Renormalization group fixed points of foliated gravity-matter systems
NASA Astrophysics Data System (ADS)
Biemans, Jorn; Platania, Alessia; Saueressig, Frank
2017-05-01
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
Quantum corrections to non-Abelian SUSY theories on orbifolds
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Hillenbach, Mark
2006-07-01
We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.
NASA Astrophysics Data System (ADS)
Taylor, Marika; Woodhead, William
2017-12-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Hypercuboidal renormalization in spin foam quantum gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?
NASA Astrophysics Data System (ADS)
Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.
2017-07-01
We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2013-04-01
In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.
NASA Astrophysics Data System (ADS)
Nezir, Veysel; Mustafa, Nizami
2017-04-01
In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Ousmane Samary, Dine
2017-02-01
This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.
Impact of topology in foliated quantum Einstein gravity.
Houthoff, W B; Kurov, A; Saueressig, F
2017-01-01
We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology [Formula: see text]. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology [Formula: see text] (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.
Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Zhengcheng; Wen Xiaogang
2009-10-15
We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less
A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.
1991-01-01
A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Renormalization of QCD in the interpolating momentum subtraction scheme at three loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.; Simms, R. M.
2018-04-01
We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.
Entanglement renormalization and topological order.
Aguado, Miguel; Vidal, Guifré
2008-02-22
The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.
Products of composite operators in the exact renormalization group formalism
NASA Astrophysics Data System (ADS)
Pagani, C.; Sonoda, H.
2018-02-01
We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.
Asymptotic safety of quantum gravity beyond Ricci scalars
NASA Astrophysics Data System (ADS)
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat
2016-06-01
The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.
Time-dependent spectral renormalization method
NASA Astrophysics Data System (ADS)
Cole, Justin T.; Musslimani, Ziad H.
2017-11-01
The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.
Renormalization-group study of the Nagel-Schreckenberg model
NASA Astrophysics Data System (ADS)
Teoh, Han Kheng; Yong, Ee Hou
2018-03-01
We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p =0 , the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρc*=0 and 1, and one unstable fixed point, ρc*=1 /(vmax+1 ) , are obtained. The critical exponent ν which is related to the correlation length is calculated for various vmax. The critical exponent appears to decrease weakly with vmax from ν =1.62 to the asymptotical value of 1.00. For the random case p >0 , the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p →0 is studied with simulation, and the RG flow in the ρ -p plane is obtained. The fixed points p =0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.
Exact renormalization group equation for the Lifshitz critical point
NASA Astrophysics Data System (ADS)
Bervillier, C.
2004-10-01
An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.
Renormalization-group theory for finite-size scaling in extreme statistics
NASA Astrophysics Data System (ADS)
Györgyi, G.; Moloney, N. R.; Ozogány, K.; Rácz, Z.; Droz, M.
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
NASA Astrophysics Data System (ADS)
Antenucci, F.; Crisanti, A.; Leuzzi, L.
2014-07-01
The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.
Entanglement entropy at infinite-randomness fixed points in higher dimensions.
Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko
2007-10-05
The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.
Emergent supersymmetry in the marginal deformations of $$\\mathcal{N}=4$$ SYM
Jin, Qingjun
2016-10-24
Here, we study the one loop renormalization group flow of the marginal deformations ofmore » $$\\mathcal{N}=4$$ SYM theory using the a-function. We found that in the planar limit some non-supersymmetric deformations flow to the supersymmetric infrared fixed points described by the Leigh-Strassler theory. This means supersymmetry emerges as a result of renormalization group flow.« less
Renormalizable group field theory beyond melonic diagrams: An example in rank four
NASA Astrophysics Data System (ADS)
Carrozza, Sylvain; Lahoche, Vincent; Oriti, Daniele
2017-09-01
We prove the renormalizability of a gauge-invariant, four-dimensional group field theory (GFT) model on SU(2), whose defining interactions correspond to necklace bubbles (found also in the context of new large-N expansions of tensor models), rather than melonic ones, which are not renormalizable in this case. The respective scaling of different interactions in the vicinity of the Gaussian fixed point is determined by the renormalization group itself. This is possible because the appropriate notion of canonical dimension of the GFT coupling constants takes into account the detailed combinatorial structure of the individual interaction terms. This is one more instance of the peculiarity (and greater mathematical richness) of GFTs with respect to ordinary local quantum field theories. We also explore the renormalization group flow of the model at the nonperturbative level, using functional renormalization group methods, and identify a nontrivial fixed point in various truncations. This model is expected to have a similar structure of divergences as the GFT models of 4D quantum gravity, thus paving the way to more detailed investigations on them.
Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation
NASA Astrophysics Data System (ADS)
Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.
2018-03-01
We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
Higgs boson self-coupling from two-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less
Operator mixing in the ɛ -expansion: Scheme and evanescent-operator independence
NASA Astrophysics Data System (ADS)
Di Pietro, Lorenzo; Stamou, Emmanuel
2018-03-01
We consider theories with fermionic degrees of freedom that have a fixed point of Wilson-Fisher type in noninteger dimension d =4 -2 ɛ . Due to the presence of evanescent operators, i.e., operators that vanish in integer dimensions, these theories contain families of infinitely many operators that can mix with each other under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on the choice of renormalization scheme beyond leading order in ɛ -expansion. In standard choices of scheme, we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions, and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the IR scaling dimension of four-fermion operators in QED in d =4 -2 ɛ at order O (ɛ2).
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
NASA Astrophysics Data System (ADS)
Lilja, Dan
2018-03-01
Since its inception in the 1970s at the hands of Feigenbaum and, independently, Coullet and Tresser the study of renormalization operators in dynamics has been very successful at explaining universality phenomena observed in certain families of dynamical systems. The first proof of existence of a hyperbolic fixed point for renormalization of area-preserving maps was given by Eckmann et al. (Mem Am Math Soc 47(289):vi+122, 1984). However, there are still many things that are unknown in this setting, in particular regarding the invariant Cantor sets of infinitely renormalizable maps. In this paper we show that the invariant Cantor set of period doubling type of any infinitely renormalizable area-preserving map in the universality class of the Eckmann-Koch-Wittwer renormalization fixed point is always contained in a Lipschitz curve but never contained in a smooth curve. This extends previous results by de Carvalho, Lyubich and Martens about strongly dissipative maps of the plane close to unimodal maps to the area-preserving setting. The method used for constructing the Lipschitz curve is very similar to the method used in the dissipative case but proving the nonexistence of smooth curves requires new techniques.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Horizon as critical phenomenon
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik
2016-09-01
We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.
A test of the AdS/CFT duality on the Coulomb branch
NASA Astrophysics Data System (ADS)
Costa, M. S.
2000-06-01
We consider the /N=4 /SU(N) Super Yang Mills theory on the Coulomb branch with gauge symmetry broken to S(U(N1)×U(N2)). By integrating the W particles, the effective action near the IR SU(Ni) conformal fixed points is seen to be a deformation of the Super Yang Mills theory by a non-renormalized, irrelevant, dimension 8 operator. The correction to the two-point function of the dilaton field dual operator near the IR is related to a three-point function of chiral primary operators at the conformal fixed points and agrees with the classical gravity prediction, including the numerical factor.
Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron
2017-10-01
We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Scaling in the vicinity of the four-state Potts fixed point
NASA Astrophysics Data System (ADS)
Blöte, H. W. J.; Guo, Wenan; Nightingale, M. P.
2017-08-01
We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.
Percolation in random-Sierpiński carpets: A real space renormalization group approach
NASA Astrophysics Data System (ADS)
Perreau, Michel; Peiro, Joaquina; Berthier, Serge
1996-11-01
The site percolation transition in random Sierpiński carpets is investigated by real space renormalization. The fixed point is not unique like in regular translationally invariant lattices, but depends on the number k of segmentation steps of the generation process of the fractal. It is shown that, for each scale invariance ratio n, the sequence of fixed points pn,k is increasing with k, and converges when k-->∞ toward a limit pn strictly less than 1. Moreover, in such scale invariant structures, the percolation threshold does not depend only on the scale invariance ratio n, but also on the scale. The sequence pn,k and pn are calculated for n=4, 8, 16, 32, and 64, and for k=1 to k=11, and k=∞. The corresponding thermal exponent sequence νn,k is calculated for n=8 and 16, and for k=1 to k=5, and k=∞. Suggestions are made for an experimental test in physical self-similar structures.
NASA Astrophysics Data System (ADS)
Siegel, J.; Siegel, Edward Carl-Ludwig
2011-03-01
Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!
Exact results for the O( N ) model with quenched disorder
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Lamsen, Noel
2018-04-01
We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.
Focus on quantum Einstein gravity Focus on quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Ambjorn, Jan; Reuter, Martin; Saueressig, Frank
2012-09-01
The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early time cosmology and the big bang, as well as TeV-scale gravity models testable at the Large Hadron Collider. On different grounds, Monte-Carlo studies of the gravitational partition function based on the discrete causal dynamical triangulations approach provide an a priori independent avenue towards unveiling the non-perturbative features of gravity. As a highlight, detailed simulations established that the phase diagram underlying causal dynamical triangulations contains a phase where the triangulations naturally give rise to four-dimensional, macroscopic universes. Moreover, there are indications for a second-order phase transition that naturally forms the discrete analog of the non-Gaussian fixed point seen in the continuum computations. Thus there is a good chance that the discrete and continuum computations will converge to the same fundamental physics. This focus issue collects a series of papers that outline the current frontiers of the gravitational asymptotic safety program. We hope that readers get an impression of the depth and variety of this research area as well as our excitement about the new and ongoing developments. References [1] Weinberg S 1979 General Relativity, an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)
Non-Kondo many-body physics in a Majorana-based Kondo type system
NASA Astrophysics Data System (ADS)
van Beek, Ian J.; Braunecker, Bernd
2016-09-01
We carry out a theoretical analysis of a prototypical Majorana system, which demonstrates the existence of a Majorana-mediated many-body state and an associated intermediate low-energy fixed point. Starting from two Majorana bound states, hosted by a Coulomb-blockaded topological superconductor and each coupled to a separate lead, we derive an effective low-energy Hamiltonian, which displays a Kondo-like character. However, in contrast to the Kondo model which tends to a strong- or weak-coupling limit under renormalization, we show that this effective Hamiltonian scales to an intermediate fixed point, whose existence is contingent upon teleportation via the Majorana modes. We conclude by determining experimental signatures of this fixed point, as well as the exotic many-body state associated with it.
Nonminimal hints for asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
NASA Astrophysics Data System (ADS)
Péli, Zoltán; Nagy, Sándor; Sailer, Kornel
2018-02-01
The effect of the O(partial4) terms of the gradient expansion on the anomalous dimension η and the correlation length's critical exponent ν of the Wilson-Fisher fixed point has been determined for the Euclidean 3-dimensional O( N) models with N≥ 2 . Wetterich's effective average action renormalization group method is used with field-independent derivative couplings and Litim's optimized regulator. It is shown that the critical theory is well approximated by the effective average action preserving O( N) symmetry with an accuracy of O(η).
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Nava, Andrea
2015-09-01
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
NASA Astrophysics Data System (ADS)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
NASA Astrophysics Data System (ADS)
Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu
2018-03-01
We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.
NASA Astrophysics Data System (ADS)
Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El
2018-04-01
Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.
Turbulent mixing of a critical fluid: The non-perturbative renormalization
NASA Astrophysics Data System (ADS)
Hnatič, M.; Kalagov, G.; Nalimov, M.
2018-01-01
Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Gravity Duals of Lifshitz-Like Fixed Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao
2008-11-05
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less
The renormalization group method in statistical hydrodynamics
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.
1994-09-01
This paper gives a first principles formulation of a renormalization group (RG) method appropriate to study of turbulence in incompressible fluids governed by Navier-Stokes equations. The present method is a momentum-shell RG of Kadanoff-Wilson type based upon the Martin-Siggia-Rose (MSR) field-theory formulation of stochastic dynamics. A simple set of diagrammatic rules are developed which are exact within perturbation theory (unlike the well-known Ma-Mazenko prescriptions). It is also shown that the claim of Yakhot and Orszag (1986) is false that higher-order terms are irrelevant in the ɛ expansion RG for randomly forced Navier-Stokes (RFNS) with power-law force spectrum F̂(k)=D0k-d+(4-ɛ). In fact, as a consequence of Galilei covariance, there are an infinite number of higher-order nonlinear terms marginal by power counting in the RG analysis of the power-law RFNS, even when ɛ≪4. The difficulty does not occur in the Forster-Nelson-Stephen (FNS) RG analysis of thermal fluctuations in an equilibrium NS fluid, which justifies a linear regression law for d≳2. On the other hand, the problem occurs also at the nontrivial fixed point in the FNS Model A, or its Burgers analog, when d<2. The marginal terms can still be present at the strong-coupling fixed point in true NS turbulence. If so, infinitely many fixed points may exist in turbulence and be associated to a somewhat surprising phenomenon: nonuniversality of the inertial-range scaling laws depending upon the dissipation-range dynamics.
Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Wu, Yong-Shi
2002-02-01
A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-01
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-30
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Renormalizing Entanglement Distillation
NASA Astrophysics Data System (ADS)
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
One-loop renormalization of Lee-Wick gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinstein, Benjamin; O'Connell, Donal
2008-11-15
We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less
Baryon chiral perturbation theory extended beyond the low-energy region.
Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang
We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.
Multicritical points of the O(N) scalar theory in 2 < d < 4 for large N
NASA Astrophysics Data System (ADS)
Katsis, A.; Tetradis, N.
2018-05-01
We solve analytically the renormalization-group equation for the potential of the O (N)-symmetric scalar theory in the large-N limit and in dimensions 2 < d < 4, in order to look for nonperturbative fixed points that were found numerically in a recent study. We find new real solutions with singularities in the higher derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative real axis.
Latent Computational Complexity of Symmetry-Protected Topological Order with Fractional Symmetry.
Miller, Jacob; Miyake, Akimasa
2018-04-27
An emerging insight is that ground states of symmetry-protected topological orders (SPTOs) possess latent computational complexity in terms of their many-body entanglement. By introducing a fractional symmetry of SPTO, which requires the invariance under 3-colorable symmetries of a lattice, we prove that every renormalization fixed-point state of 2D (Z_{2})^{m} SPTO with fractional symmetry can be utilized for universal quantum computation using only Pauli measurements, as long as it belongs to a nontrivial 2D SPTO phase. Our infinite family of fixed-point states may serve as a base model to demonstrate the idea of a "quantum computational phase" of matter, whose states share universal computational complexity ubiquitously.
Functional renormalization group analysis of tensorial group field theories on Rd
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele
2016-07-01
Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.
Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.
Bevzenko, Dmytro; Lubchenko, Vassiliy
2014-11-07
We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
Maruyoshi, Kazunobu; Song, Jaewon
2017-02-14
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyoshi, Kazunobu; Song, Jaewon
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
Functional renormalization group approach to the Yang-Lee edge singularity
An, X.; Mesterházy, D.; Stephanov, M. A.
2016-07-08
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Functional renormalization group approach to the Yang-Lee edge singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, X.; Mesterházy, D.; Stephanov, M. A.
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Renormalization group approach to symmetry protected topological phases
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei
2018-04-01
A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.
Conditions for observing emergent SU(4) symmetry in a double quantum dot
NASA Astrophysics Data System (ADS)
Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes
2016-06-01
We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
NASA Astrophysics Data System (ADS)
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Consistent parameter fixing in the quark-meson model with vacuum fluctuations
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael
2016-08-01
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin
We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.
Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Yamada, Masatoshi
2017-08-01
We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...
2015-06-26
The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less
Quantum gravity fluctuations flatten the Planck-scale Higgs potential
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Hamada, Yuta; Lumma, Johannes; Yamada, Masatoshi
2018-04-01
We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional renormalization group techniques, we search for fixed points of the system which provide a tentative ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space the canonically marginal and relevant couplings in the scalar sector—including the mass parameters—become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how "classical scale invariance" in the sense of a flat potential of the scalar sector at the Planck scale could arise as a consequence of asymptotic safety.
Quantum group spin nets: Refinement limit and relation to spin foams
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian
2014-07-01
So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.
The renormalization scale-setting problem in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less
Horizontal visibility graphs generated by type-I intermittency
NASA Astrophysics Data System (ADS)
Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto
2013-05-01
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.
Renormalization Group Invariance of the Pole Mass in the Multi-Higgs System
NASA Astrophysics Data System (ADS)
Kim, Chungku
2018-06-01
We have investigated the renormalization group running of the pole mass in the multi-Higgs theory in two different types of gauge fixing conditions. The pole mass, when expressed in terms of the Lagrangian parameters, turns out to be invariant under the renormalization group with the beta and gamma functions of the symmetric phase.
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.
2018-05-01
As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.
Type 0 open string amplitudes and the tensionless limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco
2014-12-01
The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.
Antonov, N V; Gulitskiy, N M; Kostenko, M M; Malyshev, A V
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E∝k^{1-y} and the dispersion law ω∝k^{2-η}. The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ
NASA Astrophysics Data System (ADS)
Kleinert, Hagen; Nogueira, Flavio S.
2003-02-01
We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.
Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2010-09-01
Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.
NASA Astrophysics Data System (ADS)
Zhang, L.; Tang, G.; Xun, Z.; Han, K.; Chen, H.; Hu, B.
2008-05-01
The long-wavelength properties of the (d + 1)-dimensional Kuramoto-Sivashinsky (KS) equation with both conservative and nonconservative noises are investigated by use of the dynamic renormalization-group (DRG) theory. The dynamic exponent z and roughness exponent α are calculated for substrate dimensions d = 1 and d = 2, respectively. In the case of d = 1, we arrive at the critical exponents z = 1.5 and α = 0.5 , which are consistent with the results obtained by Ueno et al. in the discussion of the same noisy KS equation in 1+1 dimensions [Phys. Rev. E 71, 046138 (2005)] and are believed to be identical with the dynamic scaling of the Kardar-Parisi-Zhang (KPZ) in 1+1 dimensions. In the case of d = 2, we find a fixed point with the dynamic exponents z = 2.866 and α = -0.866 , which show that, as in the 1 + 1 dimensions situation, the existence of the conservative noise in 2 + 1 or higher dimensional KS equation can also lead to new fixed points with different dynamic scaling exponents. In addition, since a higher order approximation is adopted, our calculations in this paper have improved the results obtained previously by Cuerno and Lauritsen [Phys. Rev. E 52, 4853 (1995)] in the DRG analysis of the noisy KS equation, where the conservative noise is not taken into account.
Compatible orders and fermion-induced emergent symmetry in Dirac systems
NASA Astrophysics Data System (ADS)
Janssen, Lukas; Herbut, Igor F.; Scherer, Michael M.
2018-01-01
We study the quantum multicritical point in a (2+1)-dimensional Dirac system between the semimetallic phase and two ordered phases that are characterized by anticommuting mass terms with O (N1) and O (N2) symmetries, respectively. Using ɛ expansion around the upper critical space-time dimension of four, we demonstrate the existence of a stable renormalization-group fixed point, enabling a direct and continuous transition between the two ordered phases directly at the multicritical point. This point is found to be characterized by an emergent O (N1+N2) symmetry for arbitrary values of N1 and N2 and fermion flavor numbers Nf as long as the corresponding representation of the Clifford algebra exists. Small O (N ) -breaking perturbations near the chiral O (N ) fixed point are therefore irrelevant. This result can be traced back to the presence of gapless Dirac degrees of freedom at criticality, and it is in clear contrast to the purely bosonic O (N ) fixed point, which is stable only when N <3 . As a by-product, we obtain predictions for the critical behavior of the chiral O (N ) universality classes for arbitrary N and fermion flavor number Nf. Implications for critical Weyl and Dirac systems in 3+1 dimensions are also briefly discussed.
Heavy quark free energy in QCD and in gauge theories with gravity duals
NASA Astrophysics Data System (ADS)
Noronha, Jorge
2010-09-01
Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand, E-mail: davi.rodrigues@cosmo-ufes.org, E-mail: Bertrand.Chauvineau@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
Time Reparametrization Group and the Long Time Behavior in Quantum Glassy Systems
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio
2001-02-01
We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( RpG) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.
Probability distribution of the entanglement across a cut at an infinite-randomness fixed point
NASA Astrophysics Data System (ADS)
Devakul, Trithep; Majumdar, Satya N.; Huse, David A.
2017-03-01
We calculate the probability distribution of entanglement entropy S across a cut of a finite one-dimensional spin chain of length L at an infinite-randomness fixed point using Fisher's strong randomness renormalization group (RG). Using the random transverse-field Ising model as an example, the distribution is shown to take the form p (S |L ) ˜L-ψ (k ) , where k ≡S /ln[L /L0] , the large deviation function ψ (k ) is found explicitly, and L0 is a nonuniversal microscopic length. We discuss the implications of such a distribution on numerical techniques that rely on entanglement, such as matrix-product-state-based techniques. Our results are verified with numerical RG simulations, as well as the actual entanglement entropy distribution for the random transverse-field Ising model which we calculate for large L via a mapping to Majorana fermions.
Brittle Fracture In Disordered Media: A Unified Theory
NASA Astrophysics Data System (ADS)
Shekhawat, Ashivni; Zapperi, Stefano; Sethna, James
2013-03-01
We present a unified theory of fracture in disordered brittle media that reconciles apparently conflicting results reported in the literature, as well as several experiments on materials ranging from granite to bones. Our renormalization group based approach yields a phase diagram in which the percolation fixed point, expected for infinite disorder, is unstable for finite disorder and flows to a zero-disorder nucleation-type fixed point, thus showing that fracture has mixed first order and continuous character. In a region of intermediate disorder and finite system sizes, we predict a crossover with mean-field avalanche scaling. We discuss intriguing connections to other phenomena where critical scaling is only observed in finite size systems and disappears in the thermodynamic limit. We present a numerical validation of our theoretical results. We acknowledge support from DOE- BES DE-FG02-07ER46393, ERC-AdG-2011 SIZEFFECT, and the NSF through TeraGrid by LONI under grant TG-DMR100025.
Quantum spin circulator in Y junctions of Heisenberg chains
NASA Astrophysics Data System (ADS)
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi; Ueda, Kazuo
2011-08-01
Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu--Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu--Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.
Extended investigation of the twelve-flavor β-function
NASA Astrophysics Data System (ADS)
Fodor, Zoltán; Holland, Kieran; Kuti, Julius; Nógrádi, Dániel; Wong, Chik Him
2018-04-01
We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6] which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor number are discussed in this context.
NASA Astrophysics Data System (ADS)
Atalay, Bora; Berker, A. Nihat
2018-05-01
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
NASA Astrophysics Data System (ADS)
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.
Intersecting surface defects and instanton partition functions
NASA Astrophysics Data System (ADS)
Pan, Yiwen; Peelaers, Wolfger
2017-07-01
We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
Hořava Gravity is Asymptotically Free in 2+1 Dimensions.
Barvinsky, Andrei O; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F
2017-11-24
We compute the β functions of marginal couplings in projectable Hořava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Hořava gravity.
Cosmological constant and quantum gravitational corrections to the running fine structure constant.
Toms, David J
2008-09-26
The quantum gravitational contribution to the renormalization group behavior of the electric charge in Einstein-Maxwell theory with a cosmological constant is considered. Quantum gravity is shown to lead to a contribution to the running charge not present when the cosmological constant vanishes. This reopens the possibility, suggested by Robinson and Wilczek, of altering the scaling behavior of gauge theories at high energies although our result differs. We show the possibility of an ultraviolet fixed point that is linked directly to the cosmological constant.
Duality in a supersymmetric gauge theory from a perturbative viewpoint
NASA Astrophysics Data System (ADS)
Ryttov, Thomas A.; Shrock, Robert
2018-03-01
We study duality in N =1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a , c , a /c , and b at superconformal fixed points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications for nonsupersymmetric theories.
Two-point functions in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.
2017-03-01
We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
Renormalized Energy Concentration in Random Matrices
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Serfaty, Sylvia
2013-05-01
We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.
Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Qiu, Liang; Quan, Dongxiao; Pan, Fei; Liu, Zhi
2017-06-01
We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.
Dynamical Crossovers in Prethermal Critical States.
Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir
2017-03-31
We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.
Renormalization group independence of Cosmological Attractors
NASA Astrophysics Data System (ADS)
Fumagalli, Jacopo
2017-06-01
The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
An asymptotic safety scenario for gauged chiral Higgs-Yukawa models
NASA Astrophysics Data System (ADS)
Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca
2013-12-01
We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.
Kondo physics from quasiparticle poisoning in Majorana devices
Plugge, S.; Tsvelik, A. M.; Zazunov, A.; ...
2016-03-24
Here, we present a theoretical analysis of quasiparticle poisoning in Coulomb-blockaded Majorana fermion systems tunnel-coupled to normal-conducting leads. Taking into account finite-energy quasiparticles, we derive the effective low-energy theory and present a renormalization group analysis. We find qualitatively new effects when a quasiparticle state with very low energy is localized near a tunnel contact. For M = 2 attached leads, such “dangerous” quasiparticle poisoning processes cause a spin S = 1/2 single-channel Kondo effect, which can be detected through a characteristic zero-bias anomaly conductance peak in all Coulomb blockade valleys. For more than two attached leads, the topological Kondo effectmore » of the unpoisoned system becomes unstable. A strong-coupling bosonization analysis indicates that at low energy the poisoned lead is effectively decoupled and hence, for M > 3, the topological Kondo fixed point re-emerges, though now it involves only M–1 leads. As a consequence, for M = 3, the low-energy fixed point becomes trivial corresponding to decoupled leads.« less
Rindler fluid with weak momentum relaxation
NASA Astrophysics Data System (ADS)
Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long
2018-01-01
We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.
NASA Astrophysics Data System (ADS)
Pang, Yi; Rong, Junchen; Su, Ning
2016-12-01
We consider ϕ 3 theory in 6 - 2 ɛ with F 4 global symmetry. The beta function is calculated up to 3 loops, and a stable unitary IR fixed point is observed. The anomalous dimensions of operators quadratic or cubic in ϕ are also computed. We then employ conformal bootstrap technique to study the fixed point predicted from the perturbative approach. For each putative scaling dimension of ϕ (Δ ϕ ), we obtain the corresponding upper bound on the scaling dimension of the second lowest scalar primary in the 26 representation ( Δ 26 2nd ) which appears in the OPE of ϕ × ϕ. In D = 5 .95, we observe a sharp peak on the upper bound curve located at Δ ϕ equal to the value predicted by the 3-loop computation. In D = 5, we observe a weak kink on the upper bound curve at ( Δ ϕ , Δ 26 2nd ) = (1.6, 4).
Renormalization group scale-setting from the action—a road to modified gravity theories
NASA Astrophysics Data System (ADS)
Domazet, Silvije; Štefančić, Hrvoje
2012-12-01
The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.
Absence of first-order unbinding transitions of fluid and polymerized membranes
NASA Technical Reports Server (NTRS)
Grotehans, Stefan; Lipowsky, Reinhard
1990-01-01
Unbinding transitions of fluid and polymerized membranes are studied by renormalization-group (RG) methods. Two different RG schemes are used and found to give rather consistent results. The fixed-point structure of both RG's exhibits a complex behavior as a function of the decay exponent tau for the fluctuation-induced interaction of the membranes. For tau greater than tau(S2) interacting membranes can undergo first-order transitions even in the strong-fluctuation regime. These estimates for tau(S2) imply, however, that both fluid and polymerized membranes unbind in a continuous way in the absence of lateral tension.
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.
2000-03-01
The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.
Renormalization of loop functions for all loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, R.A.; Neri, F.; Sato, M.
1981-08-15
It is shown that the vacuum expectation values W(C/sub 1/,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp(igcontour-integral/sub C/iA/sub ..mu../(x)dx/sup ..mu../) are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub ..mu../(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multipliedmore » by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub ..gamma../ is a loop which is smooth and simple except for a single cusp of angle ..gamma.., then W/sub R/(C/sub ..gamma../) = Z(..gamma..)W(C/sub ..gamma../) is finite for a suitable renormalization factor Z(..gamma..) which depends on ..gamma.. but on no other characteristic of C/sub ..gamma../. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub ..gamma../) = 1 for an arbitrary but fixed loop C-bar/sub ..gamma../. Next, if C/sub ..beta../ is a loop which is smooth and simple except for a cross point of angles ..beta.., then W(C/sub ..beta../) must be renormalized together with the loop functions of associated sets S/sup i//sub ..beta../ = )C/sup i//sub 1/,xxx, C/sup i//sub p/i) (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub ..beta../equivalentC/sup 1//sub 1/. Then W/sub R/(S/sup i//sub ..beta../) = Z/sup i/j(..beta..)W(S/sup j//sub ..beta../) is finite for a suitable matrix Z/sup i/j(..beta..).« less
Transverse spin correlations of the random transverse-field Ising model
NASA Astrophysics Data System (ADS)
Iglói, Ferenc; Kovács, István A.
2018-03-01
The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.
On the interface between perturbative and nonperturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2016-04-04
The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less
Infinite-disorder critical points of models with stretched exponential interactions
NASA Astrophysics Data System (ADS)
Juhász, Róbert
2014-09-01
We show that an interaction decaying as a stretched exponential function of distance, J(l)˜ e-cl^a , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.
Gukov, Sergei
2016-01-05
Here, interpreting renormalization group flows as solitons interpolating between different fixed points, we ask various questions that are normally asked in soliton physics but not in renormalization theory. Can one count RG flows? Are there different "topological sectors" for RG flows? What is the moduli space of an RG flow, and how does it compare to familiar moduli spaces of (supersymmetric) dowain walls? Analyzing these questions in a wide variety of contexts -- from counting RG walls to AdS/CFT correspondence -- will not only provide favorable answers, but will also lead us to a unified general framework that is powerfulmore » enough to account for peculiar RG flows and predict new physical phenomena. Namely, using Bott's version of Morse theory we relate the topology of conformal manifolds to certain properties of RG flows that can be used as precise diagnostics and "topological obstructions" for the strong form of the C-theorem in any dimension. Moreover, this framework suggests a precise mechanism for how the violation of the strong C-theorem happens and predicts "phase transitions" along the RG flow when the topological obstruction is non-trivial. Along the way, we also find new conformal manifolds in well-known 4d CFT's and point out connections with the superconformal index and classifying spaces of global symmetry groups.« less
NASA Astrophysics Data System (ADS)
Safari, M.; Vacca, G. P.
2018-02-01
We employ perturbative renormalization group and ɛ -expansion to study multicritical single-scalar field theories with higher derivative kinetic terms of the form ϕ (-□)kϕ . We focus on those with a Z2-symmetric critical point which are characterized by an upper critical dimension dc=2 n k /(n -1 ) accumulating at even integers. We distinguish two types of theories depending on whether or not the numbers k and n -1 are relatively prime. When they are, the critical theory involves a marginal powerlike interaction ϕ2 n and the deformations admit a derivative expansion that at leading order involves only the potential. In this case we present the beta functional of the potential and use this to calculate some anomalous dimensions and operator product expansion coefficients. These confirm some conformal field theory data obtained using conformal-block techniques, while giving new results. In the second case where k and n -1 have a common divisor, the theories show a much richer structure induced by the presence of marginal derivative operators at criticality. We study the case k =2 with odd values of n , which fall in the second class, and calculate the functional flows and spectrum. These theories have a phase diagram characterized at leading order in ɛ by four fixed points which apart from the Gaussian UV fixed point include an IR fixed point with a purely derivative interaction.
NASA Astrophysics Data System (ADS)
Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás
2018-05-01
In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.
Electrons at the monkey saddle: A multicritical Lifshitz point
NASA Astrophysics Data System (ADS)
Shtyk, A.; Goldstein, G.; Chamon, C.
2017-01-01
We consider two-dimensional interacting electrons at a monkey saddle with dispersion ∝px3-3 pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three Van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em∝(Bm ) 3 /2 and related oscillations in thermodynamic and transport properties, such as de Haas-Van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the noninteracting electron fixed point is unstable to interactions under the renormalization-group flow, developing either a superconducting instability or non-Fermi-liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely, s -wave superconductivity, ferromagnetism, and spin- and charge-density waves.
Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models
NASA Astrophysics Data System (ADS)
Ferreira, P. M.; Lavoura, L.; Silva, João P.
2010-05-01
We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.
Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization
NASA Astrophysics Data System (ADS)
Dütsch, Michael; Fredenhagen, Klaus; Keller, Kai Johannes; Rejzner, Katarzyna
2014-12-01
We reformulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. This closed expression, which we call the Epstein-Glaser Forest Formula, is analogous to Zimmermann's Forest Formula for BPH renormalization. For scalar fields, the resulting renormalization method is always applicable, we compute several examples. We also analyze the Hopf algebraic aspects of the combinatorics. Our starting point is the Main Theorem of Renormalization of Stora and Popineau and the arising renormalization group as originally defined by Stückelberg and Petermann.
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.
2016-09-01
We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Uncovering novel phase structures in \\Box ^k scalar theories with the renormalization group
NASA Astrophysics Data System (ADS)
Safari, M.; Vacca, G. P.
2018-03-01
We present a detailed version of our recent work on the RG approach to multicritical scalar theories with higher derivative kinetic term φ (-\\Box )^kφ and upper critical dimension d_c = 2nk/(n-1). Depending on whether the numbers k and n have a common divisor two classes of theories have been distinguished. For coprime k and n-1 the theory admits a Wilson-Fisher type fixed point. We derive in this case the RG equations of the potential and compute the scaling dimensions and some OPE coefficients, mostly at leading order in ɛ . While giving new results, the critical data we provide are compared, when possible, and accord with a recent alternative approach using the analytic structure of conformal blocks. Instead when k and n-1 have a common divisor we unveil a novel interacting structure at criticality. \\Box ^2 theories with odd n, which fall in this class, are analyzed in detail. Using the RG flows it is shown that a derivative interaction is unavoidable at the critical point. In particular there is an infrared fixed point with a pure derivative interaction at which we compute the scaling dimensions and, for the particular example of \\Box ^2 theory in d_c=6, also some OPE coefficients.
Critical behavior and dimension crossover of pion superfluidity
NASA Astrophysics Data System (ADS)
Wang, Ziyue; Zhuang, Pengfei
2016-09-01
We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.
Importance of proper renormalization scale-setting for QCD testing at colliders
Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.
2015-12-22
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. Furthermore, these results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.« less
Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale
NASA Astrophysics Data System (ADS)
Bellon, Marc P.; Clavier, Pierre J.
2018-02-01
Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.
Exploring soft constraints on effective actions
NASA Astrophysics Data System (ADS)
Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao
2016-10-01
We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.
Electrons at the monkey saddle: a multicritical Lifshitz point
NASA Astrophysics Data System (ADS)
Shtyk, Alex; Goldstein, Garry; Chamon, Claudio
We consider 2D interacting electrons at a monkey saddle with dispersion px3 - 3pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em (Bm) 3 / 2 and related oscillations in thermodynamic and transport properties, such as de Haas-van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the non-interacting electron fixed point is unstable to interactions under the renormalization group flow, developing either a superconducting instability or non-Fermi liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely s-wave superconductivity, ferromagnetism, and spin- and charge-density wave. DOE DE-FG02-06ER46316.
NASA Astrophysics Data System (ADS)
Teber, S.; Kotikov, A. V.
2018-04-01
The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional power of the d'Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model. In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results for both the interaction correction to the optical conductivity C*=(92 -9 π2)/(18 π ) and the anomalous dimension of the fermion field γψ(α ¯ ,ξ )=2 α ¯ (1 -3 ξ )/3 -16 (ζ2NF+4 /27 ) α¯ 2+O (α¯ 3) , where α ¯=e2/(4 π )2 and ξ is the gauge-fixing parameter.
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
NASA Astrophysics Data System (ADS)
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
Scaling theory of topological phase transitions
NASA Astrophysics Data System (ADS)
Chen, Wei
2016-02-01
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
Block entropy and quantum phase transition in the anisotropic Kondo necklace model
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
2010-06-01
We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.
Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models
NASA Astrophysics Data System (ADS)
Yin, Wen
2018-01-01
Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.
The generalized scheme-independent Crewther relation in QCD
NASA Astrophysics Data System (ADS)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.
Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.
2015-09-01
We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.
Self-Avoiding Walks on the Random Lattice and the Random Hopping Model on a Cayley Tree
NASA Astrophysics Data System (ADS)
Kim, Yup
Using a field theoretic method based on the replica trick, it is proved that the three-parameter renormalization group for an n-vector model with quenched randomness reduces to a two-parameter one in the limit n (--->) 0 which corresponds to self-avoiding walks (SAWs). This is also shown by the explicit calculation of the renormalization group recursion relations to second order in (epsilon). From this reduction we find that SAWs on the random lattice are in the same universality class as SAWs on the regular lattice. By analogy with the case of the n-vector model with cubic anisotropy in the limit n (--->) 1, the fixed-point structure of the n-vector model with randomness is analyzed in the SAW limit, so that a physical interpretation of the unphysical fixed point is given. Corrections of the values of critical exponents of the unphysical fixed point published previously is also given. Next we formulate an integral equation and recursion relations for the configurationally averaged one particle Green's function of the random hopping model on a Cayley tree of coordination number ((sigma) + 1). This formalism is tested by applying it successfully to the nonrandom model. Using this scheme for 1 << (sigma) < (INFIN) we calculate the density of states of this model with a Gaussian distribution of hopping matrix elements in the range of energy E('2) > E(,c)('2), where E(,c) is a critical energy described below. The singularity in the Green's function which occurs at energy E(,1)('(0)) for (sigma) = (INFIN) is shifted to complex energy E(,1) (on the unphysical sheet of energy E) for small (sigma)('-1). This calculation shows that the density of states is smooth function of energy E around the critical energy E(,c) = Re E(,1) in accord with Wegner's theorem. In this formulation the density of states has no sharp phase transition on the real axis of E because E(,1) has developed an imaginary part. Using the Lifschitz argument, we calculate the density of states near the band edge for the model when the hopping matrix elements are governed by a bounded probability distribution. It is also shown within the dynamical system language that the density of states of the model with a bounded distribution never vanishes inside the band and we suggest a theoretical mechanism for the formation of energy bands.
Renormalization scheme dependence of high-order perturbative QCD predictions
NASA Astrophysics Data System (ADS)
Ma, Yang; Wu, Xing-Gang
2018-02-01
Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katanin, A. A., E-mail: katanin@mail.ru
We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32].more » We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.« less
Multicritical points for spin-glass models on hierarchical lattices.
Ohzeki, Masayuki; Nishimori, Hidetoshi; Berker, A Nihat
2008-06-01
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry, and the replica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a different point of view coming from the renormalization group and succeeds in deriving very consistent answers with many numerical data.
Structure of the entanglement entropy of (3+1)-dimensional gapped phases of matter
NASA Astrophysics Data System (ADS)
Zheng, Yunqin; He, Huan; Bradlyn, Barry; Cano, Jennifer; Neupert, Titus; Bernevig, B. Andrei
2018-05-01
We study the entanglement entropy of gapped phases of matter in three spatial dimensions. We focus in particular on size-independent contributions to the entropy across entanglement surfaces of arbitrary topologies. We show that for low energy fixed-point theories, the constant part of the entanglement entropy across any surface can be reduced to a linear combination of the entropies across a sphere and a torus. We first derive our results using strong sub-additivity inequalities along with assumptions about the entanglement entropy of fixed-point models, and identify the topological contribution by considering the renormalization group flow; in this way we give an explicit definition of topological entanglement entropy Stopo in (3+1)D, which sharpens previous results. We illustrate our results using several concrete examples and independent calculations, and show adding "twist" terms to the Lagrangian can change Stopo in (3+1)D. For the generalized Walker-Wang models, we find that the ground state degeneracy on a 3-torus is given by exp(-3 Stopo[T2] ) in terms of the topological entanglement entropy across a 2-torus. We conjecture that a similar relationship holds for Abelian theories in (d +1 ) dimensional spacetime, with the ground state degeneracy on the d -torus given by exp(-d Stopo[Td -1] ) .
Antonov, N V; Kostenko, M M
2014-12-01
The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.
The running coupling of the minimal sextet composite Higgs model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fodor, Zoltan; Holland, Kieran; Kuti, Julius
We compute the renormalized running coupling of SU(3) gauge theory coupled to N f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the β-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop β-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop β-functions in themore » $$\\overline{MS}$$ scheme. The absence of a non-trivial zero in the β-function in the explored range of the coupling is consistent with our earlier findings based on hadronic observables, the chiral condensate and the GMOR relation. The present work is the first to report continuum non-perturbative results for the sextet model.« less
NASA Astrophysics Data System (ADS)
Braun, Jens; Leonhardt, Marc; Pospiech, Martin
2018-04-01
Nambu-Jona-Lasinio-type models are often employed as low-energy models for the theory of the strong interaction to analyze its phase structure at finite temperature and quark chemical potential. In particular, at low temperature and large chemical potential, where the application of fully first-principles approaches is currently difficult at best, this class of models still plays a prominent role in guiding our understanding of the dynamics of dense strong-interaction matter. In this work, we consider a Fierz-complete version of the Nambu-Jona-Lasinio model with two massless quark flavors and study its renormalization group flow and fixed-point structure at leading order of the derivative expansion of the effective action. Sum rules for the various four-quark couplings then allow us to monitor the strength of the breaking of the axial UA(1 ) symmetry close to and above the phase boundary. We find that the dynamics in the ten-dimensional Fierz-complete space of four-quark couplings can only be reduced to a one-dimensional space associated with the scalar-pseudoscalar coupling in the strict large-Nc limit. Still, the interacting fixed point associated with this one-dimensional subspace appears to govern the dynamics at small quark chemical potential even beyond the large-Nc limit. At large chemical potential, corrections beyond the large-Nc limit become important, and the dynamics is dominated by diquarks, favoring the formation of a chirally symmetric diquark condensate. In this regime, our study suggests that the phase boundary is shifted to higher temperatures when a Fierz-complete set of four-quark interactions is considered.
Covariant Derivatives and the Renormalization Group Equation
NASA Astrophysics Data System (ADS)
Dolan, Brian P.
The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.
Short-Time Dynamics of the Random n-Vector Model
NASA Astrophysics Data System (ADS)
Chen, Yuan; Li, Zhi-Bing; Fang, Hai; He, Shun-Shan; Situ, Shu-Ping
2001-11-01
Short-time critical behavior of the random n-vector model is studied by the theoretic renormalization-group approach. Asymptotic scaling laws are studied in a frame of the expansion in ɛ=4-d for n≠1 and {√ɛ} for n=1 respectively. In d<4, the initial slip exponents θ‧ for the order parameter and θ for the response function are calculated up to the second order in ɛ=4-d for n≠1 and {√ɛ} for n=1 at the random fixed point respectively. Our results show that the random impurities exert a strong influence on the short-time dynamics for d<4 and n
Renormalization of Supersymmetric QCD on the Lattice
NASA Astrophysics Data System (ADS)
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-02-01
We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...
2017-05-10
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
The generalized scheme-independent Crewther relation in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
NASA Astrophysics Data System (ADS)
Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang
2018-05-01
The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.
Asymptotic safety of gravity-matter systems
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2016-04-01
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Quantum multicriticality in disordered Weyl semimetals
NASA Astrophysics Data System (ADS)
Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2018-01-01
In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.
Topologically massive gravity and the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.
2009-09-01
We set up the AdS/CFT correspondence for topologically massive gravity (TMG) in three dimensions. The first step in this procedure is to determine the appropriate fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk theory under consideration and are derived by solving asymptotically the non-linear field equations. We discuss in detail the asymptotic structure of the field equations for TMG, showing that it contains leading and subleading logarithms, determine the map between bulk fields and CFT operators, obtain the appropriate counterterms needed for holographic renormalization and compute holographically one- and two-point functions at and away from the ``chiral point'' (μ = 1). The 2-point functions at the chiral point are those of a logarithmic CFT (LCFT) with cL = 0,cR = 3l/GN and b = -3l/GN, where b is a parameter characterizing different c = 0 LCFTs. The bulk correlators away from the chiral point (μ ≠ 1) smoothly limit to the LCFT ones as μ → 1. Away from the chiral point, the CFT contains a state of negative norm and the expectation value of the energy momentum tensor in that state is also negative, reflecting a corresponding bulk instability due to negative energy modes.
Itinerant quantum multicriticality of two-dimensional Dirac fermions
NASA Astrophysics Data System (ADS)
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
NASA Astrophysics Data System (ADS)
Kargarian, M.; Jafari, R.; Langari, A.
2007-12-01
We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Renormalization group, normal form theory and the Ising model
NASA Astrophysics Data System (ADS)
Raju, Archishman; Hayden, Lorien; Clement, Colin; Liarte, Danilo; Sethna, James
The results of the renormalization group are commonly advertised as the existence of power law singularities at critical points. Logarithmic and exponential corrections are seen as special cases and dealt with on a case-by-case basis. We propose to systematize computing the singularities in the renormalization group using perturbative normal form theory. This gives us a way to classify all such singularities in a unified framework and to generate a systematic machinery to do scaling collapses. We show that this procedure leads to some new results even in classic cases like the Ising model and has general applicability.
Transport in a disordered ν = 2 / 3 fractional quantum Hall junction
NASA Astrophysics Data System (ADS)
Protopopov, I. V.; Gefen, Yuval; Mirlin, A. D.
2017-10-01
Electric and thermal transport properties of a ν = 2 / 3 fractional quantum Hall junction are analyzed. We investigate the evolution of the electric and thermal two-terminal conductances, G and GQ, with system size L and temperature T. This is done both for the case of strong interaction between the 1 and 1/ 3 modes (when the low-temperature physics of the interacting segment of the device is controlled by the vicinity of the strong-disorder Kane-Fisher-Polchinski fixed point) and for relatively weak interaction, for which the disorder is irrelevant at T = 0 in the renormalization-group sense. The transport properties in both cases are similar in several respects. In particular, G(L) is close to 4/3 (in units of e2 / h) and GQ to 2 (in units of πT / 6 ħ) for small L, independently of the interaction strength. For large L the system is in an incoherent regime, with G given by 2/3 and GQ showing the Ohmic scaling, GQ ∝ 1 / L, again for any interaction strength. The hallmark of the strong-disorder fixed point is the emergence of an intermediate range of L, in which the electric conductance shows strong mesoscopic fluctuations and the thermal conductance is GQ = 1. The analysis is extended also to a device with floating 1/3 mode, as studied in a recent experiment (Grivnin et al. 2014).
Renormalization of generalized scalar Duffin-Kemmer-Petiau electrodynamics
NASA Astrophysics Data System (ADS)
Bufalo, R.; Cardoso, T. R.; Nogueira, A. A.; Pimentel, B. M.
2018-05-01
We establish the multiplicative renormalization procedure of generalized scalar Duffin-Kemmer-Petiau electrodynamics (GSDKP4 ) in the mass shell. We show an explicit calculation of the first radiative corrections (one-loop) associated with the photon propagator, meson propagator, vertex function, and photon-photon four-point function utilizing the dimensional regularization method, where the gauge symmetry is manifest. As we will see, one of the consequences of the study is that, from the complete photon propagator renormalization condition, imposing that it behaves as a massless field, an energy range where GSDKP4 is well defined is m2≪k2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
Renormalization of the unitary evolution equation for coined quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan; Portugal, Renato
2017-03-01
We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.
Signs and stability in higher-derivative gravity
NASA Astrophysics Data System (ADS)
Narain, Gaurav
2018-02-01
Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.
Vacuum polarization and classical self-action near higher-dimensional defects
NASA Astrophysics Data System (ADS)
Grats, Yuri V.; Spirin, Pavel
2017-02-01
We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d-n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n≥slant 3) or cosmic string (if n=2) with (d-n-1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d≥slant 3 and 2≤slant n≤slant d-1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square {< φ {2}(x)rangle }_{ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor {< T_{M N}(x)rangle }_{ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ . In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed.
Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
2017-05-31
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
Bose gases near resonance: Renormalized interactions in a condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Renormalization of position space amplitudes in a massless QFT
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity
NASA Astrophysics Data System (ADS)
Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan
2017-12-01
We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.
Agravity up to infinite energy
NASA Astrophysics Data System (ADS)
Salvio, Alberto; Strumia, Alessandro
2018-02-01
The self-interactions of the conformal mode of the graviton are controlled, in dimensionless gravity theories (agravity), by a coupling f_0 that is not asymptotically free. We show that, nevertheless, agravity can be a complete theory valid up to infinite energy. When f_0 grows to large values, the conformal mode of the graviton decouples from the rest of the theory and does not hit any Landau pole provided that scalars are asymptotically conformally coupled and all other couplings approach fixed points. Then agravity can flow to conformal gravity at infinite energy. We identify scenarios where the Higgs mass does not receive unnaturally large physical corrections. We also show a useful equivalence between agravity and conformal gravity plus two extra conformally coupled scalars, and we give a simpler form for the renormalization group equations of dimensionless couplings as well as of massive parameters in the presence of the most general matter sector.
Topological regularization and self-duality in four-dimensional anti-de Sitter gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso
2009-06-15
It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as T{sub j}{sup i}={+-}(l{sup 2}/8{pi}G)C{sub j}{sup i}, which has been observed in recent literature in solitonicmore » solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.« less
Transport signatures of topology protected quantum criticality in Majorana islands
NASA Astrophysics Data System (ADS)
Papaj, Michal; Zhu, Zheng; Fu, Liang
Using numerical renormalization group we study a topological superconductor island coupled to three metallic leads in the vicinity of the charge degeneracy point. We show that the system flows to a non-Fermi liquid fixed point at low temperatures with fractional quantized DC conductance of 2 / 3e2 / h . Our proposal is experimentally feasible due to a much larger crossover temperature than in the previously studied cases and the robustness of the setup against the channel coupling anisotropy and charge degeneracy detuning. Including Majorana hybridization drives the system into a Fermi liquid phase at very low temperatures. The two proposed experimental signatures of multi-terminal electron teleportation include nonmonotonic temperature dependence of DC conductance and emergence of a plateau at 2 / 3e2 / h in tunnel coupling dependence of DC conductance. This work is funded by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award de-sc0010526 (ZZ and LF) and the NSF STC ''Center for Integrated Quantum Materials'' under Cooperative Agreement No. DMR-1231319 (MP).
Limit cycles and conformal invariance
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas
2013-01-01
There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
NASA Astrophysics Data System (ADS)
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.
Critical phenomena at the complex tensor ordering phase transition
NASA Astrophysics Data System (ADS)
Boettcher, Igor; Herbut, Igor F.
2018-02-01
We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.
Supersymmetric QCD on the lattice: An exploratory study
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-08-01
We perform a pilot study of the perturbative renormalization of a supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider supersymmetric N =1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naïve discretization. The gauge group that we consider is S U (Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α , are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (Zψ), gluon (Zu), gluino (Zλ), squark (ZA ±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Aharony, Ofer; Razamat, Shlomo S.; Seiberg, Nathan; ...
2017-02-10
Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N = (2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one)more » and a non-zero Fayet-Iliopoulos term, and pure SU( N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. As a result, we expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.« less
Renormalization group approach to power-law modeling of complex metabolic networks.
Hernández-Bermejo, Benito
2010-08-07
In the modeling of complex biological systems, and especially in the framework of the description of metabolic pathways, the use of power-law models (such as S-systems and GMA systems) often provides a remarkable accuracy over several orders of magnitude in concentrations, an unusually broad range not fully understood at present. In order to provide additional insight in this sense, this article is devoted to the renormalization group analysis of reactions in fractal or self-similar media. In particular, the renormalization group methodology is applied to the investigation of how rate-laws describing such reactions are transformed when the geometric scale is changed. The precise purpose of such analysis is to investigate whether or not power-law rate-laws present some remarkable features accounting for the successes of power-law modeling. As we shall see, according to the renormalization group point of view the answer is positive, as far as power-laws are the critical solutions of the renormalization group transformation, namely power-law rate-laws are the renormalization group invariant solutions. Moreover, it is shown that these results also imply invariance under the group of concentration scalings, thus accounting for the reported power-law model accuracy over several orders of magnitude in metabolite concentrations. Copyright 2010 Elsevier Ltd. All rights reserved.
Quasiparticle renormalization in ABC graphene trilayers
NASA Astrophysics Data System (ADS)
Dou, Xu; Jaefari, Akbar; Barlas, Yafis; Uchoa, Bruno
2015-03-01
We investigate the effect of electron-electron interactions in ABC stacked graphene trilayers. In the gapless regime, we show that the self-energy corrections lead to the renormalization of the dynamical exponent z = 3 +α1 / N , with α1 ~ 0 . 52 and N is the number of fermionic species. Although the quasiparticle residue is suppressed near the neutrality point, the lifetime has a sublinear scaling with the energy and the quasiparticles are well defined even at zero energy. We calculate the renormalization of a variety of physical observables, which can be directly measured in experiments. X.D., A.J., and B.U. acknowledge University of Oklahoma for support. B.U. acknowledges NSF Career Grant No. DMR-1352604 for partial support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less
Renormalization group naturalness of GUT Higgs potentials
NASA Astrophysics Data System (ADS)
Allanach, B. C.; Amelino-Camelia, G.; Philipsen, O.; Pisanti, O.; Rosa, L.
1999-01-01
We analyze the symmetry-breaking patterns of grand unified theories from the point of view of a recently proposed criterion of renormalization-group naturalness. We perform the analysis on simple non-SUSY SU(5) and SO(10) and SUSY SU(5) GUTs. We find that the naturalness criterion can favor spontaneous symmetry breaking in the direction of the smallest of the maximal little groups. Some differences between theories with and without supersymmetry are also emphasized.
NASA Astrophysics Data System (ADS)
Mori, Shintaro; Hisakado, Masato
2015-05-01
We propose a finite-size scaling analysis method for binary stochastic processes X(t) in { 0,1} based on the second moment correlation length ξ for the autocorrelation function C(t). The purpose is to clarify the critical properties and provide a new data analysis method for information cascades. As a simple model to represent the different behaviors of subjects in information cascade experiments, we assume that X(t) is a mixture of an independent random variable that takes 1 with probability q and a random variable that depends on the ratio z of the variables taking 1 among recent r variables. We consider two types of the probability f(z) that the latter takes 1: (i) analog [f(z) = z] and (ii) digital [f(z) = θ(z - 1/2)]. We study the universal functions of scaling for ξ and the integrated correlation time τ. For finite r, C(t) decays exponentially as a function of t, and there is only one stable renormalization group (RG) fixed point. In the limit r to ∞ , where X(t) depends on all the previous variables, C(t) in model (i) obeys a power law, and the system becomes scale invariant. In model (ii) with q ≠ 1/2, there are two stable RG fixed points, which correspond to the ordered and disordered phases of the information cascade phase transition with the critical exponents β = 1 and ν|| = 2.
NASA Astrophysics Data System (ADS)
Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr
2018-01-01
We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.
Renormalization Group Theory for the Imbalanced Fermi Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbels, K. B.; Stoof, H. T. C.
2008-04-11
We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].
Finite-size scaling study of the two-dimensional Blume-Capel model
NASA Astrophysics Data System (ADS)
Beale, Paul D.
1986-02-01
The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.
Vortex-liquid{endash}vortex-crystal transition in type-II superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, T.J.; Moore, M.A.
1996-09-01
We present in detail a functional renormalization group (FRG) study of a Landau-Ginzburg model of type-II superconductors (generalized to {ital N}/2 complex fields) in an external magnetic field, both for a pure system and also in the presence of quenched random impurities. If the coupling functions are restricted to the space of functions with nonzero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find a stable FRG fixed point in the presence of disorder for 1{lt}{ital N}{lt}4, identical to that of the disordered {ital O}({ital N}) model in {ital d}{minus}2 dimensions. This implies a continuous transitionmore » from the vortex crystal to vortex liquid in the presence of disorder, but only for {ital d}{gt}4. The nonzero-temperature transition will disappear in physical dimensions. The pure system has a stable fixed point only for {ital N}{gt}4. Therefore the physical case ({ital N}=2) is likely to have a first-order transition in the absence of quenched disorder. We give a full discussion of both the motivation of the model and the details of the FRG calculation. We also place our results in context with regard to the current experimental scene concerning the high-{ital T}{sub {ital c}} compounds. In particular, we discuss the relevance of our results to the recently discovered critical end point in the phase diagram of Bi-Sr-Ca-Cu-O. The main results of this analysis were previously reported in the form of a Letter [M.A. Moore and T.J. Newman, Phys. Rev. Lett. {bold 75}, 533 (1995)]. {copyright} {ital 1996 The American Physical Society.}« less
Testing the renormalisation group theory of cooperative transitions at the lambda point of helium
NASA Technical Reports Server (NTRS)
Lipa, J. A.; Li, Q.; Chui, T. C. P.; Marek, D.
1988-01-01
The status of high resolution tests of the renormalization group theory of cooperative phase transitions performed near the lambda point of helium is described. The prospects for performing improved tests in space are discussed.
Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1)
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Oriti, Daniele
2017-01-01
We study the renormalization of a general field theory on the homogeneous space (SU(2)/ ≤ft. U(1)\\right){{}× d} with tensorial interaction and gauge invariance under the diagonal action of SU(2). We derive the power counting for arbitrary d. For the case d = 4, we prove perturbative renormalizability to all orders via multi-scale analysis, study both the renormalized and effective perturbation series, and establish the asymptotic freedom of the model. We also outline a general power counting for the homogeneous space {{≤ft(SO(D)/SO(D-1)\\right)}× d} , of direct interest for quantum gravity models in arbitrary dimension, and point out the obstructions to the direct generalization of our results to these cases.
NASA Astrophysics Data System (ADS)
Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu
2015-11-01
In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.
Extremal Correlators in the Ads/cft Correspondence
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo
The non-renormalization of the 3-point functions
Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Cortijo, Alberto; Vozmediano, María A. H.
2018-05-01
We show that a conformal anomaly in Weyl and Dirac semimetals generates a bulk electric current perpendicular to a temperature gradient and the direction of a background magnetic field. The associated conductivity of this novel contribution to the Nernst effect is fixed by a beta function associated with the electric charge renormalization in the material. We discuss the experimental feasibility of the proposed phenomenon.
On the robustness of the primordial power spectrum in renormalized Higgs inflation
NASA Astrophysics Data System (ADS)
Bezrukov, Fedor; Pauly, Martin; Rubio, Javier
2018-02-01
We study the cosmological consequences of higher-dimensional operators respecting the asymptotic symmetries of the tree-level Higgs inflation action. The main contribution of these operators to the renormalization group enhanced potential is localized in a compact field range, whose upper limit is close to the end of inflation. The spectrum of primordial fluctuations in the so-called universal regime turns out to be almost insensitive to radiative corrections and in excellent agreement with the present cosmological data. However, higher-dimensional operators can play an important role in critical Higgs inflation scenarios containing a quasi-inflection point along the inflationary trajectory. The interplay of radiative corrections with this quasi-inflection point may translate into a sizable modification of the inflationary observables.
Space and time renormalization in phase transition dynamics
Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; ...
2016-02-18
Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications formore » high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.« less
Criticality of the mean-field spin-boson model: boson state truncation and its scaling analysis
NASA Astrophysics Data System (ADS)
Hou, Y.-H.; Tong, N.-H.
2010-11-01
The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β and δ of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states N b . We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0 < s < 1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ = α - α c and x = 1/ N b . The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m( α = α c ) is found to be a GHF of γ and x. In the regime s > 1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.
Tau hadronic spectral function moments: perturbative expansion and αs extractions
NASA Astrophysics Data System (ADS)
Boito, D.
2016-04-01
In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
Irreversibility and higher-spin conformal field theory
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2000-08-01
I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.
Multipolar Kondo effect in a S10-P32 mixture of 173Yb atoms
NASA Astrophysics Data System (ADS)
Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong
2018-02-01
Whereas in the familiar Kondo effect the exchange interaction is dipolar, there are systems in which the exchange interaction is multipolar, as has been realized in a recent experiment. Here, we study multipolar Kondo effect in a Fermi gas of cold 173Yb atoms. Making use of different ac polarizabilities of the electronic ground state Yb (S10 ) and the long-lived metastable state Yb*(P32 ), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb* atoms is analyzed and shown to be antiferromagnetic. The quadrupole and octupole interactions act to enhance the Kondo temperature TK that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole (d), quadrupole (q), and octupole (o) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants (λd,λq, and λo) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points. Arguments are presented that the Fermi-liquid fixed point at low temperature is unstable, indicating that the impurity is overscreened, which suggests a non-Fermi-liquid phase. The impurity contributions to the specific heat, entropy, and the magnetic susceptibility are calculated in the weak coupling regime (T ≫TK ), and are compared with the analogous results obtained for the standard case of dipolar exchange interaction (the s -d Hamiltonian).
Avoidance of singularities in asymptotically safe Quantum Einstein Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofinas, Georgios; Zarikas, Vasilios; Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki
2015-10-30
New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) ismore » timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.« less
Avoidance of singularities in asymptotically safe Quantum Einstein Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofinas, Georgios; Zarikas, Vasilios, E-mail: gkofinas@aegean.gr, E-mail: vzarikas@teilam.gr
2015-10-01
New general spherically symmetric solutions have been derived with a cosmological ''constant'' Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) ismore » timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.« less
Network-Physics(NP) Bec DIGITAL(#)-VULNERABILITY Versus Fault-Tolerant Analog
NASA Astrophysics Data System (ADS)
Alexander, G. K.; Hathaway, M.; Schmidt, H. E.; Siegel, E.
2011-03-01
Siegel[AMS Joint Mtg.(2002)-Abs.973-60-124] digits logarithmic-(Newcomb(1881)-Weyl(1914; 1916)-Benford(1938)-"NeWBe"/"OLDbe")-law algebraic-inversion to ONLY BEQS BEC:Quanta/Bosons= digits: Synthesis reveals EMP-like SEVERE VULNERABILITY of ONLY DIGITAL-networks(VS. FAULT-TOLERANT ANALOG INvulnerability) via Barabasi "Network-Physics" relative-``statics''(VS.dynamics-[Willinger-Alderson-Doyle(Not.AMS(5/09)]-]critique); (so called)"Quantum-computing is simple-arithmetic(sans division/ factorization); algorithmic-complexities: INtractibility/ UNdecidability/ INefficiency/NONcomputability / HARDNESS(so MIScalled) "noise"-induced-phase-transitions(NITS) ACCELERATION: Cook-Levin theorem Reducibility is Renormalization-(Semi)-Group fixed-points; number-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(02)] How? mea culpa)can ONLY be MBCS "hot-plasma" versus digit-clumping NON-random BEC; Modular-arithmetic Congruences= Signal X Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)] BEC logarithmic-law inversion factorization:Watkins number-thy. U stat.-phys.); P=/=NP TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation via geometry.
Anomalous diffusion on the Hanoi networks
NASA Astrophysics Data System (ADS)
Boettcher, S.; Gonçalves, B.
2008-11-01
Diffusion is modeled on the recently proposed Hanoi networks by studying the mean-square displacement of random walks with time, langr2rang~t2/dw. It is found that diffusion —the quintessential mode of transport throughout Nature— proceeds faster than ordinary, in one case with an exact, anomalous exponent dw=2- log2(phi)=1.30576... . It is an instance of a physical exponent containing the "golden ratio"\\phi=(1+\\sqrt{5})/2 that is intimately related to Fibonacci sequences and since Euclid's time has been found to be fundamental throughout geometry, architecture, art, and Nature itself. It originates from a singular renormalization group fixed point with a subtle boundary layer, for whose resolution phi is the main protagonist. The origin of this rare singularity is easily understood in terms of the physics of the process. Yet, the connection between network geometry and the emergence of phi in this context remains elusive. These results provide an accurate test of recently proposed universal scaling forms for first passage times.
NASA Astrophysics Data System (ADS)
Bradde, Serena; Bialek, William
A system with many degrees of freedom can be characterized by a covariance matrix; principal components analysis (PCA) focuses on the eigenvalues of this matrix, hoping to find a lower dimensional description. But when the spectrum is nearly continuous, any distinction between components that we keep and those that we ignore becomes arbitrary; it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this problem is analogous to the momentum shell renormalization group (RG). Following this analogy, we can define relevant and irrelevant operators, where the role of dimensionality is played by properties of the eigenvalue density. These results also suggest an approach to the analysis of real data. As an example, we study neural activity in the vertebrate retina as it responds to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point. Applied to financial data, our analysis separates modes dominated by sampling noise from a smaller but still macroscopic number of modes described by a non-Gaussian distribution.
SU(4) Kondo effect in double quantum dots with ferromagnetic leads
NASA Astrophysics Data System (ADS)
Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu
2018-02-01
We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
NASA Astrophysics Data System (ADS)
Bradde, Serena; Bialek, William
2017-05-01
A system with many degrees of freedom can be characterized by a covariance matrix; principal components analysis focuses on the eigenvalues of this matrix, hoping to find a lower dimensional description. But when the spectrum is nearly continuous, any distinction between components that we keep and those that we ignore becomes arbitrary; it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this problem is analogous to the momentum shell renormalization group. Following this analogy, we can define relevant and irrelevant operators, where the role of dimensionality is played by properties of the eigenvalue density. These results also suggest an approach to the analysis of real data. As an example, we study neural activity in the vertebrate retina as it responds to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point. Applied to financial data, our analysis separates modes dominated by sampling noise from a smaller but still macroscopic number of modes described by a non-Gaussian distribution.
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbahn, Martin; Jaeger, Sebastian; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH
2010-12-01
We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scalemore » dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.« less
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.
Renormalization group and Ward identities for infrared QED4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastropietro, Vieri
2007-10-15
A regularized version of Euclidean QED4 in the Feynman gauge is considered, with a fixed ultraviolet cutoff, photon mass of the size of the cutoff, and any value, including zero, of the electron mass. We will prove that the Schwinger functions are expressed by convergent series for small values of the charge and verify the Ward identities, up to corrections which are small for momentum scales far from the ultraviolet cutoff.
Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators
Miao, Lin; Wang, Z. F.; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y. R.; Zhu, Fengfeng; Fedorov, Alexei V.; Sun, Z.; Gao, C. L.; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng
2013-01-01
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states. PMID:23382185
Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.
Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng
2013-02-19
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.
Two loop QCD vertices at the symmetric point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracey, J. A.
2011-10-15
We compute the triple gluon, quark-gluon and ghost-gluon vertices of QCD at the symmetric subtraction point at two loops in the MS scheme. In addition we renormalize each of the three vertices in their respective momentum subtraction schemes, MOMggg, MOMq and MOMh. The conversion functions of all the wave functions, coupling constant and gauge parameter renormalization constants of each of the schemes relative to MS are determined analytically. These are then used to derive the three loop anomalous dimensions of the gluon, quark, Faddeev-Popov ghost and gauge parameter as well as the {beta} function in an arbitrary linear covariant gaugemore » for each MOM scheme. There is good agreement of the latter with earlier Landau gauge numerical estimates of Chetyrkin and Seidensticker.« less
NASA Astrophysics Data System (ADS)
Becker, D.; Reuter, M.
2014-11-01
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a 'bi-metric' ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein-Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the non-invariant functional RG equation. As an application, we compute the scale dependent spectral dimension which governs the fractal properties of the effective QEG spacetimes at the bi-metric level. Earlier tests of the Asymptotic Safety conjecture almost exclusively employed 'single-metric truncations' which are blind towards the difference between quantum and background fields. We explore in detail under which conditions they can be reliable, and we discuss how the single-metric based picture of Asymptotic Safety needs to be revised in the light of the new results. We shall conclude that the next generation of truncations for quantitatively precise predictions (of critical exponents, for instance) is bound to be of the bi-metric type.
Quenched results for light quark physics with overlap fermions
NASA Astrophysics Data System (ADS)
Giusti, L.; Hoelbling, C.; Rebbi, C.
2002-03-01
We present results of a quenched QCD simulation with overlap fermions on a lattice of volume V = 16 3 × 32 at β = 6.0, which corresponds to a lattice cutoff of ⋍ 2 GeV and an extension of ⋍ 1.4 fm. From the two-point correlation functions of bilinear operators we extract the pseudoscalar meson masses and the corresponding decay constants. From the GMOR relation we determine the chiral condensate and, by using the K-meson mass as experimental input, we compute the sum of the strange and average up-down quark masses ( m s + overlinem). The needed logarithmic divergent renormalization constant Z S is computed with the RI/MOM non-perturbative renormalization technique. Since the overlap preserves chiral symmetry at finite cutoff and volume, no divergent quark mass and chiral condensate additive renormalizations are required and the results are O( a) improved.
Kanaya, Tomoe; Scullin, Matthew H; Ceci, Stephen J
2003-10-01
Over the last century, IQ scores have been steadily rising, a phenomenon dubbed the Flynn effect. Because of the Flynn effect, IQ tests are periodically renormed, making them harder. Given that eligibility for mental retardation (MR) services relies heavily on IQ scores, renormed tests could have a significant impact on MR placements. In longitudinal IQ records from 9 sites around the country, students in the borderline and mild MR range lost an average of 5.6 points when retested on a renormed test and were more likely to be classified MR compared with peers retested on the same test. The magnitude of the effect is large and affects national policies on education, social security, the death penalty, and the military. This paper reports the perceptions of professionals as they relate to IQ score fluctuations in normal, borderline, and/or MR populations.
Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi
2016-01-01
The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363
Glueball spectra from a matrix model of pure Yang-Mills theory
NASA Astrophysics Data System (ADS)
Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo
2018-05-01
We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, C.; Soni, A.; Aoki, Y.
2009-07-01
We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for 'symmetric'. Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation withmore » substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.« less
On the divergences of inflationary superhorizon perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, K; Nurmi, S; Podolsky, D
2008-04-15
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less
Symmetries for Light-Front Quantization of Yukawa Model with Renormalization
NASA Astrophysics Data System (ADS)
Żochowski, Jan; Przeszowski, Jerzy A.
2017-12-01
In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna; Nihat Berker, A.
1997-02-01
Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.
Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model
Okada, Nobuchika; Okada, Satomi; Raut, Digesh
2017-03-31
Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less
Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Nobuchika; Okada, Satomi; Raut, Digesh
Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less
NASA Astrophysics Data System (ADS)
Zhao, Bo
Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.
Jurcisinová, E; Jurcisin, M; Remecký, R
2009-10-01
The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.
NASA Astrophysics Data System (ADS)
Garcia-Adeva, Angel J.; Huber, David L.
2001-07-01
In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.
N = 1 Deformations and RG flows of N = 2 SCFTs, part II: non-principal deformations
Agarwal, Prarit; Maruyoshi, Kazunobu; Song, Jaewon
2016-12-20
We continue to investigate the N = 1 deformations of four-dimensional N = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E 6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N = 2 at the end point of the RG flow. Most notably, we find that the SU(N)more » and Sp(N) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A 1,D 2 N-1) and (A 1,D 2 N) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A 1,D N) class of AD theories. Moreover, we find an infrared duality between N = 1 theories where the fixed point is described by an N = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.« less
Rényi entropy, stationarity, and entanglement of the conformal scalar
NASA Astrophysics Data System (ADS)
Lee, Jeongseog; Lewkowycz, Aitor; Perlmutter, Eric; Safdi, Benjamin R.
2015-03-01
We extend previous work on the perturbative expansion of the Rényi entropy, S q , around q = 1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of super-Yang-Mills near q = 1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.
Introduction to the AdS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Nąstase, Horaǧiu
2015-09-01
Preface; Introduction; Part I. Background: 1. Elements of quantum field theory and gauge theory; 2. Basics of general relativity. Anti-de Sitter space; 3. Basics of supersymmetry; 4. Basics of supergravity; 5. Kaluza-Klein dimensional reduction; 6. Black holes and p-branes; 7. String theory actions and spectra; 8. Elements of conformal field theory; 9. D-branes; Part II. Basics of AdS/CFT for N = 4 SYM vs AdS5 × S5: 10. The AdS/CFT correspondence: motivation, definition and spectra; 11. Witten prescription and 3-point correlator calculations; 12. Holography in Lorentzian signature: Poincaré and global; 13. Solitonic objects in AdS/CFT; 14. Quarks and the Wilson loop; 15. Finite temperature and N = 4 SYM plasmas; 16. Scattering processes and gravitational shockwave limit; 17. The pp-wave correspondence; 18. Spin chains; Part III. AdS/CFT Developments and Gauge-Gravity Dualities: 19. Other conformal cases; 20. The 3 dimensional ABJM model vs. AdS4 × CP3; 21. Gravity duals; 22. Holographic renormalization; 23. RG flow between fixed points; 24. Phenomenological gauge-gravity duality I: AdS/QCD; 25. Phenomenological gauge-gravity duality II: AdS/CMT; 26. Gluon scattering: the Alday-Maldacena prescription; 27. Holographic entanglement entropy: the Ryu-Takayanagi prescription.
N = 1 Deformations and RG flows of N = 2 SCFTs, part II: non-principal deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Prarit; Maruyoshi, Kazunobu; Song, Jaewon
We continue to investigate the N = 1 deformations of four-dimensional N = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E 6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N = 2 at the end point of the RG flow. Most notably, we find that the SU(N)more » and Sp(N) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A 1,D 2 N-1) and (A 1,D 2 N) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A 1,D N) class of AD theories. Moreover, we find an infrared duality between N = 1 theories where the fixed point is described by an N = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.« less
Implications of the principle of maximum conformality for the QCD strong coupling
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...
2017-08-14
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
Renormalization of minimally doubled fermions
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut
2010-09-01
We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.
Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P
2013-07-01
We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N~10) we find that F(N)(x) is nonmonotonic in the quantum critical regime (|x|~1) with a maximum near x=0. The large-N approach-if properly interpreted-is a good approximation both in the renormalized classical (x~-1) and quantum disordered (x>/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
2017-04-15
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
NASA Astrophysics Data System (ADS)
Joya, Wajid; Khan, Salman; Khalid Khan, M.; Alam, Sher
2017-05-01
The behavior of bipartite quantum discord (BQD) and tripartite quantum discord (TQD) in the Heisenberg XXZ spins chain is investigated with the increasing size of the system using the approach of the quantum renormalization group method. Analytical relations for both BQD and TQD are obtained and the results are checked through numerical optimization. In the thermodynamics limit, both types of discord exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated discord and zero discord. The first derivative of both discords becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Qualitatively identical, the amount of saturated BQD strongly depends on the relative positions of spins inside a block. TQD can be a better candidate than BQD both for analyzing QPT and implementing quantum information tasks. The scaling behavior in the vicinity of the critical point is discussed.
Computation of parton distributions from the quasi-PDF approach at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Bacchio, Simone; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Scapellato, Aurora; Steffens, Fernanda
2018-03-01
We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum |p→| = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI' scheme, following the non-perturbative renormalization prescription recently developed by our group.
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna; Berker, A. Nihat
1997-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatnikova, A.; Berker, A.N.
1997-02-01
Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}
Effects of correlated hybridization in the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Líbero, Valter; Veiga, Rodrigo
2013-03-01
The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.
On the renormalization group perspective of α-attractors
NASA Astrophysics Data System (ADS)
Narain, Gaurav
2017-10-01
In this short paper we outline a recipe for the reconstruction of F(R) gravity starting from single field inflationary potentials in the Einstein frame. For simple potentials one can compute the explicit form of F(R), whilst for more involved examples one gets a parametric form of F(R). The F(R) reconstruction algorithm is used to study various examples: power-law phin, exponential and α-attractors. In each case it is seen that for large R (corresponding to large value of inflaton field), F(R) ~ R2. For the case of α-attractors F(R) ~ R2 for all values of inflaton field (for all values of R) as α → 0. For generic inflaton potential V(phi), it is seen that if V'/V →0 (for some phi) then the corresponding F(R) ~ R2. We then study α-attractors in more detail using non-perturbative renormalisation group methods to analyse the reconstructed F(R). It is seen that α→0 is an ultraviolet stable fixed point of the renormalisation group trajectories.
Quantum Ultra-Walks: Walks on a Line with Spatial Disorder
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan
We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent dw that ranges from ballistic (dw = 1) to complete confinement (dw = ∞) for increasing separation 1 <= 1 / ɛ < ∞ in barrier heights. We develop a formalism by which the classical random walk as well as the quantum walk can be treated in parallel using a coined walk with internal degrees of freedom. For the random walk, this amounts to a 2nd -order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model of ``ultradiffusion,'' dw = 1 -log2 ɛ for 0 < ɛ <= 1 / 2 . However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin it fails to reproduce the numerical results. A new way to analyze the RG is indicated. Supported by NSF-DMR 1207431.
Asymptotic safety of gravity with matter
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel
2018-05-01
We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.
Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2016-08-01
The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.
Holographic entanglement chemistry
NASA Astrophysics Data System (ADS)
Caceres, Elena; Nguyen, Phuc H.; Pedraza, Juan F.
2017-05-01
We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations in the cosmological constant, Newton's constant and—in the case of higher-derivative theories—all the additional couplings of the theory. In Einstein gravity, where the number of degrees of freedom N2 of the dual field theory is a function of Λ and G , our approach allows us to vary N by keeping the field theory scale fixed or to vary the field theory scale by keeping N fixed. We also derive an extended first law of entanglement for Gauss-Bonnet and Lovelock gravity and show that in these cases all the extra variations reorganize nicely in terms of the central charges of the theory. Finally, we comment on the implications for renormalization group flows and c -theorems in higher dimensions.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2006-11-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2010-06-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
Renormalization group method based on the ionization energy theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006
2011-03-15
Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6
Neupane, Madhab; Alidoust, Nasser; Belopolski, Ilya; ...
2015-09-18
Rare-earth hexaborides have attracted considerable attention recently in connection to a variety of correlated phenomena including heavy fermions, superconductivity, and low-temperature magnetic phases. Here, we present high-resolution angle-resolved photoemission spectroscopy studies of trivalent CeB 6 and divalent BaB 6 rare-earth hexaborides. Here we find that the Fermi surface electronic structure of CeB 6 consists of large oval-shaped pockets around the X points of the Brillouin zone, whereas the states around the zone center Γ point are strongly renormalized. Our first-principles calculations agree with our experimental results around the X points but not around the Γ point, indicating areas of strongmore » renormalization located near Γ. The Ce quasiparticle states participate in the formation of hot spots at the Fermi surface, whereas the incoherent f states hybridize and lead to the emergence of dispersive features absent in the non-$f$ counterpart BaB 6. Lastly, our results provide an understanding of the electronic structure in rare-earth hexaborides, which will be useful in elucidating the nature of the exotic low-temperature phases in these materials.« less
Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows
NASA Astrophysics Data System (ADS)
Diab, Kenan S.
In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Gauge mediation scenario with hidden sector renormalization in MSSM
NASA Astrophysics Data System (ADS)
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2010-02-01
We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5¯ minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.
NASA Astrophysics Data System (ADS)
Baldovin, F.; Robledo, A.
2002-10-01
We uncover the dynamics at the chaos threshold μ∞ of the logistic map and find that it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ∞. We corroborate this structure analytically via the Feigenbaum renormalization-group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a q exponential, of which we determine the q index and the q-generalized Lyapunov coefficient λq. Our results are an unequivocal validation of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical points of nonlinear maps.
NASA Astrophysics Data System (ADS)
Wang, Wan-Sheng; Xiang, Yuan-Yuan; Wang, Qiang-Hua; Wang, Fa; Yang, Fan; Lee, Dung-Hai
2012-01-01
We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2-y2+idxy Cooper pairing becomes the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point) the graphene is either a Chern insulator or a topoligical superconductor.
Differential renormalization-group generators for static and dynamic critical phenomena
NASA Astrophysics Data System (ADS)
Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.
1992-09-01
The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less
NASA Astrophysics Data System (ADS)
Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio
2017-10-01
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.
Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto; ...
2017-10-09
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less
Nonperturbative Renormalization Group Approach to Polymerized Membranes
NASA Astrophysics Data System (ADS)
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
NASA Astrophysics Data System (ADS)
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
Progress in Developing a New Field-theoretical Crossover Equation-of-State
NASA Technical Reports Server (NTRS)
Rudnick, Joseph; Barmatz, M.; Zhong, Fang
2003-01-01
A new field-theoretical crossover equation-of-state model is being developed. This model of a liquid-gas critical point provides a bridge between the asymptotic equation-of-state behavior close to the transition, obtained by the Guida and Zinn-Justin parametric model [J. Phys. A: Math. Gen. 31, 8103 (1998)], and the expected mean field behavior farther away. The crossover is based on the beta function for the renormalized fourth-order coupling constant and incorporates the correct crossover exponents and critical amplitude ratios in both regimes. A crossover model is now being developed that is consistent with predictions along the critical isochore and along the coexistence curve of the minimal subtraction renormalization approach developed by Dohm and co-workers and recently applied to the O(1) universality class [Phys. Rev. E, 67, 021106 (2003)]. Experimental measurements of the heat capacity at constant volume, isothermal susceptibility, and coexistence curve near the He-3 critical point are being compared to the predictions of this model. The results of these comparisons will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
Algorithms for tensor network renormalization
NASA Astrophysics Data System (ADS)
Evenbly, G.
2017-01-01
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. First, we recall established techniques for how the partition function of a 2 D classical many-body system or the Euclidean path integral of a 1 D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2 D classical statistical and 1 D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
All-optical band engineering of gapped Dirac materials
NASA Astrophysics Data System (ADS)
Kibis, O. V.; Dini, K.; Iorsh, I. V.; Shelykh, I. A.
2017-03-01
We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.
The Higgs transverse momentum distribution at NNLL and its theoretical errors
Neill, Duff; Rothstein, Ira Z.; Vaidya, Varun
2015-12-15
In this letter, we present the NNLL-NNLO transverse momentum Higgs distribution arising from gluon fusion. In the regime p ⊥ << m h we include the resummation of the large logs at next to next-to leading order and then match on to the α 2 s fixed order result near p ⊥~m h. By utilizing the rapidity renormalization group (RRG) we are able to smoothly match between the resummed, small p ⊥ regime and the fixed order regime. We give a detailed discussion of the scale dependence of the result including an analysis of the rapidity scale dependence. Our centralmore » value differs from previous results, in the transition region as well as the tail, by an amount which is outside the error band. Lastly, this difference is due to the fact that the RRG profile allows us to smoothly turn off the resummation.« less
Fragmentation functions beyond fixed order accuracy
NASA Astrophysics Data System (ADS)
Anderle, Daniele P.; Kaufmann, Tom; Stratmann, Marco; Ringer, Felix
2017-03-01
We give a detailed account of the phenomenology of all-order resummations of logarithmically enhanced contributions at small momentum fraction of the observed hadron in semi-inclusive electron-positron annihilation and the timelike scale evolution of parton-to-hadron fragmentation functions. The formalism to perform resummations in Mellin moment space is briefly reviewed, and all relevant expressions up to next-to-next-to-leading logarithmic order are derived, including their explicit dependence on the factorization and renormalization scales. We discuss the details pertinent to a proper numerical implementation of the resummed results comprising an iterative solution to the timelike evolution equations, the matching to known fixed-order expressions, and the choice of the contour in the Mellin inverse transformation. First extractions of parton-to-pion fragmentation functions from semi-inclusive annihilation data are performed at different logarithmic orders of the resummations in order to estimate their phenomenological relevance. To this end, we compare our results to corresponding fits up to fixed, next-to-next-to-leading order accuracy and study the residual dependence on the factorization scale in each case.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
Coarse graining flow of spin foam intertwiners
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian
2016-12-01
Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.
Dressed Wilson loops as dual condensates in response to magnetic and electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruckmann, Falk; Endroedi, Gergely
2011-10-01
We introduce dressed Wilson loops as a novel confinement observable. It consists of closed planar loops of arbitrary geometry but fixed area, and its expectation values decay with the latter. The construction of dressed Wilson loops is based on chiral condensates in response to magnetic and electric fields, thus linking different physical concepts. We present results for generalized condensates and dressed Wilson loops on dynamical lattice configurations and confirm the agreement with conventional Wilson loops in the limit of large probe mass. We comment on the renormalization of dressed Wilson loops.
On the renormalization group perspective of α-attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narain, Gaurav, E-mail: gaunarain@itp.ac.cn
In this short paper we outline a recipe for the reconstruction of F ( R ) gravity starting from single field inflationary potentials in the Einstein frame. For simple potentials one can compute the explicit form of F ( R ), whilst for more involved examples one gets a parametric form of F ( R ). The F ( R ) reconstruction algorithm is used to study various examples: power-law φ {sup n} , exponential and α -attractors. In each case it is seen that for large R (corresponding to large value of inflaton field), F ( R ) ∼more » R {sup 2}. For the case of α -attractors F ( R ) ∼ R {sup 2} for all values of inflaton field (for all values of R ) as α → 0. For generic inflaton potential V (φ), it is seen that if V {sup '}/ V →0 (for some φ) then the corresponding F ( R ) ∼ R {sup 2}. We then study α-attractors in more detail using non-perturbative renormalisation group methods to analyse the reconstructed F ( R ). It is seen that α →0 is an ultraviolet stable fixed point of the renormalisation group trajectories.« less
Quantum Phase Transitions in Conventional Matrix Product Systems
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou
2016-05-05
The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
NASA Astrophysics Data System (ADS)
Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre
2014-12-01
In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.
Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective
NASA Technical Reports Server (NTRS)
Zhou, Ye; McComb, W. David; Vahala, George
1997-01-01
The term renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, D., E-mail: BeckerD@thep.physik.uni-mainz.ded; Reuter, M., E-mail: reuter@thep.physik.uni-mainz.de
2014-11-15
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Averagemore » Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the non-invariant functional RG equation. As an application, we compute the scale dependent spectral dimension which governs the fractal properties of the effective QEG spacetimes at the bi-metric level. Earlier tests of the Asymptotic Safety conjecture almost exclusively employed ‘single-metric truncations’ which are blind towards the difference between quantum and background fields. We explore in detail under which conditions they can be reliable, and we discuss how the single-metric based picture of Asymptotic Safety needs to be revised in the light of the new results. We shall conclude that the next generation of truncations for quantitatively precise predictions (of critical exponents, for instance) is bound to be of the bi-metric type. - Highlights: • The Asymptotic Safety scenario in quantum gravity is explored. • A bi-metric generalization of the Einstein–Hilbert truncation is investigated. • We find that Background Independence can coexist with Asymptotic Safety. • RG trajectories restoring (background-quantum) split-symmetry are constructed. • The degree of validity of single-metric truncations is critically assessed.« less
Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Diep, H. T.
2010-03-01
For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.
Multiloop functional renormalization group for general models
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-02-01
We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
NASA Astrophysics Data System (ADS)
Shah, Abhay G.; Friedman, John L.; Whiting, Bernard F.
2014-03-01
We present a novel analytic extraction of high-order post-Newtonian (pN) parameters that govern quasicircular binary systems. Coefficients in the pN expansion of the energy of a binary system can be found from corresponding coefficients in an extreme-mass-ratio inspiral computation of the change ΔU in the redshift factor of a circular orbit at fixed angular velocity. Remarkably, by computing this essentially gauge-invariant quantity to accuracy greater than one part in 10225, and by assuming that a subset of pN coefficients are rational numbers or products of π and a rational, we obtain the exact analytic coefficients. We find the previously unexpected result that the post-Newtonian expansion of ΔU (and of the change ΔΩ in the angular velocity at fixed redshift factor) have conservative terms at half-integral pN order beginning with a 5.5 pN term. This implies the existence of a corresponding 5.5 pN term in the expansion of the energy of a binary system. Coefficients in the pN series that do not belong to the subset just described are obtained to accuracy better than 1 part in 10265-23n at nth pN order. We work in a radiation gauge, finding the radiative part of the metric perturbation from the gauge-invariant Weyl scalar ψ0 via a Hertz potential. We use mode-sum renormalization, and find high-order renormalization coefficients by matching a series in L=ℓ+1/2 to the large-L behavior of the expression for ΔU. The nonradiative parts of the perturbed metric associated with changes in mass and angular momentum are calculated in the Schwarzschild gauge.
Homogenization of the Brush Problem with a Source Term in L 1
NASA Astrophysics Data System (ADS)
Gaudiello, Antonio; Guibé, Olivier; Murat, François
2017-07-01
We consider a domain which has the form of a brush in 3 D or the form of a comb in 2 D, i.e. an open set which is composed of cylindrical vertical teeth distributed over a fixed basis. All the teeth have a similar fixed height; their cross sections can vary from one tooth to another and are not supposed to be smooth; moreover the teeth can be adjacent, i.e. they can share parts of their boundaries. The diameter of every tooth is supposed to be less than or equal to ɛ, and the asymptotic volume fraction of the teeth (as ɛ tends to zero) is supposed to be bounded from below away from zero, but no periodicity is assumed on the distribution of the teeth. In this domain we study the asymptotic behavior (as ɛ tends to zero) of the solution of a second order elliptic equation with a zeroth order term which is bounded from below away from zero, when the homogeneous Neumann boundary condition is satisfied on the whole of the boundary. First, we revisit the problem where the source term belongs to L 2. This is a classical problem, but our homogenization result takes place in a geometry which is more general that the ones which have been considered before. Moreover we prove a corrector result which is new. Then, we study the case where the source term belongs to L 1. Working in the framework of renormalized solutions and introducing a definition of renormalized solutions for degenerate elliptic equations where only the vertical derivative is involved (such a definition is new), we identify the limit problem and prove a corrector result.
NASA Astrophysics Data System (ADS)
Tsoi, S.; Cardona, M.; Lauck, R.; Alawadhi, H.; Lu, X.; Grimsditch, M.; Ramdas, A. K.
2005-03-01
Optical properties of ZnO, a wide gap semiconductor with wurtzite structure, have generated renewed interest in the material in the context of opto-electronic phenomena and applications. The A, B, and C excitons of ZnO, arising from the combined effects of crystal field and spin-orbit splittings of the valence band, are investigated in the temperature range 5- 400 K, exploiting electro-, photo-, and wavelength-modulated reflectivity. The specimens studied have natural isotopic composition. The temperature dependence of the A, B, and C excitonic band gaps, fitted with a two harmonic oscillator modelootnotetextM. Cardona, Phys. Status. Solidi b 220, 5 (2000); R. Pä'ssler, J. Appl. Phys. 89, 6235 (2001) following Manj'on et al.ootnotetextF. J. Manj'on et al., Solid State Commun. 128, 35 (2003), yields the magnitudes of the zero-point renormalizations 262 meV (A), 227 meV (B), and 249 meV (C), respectively. Isotopically controlled ZnO is currently being investigated to determine the isotopic mass dependence of the zero-point renormalizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Yu
Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less
AdS/CFT and local renormalization group with gauge fields
NASA Astrophysics Data System (ADS)
Kikuchi, Ken; Sakai, Tadakatsu
2016-03-01
We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.
The anisotropic Wilson gauge action
NASA Astrophysics Data System (ADS)
Klassen, Timothy R.
1998-11-01
Anisotropic lattices, with a temporal lattice spacing smaller than the spatial one, allow precision Monte Carlo calculations of problems that are difficult to study otherwise: heavy quarks, glueballs, hybrids, and high temperature thermodynamics, for example. We here perform the first step required for such studies with the (quenched) Wilson gauge action, namely, the determination of the renormalized anisotropy Ξ as a function of the bare anisotropy Ξ0 and the coupling. By, essentially, comparing the finite-volume heavy quark potential where the quarks are separated along a spatial direction with that where they are separated along the time direction, we determine the relation between Ξ and Ξ0 to a fraction of 1% for weak and to 1% for strong coupling. We present a simple parameterization of this relation for 1 ⩽ Ξ ⩽ 6 and 5.5 ⩽ β ⩽ ∞, which incorporates the known one-loop result and reproduces our non-perturbative determinations within errors. Besides solving the problem of how to choose the bare anisotropies if one wants to take the continuum limit at fixed renormalized anisotropy, this parameterization also yields accurate estimates of the derivative {∂Ξ 0}/{∂Ξ} needed in thermodynamic studies.
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...
Flux Renormalization in Constant Power Burnup Calculations
Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...
2016-06-15
To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less
Euclidean scalar field theory in the bilocal approximation
NASA Astrophysics Data System (ADS)
Nagy, S.; Polonyi, J.; Steib, I.
2018-04-01
The blocking step of the renormalization group method is usually carried out by restricting it to fluctuations and to local blocked action. The tree-level, bilocal saddle point contribution to the blocking, defined by the infinitesimal decrease of the sharp cutoff in momentum space, is followed within the three dimensional Euclidean ϕ6 model in this work. The phase structure is changed, new phases and relevant operators are found, and certain universality classes are restricted by the bilocal saddle point.
NASA Astrophysics Data System (ADS)
Zacharias, Marios; Giustino, Feliciano
2016-08-01
Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.
Apker Award Recipient: Renormalization-Group Study of Helium Mixtures Immersed in a Porous Medium
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna
1998-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in aerogel are studied by renormalization-group theory. Firstly, the theory is applied to jungle-gym (non-random) aerogel.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 55, 3798 (1997).) This calculation is conducted via the coupled renormalization-group mappings of interactions near and away from aerogel. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfludity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. Secondly, the theory is applied to true aerogel, which has quenched disorder at both atomic and geometric levels.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 56, 11865 (1997).) This calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of quenched probability distributions of random interactions. Random-bond effects on superfluidity onset and random-field effects on superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general prediction and experiments. Based on these studies, the experimentally observed(S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995).) distinctive characteristics of ^3He-^4He mixtures in aerogel are related to the aerogel properties of connectivity, tenuousness, and atomic and geometric randomness.
Fate of superconductivity in three-dimensional disordered Luttinger semimetals
NASA Astrophysics Data System (ADS)
Mandal, Ipsita
2018-05-01
Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.
Non-Perturbative Renormalization of the Lattice Heavy Quark Classical Velocity
NASA Astrophysics Data System (ADS)
Mandula, Jeffrey E.; Ogilvie, Michael C.
1997-02-01
We discuss the renormalization of the lattice formulation of the Heavy Quark Effective Theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration.
Global anomalies and effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golkar, Siavash; Sethi, Savdeep
2016-05-17
Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less
Wall shear stress fixed points in blood flow
NASA Astrophysics Data System (ADS)
Arzani, Amirhossein; Shadden, Shawn
2017-11-01
Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.
Quantization of the nonlinear sigma model revisited
NASA Astrophysics Data System (ADS)
Nguyen, Timothy
2016-08-01
We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.
Effect of Impurities on the Freezing Point of Zinc
NASA Astrophysics Data System (ADS)
Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong
2017-03-01
The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.
Point-particle effective field theory I: classical renormalization and the inverse-square potential
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László
2017-04-01
Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.
Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions
NASA Astrophysics Data System (ADS)
Hussain, N.
2008-02-01
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors
NASA Astrophysics Data System (ADS)
Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.
2017-06-01
Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.
NASA Astrophysics Data System (ADS)
Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji
2017-10-01
We establish and elucidate the physical meaning of the appearance of an acausal mode in the sigma mesonic channel, found in the previous work by the present authors, when the system approaches the Z2 critical point. The functional renormalization-group method is applied to the two-flavor quark-meson model with varying current quark mass mq even away from the physical value at which the pion mass is reproduced. We first determine the whole phase structure in the three-dimensional space (T ,μ ,mq) consisting of temperature T , quark chemical potential μ and mq, with the tricritical point, O(4) and Z2 critical lines being located; they altogether make a winglike shape quite reminiscent of those known in the condensed matters with a tricritical point. We then calculate the spectral functions ρσ ,π(ω ,p ) in the scalar and pseudoscalar channel around the critical points. We find that the sigma mesonic mode becomes tachyonic with a superluminal velocity at finite momenta before the system reaches the Z2 point from the lower density, even for mq smaller than the physical value. One of the possible implications of the appearance of such a tachyonic mode at finite momenta is that the assumed equilibrium state with a uniform chiral condensate is unstable toward a state with an inhomogeneous σ condensate. No such anomalous behavior is found in the pseudoscalar channel. We find that the σ -to-2 σ coupling due to finite mq plays an essential role for the drastic modification of the spectral function.
Wall shear stress fixed points in cardiovascular fluid mechanics.
Arzani, Amirhossein; Shadden, Shawn C
2018-05-17
Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantum gravity and renormalization
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2015-02-01
The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of non-renormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which also can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions d>3. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory
2017-04-01
The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.
Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2015-05-01
Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical... Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's name and address. Transmitting station...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... to private operational fixed point-to-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth...
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...
Effects of renormalizing the chiral SU(2) quark-meson model
NASA Astrophysics Data System (ADS)
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
Seeking fixed points in multiple coupling scalar theories in the ɛ expansion
NASA Astrophysics Data System (ADS)
Osborn, Hugh; Stergiou, Andreas
2018-05-01
Fixed points for scalar theories in 4 - ɛ, 6 - ɛ and 3 - ɛ dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O( N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six dimensional case. Perturbative applications of the a-theorem are used to help classify potential fixed points. At lowest order in the ɛ-expansion it is shown that at fixed points there is a lower bound for a which is saturated at bifurcation points.
On holographic entanglement density
NASA Astrophysics Data System (ADS)
Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie
2017-10-01
We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.
A holographic model of the Kondo effect
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Wu, Jackson
2013-12-01
We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large- N limit, with spin SU( N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large- N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.
Twisted injectivity in projected entangled pair states and the classification of quantum phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerschaper, Oliver, E-mail: obuerschaper@perimeterinstitute.ca
We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems bymore » showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as DIJKGRAAF–WITTEN topological quantum field theory (TQFT). - Highlights: • We introduce a new standard form for projected entangled pair states via a twisted group symmetry which is given by nontrivial matrix product operators. • We construct a large family of gapped, frustration-free Hamiltonians in two dimensions from this new standard form. • We rigorously show how this new standard form for low energy states determines the emergent topological order.« less
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-10-01
In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.21 - Technical content of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.21 Technical...) [Reserved] (e) Each application in the Private Operational Fixed Point-to-Point Microwave Service and the Common Carrier Fixed Point-to-Point Microwave Service must include the following information: Applicant's...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
47 CFR 101.5 - Station authorization required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Applications and Licenses General Filing Requirements § 101.5 Station... stations authorized under subpart H (Private Operational Fixed Point-to-Point Microwave Service), subpart I (Common Carrier Fixed Point-to-Point Microwave Service), and subpart L of this part (Local Multipoint...
Negative stiffness and modulated states in active nematics.
Srivastava, Pragya; Mishra, Prashant; Marchetti, M Cristina
2016-10-04
We examine the dynamics of an active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability phase diagram that exhibits a nonequilibrium tricritical point where ordered, modulated and disordered phases meet. Numerical solution of the nonlinear equations yields a succession of spatial structures of increasing complexity with increasing activity, including kink walls and active turbulence, as observed in experiments on microtubule bundles confined at an oil-water interface. Our work provides a minimal model for an overdamped active nematic that reproduces all the nonequilibrium structures seen in simulations of the full active nematic hydrodynamics and provides a framework for understanding some of the mechanisms for selection of the nonequilibrium patterns in the language of equilibrium critical phenomena.
Renormalized dynamics of the Dean-Kawasaki model
NASA Astrophysics Data System (ADS)
Bidhoodi, Neeta; Das, Shankar P.
2015-07-01
We study the model of a supercooled liquid for which the equation of motion for the coarse-grained density ρ (x ,t ) is the nonlinear diffusion equation originally proposed by Dean and Kawasaki, respectively, for Brownian and Newtonian dynamics of fluid particles. Using a Martin-Siggia-Rose (MSR) field theory we study the renormalization of the dynamics in a self-consistent form in terms of the so-called self-energy matrix Σ . The appropriate model for the renormalized dynamics involves an extended set of field variables {ρ ,θ } , linked through a nonlinear constraint. The latter incorporates, in a nonperturbative manner, the effects of an infinite number of density nonlinearities in the dynamics. We show that the contributing element of Σ which renormalizes the bare diffusion constant D0 to DR is same as that proposed by Kawasaki and Miyazima [Z. Phys. B Condens. Matter 103, 423 (1997), 10.1007/s002570050396]. DR sharply decreases with increasing density. We consider the likelihood of a ergodic-nonergodic (ENE) transition in the model beyond a critical point. The transition is characterized by the long-time limit of the density correlation freezing at a nonzero value. From our analysis we identify an element of Σ which arises from the above-mentioned nonlinear constraint and is key to the viability of the ENE transition. If this self-energy would be zero, then the model supports a sharp ENE transition with DR=0 as predicted by Kawasaki and Miyazima. With the full model having nonzero value for this self-energy, the density autocorrelation function decays to zero in the long-time limit. Hence the ENE transition is not supported in the model.
Sæbø, Gunnar; Scheffels, Janne
2017-11-01
The rationale for 'denormalization' of smoking in tobacco policies has been challenged by the emergence of e-cigarettes and the need to regulate e-cigarette use and promotion. Our aim is to assess the research status on e-cigarettes' contribution to 'renormalization' of smoking and to clarify how renormalization of smoking can be appraised at the conceptual and empirical level. Combining conceptual analysis and narrative review, the paper brings out three dimensions of denormalization/renormalization of smoking ('unacceptability/acceptability'; 'invisibility/visibility'; 'phasing out behaviour/maintaining behaviour') and an inherent duality of the e-cigarette as a smoking-like device and a smoking alternative. These analytical dimensions are applied qualitatively to consider the literature identified by searching the Web of Science database for 'e-cigarettes AND renormalization' (and variants thereof). Theoretically, normative changes in smoking acceptability, increased visibility of e-cigarettes and use, and observations of actual use (prevalence, dual use, gateway) can all be applied to illustrate processes of renormalization. However, only acceptability measures and user measures can be said to be empirical tests of renormalization effects. Visibility measures are only based on logical assumptions of a possible renormalization; they are not in themselves indicative of any "real" renormalization effects and can just as well be understood as possible consequences of normalization of e-cigarettes. Just as a downward trend in smoking prevalence is the litmus test of whether denormalization policy works, stagnating or rising smoking prevalence should be the main empirical indicator of renormalization. Copyright © 2017 Elsevier B.V. All rights reserved.
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
NASA Astrophysics Data System (ADS)
Garattini, Remo
2013-09-01
The one loop effective action in a Schwarzschild background is here used to compute the Zero Point Energy (ZPE) which is compared to the same one generated by an existing gravastar. We find that only when we set up a difference between ZPE in these different background we can have an indication on which configuration is favored. Such a ZPE difference represents the Casimir energy. Such an energy, being negative, can be considered as a part of the Dark Energy necessary for the topology change. It is also shown that the expression of the ZPE is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure to remove the infinities together with a renormalization group equation is introduced. We find that the final configuration is dependent on the ratio between the radius of the wormhole augmented by the "brick wall" and the radius of the gravastar.
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
NASA Astrophysics Data System (ADS)
Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.
2013-06-01
We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.
Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.
On a realization of { β}-expansion in QCD
NASA Astrophysics Data System (ADS)
Mikhailov, S. V.
2017-04-01
We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less
Solution of effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1998-03-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a non-magnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher(MF). We find a line of non-fermi liquid fixed points which continuously interpolates between the 2-channel Kondo fixed point(2CK) and the one channel, two impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 1/2 and one leading irrelevant operator with dimension 3/2. There is also one marginal operator in the spin sector moving along this line. The additional non-fermi liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 1/2, therefore also unstable. The system is shown to flow to a line of fermi-liquid fixed points which continuously interpolates between the non-interacting fixed point and the 2 channel spin-flavor Kondo fixed point (2CSFK) discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analysed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a non-magnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Renormalization of the Lattice Heavy Quark Classical Velocity
NASA Astrophysics Data System (ADS)
Mandula, Jeffrey E.; Ogilvie, Michael C.
1996-03-01
In the lattice formulation of the Heavy Quark Effective Theory (LHQET), the "classical velocity" v becomes renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. The renormalization is finite and depends on the form of the decretization of the reduced heavy quark Dirac equation. For the Forward Time — Centered Space discretization, the renormalization is computed both perturbatively, to one loop, and non-perturbatively using two ensembles of lattices, one at β = 5.7 and the other at β = 6.1 The estimates agree, and indicate that for small classical velocities, ν→ is reduced by about 25-30%.
1989-06-09
Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex
Renormalization of entanglement entropy from topological terms
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We propose a renormalization scheme for entanglement entropy of three-dimensional CFTs with a four-dimensional asymptotically AdS gravity dual in the context of the gauge/gravity correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. We provide an explicit prescription for the renormalized entanglement entropy, which is derived via the replica trick. This is achieved by considering a Euclidean gravitational action renormalized by the addition of the Chern form at the spacetime boundary, evaluated in the conically-singular replica manifold. We show that the addition of this boundary term cancels the divergent part of the entanglement entropy, recovering the results obtained by Taylor and Woodhead. We comment on how this prescription for renormalizing the entanglement entropy is in line with the general program of topological renormalization in asymptotically AdS gravity.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
NASA Astrophysics Data System (ADS)
Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.
2017-07-01
The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.
NASA Astrophysics Data System (ADS)
Kohri, Kazunori; Matsui, Hiroki
2017-08-01
In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ phi 2 > enlarge in proportion to the Hubble scale H2. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ phi 2 > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ phi 2 >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field phi determined by the effective potential V eff( phi ) in curved space-time and the renormalized vacuum fluctuations < δ phi 2 >ren via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field phi, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H< ΛI .
Renormalization and radiative corrections to masses in a general Yukawa model
NASA Astrophysics Data System (ADS)
Fox, M.; Grimus, W.; Löschner, M.
2018-01-01
We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Scale-invariant curvature fluctuations from an extended semiclassical gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it
2015-02-15
We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.
Aspects of Galileon non-renormalization
Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; ...
2016-11-18
We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P ( X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. Furthermore, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.
Aspects of the zero Λ limit in the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Caldeira Costa, R. N.
2014-11-01
We examine the correspondence between QFT observables and bulk solutions in the context of AdS/CFT in the limit as the cosmological constant Λ →0 . We focus specifically on the spacetime metric and a nonbackreacting scalar in the bulk, compute the one-point functions of the dual operators, and determine the necessary conditions for the correspondence to admit a well-behaved zero-Λ limit. We discuss holographic renormalization in this limit and find that it requires schemes that partially break diffeomorphism invariance of the bulk theory. In the specific case of three bulk dimensions, we compute the zero-Λ limit of the holographic Weyl anomaly and reproduce the central charge that arises in the central extension of bms3 . We compute holographically the energy and momentum of those QFT states dual to flat cosmological solutions and to the Kerr solution and find an agreement with the bulk theory. We also compute holographically the renormalized two-point function of a scalar operator in the zero-Λ limit and find it to be consistent with that of a conformal operator in two dimensions fewer. Finally, our results can be used in a new definition of asymptotic Ricci flatness at null infinity based on the zero-Λ limit of asymptotically Einstein manifolds.
Renormalization-group theory of plasma microturbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carati, D.; Chriaa, K.; Balescu, R.
1994-08-01
The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less
Automated system for measuring temperature profiles inside ITS-90 fixed-point cells
NASA Astrophysics Data System (ADS)
Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko
2005-11-01
The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.
Comprehensive renormalization group analysis of the littlest seesaw model
NASA Astrophysics Data System (ADS)
Geib, Tanja; King, Stephen F.
2018-04-01
We present a comprehensive renormalization group analysis of the littlest seesaw model involving two right-handed neutrinos and a very constrained Dirac neutrino Yukawa coupling matrix. We perform the first χ2 analysis of the low energy masses and mixing angles, in the presence of renormalization group corrections, for various right-handed neutrino masses and mass orderings, both with and without supersymmetry. We find that the atmospheric angle, which is predicted to be near maximal in the absence of renormalization group corrections, may receive significant corrections for some nonsupersymmetric cases, bringing it into close agreement with the current best fit value in the first octant. By contrast, in the presence of supersymmetry, the renormalization group corrections are relatively small, and the prediction of a near maximal atmospheric mixing angle is maintained, for the studied cases. Forthcoming results from T2K and NO ν A will decisively test these models at a precision comparable to the renormalization group corrections we have calculated.
Fixed point theorems and dissipative processes
NASA Technical Reports Server (NTRS)
Hale, J. K.; Lopes, O.
1972-01-01
The deficiencies of the theories that characterize the maximal compact invariant set of T as asymptotically stable, and that some iterate of T has a fixed point are discussed. It is shown that this fixed point condition is always satisfied for condensing and local dissipative T. Applications are given to a class of neutral functional differential equations.
NASA Astrophysics Data System (ADS)
Bochicchio, Marco
2017-03-01
Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.
Lepton-rich cold QCD matter in protoneutron stars
NASA Astrophysics Data System (ADS)
Jiménez, J. C.; Fraga, E. S.
2018-05-01
We investigate protoneutron star matter using the state-of-the-art perturbative equation of state for cold and dense QCD in the presence of a fixed lepton fraction in which both electrons and neutrinos are included. Besides computing the modifications in the equation of state due to the presence of trapped neutrinos, we show that stable strange quark matter has a more restricted parameter space. We also study the possibility of nucleation of unpaired quark matter in the core of protoneutron stars by matching the lepton-rich QCD pressure onto a hadronic equation of state, namely TM1 with trapped neutrinos. Using the inherent dependence of perturbative QCD on the renormalization scale parameter, we provide a measure of the uncertainty in the observables we compute.
Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Comfort, Everett; Lee, Ji Ung
2016-06-01
The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.
Slater, P B
1985-08-01
Two distinct approaches to assessing the effect of geographic scale on spatial interactions are modeled. In the first, the question of whether a distance deterrence function, which explains interactions for one system of zones, can also succeed on a more aggregate scale, is examined. Only the two-parameter function for which it is found that distances between macrozones are weighted averaged of distances between component zones is satisfactory in this regard. Estimation of continuous (point-to-point) functions--in the form of quadrivariate cubic polynomials--for US interstate migration streams, is then undertaken. Upon numerical integration, these higher order surfaces yield predictions of interzonal and intrazonal movements at any scale of interest. Test of spatial stationarity, isotropy, and symmetry of interstate migration are conducted in this framework.
Common fixed point theorems for maps under a contractive condition of integral type
NASA Astrophysics Data System (ADS)
Djoudi, A.; Merghadi, F.
2008-05-01
Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].
NASA Astrophysics Data System (ADS)
Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.
1997-03-01
Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.
NASA Astrophysics Data System (ADS)
Zacharias, Marios; Giustino, Feliciano
Electron-phonon interactions are of fundamental importance in the study of the optical properties of solids at finite temperatures. Here we present a new first-principles computational technique based on the Williams-Lax theory for performing predictive calculations of the optical spectra, including quantum zero-point renormalization and indirect absorption. The calculation of the Williams-Lax optical spectra is computationally challenging, as it involves the sampling over all possible nuclear quantum states. We develop an efficient computational strategy for performing ''one-shot'' finite-temperature calculations. These require only a single optimal configuration of the atomic positions. We demonstrate our methodology for the case of Si, C, and GaAs, yielding absorption coefficients in good agreement with experiment. This work opens the way for systematic calculations of optical spectra at finite temperature. This work was supported by the UK EPSRC (EP/J009857/1 and EP/M020517/) and the Leverhulme Trust (RL-2012-001), and the Graphene Flagship (EU-FP7-604391).
One-loop calculations in Supersymmetric Lattice QCD
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-03-01
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
NASA Astrophysics Data System (ADS)
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory
NASA Astrophysics Data System (ADS)
Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Conformal Symmetry as a Template for QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadronmore » phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.« less
Stochastic quantization of conformally coupled scalar in AdS
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Oh, Jae-Hyuk
2013-10-01
We explore the relation between stochastic quantization and holographic Wilsonian renormalization group flow further by studying conformally coupled scalar in AdS d+1. We establish one to one mapping between the radial flow of its double trace deformation and stochastic 2-point correlation function. This map is shown to be identical, up to a suitable field re-definition of the bulk scalar, to the original proposal in arXiv:1209.2242.
Variational Approach to Monte Carlo Renormalization Group
NASA Astrophysics Data System (ADS)
Wu, Yantao; Car, Roberto
2017-12-01
We present a Monte Carlo method for computing the renormalized coupling constants and the critical exponents within renormalization theory. The scheme, which derives from a variational principle, overcomes critical slowing down, by means of a bias potential that renders the coarse grained variables uncorrelated. The two-dimensional Ising model is used to illustrate the method.
Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Entanglement entropy of the Q≥4 quantum Potts chain.
Lajkó, Péter; Iglói, Ferenc
2017-01-01
The entanglement entropy S is an indicator of quantum correlations in the ground state of a many-body quantum system. At a second-order quantum phase-transition point in one dimension S generally has a logarithmic singularity. Here we consider quantum spin chains with a first-order quantum phase transition, the prototype being the Q-state quantum Potts chain for Q>4 and calculate S across the transition point. According to numerical, density matrix renormalization group results at the first-order quantum phase transition point S shows a jump, which is expected to vanish for Q→4^{+}. This jump is calculated in leading order as ΔS=lnQ[1-4/Q-2/(QlnQ)+O(1/Q^{2})].
Quasifixed points from scalar sequestering and the little hierarchy problem in supersymmetry
NASA Astrophysics Data System (ADS)
Martin, Stephen P.
2018-02-01
In supersymmetric models with scalar sequestering, superconformal strong dynamics in the hidden sector suppresses the low-energy couplings of mass dimension 2, compared to the squares of the dimension-1 parameters. Taking into account restrictions on the anomalous dimensions in superconformal theories, I point out that the interplay between the hidden and visible sector renormalizations gives rise to quasifixed point running for the supersymmetric Standard Model squared mass parameters, rather than driving them to 0. The extent to which this dynamics can ameliorate the little hierarchy problem in supersymmetry is studied. Models of this type in which the gaugino masses do not unify are arguably more natural, and are certainly more likely to be accessible, eventually, to the Large Hadron Collider.
Renormalization of the inflationary perturbations revisited
NASA Astrophysics Data System (ADS)
Markkanen, Tommi
2018-05-01
In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.
Metallic and antiferromagnetic fixed points from gravity
NASA Astrophysics Data System (ADS)
Paul, Chandrima
2018-06-01
We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.
PCC Framework for Program-Generators
NASA Technical Reports Server (NTRS)
Kong, Soonho; Choi, Wontae; Yi, Kwangkeun
2009-01-01
In this paper, we propose a proof-carrying code framework for program-generators. The enabling technique is abstract parsing, a static string analysis technique, which is used as a component for generating and validating certificates. Our framework provides an efficient solution for certifying program-generators whose safety properties are expressed in terms of the grammar representing the generated program. The fixed-point solution of the analysis is generated and attached with the program-generator on the code producer side. The consumer receives the code with a fixed-point solution and validates that the received fixed point is indeed a fixed point of the received code. This validation can be done in a single pass.
Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry
NASA Astrophysics Data System (ADS)
Battuello, M.; Girard, F.; Florio, M.
2008-06-01
The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp
In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, andmore » therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .« less
Mangum, B W
1983-07-01
In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
Renormalization-group theory for the eddy viscosity in subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Hossain, Murshed
1988-01-01
Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.
Temperature and frequency dependent mean free paths of renormalized phonons in nonlinear lattices
NASA Astrophysics Data System (ADS)
Li, Nianbei; Liu, Junjie; Wu, Changqin; Li, Baowen
2018-02-01
Unraveling general properties of renormalized phonons are of fundamental relevance to the heat transport in the regime of strong nonlinearity. In this work, we directly study the temperature and frequency dependent mean free path (MFP) of renormalized phonons with the newly developed numerical tuning fork method. The typical 1D nonlinear lattices such as Fermi-Pasta-Ulam β lattice and {φ }4 lattice are investigated in detail. Interestingly, it is found that the MFPs are inversely proportional to the frequencies of renormalized phonons rather than the square of phonon frequencies predicted by existing phonon scattering theory.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2004-05-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Damien P.; Mooij, Sander; Postma, Marieke, E-mail: dpg39@cam.ac.uk, E-mail: sander.mooij@ing.uchile.cl, E-mail: mpostma@nikhef.nl
We compute the one-loop renormalization group equations for Standard Model Higgs inflation. The calculation is done in the Einstein frame, using a covariant formalism for the multi-field system. All counterterms, and thus the betafunctions, can be extracted from the radiative corrections to the two-point functions; the calculation of higher n-point functions then serves as a consistency check of the approach. We find that the theory is renormalizable in the effective field theory sense in the small, mid and large field regime. In the large field regime our results differ slightly from those found in the literature, due to a differentmore » treatment of the Goldstone bosons.« less
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2008-05-01
Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ` Paretian Poisson processes'. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.
NASA Technical Reports Server (NTRS)
Fairbanks, W. M.; Lipa, J. A.
1984-01-01
A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
NASA Astrophysics Data System (ADS)
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
NASA Astrophysics Data System (ADS)
Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.
2012-02-01
Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)
NASA Astrophysics Data System (ADS)
Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka
2008-06-01
This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Dynamical conductivity at the dirty superconductor-metal quantum phase transition.
Del Maestro, Adrian; Rosenow, Bernd; Hoyos, José A; Vojta, Thomas
2010-10-01
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.
Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT
NASA Astrophysics Data System (ADS)
Ongrai, O.; Elliott, C. J.
2017-08-01
In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.
Does Planck really rule out monomial inflation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Kari; Karčiauskas, Mindaugas, E-mail: kari.enqvist@helsinki.fi, E-mail: mindaugas.karciauskas@helsinki.fi
2014-02-01
We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale μ. In cosmology, there are not enough measurements to fix μ so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic φ{sup 2} models, some may be ruledmore » out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic φ{sup 4} models to meet the Planck constraints.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
Fixed-point theorems for families of weakly non-expansive maps
NASA Astrophysics Data System (ADS)
Mai, Jie-Hua; Liu, Xin-He
2007-10-01
In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.
Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction
Handa, Amrish
2014-01-01
We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688
Trivial dynamics in discrete-time systems: carrying simplex and translation arcs
NASA Astrophysics Data System (ADS)
Niu, Lei; Ruiz-Herrera, Alfonso
2018-06-01
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
47 CFR 101.101 - Frequency availability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... Television Relay Service—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101...-Point Microwave Service—(Part 101, Subparts C & H) PCS: Personal Communications Service—(Part 24) PET...
Cosmological singularities and bounce in Cartan-Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less
Cosmological singularities and bounce in Cartan-Einstein theory
NASA Astrophysics Data System (ADS)
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Excited state TBA and renormalized TCSA in the scaling Potts model
NASA Astrophysics Data System (ADS)
Lencsés, M.; Takács, G.
2014-09-01
We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.
NASA Astrophysics Data System (ADS)
Box, Andrew D.; Tata, Xerxes
2008-03-01
In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge (Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we calculate the β functions using a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY cousins that is ignored in the literature may be larger than two-loop effects which are included, and further that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a companion paper.
NASA Astrophysics Data System (ADS)
Pearce, Jonathan V.; Gisby, John A.; Steur, Peter P. M.
2016-08-01
A knowledge of the effect of impurities at the level of parts per million on the freezing temperature of very pure metals is essential for realisation of ITS-90 fixed points. New information has become available for use with the thermodynamic modelling software MTDATA, permitting calculation of liquidus slopes, in the low concentration limit, of a wider range of binary alloy systems than was previously possible. In total, calculated values for 536 binary systems are given. In addition, new experimental determinations of phase diagrams, in the low impurity concentration limit, have recently appeared. All available data have been combined to provide a comprehensive set of liquidus slopes for impurities in ITS-90 metal fixed points. In total, liquidus slopes for 838 systems are tabulated for the fixed points Hg, Ga, In, Sn, Zn, Al, Ag, Au, and Cu. It is shown that the value of the liquidus slope as a function of impurity element atomic number can be approximated using a simple formula, and good qualitative agreement with the existing data is observed for the fixed points Al, Ag, Au and Cu, but curiously the formula is not applicable to the fixed points Hg, Ga, In, Sn, and Zn. Some discussion is made concerning the influence of oxygen on the liquidus slopes, and some calculations using MTDATA are discussed. The BIPM’s consultative committee for thermometry has long recognised that the sum of individual estimates method is the ideal approach for assessing uncertainties due to impurities, but the community has been largely powerless to use the model due to lack of data. Here, not only is data provided, but a simple model is given to enable known thermophysical data to be used directly to estimate impurity effects for a large fraction of the ITS-90 fixed points.
Noncommutative Jackiw-Pi model: One-loop renormalization
NASA Astrophysics Data System (ADS)
Bufalo, R.; Ghasemkhani, M.; Alipour, M.
2018-06-01
In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.
Functional Renormalization Group Flows on Friedman-Lemaître-Robertson-Walker backgrounds
NASA Astrophysics Data System (ADS)
Platania, Alessia; Saueressig, Frank
2018-06-01
We revisit the construction of the gravitational functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation emphasizing its connection to the covariant formulation. The results obtained from projecting the renormalization group flow onto the Einstein-Hilbert action are reviewed in detail and we provide a novel example illustrating how the formalism may be connected to the causal dynamical triangulations approach to quantum gravity.
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...
Quantum Monte Carlo for atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations,more » the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.« less
The gravitational waves from the first-order phase transition with a dimension-six operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Rong-Gen; Wang, Shao-Jiang; Sasaki, Misao, E-mail: cairg@itp.ac.cn, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: schwang@itp.ac.cn
We investigate in details the gravitational wave (GW) from the first-order phase transition (PT) in the extended standard model of particle physics with a dimension-six operator, which is capable of exhibiting the recently discovered slow first-order PT in addition to the usually studied fast first-order PT. To simplify the discussion, it is sufficient to work with an example of a toy model with the sextic term, and we propose an unified description for both slow and fast first-order PTs. We next study the full one-loop effective potential of the model with fixed/running renormalization-group (RG) scales. Compared to the prediction ofmore » GW energy density spectrum from the fixed RG scale, we find that the presence of running RG scale could amplify the peak amplitude by amount of one order of magnitude while shift the peak frequency to the lower frequency regime, and the promising regime of detection within the sensitivity ranges of various space-based GW detectors shrinks down to a lower cut-off value of the sextic term rather than the previous expectation.« less
Proton-neutron sdg boson model and spherical-deformed phase transition
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Dynamical conductivity at the dirty superconductor-metal quantum phase transition
NASA Astrophysics Data System (ADS)
Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas
2011-03-01
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.
NASA Astrophysics Data System (ADS)
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy barrier in thermal activation to obtain our final result for the temperature-dependent critical pressure, which is significantly below the results if only parameter renormalization or only thermal activation is considered.
Critical behavior of dissipative two-dimensional spin lattices
NASA Astrophysics Data System (ADS)
Rota, R.; Storme, F.; Bartolo, N.; Fazio, R.; Ciuti, C.
2017-04-01
We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.
A Study in HRT Resolution: Seeking Maximum Sensitivity Among Variations in Sensing Element Material
NASA Technical Reports Server (NTRS)
Morales, Jeremy M.
2005-01-01
The EXACT (Experiments Along Coexistence near Tricriticality) project endeavors to perform the most rigorous test to date of Renormalization Group theory. In most cases, the theory gives only approximate solutions, but it offers exact predictions in the case of the He-3-He-4 tricritical point. Currently, the project is focused on maximizing the performance of the low-temperature system's HRT (high resolution thermometer) near the tricritical point. The HRT uses a PdMn sensing element, the qualities of which change based on its Mn concentration and whether or not it is annealed. All sensing element combinations will be catalogued, and through the data, the optimum configuration will be reported.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Emergent geometric description for a topological phase transition in the Kitaev superconductor model
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong
2017-10-01
Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.
Density matrix renormalization group study of Y-junction spin systems
NASA Astrophysics Data System (ADS)
Guo, Haihui
Junction systems are important to understand both from the fundamental and the practical point of view, as they are essential components in existing and future electronic and spintronic devices. With the continuous advance of technology, device size will eventual reach the atomic scale. Some of the most interesting and useful junction systems will be strongly correlated. We chose the Density Matrix Renormalization Group method to study two types of Y-junction systems, the Y and YDelta junctions, on strongly correlated spin chains. With new ideas coming from the quantum information field, we have made a very efficient. Y-junction DMRG algorithm, which improves the overall CUB cost from O(m6) to O(m4), where m is the number of states kept per block. We studied the ground state properties, the correlation length, and investigated the degeneracy problem on the Y and YDelta junctions. For the excited states, we researched the existence of magnon bound states for various conditions, and have shown that the bound state exists when the central coupling constant is small.
Will-Nordtvedt PPN formalism applied to renormalization group extensions of general relativity
NASA Astrophysics Data System (ADS)
Toniato, Júnior D.; Rodrigues, Davi C.; de Almeida, Álefe O. F.; Bertini, Nicolas
2017-09-01
We apply the full Will-Nordtvedt version of the parametrized post-Newtonian (PPN) formalism to a class of general relativity extensions that are based on nontrivial renormalization group (RG) effects at large scales. We focus on a class of models in which the gravitational coupling constant G is correlated with the Newtonian potential. A previous PPN analysis considered a specific realization of the RG effects, and only within the Eddington-Robertson-Schiff version of the PPN formalism, which is a less complete and robust PPN formulation. Here we find stronger, more precise bounds, and with less assumptions. We also consider the external potential effect (EPE), which is an effect that is intrinsic to this framework and depends on the system environment (it has some qualitative similarities to the screening mechanisms of modified gravity theories). We find a single particular RG realization that is not affected by the EPE. Some physical systems have been pointed out as candidates for measuring the possible RG effects in gravity at large scales; for any of them the Solar System bounds need to be considered.
Critical frontier of the triangular Ising antiferromagnet in a field
NASA Astrophysics Data System (ADS)
Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.
2004-03-01
We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.
NLO QCD corrections to B c( B*c) production around the Z pole at an e + e - collider
NASA Astrophysics Data System (ADS)
Zheng, XuChang; Chang, ChaoHsi; Feng, TaiFu; Pan, Zan
2018-03-01
The production of B c and B*c mesons at a Z-factory (an e + e - collider operating at energies around the Z pole) is calculated up to the next-to-leading order (NLO) QCD accuracy. The results show that the dependence of the total cross sections on the renormalization scale μ is suppressed by the corrections, and the NLO corrections enhance the total cross sections of B c by 52% and of B*c by 33% when the renormalization scale is taken at μ = 2 m b . To observe the various behaviors of the production of the mesons B c and B*c, such as the differential cross section vs. the out-going angle, the forward-backward asymmetry, and the distribution vs. the energy fraction z up to NLO QCD accuracy as well as the relevant K-factor (NLO to LO) for the production, are calculated, and it is pointed out that some of the observables obtained in the present work may be used as a specific precision test of the standard model.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
On Selberg's trace formula: chaos, resonances and time delays
NASA Astrophysics Data System (ADS)
Lévay, Péter
2000-06-01
The quantization of the chaotic geodesic motion on Riemann surfaces Σg,κ of constant negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing scattering channels is investigated. It is shown that terms in Selberg's trace formula describing scattering states can be expressed in terms of a renormalized time delay. This quantity is the time delay associated with the surface in question minus the time delay corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are illustrated for the surfaces Σ1,1 (Gutzwiller's leaky torus), Σ0,3 (pants), and a class of Σg,2 surfaces. The generalization covering the inclusion of an integer B≥2 magnetic field is also presented. It is shown that the renormalized time delay is not dependent on the magnetic field. This shows that the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.
Inference with minimal Gibbs free energy in information field theory.
Ensslin, Torsten A; Weig, Cornelius
2010-11-01
Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.
2014-03-31
A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less
Analyzing survival curves at a fixed point in time for paired and clustered right-censored data
Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De
2018-01-01
In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280
APMP Scale Comparison with Three Radiation Thermometers and Six Fixed-Point Blackbodies
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, Y.; Ishii, J.
2015-08-01
New Asia Pacific Metrology Programme (APMP) comparisons of radiation thermometry standards, APMP TS-11, and -12, have recently been initiated. These new APMP comparisons cover the temperature range from to . Three radiation thermometers with central wavelengths of 1.6 , 0.9 , and 0.65 are the transfer devices for the radiation thermometer scale comparison conducted in the so-called star configuration. In parallel, a compact fixed-point blackbody furnace that houses six types of fixed-point cells of In, Sn, Zn, Al, Ag, and Cu is circulated, again in a star-type comparison, to substantiate fixed-point calibration capabilities. Twelve APMP national metrology institutes are taking part in this endeavor, in which the National Metrology Institute of Japan acts as the pilot. In this article, the comparison scheme is described with emphasis on the features of the transfer devices, i.e., the radiation thermometers and the fixed-point blackbodies. Results of preliminary evaluations of the performance and characteristic of these instruments as well as the evaluation method of the comparison results are presented.
Long-Term Stability of WC-C Peritectic Fixed Point
NASA Astrophysics Data System (ADS)
Khlevnoy, B. B.; Grigoryeva, I. A.
2015-03-01
The tungsten carbide-carbon peritectic (WC-C) melting transition is an attractive high-temperature fixed point with a temperature of . Earlier investigations showed high repeatability, small melting range, low sensitivity to impurities, and robustness of WC-C that makes it a prospective candidate for the highest fixed point of the temperature scale. This paper presents further study of the fixed point, namely the investigation of the long-term stability of the WC-C melting temperature. For this purpose, a new WC-C cell of the blackbody type was built using tungsten powder of 99.999 % purity. The stability of the cell was investigated during the cell aging for 50 h at the cell working temperature that tooks 140 melting/freezing cycles. The method of investigation was based on the comparison of the WC-C tested cell with a reference Re-C fixed-point cell that reduces an influence of the probable instability of a radiation thermometer. It was shown that after the aging period, the deviation of the WC-C cell melting temperature was with an uncertainty of.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Mozuelos, P.
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
47 CFR 101.133 - Limitations on use of transmitters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.133 Limitations on use of transmitters. (a...) Private operational fixed point-to-point microwave stations authorized in this service may communicate...-point microwave licenses may use the same transmitting equipment under the following terms and...
Anderson Acceleration for Fixed-Point Iterations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Homer F.
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
Side Effects in Time Discounting Procedures: Fixed Alternatives Become the Reference Point
2016-01-01
Typical research on intertemporal choice utilizes a two-alternative forced choice (2AFC) paradigm requiring participants to choose between a smaller sooner and larger later payoff. In the adjusting-amount procedure (AAP) one of the alternatives is fixed and the other is adjusted according to particular choices made by the participant. Such a method makes the alternatives unequal in status and is speculated to make the fixed alternative a reference point for choices, thereby affecting the decision made. The current study shows that fixing different alternatives in the AAP influences discount rates in intertemporal choices. Specifically, individuals’ (N = 283) choices were affected to just the same extent by merely fixing an alternative as when choices were preceded by scenarios explicitly imposing reference points. PMID:27768759
Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
Renormalization in Coulomb-gauge QCD within the Lagrangian formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niegawa, A.
2006-08-15
We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)
Geometry of the theory space in the exact renormalization group formalism
NASA Astrophysics Data System (ADS)
Pagani, C.; Sonoda, H.
2018-01-01
We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies
NASA Astrophysics Data System (ADS)
Mestel, B. D.; Osbaldestin, A. H.
2004-10-01
We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.
Solution of the effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1997-07-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a nonmagnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher (MF). We find a line of non-Fermi liquid fixed points which continuously interpolates between the two-channel Kondo fixed point (2CK) and the one-channel, two-impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 12 and one leading irrelevant operator with dimension 32. There is also one marginal operator in the spin sector moving along this line. The marginal operator, combined with the leading irrelevant operator, will generate the relevant operator. For the general position on this line, the leading low-temperature exponents of the specific heat, the hopping susceptibility and the electron conductivity Cimp,χhimp,σ(T) are the same as those of the 2CK, but the finite-size spectrum depends on the position on the line. No universal ratios can be formed from the amplitudes of the three quantities except at the 2CK point on this line where the universal ratios can be formed. At the 2IK point on this line, σ(T)~2σu(1+aT3/2), no universal ratio can be formed either. The additional non-Fermi-liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 12, and is therefore also unstable. The leading low-temperature behaviors are Cimp~T,χhimp~lnT,σ(T)~2σu(1+aT3/2) no universal ratios can be formed. The system is shown to flow to a line of Fermi-liquid fixed points which continuously interpolates between the noninteracting fixed point and the two-channel spin-flavor Kondo fixed point discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analyzed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a nonmagnetic impurity hopping around three sites with triangular symmetry discussed by MF.
Infrared fixed point of SU(2) gauge theory with six flavors
NASA Astrophysics Data System (ADS)
Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara
2018-06-01
We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
Study on the fixed point in crustal deformation before strong earthquake
NASA Astrophysics Data System (ADS)
Niu, A.; Li, Y.; Yan, W. Mr
2017-12-01
Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J.; Zhang, J. T.; Ping, Q.
2013-09-11
The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and thismore » will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.« less
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
Watching the brain recalibrate: Neural correlates of renormalization during face adaptation.
Kloth, Nadine; Rhodes, Gillian; Schweinberger, Stefan R
2017-07-15
The face perception system flexibly adjusts its neural responses to current face exposure, inducing aftereffects in the perception of subsequent faces. For instance, adaptation to expanded faces makes undistorted faces appear compressed, and adaptation to compressed faces makes undistorted faces appear expanded. Such distortion aftereffects have been proposed to result from renormalization, in which the visual system constantly updates a prototype according to the adaptors' characteristics and evaluates subsequent faces relative to that. However, although consequences of adaptation are easily observed in behavioral aftereffects, it has proven difficult to observe renormalization during adaptation itself. Here we directly measured brain responses during adaptation to establish a neural correlate of renormalization. Given that the face-evoked occipito-temporal P2 event-related brain potential has been found to increase with face prototypicality, we reasoned that the adaptor-elicited P2 could serve as an electrophysiological indicator for renormalization. Participants adapted to sequences of four distorted (compressed or expanded) or undistorted faces, followed by a slightly distorted test face, which they had to classify as undistorted or distorted. We analysed ERPs evoked by each of the adaptors and found that P2 (but not N170) amplitudes evoked by consecutive adaptor faces exhibited an electrophysiological pattern of renormalization during adaptation to distorted faces: P2 amplitudes evoked by both compressed and expanded adaptors significantly increased towards asymptotic levels as adaptation proceeded. P2 amplitudes were smallest for the first adaptor, significantly larger for the second, and yet larger for the third adaptor. We conclude that the sensitivity of the occipito-temporal P2 to the perceived deviation of a face from the norm makes this component an excellent tool to study adaptation-induced renormalization. Copyright © 2017 Elsevier Inc. All rights reserved.
Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.
1985-03-01
We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.
Global symmetries and renormalizability of Lee-Wick theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chivukula, R. Sekhar; Farzinnia, Arsham; Foadi, Roshan
2010-08-01
In this paper we discuss the global symmetries and the renormalizability of Lee-Wick (LW) scalar QED. In particular, in the ''auxiliary-field'' formalism we identify softly broken SO(1,1) global symmetries of the theory. We introduce SO(1,1) invariant gauge-fixing conditions that allow us to show in the auxiliary-field formalism directly that the number of superficially divergent amplitudes in a LW Abelian gauge theory is finite. To illustrate the renormalizability of the theory, we explicitly carry out the one-loop renormalization program in LW scalar QED and demonstrate how the counterterms required are constrained by the joint conditions of gauge and SO(1,1) invariance. Wemore » also compute the one-loop beta functions in LW scalar QED and contrast them with those of ordinary scalar QED.« less
2+1 flavor lattice QCD toward the physical point
NASA Astrophysics Data System (ADS)
Aoki, S.; Ishikawa, K.-I.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshié, T.
2009-02-01
We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at β=1.9, corresponding to the lattice spacing of a=0.0907(13)fm, on a 323×64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants lmacr 3 and lmacr 4 are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing mπ, mK and mΩ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of fπ, fK and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain mudM Smacr and msM Smacr extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
47 CFR 101.143 - Minimum path length requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table...
Fixed point theorems for generalized contractions in ordered metric spaces
NASA Astrophysics Data System (ADS)
O'Regan, Donal; Petrusel, Adrian
2008-05-01
The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, MEC. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.
Effective dynamics of a classical point charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr
2014-03-15
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less
Nonlinear evolution of baryon acoustic oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman
2008-01-15
We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less
Effective scalar field theory and reduction of couplings
NASA Astrophysics Data System (ADS)
Atance, Mario; Cortés, José Luis
1997-09-01
A general discussion of the renormalization of the quantum theory of a scalar field as an effective field theory is presented. The renormalization group equations in a mass-independent renormalization scheme allow us to identify the possibility to go beyond the renormalizable φ4 theory without losing its predictive power. It is shown that there is a minimal extension with just one additional free parameter (the mass scale of the effective theory expansion) and some of its properties are discussed.
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
Callan-Symanzik equations for infrared Yang-Mills theory
NASA Astrophysics Data System (ADS)
Weber, Axel; Dall'Olio, Pietro
2017-12-01
Dyson-Schwinger equations have been successful in determining the correlation functions in Yang-Mills theory in the Landau gauge, in the infrared regime. We argue that similar results can be obtained, in a technically simpler way, with Callan-Symanzik renormalization group equations. We present generalizations of the infrared safe renormalization scheme proposed by Tissier and Wschebor in 2011, and show how the renormalization scheme dependence can be used to improve the matching to the existing lattice data for the gluon and ghost propagators.
The { β}-expansion formalism in perturbative QCD and its extension
NASA Astrophysics Data System (ADS)
Kataev, A. L.; Mikhailov, S. V.
2016-11-01
We discuss the { β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the { β}-expansion. We illustrate this feature considering the nonsinglet Adler function D NS in the third order of perturbation. We propose a generalization of the { β}-expansion for the renormalization group covariant quantities — the { β, γ}-expansion.
Johnston, S.; Lee, W. S.; Chen, Y.; ...
2010-01-01
We presenmore » t a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of Cu O 2 layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.« less
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Massimiliano, E-mail: massimiliano.rinaldi@unitn.it
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to mattermore » domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.« less
Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano
2015-10-01
We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.
Hackenberg, T D; Hineline, P N
1992-01-01
Pigeons chose between two schedules of food presentation, a fixed-interval schedule and a progressive-interval schedule that began at 0 s and increased by 20 s with each food delivery provided by that schedule. Choosing one schedule disabled the alternate schedule and stimuli until the requirements of the chosen schedule were satisfied, at which point both schedules were again made available. Fixed-interval duration remained constant within individual sessions but varied across conditions. Under reset conditions, completing the fixed-interval schedule not only produced food but also reset the progressive interval to its minimum. Blocks of sessions under the reset procedure were interspersed with sessions under a no-reset procedure, in which the progressive schedule value increased independent of fixed-interval choices. Median points of switching from the progressive to the fixed schedule varied systematically with fixed-interval value, and were consistently lower during reset than during no-reset conditions. Under the latter, each subject's choices of the progressive-interval schedule persisted beyond the point at which its requirements equaled those of the fixed-interval schedule at all but the highest fixed-interval value. Under the reset procedure, switching occurred at or prior to that equality point. These results qualitatively confirm molar analyses of schedule preference and some versions of optimality theory, but they are more adequately characterized by a model of schedule preference based on the cumulated values of multiple reinforcers, weighted in inverse proportion to the delay between the choice and each successive reinforcer. PMID:1548449
Fixed Point Results of Locally Contractive Mappings in Ordered Quasi-Partial Metric Spaces
Arshad, Muhammad; Ahmad, Jamshaid
2013-01-01
Fixed point results for a self-map satisfying locally contractive conditions on a closed ball in an ordered 0-complete quasi-partial metric space have been established. Instead of monotone mapping, the notion of dominated mappings is applied. We have used weaker metric, weaker contractive conditions, and weaker restrictions to obtain unique fixed points. An example is given which shows that how this result can be used when the corresponding results cannot. Our results generalize, extend, and improve several well-known conventional results. PMID:24062629
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryainov, V V
2015-01-31
The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less
van Stralen, R A; Heesterbeek, P J C; Wymenga, A B
2015-11-01
In anteroposterior (AP)-gliding mobile-bearing total knee arthroplasty (TKA), the femoral component can theoretically slide forward resulting in a more anterior contact point, causing pain due to impingement. A lower lever arm of the extensor apparatus can also attribute to higher patella pressures and pain. The goal of this study was to determine the contact point in a cohort of mobile- and fixed-bearing TKAs, to determine whether the contact point lies more anteriorly in mobile-bearing TKA and to confirm whether this results in anterior knee pain. We used 38 fixed-bearing TKA and 40 mobile-bearing TKA from a randomized trial with straight lateral knee X-rays and measured the contact point. The functional outcome was measured by Knee Society Score at 12 months postoperatively. Pain scores were analysed using a VAS score (0-100 mm) in all patients at rest and when moving. Difficulty at rising up out of a chair was also assessed using a VAS score. The contact point in mobile-bearing TKA was situated at 59.5 % of the AP distance of the tibia and in the fixed-bearing TKA group at 66.1 % (P< 0.05). Patients with mobile- and fixed-bearing TKAs had similar knee scores, pain scores and difficulty in chair rise. No significant correlation was found between contact point and knee pain. The hypothesis of a more anterior contact point in the mobile-bearing cohort was confirmed but no correlation with functional and pain scores in this cohort could be found. The tibiofemoral contact point could not be correlated with a different clinical outcome and higher incidence of anterior knee pain. This study further adds to the knowledge on possible differences between mobile- and fixed-bearing prostheses. Next to that, bad outcomes could not be explained by CP. Case series, Level IV.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
Onsite Calibration of a Precision IPRT Based on Gallium and Gallium-Based Small-Size Eutectic Points
NASA Astrophysics Data System (ADS)
Sun, Jianping; Hao, Xiaopeng; Zeng, Fanchao; Zhang, Lin; Fang, Xinyun
2017-04-01
Onsite thermometer calibration with temperature scale transfer technology based on fixed points can effectively improve the level of industrial temperature measurement and calibration. The present work performs an onsite calibration of a precision industrial platinum resistance thermometer near room temperature. The calibration is based on a series of small-size eutectic points, including Ga-In (15.7°C), Ga-Sn (20.5°C), Ga-Zn (25.2°C), and a Ga fixed point (29.7°C), developed in a portable multi-point automatic realization apparatus. The temperature plateaus of the Ga-In, Ga-Sn, and Ga-Zn eutectic points and the Ga fixed point last for longer than 2 h, and their reproducibility was better than 5 mK. The device is suitable for calibrating non-detachable temperature sensors in advanced environmental laboratories and industrial fields.
van Maanen, Leendert; de Jong, Ritske; van Rijn, Hedderik
2014-01-01
When multiple strategies can be used to solve a type of problem, the observed response time distributions are often mixtures of multiple underlying base distributions each representing one of these strategies. For the case of two possible strategies, the observed response time distributions obey the fixed-point property. That is, there exists one reaction time that has the same probability of being observed irrespective of the actual mixture proportion of each strategy. In this paper we discuss how to compute this fixed-point, and how to statistically assess the probability that indeed the observed response times are generated by two competing strategies. Accompanying this paper is a free R package that can be used to compute and test the presence or absence of the fixed-point property in response time data, allowing for easy to use tests of strategic behavior. PMID:25170893
Fixed Point Learning Based Intelligent Traffic Control System
NASA Astrophysics Data System (ADS)
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
Assessment of tungsten/rhenium thermocouples with metal-carbon eutectic fixed points up to 1500°C
NASA Astrophysics Data System (ADS)
Gotoh, M.
2013-09-01
Four Type A thermocouples and two Type C thermocouples were calibrated at the Au fixed point and Co-C and Pd-C eutectic fixed points. The thermocouples were exposed to 1330 °C for a total of 100 hours. The maximum drift due to the exposure was found to be 4.8 °C. The fixed-point calibration EMF of these thermocouples deviated by less than 0.86% from the temperature specified by the standards ASTM E230-2003 for Type C and GOSTR 8.585-2001 for Type A. The length of one of Type A thermocouples A52 is longer than the others by 150mm. Making use of this provision it was possible to place annealed part of A52 to the temperature gradient part of calibration arrangement every time. Therefore observed aging effect was as low as 0.5 °C compared to the other thermocouples.
Positive solutions of fractional integral equations by the technique of measure of noncompactness.
Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel
2017-01-01
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
More asymptotic safety guaranteed
NASA Astrophysics Data System (ADS)
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Migdal's theorem and electron-phonon vertex corrections in Dirac materials
NASA Astrophysics Data System (ADS)
Roy, Bitan; Sau, Jay D.; Das Sarma, S.
2014-04-01
Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.