiang; Chen, Zhuo Georgia; Shin, Dong M

    2012-03-01

    DT-IgG is a fully humanized dual-target therapeutic antibody being developed to simultaneously target epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), important signaling molecules for tumor growth. The antitumor pharmacodynamics (PD) of DT-IgG was studied in nude mice bearing human tumor xenografts with different EGFR and VEGF expressions and K-ras oncogene status and compared with bevacizumab, cetuximab and bevacizumab + cetuximab. Mice bearing human oral squamous cell carcinoma (Tu212), lung adenocarcinoma (A549), or colon cancer (GEO) subcutaneous xenografts were administered with the antibodies intraperitoneally (i.p.), and tumor volumes were measured versus time. Nonlinear mixed effects modeling (NONMEM) was used to study drug potencies (IC(50)) and variations in tumor growth. The PD models adequately described tumor responses for the antibody dose regimens. In vivo IC(50) values varied with EGFR and K-ras status. DT-IgG had a similar serum t (1/2) as cetuximab (~1.7 vs. 1.5 day), was more rapid than bevacizumab (~6 day), and had the largest apparent distribution volume (DT-IgG > cetuximab > bevacizumab). The efficacy of DT-IgG was comparable to bevacizumab despite lower serum concentrations, but was less than bevacizumab + cetuximab. A lower IC(50) of DT-IgG partially compensated for lower serum concentrations than bevacizumab and cetuximab, but may require higher doses for comparable efficacy as the combination. The model adequately predicted variations of tumor response at the DT-IgG doses tested and could be used for targeting specific tumor efficacies for future testing.

  6. Comparison of planar, PET and well-counter measurements of total tumor radioactivity in a mouse xenograft model.

    PubMed

    Green, Michael V; Seidel, Jurgen; Williams, Mark R; Wong, Karen J; Ton, Anita; Basuli, Falguni; Choyke, Peter L; Jagoda, Elaine M

    2017-10-01

    Quantitative small animal radionuclide imaging studies are often carried out with the intention of estimating the total radioactivity content of various tissues such as the radioactivity content of mouse xenograft tumors exposed to putative diagnostic or therapeutic agents. We show that for at least one specific application, positron projection imaging (PPI) and PET yield comparable estimates of absolute total tumor activity and that both of these estimates are highly correlated with direct well-counting of these same tumors. These findings further suggest that in this particular application, PPI is a far more efficient data acquisition and processing methodology than PET. Forty-one athymic mice were implanted with PC3 human prostate cancer cells transfected with prostate-specific membrane antigen (PSMA (+)) and one additional animal (for a total of 42) with a control blank vector (PSMA (-)). All animals were injected with [(18)F] DCFPyl, a ligand for PSMA, and imaged for total tumor radioactivity with PET and PPI. The tumors were then removed, assayed by well counting for total radioactivity and the values between these methods intercompared. PET, PPI and well-counter estimates of total tumor radioactivity were highly correlated (R(2)>0.98) with regression line slopes near unity (0.95xenograft tumor radioactivity can be measured with PET or PPI with an accuracy comparable to well counting if certain experimental and pharmacokinetic conditions are met. In this particular application, PPI is significantly more efficient than PET in making these measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Uncommon renal tumors in children: A single center experience

    PubMed Central

    Mandal, Kartik Chandra; Mukhopadhyay, Madhumita; Barman, Shibsankar; Halder, Pankaj; Mukhopadhyay, Biswanath; Kumar, Rajarshi

    2016-01-01

    Aims: Scrutiny over the clinical behaviors, management, and the final outcome of some rare renal neoplasm in order to find out some hidden facts about these tumors which are playing an important role in the disease course and its management. Materials and Methods: Retrospective evaluation of uncommon (non-Wilms’) renal neoplasm in the pediatric population in a tertiary care center. Fifteen cases of uncommon renal tumors were treated in our institution over the last 5 years (January 2008 to December 2012). The cases were tabulated in the form of age, sex, mode of presentation, preoperative investigations, intraoperative grading, pathological type, postoperative management and the final outcome. The patients were followed up for 2 years (clinically every 3 months and ultrasonography abdomen in every 6 months for first 2 years) in order to see any evidence of recurrence and complications related to postoperative chemotherapy. Results: Out of 15 cases, four cases were clear cell sarcoma (CCS) (26.6%), three cases were rhabdoid tumor (20%), three cases were congenital mesoblastic nephroma (20%), two cases were multilocular cystic nephroma (13.3%), two cases were renal teratoma (13.3%), and one case of teratoid Wilms’ tumor (6.6%). There were two deaths (one CCS and one rhabdoid tumor) due to chemotherapy-related toxicity but no recurrence. Three patients were lost during postoperative follow-up; ten patients are doing well and getting a regular visit in the follow-up clinic. Conclusion: The clinical presentations of these uncommon renal tumors are similar to that of Wilms’ tumor. Thus, preoperative diagnosis is difficult even with modern imaging techniques. Some of these tumors (CCS, rhabdoid tumor) are rapidly progressing and have a poor outcome. Hence, early intervention in the form of complete surgical resection of the tumor (whenever possible) and postoperative chemo/radiotherapy are imperative for fruitful outcome. PMID:27046976

  8. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

    PubMed Central

    Khalil, Ashraf A.; Jameson, Mark J.; Broaddus, William C.; Lin, Peck Sun; Dever, Seth M.; Golding, Sarah E.; Rosenberg, Elizabeth; Valerie, Kristoffer; Chung, Theodore D.

    2013-01-01

    Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment. PMID:23936647

  9. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments.

    PubMed

    Zarzosa, P; Navarro, N; Giralt, I; Molist, C; Almazán-Moga, A; Vidal, I; Soriano, A; Segura, M F; Hladun, R; Villanueva, A; Gallego, S; Roma, J

    2017-01-01

    The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.

  10. The dual pathway inhibitor rigosertib is effective in direct-patient tumor xenografts of head and neck squamous cell carcinomas

    PubMed Central

    Anderson, Ryan T.; Keysar, Stephen B.; Bowles, Daniel W.; Glogowska, Magdalena J.; Astling, David P.; Morton, J. Jason; Le, Phuong; Umpierrez, Adrian; Eagles-Soukup, Justin; Gan, Gregory N.; Vogler, Brian W.; Sehrt, Daniel; Takimoto, Sarah M.; Aisner, Dara L.; Wilhelm, Francois; Frederick, Barbara A.; Varella-Garcia, Marileila; Tan, Aik-Choon; Jimeno, Antonio

    2013-01-01

    The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in head and neck squamous cell cancer (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from 8 HNSCC patients (4 HPV16-positive). HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, western blotting, and IHC. Rigosertib had potent antiproliferative effects on 11 of the 16 HPV− HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in 3/8 HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA activating event (amplification or mutation) and a p53 inactivating event (either HPV16-mediated or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV+ and HPV− HNSCCs focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient for rigosertib-sensitivity. PMID:23873848

  11. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    PubMed

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  12. Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts.

    PubMed

    Kortmann, Ursula; McAlpine, Jessica N; Xue, Hui; Guan, Jun; Ha, Gavin; Tully, Sophie; Shafait, Sharaz; Lau, Alan; Cranston, Aaron N; O'Connor, Mark J; Huntsman, David G; Wang, Yuzhuo; Gilks, C Blake

    2011-02-15

    Most patients with ovarian carcinomas succumb to their disease and there is a critical need for improved therapeutic approaches. Carcinomas arising in BRCA mutation carriers display defective DNA double-strand break repair that can be therapeutically exploited by inhibition of PARP-1, a key enzyme in the repair of DNA single-strand breaks, creating synthetic lethality in tumor cells. To investigate synthetic lethality in vivo, we established a BRCA2 germline-mutated xenograft model that was developed directly from human ovarian cancer tissue, treated with the PARP inhibitor olaparib (AZD2281) alone and in combination with carboplatin. We show that olaparib alone and in combination with carboplatin greatly inhibit growth in BRCA2-mutated ovarian serous carcinoma. This effect was not observed in a serous carcinoma with normal BRCA function, showing a specific antitumor effect of olaparib in mutation carriers. Immunohistochemistry (cleaved caspase-3 and Ki-67 stains) of remnant tissue after olaparib treatment revealed significantly decreased proliferation and increased apoptotic indices in these tumors compared with untreated controls. Furthermore, olaparib-treated tumors showed highly reduced PARP-1 activity that correlated with olaparib levels. We established a BRCA2-mutated human ovarian cancer xenograft model suitable for experimental drug testing. The demonstrated in vivo efficacy of olaparib extends on the preclinical rationale for further clinical trials targeting ovarian cancer patients with BRCA mutations. ©2010 AACR.

  13. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  14. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts.

    PubMed

    Krauze, Michal T; Noble, Charles O; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W; Bankiewicz, Krystof S

    2007-10-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors.

  15. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis.

    PubMed

    Eccles, Suzanne A; Massey, Andy; Raynaud, Florence I; Sharp, Swee Y; Box, Gary; Valenti, Melanie; Patterson, Lisa; de Haven Brandon, Alexis; Gowan, Sharon; Boxall, Frances; Aherne, Wynne; Rowlands, Martin; Hayes, Angela; Martins, Vanessa; Urban, Frederique; Boxall, Kathy; Prodromou, Chrisostomos; Pearl, Laurence; James, Karen; Matthews, Thomas P; Cheung, Kwai-Ming; Kalusa, Andrew; Jones, Keith; McDonald, Edward; Barril, Xavier; Brough, Paul A; Cansfield, Julie E; Dymock, Brian; Drysdale, Martin J; Finch, Harry; Howes, Rob; Hubbard, Roderick E; Surgenor, Alan; Webb, Paul; Wood, Mike; Wright, Lisa; Workman, Paul

    2008-04-15

    We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth

  16. Effects of nicotinamide and carbogen on oxygenation in human tumor xenografts measured with luminescense based fiber-optic probes.

    PubMed

    Bussink, J; Kaanders, J H; Strik, A M; van der Kogel, A J

    2000-10-01

    In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.

  17. Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice.

    PubMed

    Dai, M; Liu, J; Chen, D-E; Rao, Y; Tang, Z-J; Ho, W-Z; Dong, C-Y

    2012-02-01

    Clinical efficacy of current therapies for hepatocellular carcinoma (HCC) treatment is limited. Indole-3-acetic acid (IAA) is non-toxic for mammalian cells. Oxidative decarboxylation of IAA by horseradish peroxidase (HRP) leads to toxic effects of IAA. The purpose of this study was to investigate the effects of a novel gene-targeted enzyme prodrug therapy with IAA on hepatoma growth in vitro and in vivo mouse hepatoma models. We generated a plasmid using adenovirus to express HRP isoenzyme C (HRPC) with the HCC marker, alpha-fetoprotein (AFP), as the promoter (pAdv-AFP-HRPC). Hepatocellular cells were infected with pAdv-AFP-HRPC and treated with IAA. Cell death was detected using MTT assay. Hepatoma xenografts were developed in mice by injection of mouse hepatoma cells. The size and weight of tumors and organs were evaluated. Cell death in tumors was assessed using hematoxylin and eosin-stained tissue sections. HRPC expression in tissues was detected using Reverse Transcriptase-Polymerase Chain Reaction. IAA stimulated death of hepatocellular cells infected with pAdv-AFP-HRPC, in a dose- and time-dependent manner, but not in control cells. Growth of hepatoma xenografts, including the size and weight, was inhibited in mice treated with pAdv-AFP-HRPC and IAA, compared with that in control group. pAdv-AFP-HRPC/IAA treatment induced cell death in hepatoma xenografts in mice. HRPC gene expressed only in hepatoma, but not in other normal organs of mice. pAdv-AFP-HRPC/IAA treatment did not cause any side effects on normal organs. These findings suggest that pAdv-AFP-HRPC/IAA enzyme/prodrug system may serve as a strategy for HCC therapy.

  18. The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts.

    PubMed

    Zhang, Xufeng; Cong, Damin; Shen, Dawei; Gao, Xin; Chen, Lei; Hu, Shaoshan

    2014-07-01

    The aim of this study was to investigate the effect of bumetanide on peri-tumor edema caused by photodynamic therapy (PDT) of intraparenchymal C6 glioma xenografts. Seven days after inoculation with C6 cells, rats with MRI-confirmed glioma received hematoporphyrin monomethyl ether (HMME)-mediated PDT, injection of bumetanide or a combination of the two treatments. After treatment, tumor volume, tumor weight, brain water content, microvessel density, expression of NKCC-1, Zonula occludens-1 (ZO-1), and animal survival time were examined. In the PDT group, tumor growth was significantly inhibited and survival prolonged. Bumetanide enhanced the efficacy of PDT and reduced PDT-induced peri-tumor edema in the combined PDT + bumetanide treatment group where NKCC-1 expression in response to PDT was significantly suppressed. ZO-1 expression was significantly suppressed in the PDT-only group. This suppression was not observed in the combined PDT + bumetanide treatment group. PDT, in combination with bumetanide was seen to significantly inhibit the growth of C6 glioma, relieve peri-tumor edema caused by PDT alone and prolong survival. These results suggest that PDT, in combination with bumetanide, may be a useful and promising strategy in the treatment of human glioma. © 2014 Wiley Periodicals, Inc.

  19. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers

    PubMed Central

    Skowron, K. B.; Pitroda, S. P.; Namm, J. P.; Balogun, O.; Beckett, M. A.; Zenner, M. L.; Fayanju, O.; Huang, X.; Fernandez, C.; Zheng, W.; Qiao, G.; Chin, R.; Kron, S. J.; Khodarev, N. N.; Posner, M. C.; Steinberg, G. D.; Weichselbaum, R. R.

    2016-01-01

    Strategies to identify tumors at highest risk for treatment failure are currently under investigation for patients with bladder cancer. We demonstrate that flow cytometric detection of poorly differentiated basal tumor cells (BTCs), as defined by the co-expression of CD90, CD44 and CD49f, directly from patients with early stage tumors (T1-T2 and N0) and patient-derived xenograft (PDX) engraftment in locally advanced tumors (T3-T4 or N+) predict poor prognosis in patients with bladder cancer. Comparative transcriptomic analysis of bladder tumor cells isolated from PDXs indicates unique patterns of gene expression during bladder tumor cell differentiation. We found cell division cycle 25C (CDC25C) overexpression in poorly differentiated BTCs and determined that CDC25C expression predicts adverse survival independent of standard clinical and pathologic features in bladder cancer patients. Taken together, our findings support the utility of BTCs and bladder cancer PDX models in the discovery of novel molecular targets and predictive biomarkers for personalizing oncology care for patients. PMID:27775025

  20. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation

    PubMed Central

    Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju

    2015-01-01

    Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice. PMID:26709385

  1. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation.

    PubMed

    Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju

    2015-12-01

    Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice.

  2. A Novel 99mTc-Labeled Molecular Probe for Tumor Angiogenesis Imaging in Hepatoma Xenografts Model: A Pilot Study

    PubMed Central

    Zhao, Qian; Yan, Ping; Wang, Rong Fu; Zhang, Chun Li; Li, Ling; Yin, Lei

    2013-01-01

    Introduction Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis. Methods The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored. Results The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821. Conclusion 99mTc-RRL can

  3. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  4. Rapidly enlarging renal tumor during pregnancy: diagnostic and management dilemma

    PubMed Central

    Tiang, Kor Woi; Ng, Keng Lim; Vega-Vega, Antonio; Wood, Simon

    2014-01-01

    Urological tumors diagnosed during pregnancy are rare. However, the incidence seems to be increasing largely due to advancements in modern imaging techniques and improved antenatal care. The diagnosis and management of renal tumors during pregnancy poses a dilemma to clinicians. This case report highlights the challenges in managing a large chromophobe renal cell carcinoma in a young primigravida patient. Proper antenatal assessment, a multidisciplinary team approach and appropriate discussion with patient are important determinants to achieve the best clinical outcomes for both the mother and the baby.

  5. Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma.

    PubMed

    Jiang, Zhiwu; Jiang, Xiaofeng; Chen, Suimin; Lai, Yunxin; Wei, Xinru; Li, Baiheng; Lin, Simiao; Wang, Suna; Wu, Qiting; Liang, Qiubin; Liu, Qifa; Peng, Muyun; Yu, Fenglei; Weng, Jianyu; Du, Xin; Pei, Duanqing; Liu, Pentao; Yao, Yao; Xue, Ping; Li, Peng

    2016-01-01

    The lack of a general clinic-relevant model for human cancer is a major impediment to the acceleration of novel therapeutic approaches for clinical use. We propose to establish and characterize primary human hepatocellular carcinoma (HCC) xenografts that can be used to evaluate the cytotoxicity of adoptive chimeric antigen receptor (CAR) T cells and accelerate the clinical translation of CAR T cells used in HCC. Primary HCCs were used to establish the xenografts. The morphology, immunological markers, and gene expression characteristics of xenografts were detected and compared to those of the corresponding primary tumors. CAR T cells were adoptively transplanted into patient-derived xenograft (PDX) models of HCC. The cytotoxicity of CAR T cells in vivo was evaluated. PDX1, PDX2, and PDX3 were established using primary tumors from three individual HCC patients. All three PDXs maintained original tumor characteristics in their morphology, immunological markers, and gene expression. Tumors in PDX1 grew relatively slower than that in PDX2 and PDX3. Glypican 3 (GPC3)-CAR T cells efficiently suppressed tumor growth in PDX3 and impressively eradicated tumor cells from PDX1 and PDX2, in which GPC3 proteins were highly expressed. GPC3-CAR T cells were capable of effectively eliminating tumors in PDX model of HCC. Therefore, GPC3-CAR T cell therapy is a promising candidate for HCC treatment.

  6. Spinal cord and bone metastasizing renal tumor of childhood.

    PubMed

    Arrotegui, J I; Barrios, C

    1995-01-01

    In recent reports on renal tumors of childhood with bone involvement neoplasms originally considered to be Wilms tumor have been assigned to new groups. After reviewing the literature, we knew that Wilms tumor rarely metastasizes in this way. Our case illustrates the unique biological feature of the rare, unfavorable histology Wilms tumor variant know as 'clear cell sarcoma of the kidney' (CCSK). Metastases to the spinal cord, as observed in our patient are distinctly unusual. To our knowledge, only two previous cases have been reported in the world literature.

  7. 5α-Reductase Inhibition Suppresses Testosterone-Induced Initial Regrowth of Regressed Xenograft Prostate Tumors in Animal Models

    PubMed Central

    Masoodi, Khalid Z.; Ramos Garcia, Raquel; Pascal, Laura E.; Wang, Yujuan; Ma, Hei M.; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H.; Nguyen, Holly M.; Vessella, Robert L.; Nelson, Joel B.; Parikh, Rahul A.

    2013-01-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  8. Inhibition of 4E-BP1 Sensitizes U87 Glioblastoma Xenograft Tumors to Irradiation by Decreasing Hypoxia Tolerance

    SciTech Connect

    Dubois, Ludwig; Magagnin, Michael G.; Cleven, Arjen H.G.; Weppler, Sherry A.; Grenacher, Beat; Landuyt, Willy; Lieuwes, Natasja; Lambin, Philippe; Gorr, Thomas A.; Koritzinsky, Marianne

    2009-03-15

    Purpose: Eukaryotic initiation factor 4E (eIF4E) is an essential rate-limiting factor for cap-dependent translation in eukaryotic cells. Elevated eIF4E activity is common in many human tumors and is associated with disease progression. The growth-promoting effects of eIF4E are in turn negatively regulated by 4E-BP1. However, although 4E-BP1 harbors anti-growth activity, its expression is paradoxically elevated in some tumors. The aim of this study was to investigate the functional role of 4E-BP1 in the context of solid tumors. Methods and Materials: In vitro and in vivo growth properties, hypoxia tolerance, and response to radiation were assessed for HeLa and U87 cells, after stable expression of shRNA specific for 4E-BP1. Results: We found that loss of 4E-BP1 expression did not significantly alter in vitro growth but did accelerate the growth of U87 tumor xenografts, consistent with the growth-promoting function of deregulated eIF4E. However, cells lacking 4E-BP1 were significantly more sensitive to hypoxia-induced cell death in vitro. Furthermore, 4E-BP1 knockdown cells produced tumors more sensitive to radiation because of a reduction in the viable fraction of radioresistant hypoxic cells. Decreased hypoxia tolerance in the 4E-BP1 knockdown tumors was evident by increased cleaved caspase-3 levels and was associated with a reduction in adenosine triphosphate (ATP). Conclusions: Our results suggest that although tumors often demonstrate increases in cap-dependent translation, regulation of this activity is required to facilitate energy conservation, hypoxia tolerance, and tumor radioresistance. Furthermore, we suggest that targeting translational control may be an effective way to target hypoxic cells and radioresistance in metabolically hyperactive tumors.

  9. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Shin, Yong Pyo; Park, Ho Jin; Lee, Young Shin; Lee, In Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2016-03-01

    The CopA3 dimer peptide is a coprisin analog that has an anticancer effect against human cancer cells in vitro. In this study, we investigated the anticancer activity of the enantiomeric CopA3 dimer peptide in human gastric cancer cell lines as well as in an in vivo tumor xenograft model. Enantiomeric CopA3 reduced gastric cancer cell viability and exhibited cytotoxicity against cancer cells. Enantiomeric CopA3-induced cell death was mediated by specific interactions with phosphatidylserine and phosphatidylcholine, membrane components that are enriched in cancer cells, in a calcein leakage assay. Moreover, acridine orange/ethidium bromide staining, flow cytometric analysis, and Western blot analysis showed that enantiomeric CopA3 induced apoptotic and necrotic gastric cancer cell death. The antitumor effect was also observed in a mouse tumor xenograft model in which intratumoral inoculation of the peptide resulted in a significant decrease in the SNU-668 gastric cancer tumor volume. In addition, periodic acid-Schiff and hematoxylin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed apoptotic and necrotic cell death in tumor masses treated with greater than 150 μg CopA3. Collectively, these results indicate that the enantiomeric CopA3 dimer peptide induces apoptosis and necrosis of gastric cancer cells in vitro and in vivo, indicating that the peptide is a potential candidate for the treatment of gastric cancer, which is a common cause of cancer and cancer deaths worldwide.

  10. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  11. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    PubMed

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.

  12. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis

    PubMed Central

    Schneeberger, Valentina E.; Allaj, Viola; Gardner, Eric E.; Rudin, Charles M.

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  13. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2015-12-01

    such measures in order to distinguish between benign and RCC tumors in patients using the non - invasive rapid hyperpolarized 13C MRI. Review of...using RCC human cells to capture a range of aggressive renal tumors. And have shown using such a model several approaches to non -invasively assess...recent study reported that CHKA forms a complex with EGF receptor (EGFR) in a c-Src– dependent manner, and functions cooper- atively with EGFR and c-Src

  14. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts

    PubMed Central

    2013-01-01

    Background Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation. The systemic toxicities of these treatments emphasize the need for more effective, localized treatment regimens. Methods Acid-prepared mesoporous silica (APMS) microparticles were loaded with doxorubicin (DOX) and modified externally with a mesothelin (MB) specific antibody before repeated intraperitoneal (IP) injections into a mouse xenograft model of human peritoneal MM. The health/weight of mice, tumor volume/weight, tumor necrosis and cell proliferation were evaluated in tumor-bearing mice receiving saline, DOX high (0.2 mg/kg), DOX low (0.05 mg/kg), APMS-MB, or APMS-MB-DOX (0.05 mg/kg) in saline. Results Targeted therapy (APMS-MB-DOX at 0.05 mg/kg) was more effective than DOX low (0.05 mg/kg) and less toxic than treatment with DOX high (0.2 mg/kg). It also resulted in the reduction of tumor volume without loss of animal health and weight, and significantly decreased tumor cell proliferation. High pressure liquid chromatography (HPLC) of tumor tissue confirmed that APMS-MB-DOX particles delivered DOX to target tissue. Conclusions Data suggest that targeted therapy results in greater chemotherapeutic efficacy with fewer adverse side effects than administration of DOX alone. Targeted microparticles are an attractive option for localized drug delivery. PMID:24024776

  15. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  16. Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1

    PubMed Central

    Niles, Richard M.; Cook, Carla P.; Meadows, Gary G.; Fu, Ya-Min; McLaughlin, Jerry L.; Rankin, Gary O.

    2006-01-01

    Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system. PMID:16988123

  17. Effect of antidepressants on body weight, ethology and tumor growth of human pancreatic carcinoma xenografts in nude mice.

    PubMed

    Jia, Lin; Shang, Yuan-Yuan; Li, Yu-Yuan

    2008-07-21

    To investigate the effects of mirtazapine and fluoxetine, representatives of the noradrenergic and specific serotonergic antidepressant (NaSSA) and selective serotonin reuptake inhibitor (SSRI) antidepressant respectively, on body weight, ingestive behavior, locomotor activity and tumor growth of human pancreatic carcinoma xenografts in nude mice. A subcutaneous xenograft model of human pancreatic cancer cell line SW1990 was established in nude mice. The tumor-bearing mice were randomly divided into mirtazapine group (10 mg/kg per day), fluoxetine group (10 mg/kg per day) and control group (an equivalent normal saline solution) (7 mice in each group). Doses of all drugs were administered orally, once a day for 42 d. Tumor volume and body weight were measured biweekly. Food intake was recorded once a week. Locomotor activity was detected weekly using an open field test (OFT). Compared to the fluoxetine, mirtazapine significantly increased food intake from d 14 to 42 and attenuated the rate of weight loss from d 28 to 42 (t = 4.38, P < 0.05). Compared to the control group, food intake was significantly suppressed from d 21 to 42 and weight loss was promoted from d 35 to 42 in the fluoxetine group (t = 2.52, P < 0.05). There was a significant difference in body weight of the mice after removal of tumors among the three groups. The body weight of mice was the heaviest (13.66 +/- 1.55 g) in the mirtazapine group and the lightest (11.39 +/- 1.45 g) in the fluoxetine group (F( (2,12) ) = 11.43, P < 0.01). The behavioral test on d 7 showed that the horizontal and vertical activities were significantly increased in the mirtazapine group compared with the fluoxetine and control groups (F( (2,18) ) = 10.89, P < 0.01). These effects disappeared in the mirtazapine and fluoxetine groups during 2-6 wk. The grooming activity was higher in the mirtazapine group than in the fluoxetine group (10.1 +/- 2.1 vs 7.1 +/- 1.9 ) (t = 2.40, P < 0.05) in the second week. There was no

  18. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth.

    PubMed

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min; Teng, Ji-Ping; Ni, Da; Zhu, Zhi-Jun; Zhuang, Bu-Feng; Yang, Zhi-Yin

    2017-06-03

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model. We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm(2)) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Renal and adrenal tumors in children.

    PubMed

    Zderic, Stephen A

    2004-08-01

    Survival rates for children with kidney tumors approach 90% for even the most advanced stages of disease, but the surgical management of large lesions remains challenging. With the development of additional chemotherapeutic regimens and the use of radiation therapy, survival rates have improved dramatically. The National Wilms' Tumor Study has conducted four long-term studies addressing how adjunctive therapy may be tailored optimally to maximize survival and minimize the exposure to chemotherapy and radiation therapy.

  1. [Renal blood flow investigations with 133xenon and the Anger scintillation camera in the hyperacute xenograft rejection of the rabbit kidney (author's transl)].

    PubMed

    Heidenreich, P; Erhardt, W; Oberdorfer, M; Krüger, P; Pielsticker, K; Hör, G

    1976-08-25

    The aim of this study was to demonstrate the advantage and validity of 133Xe-washout externally monitored by the scintillation camera. Until now there were no reports on quantitative blood flow studies in Hyperacute rejection of transplanted kidneys using a scintillation camera. Within 35 minutes after e-vivo hemoperfusion of rabbit kidneys by cats we found a simultaneous progressive decrease of renal blood flow, renal cortical blood flow as well as of the intrarenal distribution of renal cortical blood flow in all cases. The hyperacute rejection of xenografts could be verified in every case histologically. Using the scintillation camera we were able to detect regional perfusion defects caused by artifical air embolism as well as by preexisting cortical infarction.

  2. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and

  3. Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and canstatin gene suppression therapy on breast tumor xenograft growth in mice.

    PubMed

    Wang, Wen-Bo; Zhou, Yu-Lin; Heng, De-Feng; Miao, Chuan-Hui; Cao, Ying-Lin

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and canstatin gene therapy have been investigated extensively in human xenograft tumor models established in immunocompromised nude mice. However, combination antitumor activity of these two agents and the safety of such gene constructs driven by the human telomerase reverse transcriptase (hTERT) promoter in nude mice have not been well documented. We hypothesized that TRAIL and canstatin gene therapy driven by the hTERT promoter might overcome the problem of liver toxicity and still effectively induce apoptosis on tumor cells. In this study, we evaluated the antitumor effects of TRAIL in human breast cancer cell lines and the antiangiogenic effects of canstatin on ECV204 cells. We also analyzed the effects of combined gene therapy using both TRAIL and canstatin in a human breast cancer nude mouse model. Tumor growth, tumor inhibition rate of each group, and toxicity were evaluated after gene therapy. Our results demonstrate that treatment using the canstatin- or TRAIL-expressing vector alone significantly suppresses tumor growth, compared to PBS or a vector control. We also found that combining these two therapies had greater antitumor activity than either treatment alone in the mouse model. Moreover, induction of apoptosis was not detected in normal mouse tissues after intratumoral injection of vectors and liver toxicity did not occur with either treatment. Thus, the combination of TRAIL and canstatin appears to be a promising approach for the gene therapy of breast tumors.

  4. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  5. Inhibition of poly(ADP-ribose) polymerase-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft

    PubMed Central

    Senra, Joana M.; Telfer, Brian A.; Cherry, Kim E.; McCrudden, Cian M.; Hirst, David G.; O’Connor, Mark J.; Wedge, Stephen R.; Stratford, Ian J.

    2011-01-01

    Poly(ADP-ribose) polymerase-1 is a critical enzyme in the repair of DNA strand breaks. Inhibition of PARP-1 increases the effectiveness of radiation in killing tumor cells. However, while the mechanism(s) are well understood for these radiosensitizing effects in vitro, the underlying mechanism(s) in vivo are less clear. Nicotinamide, a drug structurally related to the first generation PARP-1 inhibitor, 3-aminobenzamide, reduces tumor hypoxia by preventing transient cessations in tumor blood flow, thus improving tumor oxygenation and sensitivity to radiotherapy. Here we investigate whether olaparib, a potent PARP-1 inhibitor, enhances radiotherapy, not only by inhibiting DNA repair but also by changing tumor vascular haemodynamics in non-small cell lung carcinoma. In irradiated Calu-6 and A549 cells, olaparib enhanced the cytotoxic effects of radiation (SER10=1.5 and 1.3) and DNA double strand breaks persisted for at least 24 h after treatment. Combination treatment of Calu-6 xenografts with olaparib and fractionated radiotherapy caused significant tumor regression (p=0.007) relative to radiotherapy alone. To determine whether this radiosensitisation was due solely to effects on DNA repair we used a dorsal window chamber model to establish the drug/radiation effects on vessel dynamics. Olaparib alone, when given as single or multiple daily doses, or in combination with fractionated radiotherapy, increased the perfusion of tumor blood vessels. Furthermore, an ex vivo assay in phenylephrine pre-constricted arteries confirmed olaparib to have higher vasodilatory properties than nicotinamide. This study suggests that olaparib warrants consideration for further development in combination with radiotherapy in clinical oncology settings such as NSCLC. PMID:21825006

  6. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  7. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  8. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice

    PubMed Central

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-01-01

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound. PMID:27825139

  9. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice.

    PubMed

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-12-13

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound.

  10. Radio frequency ablation of small renal tumors:: intermediate results.

    PubMed

    Hwang, J J; Walther, M M; Pautler, S E; Coleman, J A; Hvizda, J; Peterson, James; Linehan, W M; Wood, B J

    2004-05-01

    With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean +/- standard mean of error) were 243 +/- 29 minutes and 67 +/- 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. At the minimum 1-year followup 23 of 24 ablated tumors lacked contrast uptake on CT, meeting our radiographic

  11. RADIO FREQUENCY ABLATION OF SMALL RENAL TUMORS: INTERMEDIATE RESULTS

    PubMed Central

    HWANG, J. J.; WALTHER, M. M.; PAUTLER, S. E.; COLEMAN, J. A.; HVIZDA, J.; PETERSON, JAMES; LINEHAN, W. M.; WOOD, B. J.

    2008-01-01

    Purpose With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Materials and Methods Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Results Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean ± standard mean of error) were 243 ± 29 minutes and 67 ± 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. Conclusions At the minimum 1-year followup 23 of 24 ablated tumors lacked

  12. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay1

    PubMed Central

    Wang, Jingli; Klem, Jack; Wyrick, Jan B; Ozawa, Tomoko; Cunningham, Erin; Golinveaux, Jay; Allen, Max J; Lamborn, Kathleen R; Deen, Dennis F

    2003-01-01

    Abstract We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c.) tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia. PMID:14511400

  13. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  14. Enhancement by N-methylformamide of the effect of ionizing radiation on a human colon tumor xenografted in nude mice

    SciTech Connect

    Dexter, D.L.; Lee, E.S.; Bliven, S.F.; Glicksman, A.S.; Leith, J.T.

    1984-11-01

    Polar solvents, which induce differentiation in murine and human tumor cells, enhance the effect of ionizing radiation on cultured mouse mammary and human colon cancer cells. To determine whether this enhancement occurs in vivo, DLD-2 human colon carcinoma xenografts in nude mice were treated with combinations of 6 MV photon irradiation, the polar solvent N-methylformamide (NMF), or combinations of the two agents. Nude mice bearing 300-mg s.c. implants of DLD-2 tumors were treated i.p. with 150 mg NMF/kg daily for 19 days. Local tumor irradiations were administered as graded single doses or as fractionated doses, daily for 4 days, following the third NMF injection. The growth-inhibiting effect of the radiation treatment for both single dose and fractionation protocols was enhanced by the polar solvent. NMF alone increased the time required for a doubling of initial tumor volume by 1.7 days, compared to control tumors. Initial tumor volume doubling times compared to untreated controls were increased by 3.6 and 7.6 days by photon doses of 10.0 and 13.75 Gy, respectively, whereas NMF plus 10.0 or 13.75 Gy increased the DLD-2 regrowth delay time by 7.5 or 12.9 days. NMF caused essentially equivalent enhancements, whether split-dose schedules of 2.5 Gy daily for 4 days, and 3.44 Gy daily for 4 days, or single doses of 10.0 and 13.75 Gy were used; therefore, radiation enhancement was not due to effects on sublethal damage repair. The results support the use of NMF, currently in Phase 1-Phase 2 clinical trials, with radiation in the therapy of selected human neoplasms.

  15. Changes in subcellular distribution of topoisomerase IIalpha correlate with etoposide resistance in multicell spheroids and xenograft tumors.

    PubMed

    Oloumi, A; MacPhail, S H; Johnston, P J; Banáth, J P; Olive, P L

    2000-10-15

    The outer cells of Chinese hamster V79 spheroids are about 10 times more resistant than monolayers to DNA damage and cell killing by the topoisomerase (topo) II inhibitor etoposide. Although the amount and catalytic activity of topo IIalpha are identical for monolayers or the outer cells of spheroids, and the cell proliferation rate is the same, our previous results indicated that phosphorylation of topo IIalpha is at least 10 times higher in V79 monolayers than in spheroids. Because phosphorylation of topo IIalpha has been associated with nuclear translocation, we examined subcellular distribution of Topo IIalpha in monolayers, spheroids, and xenograft tumors using immunohistochemistry. Topo IIalpha was located predominantly in the nucleus of V79, human SiHa, and rat C6 monolayers but was found mainly in the cytoplasm of the proliferating outer cells of spheroids formed from these cell lines. Conversely, the outer cells of WiDr human colon carcinoma spheroids showed predominantly nuclear localization of topo IIalpha, and only WiDr cells showed no increase in resistance to etoposide when grown as spheroids. Cells sorted from xenografts resembled the spheroids in terms of sensitivity to etoposide and location of topo IIalpha. When the outer cells of V79 spheroids were returned to monolayer growth, the rate of redistribution of topo IIalpha to the nucleus occurred with similar kinetics as the increase in sensitivity to killing by etoposide. Removal and return of individual outer V79 spheroid cells to suspension culture resulted in the translocation of topo IIalpha to the nucleus for the first 24 h, accompanied by an increase in sensitivity to DNA damage by etoposide. Therefore, the cytoplasmic topo IIalpha distribution in outer spheroid cells and tumors appears to correlate not with morphological changes associated with growth in suspension but rather with the presence of neighboring, noncycling cells.

  16. Treatment of caval vein thrombosis associated with renal tumors.

    PubMed

    Jiménez-Romero, Carlos; Conde, María; de la Rosa, Federico; Manrique, Alejandro; Calvo, Jorge; Caso, Óscar; Muñoz, Carlos; Marcacuzco, Alberto; Justo, Iago

    2017-03-01

    Renal carcinoma represents 3% of all solid tumors and is associated with renal or inferior caval vein (IVC) thrombosis between 2-10% of patients, extending to right atrial in 1% of cases. This is a retrospective study that comprises 5 patients who underwent nephrectomy and thrombectomy by laparotomy because of renal tumor with IVC thrombosis level iii. Four patients were males and one was female, and the mean age was 57,2 years (range: 32-72). Most important clinical findings were hematuria, weight loss, weakness, anorexia, and pulmonary embolism. Diagnostic confirmation was performed by CT scanner. Metastatic disease was diagnosed before surgery in 3 patients. Suprahepatic caval vein and hepatic hilium (Pringle's maneouver) were clamped in 4 patients, and ligation of infrarrenal caval vein was carry out in one patient. Five patients developed mild complications (Clavien I/II). No patient died and the mean hospital stay was 8,6 days. All patients were treated with chemotherapy, and 3 died because distant metastasis, but 2 are alive, without recurrence, at 5 and 60 months, respectively. Nephrectomy and thrombectomy in renal tumors with caval thrombosis can be curative in absence of metastasis or, at less, can increase survival or quality of live. Then these patients must be treated in liver transplant units because major surgical and anesthesiologic expertise. Adjuvant treatment with tyrosin kinase inhibitors must be validate in the future with wider experiences. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. A triple combination of atorvastatin, celecoxib and tipifarnib strongly inhibits pancreatic cancer cells and xenograft pancreatic tumors.

    PubMed

    Ding, Ning; Cui, Xiao-Xing; Gao, Zhi; Huang, Huarong; Wei, Xingchuan; Du, Zhiyun; Lin, Yong; Shih, Weichung Joe; Rabson, Arnold B; Conney, Allan H; Hu, Chunhong; Zheng, Xi

    2014-06-01

    Because K-Ras mutation and cyclooxygenase-2 (COX-2) overexpression are hallmarks of majority of pancreatic cancer patients, an approach to inhibit the progression and growth of pancreatic cancer using the simultaneous administration of agents that inhibit the function of both targets, should be considered. In the present study, we assessed the effects of atorvastatin (Lipitor), celecoxib (Celebrex) and tipifarnib (Zarnestra) on the growth of human pancreatic cancer. In the in vitro studies, we found that treatment of human pancreatic tumor cells with a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on growth and a stronger stimulatory effect on apoptosis than each drug alone or for any combination of two drugs. We also found that treatment of Panc-1 cells with a combination of all three drugs strongly decreased the levels of phosphorylated Erk1/2 and Akt. In an animal model of xenograft tumors in severe combined immunodeficient (SCID) mice, we found that daily i.p. injections of a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on the growth of the tumors in mice than each drug alone or for any combination of two drugs. The results of our study indicate that a combination of atorvastatin, celecoxib and tipifarnib may be an effective strategy for the treatment of pancreatic cancer.

  18. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  19. Renal Tumors: Technical Success and Early Clinical Experience with Radiofrequency Ablation of 18 Tumors

    SciTech Connect

    Sabharwal, Rohan Vladica, Philip

    2006-04-15

    Purpose. To evaluate the feasibility, safety, and technical efficacy of image-guided radiofrequency ablation (RFA) for the treatment of small peripheral renal tumors and to report our early results with this treatment modality. Methods. Twenty-two RFA sessions for 18 tumors were performed in 11 patients with renal tumors. Indications included coexistent morbidity, high surgical or anesthetic risk, solitary kidney, and hereditary predisposition to renal cell carcinoma. Ten patients had CT-guided percutaneous RFA performed on an outpatient basis. One patient had open intraoperative ultrasound-guided RFA. Technical success was defined as elimination of areas that enhanced at imaging within the entire tumor. With the exception of one patient with renal insufficiency who required gadolinium-enhanced MRI, the remaining patients underwent contrast-enhanced CT for post-treatment follow-up assessment. Follow-up was performed after 2-4 weeks and then at 3, 6, 12 months, and every 12 months thereafter. Results. Fourteen (78%) of 18 tumors were successfully ablated with one session. Three of the remaining four tumors required two sessions for successful ablation. One tumor will require a third session for areas of persistent enhancement. Mean patient age was 72.82 {+-} 10.43 years. Mean tumor size was 1.95 {+-} 0.79 cm. Mean follow-up time was 10.91 months. All procedures were performed without any major complications. Conclusions. Our early experience with percutaneous image-guided radiofrequency ablation demonstrates it to be a feasible, safe, noninvasive, and effective treatment of small peripheral renal tumors.

  20. Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts.

    PubMed

    Chang, Edwin; Liu, Shuangdong; Gowrishankar, Gayatri; Yaghoubi, Shahriar; Wedgeworth, James Patrick; Chin, Frederick; Berndorff, Dietmar; Gekeler, Volker; Gambhir, Sanjiv S; Cheng, Zhen

    2011-04-01

    An (18)F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[(18)F]FPP(RGD)(2)} has been used to image tumor α(v)β(3) integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin α(v)β(3)-targeted PET probe, [(18)F]FPP(RGD)(2,) using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [(18)F]FPP(RGD)(2) (1.9-3.8 MBq, 50-100 μCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean±SD) for %ID(mean)/g and %ID(max)/g values between [(18)F]FPP(RGD)(2) small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %ID(mean)/g and %ID(max)/g values between scans were -0.025 ± 0.067 and -0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of α(ν)β(3) integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not

  1. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models

    PubMed Central

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2015-01-01

    Osteosarcoma is the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease still have a poor prognosis, illustrating the need for alternative therapies. In this study, we explored the use of antibodies that block CD47 with a tumor growth suppressive effect on osteosarcoma. We first found that up-regulation of CD47 mRNA levels in the tumorous tissues from eight patients with osteosarcoma when compared with that in adjacent non-tumorous tissues. Further western-blot (WB) and immunohistochemistry (IHC) demonstrated that CD47 protein level was highly expressed in osteosarcoma compared to normal osteoblastic cells and adjacent non-tumorous tissues. Osteosarcoma cancer stem cell markers staining shown that the majority of CD44+ cells expressed CD47 albeit with different percentages (ranging from 80% to 99%). Furthermore, high CD47 mRNA expression levels were associated with a decreased probability of progression-free and overall survival. In addition, blockade of CD47 by specific Abs suppresses the invasive ability of osteosarcoma tumor cells and further inhibits spontaneous pulmonary metastasis of KRIB osteosarcoma cells in vivo. Finally, CD47 blockade increases macrophage phagocytosis of osteosarcoma tumor cells. In conclusion, our findings demonstrate that CD47 is a critical regulator in the metastasis of osteosarcoma and suggest that targeted inhibition of this antigen by anti-CD47 may be a novel immunotherapeutic approach in the management of this tumor. PMID:26093091

  2. Monoclonal antibodies to an epithelial ovarian adenocarcinoma: distinctive reactivity with xenografts of the original tumor and a cultured cell line.

    PubMed

    Baumal, R; Law, J; Buick, R N; Kahn, H; Yeger, H; Sheldon, K; Colgan, T; Marks, A

    1986-08-01

    Four monoclonal antibodies (mAb) (8C, 10B, M2A, and M2D) were produced against the human epithelial ovarian adenocarcinoma cell line, HEY. The affinity constants of binding of the mAb to cultured HEY cells were 8 X 10(8) M-1 (M2D) and 10(9) M-1 (8C and 10B). mAb 8C reacted with a major glycoprotein of Mr 90,000 on the surface of HEY cells. The four mAb differed from previously reported mAb to epithelial ovarian adenocarcinomas on the basis of their reactivity with cultured ovarian adenocarcinoma cell lines using a cell-binding radioimmunoassay, and their staining of cryostat sections of various human normal and tumor tissues using an immunoperoxidase reaction. All four mAb reacted with s.c. tumors derived by injecting cultured HEY cells into thymectomized CBA/CJ mice. However, only two of the four mAb (8C and 10B) also reacted with s.c. tumors of the original HEY xenograft from which the cultured cell line was derived. In addition, mAb 8C and 10B reacted by immunoperoxidase staining with 2 and 4 different cases, respectively, of 11 epithelial ovarian adenocarcinomas examined. Cultured HEY cells were adapted to grow i.p. in BALB/c-nu/nu mice and the i.p. tumors retained their reactivity with the monoclonal antibodies. These tumor-bearing mice offer a useful model system for studying the potential of mAb, especially 8C and 10B, for the diagnosis and treatment of patients with peritoneal extension of epithelial ovarian adenocarcinomas.

  3. A report of renal artery embolization for hematuria facilitating neoadjuvant chemotherapy in an unresectable malignant renal rhabdoid tumor.

    PubMed

    Sharma, Ruchika; Kitchen, Brenda J; Mody, Rajen; Chamdin, Aghiad; Bruch, Steven; Jasty, Rama

    2013-05-01

    Malignant rhabdoid tumor (MRT) of the kidney is a rare pediatric tumor characterized by its aggressive nature and chemoresistance. Our patient had MRT of the right kidney with tumor thrombus in the renal vein, inferior vena cava, and right atrium. He developed transfusion-resistant hematuria. This was successfully controlled with right renal artery embolization allowing completion of his neoadjuvant chemotherapy. He then underwent complete resection of the tumor and thrombus avoiding cardiopulmonary bypass.

  4. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts.

    PubMed

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-05-22

    Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX and anion exchanger 2 in the

  5. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    PubMed Central

    2014-01-01

    Background Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. Methods The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Results Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX

  6. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  7. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    PubMed Central

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  8. Management of Renal Tumors by Image-Guided Radiofrequency Ablation: Experience in 105 Tumors

    SciTech Connect

    Breen, David J. Rutherford, Elizabeth E.; Stedman, Brian; Roy-Choudhury, Shuvro H.; Cast, James E. I.; Hayes, Matthew C.; Smart, Christopher J.

    2007-09-15

    Aims. In this article we present our experience with radiofrequency ablation (RFA) in the treatment of 105 renal tumors. Materials and Methods. RFA was performed on 105 renal tumors in 97 patients, with a mean tumor size of 32 mm (11-68 mm). The mean patient age was 71.7 years (range, 36-89 years). The ablations were carried out under ultrasound (n = 43) or CT (n = 62) guidance. Imaging follow-up was by contrast-enhanced CT within 10 days and then at 6-monthly intervals. Multivariate analysis was performed to determine variables associated with procedural outcome. Results. Eighty-three tumors were completely treated at a single sitting (79%). Twelve of the remaining tumors were successfully re-treated and a clinical decision was made not to re-treat seven patients. A patient with a small residual crescent of tumor is under follow-up and may require further treatment. In another patient, re-treatment was abandoned due to complicating pneumothorax and difficult access. One patient is awaiting further re-treatment. The overall technical success rate was 90.5%. Multivariate analysis revealed tumor size to be the only significant variable affecting procedural outcome. (p = 0.007, Pearson {chi}{sup 2}) Five patients had complications. There have been no local recurrences. Conclusion. Our experience to date suggests that RFA is a safe and effective, minimally invasive treatment for small renal tumors.

  9. Management of renal tumors by image-guided radiofrequency ablation: experience in 105 tumors.

    PubMed

    Breen, David J; Rutherford, Elizabeth E; Stedman, Brian; Roy-Choudhury, Shuvro H; Cast, James E I; Hayes, Matthew C; Smart, Christopher J

    2007-01-01

    In this article we present our experience with radiofrequency ablation (RFA) in the treatment of 105 renal tumors. RFA was performed on 105 renal tumors in 97 patients, with a mean tumor size of 32 mm (11-68 mm). The mean patient age was 71.7 years (range, 36-89 years). The ablations were carried out under ultrasound (n = 43) or CT (n = 62) guidance. Imaging follow-up was by contrast-enhanced CT within 10 days and then at 6-monthly intervals. Multivariate analysis was performed to determine variables associated with procedural outcome. Eighty-three tumors were completely treated at a single sitting (79%). Twelve of the remaining tumors were successfully re-treated and a clinical decision was made not to re-treat seven patients. A patient with a small residual crescent of tumor is under follow-up and may require further treatment. In another patient, re-treatment was abandoned due to complicating pneumothorax and difficult access. One patient is awaiting further re-treatment. The overall technical success rate was 90.5%. Multivariate analysis revealed tumor size to be the only significant variable affecting procedural outcome. (p = 0.007, Pearson chi(2)) Five patients had complications. There have been no local recurrences. Our experience to date suggests that RFA is a safe and effective, minimally invasive treatment for small renal tumors.

  10. In vivo echographic evidence of tumoral vascularization and microenvironment interactions in metastatic orthotopic human neuroblastoma xenografts.

    PubMed

    Joseph, Jean-Marc; Gross, Nicole; Lassau, Nathalie; Rouffiac, Valérie; Opolon, Paule; Laudani, Lysiane; Auderset, Katya; Geay, Jean-François; Mühlethaler-Mottet, Annick; Vassal, Gilles

    2005-03-01

    Human neuroblastoma (NB) is the second most frequent solid tumor of childhood and represents a highly heterogeneous disease at clinical and biologic levels. Little progress has been made to improve the poor prognosis of patients with high-stage NB. Tumor progression and metastatic dissemination still represent major obstacles to the successful treatment of advanced stage disease. In order to develop and evaluate new, targeted, therapeutic strategies, fully defined and biologically relevant in vivo models of NB are strongly needed. We have developed an orthotopic model of metastatic human NB in the nude mouse, using 2 well-characterized NB cell lines. Tumor growth, vascular properties and metastatic patterns were investigated using a sensitive and newly developed in vivo echographic technology in addition to immunohistochemistry and PCR analyses. Results show that implantation of low numbers of NB cells directly into the adrenal gland of nude mice resulted in rapid and homogeneous tumor growth without tumor morbidity. Nude mice were shown to rapidly develop highly vascularized adrenal tumors that selectively metastasized to the liver and bone marrow. In addition, the newly formed mouse vessels in orthotopic but not in heterotopic tumors, were found to express the highly angiogenic alphavbeta3 integrin marker, indicating the development of a truly malignant neovasculature in orthotopic conditions only. This observation confirms the impact of the regional microenvironment on tumor biology and suggests the existence of cross-talk with the tumor cells. In conclusion, such model faithfully reproduces the growth, vascular and metastatic patterns as observed in patients. It therefore represents a powerful and biologically relevant tool to improve our understanding of the biology of NB and to develop and assess new antiangiogenic and metastasis-targeted therapies. (c) 2004 Wiley-Liss, Inc.

  11. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    SciTech Connect

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei; Uesato, Shin-ichi; Watanabe, Kazushi; Tanimura, Susumu; Koji, Takehiko; Kohno, Michiaki

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  12. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  13. Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma.

    PubMed

    Kim, Yong-Il; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2017-04-01

    Biodistribution of antibodies is vital to successful immunoscintigraphy/immunotherapy, and it is assumed to be similar to antigen distribution. We measured and compared the binding pattern of radiolabeled antibody to tissue antigen distribution in a nude mouse xenograft model of human melanoma. We transplanted 10(7) FEM-XII human melanoma cells into the right flank of five nude mice. For the control, we transplanted 5 × 10(6) LS174T human colon cancer cells into the left flank. Two weeks later, 10 μCi of (131)I-labeled melanoma-associated 96.5 monoclonal antibody (targeting p97 antigen) was intravenously injected. Three days later, we sacrificed the mice and evaluated 96.5 antibody binding and concentration in the tumors by ex vivo quantitative autoradiography (QAR). Two months later, we incubated adjacent tumor tissue slices in various concentrations of (125)I-labeled 96.5 MoAb and evaluated the distribution/concentration of p97 antigen by in vitro QAR. p97 antigen distribution was homogeneous in the tumors (total antigen concentration [Bmax] = 17.36-38.36 pmol/g). In contrast, radiolabeled 96.5 antibody binding was heterogenous between location within the tumor (estimated bound antigen concentration = 0.7-6.6 pmol/g). No quantifiable parameters were found to be related with radiolabeled antibody binding and tumor antigen distribution. Antibody-bound tumor antigen to total antigen ratios ranged between 2% and 38%. Heterogeneous features of target antibody binding were observed in contrast to relatively homogenous feature of tumor antigen. We did not identify any correlations between p97 antigen distribution and 96.5 antibody binding in melanoma tissue. Radiolabeled 96.5 antibody binding patterns within melanoma cannot be predicted based on p97 antigen distribution in the tumor, which needs to be further studied with several other methods and more subjects in the future.

  14. Radiolabeling of substance P with lutetium-177 and biodistribution study in rat pancreatic tumor xenografted nude mice.

    PubMed

    De Araújo, E B; Pujatti, P B; Mengatti, J

    2010-05-10

    Pancreatic tumor (PT) is a neuroendocrine neoplasm that usually origin metastases in the respiratory and gastrointestinal tract. The presence of peptide receptors at the cell membrane of PT constitutes the basis of the clinical use of specific radiolabeled ligands for its diagnosis and targeted therapy. Substance P (SP), an 11-amino acid peptide which has an important role in modulating pain transmission trough neurokinin type 1 (NK1r) and 2 receptors (NK2r), may play a role in the pathogenesis of PT, because approximately 10% of these tumors overexpress NK1r. The aim of the present work was to produce a pure and stable SP analog (DOTA-SP) radiolabeled with lutetium-177 ((177)Lu), and to evaluate its in vivo target to AR42J pancreatic tumor cells in Nude mice, in other to verify if SP can be used in this pancreatic tumor detection and treatment. Substance P was successfully labeled with high yield (>99%) at optimized conditions and kept stable for more than 72 hours at 2-8 degrees C and 4 hours in human plasma. Biodistribution studies showed that SP excretion was mainly performed by renal pathway. In addition, (177)Lu-DOTA-SP showed higher uptake by tumor than normal pancreas, indicating the presence of NK receptors in AR42J pancreatic tumor.

  15. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts

    PubMed Central

    Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2016-01-01

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma. PMID:27129160

  16. Biomarkers of Renal Tumor Burden and Progression in TSC

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-10- 1 -0433 TITLE: Biomarkers of Renal Tumor Burden and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...ADDRESS. 1 . REPORT DATE September 2013 2. REPORT TYPE Final 3. DATES COVERED 1 September 2010 - 31 August 2013 4. TITLE AND SUBTITLE 5a

  17. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  18. Establishment of Patient-Derived Tumor Xenograft Models of Epithelial Ovarian Cancer for Preclinical Evaluation of Novel Therapeutics.

    PubMed

    Liu, Joyce F; Palakurthi, Sangeetha; Zeng, Qing; Zhou, Shan; Ivanova, Elena; Huang, Wei; Zervantonakis, Ioannis K; Selfors, Laura M; Shen, Yiping; Pritchard, Colin C; Zheng, Mei; Adleff, Vilmos; Papp, Eniko; Piao, Huiying; Novak, Marian; Fotheringham, Susan; Wulf, Gerburg M; English, Jessie; Kirschmeier, Paul T; Velculescu, Victor E; Paweletz, Cloud; Mills, Gordon B; Livingston, David M; Brugge, Joan S; Matulonis, Ursula A; Drapkin, Ronny

    2017-03-01

    Purpose: Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States, with high rates of recurrence and eventual resistance to cytotoxic chemotherapy. Model systems that allow for accurate and reproducible target discovery and validation are needed to support further drug development in this disease.Experimental Design: Clinically annotated patient-derived xenograft (PDX) models were generated from tumor cells isolated from the ascites or pleural fluid of patients undergoing clinical procedures. Models were characterized by IHC and by molecular analyses. Each PDX was luciferized to allow for reproducible in vivo assessment of intraperitoneal tumor burden by bioluminescence imaging (BLI). Plasma assays for CA125 and human LINE-1 were developed as secondary tests of in vivo disease burden.Results: Fourteen clinically annotated and molecularly characterized luciferized ovarian PDX models were generated. Luciferized PDX models retain fidelity to both the nonluciferized PDX and the original patient tumor, as demonstrated by IHC, array CGH, and targeted and whole-exome sequencing analyses. Models demonstrated diversity in specific genetic alterations and activation of PI3K signaling pathway members. Response of luciferized PDX models to standard-of-care therapy could be reproducibly monitored by BLI or plasma markers.Conclusions: We describe the establishment of a collection of 14 clinically annotated and molecularly characterized luciferized ovarian PDX models in which orthotopic tumor burden in the intraperitoneal space can be followed by standard and reproducible methods. This collection is well suited as a platform for proof-of-concept efficacy and biomarker studies and for validation of novel therapeutic strategies in ovarian cancer. Clin Cancer Res; 23(5); 1263-73. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    PubMed

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  20. Management of pediatric renal tumor: Past and future trials of the Japan Wilms Tumor Study Group.

    PubMed

    Oue, Takaharu; Fukuzawa, Masahiro; Koshinaga, Tsugumichi; Okita, Hajime; Nozaki, Miwako; Chin, Motoki; Kaneko, Yasuhiko; Tanaka, Yukichi; Haruta, Masayuki; Tsuchiya, Kunihiko; Kuwajima, Shigeko; Takimoto, Tetsuya

    2015-10-01

    The Japan Wilms Tumor Study group (JWiTS) was founded in 1996 to improve outcomes for children with renal tumor in Japan, and a nationwide multicenter cooperative study was initiated thereafter. JWiTS-1 (1996-2005) was analyzed, and JWiTS-2 (2005-2014) is now under analysis; the following problems have been identified and used to decide future study protocol: (i) there has been a decline in survival rate for patients with rhabdoid tumor of the kidney (RTK) and new treatment strategies are required; (ii) the survival rate for bilateral Wilms tumors (BWT) has improved, but results for renal preservation are unsatisfactory; (iii) the prognosis of stage IV favorable nephroblastoma is very good, suggesting that the current protocols provide overtreatment, particularly for patients with lung metastasis; and (iv) no effective biological risk factors exist for predicting the outcome of Wilms tumor, and a study of the genetic changes of these tumors is necessary to determine biological markers for use in risk classification. To solve these issues, the development of a new risk classification of pediatric renal tumors is required. In addition, different study protocols should be developed according to the risk-based classification of the patients. Further, a new study protocol for BWT began in 2015, and new study protocols are being prepared for RTK, and for Wilms tumor with lung metastasis. In addition, an analysis of biological markers with regard to risk classification is to be performed. Furthermore, to create new protocols for patients with rare renal tumors, international collaboration with Children's Oncology Group and International Society of Pediatric Oncology is necessary.

  1. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung, and liver) under steady-state in vivo conditions in female NCR nude mice. The mechanisms considered in the tissue/tumor composition-based model are the binding to lipids and to plasma proteins, but the transporter effect was also investigated. The method consisted of analyzing tissue composition, performing the pharmacokinetics studies in mice, and calculating the corresponding in vivo Kp values. Analyses of tumor composition indicated that the tumor xenografts contained no or low amounts of common transporters by contrast to lipids. The predicted Kp values were within twofold and threefold of the measured values in 77% and 93% of cases, respectively. However, predictions for brain for each drug, for liver for MTX, and for each tumor xenograft for GEM were disparate from the observed values, and, therefore, not well served by the model. Overall, this study is the first step toward the mechanism-based prediction of Kp values of small molecules in healthy and tumor tissues in mouse when no transporter and permeation limitation effect is evident. This approach will be useful in selecting compounds based on their abilities to penetrate human cancer xenografts with a physiologically based pharmacokinetic (PBPK) model, thereby increasing therapeutic index for chemotherapy in oncology study. © 2015 Wiley Periodicals, Inc. and the American

  2. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  3. Novel anti-ErbB3 monoclonal antibodies show therapeutic efficacy in xenografted and spontaneous mouse tumors.

    PubMed

    Aurisicchio, Luigi; Marra, Emanuele; Luberto, Laura; Carlomosti, Fabrizio; De Vitis, Claudia; Noto, Alessia; Gunes, Zeynep; Roscilli, Giuseppe; Mesiti, Giuseppe; Mancini, Rita; Alimandi, Maurizio; Ciliberto, Gennaro

    2012-10-01

    The role of the ErbB3 receptor in signal transduction is to augment the signaling repertoire of active heterodimeric ErbB receptor complexes through activating the PI3K/AKT pathway, which in turn promotes survival and proliferation. ErbB3 has recently been proposed to be involved in acquired resistance to tyrosine kinase inhibitors (TKIs), and is therefore a promising new drug cancer target. Since ErbB3 is a kinase defective receptor, it cannot be targeted by small molecule inhibitors, whereas monoclonal antibodies may offer a viable strategy for pharmacological intervention. In this study, we have utilized DNA electroporation (DNA-EP) to generate a set of novel hybridomas directed against human ErbB3, which have been characterized for their biochemical and functional properties and selected for their ability to negatively regulate the ErbB3-mediated signaling pathway. In vitro, the anti-ErbB3 antibodies modulate the growth rate of cancer cells of different origins. In vivo they show antitumoral properties in a xenograft model of human pancreatic tumor and in the ErbB2-driven carcinogenesis genetically engineered mouse model (GEMM) for mammary tumor, the BALB/neuT. Our data confirm that downregulating the ErbB3-mediated signals with the use of anti-ErbB3 monoclonal antibodies is both feasible and relevant for therapeutic purposes and provides new opportunities for novel anti-ErbB3 combinatory strategies for cancer treatment.

  4. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen

    SciTech Connect

    Goldenberg, D.M.; Gaffar, S.A.; Bennett, S.J.; Beach, J.L.

    1981-11-01

    Experiments were undertaken to evaluate the antitumor effects of 131I-labeled goat antibody immunoglobulin G prepared against carcinoembryonic antigen in hamsters bearing the carcinoembryonic antigen-producing GW-39 human colonic carcinoma. At a single injection of 1 mCi 131I and higher, a marked growth inhibition of GW-39 tumors, as well as a considerable increase in the survival time of the tumor-bearing hamsters, could be achieved. At a dose of 1 mCi, the radioactive affinity-purified antibody appeared to be superior to radioactive normal goat immunoglobulin G in influencing tumor growth and survival time, but no significant difference could be seen at the higher dose of 2 mCi given. Radiobiological calculations indicated that the tumors received, at up to 20 days after therapy, 1325 rads for the specific antibody and only 411 rads for the normal immunoglobulin G preparation. These findings encourage the further evaluation of antibodies to tumor markers for isotopic cancer therapy.

  5. Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma.

    PubMed

    Dou, Yannan Nancy; Dunne, Michael; Huang, Huang; Mckee, Trevor; Chang, Martin C; Jaffray, David A; Allen, Christine

    2016-11-01

    Treatment efficacy of a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, was determined in xenograft models of non-small-cell lung carcinoma. The short-term impact of local hyperthermia (HT) on tumor morphology, microvessel density and local inflammatory response was also evaluated. The HTLC formulation in combination with local HT resulted in a significant advantage in therapeutic effect in comparison with free drug and a non-thermosensitive liposome formulation of CDDP (i.e. Lipoplatin(TM)) when administered at their maximum tolerated doses. Local HT-induced widespread cell necrosis and a significant reduction in microvessel density in the necrotic regions of tumors. CD11b-expressing innate leukocytes were demonstrated to infiltrate and reside preferentially at the necrotic rim of tumors, likely as a means to phagocytose-damaged tissue. Colocalization of CD11b with a marker of DNA damage (i.e. γH2AX) revealed a small portion of CD11b-expressing leukocytes that were possibly undergoing apoptosis as a result of HT-induced damage and/or the short lifespan of leukocytes. Overall, HT-induced tissue damage (i.e. at 24-h post-treatment) alone did not result in significant improvements in treatment effect, rather, the enhancement in tumor drug availability was correlated with improved therapeutic outcomes.

  6. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  7. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression12

    PubMed Central

    Chen, Chong-Sheng; Doloff, Joshua C; Waxman, David J

    2014-01-01

    Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses. PMID:24563621

  8. A potent combination of the novel PI3K inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal

    PubMed Central

    Floris, Giuseppe; Wozniak, Agnieszka; Sciot, Raf; Li, Haifu; Friedman, Lori; Van Looy, Thomas; Wellens, Jasmien; Vermaelen, Peter; Deroose, Christophe M.; Fletcher, Jonathan A.; Debiec-Rychter, Maria; Schöffski, Patrick

    2015-01-01

    Introduction Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). Experimental design Nude mice (n=136) were grafted bilaterally with human GIST carrying divers KIT mutations. Mice were orally dosed over four weeks, grouped as follows: A) control; B) GDC-0941; C) IMA and D) GDC+IMA treatments. Xenografts re-growth after treatment discontinuation was assessed in group C and D for additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology and immunoblotting. Moreover genomic alterations in PTEN/PI3K/AKT pathway were evaluated. Results In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cells proliferation but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor re-growth assays confirmed superior activity of GDC+IMA over IMA; in three out of six models tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. Conclusion GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis and durable effects than IMA. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under IMA. Assessment of PTEN status may represent a useful predictive biomarker for patient selection. PMID:23231951

  9. FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression.

    PubMed

    Heuer, Timothy S; Ventura, Richard; Mordec, Kasia; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George

    2017-02-01

    Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers. Copyright © 2016 3-V Biosciences. Published by Elsevier B.V. All rights reserved.

  10. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts.

    PubMed

    Kennel, S J; Falcioni, R; Wesley, J W

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains (mouse 450-9D, 450-30A1, and rat 439-9B) localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied. The percent of injected dose per g of MoAb in the tumor at 48 h did not vary

  11. Inhibition of KIT RNAi mediated with adenovirus in gastrointestinal stromal tumor xenograft.

    PubMed

    Wang, Tian-Bao; Huang, Wen-Sheng; Lin, Wei-Hao; Shi, Han-Ping; Dong, Wen-Guang

    2010-10-28

    To investigate a therapeutic method for gastrointestinal stromal tumor (GIST) based on KIT RNA interference (RNAi) with AdMax adenovirus. KIT short hairpin RNA (shRNA), whose lateral sides were decorated with restriction endonuclease sequences, was designed. T(4) DNA ligase catalyzed the joint of the KIT shRNA and the green fluorescent protein-containing PDC316-EGFP-U6 to form PDC316-EGFP-U6-KIT. Homologous recombination of AdEGFP-U6-KIT was performed with the AdMax system. Heterotopically transplanted GISTs were established in nude mice. AdEGFP-U6-KIT was intratumorally injected. The volume, inhibition ratio of tumor and CD117 expression of GIST graft tumor in nude mice were compared between test and control groups. The length of KIT shRNA was determined to be about 50bp by agarose electrophoresis. Gene sequencing detected the designed KIT RNAi sequence in PDC316-EGFP-U6-KIT. After transfection with AdEGFP-U6-KIT, 293 cells displayed green fluorescence. The physical and infective titers of AdEGFP-U6-KIT were 5 × 10(11) viral particles/mL and 5.67 × 10(7) plaque forming units/mL, respectively. The mean volume of the grafted tumor was significantly smaller in test mice than in control mice (75.3 ± 22.9 mm(3) vs 988.6 ± 30.5 mm(3), t = -18.132, P < 0.05). The inhibition ratio of the tumors was 59.6% in the test group. CD117 positive expression was evident in two cases (20%) in the test group and 10 cases (100%) in the control group (χ(2) = 10.2083, P < 0.005). AdEGFP-U6-KIT is successfully constructed, and KIT RNAi mediated with Admax vector system can effectively inhibit the expression of the KIT gene and the growth of GIST in nude mice.

  12. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  13. Benign and tumor parenchyma metabolomic profiles affect compensatory renal growth in renal cell carcinoma surgical patients

    PubMed Central

    Rubinstein, Nimrod D.; Reznik, Ed; Shingarev, Roman; Juluru, Krishna; Akin, Oguz; Hsieh, James J.; Jaimes, Edgar A.; Russo, Paul; Susztak, Katalin; Coleman, Jonathan A.; Hakimi, A. Ari

    2017-01-01

    Background and objectives Pre-operative kidney volume is an independent predictor of glomerular filtration rate in renal cell carcinoma patients. Compensatory renal growth (CRG) can ensue prior to nephrectomy in parallel to tumor growth and benign parenchyma loss. We aimed to test whether renal metabolite abundances significantly associate with CRG, suggesting a causative relationship. Design, setting, participants, and measurements Tissue metabolomics data from 49 patients, with a median age of 60 years, were previously collected and the pre-operative fold-change of their contra to ipsi-lateral benign kidney volume served as a surrogate for their CRG. Contra-lateral kidney volume fold-change within a 3.3 +/- 2.1 years follow-up interval was used as a surrogate for long-term CRG. Using a multivariable statistical model, we identified metabolites whose abundances significantly associate with CRG. Results Our analysis found 13 metabolites in the benign (e.g. L-urobilin, Variable Influence in Projection, VIP, score = 3.02, adjusted p = 0.017) and 163 metabolites in the malignant (e.g. 3-indoxyl-sulfate, VIP score = 1.3, adjusted p = 0.044) tissues that significantly associate with CRG. Benign/tumor fold change in metabolite abundances revealed three additional metabolites with that significantly positively associate with CRG (e.g. p-cresol sulfate, VIP score = 2.945, adjusted p = 0.033). At the pathway level, we show that fatty-acid oxidation is highly enriched with metabolites whose benign tissue abundances strongly positively associate with CRG, both pre-operatively and long term, whereas in the tumor tissue significant enrichment of dipeptides and benzoate (positive association), glycolysis/gluconeogenesis, lysolipid and nucleotide sugar pentose (negative associations) sub-pathways, were observed. Conclusion These data suggest that specific biological processes in the benign as well as in the tumor parenchyma strongly influence compensatory renal growth. PMID

  14. MicroRNA-627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth of Xenograft Tumors in Mice

    PubMed Central

    Padi, Sathish K.R.; Zhang, Qunshu; Rustum, Youcef M; Morrison, Carl; Guo, Bin

    2013-01-01

    Background & Aims Vitamin D protects against colorectal cancer by unclear mechanisms. We investigated the effects of calcitriol (1α,25-dihydroxyvitamin D3, the active form of vitamin D) on levels of different microRNAs (miRs) in colorectal cancer (CRC) cells from humans and xenograft tumors in mice. Methods Expression of microRNAs in CRC cell lines was examined using the Ambion mirVana miRNA Bioarray. The effects of calcitriol on expression of miR-627 and cell proliferation were determined by real-time PCR and WST-1 assay, respectively; growth of colorectal xenograft tumors was examined in nude mice. Real-time PCR was used to analyze levels of miR-627 in human colon adenocarcinoma samples and non-tumor colon mucosa tissues (controls). Results In HT-29 cells, miR-627 was the only microRNA significantly upregulated by calcitriol. Jumonji domain containing 1A (JMJD1A), which encodes a histone demethylase, was found to be a target of miR-627. By downregulating JMJD1A, miR-627 increased methylation of histone H3K9 and suppressed expression of proliferative factors such as GDF15. Calcitriol induced expression of miR-627, which downregulated JMJD1A and suppressed growth of xenograft tumors from HCT-116 cells in nude mice. Overexpression of miR-627 prevented proliferation of CRC cell lines in culture and growth of xenograft tumors in mice. Conversely, blocking the activity of miR-627 inhibited the tumor suppressive effects of calcitriol in cultured CRC cells and in mice. Levels of miR-627 were decreased in human colon adenocarcinoma samples, compared with controls. Conclusions miR-627 mediates tumor-suppressive epigenetic activities of vitamin D on CRC cells and xenograft tumors in mice. The mRNA that encodes the histone demethylase JMJD1A is a direct target of miR-627. Reagents designed to target JMJD1A or its mRNA, or increase the function of miR-627, might have the same antitumor activities of vitamin D without the hypercalcemic side effects. PMID:23619147

  15. Anti-tumor activity of Sann-Joong-Kuey-Jian-Tang alone and in combination with 5-fluorouracil in a human colon cancer colo 205 cell xenograft model.

    PubMed

    Cheng, Chun-Yuan; Lin, Yi-Hsiang; Su, Chin-Cheng

    2010-01-01

    Malignant tumors are the leading cause of death in Taiwan; among these, colon cancer ranks third as a cause of cancer-related death. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicinal prescription, has been used to treat lymph node diseases and infectious lesions, and exhibits cytotoxic activity in many cancer cell lines. Our previous studies demonstrated that SJKJT inhibits the proliferation of human colon cancer colo 205 cells in vitro. The aim of this study was to evaluate the anti-tumor activity of SJKJT alone and in combination with 5-fluorouracil (5-FU) in vivo. SCID mice bearing human colon cancer colo 205 cell xenografts were administered SJKJT alone (30 mg/kg daily, p.o.), SJKJT (30 mg/kg daily, p.o.) in combination with 5-FU (30 mg/kg weekly, i.p.), or vehicle alone. At the end of the 4-week dosing schedule, the tumor and animal body weights were individually measured. The SCID mice were sacrificed with CO2 inhalation, the xenograft tumors were dissected, and the protein expression of microtubule-associated protein light chain 3 (MAP-LC3-II) in colo 205 xenograft tumors was measured by Western blotting. In the control, SJKJT-, and SJKJT plus 5-FU-treated mice, the tumor weights were 6.37±2.57, 0.43±0.35 and 1.63±0.46 g, and the mice body weights were 29±0.55, 29±2.71 and 27±0.77 g, respectively. Treatment with SJKJT resulted in a reduction in tumor weight compared with the control group, indicating that SJKJT inhibits tumor growth in a colo 205 xenograft model. SJKJT also increased LC3-II protein expression as compared to the controls. The present study shows that SJKJT alone or in combination with 5-FU has a positive effect on the treatment of SCID mice bearing human colon cancer colo 205 cell xenografts. This suggests that SJKJT has therapeutic potential in the treatment of human colon cancer.

  16. Calponin h1 expression in renal tumor vessels: correlations with multiple pathological factors of renal cell carcinoma.

    PubMed

    Islam, A H M Manjurul; Ehara, Takashi; Kato, Haruaki; Hayama, Masayoshi; Kobayashi, Shinya; Igawa, Yasuhiko; Nishizawa, Osamu

    2004-03-01

    We determined whether the architecture of renal tumor vessels is immunohistochemically different from that of normal renal vessels and related to the various pathological factors that affect prognosis of renal cell carcinoma (RCC). A total of 52 cases of primary RCC were selected. Tissues from radical nephrectomy specimens were stained with antibody to alpha-smooth muscle actin (alpha-SMA) and calponin h1. Immunostaining was evaluated semiqualitatively as 0-no staining to 3+-strong staining. Tumor cell proliferation was observed using proliferating marker Ki-67. Data were statistically compared with pathological factors, such as tumor size, histological pattern, growth pattern, cell type, nuclear grade, pathological stage and presence or absence of venous invasion. In normal renal tissues smooth muscle cells of the blood vessels showed strong immunoreactions with antibody to calponin h1 and alpha-SMA. Although alpha-SMA antibody showed similar strong immunoreactions in all types of renal tumor vessels, we observed qualitative alterations in the expression of calponin h1 in different types of RCCs. Strong to moderate immunoreactions with calponin h1 were observed in tumors with expansive growth and an alveolar pattern. Small tumors without venous invasion and chromophobe cell carcinomas also showed strong to moderate expression of calponin h1. Weak or absent expression of calponin h1 was observed significantly in infiltrating tumors, sarcomatous type, large, high grade and high stage tumors associated with significantly higher proliferating indexes. Our results strongly suggest that the renal tumor vessels are immunohistochemically different from normal renal vessels in respect to calponin h1 expression. We speculate that due to the decrease in or absence of calponin h1 tumor vessels do not develop adequate maturity to maintain vascular integrity. In addition, the distribution of calponin h1 significantly correlated with multiple pathological factors of RCC

  17. Magnetic resonance image-guided photodynamic therapy of xenograft pancreas tumors with verteporfin

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2009-02-01

    Pancreatic cancer generally has very poor prognosis, with less than 4% survival at 5 years after diagnosis. This dismal survival rate is in part due to the aggressive nature of the adenocarcinoma, leading to a late-stage at diagnosis and exhibits resistance to most therapies. Photodynamic therapy (PDT) is a model cellular and vascular therapy agent, which uses light activation of the delivered drug to photosensitize the local cellular millieu. We suggest that interstitial verteporfin (benzoporphyrin derivative monoacid ring A) PDT has the potential to be an adjuvant therapy to the commonly used Gemcitabine chemotherapy. In the current study, an orthotopic pancreatic cancer model (Panc-1) has undergone interstitial verteporfin PDT (40 J/cm with verteporfin and 40 J/cm without verteporfin). Prior to PDT, magnetic resonance (MR) imaging was used to determine the location and size of the tumor within the pancreas, allowing accurate placement of the diffusing fiber. The success of therapy was monitored in vivo by assessing the total tumor and vascular perfusion volumes 24 hours pre- and 48 hours post-PDT. Total tumor and vascular perfusion volumes were determined using T2 weighted (T2W) and Gd-DTPA difference T1 weighted (T1W) turbo spin echo (TSE) MR imaging sequences, respectively. The validity of the in vivo imaging for therapeutic response was confirmed by ex vivo fluorescence and histological staining of frozen tissue sections. The ex vivo DiOC7(3) fluorescence analysis correlates well with the information provided from the MR images, indicating that MR imaging will be a successful surrogate marker for interstitial PDT.

  18. FXR Controls the Tumor Suppressor NDRG2 and FXR Agonists Reduce Liver Tumor Growth and Metastasis in an Orthotopic Mouse Xenograft Model

    PubMed Central

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR−/− mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies. We show reduced NDRG2 mRNA in livers of FXR−/− mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options. PMID:23056173

  19. Increased risk of solid renal tumors in lithium-treated patients.

    PubMed

    Zaidan, Mohamad; Stucker, Fabien; Stengel, Bénédicte; Vasiliu, Viorel; Hummel, Aurélie; Landais, Paul; Boffa, Jean-Jacques; Ronco, Pierre; Grünfeld, Jean-Pierre; Servais, Aude

    2014-07-01

    Cystic kidney diseases and toxic interstitial nephritis may be complicated by renal tumors. Long-term lithium intake is associated with tubulointerstitial nephritis and renal cysts but to date such an association with tumors has not been determined. We evaluated this in a retrospective study to determine whether lithium-treated patients were at higher risk of renal tumors compared with lithium-free patients with chronic kidney disease (CKD), and to the general population. Over a 16-year period, 14 of 170 lithium-treated patients had renal tumors, including seven malignant and seven benign tumors. The mean duration of lithium exposure at diagnosis was 21.4 years. The renal cancers included three clear-cell and two papillary renal cell carcinomas, one hybrid tumor with chromophobe and oncocytoma characteristics, and one clear-cell carcinoma with leiomyomatous stroma. The benign tumors included four oncocytomas, one mixed epithelial and stromal tumor, and two angiomyolipomas. The percentage of renal tumors, particularly cancers and oncocytomas, was significantly higher in lithium-treated patients compared with 340 gender-, age-, and estimated glomerular filtration rate (eGFR)-matched lithium-free patients. Additionally, the Standardized Incidence Ratio of renal cancer was significantly higher in lithium-treated patients compared with the general population: 7.51 (95% confidence interval (CI) (1.51-21.95)) and 13.69 (95% CI (3.68-35.06)) in men and women, respectively. Thus, there is an increased risk of renal tumors in lithium-treated patients.

  20. Renal carcinoid tumor with liver metastasis followed up postoperatively for 9 years.

    PubMed

    Ouyang, BinShen; Ma, XiaoMei; Yan, HongZhu; He, Jin; Xia, ChunYan; Yu, HongYu

    2015-10-06

    We describe a case of renal carcinoid tumor with liver metastasis followed up postoperatively for 9 years. A 33-year-old man presented with left flank dull ache. On the abdominal computed tomography, a solid renal mass in the upper portion of the left kidney was detected. The patient had no other abnormal findings, such as suspected distant metastasis or lymph node metastasis. Radical nephrectomy was performed on 14/9/2005. Histological examination and immunohistochemical staining confirm primary renal carcinoid tumor. 9 years after radical nephrectomy, computed tomography of the abdomen demonstrated a 2 cm × 1.8 cm cyst mass in the right liver. Similar pathologic characteristics were found between the renal carcinoid tumor and liver tumor. We present a primary renal carcinoid tumor with liver metastasis 9 years after radical nephrectomy. With literature review, renal carcinoid tumors exhibit heterogenous behavior.

  1. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  2. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  3. Noninvasively Imaging Subcutaneous Tumor Xenograft by a Handheld Raman Detector, with the Assistance of an Optical Clearing Agent.

    PubMed

    Zhang, Yunfei; Liu, Haoran; Tang, Jiali; Li, Zhuoyun; Zhou, Xingyu; Zhang, Ren; Chen, Liang; Mao, Ying; Li, Cong

    2017-05-31

    A handheld Raman detector with operational convenience, high portability, and rapid acquisition rate has been applied in clinics for diagnostic purposes. However, the inherent weakness of Raman scattering and strong scattering of the turbid tissue restricts its utilization to superficial locations. To extend the applications of a handheld Raman detector to deep tissues, a gold nanostar-based surface-enhanced Raman scattering (SERS) nanoprobe with robust colloidal stability, a fingerprint-like spectrum, and extremely high sensitivity (5.0 fM) was developed. With the assistance of FPT, a multicomponent optical clearing agent (OCA) efficiently suppressing light scattering from the turbid dermal tissues, the handheld Raman detector noninvasively visualized the subcutaneous tumor xenograft with a high target-to-background ratio after intravenous injection of the gold nanostar-based SERS nanoprobe. To the best of our knowledge, this work is the first example to introduce the optical clearing technique in assisting SERS imaging in vivo. The combination of optical clearing technology and SERS is a promising strategy for the extension of the clinical applications of the handheld Raman detector from superficial tissues to subcutaneous or even deeper lesions that are usually "concealed" by the turbid dermal tissue.

  4. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.

  5. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.

    PubMed

    Fani, Melpomeni; Tamma, Maria-Luisa; Nicolas, Guillaume P; Lasri, Elisabeth; Medina, Christelle; Raynal, Isabelle; Port, Marc; Weber, Wolfgang A; Maecke, Helmut R

    2012-05-07

    The overexpression of the folate receptor (FR) in a variety of malignant tumors, along with its limited expression in healthy tissues, makes it an attractive tumor-specific molecular target. Noninvasive imaging of FR using radiolabeled folate derivatives is therefore highly desirable. Given the advantages of positron emission tomography (PET) and the convenience of (68)Ga production, the aim of our study was to develop a new (68)Ga-folate-based radiotracer for clinical application. The chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) was conjugated to folic acid and to 5,8-dideazafolic acid using 1,2-diaminoethane as a spacer, resulting in two novel conjugates, namely, P3246 and P3238, respectively. Both conjugates were labeled with (68/67)Ga. In vitro internalization, efflux, and saturation binding studies were performed using the FR-positive KB cell line. Biodistribution and small-animal PET imaging studies were performed in nude mice bearing subcutaneous KB xenografts. Both conjugates were labeled with (68)Ga at room temperature within 10 min in labeling yields >95% and specific activity ~30 GBq/μmol. The K(d) values of (68/67)Ga-P3246 (5.61 ± 0.96 nM) and (68/67)Ga-P3238 (7.21 ± 2.46 nM) showed high affinity for the FR. (68/67)Ga-P3246 showed higher cell-associated uptake in vitro than (68/67)Ga-P3238 (approximately 72 and 60% at 4 h, respectively, P < 0.01), while both radiotracers exhibited similar cellular retention up to 4 h (approximately 76 and 71%, respectively). Their biodistribution profile is characterized by high tumor uptake, fast blood clearance, low hepatobiliary excretion, and almost negligible background. Tumor uptake was already high at 1 h for both (68)Ga-P3246 and (68)Ga-P3238 (16.56 ± 3.67 and 10.95 ± 2.12% IA/g, respectively, P > 0.05) and remained at about the same level up to 4 h. Radioactivity also accumulated in the FR-positive organs, such as kidneys (91.52 ± 21.05 and 62.26 ± 14.32% IA/g, respectively

  6. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically

  7. CT and MRI Findings in a Rare Case of Renal Primitive Neuroectodermal Tumor

    PubMed Central

    Akkaya, Zehra; Peker, Elif; Gulpinar, Basak; Karadag, Hale; Erden, Ayse

    2016-01-01

    Summary Background Primary renal primitive neuroectodermal tumor/extraskeletal Ewing’s sarcoma (PNET/EES) is a very rare renal tumor. Case Report We report a case of primary renal PNET/EES of the kidney in an adult patient and describe its computed tomography and magnetic resonance imaging findings, including diffusion weighted images along with a review of the current medical literature. Conclusions Although very rare, a relatively large renal mass which shows very infiltrative growth pattern on CT and MR imaging and striking diffusion restriction should raise the suspicion of a renal primitive neuroectodermal tumor, in a young adult. PMID:27635170

  8. 5α-Reductase inhibition coupled with short off cycles increases survival in the LNCaP xenograft prostate tumor model on intermittent androgen deprivation therapy.

    PubMed

    Pascal, Laura E; Masoodi, Khalid Z; O'Malley, Katherine J; Shevrin, Daniel; Gingrich, Jeffrey R; Parikh, Rahul A; Wang, Zhou

    2015-04-01

    Intermittent androgen deprivation therapy in patients with prostate specific antigen progression after localized prostate cancer treatment is an alternative to standard continuous androgen deprivation therapy. Intermittent androgen deprivation therapy allows for testosterone recovery during off cycles. This stimulates regrowth and differentiation of the regressed prostate tumor, lessens the side effects of continuous androgen deprivation therapy and potentially prolongs survival. Previously intermittent androgen deprivation therapy coupled with finasteride was shown to prolong survival in animals bearing androgen sensitive prostate tumors when the off cycle duration was not prolonged but rather fixed at 10 to 14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition but growth resumed after several days. In shorter off cycles of testosterone recovery 5α-reductase inhibition might maximize tumor growth inhibition during intermittent androgen deprivation therapy and perhaps increase survival. We used the LNCaP xenograft tumor model to evaluate the effectiveness of short off cycles of 4 days coupled with 5α-reductase inhibition on survival and tumor regrowth while on intermittent androgen deprivation therapy. Dutasteride inhibited initial testosterone induced tumor regrowth off cycles 1 and 2, and significantly increased survival. These results further support the potential for intermittent androgen deprivation therapy combined with 5α-reductase inhibition to improve survival in patients with prostate cancer when off cycle duration is short or very short. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. 5α-reductase Inhibition Coupled with Short Off Cycles Increases Survival in the LNCaP Xenograft Prostate Tumor Model on Intermittent Androgen Deprivation Therapy

    PubMed Central

    Pascal, Laura E.; Masoodi, Khalid Z.; O’Malley, Katherine J.; Shevrin, Daniel; Gingrich, Jeffrey R.; Parikh, Rahul A.; Wang, Zhou

    2014-01-01

    Purpose Intermittent androgen deprivation therapy (IADT) for patients with PSA progression after treatment for localized prostate cancer is an alternative to the standard continuous ADT. IADT allows for the recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor in order to lessen the side effects of continuous ADT and potentially prolong survival. Previously, IADT coupled with finasteride was shown to prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was not prolonged and fixed at 10–14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition, but resumed growth after several days in the animal models. 5α-reductase inhibition in shorter off-cycles of testosterone recovery could maximize tumor growth inhibition during IADT and perhaps increase survival. Materials and Methods The LNCaP xenograft tumor model was utilized to evaluate the effectiveness of short off-cycles of 4 days coupled with 5α-reductase inhibition on IADT on survival and tumor regrowth. Results Dutasteride inhibited initial testosterone-induced tumor regrowth during both the first and second off-cycle and significantly increased survival. Conclusions These results further support the potential for IADT combined with 5α-reductase inhibition to improve survival in prostate cancer patients when off cycle durations are short or very short. PMID:25444984

  10. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    PubMed

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.

  11. Clear cell renal cell tumors: Not all that is "clear" is cancer.

    PubMed

    Williamson, Sean R; Cheng, Liang

    2016-07-01

    Continued improvement of our understanding of the clinical, histologic, and genetic features of renal cell tumors has progressively evolved renal tumor classification, revealing an expanding array of distinct tumor types with different implications for prognosis, patient counseling, and treatment. Although clear cell renal cell carcinoma is unequivocally the most common adult renal tumor, there is growing evidence that some "clear cell" renal neoplasms, such as exemplified by multilocular cystic clear cell renal neoplasm of low malignant potential (formerly multilocular cystic renal cell carcinoma), do not have the same potential for insidious progression and metastasis, warranting reclassification as low malignant potential tumors or benign neoplasms. Still other novel tumor types such as clear cell papillary renal cell carcinoma have been more recently recognized, which similarly have shown a conspicuous absence of aggressive behavior to date, suggesting that these too may be recategorized as noncancerous or may be premalignant neoplasms. This importance for prognosis is increasingly significant in the modern era, in which renal masses are increasingly found incidentally by imaging techniques at a small tumor size, raising consideration for less aggressive management options guided by renal mass biopsy diagnosis, including imaging surveillance, tumor ablation, or partial nephrectomy.

  12. Chronic kidney disease in children with unilateral renal tumor.

    PubMed

    Cozzi, Denis A; Ceccanti, Silvia; Frediani, Simone; Schiavetti, Amalia; Cozzi, Francesco

    2012-05-01

    In patients who have undergone nephrectomy lower stage chronic kidney disease may develop, which is an independent risk factor for cardiovascular disease and overall mortality. We investigated whether the prevalence of lower stage chronic kidney disease is related to the amount of renal parenchyma excised in children with unilateral renal tumor. A total of 15 patients treated with nephrectomy and 10 treated with nephron sparing surgery were enrolled at a single academic center. The Kidney Disease Outcomes Quality Initiative guidelines were used to classify patients by chronic kidney disease stage based on estimated glomerular filtration rate values. The Modification of Diet in Renal Disease study equation and Schwartz equation were used in patients older and younger than 17 years, respectively. At a mean followup of more than 12 years 8 patients who had undergone nephrectomy and 1 treated with bilateral nephron sparing surgery presented with stage II chronic kidney disease (estimated glomerular filtration rate 60 to 89 ml/min/1.73 m(2)). Sequential measurements from diagnosis to 12 to 17 years postoperatively showed that stage II chronic kidney disease in patients who had undergone nephrectomy manifested as a negligible postoperative increase in mean ± SD estimated glomerular filtration rate (75.7 ± 25.5 vs 79.4 ± 3.9 ml/min/1.73 m(2), p = 0.6). Five of the 8 patients presented with stage II chronic kidney disease even before nephrectomy. The other 7 patients who had undergone nephrectomy and those treated with nephron sparing surgery presented with a significant postoperative increase in mean ± SD estimated glomerular filtration rate (81.1 ± 24 vs 102.3 ± 3 ml/min/1.73 m(2), p = 0.02, and 88.7 ± 2 vs 107.4 ± 14 ml/min/1.73 m(2), p = 0.005, respectively). A subset of children with unilateral renal tumor presents before and/or after nephrectomy, and not after nephron sparing surgery, with stage II chronic kidney disease, probably due to a reduced renal

  13. Clinical management of renal cell carcinoma with venous tumor thrombus.

    PubMed

    Agochukwu, Nnenaya; Shuch, Brian

    2014-06-01

    Venous invasion is common in advanced renal cell carcinoma (RCC) due to the unique biology of this cancer. The presence of a tumor thrombus often makes clinical management challenging. In this review, we detail specific preoperative, perioperative, and surgical strategies involving the care of the complex kidney cancer patient with venous tumor involvement. We performed a comprehensive review of selected peer-reviewed publications regarding RCC tumor thrombus biology, medical and surgical management techniques, and immediate and long-term outcomes. The perioperative management may require special imaging techniques, preoperative testing, very recent imaging, and consultation with other surgical services. There are various approaches to these patients as the clinical presentation, stage of disease, primary tumor size, level of thrombus, degree of venous occlusion, presence of bland thrombus, and primary tumor laterality influence management. Select patients with metastatic disease can do well with cytoreductive nephrectomy and thrombectomy. Those with localized disease have a high risk of recurrence; however, some patients can exhibit durable survival with surgery alone. The evolving surgical and medical treatments are discussed. Even when these surgeries are performed in high volume centers, significant perioperative complications are common and greater complications are seen with higher thrombus extent. If surgery is attempted, it is important for urologic oncologists to follow strict attention to specific surgical principles. These general principles include complete vascular control, avoidance of thrombus embolization, close hemodynamic monitoring, and institutional resources for caval resection/replacement and venous bypass if necessary.

  14. Lin28 sustains early renal progenitors and induces Wilms tumor.

    PubMed

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S; Zhu, Hao; Perez-Atayde, Antonio R; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q

    2014-05-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis.

  15. Renal Function Recovery after Nephrectomy or Nephron-Sparing Surgery in Children with Unilateral Renal Tumor.

    PubMed

    Cozzi, Denis A; Ceccanti, Silvia; Cozzi, Francesco

    2017-02-01

    Introduction Children with unilateral renal tumor (URT) and preoperative renal dysfunction (PRD) may benefit from nephron-sparing surgery (NSS). To test this hypothesis, we studied the outcome of baseline renal function after nephrectomy or NSS among children with URT. Materials and Methods Retrospective records review of children with URT who underwent nephrectomy (25 children) or NSS (11 children) at our institution. We analyzed the estimated glomerular filtration rate (eGFR) changes over time among patients, stratified by both preoperative renal function (with or without PRD) and surgical extent (NSS vs. nephrectomy). The primary end point was evaluation of compensatory recovery of preoperative eGFR after surgery. Only children older than 2 years at surgery were included in the study. Renal dysfunction was defined as an eGFR < 90 mL/min/1.73 m(2). Results After nephrectomy or NSS, patients with PRD presented, on average during adolescence, a significant increase in eGFR, whereas patients without PRD presented, on average during adolescence, a stable eGFR. However, after nephrectomy, 5 of 17 (29%) and 7 of 8 (87%) adolescent patients with baseline eGFR ≤ or > 100 mL/min/1.73 m(2), respectively, achieved or maintained two-kidney eGFR values (T-KEV) (p = 0.01). After NSS, four adolescent patients with PRD and seven without PRD achieved or maintained T-KEV. Conclusion The majority of children with URT and low baseline eGFR present with an impaired renal function recovery after nephrectomy and may benefit from NSS. Collaborative studies are needed to support present findings. Georg Thieme Verlag KG Stuttgart · New York.

  16. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    PubMed

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.

  17. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma.

    PubMed

    Doñate, Carmen; Vijaya Kumar, Archana; Imhof, Beat A; Matthes, Thomas

    2016-11-01

    Junctional adhesion molecule (JAM)-C is a member of the JAM family, expressed by a variety of different cell types, including human B lymphocytes and some B-cell lymphoma subtypes-in particular, mantle cell lymphoma (MCL). Treatment with anti-JAM-C pAbs reduces homing of human B cells to lymphoid organs in a NOD/SCID mouse model. In the present study, the role of JAM-C in the engraftment of human lymphoma B cells in mice was investigated. Administration of novel anti-JAM-C mAbs reduced tumor growth of JAM-C(+) MCL cells in bone marrow, spleen, liver, and lymph nodes of mice. Treatment with anti-JAM-C antibodies significantly reduced the proliferation of JAM-C-expressing lymphoma B cells. Moreover, the binding of anti-JAM-C antibodies inhibited the phosphorylation of ERK1/2, without affecting other signaling pathways. The results identify for the first time the intracellular MAPK cascade as the JAM-C-driven signaling pathway in JAM-C(+) B cells. Targeting JAM-C could constitute a new therapeutic strategy reducing lymphoma B-cell proliferation and their capacity to reach supportive lymphoid microenvironments.

  18. Negligible Colon Cancer Risk from Food-Borne Acrylamide Exposure in Male F344 Rats and Nude (nu/nu) Mice-Bearing Human Colon Tumor Xenografts

    PubMed Central

    Raju, Jayadev; Roberts, Jennifer; Sondagar, Chandni; Kapal, Kamla; Aziz, Syed A.; Caldwell, Don; Mehta, Rekha

    2013-01-01

    Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet) reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control) or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM) or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu) mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control) or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a “complete carcinogen”, but acts as a “co-carcinogen” by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters. PMID:24040114

  19. Obesity triggers enhanced MDSC accumulation in murine renal tumors via elevated local production of CCL2.

    PubMed

    Hale, Malika; Itani, Farah; Buchta, Claire M; Wald, Gal; Bing, Megan; Norian, Lyse A

    2015-01-01

    Obesity is one of the leading risk factors for developing renal cell carcinoma, an immunogenic tumor that is treated clinically with immunostimulatory therapies. Currently, however, the mechanisms linking obesity with renal cancer incidence are unclear. Using a model of diet-induced obesity, we found that obese BALB/c mice with orthotopic renal tumors had increased total frequencies of myeloid-derived suppressor cells (MDSC) in renal tumors and spleens by d14 post-tumor challenge, relative to lean counterparts. Renal tumors from obese mice had elevated concentrations of the known myeloid cell chemoattractant CCL2, which was produced locally by increased percentages of dendritic cells, macrophages, B cells, and CD45- cells in tumors. MDSC expression of the CCL2 receptor, CCR2, was unaltered by obesity but greater percentages of CCR2+ MDSCs were present in renal tumors from obese mice. Of note, the intracellular arginase levels and per-cell suppressive capacities of tumor-infiltrating and splenic MDSCs were unchanged in obese mice relative to lean controls. Thus, our findings suggest that obesity promotes renal tumor progression via development of a robust immunosuppressive environment that is characterized by heightened local and systemic MDSC prevalence. Targeted intervention of the CCL2/CCR2 pathway may facilitate immune-mediated renal tumor clearance in the obese.

  20. Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice

    PubMed Central

    Khalil, Ashraf A.; Jameson, Mark J.; Broaddus, William C.; Chung, Theodore D.; Golding, Sarah E.; Dever, Seth M.; Rosenberg, Elisabeth; Valerie, Kristoffer

    2014-01-01

    Currently, intraperitoneal (IP) injection of D-luciferin is the preferred method of providing substrate for bioluminescent imaging (BLI); however it has a failure rate of 3–10% due to accidental intestinal injection. The present study evaluates the quality of BLI after subcutaneous (SC) injection of D-luciferin and demonstrates the effectiveness of SC injection in anatomically disparate tumor models. Mice bearing luciferase-expressing tumors underwent BLI after SC or IP injection of D-luciferin. The average time to maximal luminescence was 6 min (range 5–9 min) after SC injection and 8 min (range 5–8 min) after IP injection. Within 7 minutes of injection, SC and IP routes yielded similar luminescence in subcutaneous, intracranial, tongue, and lung xenograft tumor models. In a model of combined subcutaneous and intracranial xenografts, SC injection resulted in proportional luminescence at all sites, confirming that preferential delivery of substrate does not occur. While tumors were occasionally not visualized with IP injection, all tumors were visualized reliably with SC injection. Thus, SC injection of D-luciferin is a convenient and effective alternative to IP injection for BLI in nude mice. It may be a preferable approach, particularly for tumors with weaker signals and/or when greater precision is required. PMID:25392739

  1. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody.

    PubMed

    Robinson, Matthew K; Doss, Mohan; Shaller, Calvin; Narayanan, Deepa; Marks, James D; Adler, Lee P; González Trotter, Dinko E; Adams, Gregory P

    2005-02-15

    Positron emission tomography (PET) provides an effective means of both diagnosing/staging several types of cancer and evaluating efficacy of treatment. To date, the only U.S. Food and Drug Administration-approved radiotracer for oncologic PET is (18)F-fluoro-deoxyglucose, which measures glucose accumulation as a surrogate for malignant activity. Engineered antibody fragments have been developed with the appropriate targeting specificity and systemic elimination properties predicted to allow for effective imaging of cancer based on expression of tumor associated antigens. We evaluated a small engineered antibody fragment specific for the HER2 receptor tyrosine kinase (C6.5 diabody) for its ability to function as a PET radiotracer when labeled with iodine-124. Our studies revealed HER2-dependent imaging of mouse tumor xenografts with a time-dependent increase in tumor-to-background signal over the course of the experiments. Radioiodination via an indirect method attenuated uptake of radioiodine in tissues that express the Na/I symporter without affecting the ability to image the tumor xenografts. In addition, we validated a method for using a clinical PET/computed tomography scanner to quantify tumor uptake in small-animal model systems; quantitation of the tumor targeting by PET correlated with traditional necropsy-based analysis at all time points analyzed. Thus, diabodies may represent an effective molecular structure for development of novel PET radiotracers.

  2. Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

    PubMed Central

    Wang, Jie; Chen, Chao; Wang, Shiying; Zhang, Yong; Yin, Peihao; Gao, Zhongxiang; Xu, Jie; Feng, Dianxu; Zuo, Qinsong; Zhao, Ronghua; Chen, Teng

    2015-01-01

    Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin. PMID:26770191

  3. 18F-fluorothymidine PET/CT as an early predictor of tumor response to treatment with cetuximab in human lung cancer xenografts.

    PubMed

    Takeuchi, Satoshi; Zhao, Songji; Kuge, Yuji; Zhao, Yan; Nishijima, Ken-Ichi; Hatano, Toshiyuki; Shimizu, Yasushi; Kinoshita, Ichiro; Tamaki, Nagara; Dosaka-Akita, Hirotoshi

    2011-09-01

    We investigated whether 18F-fluorothymidine-positron-emission tomography/computed tomography (18F-FLT-PET/CT) is useful for the evaluation of the very early response to anti-epidermal growth factor receptor (EGFR) antibody cetuximab therapy in human lung cancer xenografts. A human tumor xenograft model was established with a human non-small cell lung cancer cell line. The mice were randomly assigned to four groups: tumor growth follow-up, ex vivo study, PET/CT imaging and non-treated control. Mice were administered saline as control or cetuximab on day 1. An immunohistochemical study with Ki-67 was performed. Tumor volume treated with cetuximab was kept significantly smaller than control after day 8, although there was no difference on day 3. On day 3, 18F-FLT distribution was higher in the tumor than in other tissues, and was significantly decreased by treatment with cetuximab. On PET/CT imaging, 18F-FLT distribution in the tumor was clearly visualized, and the maximum standardized uptake value (SUV) was significantly decreased after treatment with cetuximab (p<0.01). Ki-67 expression was also significantly decreased on day 3 (p=0.01). These results suggest that 18F-FLT-PET/CT can be a useful predictor to determine the response to molecular targeted drugs such as cetuximab at an earlier time point than the change of tumor size.

  4. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma

    PubMed Central

    Neri, Dario

    2016-01-01

    Small molecule-drug conjugates (SMDCs) are increasingly being considered as an alternative to antibody-drug conjugates (ADCs) for the selective delivery of anticancer agents to the tumor site, sparing normal tissues. Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme, which is over-expressed in the majority of renal cell carcinomas and which can be efficiently targeted in vivo, using charged derivatives of acetazolamide, a small heteroaromatic sulfonamide. Here, we show that SMDC products, obtained by the coupling of acetazolamide with monomethyl auristatin E (MMAE) using dipeptide linkers, display a potent anti-tumoral activity in mice bearing xenografted SKRC-52 renal cell carcinomas. A comparative evaluation of four dipeptides revealed that SMDCs featuring valine-citrulline and valine-alanine linkers exhibited greater serum stability and superior therapeutic activity, compared to the counterparts with valine-lysine or valine-arginine linkers. The most active products substantially inhibited tumor growth over a prolonged period of time, in a tumor model for which sunitinib and sorafenib do not display therapeutic activity. However, complete tumor eradication was not possible even after ten intravenous injection. Macroscopic near-infrared imaging procedures confirmed that ligands had not lost the ability to selectively localize at the tumor site at the end of therapy and that the neoplastic masses continued to express CAIX. The findings are of mechanistic and of therapeutic significance, since CAIX is a non-internalizing membrane-associated antigen, which can be considered for targeted drug delivery applications in kidney cancer patients. PMID:27890855

  5. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  6. Reduced Dose and Intermittent Treatment with Lapatinib and Trastuzumab for Potent Blockade of the HER Pathway in HER-2/neu Overexpressing Breast Tumor Xenografts

    PubMed Central

    Rimawi, Mothaffar F.; Wiechmann, Lisa S.; Wang, Yen-Chao; Huang, Catherine; Migliaccio, Ilenia; Wu, Meng-Fen; Gutierrez, Carolina; Hilsenbeck, Susan G.; Arpino, Grazia; Massarweh, Suleiman; Ward, Robin; Soliz, Robert; Osborne, C. Kent; Schiff, Rachel

    2010-01-01

    Purpose We have shown that incomplete blockade of the Human Epidermal Growth Factor (HER) pathway is a mechanism of resistance to treatment with trastuzumab (T) in HER2-overexpressing tumor xenografts. We now investigate whether the addition of lapatinib (L), a dual HER1/2 kinase inhibitor, to T results in more potent inhibition of the pathway and therefore inhibition of tumor growth, and whether reduced dose and intermittent treatment with the combination is equally effective. Experimental Design Nude mice bearing HER2-overexpressing MCF7/HER2-18 or BT474 xenograft tumors were treated with L, T, alone or in various combinations with other HER inhibitors. L+T for short duration (14, 42 days), intermittent administration (14 days on/off), and reduced dosing (1/2 dose) was also investigated. Inhibition of tumor growth, downstream signaling, proliferation, and induction of apoptosis were assessed. All statistical tests were two-sided. Results L+T was the most effective regimen in both MCF7/HER2-18 and BT474 xenografts with complete tumor regression (CR) observed in all mice. Intermittent and reduced dose treatment (½ dose) resulted in high rates of CR and low rates of tumor recurrence that were comparable to full dose continuous treatment. L+T resulted in significantly reduced downstream signaling and proliferation, and increased apoptosis. Conclusions L+T is a potent and effective combination even when given in reduced dose or intermittent schedule potentially resulting in lower toxicity and reduced cost if translated to patients. These findings warrant timely clinical testing. PMID:21138857

  7. Expressions of cytochrome P450, UDP-glucuronosyltranferase, and transporter genes in monolayer carcinoma cells change in subcutaneous tumors grown as xenografts in immunodeficient nude mice.

    PubMed

    Sugawara, Michiko; Okamoto, Kiyoshi; Kadowaki, Tadashi; Kusano, Kazutomi; Fukamizu, Akiyoshi; Yoshimura, Tsutomu

    2010-03-01

    Human tumors grown as xenografts in immunodeficient nude mice are widely used to investigate the pharmacological activities of anticancer drugs. Drug-metabolizing enzymes and transporters are expressed in tumor cell lines and changes in drug metabolism and pharmacokinetics (DMPK)-related gene expression after inoculation of the tumor cell may affect the pharmacological activity of the drug under consideration. The aims of the current study were to characterize DMPK-related gene expression profiles and responses to typical cytochrome P450 inducers in monolayer carcinoma cells grown in tissue culture versus those inoculated into a xenograft model. We used the human hepatocellular carcinoma cell line PLC/PRF/5 for this study and comprehensively assessed changes in DMPK-related gene expression by reverse transcription-polymerase chain reaction quantitation. CYP3A4 and UDP-glucuronosyltransferase 1A protein amounts were also analyzed by immunoprecipitation followed by immunoblotting. We found that the expression of many DMPK-related genes was elevated in the inoculated tumor compared with the monolayer carcinoma cells, indicating changes in their gene regulation pathways, presumably due to modulation of the nuclear receptor family of transcription factors. In addition, monolayer carcinoma versus inoculated tumor cells showed different responses to rifampicin, but similar responses to dexamethasone or 3-methylcholanthrene. These results suggest that inoculation of tumor cells results in the activation of drug metabolism and transport function, leading to changes in the responses to pregnane X receptor ligands and consequent discrepancies in the pharmacological activities between in vitro monolayer carcinoma cells and in vivo xenograft models.

  8. Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer

    SciTech Connect

    Bhattacharyya, Rumi S.; Husbeck, Bryan; Feldman, David; Knox, Susan J.

    2008-11-01

    Purpose: Selenium compounds have known chemopreventive effects on prostate cancer. However selenite, an inorganic form of selenium, has not been extensively studied as a treatment option for prostate cancer. Our previous studies have demonstrated the inhibition of androgen receptor expression and androgen stimulated prostate-specific antigen (PSA) expression by selenite in human prostate cancer cell lines. In this study, we investigated the in vivo effects of selenite as a therapy to treat mice with established LAPC-4 tumors. Methods and Materials: Male mice harboring androgen-dependent LAPC-4 xenograft tumors were treated with selenite (2 mg/kg intraperitoneally three times per week) or vehicle for 42 days. In addition, androgen-independent LAPC-4 xenograft tumors were generated in female mice over 4 to 6 months. Once established, androgen-independent LAPC-4 tumor fragments were passaged into female mice and were treated with selenite or vehicle for 42 days. Changes in tumor volume and serum PSA levels were assessed. Results: Selenite significantly decreased androgen-dependent LAPC-4 tumor growth in male mice over 42 days (p < 0.001). Relative tumor volume was decreased by 41% in selenite-treated animals compared with vehicle-treated animals. The inhibition of LAPC-4 tumor growth corresponded to a marked decrease in serum PSA levels (p < 0.01). In the androgen-independent LAPC-4 tumors in female mice, selenite treatment decreased tumor volume by 58% after 42 days of treatment (p < 0.001). Conclusions: These results suggest that selenite may have potential as a novel therapeutic agent to treat both androgen-dependent and androgen-independent prostate cancer.

  9. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  10. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  11. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor.

    PubMed

    Steiner, Philipp; Joynes, Christopher; Bassi, Rajiv; Wang, Su; Tonra, James R; Hadari, Yaron R; Hicklin, Daniel J

    2007-03-01

    Targeting the epidermal growth factor receptor (EGFR) is a validated approach to treat cancer. In non-small cell lung cancer (NSCLC), EGFR contains somatic mutations in 10% of patients, which correlates with increased response rates to small molecule inhibitors of EGFR. We analyzed the effects of the monoclonal IgG1 antibody Erbitux (cetuximab) in NSCLC xenografts with wild-type (wt) or mutated EGFR. NSCLC cell lines were grown s.c. in nude mice. Dose-dependent efficacy was established for cetuximab. To determine whether combination therapy produces tumor regressions, cetuximab was dosed at half-maximal efficacy with chemotherapy used at maximum tolerated dose. Cetuximab showed antitumor activity in wt (A549, NCI-H358, NCI-H292) and mutated [HCC-827 (delE746-A750), NCI-H1975 (L858R, T790M)] EGFR-expressing xenografts. In the H292 model, cetuximab and docetaxel combination therapy was more potent to inhibit tumor growth than cetuximab or docetaxel alone. Cisplatin augmented efficacy of cetuximab to produce 6 of 10 regressions, whereas 1 of 10 regressions was found with cetuximab and no regression was found with cisplatin. Using H1975 xenografts, gemcitabine increased efficacy of cetuximab resulting in 12 of 12 regressions. Docetaxel with cetuximab was more efficacious with seven of nine regressions compared with single treatments. Cetuximab inhibited autophosphorylation of EGFR in both H292 and H1975 tumor lysates. Exploring the underlying mechanism for combination effects in the H1975 xenograft model, docetaxel in combination with cetuximab added to the antiproliferative effects of cetuximab but was the main component in this drug combination to induce apoptosis. Cetuximab showed antitumor activity in NSCLC models expressing wt and mutated EGFR. Combination treatments increased the efficacy of cetuximab, which may be important for the management of patients with chemorefractory NSCLC.

  12. Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy

    PubMed Central

    Kohli, Manish; Wang, Liguo; Xie, Fang; Sicotte, Hugues; Yin, Ping; Dehm, Scott M.; Hart, Steven N.; Vedell, Peter T.; Barman, Poulami; Qin, Rui; Mahoney, Douglas W.; Carlson, Rachel E.; Eckel-Passow, Jeanette E.; Atwell, Thomas D.; Eiken, Patrick W.; McMenomy, Brendan P.; Wieben, Eric D.; Jha, Gautam; Jimenez, Rafael E.; Weinshilboum, Richard; Wang, Liewei

    2015-01-01

    Developing patient derived models from individual tumors that capture the biological heterogeneity and mutation landscape in advanced prostate cancer is challenging, but essential for understanding tumor progression and delivery of personalized therapy in metastatic castrate resistant prostate cancer stage. To demonstrate the feasibility of developing patient derived xenograft models in this stage, we present a case study wherein xenografts were derived from cancer metastases in a patient progressing on androgen deprivation therapy and prior to initiating pre-chemotherapy enzalutamide treatment. Tissue biopsies from a metastatic rib lesion were obtained for sequencing before and after initiating enzalutamide treatment over a twelve-week period and also implanted subcutaneously as well as under the renal capsule in immuno-deficient mice. The genome and transcriptome landscapes of xenografts and the original patient tumor tissues were compared by performing whole exome and transcriptome sequencing of the metastatic tumor tissues and the xenografts at both time points. After comparing the somatic mutations, copy number variations, gene fusions and gene expression we found that the patient’s genomic and transcriptomic alterations were preserved in the patient derived xenografts with high fidelity. These xenograft models provide an opportunity for predicting efficacy of existing and potentially novel drugs that is based on individual metastatic tumor expression signature and molecular pharmacology for delivery of precision medicine. PMID:26695660

  13. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma

    PubMed Central

    Kumar, Ambrish; Al-Sammarraie, Nadia; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway. PMID:25365944

  14. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

    PubMed Central

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion. PMID:27087896

  15. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells.

    PubMed

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae; Kim, Hyeon-A

    2016-04-01

    The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

  16. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model.

    PubMed

    Buraschi, Simone; Neill, Thomas; Owens, Rick T; Iniguez, Leonardo A; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C; Wang, Zi-Xuan; Iozzo, Renato V

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.

  17. Decorin Protein Core Affects the Global Gene Expression Profile of the Tumor Microenvironment in a Triple-Negative Orthotopic Breast Carcinoma Xenograft Model

    PubMed Central

    Owens, Rick T.; Iniguez, Leonardo A.; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C.; Wang, Zi-Xuan; Iozzo, Renato V.

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties. PMID:23029096

  18. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  19. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  20. Probe-Based Confocal Laser Endomicroscopy for Imaging TRAIL-Expressing Mesenchymal Stem Cells to Monitor Colon Xenograft Tumors In Vivo

    PubMed Central

    Zhang, Zhen; Li, Ming; Chen, Feixue; Li, Lixiang; Liu, Jun; Li, Zhen; Ji, Rui; Zuo, Xiuli; Li, Yanqing

    2016-01-01

    Introduction Mesenchymal stem cells (MSCs) can serve as vehicles for therapeutic genes. However, little is known about MSC behavior in vivo. Here, we demonstrated that probe-based confocal laser endomicroscopy (pCLE) can be used to track MSCs in vivo and individually monitor tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene expression within carcinomas. Methods Isolated BALB/c nu/nu mice MSCs (MSCs) were characterized and engineered to co-express the TRAIL and enhanced green fluorescent protein (EGFP) genes. The number of MSCs co-expressing EGFP and TRAIL (TRAIL-MSCs) at tumor sites was quantified with pCLE in vivo, while their presence was confirmed using immunofluorescence (IF) and quantitative polymerase chain reaction (qPCR). The therapeutic effects of TRAIL-MSCs were evaluated by measuring the volumes and weights of subcutaneous HT29-derived xenograft tumors. Results Intravital imaging of the subcutaneous xenograft tumors revealed that BALB/c mice treated with TRAIL-MSCs exhibited specific cellular signals, whereas no specific signals were observed in the control mice. The findings from the pCLE images were consistent with the IF and qPCR results. Conclusion The pCLE results indicated that endomicroscopy could effectively quantify injected MSCs that homed to subcutaneous xenograft tumor sites in vivo and correlated well with the therapeutic effects of the TRAIL gene. By applying pCLE for the in vivo monitoring of cellular trafficking, stem cell-based anticancer gene therapeutic approaches might be feasible and attractive options for individualized clinical treatments. PMID:27617958

  1. Combined 5-FU and ChoKα Inhibitors as a New Alternative Therapy of Colorectal Cancer: Evidence in Human Tumor-Derived Cell Lines and Mouse Xenografts

    PubMed Central

    de la Cueva, Ana; Ramírez de Molina, Ana; Álvarez-Ayerza, Néstor; Ramos, Ma Angeles; Cebrián, Arancha; del Pulgar, Teresa Gómez; Lacal, Juan Carlos

    2013-01-01

    Background Colorectal cancer (CRC) is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU) is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα), an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy. Methodology/Principal Findings ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS) and thymidine kinase (TK1) levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action. Conclusion/Significance Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors. PMID:23762272

  2. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model.

    PubMed

    Hsu, Yu-Chieh; Chiang, Jo-Hua; Yu, Chun-Shu; Hsia, Te-Chun; Wu, Rick Sai-Chuen; Lien, Jin-Cherng; Lai, Kuang-Chi; Yu, Fu-Shun; Chung, Jing-Gung

    2017-01-01

    Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca(2+) production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.

  3. Local tumor control following single dose irradiation of human melanoma xenografts: Relationship to cellular radiosensitivity and influence of an immune response by the athymic mouse

    SciTech Connect

    Rofstad, E.K.

    1989-06-15

    The potential usefulness of untreated congenitally athymic adult mice as hosts for human tumors in radiocurability studies was investigated using five human melanoma xenograft lines (E.E., E.F., G.E., M.F., V.N.). The tumor radiocurability was found to differ considerably among the lines; the radiation doses required to achieve local control of 50% of the tumors irradiated (TCD50 values) ranged from 29.6 +/- 2.1 (SE) to 67.9 +/- 3.5 Gy. Since the clinical relevance of experimentally determined TCD50 values depends on to what extent they are modified by a host immune response, a possible immune reactivity against the melanomas was investigated by comparing the radiocurability data with cell survival data measured in vitro after irradiation in vivo and by performing quantitative tumor transplantability studies. The radiocurability and the cell survival data were found to agree well for the E.F., G.E., and M.F. melanomas. Moreover, the number of tumor cells required to achieve tumors in 50% of the inoculation sites (TD50 values) in untreated and in whole-body irradiated mice were similar, suggesting that the TCD50 values measured for these lines were not significantly influenced by a host immune response. On the other hand, the E.E. and V.N. melanomas showed significantly lower TCD50 values in vivo than predicted theoretically from the in vitro cell survival data and a significantly lower number of tumor cells required to achieve tumors in 50% of the inoculation sites in whole-body irradiated than in untreated mice, suggesting that the radiocurability of these two lines was enhanced due to an immune response by the host. Athymic mice may thus express a significant immune reactivity against some human tumor xenograft lines but not against others.

  4. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts

    PubMed Central

    Gerber, David E.; Gupta, Puja; Dellinger, Michael T.; Toombs, Jason E.; Peyton, Michael; Duignan, Inga; Malaby, Jennifer; Bailey, Timothy; Burns, Colleen; Brekken, Rolf A.; Loizos, Nick

    2012-01-01

    In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα mAbs on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were performed using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression. PMID:22933705

  5. Preserving Renal Function through Partial Nephrectomy Depends on Tumor Complexity in T1b Renal Tumors

    PubMed Central

    2017-01-01

    This study aimed to determine patients with T1b renal cell carcinoma (RCC) who could benefit from partial nephrectomy (PN) and method to identify them preoperatively using nephrometry score (NS). From a total of 483 radical nephrectomy (RN)-treated patients and 40 PN-treated patients who received treatment for T1b RCC between 1995 and 2010, 120 patients identified through 1:2 propensity-score matching were included for analysis. Probability of chronic kidney disease (CKD) until postoperative 5-years was calculated and regressed with respect to the surgical method and NS. Median follow-up was 106 months. CKD-probability at 5-years was 40.7% and 13.5% after radical and PN, respectively (P = 0.005). While PN was associated with lower risk of CKD regardless of age, comorbidity, preoperative estimated renal function, the effect was observed only among patients with NS ≤ 8 (P < 0.001) but not in patients with NS ≥ 9 (P = 0.746). Percent operated-kidney volume reduction and ischemia time were similar between the patients with NS ≥ 9 and ≤ 8. In the stratified Cox regression accounting for the interaction observed between the surgical method and the NS, PN reduced CKD-risk only in patients with NS ≤ 8 (hazard ratio [HR], 0.054; P = 0.005) but not in ≥ 9 (HR, 0.996; P = 0.994). In T1b RCC with NS ≥ 9, the risk of postoperative CKD was not reduced following PN compared to RN. Considering the potential complications of PN, minimally invasive RN could be considered with priority in this subgroup of patients. PMID:28145654

  6. Nephron-sparing surgery for renal tumor: a choice of treatment in an allograft kidney.

    PubMed

    Ribal, M J; Rodriguez, F; Musquera, M; Segarra, J; Guirado, L; Villavicencio, H; Alcaraz, A

    2006-06-01

    The incidence of de novo malignancies is an accepted complication of organ transplantation. Renal cell carcinoma (RCC) was 4.6% of cancers occurring de novo in organ allograft recipients compared with 3% in the general population. Less than 10% of these renal cancers affected the renal allograft. Among patients developing a renal tumor in the kidney allograft, transplant nephrectomy reduced the quality of life. For these patients for whom preservation of renal function is a relevant clinical consideration, partial nephrectomy may be considered the choice for treatment. Fifteen cases have been reported regarding conservative surgery on kidney transplant tumors. Herein we have reported three cases of renal masses in well-functioning kidney transplants that were successfully treated with nephon-sparing surgery. Our experience demonstrated that in selected patients, nephron-sparing surgery on a renal allograft represents a feasible approach for tumor removal with preservation of graft function.

  7. Composite renal cell carcinoma with clear cell renal cell carcinomatous and carcinoid tumoral elements: a first case report.

    PubMed

    Bressenot, A; Delaunay, C; Gauchotte, G; Oliver, A; Boudrant, G; Montagne, K

    2010-02-01

    Renal endocrine tumours are extremely rare, and carcinoid tumoral elements in renal cell carcinoma have never been reported. This is the first report of a composite renal cell carcinoma containing a clear cell renal cell carcinoma associated with carcinoid tumoral elements, in a patient with synchronous metastatic disease. In the absence of specific radiological and clinical manifestations, typical morphological features as well as an immunostaining profile of neuroendocrine differentiation were identified by microscopy. Secondary nodal and liver localisations were characterised by carcinoid elements only. Despite antiangiogenic therapy, liver metastasis progressed, suggesting that adjuvant therapy cannot be based on the presence of the clear cell renal cell carcinoma component. In this context, extensive tissue sampling is recommended to reveal the endocrine component that is the most aggressive element of such a composite carcinoma.

  8. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium.

    PubMed

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-06-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys(34) site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T(1)) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T(1). By contrast, the decreases in tumor T(1) provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R(1) (=1/T(1)) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs.

  9. Ossifying renal tumor of infancy: findings at ultrasound, CT and MRI.

    PubMed

    Lee, Sang Hwan; Choi, Young Hun; Kim, Woo Sun; Cheon, Jung-Eun; Moon, Kyung Chul

    2014-05-01

    A 4-month-old boy presented with persistent gross hematuria. At ultrasonography, a 3.5-cm echogenic mass with posterior shadowing and tumor vascularity was detected within the right renal pelvis. Precontrast CT showed a slightly hyperattenuating mass in the renal pelvis. At MRI the mass was heterogeneously hypointense on T2-weighted images and isointense on T1-weighted images. Contrast-enhanced CT and MRI both revealed peripheral enhancement of the mass. A histological diagnosis of ossifying renal tumor of infancy was made after open pyelostomy and tumor enucleation. We suggest that ossifying renal tumor of infancy should be considered when a mass with posterior acoustic shadowing and tumor vascularity on US, hyperattenuation on precontrast CT and hypointensity on T2-weighted MRI is seen within the renal pelvis of an infant with hematuria.

  10. [Renal carcinoid tumor presenting as bladder tamponade: a case report and review of the Japanese cases].

    PubMed

    Kajita, Yoichiro; Megumi, Yuzuru; Okabe, Tatsushiro

    2005-07-01

    A 65-year-old man presented with sudden onset of gross hematuria and urinary retention. Computed tomographic scan (CT) showed a cystic multilocular enhancing lesion (9 cm in diameter) at the left renal hilum causing thinning and lateral displacement of the left renal parenchyma. Left hydronephrosis and a renal calculi were observed. We performed radical nephrectomy suspecting a cystic renal cell carcinoma. Microscopic examination and immunohistochemical studies confirmed the diagnosis of the carcinoid tumor. The tumor cells were fully positive for neuron-specific enolase and keratin, and partially positive for chromogranin-A. One of the resected lymph nodes was positive for metastasis. Additional gastrointestinal tract examinations for carcinoid tumor were negative. However, he was concurrently diagnosed with poorly differentiated prostate cancer and hormonal therapy was started. He is free of recurrent carcinoid tumor nine months postoperatively. This case is the 31st report of renal carcinoid tumors in Japan.

  11. Angiomyolipoma with hypertension mimicking a malignant renal tumor.

    PubMed

    Springer, Alexander M; Saxena, Amulya K; Willital, Günter H

    2002-09-01

    A 13-month-old girl with a unilateral renal angiomyolipoma causing severe hypertension is reported. The differential diagnosis of renal masses, a review of the literature, and the diagnostic algorithm for renal masses used at our center are presented.

  12. Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest

    PubMed Central

    Zhao, Yong; Tu, Mei-Juan; Wang, Wei-Peng; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2016-01-01

    Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents. PMID:27216562

  13. Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy.

    PubMed

    Sharma, Surinder K; Pedley, R Barbara; Bhatia, Jeetendra; Boxer, Geoffrey M; El-Emir, Ethaar; Qureshi, Uzma; Tolner, Berend; Lowe, Helen; Michael, N Paul; Minton, Nigel; Begent, Richard H J; Chester, Kerry A

    2005-01-15

    Antibody-directed enzyme prodrug therapy (ADEPT) requires highly selective antibody-mediated delivery of enzyme to tumor. MFE-CP, a multifunctional genetic fusion protein of antibody and enzyme, was designed to achieve this by two mechanisms. First by using a high affinity and high specificity single chain Fv antibody directed to carcinoembryonic antigen. Second by rapid removal of antibody-enzyme from normal tissues by virtue of post-translational mannosylation. The purpose of this paper is to investigate these dual functions in an animal model of pharmacokinetics, pharmacodynamics, toxicity, and efficacy. MFE-CP was expressed in the yeast Pichia pastoris and purified via an engineered hexahistidine tag. Biodistribution and therapeutic effect of a single ADEPT cycle (1,000 units/kg MFE-CP followed by 70 mg/kg ZD2767P prodrug at 6, 7, and 8 hours) and multiple ADEPT cycles (9-10 cycles within 21-24 days) was studied in established human colon carcinoma xenografts, LS174T, and SW1222. Selective localization of functional enzyme in tumors and rapid clearance from plasma was observed within 6 hours, resulting in tumor to plasma ratios of 1,400:1 and 339:1, respectively for the LS174T and SW1222 models. A single ADEPT cycle produced reproducible tumor growth delay in both models. Multiple ADEPT cycles significantly enhanced the therapeutic effect of a single cycle in the LS174T xenografts (P = 0.001) and produced regressions in the SW1222 xenografts (P = 0.0001), with minimal toxicity. MFE-CP fusion protein, in combination with ZD2767P, provides a new and successful ADEPT system, which offers the potential for multiple cycles and antitumor efficacy. These results provide a basis for the next stage in clinical development of ADEPT.

  14. mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice.

    PubMed

    Chen, Xinxin; Wang, Yanan; Tao, Jun; Shi, Yuzhuo; Gai, Xiaochen; Huang, Fuqiang; Ma, Qian; Zhou, Zhenzhen; Chen, Hongyu; Zhang, Haihong; Liu, Zhibo; Sun, Qian; Peng, Haiyong; Chen, Rongrong; Jing, Yanling; Yang, Huayu; Mao, Yilei; Zhang, Hongbing

    2015-09-01

    Levels of the Golgi protein 73 (GP73) increase during development of hepatocellular carcinoma (HCC); GP73 is a serum marker for HCC. However, little is known about the mechanisms or effects of GP73 during hepatic carcinogenesis. GP73 was overexpressed from a retroviral vector in HepG2 cells, which were analyzed in proliferation and migration assays. Xenograft tumors were grown from these cells in nude mice. The effects of monoclonal antibodies against GP73 were studied in mice and cell lines. GP73(-/-), GP73(+/-), and GP73(+/+) mice were given injections of diethylnitrosamine to induce liver injury. Levels of GP73 were reduced in MHCC97H, HCCLM3, and HepG2.215 cell lines using small hairpin RNAs; xenograft tumors were grown in mice from MHCC97H-small hairpin GP73 or MHCC97H-vector cells. We used microarray analysis to compare expression patterns between GP73-knockdown and control MHCC97H cells. We studied the effects of the mechanistic target of rapamycin (mTOR) inhibitor rapamycin on GP73 expression in different cancer cell lines and on growth of tumors in mice. Levels of GP73 and activated mTOR were quantified in human HCC tissues. Xenograft tumors grown from HepG2 cells that expressed GP73 formed more rapidly and more metastases than control HepG2 cells in mice. A monoclonal antibody against GP73 reduced proliferation of HepG2 cells and growth of xenograft tumors in mice. GP73(-/-) mice had less liver damage after administration of diethylnitrosamine than GP73(+/-) or GP73(+/+) mice. In phosphatase and tensin homolog-null mouse embryonic fibroblasts with constitutively activated mTOR, GP73 was up-regulated compared with control mouse embryonic fibroblasts; this increase was reversed after incubation with rapamycin. Expression of GP73 also was reduced in HCC and other cancer cell lines incubated with rapamycin. mTORC1 appeared to regulate expression of GP73 in cell lines. Activated mTOR correlated with the level of GP73 in human HCC tissues. Injection of

  15. Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts

    PubMed Central

    Anbalagan, Muralidharan; Ali, Alaa; Jones, Ryan K; Marsden, Carolyn G; Sheng, Mei; Carrier, Latonya; Bu, Yahao; Hangauer, David; Rowan, Brian G

    2012-01-01

    Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2 but clinical trials with Src inhibitors have demonstrated little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as a Src and pretubulin inhibitor. KX-01 was evaluated as a single agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, FAK, microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, BID). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis, and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype. PMID:22784709

  16. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols.

    PubMed

    Bratasz, Anna; Selvendiran, Karuppaiyah; Wasowicz, Tomasz; Bobko, Andrey; Khramtsov, Valery V; Ignarro, Louis J; Kuppusamy, Periannan

    2008-02-26

    Ovarian carcinoma is the leading cause of mortality among gynecological cancers in the world. The high mortality rate is associated with lack of early diagnosis and development of drug resistance. The antitumor efficacy and mechanism of NCX-4040, a nitric oxide-releasing aspirin derivative, against ovarian cancer is studied. NCX-4040, alone or in combination with cisplatin (cis-diamminedichloroplatinum, cDDP), was studied in cisplatin-sensitive (A2780 WT) and cisplatin-resistant (A2780 cDDP) cell lines as well as xenograft tumors grown in nude mice. Electron paramagnetic resonance (EPR) was used for measurements of nitric oxide and redox state. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice was used for mechanistic studies. Cells treated with NCX-4040 (25 microM) showed a significant reduction of cell viability (A2780 WT, 34.9 +/- 8.7%; A2780 cDDP, 41.7 +/- 7.6%; p < 0.05). Further, NCX-4040 significantly enhanced the sensitivity of A2780 cDDP cells (cisplatin alone, 80.6 +/- 11.8% versus NCX-4040+cisplatin, 26.4 +/- 7.6%; p < 0.01) and xenograft tumors (cisplatin alone, 74.0 +/- 4.4% versus NCX-4040+cisplatin, 56.4 +/- 7.8%; p < 0.05), to cisplatin treatment. EPR imaging of tissue redox and thiol measurements showed a 5.5-fold reduction (p < 0.01) of glutathione in NCX-4040-treated A2780 cDDP tumors when compared to untreated controls. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice treated with NCX-4040 and cisplatin revealed significant downregulation of pEGFR (Tyr845 and Tyr992) and pSTAT3 (Tyr705 and Ser727) expression. The results suggested that NCX-4040 could resensitize drug-resistant ovarian cancer cells to cisplatin possibly by depletion of cellular thiols. Thus NCX-4040 appears to be a potential therapeutic agent for the treatment of human ovarian carcinoma and cisplatin-resistant malignancies.

  17. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  18. Digoxin Inhibits Blood Vessel Density and HIF‐1a Expression in Castration‐Resistant C4‐2 Xenograft Prostate Tumors

    PubMed Central

    Gayed, Bishoy A.; O’Malley, Katherine J.; Pilch, Jan

    2012-01-01

    Abstract  Purpose: Recent studies suggest a potential application for digoxin in the prevention and/or treatment of prostate cancer. However, the effect of digoxin on androgen receptor (AR)‐positive prostate tumor in vivo is not clear. This study is designed to determine if digoxin can inhibit AR‐positive xenograft prostate tumors. Materials and Methods: Athymic male nude mice were utilized to establish subcutaneous C4‐2 castration‐resistant prostate tumors. The animals were castrated and then treated with daily intraperitoneal (i.p.) injection of digoxin at 2mg/kg along with vehicle controls for 7 consecutive days. Tumor growth was determined by measuring tumor volume changes, blood vessel density by immunostaining of CD31, and cell proliferation by BrdU labeling. The expression of HIF‐1a in C4‐2 tumors was measured by Western blot and real‐time RT‐PCR. Results: Digoxin inhibited blood vessel density about fourfold and down‐regulated HIF‐1a expression at both mRNA and protein levels. However, digoxin did not inhibit C4‐2 tumor growth. Conclusions: Digoxin is a potent inhibitor of HIF‐1a signaling pathway and blood vessel formation in C4‐2 castration‐resistant prostate tumors. Clin Trans Sci 2012; Volume #: 1–4 PMID:22376255

  19. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma.

    PubMed

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors.

  20. 31P and 1H MRS of DB-1 Melanoma Xenografts: Lonidamine Selectively Decreases Tumor Intracellular pH and Energy Status and Sensitizes Tumors to Melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Ho, Andrew; Lee, Seung-Cheol; Darpolor, Moses M.; Pickup, Stephen; Zhou, Rong; Heitjan, Daniel F.; Leeper, Dennis B.; Glickson, Jerry D.

    2012-01-01

    In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg, i.p.) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05), and a monotonic decline in bioenergetics (NTP/Pi) by 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 hr following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post-LND with no significant change in pHe and a small transient decrease in bioenergetics, 32.9 ± 10.6 % (p > 0.05), at 40 min post-LND. No changes in pHi or ATP/Pi were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post-LND. Steady-state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased ~3-fold (p = 0.009). Treatment with LND increased systemic melanoma response to melphalan (LPAM; 7.5 mg/kg, i.v.) producing a growth delay of 19.9 ± 2.0 d (tumor doubling time = 6.15 ± 0.31d, log10 cell-kill = 0.975 ± 0.110, cell-kill = 89.4 ± 2.2%) compared to LND alone of 1.1 ± 0.1 d and LPAM alone of 4.0 ± 0.0 d. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH-dependent therapeutics such as chemotherapy with alkylating agents or hyperthermia. PMID:22745015

  1. SR-2508 plus buthionine sulfoximine or SR-2508 alone: effects on the radiation response and the glutathione content of a human tumor xenograft

    SciTech Connect

    Lespinasse, F.; Biscay, P.; Malaise, E.P.; Guichard, M.

    1987-04-01

    This study determined the radiosensitivity of the human tumor xenograft HT29 and its glutathione (GSH) and cysteine (CYS) contents after treatment with both buthionine sulfoximine (BSO) and SR-2508 or SR-2508 alone. Tumor radiosensitivity was assessed by the in vitro colony assay and thiol content was measured by high-performance liquid chromatography. The radiosensitizing effect of SR-2508 is dose dependent and increases when higher doses of radiation are given. SR-2508 given alone does not modify GSH and CYS content; however, when given with BSO, the GSH level is significantly reduced, yet radiosensitivity of the HT29 tumor is only slightly increased. These results have been compared to our previously observed results of HT29 treatment with misonidazole (MISO), BSO, or MISO + BSO.

  2. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    PubMed

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages.

  3. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model

    PubMed Central

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages. PMID:27463372

  4. Zanthoxylum avicennae extracts induce cell apoptosis through protein phosphatase 2A activation in HA22T human hepatocellular carcinoma cells and block tumor growth in xenografted nude mice.

    PubMed

    Dung, Tran Duc; Chang, Hsien-Cheh; Chen, Chung-Yu; Peng, Wen-Huang; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Chen, Li-Mien; Huang, Chih-Yang

    2011-12-01

    The use of herbs as alternative cancer therapies has attracted a great deal of attention owing to their lower toxicity. Whether Zanthoxylum avicennae (Ying Bu Bo, YBB) induces liver cancer cell apoptosis remains unclear. In this study, we investigated the effect of YBB extracts (YBBEs) on HA22T human hepatocellular carcinoma cells in vitro and in an in vivo mouse xenograft model. HA22T cells were treated with different concentrations of YBBEs and analyzed with Western blot analysis, TUNEL, JC-1 staining and siRNA transfection assays. Additionally, the HA22T-implanted xenograft nude mice model was applied to confirm the cellular effects. YBBEs-induced apoptosis, up-regulated death receptor apoptotic pathway markers as well as mitochondrial proteins, and suppressed the survival proteins in a dose-dependent manner. Pro-survival Bcl-2 family proteins were inhibited and the pro-apoptotic ones were increased. Protein phosphatase 2A (PP2A) siRNA or okadaic acid reversed the YBBEs effects, confirming the role of PP2A in YBBEs-induced HA22T apoptosis. All our experimental evidence indicates that YBBEs significantly promote HA22T apoptosis and reduce tumor sizes in xenograft nude mice via PP2A in a dose-dependent manner.

  5. Study of molecule variations in renal tumor based on confocal micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhengfei; Li, Ning; Guo, Zhouyi; Zhu, Meifang; Xiong, Ke; Chen, Sijin

    2013-03-01

    Confocal micro-Raman spectroscopy-a valuable analytical tool in biological and medical field of research-allows probing molecular vibrations of samples without external labels or extensive preparation. We employ confocal micro-Raman spectroscopy to characterize renal tumors and normal tissue. Results show that Raman peaks of the renal tumor at 788 and 1087 cm-1, which belong to νs and νas stretching, respectively, have an obvious increase. At the same time, the ratio of I855/I831 in renal tumor tissue is 1.39±0.08, while that in normal renal tissue is 2.44±0.05 (p<0.01). This means that more tyrosine conformation transform from "buried" to "exposed" in the presence of cancer. Principal component analysis is used to classify the Raman spectra of renal tumor tissue and normal tissue.

  6. New percutaneous ablative modalities in nephron-sparing surgery of small renal tumors

    NASA Astrophysics Data System (ADS)

    de Riese, Werner T. W.; Nelius, Thomas; Aronoff, David R.; Mittemeyer, Bernhard T.

    2004-07-01

    Renal tumors are increasingly detected on abdominal imaging studies. Standard treatment of small renal tumors includes partial or radical nephrectomy, done either open or laparoscopically. Several in situ ablative techniques to treat small renal lesions are currently in various phases of evolution. All involve imparting destructive energy to the tumor while minimizing injury to adjacent normal tissue. Cryotherapy (CryoT), radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFUS) and high-intensity radiation (HIR) are all being evaluated as tools to ablate renal tumors. The goal with these modalities is to minimize the blood loss, tissue manipulation, and morbidity associated with excisional approaches. Animal studies have shown that large, reproducible lesions can be ablated in normal kidney tissue by these new techniques. Studies of human renal tissue response to RFA are just beginning. Ex vivo studies reveal large, reproducible controlled lesions in normal renal tissue, similar to animal studies. In vivo studies have shown no significant toxicity, while efficacy is currently under evaluation. Preliminary clinical studies in humans have revealed that renal tumors are slow to regress after treatment, but about 75% of these small renal tumors appeared well treated. Mixed responses have been observed in the remaining cases. This paper presents a concise review of efficacy, advantages and disadvantages of these new minimal invasive techniques and their possible clinical implication in the future.

  7. Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo.

    PubMed

    Lin, Chin-Chung; Chuang, Ya-Ju; Yu, Chien-Chih; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Lin, Jing-Pin; Tang, Nou-Ying; Huang, An-Cheng; Chung, Jing-Gung

    2012-11-14

    The cytostatic drug from natural products has acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Apigenin, a type of flavonoid, exhibits anticancer actions, but there is no report to show that apigenin induced apoptosis in osteosarcoma cells. The aim of this study was to investigate the effects of apigenin on U-2 OS human osteosarcoma cells and clarify that the apigenin-induced apoptosis-associated signals. The cytotoxic effects of apigenin were examined by culturing U-2 OS cells with or without apigenin. The percentage of viable cells via PI staining, apoptotic cells, productions of ROS and Ca²⁺, and the level of mitochondrial membrane potential (ΔΨm) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by immunoblotting. Results indicated that apigenin significantly decreased cell viability. Apigenin effectively induced apoptosis through the activations of caspase-3, -8, -9, and BAX and promoted the release of AIF in U-2 OS cells. In nude mice bearing U-2 OS xenograft tumors, apigenin inhibited tumor growth. In conclusion, apigenin has anticancer properties for induction of cell apoptosis in U-2 OS cells and suppresses the xenograft tumor growth. These findings offer novel information that apigenin possibly possesses anticancer activity in human osteosarcoma.

  8. DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo.

    PubMed

    Mendonca, Marc S; Turchan, William T; Alpuche, Melanie E; Watson, Christopher N; Estabrook, Neil C; Chin-Sinex, Helen; Shapiro, Jeremy B; Imasuen-Williams, Imade E; Rangel, Gabriel; Gilley, David P; Huda, Nazmul; Crooks, Peter A; Shapiro, Ronald H

    2017-11-01

    Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model

    PubMed Central

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  10. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    PubMed Central

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  11. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  12. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts

    PubMed Central

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with 111In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of 111In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of 111In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of 111In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, 111In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of 111In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  13. Primary nephrectomy and intraoperative tumor spill: report from the Children's Oncology Group (COG) renal tumors committee.

    PubMed

    Gow, Kenneth W; Barnhart, Douglas C; Hamilton, Thomas E; Kandel, Jessica J; Chen, Mike K S; Ferrer, Fernando A; Price, Mitchell R; Mullen, Elizabeth A; Geller, James I; Gratias, Eric J; Rosen, Nancy; Khanna, Geetika; Naranjo, Arlene; Ritchey, Michael L; Grundy, Paul E; Dome, Jeffrey S; Ehrlich, Peter F

    2013-01-01

    Initial Children's Oncology Group (COG) management for Wilms' tumor (WT) consists of primary nephroureterectomy with lymph node sampling. While this provides accurate staging to define further treatment, it may result in intraoperative spill (IOS), which is associated with higher recurrence rates and therefore requires more intensive therapy. The purpose of this study is to determine current rates and identify factors which may predispose a patient to IOS. The study population was drawn from the AREN03B2 renal tumor banking and classification study of the Children's Oncology Group. All children with a first time occurrence of a renal mass were eligible for the study. At the time of enrollment and prior to risk stratification, the institution is required to submit operative notes, pathology specimens, a chest computed tomography scan (CT), and a contrast-enhanced CT or magnetic resonance imaging (MRI) of the abdomen and pelvis for central imaging review. These data are then used to determine an initial risk classification and therapeutic protocol eligibility. Patients who had a unilateral nephroureterectomy for favorable histology WT underwent further review to assure data accuracy and to clarify details regarding the spill. Analyses were performed using chi square and logistic regression. Odd ratios (OR) are shown with 95% confidence intervals. There were 1,131 primary nephrectomies for unilateral WT with an IOS rate of 9.7% with an additional 1.8% having possible tumor spill during renal vein or IVC tumor thrombectomy. IOS correlated with diameter (>12 cm, p<0.0001) and laterality (right, p=0.0414). Simple logistic regression indicated that IOS increased 2.7% [p=0.0240, OR 1.027 (1.004, 1.052)] with each 1 cm increase in diameter (3 - 21 cm) and 4.7% [p=0.0147 OR 1.047 (1.009, 1.086)] with each 100 g increase in weight (80 - 1800 g). Multiple logistic regression indicated that laterality [right p=0.048, OR 1.46 (1.004, 2.110)] and weight (p=0.03, OR 1.039 (1

  14. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  15. Modification of Antitumor Immunity and Tumor Microenvironment by Resveratrol in Mouse Renal Tumor Model.

    PubMed

    Chen, Liang; Yang, Sixing; Liao, Wenbiao; Xiong, Yunhe

    2015-06-01

    Renal cell carcinoma (RCC) microenvironment plays critical roles in antitumor immune response. Resveratrol exhibits a direct antitumor effect in various tumor models. However, the immunomodulatory effect of resveratrol on RCC microenvironment is unknown. In this study, we found that administration of low dose of resveratrol inhibits Renca tumor growth and its inhibition effect depends on CD8(+) T cells. Moreover, the proportion of regulatory T cells is decreased, while the proportion of myeloid-derived suppressor cells does not alter after resveratrol treatment. More importantly, massive amount of activated CD8(+) T cells accumulates in tumor microenvironment in the resveratrol-treated group and shows increased cytotoxicity, as indicated by a higher expression of Fas ligand. We also found that resveratrol switches the expression of T-helper (Th) 2 cytokines such as interleukin (IL)-6 and IL-10 to Th 1 cytokines with dominance of interferon (IFN)-γ, which increases the expression of Fas in Renca cells. Furthermore, we found resveratrol down-regulates angiogenesis along with decreased level of vascular endothelial growth factor in tumor microenvironment. Our results strongly suggest that resveratrol might be used for RCC immunotherapy through modulating tumor microenvironment.

  16. EGFRvIII-Specific Chimeric Antigen Receptor T Cells Migrate to and Kill Tumor Deposits Infiltrating the Brain Parenchyma in an Invasive Xenograft Model of Glioblastoma

    PubMed Central

    Miao, Hongsheng; Choi, Bryan D.; Suryadevara, Carter M.; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J.; McLendon, Roger; Herndon, James E.; Healy, Patrick; Archer, Gary E.; Bigner, Darell D.; Johnson, Laura A.; Sampson, John H.

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression. PMID:24722266

  17. A novel method to visually determine the intracellular pH of xenografted tumor in vivo by utilizing fluorescent protein as an indicator.

    PubMed

    Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro

    2015-09-04

    The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Use of a surrogate marker (human secreted alkaline phosphatase) to monitor in vivo tumor growth and anticancer drug efficacy in ovarian cancer xenografts.

    PubMed

    Bao, R; Selvakumaran, M; Hamilton, T C

    2000-09-01

    A limitation to preclinical evaluation of possible anticancer therapy is the objective assessment of efficacy, especially in the presence of small tumor burden or inaccessible disease. This study is designed to test whether human secreted alkaline phosphatase (SEAP) could be used as a soluble marker for in vivo tumor burden. A SEAP expression construct under control of the CMV promoter was created. The SEAP activity in the conditioned medium was evaluated at 24 h and 48 h after the A2780 cell line was transiently transfected with the SEAP vector using Superfect reagent. Stable transfection of A2780 was accomplished by selection of transfectants in G418. SEAP activity of the stable transfectant was determined in conditioned medium and its relationship to tumor cell number was examined. A highly expressing stable transfectant was implanted into immunocompromised mice (2 x 10(6) subcutaneously and 5 x 10(6) intraperitoneally) and peripheral blood was obtained by orbital puncture every 5 days. The relationship between blood SEAP activity and tumor burden was studied. The usefulness of this marker in preclinical assessment of anticancer drug efficacy was evaluated by studying the plasma SEAP activity in xenografted mice treated or not treated with paclitaxel. After transient transfection of the A2780 cell line (5 x 10(5)) with the plasmid, SEAP activity was found in the medium at 24 h (482.0 +/- 2.0 ng/ml) and 48 h (1296.0 +/- 1.0 ng/ml). The in vitro study using a stable transfectant demonstrated that SEAP activity was linearly related to cell numbers (r = 0.99). The in vivo study demonstrated that SEAP was detectable in plasma one day postinjection, long before measurable tumor or detectable intraperitoneal tumor was present. Once detectable SC tumor was present, the SEAP activity correlated well with tumor volume (r = 0. 94-0.97). The plasma SEAP level was reduced after xenografted mice were treated with paclitaxel (20 mg/kg, weekly x5) compared with untreated mice

  19. The Volume of Three-Dimensional Cultures of Cancer Cells InVitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors.

    PubMed

    Boghaert, Erwin R; Lu, Xin; Hessler, Paul E; McGonigal, Thomas P; Oleksijew, Anatol; Mitten, Michael J; Foster-Duke, Kelly; Hickson, Jonathan A; Santo, Vitor E; Brito, Catarina; Uziel, Tamar; Vaidya, Kedar S

    2017-09-01

    Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of

  20. Effects of Anti-repulsive Guidance Molecule C (RGMc/Hemojuvelin) Antibody on Hepcidin and Iron in Mouse Liver and Tumor Xenografts

    PubMed Central

    Torti, SV; Lemler, E; Mueller, BK; Popp, A; Torti, FM

    2017-01-01

    Objective Hepcidin is a peptide hormone produced by the liver that regulates systemic iron homeostasis. Hepcidin is also synthesized by tumors, where it contributes to tumor growth by increasing the tumoral retention of iron. Targeted reduction of hepcidin may therefore be useful in reducing tumor growth. H5F9-AM8 is an antibody in preclinical development for the anemia of chronic disease that reduces hepcidin synthesis by binding to RGMc, a co-receptor involved in the transcriptional induction of hepcidin by BMP6. We explored the ability of H5F9-AM8 to act as an anti-tumor agent. Methods Effects of anti-hemojuvelin antibody on hepcidin synthesis were assessed by qRTPCR in tissue culture and in tumor xenografts and livers of mice treated with H5F9-AM8 or saline. Tumor growth was assessed using caliper measurements. Serum iron was measured colorimetrically and tissue iron was measured using western blotting and inductively coupled mass spectrometry. Results In tissue culture, the anti-hemojuvelin antibody H5F9-AM8 significantly reduced BMP6-stimulated hepcidin synthesis in HepG2 and other cancer cells. In mice, H5F9-AM8 reduced hepcidin in the liver and increased serum iron, total liver iron, and liver ferritin. Although hepcidin in tumors was also significantly decreased, H5F9-AM8 did not reduce tumor iron content, ferritin, or tumor growth. Conclusion Anti-hemojuvelin antibody successfully reduces hepcidin in both tumors and livers but has different effects in these target organs: it reduces iron content and ferritin in the liver, but does not reduce iron content or ferritin in tumors, and does not inhibit tumor growth. These results suggest that despite their ability to induce hepcidin in tumors, the anti-tumor efficacy of systemic, non-targeted hepcidin antagonists may be limited by their ability to simultaneously elevate plasma iron. Tumor-specific hepcidin inhibitors may be required to overcome the limitations of drugs that target the synthesis of both

  1. CA9 as a molecular marker for differential diagnosis of cystic renal tumors.

    PubMed

    Li, Guorong; Bilal, Issam; Gentil-Perret, Anne; Feng, Gang; Zhao, An; Peoc'h, Michel; Genin, Christian; Tostain, Jacques; Gigante, Marc

    2012-01-01

    CA9 is proven to be a powerful marker for clear cell renal cell carcinoma. The studies on CA9 have been limited to solid renal cell carcinomas (RCC). We have conducted a study of CA9 expression in renal cystic tumors. The purpose of the present study was to extend the utility of CA9 for cystic renal tumors. Immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) were used to detect CA9 expression in cystic renal tumors. Forty-three cystic renal tumors (22 benign and 21 malignant) were included for the immunohistochemical staining. Thirty-six patients with a cystic renal mass (20 malignant and 16 benign cystic tumors) were studied to measure CA9 level in the fluid by ELISA. Sixteen cysts (9 malignant and 7 benign cysts) were subjected both to immunohistochemistry and CA9 measurement in the fluid. Using immunohistochemical staining, all the benign cystic renal tumors including the 18 simple cyst and 4 benign multilocular cystic nephromas did not express CA9. All 13 cystic clear cell RCC were scored as strong staining for CA9. For 8 multilocular clear cell RCC, 7 were scored as strong staining for CA9 and the other one was negative. There was a significant difference in positive percentage (P < 0.001) between the 2 groups of malignant and benign cysts. For the 16 benign cysts, the mean concentration of CA9 in the fluid of cyst was 162 ± 133 pg/ml (median: 0 pg/ml; range: 0-2140 pg/ml). For the 20 malignant renal cystic tumors, the mean concentration of CA9 in the fluid of cyst was 2043 ± 62 pg/ml (median: 2,140 pg/ml; range: 1,112-2,140 pg/ml). There was a significant difference in mean concentration of CA9 between the two groups of malignant and benign cysts (P < 0.001). The presence or absence of CA9 expression measured by immunohistochemistry and ELISA test was concordant in 14 out of 16 cases (88%). Malignant cystic renal tumors expressed strongly CA9 while the benign renal cysts did not express CA9. CA9 can be detected in the fluid of malignant

  2. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    PubMed

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  3. Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential

    PubMed Central

    Sonke, Eric; Verrydt, Megan; Postenka, Carl O.; Pardhan, Siddika; Willie, Chantalle J.; Mazzola, Clarisse R.; Hammers, Matthew D.; Pluth, Michael D.; Lobb, Ian; Power, Nicholas E.; Chambers, Ann F.; Leong, Hon S.; Sener, Alp

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel–Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease. PMID:26068241

  4. Synergistic and attenuated effect of HSS in combination treatment with docetaxel plus cisplatin in human non-small-cell lung SPC-A-1 tumor xenograft.

    PubMed

    Jia, Yuping; Zhou, Dongshun; Jia, Qingwen; Ying, Yong; Chen, Shuntai

    2016-04-01

    Platinum based combination regimens are first-line treatment option in treatment of non-small cell lung cancer (NSCLC) but the clinical utility has been limited because of their toxicities. Many reports indicated that patients with tumors can benefit from adjuvant chemotherapy drugs. The aim of this study was to confirm adjuvant chemotherapy of HSS with docetaxel plus cisplatin (DP) against NSCLC by evaluating antitumor activity and attenuated effect. In vivo SPC-A-1 xenograft model was established to evaluate antitumor activity and toxicity of HSS along or combination with DP. Evaluation indexes include the relative tumor proliferation rate, tumor growth inhibition rate, body weight, food consumption, hematological and biochemical analysis. HSS treatment showed inhibited tumor growth and increased tumor inhibition of DP treatment at doses of 250 mg/kg and 500 mg/kg. No significant toxicity was found in HSS-treated mice, but significant toxicity was found in DP-treated mice. HSS combination with DP could reduce toxicity of DP treatment by improving body weight and food consumption, and increasing the number of WBC and PLT, decreasing the level of ALT, AST and BUN. HSS combined with DP treatment has additive effect which contributes to enhance tumor growth inhibition of DP treatment and attenuated effect which contributes to reduce toxicity of DP treatment. These findings indicate potential benefit for use of HSS adjuvant chemotherapy for NSCLC treatment. Copyright © 2016. Published by Elsevier Masson SAS.

  5. The utility of fecal corticosterone metabolites and animal welfare assessment protocols as predictive parameters of tumor development and animal welfare in a murine xenograft model.

    PubMed

    Jacobsen, Kirsten Rosenmaj; Jørgensen, Pernille; Pipper, Christian Bressen; Steffensen, Astrid Margrethe; Hau, Jann; Abelson, Klas S P

    2013-01-01

    The aim of the present study was to evaluate the utility of various non-invasive parameters for the prediction of tumor development and animal welfare in a murine xenograft model in male C.B-17 SCID (C.B-Igh-1(b)/IcrTac-Prkdc(scid)) mice. The study showed that body weight, food and water consumption, and an animal welfare assessment (AWA) protocol revealed marked differences between control and cancer lines as the size of the tumor increased. However, only the AWA protocol was effective in predicting the tumor size and the level of fecal corticosterone metabolites (FCM). FCM levels were, however, negatively-correlated to the AWA score, and the tumor size, both when evaluated on a given day and when accumulated over the entire period. In conclusion, the present study demonstrated that body weight and food and water consumption were negatively-affected as tumor developed but only the animal welfare protocol could be used to predict tumor size.

  6. Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis.

    PubMed

    Gilad, Assaf A; Israely, Tomer; Dafni, Hagit; Meir, Gila; Cohen, Batya; Neeman, Michal

    2005-11-01

    Maintaining homogeneous perfusion in tissues undergoing remodeling and vascular expansion requires tight orchestration of the signals leading to endothelial sprouting and subsequent recruitment of perivascular contractile cells and vascular maturation. This regulation, however, is frequently disrupted in tumors. We previously demonstrated the role of tumor-associated myofibroblasts in vascularization and exit from dormancy of human ovarian carcinoma xenografts in nude mice. The aim of this work was to determine the contribution of stroma- and tumor cell-derived angiogenic growth factors to the heterogeneity of vascular permeability and maturation in MLS human ovarian carcinoma tumors. We show by RT-PCR and by in situ hybridization that VEGF was expressed by the tumor cells, while angiopoietin-1 and -2 were expressed only by the infiltrating host stroma cells. Vascular maturation was detected in vivo by vasoreactivity to hypercapnia, measured by BOLD contrast MRI and validated by immunostaining of histologic sections to alpha-smooth muscle actin. Vascular permeability was measured in vivo by dynamic contrast-enhanced MRI using albumin-based contrast material and validated in histologic sections by fluorescent staining of the biotinylated contrast material. MRI as well as histologic correlation maps between vascular maturation and vascular permeability revealed a wide range of vascular phenotypes, in which the distribution of vascular maturation and vasoreactivity did not overlap spatially with reduced permeability. The large heterogeneity in the degree of vascular maturation and permeability is consistent with the differential expression pattern of VEGF and angiopoietins during tumor angiogenesis.

  7. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    SciTech Connect

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  8. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Cao, Feilin; Han, Na; Xu, Zhenzhen; Li, Guangliang; He, Kuifeng; Teng, Lisong

    2012-08-01

    Heterogeneity in primary tumors and related metastases may result in failure of antitumor therapies, particularly in targeted therapies for the treatment of cancer. In this study, patient-derived tumor tissue (PDTT) xenograft models of colon carcinoma with lymphatic and hepatic metastases were used to evaluate the response to EGFR- and VEGF-targeted therapies. Our results showed that primary colon carcinoma and its corresponding lymphatic and hepatic metastases have a different response rate to anti-EGFR (cetuximab) and anti-VEGF (bevacizumab) therapies. However, the underlying mechanism of these types of phenomenon is still unclear. To investigate whether such phenomena may result from the heterogeneity in primary colon carcinoma and related metastases, we compared the expression levels of cell signaling pathway proteins using immunohistochemical staining and western blotting, and the gene status of KRAS using pyrosequencing in the same primary colon carcinoma and its corresponding lymphatic and hepatic metastatic tissues which were used for establishing the PDTT xenograft models. Our results showed that the expression levels of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR were different in primary colon carcinoma and matched lymphatic and hepatic metastases although the KRAS gene status in all cases was wild-type. Our results indicate that the heterogeneity in primary colon carcinoma and its corresponding lymphatic and hepatic metastases may result in differences in the response to dual-inhibition of EGFR and VEGF.

  9. Eradication of human medulloblastoma tumor xenografts with a combination of O6-benzyl-2'-deoxyguanosine and 1,3-bis(2-chloroethyl)1-nitrosourea.

    PubMed

    Kokkinakis, D M; Moschel, R C; Pegg, A E; Schold, S C

    1999-11-01

    O6-Benzyl-2'-deoxyguanosine (dBG), a water-soluble inhibitor of O6-methylguanine-DNA methyltransferase (MGMT), potentiates the efficacy of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against MGMT-positive, BCNU-resistant Daoy human medulloblastoma tumor xenografts in athymic mice (S. C. Schold et al., Cancer Res., 56: 2076-2081, 1996). Such potentiation was comparable to that observed for O6-benzylguanine, the prototype MGMT inhibitor that is currently undergoing clinical trials. In this study, we optimized the therapeutic effect of the dBG and BCNU combination against brain tumor xenografts without inducing substantial toxicity in the host by adjusting the doses of both compounds. dBG was escalated from 133 mg/m2 to 200 and 300 mg/m2, whereas corresponding doses of BCNU were reduced from 25 mg/m2 to 17 and 11 mg/m2, respectively. The growth delays of 30.2, 38.4, and 22.3 days, respectively, observed for the above regimens suggest that the optimal drug combination is not achieved with maximum doses of dBG. In fact, the highest doses of dBG (300 mg/m2) contributed to more frequent BCNU-related toxicities, despite the reduced BCNU dosage, and a reduction of the therapeutic effect. Toxicity was related to the depletion of MGMT activity in the gut of host mice and was manifested by edema, inflammation, and hemorrhage in the bowel wall by subsequent BCNU administration. With additional dosage adjustments, we found that tumor suppression of >90 days without toxicity was observed at 200 mg/m2 dBG and 23 mg/m2 BCNU. At these doses, tumors were eradicated (regressed to an undetectable size for >90 days) in 8 of 12 animals. Thus, dBG is the first of the MGMT inhibitors to show a curative effect in combination with BCNU against a human central nervous system tumor xenograft in athymic mice.

  10. In vivo characterization of 68Ga-NOTA-VEGF 121 for the imaging of VEGF receptor expression in U87MG tumor xenograft models.

    PubMed

    Kang, Choong Mo; Kim, Sung-Min; Koo, Hyun-Jung; Yim, Min Su; Lee, Kyung-Han; Ryu, Eun Kyoung; Choe, Yearn Seong

    2013-01-01

    Vascular endothelial growth factor receptors (VEGFRs) are associated with tumor growth and induction of tumor angiogenesis and are known to be overexpressed in various human tumors. In the present study, we prepared and evaluated (68)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-benzyl (NOTA)-VEGF(121) as a positron emission tomography (PET) radioligand for the in vivo imaging of VEGFR expression. (68)Ga-NOTA-VEGF(121) was prepared by conjugation of VEGF(121) and p-SCN-NOTA, followed by radiolabeling with (68)GaCl(3) and then purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding of (68)Ga-NOTA-VEGF(121) was measured as a function of time. MicroPET and biodistribution studies of U87MG tumor xenografted mice were performed at 1, 2, and 4 h after injection of (68)Ga-NOTA-VEGF(121). The tumor tissues were then sectioned and subjected to immunostaining. The decay-corrected radiochemical yield of (68)Ga-NOTA-VEGF(121) was 40 ± 4.5 % and specific activity was 243.1 ± 104.6 GBq/μmol (8.6 ± 3.7 GBq/mg). (68)Ga-NOTA-VEGF(121) was avidly taken up by HAECs in a time-dependent manner, and the uptake was blocked either by 32 % with VEGF(121) or by 49 % with VEGFR2 antibody at 4 h post-incubation. In microPET images of U87MG tumor xenografted mice, radioactivity was accumulated in tumors (2.73±0.32 %ID/g at 2 h), and the uptake was blocked by 40 % in the presence of VEGF(121). In biodistribution studies, tumor uptake (1.84±0.14 %ID/g at 2 h) was blocked with VEGF(121) at a similar level (52 %) to that of microPET images. Immunostaining analysis of U87MG tumor tissues obtained after the microPET imaging showed high levels of VEGFR2 expression. These results demonstrate that (68)Ga-NOTA-VEGF(121) has potential for the in vivo imaging of VEGFR expression. In addition, our results also suggest that the in vivo characteristics of radiolabeled VEGF depend on the properties of the radioisotope and the chelator used.

  11. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma

    PubMed Central

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo

    2014-01-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy. PMID:24304419

  12. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    SciTech Connect

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  13. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma.

    PubMed

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2014-09-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy.

  14. Recombinant interleukin-2 significantly augments activity of rituximab in human tumor xenograft models of B-cell non-Hodgkin lymphoma.

    PubMed

    Lopes de Menezes, Daniel E; Denis-Mize, Kimberly; Tang, Yan; Ye, Helen; Kunich, John C; Garrett, Evelyn N; Peng, Jing; Cousens, Lawrence S; Gelb, Arnold B; Heise, Carla; Wilson, Susan E; Jallal, Bahija; Aukerman, Sharon L

    2007-01-01

    Recombinant interleukin-2 (rIL-2) is a pleiotropic cytokine that activates select immune effector cell responses associated with antitumor activity, including antibody-dependent cellular cytotoxicity (ADCC). Rituximab is an anti-CD20 monoclonal antibody that activates ADCC in non-Hodgkin lymphoma (NHL). The ability of rIL-2 to augment rituximab-dependent tumor responses was investigated. The efficacy of rIL-2 in combination with rituximab was evaluated in 2 NHL tumor xenograft models: the CD20hi, rituximab-sensitive, low-grade Daudi model and the CD20lo, aggressive, rituximab-resistant Namalwa model. Combination of rIL-2 plus rituximab was synergistic in a rituximab-sensitive Daudi tumor model, as evidenced by significant tumor regressions and increased time to tumor progression, compared with rIL-2 and rituximab single agents. In contrast, rituximab-resistant Namalwa tumors were responsive to single-agent rIL-2 and showed an increased response when combined with rituximab. Using in vitro killing assays, rIL-2 was shown to enhance activity of rituximab by activating ADCC and lymphokine-activated killer activity. Additionally, the activity of rIL-2 plus rituximab F(ab')2 was similar to that of rIL-2 alone, indicating a critical role for immunoglobulin G1 Fc-FcgammaR-effector responses in mediating ADCC. Antiproliferative and apoptotic tumor responses, along with an influx of immune effector cells, were observed by immunohistochemistry. Collectively, the data suggest that rIL-2 mediates potent tumoricidal activity against NHL tumors, in part, through activation and trafficking of monocytes and natural killer cells to tumors. These data support the mechanistic and therapeutic rationale for combination of rIL-2 with rituximab in NHL clinical trials and for single-agent rIL-2 in rituximab-resistant NHL patients.

  15. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study

    PubMed Central

    Gonçalves, Anthony; Bertucci, François; Guille, Arnaud; Garnier, Severine; Adelaide, José; Carbuccia, Nadine; Cabaud, Oliver; Finetti, Pascal; Brunelle, Serge; Piana, Gilles; Tomassin-Piana, Jeanne; Paciencia, Maria; Lambaudie, Eric; Popovici, Cornel; Sabatier, Renaud; Tarpin, Carole; Provansal, Magali; Extra, Jean-Marc; Eisinger, François; Sobol, Hagay; Viens, Patrice; Lopez, Marc; Ginestier, Christophe; Charafe-Jauffret, Emmanuelle; Chaffanet, Max; Birnbaum, Daniel

    2016-01-01

    Background Routine feasibility and clinical impact of genomics-based tumor profiling in advanced breast cancer (aBC) remains to be determined. We conducted a pilot study to evaluate whether precision medicine could be prospectively implemented for aBC patients in a single center and to examine whether patient-derived tumor xenografts (PDX) could be obtained in this population. Results Thirty-four aBC patients were included. Actionable targets were found in 28 patients (82%). A targeted therapy could be proposed to 22 patients (64%), either through a clinical trial (n=15) and/or using already registered drugs (n=21). Ten patients (29%) eventually received targeted treatment, 2 of them deriving clinical benefit. Of 22 patients subjected to mouse implantation, 10 had successful xenografting (45%), mostly in triple-negative aBC. Methods aBC patients accessible to tumor biopsy were prospectively enrolled at the Institut Paoli-Calmettes in the BC-BIO study (ClinicalTrials.gov, NCT01521676). Genomic profiling was established by whole-genome array comparative genomic hybridization (aCGH) and targeted next-generation sequencing (NGS) of 365 candidate cancer genes. For a subset of patients, a sample of fresh tumor was orthotopically implanted in humanized cleared fat pads of NSG mice for establishing PDX. Conclusions Precision medicine can be implemented in a single center in the context of clinical practice and may allow genomic-driven treatment in approximately 30% of aBC patients. PDX may be obtained in a significant fraction of cases. PMID:27765906

  16. CT of acquired cystic kidney disease and renal tumors in long-term dialysis patients

    SciTech Connect

    Levine, E.; Grantham, J.J.; Slusher, S.L.; Greathouse, J.L.; Krohn, B.P.

    1984-01-01

    The kidneys of long term dialysis patients frequently demonstrate multiple small acquired cysts and renal cell tumors on pathologic examination. The original kidneys of 30 long-term dialysis patients and six renal transplant patients were evaluated by computed tomography to determine the incidence of these abnormalities. Among dialysis patients, 43.3% had diffuse bilateral cysts, while 16.7% had occasional cysts (fewer than five per kidney), and 40% showed no renal cysts. Seven solid renal tumors were detected in four dialysis patients with renal cysts. Acquired cystic kidney disease tends to result in renal enlargement, is more common in patients who have been maintained on dialysis for prolonged periods, and may lead to spontaneous renal hemorrhage. The six transplant patients showed no evidence of renal cysts, and all had markedly shrunken kidneys. Acquired cystic disease and renal cell tumors in the original kidneys of dialysis patients may be due to biologically active substances that are not cleared effectively by dialysis but that are removed by normally functioning transplant kidneys.

  17. Review of renal carcinoid tumor with focus on clinical and pathobiological aspects.

    PubMed

    Kuroda, N; Tanaka, A; Ohe, C; Mikami, S; Nagashima, Y; Inoue, K; Shuin, T; Taguchi, T; Tominaga, A; Alvarado-Cabrero, I; Petersson, F; Brunelli, M; Martignoni, G; Michal, M; Hes, O

    2013-01-01

    Renal carcinoid tumor is a rare neoplasm. In this article, we review this neoplasm with a focus on clinical and pathobiological aspects. The majority of patients present in the fourth to seventh decades, but there is no gender predilection. Clinically, patients with renal carcinoid tumor frequently present with abdominal, back or flank pain. This tumor is occassionally associated with horseshoe kidney and/or mature cystic teratoma located in the kidney. Macroscopically, these tumors are well demarcated with a lobulated appearance and yellow or tan-brown color cut surface. Microscopically, these tumors are composed of monomorphic round to polygonal cells with granular amphophilic to eosinophilic cytoplasm. Tumor cells are arranged in trabecular, ribbon-like, gyriform, insular, glandular and solid patterns. The nuclei are round to oval and with evenly distributed nuclear chromatin, frequently with a "salt and pepper"-pattern. Immunohistochemically, tumor cells demonstrate immuno-labeling for chromogranin A and synaptophysin. Ultrastructurally, the neoplastic cells contain abundant dense core neurosecretory granules. In previous genetic studies, abnormalities of chromosomes 3 or 13 have been reported. The clinical behavior of renal carcinoid tumors is variable, but is more indolent than most renal cell carcinomas. Further investigations are warranted in order to elucidate the critical genetic abnormalities responsible for the pathogenesis of this rare entity in renal neoplastic pathology.

  18. An evaluation of 2-deoxy-2-[18F]fluoro-D-glucose and 3'-deoxy-3'-[18F]-fluorothymidine uptake in human tumor xenograft models.

    PubMed

    Keen, Heather; Pichler, Bernd; Kukuk, Damaris; Duchamp, Olivier; Raguin, Olivier; Shannon, Aoife; Whalley, Nichola; Jacobs, Vivien; Bales, Juliana; Gingles, Neill; Ricketts, Sally-Ann; Wedge, Stephen R

    2012-06-01

    The aim of this study is to assess the variability of 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]-FDG) and 3'-deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) uptake in pre-clinical tumor models and examine the relationship between imaging data and related histological biomarkers. [(18)F]-FDG and [(18)F]-FLT studies were carried out in nine human tumor xenograft models in mice. A selection of the models underwent histological analysis for endpoints relevant to radiotracer uptake. Comparisons were made between in vitro uptake, in vivo imaging, and ex vivo histopathology data using quantitative and semi-quantitative analysis. In vitro data revealed that [1-(14)C]-2-deoxy-D: -glucose ([(14)C]-2DG) uptake in the tumor cell lines was variable. In vivo, [(18)F]-FDG and [(18)F]-FLT uptake was highly variable across tumor types and uptake of one tracer was not predictive for the other. [(14)C]-2DG uptake in vitro did not predict for [(18)F]-FDG uptake in vivo. [(18)F]-FDG SUV was inversely proportional to Ki67 and necrosis levels and positively correlated with HKI. [(18)F]-FLT uptake positively correlated with Ki67 and TK1. When evaluating imaging biomarkers in response to therapy, the choice of tumor model should take into account in vivo baseline radiotracer uptake, which can vary significantly between models.

  19. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    PubMed

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  20. Inducible expression of RbAp46 activates c-Jun NH2-terminal kinase-dependent apoptosis and suppresses progressive growth of tumor xenografts in nude mice.

    PubMed

    Zhang, Teng-Fei; Yu, Shui-Qing; Loggie, Brian W; Wang, Zhao-Yi

    2003-01-01

    The retinoblastoma (Rb) suppressor-associated protein 46 (RbAp46) is a member of the WD-repeat protein family and a component of histone modifying and remodeling complexes. Previously, we demonstrated that RbAp46 inhibits cell growth and suppresses the transformed phenotypes of tumor cell lines. We established a tetracycline-inducible RbAp46 expression system in Saos-2 cells to test the effects of RbAp46 induction on cell growth in vitro and on tumor formation in vivo. We found that inducible expression of RbAp46 activated the c-Jun N-terminal kinase (JNK) signaling pathway and triggered apoptosis in Saos-2 cells. A dominant-negative mutant of JNK1, which can inhibit RbAp46-induced JNK activity, blocked RbAp46-mediated apoptosis. We also found that the induction of RbAp46 expression strongly suppressed the formation of tumors grafted in nude mice and drastically reduced growth of established tumor xenografts. These results revealed a novel proapoptotic activity for RbAp46 via the JNK pathway and demonstrated that induction of RbAp46 expression inhibits progressive growth of tumor grafts in vivo.

  1. Clear Cell Papillary Renal Cell Carcinoma and Renal Angiomyoadenomatous Tumor – Two Variants of a Morphologic, Immunohistochemical and Genetic Distinct Entity of Renal Cell Carcinoma

    PubMed Central

    Deml, Karl-Friedrich; Schildhaus, Hans-Ulrich; Compérat, Eva; von Teichman, Adriana; Storz, Martina; Schraml, Peter; Bonventre, Joseph V.; Fend, Falko; Fleige, Barbara; Nerlich, Andreas; Gabbert, Helmut Erich; Gaβler, Nikolaus; Grobholz, Rainer; Hailemariam, Seife; Hinze, Raoul; Knüchel, Ruth; Lhermitte, Benoit; Nesi, Gabriella; Rüdiger, Thomas; Sauter, Guido; Moch, Holger

    2015-01-01

    Clear cell papillary renal cell carcinoma (ccpRCC) and renal angiomyoadenomatous tumor (RAT) share morphologic similarities with clear cell (ccRCC) and papillary renal cell carcinoma (pRCC). It is a matter of controversy whether their morphologic, immunophenotypic and molecular features allow the definition of a separate renal carcinoma entity. The aim of our project was to investigate specific renal immunohistochemical biomarkers involved in the hypoxia-inducible factor pathway and mutations in the VHL gene to clarify the relationship between ccpRCC and RAT. We investigated 28 ccpRCC and 9 RAT samples by immunohistochemistry using 25 markers. VHL gene mutations and allele losses were investigated by Sanger sequencing and fluorescence in situ hybridization (FISH). Clinical follow-up data were obtained for a subset of the patients. No tumor recurrence or tumor-related death was observed in any of the patients. Immunohistochemistry and molecular analyses led to the reclassification of three tumors as ccRCC and TFE3 translocation carcinomas. The immunohistochemical profile of ccpRCC and RAT samples was very similar but not identical, differing from both ccRCC and pRCC. Especially, the parafibromin and hKIM-1 expression exhibited differences in ccpRCC/RAT compared with ccRCC and pRCC. Genetic analysis revealed VHL mutations in 2/27 (7%) and 1/7 (14%) ccpRCC and RAT samples, respectively. FISH analysis disclosed a 3p loss in 2/20 (10 %) ccpRCC samples. ccpRCC and RAT have a specific morphologic and immunohistochemical profile but they share similarities with the more aggressive renal tumors. Based on our results, we regard ccpRCC/RAT as a distinct entity of renal cell carcinomas. PMID:25970683

  2. Renal Carcinoid Tumor Metastatic to the Uvea, Medial Rectus Muscle, and the Contralateral Lacrimal Gland.

    PubMed

    Kiratli, Hayyam; Uzun, Salih; Tarlan, Berçin; Ateş, Deniz; Baydar, Dilek Ertoy; Söylemezoğlu, Figen

    2015-01-01

    Renal carcinoid tumor is an exceedingly rare malignancy. A 57-year-old man with a renal carcinoid tumor discovered after metastasizing to intraocular and bilateral orbital structures is described. The patient presented with a blind painful OS and a right superotemporal subconjunctival mass. Imaging studies revealed a large left intraocular tumor, a mass in the left medial rectus muscle, and right lacrimal gland enlargement. The OS was enucleated, and incisional biopsies were performed from the other 2 lesions. Histopathological studies demonstrated metastatic neuroendocrine tumor with chromogranin and synaptophysin positivity. Systemic work up revealed a right renal mass and multiple hepatic metastatic lesions. Radical nephrectomy was performed, and octreotide, capecitabine, and temozolomide were administered. Removal of the primary tumor and the eye that had no prospect for useful vision and further treatment with octreotide, capecitabine, and temozolomide provided a disease progression-free period of 24 months and allowed the patient to function normally.

  3. Both extraneuronal monoamine transporter and O(6)-methylguanine-DNA methyltransferase expression influence the antitumor efficacy of 2-chloroethyl-3-sarcosinamide- 1-nitrosourea in human tumor xenografts.

    PubMed

    Chen, Z P; Wang, Z M; Carter, C A; Alley, M C; Mohr, G; Panasci, L C

    2001-03-01

    We previously have found that 2-chloroethyl-3-sarcosinamide-1-nitrosourea (SarCNU) is a selective cytotoxin that enters cells via the extraneuronal transporter for monoamine transmitters (EMT). Both in vitro and in vivo studies demonstrated that SarCNU was more effective than BCNU against human gliomas. To clarify whether EMT expression correlates with antitumor efficacy of SarCNU, we determined human EMT (EMTh) and O(6)-methylguanine-DNA methyltransferase (MGMT) expression in nine human xenograft models using semiquantitative reverse-transcription polymerase chain reaction. These results were compared with the antitumor effects of SarCNU and the standard chloroethylnitrosourea antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). There was no significant correlation between EMTh expression and antitumor efficacy of SarCNU or BCNU. Also, there was no significant correlation between MGMT expression and SarCNU efficacy. However, a significant correlation was found between MGMT expression and BCNU antitumor efficacy. Interestingly, multiple regression analysis demonstrated a significant correlation between SarCNU efficacy and EMTh plus MGMT expression, whereas there was no correlation between BCNU efficacy and MGMT plus EMTh expression. Thus, the absence of a linear correlation between SarCNU efficacy and EMTh expression appears to be due, at least in part, to the presence of DNA repair, specifically, MGMT, in these xenograft models. These studies suggest that MGMT expression alone correlates with BCNU activity, whereas both EMTh and MGMT expression are important determinants of SarCNU activity against human tumor xenograft models. SarCNU is in clinical trials and these results may have important clinical implications.

  4. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  5. [Tumor of upper urinary tract in renal polycystic disease].

    PubMed

    Rabii, Redouane; el Mejjad, Amine; Fekak, Hamid; Querfani, Baderdine; Joual, Abdenbi; el Mrini, Mohamed

    2003-09-01

    Upper urinary tract tumours are exceptional in the context of renal polycystic disease. The authors report the case of Mrs B. F., 56 years old, who presented with left loin pain associated with haematuria. Clinical examination was normal and ultrasound examination revealed bilateral renal polycystic disease with a mass in the left renal sinus. CT urography showed a tumour arising from the renal pelvis suggestive of an upper urinary tract tumour. The laboratory assessment revealed normal renal function and normal urine cytology. Treatment consisted of radical nephroureterectomy with resection of a bladder cuff. Histological examination revealed a urothelial tumour of the renal pelvis with negative surgical margins. In the light of this case, the authors discuss the diagnostic difficulties and specificities, the treatment and the outcome of this unusual clinical association.

  6. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  7. Antitumor effects with apoptotic death in human promyelocytic leukemia HL-60 cells and suppression of leukemia xenograft tumor growth by irinotecan HCl.

    PubMed

    Chen, Yung-Liang; Chueh, Fu-Shin; Yang, Jai-Sing; Hsueh, Shu-Ching; Lu, Chi-Cheng; Chiang, Jo-Hua; Lee, Ching-Sung; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-07-01

    Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation.

  8. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  9. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.

    PubMed

    Wong, Chi Chun; Qian, Yun; Li, Xiaona; Xu, Jiaying; Kang, Wei; Tong, Joanna H; To, Ka-Fai; Jin, Ye; Li, Weilin; Chen, Huarong; Go, Minnie Y Y; Wu, Jian-Lin; Cheng, Ka Wing; Ng, Simon S M; Sung, Joseph J Y; Cai, Zongwei; Yu, Jun

    2016-11-01

    Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced

  10. Loss of heterozygosity and SOSTDC1 in adult and pediatric renal tumors

    PubMed Central

    2010-01-01

    Background Deletions within the short arm of chromosome 7 are observed in approximately 25% of adult and 10% of Wilms pediatric renal tumors. Within Wilms tumors, the region of interest has been delineated to a 2-Mb minimal region that includes ten known genes. Two of these ten candidate genes, SOSTDC1 and MEOX2, are particularly relevant to tumor development and maintenance. This finding, coupled with evidence that SOSTDC1 is frequently downregulated in adult renal cancer and regulates both Wingless-Int (Wnt)- and bone morphogenetic protein (BMP)-induced signaling, points to a role for SOSTDC1 as a potential tumor suppressor. Methods To investigate this hypothesis, we interrogated the Oncomine database to examine the SOSTDC1 levels in adult renal clear cell tumors and pediatric Wilms tumors. We then performed single nucleotide polymorphism (SNP) and sequencing analyses of SOSTDC1 in 25 pediatric and 36 adult renal tumors. Immunohistochemical staining of patient samples was utilized to examine the impact of SOSTDC1 genetic aberrations on SOSTDC1 protein levels and signaling. Results Within the Oncomine database, we found that SOSTDC1 levels were reduced in adult renal clear cell tumors and pediatric Wilms tumors. Through SNP and sequencing analyses of 25 Wilms tumors, we identified four with loss of heterozygosity (LOH) at 7p and three that affected SOSTDC1. Of 36 adult renal cancers, we found five with LOH at 7p, two of which affected SOSTDC1. Immunohistochemical analysis of SOSTDC1 protein levels within these tumors did not reveal a relationship between these instances of SOSTDC1 LOH and SOSTDC1 protein levels. Moreover, we could not discern any impact of these genetic alterations on Wnt signaling as measured by altered beta-catenin levels or localization. Conclusions This study shows that genetic aberrations near SOSTDC1 are not uncommon in renal cancer, and occur in adult as well as pediatric renal tumors. These observations of SOSTDC1 LOH, however, did not

  11. Suprarenal inferior vena cava filter placement prior to transcatheter arterial embolization (TAE) of a renal cell carcinoma with large renal vein tumor thrombus: Prevention of pulmonary tumor emboli after TAE

    SciTech Connect

    Hirota, Shozo; Matsumoto, Shinnichi; Ichikawa, Satoshi; Tomita, Masaru; Koshino, Tukasa; Sako, Masao; Kono, Michio

    1997-03-15

    To prevent embolization of necrotic renal vein tumor after transcatheter embolization of a left renal cell carcinoma, we placed a suprarenal Bird's nest inferior vena cava filter. The patient tolerated the procedure well and had extensive tumor infarction including the tumor thrombus on 6-month follow-up computed tomography.

  12. Compensatory renal growth and function in postnephrectomized patients with Wilms tumor

    SciTech Connect

    Walker, R.D.; Reid, C.F.; Richard, G.A.; Talbert, J.L.; Rogers, B.M.

    1982-02-01

    The objective of this study was to determine whether or not renal growth and function were adversely affected in the remaining kidneys of patients who had undergone nephrectomy for Wilms tumor. These patients received chemotherapy and some radiotherapy (tumoricidal agents which might affect the remaining kidney). Renal growth was compared between the treatment groups and normal renal growth. Hypertrophy did occur and did not appear to be affected by subsequent treatment. Renal function was minimally altered in all treatment groups irrespective of the type of treatment.

  13. Systems Analysis of a Mouse Xenograft Model Reveals Annexin A1 as a Regulator of Gene Expression in Tumor Stroma

    PubMed Central

    Yi, Ming

    2012-01-01

    Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells. PMID:23077482

  14. Left adrenal tumor extending into the renal vein: surgical management with ipsilateral kidney preservation.

    PubMed

    Doerfler, Arnaud; Vaudreuil, Lionel; Le Gal, Sophie; Lebreton, Gil; Tillou, Xavier

    2015-08-04

    If single adrenal metastasis surgery is well admitted, no recommendation exists about the management of a renal vein tumor thrombus, even though the actual consensual attitude consists in a nephrectomy associated to an adrenalectomy. We report, here, the case of a 74-year-old man with a suspected adrenal metastasis of a lung carcinoma associated with a left adrenal and renal vein tumor thrombus treated by adrenalectomy and renal vein thrombectomy and ipsilateral kidney sparing. The postoperative computed tomography scan showed no thrombus in the left renal vein. Doppler ultrasound performed 1 month after adrenalectomy proved a good left renal vein flux. At 36 months of follow-up, the patient is alive without signs of recurrence. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2015.

  15. Left adrenal tumor extending into the renal vein: surgical management with ipsilateral kidney preservation

    PubMed Central

    Doerfler, Arnaud; Vaudreuil, Lionel; Le Gal, Sophie; Lebreton, Gil; Tillou, Xavier

    2015-01-01

    If single adrenal metastasis surgery is well admitted, no recommendation exists about the management of a renal vein tumor thrombus, even though the actual consensual attitude consists in a nephrectomy associated to an adrenalectomy. We report, here, the case of a 74-year-old man with a suspected adrenal metastasis of a lung carcinoma associated with a left adrenal and renal vein tumor thrombus treated by adrenalectomy and renal vein thrombectomy and ipsilateral kidney sparing. The postoperative computed tomography scan showed no thrombus in the left renal vein. Doppler ultrasound performed 1 month after adrenalectomy proved a good left renal vein flux. At 36 months of follow-up, the patient is alive without signs of recurrence. PMID:26242191

  16. Validation of nanobody and antibody based in vivo tumor xenograft NIRF-imaging experiments in mice using ex vivo flow cytometry and microscopy.

    PubMed

    Bannas, Peter; Lenz, Alexander; Kunick, Valentin; Fumey, William; Rissiek, Björn; Schmid, Joanna; Haag, Friedrich; Leingärtner, Axel; Trepel, Martin; Adam, Gerhard; Koch-Nolte, Friedrich

    2015-04-06

    This protocol outlines the steps required to perform ex vivo validation of in vivo near-infrared fluorescence (NIRF) xenograft imaging experiments in mice using fluorophore labelled nanobodies and conventional antibodies. First we describe how to generate subcutaneous tumors in mice, using antigen-negative cell lines as negative controls and antigen-positive cells as positive controls in the same mice for intraindividual comparison. We outline how to administer intravenously near-infrared fluorophore labelled (AlexaFluor680) antigen-specific nanobodies and conventional antibodies. In vivo imaging was performed with a small-animal NIRF-Imaging system. After the in vivo imaging experiments the mice were sacrificed. We then describe how to prepare the tumors for parallel ex vivo analyses by flow cytometry and fluorescence microscopy to validate in vivo imaging results. The use of the near-infrared fluorophore labelled nanobodies allows for non-invasive same day imaging in vivo. Our protocols describe the ex vivo quantification of the specific labeling efficiency of tumor cells by flow cytometry and analysis of the distribution of the antibody constructs within the tumors by fluorescence microscopy. Using near-infrared fluorophore labelled probes allows for non-invasive, economical in vivo imaging with the unique ability to exploit the same probe without further secondary labelling for ex vivo validation experiments using flow cytometry and fluorescence microscopy.

  17. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model

    PubMed Central

    Gu, Yuan; Körbel, Christina; Scheuer, Claudia; Nenicu, Anca; Menger, Michael D.; Laschke, Matthias W.

    2016-01-01

    Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases. PMID:26701724

  18. CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors

    PubMed Central

    Vogel, Rachel I.; Shaughnessy, Daniel P.; Nacusi, Lucas; Korman, Vicci L.; Li, Yingming; Dehm, Scott M.; Zimmerman, Cheryl L.; Niehans, Gloria A.; Unger, Gretchen M.; Trembley, Janeen H.

    2016-01-01

    CK2, a protein serine/threonine kinase, promotes cell proliferation and suppresses cell death. This essential-for-survival signal demonstrates elevated expression and activity in all cancers examined, and is considered an attractive target for cancer therapy. Here, we present data on the efficacy of a tenfibgen (TBG) coated nanocapsule which delivers its cargo of siRNA (siCK2) or single stranded RNA/DNA oligomers (RNAi-CK2) simultaneously targeting CK2α and α′ catalytic subunits. Intravenous administration of TBG-siCK2 or TBG-RNAi-CK2 resulted in significant xenograft tumor reduction at low doses in PC3-LN4 and 22Rv1 models of prostate cancer. Malignant cell uptake and specificity in vivo was verified by FACS analysis and immunofluorescent detection of nanocapsules and PCR detection of released oligomers. Dose response was concordant with CK2αα′ RNA transcript levels and the tumors demonstrated changes in CK2 protein and in markers of proliferation and cell death. Therapeutic response corresponded to expression levels for argonaute and GW proteins, which function in oligomer processing and translational repression. No toxicity was detected in non-tumor tissues or by serum chemistry. Tumor specific delivery of anti-CK2 RNAi via the TBG nanoencapsulation technology warrants further consideration of translational potential. PMID:27557516

  19. Renal mass biopsy using Raman spectroscopy identifies malignant and benign renal tumors: potential for pre-operative diagnosis.

    PubMed

    Liu, Yufei; Du, Zhebin; Zhang, Jin; Jiang, Haowen

    2017-05-30

    The accuracy of renal mass biopsy to diagnose malignancy can be affected by multiple factors. Here, we investigated the feasibility of Raman spectroscopy to distinguish malignant and benign renal tumors using biopsy specimens. Samples were collected from 63 patients who received radical or partial nephrectomy, mass suspicious of cancer and distal parenchyma were obtained from resected kidney using an 18-gauge biopsy needle. Four Raman spectra were obtained for each sample, and Discriminant Analysis was applied for data analysis. A total of 383 Raman spectra were eventually gathered and each type of tumor had its characteristic spectrum. Raman could separate tumoral and normal tissues with an accuracy of 82.53%, and distinguish malignant and benign tumors with a sensitivity of 91.79% and specificity of 71.15%. It could classify low-grade and high-grade tumors with an accuracy of 86.98%. Besides, clear cell renal carcinoma was differentiated with oncocytoma and angiomyolipoma with accuracy of 100% and 89.25%, respectively. And histological subtypes of cell carcinoma were distinguished with an accuracy of 93.48%. When compared with final pathology and biopsy, Raman spectroscopy was able to correctly identify 7 of 11 "missed" biopsy diagnoses. These results suggested that Raman may serve as a promising non-invasive approach in the future for pre-operative diagnosis.

  20. Expression of galectin-3 in primary and metastatic melanoma: immunohistochemical studies on human lesions and nude mice xenograft tumors.

    PubMed

    Vereecken, Pierre; Debray, Charles; Petein, Michel; Awada, Ahmad; Lalmand, Marie-Claude; Laporte, Marianne; Van Den Heule, Bernard; Verhest, Alain; Pochet, Roland; Heenen, Michel

    2005-02-01

    Galectins are a large family of proteins which bind galactoside-containing glycans. Their role in cancer seems to be important since members of the family may mediate cell adhesion and modulate cell growth. Galectin-3 (Gal-3) is expressed in the nucleus, in the cytoplasm and on the cell surface, and can also be secreted into the extracellular matrix. A series of experimental and clinical data have been reported which indicate that Gal-3 may play a putative role in carcinogenesis, cancer progression and the process of metastasis. To study the possible correlation between Gal-3 expression and malignant potential in primary melanoma lesions, we conducted an immunohistochemical study with monoclonal anti-Gal-3 antibody in a series of primary and metastatic melanoma lesions as well as benign skin pigmented lesions. We also developed a xenograft melanoma model in nude mice with two melanoma cell lines (ATCC G-361 and ATCC HT-144) and assessed staining with the Gal-3 antibody in the xenografts and the metastases. The expression of anti-Gal-3 staining was determined semiquantitatively. The expression of Gal-3 was higher in thin primary melanoma lesions than in benign pigmented skin lesions or metastases and seemed to correlate inversely with the aggressiveness as estimated by the Breslow index which is recognized as the main prognostic factor in melanoma. We propose Gal-3 expression in melanoma as a diagnostic and/or a prognostic parameter and suggest that further studies of such a role for Gal-3 are warranted.

  1. Intra-tumour molecular heterogeneity of clear cell renal cell carcinoma reveals the diversity of the response to targeted therapies using patient-derived xenograft models

    PubMed Central

    Hong, Baoan; Yang, Yong; Guo, Sheng; Duoerkun, Shayiremu; Deng, Xiaohu; Chen, Dawei; Yu, Shijun; Qian, Wubin; Li, Qixiang; Li, Qing; Gong, Kan; Zhang, Ning

    2017-01-01

    Inter- and intra-tumour molecular heterogeneity is increasingly recognized in clear cell renal cell carcinoma (ccRCC). It may partially explain the diversity of responses to targeted therapies and the various clinical outcomes. In this study, a 56-year-old male ccRCC patient with multiple metastases received radical nephrectomy and resection of the metastatic tumour in chest wall. The surgical specimens were implanted into nude mice to establish patient-derived xenograft (PDX) models with KI2367 model derived from the primary tumour and KI2368 model from the metastastic tumour. The two modles were treated with Sorafenib, Sunitinib, Axitinib, combined Sorafenib/Sunitinib, or alternating therapy of Sorafenib and Sunitinib. Significant anti-tumour activity was found in KI2367 treated with Sorafenib/Sunitinib monotherapy, combined Sorafenib/Sunitinib, and alternating therapy of Sorafenib/Sunitinib (P<0.05) but not in that treated with Axitinib monotherapy. In contrast, KI2368 was significantly responsive to Sunitinib monotherapy, combined Sorafenib/Sunitinib therapy and alternating therapy of Sorafenib/Sunitinib but not responsive to Sorafenib and Axitinib monotherapy (P<0.05). RNAseq of the two models demonstrated that the expression levels of 1,725 genes including the drug targeted genes of PDGFA, PDGFB and PDGFRA were >5-fold higher in KI2367 than in KI2368 and the expression levels of 994 genes were > 5-fold higher in KI2368 than in KI2367. These results suggest the presence of intra-tumour molecular heterogeneity in this patient. This heterogeneity may influence the response to targeted therapies. Multiple biopsy, liquid biopsy and genomic analysis of intra- tumour molecular heterogeneity may help guide a more precise and effective plan in selecting targeted therapies for ccRCC patients. PMID:28548943

  2. Intra-tumour molecular heterogeneity of clear cell renal cell carcinoma reveals the diversity of the response to targeted therapies using patient-derived xenograft models.

    PubMed

    Hong, Baoan; Yang, Yong; Guo, Sheng; Duoerkun, Shayiremu; Deng, Xiaohu; Chen, Dawei; Yu, Shijun; Qian, Wubin; Li, Qixiang; Li, Qing; Gong, Kan; Zhang, Ning

    2017-07-25

    Inter- and intra-tumour molecular heterogeneity is increasingly recognized in clear cell renal cell carcinoma (ccRCC). It may partially explain the diversity of responses to targeted therapies and the various clinical outcomes. In this study, a 56-year-old male ccRCC patient with multiple metastases received radical nephrectomy and resection of the metastatic tumour in chest wall. The surgical specimens were implanted into nude mice to establish patient-derived xenograft (PDX) models with KI2367 model derived from the primary tumour and KI2368 model from the metastastic tumour. The two modles were treated with Sorafenib, Sunitinib, Axitinib, combined Sorafenib/Sunitinib, or alternating therapy of Sorafenib and Sunitinib. Significant anti-tumour activity was found in KI2367 treated with Sorafenib/Sunitinib monotherapy, combined Sorafenib/Sunitinib, and alternating therapy of Sorafenib/Sunitinib (P<0.05) but not in that treated with Axitinib monotherapy. In contrast, KI2368 was significantly responsive to Sunitinib monotherapy, combined Sorafenib/Sunitinib therapy and alternating therapy of Sorafenib/Sunitinib but not responsive to Sorafenib and Axitinib monotherapy (P<0.05). RNAseq of the two models demonstrated that the expression levels of 1,725 genes including the drug targeted genes of PDGFA, PDGFB and PDGFRA were >5-fold higher in KI2367 than in KI2368 and the expression levels of 994 genes were > 5-fold higher in KI2368 than in KI2367. These results suggest the presence of intra-tumour molecular heterogeneity in this patient. This heterogeneity may influence the response to targeted therapies. Multiple biopsy, liquid biopsy and genomic analysis of intra- tumour molecular heterogeneity may help guide a more precise and effective plan in selecting targeted therapies for ccRCC patients.

  3. 5-Aza-2'-deoxycytidine suppresses human renal carcinoma cell growth in a xenograft model via up-regulation of the connexin 32 gene.

    PubMed

    Hagiwara, H; Sato, H; Ohde, Y; Takano, Y; Seki, T; Ariga, T; Hokaiwado, N; Asamoto, M; Shirai, T; Nagashima, Y; Yano, T

    2008-04-01

    The connexin (Cx) 32 gene, a member of the gap junction gene family, acts as a tumour suppressor gene in human renal cell carcinoma (RCC) and is down-regulated by the hypermethylation of CpG islands in a promoter region of the Cx gene. The current study investigated whether the restoration of Cx32 silenced by hypermethylation in RCC by a DNA demethylating agent could be an effective treatment against RCC. Using nude mice bearing Caki-1 cells (a human metastatic RCC cell line), the effects of 5-aza-2'-deoxycytidine (5-aza-CdR), a DNA demethylase inhibitor, on Cx32 mRNA expression and tumour growth were examined by RT-PCR, and by measuring tumour weight and volume. Cx32 expression in Caki-1 tumours was inhibited by Cx32 short interfering (si) RNA, and the effect of siRNA on 5-aza-CdR-dependent suppression of tumour growth in nude mice was evaluated. 5-aza-CdR treatment inhibited the growth of Caki-1 cells in nude mice by 70% and increased 7-fold the level of Cx32 mRNA. The intratumour injection of Cx32 siRNA almost totally inhibited the expression of Cx32 mRNA and significantly reduced the suppression of tumour growth in 5-aza-CdR-treated nude mice. 5-aza-CdR suppressed the growth of Caki-1 tumours in a xenograft model, by restoring Cx32 expression. This finding suggests that treatment with 5-aza-CdR could be a new effective therapy against human metastatic RCC and that Cx32 could be a potential target for the treatment of RCC.

  4. Effect of Stereotactic Body Radiotherapy on the Growth Kinetics and Enhancement Pattern of Primary Renal Tumors.

    PubMed

    Sun, Maryellen R M; Brook, Alexander; Powell, Michael F; Kaliannan, Krithica; Wagner, Andrew A; Kaplan, Irving D; Pedrosa, Ivan

    2016-03-01

    The objective of our study was to assess the growth rate and enhancement of renal masses before and after treatment with stereotactic body radiotherapy (SBRT). This retrospective study included all patients with renal masses who underwent SBRT during a 5-year period. Orthogonal measurements of renal masses were obtained on pre- and posttreatment CT or MRI. Pre- and posttreatment growth rates were compared for renal mass diameter and volume using the t test. Pre- and posttreatment tumor enhancement values were compared for tumors that underwent multiphasic contrast-enhanced MRI. Forty patients underwent SBRT for the treatment of 41 renal tumors: clear cell renal cell carcinomas (RCCs) (n = 16), papillary RCCs (n = 6), oncocytic neoplasms (n = 8), unclassified RCCs (n = 2), urothelial carcinoma (n = 1), and no pathologic diagnosis (n = 8). The mean maximum tumor diameter before treatment was 3.9 cm (range, 1.6-8.3 cm). Three hundred thirty-eight pre- and posttreatment imaging studies were analyzed: 214 MRI studies and 124 CT studies. The mean pre- and posttreatment lengths of observation were 416 days (range, 2-1800 days) and 561 days (83-1366 days), respectively. The mean pretreatment tumor growth rate of 0.68 cm/y decreased to -0.37 cm/y post treatment (p < 0.0001), and the mean tumor volume growth rate of 21.2 cm(3)/y before treatment decreased to -5.35 cm(3)/y after treatment (p = 0.002). Local control-defined as less than 5 mm of growth-was achieved in 38 of 41 (92.7%) tumors. The Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 showed progression in one tumor (2.4%), stability in 31 tumors (75.6%), partial response in eight tumors (19.5%), and complete response in one tumor (2.4%). No statistically significant change in tumor enhancement was shown (mean follow-up, 142 days; range, 7-581 days). Renal tumors treated with SBRT show statistically significant reductions in growth rate and tumor size after treatment but do not show statistically significant

  5. [Conservative surgical treatment of renal carcinoma. Personal experience with 29 surgical excisions of tumors].

    PubMed

    Villani, U; Pastorello, M

    1991-03-01

    From 1980 to 1988, elective conservative surgery (tumorectomy by enucleo-resection) was performed for renal cell carcinoma at stage I in 29 patients. An accurate preoperative renal investigation was carried out to identify the exact extension of the tumor and to study all the parenchimal situation, through IVP, ultrasound, CT scanning and, particularly, conventional selective angiography. The operative technique employed was: lymphadenectomy, peri-pararenal fat extirpation, in situ tumor enucleation by circular incision of the renal capsule and blunt dissection of the renal parenchyma with 2 cm safety margin to the tumor; multiple biopsies in the "bed" of resection for histopathologic peroperative evaluation; careful examination of the pseudocapsule and surrounding renal tissue; hemostasis. Follow-up was 10-113 months (mean 40,34 months). 2 of 29 patients died for progression of disease (at 52nd and 16yh month from surgery, 2/29 died for non-neoplastic reasons; 25/29 pts are living without local recurrences or distant metastases. In the same period (1980-1988), radical nephrectomy was performed for renal tumors at stage I in 34 patients. In an average observation period of 49,67 months, 2/34 patients died for progression of disease; 3/34 pts died for non-neoplastic reasons. 1/34 patient is living with pulmonar metastases and 28/34 are living without evidence of cancer. From this study we have got the conclusion that elective renal-sparing excisi