Renormalization group approach to power-law modeling of complex metabolic networks.
Hernández-Bermejo, Benito
2010-08-07
In the modeling of complex biological systems, and especially in the framework of the description of metabolic pathways, the use of power-law models (such as S-systems and GMA systems) often provides a remarkable accuracy over several orders of magnitude in concentrations, an unusually broad range not fully understood at present. In order to provide additional insight in this sense, this article is devoted to the renormalization group analysis of reactions in fractal or self-similar media. In particular, the renormalization group methodology is applied to the investigation of how rate-laws describing such reactions are transformed when the geometric scale is changed. The precise purpose of such analysis is to investigate whether or not power-law rate-laws present some remarkable features accounting for the successes of power-law modeling. As we shall see, according to the renormalization group point of view the answer is positive, as far as power-laws are the critical solutions of the renormalization group transformation, namely power-law rate-laws are the renormalization group invariant solutions. Moreover, it is shown that these results also imply invariance under the group of concentration scalings, thus accounting for the reported power-law model accuracy over several orders of magnitude in metabolite concentrations. Copyright 2010 Elsevier Ltd. All rights reserved.
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
Multiscale unfolding of real networks by geometric renormalization
NASA Astrophysics Data System (ADS)
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.
Saveliev, V L; Gorokhovski, M A
2005-07-01
On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Nava, Andrea
2015-09-01
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
NASA Astrophysics Data System (ADS)
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale
NASA Astrophysics Data System (ADS)
Bellon, Marc P.; Clavier, Pierre J.
2018-02-01
Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.
Galilean invariance and vertex renormalization in turbulence theory.
McComb, W D
2005-03-01
The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field. However, the total velocity transformation is effected by transformation of the mean velocity alone. For a constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant in the comoving frame, and vertex renormalization is not constrained by this symmetry.
NASA Astrophysics Data System (ADS)
Baldovin, F.; Robledo, A.
2002-10-01
We uncover the dynamics at the chaos threshold μ∞ of the logistic map and find that it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ∞. We corroborate this structure analytically via the Feigenbaum renormalization-group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a q exponential, of which we determine the q index and the q-generalized Lyapunov coefficient λq. Our results are an unequivocal validation of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical points of nonlinear maps.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Yu
Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less
Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective
NASA Technical Reports Server (NTRS)
Zhou, Ye; McComb, W. David; Vahala, George
1997-01-01
The term renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.
Renormalization-group study of the Nagel-Schreckenberg model
NASA Astrophysics Data System (ADS)
Teoh, Han Kheng; Yong, Ee Hou
2018-03-01
We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p =0 , the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρc*=0 and 1, and one unstable fixed point, ρc*=1 /(vmax+1 ) , are obtained. The critical exponent ν which is related to the correlation length is calculated for various vmax. The critical exponent appears to decrease weakly with vmax from ν =1.62 to the asymptotical value of 1.00. For the random case p >0 , the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p →0 is studied with simulation, and the RG flow in the ρ -p plane is obtained. The fixed points p =0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.
N3LO NN interaction adjusted to light nuclei in ab exitu approach
Shirokov, A. M.; Shin, I. J.; Kim, Y.; ...
2016-08-09
Here, we use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. Then, we test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.
In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem
NASA Astrophysics Data System (ADS)
Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.
Time Reparametrization Group and the Long Time Behavior in Quantum Glassy Systems
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio
2001-02-01
We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations; in this language the long time behavior of this model is controlled by a reparametrization group ( RpG) fixed point of the classical dynamics. The irrelevance of quantum terms in the dynamical equations in the aging regime explains the classical nature of the out of equilibrium fluctuation-dissipation relation.
Operator evolution for ab initio electric dipole transitions of 4He
Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...
2015-07-24
A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less
NASA Astrophysics Data System (ADS)
Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El
2018-04-01
Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.
Real-space decoupling transformation for quantum many-body systems.
Evenbly, G; Vidal, G
2014-06-06
We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.
2018-05-01
As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.
Comprehensive renormalization group analysis of the littlest seesaw model
NASA Astrophysics Data System (ADS)
Geib, Tanja; King, Stephen F.
2018-04-01
We present a comprehensive renormalization group analysis of the littlest seesaw model involving two right-handed neutrinos and a very constrained Dirac neutrino Yukawa coupling matrix. We perform the first χ2 analysis of the low energy masses and mixing angles, in the presence of renormalization group corrections, for various right-handed neutrino masses and mass orderings, both with and without supersymmetry. We find that the atmospheric angle, which is predicted to be near maximal in the absence of renormalization group corrections, may receive significant corrections for some nonsupersymmetric cases, bringing it into close agreement with the current best fit value in the first octant. By contrast, in the presence of supersymmetry, the renormalization group corrections are relatively small, and the prediction of a near maximal atmospheric mixing angle is maintained, for the studied cases. Forthcoming results from T2K and NO ν A will decisively test these models at a precision comparable to the renormalization group corrections we have calculated.
Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Wu, Yong-Shi
2002-02-01
A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.
Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo
2018-01-18
The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.
Renormalization-group theory for finite-size scaling in extreme statistics
NASA Astrophysics Data System (ADS)
Györgyi, G.; Moloney, N. R.; Ozogány, K.; Rácz, Z.; Droz, M.
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Horizon as critical phenomenon
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik
2016-09-01
We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
Renormalization Group Invariance of the Pole Mass in the Multi-Higgs System
NASA Astrophysics Data System (ADS)
Kim, Chungku
2018-06-01
We have investigated the renormalization group running of the pole mass in the multi-Higgs theory in two different types of gauge fixing conditions. The pole mass, when expressed in terms of the Lagrangian parameters, turns out to be invariant under the renormalization group with the beta and gamma functions of the symmetric phase.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
NASA Technical Reports Server (NTRS)
Defacio, Brian; Kim, S.-H.; Vannevel, A.
1994-01-01
The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.
Magnetic-field control of electric polarization in coupled spin chains with three-site interactions
NASA Astrophysics Data System (ADS)
Sznajd, Jozef
2018-06-01
The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.
Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves
2014-01-01
Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.
Goh, Segun; Lee, Keumsook; Choi, MooYoung; Fortin, Jean-Yves
2014-01-01
Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) “block stop” and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow. PMID:24599221
Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization
NASA Astrophysics Data System (ADS)
An, Ok Song
2017-12-01
We present a systematic approach to supersymmetric holographic renormalization for a generic 5D N=2 gauged supergravity theory with matter multiplets, including its fermionic sector, with all gauge fields consistently set to zero. We determine the complete set of supersymmetric local boundary counterterms, including the finite counterterms that parameterize the choice of supersymmetric renormalization scheme. This allows us to derive holographically the superconformal Ward identities of a 4D superconformal field theory on a generic background, including the Weyl and super-Weyl anomalies. Moreover, we show that these anomalies satisfy the Wess-Zumino consistency condition. The super-Weyl anomaly implies that the fermionic operators of the dual field theory, such as the supercurrent, do not transform as tensors under rigid supersymmetry on backgrounds that admit a conformal Killing spinor, and their anticommutator with the conserved supercharge contains anomalous terms. This property is explicitly checked for a toy model. Finally, using the anomalous transformation of the supercurrent, we obtain the anomaly-corrected supersymmetry algebra on curved backgrounds admitting a conformal Killing spinor.
Products of composite operators in the exact renormalization group formalism
NASA Astrophysics Data System (ADS)
Pagani, C.; Sonoda, H.
2018-02-01
We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.
Functional Renormalization Group Flows on Friedman-Lemaître-Robertson-Walker backgrounds
NASA Astrophysics Data System (ADS)
Platania, Alessia; Saueressig, Frank
2018-06-01
We revisit the construction of the gravitational functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation emphasizing its connection to the covariant formulation. The results obtained from projecting the renormalization group flow onto the Einstein-Hilbert action are reviewed in detail and we provide a novel example illustrating how the formalism may be connected to the causal dynamical triangulations approach to quantum gravity.
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand, E-mail: davi.rodrigues@cosmo-ufes.org, E-mail: Bertrand.Chauvineau@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.
A Whole Word and Number Reading Machine Based on Two Dimensional Low Frequency Fourier Transforms
1990-12-01
they are energy normalized. The normalization process accounts for brightness variations and is equivalent to graphing each 2DFT onto the surface of an n...determined empirically (trial and error). Each set is energy normalized based on the number of coefficients within the set. Therefore, the actual...using the 6 font group case with the top 1000 words, where the energy has been renormalized based on the particular number of coefficients being used
NASA Astrophysics Data System (ADS)
Box, Andrew D.; Tata, Xerxes
2008-03-01
In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge (Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we calculate the β functions using a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY cousins that is ignored in the literature may be larger than two-loop effects which are included, and further that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a companion paper.
The renormalization scale-setting problem in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Renormalization-group theory of plasma microturbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carati, D.; Chriaa, K.; Balescu, R.
1994-08-01
The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-07
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Renormalization-group theory for the eddy viscosity in subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Hossain, Murshed
1988-01-01
Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.
Renormalization group independence of Cosmological Attractors
NASA Astrophysics Data System (ADS)
Fumagalli, Jacopo
2017-06-01
The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
Algorithms for tensor network renormalization
NASA Astrophysics Data System (ADS)
Evenbly, G.
2017-01-01
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. First, we recall established techniques for how the partition function of a 2 D classical many-body system or the Euclidean path integral of a 1 D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2 D classical statistical and 1 D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
Differential renormalization-group generators for static and dynamic critical phenomena
NASA Astrophysics Data System (ADS)
Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.
1992-09-01
The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.
Geometry of the theory space in the exact renormalization group formalism
NASA Astrophysics Data System (ADS)
Pagani, C.; Sonoda, H.
2018-01-01
We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.
Renormalization group contraction of tensor networks in three dimensions
NASA Astrophysics Data System (ADS)
García-Sáez, Artur; Latorre, José I.
2013-02-01
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three-dimensional quantum system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.
Effective-field renormalization-group method for Ising systems
NASA Astrophysics Data System (ADS)
Fittipaldi, I. P.; De Albuquerque, D. F.
1992-02-01
A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.
Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model
NASA Astrophysics Data System (ADS)
Sousa, J. Ricardo de
A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.
NASA Astrophysics Data System (ADS)
de Albuquerque, Douglas F.; Santos-Silva, Edimilson; Moreno, N. O.
2009-10-01
In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.
NASA Astrophysics Data System (ADS)
Kargarian, M.; Jafari, R.; Langari, A.
2007-12-01
We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.
Alien calculus and non perturbative effects in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bellon, Marc P.
2016-12-01
In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models
NASA Astrophysics Data System (ADS)
Ferreira, P. M.; Lavoura, L.; Silva, João P.
2010-05-01
We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.
Functional renormalization group analysis of tensorial group field theories on Rd
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele
2016-07-01
Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.
Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization
NASA Astrophysics Data System (ADS)
Dütsch, Michael; Fredenhagen, Klaus; Keller, Kai Johannes; Rejzner, Katarzyna
2014-12-01
We reformulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. This closed expression, which we call the Epstein-Glaser Forest Formula, is analogous to Zimmermann's Forest Formula for BPH renormalization. For scalar fields, the resulting renormalization method is always applicable, we compute several examples. We also analyze the Hopf algebraic aspects of the combinatorics. Our starting point is the Main Theorem of Renormalization of Stora and Popineau and the arising renormalization group as originally defined by Stückelberg and Petermann.
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
NASA Astrophysics Data System (ADS)
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.
Improved Monte Carlo Renormalization Group Method
DOE R&D Accomplishments Database
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
AdS/CFT and local renormalization group with gauge fields
NASA Astrophysics Data System (ADS)
Kikuchi, Ken; Sakai, Tadakatsu
2016-03-01
We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
Maruyoshi, Kazunobu; Song, Jaewon
2017-02-14
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyoshi, Kazunobu; Song, Jaewon
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Renormalization group, normal form theory and the Ising model
NASA Astrophysics Data System (ADS)
Raju, Archishman; Hayden, Lorien; Clement, Colin; Liarte, Danilo; Sethna, James
The results of the renormalization group are commonly advertised as the existence of power law singularities at critical points. Logarithmic and exponential corrections are seen as special cases and dealt with on a case-by-case basis. We propose to systematize computing the singularities in the renormalization group using perturbative normal form theory. This gives us a way to classify all such singularities in a unified framework and to generate a systematic machinery to do scaling collapses. We show that this procedure leads to some new results even in classic cases like the Ising model and has general applicability.
Hypercuboidal renormalization in spin foam quantum gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
The { β}-expansion formalism in perturbative QCD and its extension
NASA Astrophysics Data System (ADS)
Kataev, A. L.; Mikhailov, S. V.
2016-11-01
We discuss the { β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the { β}-expansion. We illustrate this feature considering the nonsinglet Adler function D NS in the third order of perturbation. We propose a generalization of the { β}-expansion for the renormalization group covariant quantities — the { β, γ}-expansion.
Variational Approach to Monte Carlo Renormalization Group
NASA Astrophysics Data System (ADS)
Wu, Yantao; Car, Roberto
2017-12-01
We present a Monte Carlo method for computing the renormalized coupling constants and the critical exponents within renormalization theory. The scheme, which derives from a variational principle, overcomes critical slowing down, by means of a bias potential that renders the coarse grained variables uncorrelated. The two-dimensional Ising model is used to illustrate the method.
Millimeter wave generation by relativistic electron beams
NASA Astrophysics Data System (ADS)
Kuo, S. S.; Cheo, B. R.; Tiong, K. K.; Whang, M. H.
1985-11-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effects of resonance broadening and perturbation expansion are treated simultaneously without time securities. The renormalization procedure is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to imhomogeneous plasma and the relationship between the transformation and ponderomotive force is obtained.
Entanglement renormalization and topological order.
Aguado, Miguel; Vidal, Guifré
2008-02-22
The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Ousmane Samary, Dine
2017-02-01
This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.
Exact renormalization group equations: an introductory review
NASA Astrophysics Data System (ADS)
Bagnuls, C.; Bervillier, C.
2001-07-01
We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.
Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...
2015-06-26
The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less
PyR@TE. Renormalization group equations for general gauge theories
NASA Astrophysics Data System (ADS)
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer: Personal computer. Operating system: Tested on Fedora 15, MacOS 10 and 11, Ubuntu 12. Classification: 11.1. External routines: SymPy, PyYAML, NumPy, IPython, SciPy Nature of problem: Deriving the renormalization group equations for a general quantum field theory. Solution method: Group theory, tensor algebra Running time: Tens of seconds per model (one-loop), tens of minutes (two-loop)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
NASA Astrophysics Data System (ADS)
Taylor, Marika; Woodhead, William
2017-12-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.
Emergent geometric description for a topological phase transition in the Kitaev superconductor model
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong
2017-10-01
Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
Renormalization group fixed points of foliated gravity-matter systems
NASA Astrophysics Data System (ADS)
Biemans, Jorn; Platania, Alessia; Saueressig, Frank
2017-05-01
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
Controlling sign problems in spin models using tensor renormalization
NASA Astrophysics Data System (ADS)
Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.; Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.; Zou, Haiyuan
2014-01-01
We consider the sign problem for classical spin models at complex β =1/g02 on L ×L lattices. We show that the tensor renormalization group method allows reliable calculations for larger Imβ than the reweighting Monte Carlo method. For the Ising model with complex β we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the tensor renormalization group method. We check the convergence of the tensor renormalization group method for the O(2) model on L×L lattices when the number of states Ds increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.
Turbulent transport of a passive-scalar field by using a renormalization-group method
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1992-01-01
A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Renormalizing Entanglement Distillation
NASA Astrophysics Data System (ADS)
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Alex W.; Rivas, Angel; Huelga, Susana F.
2010-09-15
By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less
Functional renormalization group and Kohn-Sham scheme in density functional theory
NASA Astrophysics Data System (ADS)
Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo
2018-04-01
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
Renormalization group flow of the Higgs potential
NASA Astrophysics Data System (ADS)
Gies, Holger; Sondenheimer, René
2018-01-01
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
The renormalization group and the implicit function theorem for amplitude equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkinis, Eleftherios
2008-07-15
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less
Renormalization of QCD in the interpolating momentum subtraction scheme at three loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.; Simms, R. M.
2018-04-01
We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.
Renormalization group analysis of dipolar Heisenberg model on square lattice
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-06-01
We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well-known J1-J2 model and describes the pseudospin degrees of freedom of polar molecules confined in deep optical lattice with long-range anisotropic dipole-dipole interactions. Previous study of this model based on tensor network ansatz indicates a paramagnetic ground state for certain dipole tilting angles which can be tuned in experiments to control the exchange couplings. The tensor ansatz formulated on a small cluster unit cell is inadequate to describe the spiral order, and therefore the phase diagram at high azimuthal tilting angles remains undetermined. Here, we obtain the full phase diagram of the model from numerical pseudofermion functional renormalization group calculations. We show that an extended quantum paramagnetic phase is realized between the Néel and stripe/spiral phases. In this region, the spin susceptibility flows smoothly down to the lowest numerical renormalization group scales with no sign of divergence or breakdown of the flow, in sharp contrast to the flow towards the long-range-ordered phases. Our results provide further evidence that the dipolar Heisenberg model is a fertile ground for quantum spin liquids.
Renormalization group naturalness of GUT Higgs potentials
NASA Astrophysics Data System (ADS)
Allanach, B. C.; Amelino-Camelia, G.; Philipsen, O.; Pisanti, O.; Rosa, L.
1999-01-01
We analyze the symmetry-breaking patterns of grand unified theories from the point of view of a recently proposed criterion of renormalization-group naturalness. We perform the analysis on simple non-SUSY SU(5) and SO(10) and SUSY SU(5) GUTs. We find that the naturalness criterion can favor spontaneous symmetry breaking in the direction of the smallest of the maximal little groups. Some differences between theories with and without supersymmetry are also emphasized.
Covariant Derivatives and the Renormalization Group Equation
NASA Astrophysics Data System (ADS)
Dolan, Brian P.
The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.
Renormalization group flow of the Higgs potential.
Gies, Holger; Sondenheimer, René
2018-03-06
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Strongly contracted canonical transformation theory
NASA Astrophysics Data System (ADS)
Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic
2010-01-01
Canonical transformation (CT) theory describes dynamic correlation in multireference systems with large active spaces. Here we discuss CT theory's intruder state problem and why our previous approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We propose the use of strongly and weakly contracted excitation operators as alternatives for dealing with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2, and NiO molecules, with comparisons made to complete active space second order perturbation theory and Davidson-corrected multireference configuration interaction theory. Finally, using a combination of strongly contracted CT theory and orbital-optimized density matrix renormalization group theory, we evaluate the singlet-triplet gap of free base porphin using an active space containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this size is currently only possible using CT theory.
Conductance scaling of junctions of Luttinger-liquid wires out of equilibrium
NASA Astrophysics Data System (ADS)
Aristov, D. N.; Wölfle, P.
2018-05-01
We develop the renormalization group theory of the conductances of N -lead junctions of spinless Luttinger-liquid wires as functions of bias voltages applied to N independent Fermi-liquid reservoirs. Based on the perturbative results up to second order in the interaction we demonstrate that the conductances obey scaling. The corresponding renormalization group β functions are derived up to second order.
Emergent supersymmetry in the marginal deformations of $$\\mathcal{N}=4$$ SYM
Jin, Qingjun
2016-10-24
Here, we study the one loop renormalization group flow of the marginal deformations ofmore » $$\\mathcal{N}=4$$ SYM theory using the a-function. We found that in the planar limit some non-supersymmetric deformations flow to the supersymmetric infrared fixed points described by the Leigh-Strassler theory. This means supersymmetry emerges as a result of renormalization group flow.« less
NASA Astrophysics Data System (ADS)
Adzhemyan, L. Ts.; Vorob'eva, S. E.; Ivanova, E. V.; Kompaniets, M. V.
2018-04-01
Using the representation for renormalization group functions in terms of nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the ɛ-expansion. We calculate the Feynman diagrams using the sector decomposition technique generalized to critical dynamics problems.
Effective scalar field theory and reduction of couplings
NASA Astrophysics Data System (ADS)
Atance, Mario; Cortés, José Luis
1997-09-01
A general discussion of the renormalization of the quantum theory of a scalar field as an effective field theory is presented. The renormalization group equations in a mass-independent renormalization scheme allow us to identify the possibility to go beyond the renormalizable φ4 theory without losing its predictive power. It is shown that there is a minimal extension with just one additional free parameter (the mass scale of the effective theory expansion) and some of its properties are discussed.
Callan-Symanzik equations for infrared Yang-Mills theory
NASA Astrophysics Data System (ADS)
Weber, Axel; Dall'Olio, Pietro
2017-12-01
Dyson-Schwinger equations have been successful in determining the correlation functions in Yang-Mills theory in the Landau gauge, in the infrared regime. We argue that similar results can be obtained, in a technically simpler way, with Callan-Symanzik renormalization group equations. We present generalizations of the infrared safe renormalization scheme proposed by Tissier and Wschebor in 2011, and show how the renormalization scheme dependence can be used to improve the matching to the existing lattice data for the gluon and ghost propagators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Luis; MartI, Jose M; Ibanez, Jose M
2010-05-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less
In-medium similarity renormalization group for closed and open-shell nuclei
NASA Astrophysics Data System (ADS)
Hergert, H.
2017-02-01
We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.
Renormalization Group scale-setting in astrophysical systems
NASA Astrophysics Data System (ADS)
Domazet, Silvije; Štefančić, Hrvoje
2011-09-01
A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.
Remarks on the renormalization group in statistical fluid dynamics
NASA Astrophysics Data System (ADS)
Fournier, J.-D.; Frisch, U.
1983-08-01
A variant of the renormalization group is applied to the problem of randomly forced fluids studied by Forster, Nelson, and Stephen
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2013-04-01
In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.
Loop optimization for tensor network renormalization
NASA Astrophysics Data System (ADS)
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
A functional renormalization method for wave propagation in random media
NASA Astrophysics Data System (ADS)
Lamagna, Federico; Calzetta, Esteban
2017-08-01
We develop the exact renormalization group approach as a way to evaluate the effective speed of the propagation of a scalar wave in a medium with random inhomogeneities. We use the Martin-Siggia-Rose formalism to translate the problem into a non equilibrium field theory one, and then consider a sequence of models with a progressively lower infrared cutoff; in the limit where the cutoff is removed we recover the problem of interest. As a test of the formalism, we compute the effective dielectric constant of an homogeneous medium interspersed with randomly located, interpenetrating bubbles. A simple approximation to the renormalization group equations turns out to be equivalent to a self-consistent two-loops evaluation of the effective dielectric constant.
Rigorous Free-Fermion Entanglement Renormalization from Wavelet Theory
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Swingle, Brian; Walter, Michael; Cotler, Jordan; Evenbly, Glen; Scholz, Volkher B.
2018-01-01
We construct entanglement renormalization schemes that provably approximate the ground states of noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms, which are approximately related by a "half-shift": translation by half a unit cell. The presence of the Fermi surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the entanglement in the ground state. We show how the error in the approximation can be controlled without ever performing a variational optimization.
Scheme Variations of the QCD Coupling and Hadronic τ Decays
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2016-10-01
The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.
Application of the algebraic RNG model for transition simulation. [renormalization group theory
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1990-01-01
The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.
Two band model for the cuprates
NASA Astrophysics Data System (ADS)
Liu, Shiu; White, Steven
2009-03-01
We use a numerical canonical transformation approach to derive an effective two-band model for the hole-doped cuprates, which keeps both oxygen and copper orbitals but removes double occupancy from each. A similar model was considered previously by Frenkel, Gooding, Shraiman, and Siggia (PRB 41, number 1, page 350). We compare the numerically derived model with previously obtained analytical results. In addition to the usual hopping terms between oxygens tpp and Cu-Cu exchange terms Jdd, the model also includes a strong copper-oxygen exchange interaction Jpd and a Kondo-like spin-flip oxygen-oxygen hopping term Kpdp. We use the density matrix renormalization group to study the charge, spin, and pairing properties of the derived model on ladder systems.
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
The density-matrix renormalization group: a short introduction.
Schollwöck, Ulrich
2011-07-13
The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
Leading temperature dependence of the conductance in Kondo-correlated quantum dots.
Aligia, A A
2018-04-18
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
Automatic calculation of supersymmetric renormalization group equations and loop corrections
NASA Astrophysics Data System (ADS)
Staub, Florian
2011-03-01
SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose gauge sector can be any direct product of SU(N) gauge groups. The chiral superfields can transform as any, irreducible representation with respect to these gauge groups and it is possible to handle an arbitrary number of symmetry breakings or particle rotations. Also the gauge fixing terms can be specified. Using this information, SARAH derives the mass matrices and Feynman rules at tree-level and generates model files for CalcHep/CompHep and FeynArts/FormCalc. In addition, it can calculate the renormalization group equations at one- and two-loop level and the one-loop corrections to the one- and two-point functions. Unusual features: SARAH just needs the superpotential and gauge sector as input and not the complete Lagrangian. Therefore, the complete implementation of new models is done in some minutes. Running time: Measured CPU time for the evaluation of the MSSM on an Intel Q8200 with 2.33 GHz. Calculating the complete Lagrangian: 12 seconds. Calculating all vertices: 75 seconds. Calculating the one- and two-loop RGEs: 50 seconds. Calculating the one-loop corrections: 7 seconds. Writing a FeynArts file: 1 second. Writing a CalcHep/CompHep file: 6 seconds. Writing the LaTeX output: 1 second.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
NASA Astrophysics Data System (ADS)
Bischoff, Jan-Moritz; Jeckelmann, Eric
2017-11-01
We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.
NASA Astrophysics Data System (ADS)
Antenucci, F.; Crisanti, A.; Leuzzi, L.
2014-07-01
The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.
NASA Astrophysics Data System (ADS)
Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu
2015-11-01
In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.
Critical behavior of a chiral superfluid in a bipartite square lattice
NASA Astrophysics Data System (ADS)
Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig
2018-01-01
We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.
Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation
2012-03-28
with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE
New applications of renormalization group methods in nuclear physics.
Furnstahl, R J; Hebeler, K
2013-12-01
We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.
Renormalization Group Theory for the Imbalanced Fermi Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbels, K. B.; Stoof, H. T. C.
2008-04-11
We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.
1990-01-01
An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.
NASA Astrophysics Data System (ADS)
Buessen, Finn Lasse; Roscher, Dietrich; Diehl, Sebastian; Trebst, Simon
2018-02-01
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU (N )-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N , we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU (N ) models. In a case study of the square-lattice SU (N ) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N . In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018), 10.1103/PhysRevB.97.064416] we formulate a momentum-space pf-FRG approach for SU (N ) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
Aharony, Ofer; Razamat, Shlomo S.; Seiberg, Nathan; ...
2017-02-10
Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N = (2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one)more » and a non-zero Fayet-Iliopoulos term, and pure SU( N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. As a result, we expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.« less
Kenneth Wilson and Renormalization
of the Renormalization Group (RG) into a central tool in physics. ... He received a doctorate from one of the most amazing experiences of my life," says Peskin. "He was saying, 'I see the big actually the data you need to move from one scale to another. ... RG theory implies that, with enough
Renormalizable group field theory beyond melonic diagrams: An example in rank four
NASA Astrophysics Data System (ADS)
Carrozza, Sylvain; Lahoche, Vincent; Oriti, Daniele
2017-09-01
We prove the renormalizability of a gauge-invariant, four-dimensional group field theory (GFT) model on SU(2), whose defining interactions correspond to necklace bubbles (found also in the context of new large-N expansions of tensor models), rather than melonic ones, which are not renormalizable in this case. The respective scaling of different interactions in the vicinity of the Gaussian fixed point is determined by the renormalization group itself. This is possible because the appropriate notion of canonical dimension of the GFT coupling constants takes into account the detailed combinatorial structure of the individual interaction terms. This is one more instance of the peculiarity (and greater mathematical richness) of GFTs with respect to ordinary local quantum field theories. We also explore the renormalization group flow of the model at the nonperturbative level, using functional renormalization group methods, and identify a nontrivial fixed point in various truncations. This model is expected to have a similar structure of divergences as the GFT models of 4D quantum gravity, thus paving the way to more detailed investigations on them.
Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Zhengcheng; Wen Xiaogang
2009-10-15
We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less
A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.
1991-01-01
A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.
Ab initio excited states from the in-medium similarity renormalization group
NASA Astrophysics Data System (ADS)
Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.
2017-04-01
We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.
Monte Carlo renormalization-group study of the Baxter-Wu model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotny, M.A.; Landau, D.P.; Swendsen, R.H.
1982-07-01
The effectiveness of a Monte Carlo renormalization-group method is studied by applying it to the Baxter-Wu model (Ising spins on a triangular lattice with three-spin interactions). The calculations yield three relevent eigenvalues in good agreement with exact or conjectured results. We demonstrate that the method is capable of distinguishing between models expected to be in the same universality class, when one of them (four-state Potts) exhibits logarithmic corrections to the usual power-law singularities and the other (Baxter-Wu) does not.
New applications of the renormalization group method in physics: a brief introduction.
Meurice, Y; Perry, R; Tsai, S-W
2011-07-13
The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.
Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-02-01
We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.
Two-loop renormalization of gaugino masses in general supersymmetric gauge models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.
1994-01-03
We calculate the two-loop renormalization group equations for the running gaugino masses in general supersymmetry (SUSY) gauge models, improving our previous result. We also study its consequences on the unification of the gaugino masses in the SUSY SU(5) model. The two-loop correction to the one-loop relation [ital m][sub [ital i
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O.
Roth, Robert; Langhammer, Joachim; Calci, Angelo; Binder, Sven; Navrátil, Petr
2011-08-12
We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions. We analyze the contributions of induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from the long-range two-pion terms of the chiral 3N interaction are sizable in (12)C and (16)O.
Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.
Open sd-shell nuclei from first principles
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...
2016-07-05
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Open sd-shell nuclei from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katanin, A. A., E-mail: katanin@mail.ru
We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32].more » We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.« less
Impact of topology in foliated quantum Einstein gravity.
Houthoff, W B; Kurov, A; Saueressig, F
2017-01-01
We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology [Formula: see text]. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology [Formula: see text] (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.
Phase structure of NJL model with weak renormalization group
NASA Astrophysics Data System (ADS)
Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi
2018-06-01
We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.
Effective field renormalization group approach for Ising lattice spin systems
NASA Astrophysics Data System (ADS)
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
Restoration of dimensional reduction in the random-field Ising model at five dimensions
NASA Astrophysics Data System (ADS)
Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D <6 to their values in the pure Ising model at D -2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.
Restoration of dimensional reduction in the random-field Ising model at five dimensions.
Fytas, Nikolaos G; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D-2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D=5. We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3≤D<6 to their values in the pure Ising model at D-2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.
NASA Astrophysics Data System (ADS)
Kazantsev, A. E.; Shakhmanov, V. Yu.; Stepanyantz, K. V.
2018-04-01
We investigate a recently proposed new form of the exact NSVZ β-function, which relates the β-function to the anomalous dimensions of the quantum gauge superfield, of the Faddeev-Popov ghosts, and of the chiral matter superfields. Namely, for the general renormalizable N = 1 supersymmetric gauge theory, regularized by higher covariant derivatives, the sum of all three-loop contributions to the β-function containing the Yukawa couplings is compared with the corresponding two-loop contributions to the anomalous dimensions of the quantum superfields. It is demonstrated that for the considered terms both new and original forms of the NSVZ relation are valid independently of the subtraction scheme if the renormalization group functions are defined in terms of the bare couplings. This result is obtained from the equality relating the loop integrals, which, in turn, follows from the factorization of the integrals for the β-function into integrals of double total derivatives. For the renormalization group functions defined in terms of the renormalized couplings we verify that the NSVZ scheme is obtained with the higher covariant derivative regularization supplemented by the subtraction scheme in which only powers of ln Λ /μ are included into the renormalization constants.
A key heterogeneous structure of fractal networks based on inverse renormalization scheme
NASA Astrophysics Data System (ADS)
Bai, Yanan; Huang, Ning; Sun, Lina
2018-06-01
Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.
On gauge independence for gauge models with soft breaking of BRST symmetry
NASA Astrophysics Data System (ADS)
Reshetnyak, Alexander
2014-12-01
A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.
Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron
2012-08-03
We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.
2PI effective theory at next-to-leading order using the functional renormalization group
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Friesen, S. A.; Meggison, B. A.; Phillips, C. D.; Pickering, D.; Sohrabi, K.
2018-02-01
We consider a symmetric scalar theory with quartic coupling in four dimensions. We show that the four-loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the level of the Lagrangian and is therefore conceptually simpler than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be used to do the corresponding calculation at the 4PI level, which cannot be done using any known method by introducing counterterms.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Exploring excited eigenstates of many-body systems using the functional renormalization group
NASA Astrophysics Data System (ADS)
Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph
2018-05-01
We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sheng-Quan; Wu, Xing-Gang; Brodsky, Stanley J.
We present improved perturbative QCD (pQCD) predictions for Higgs boson hadroproduction at the LHC by applying the principle of maximum conformality (PMC), a procedure which resums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction, it has been conventional to assume that the renormalization scale μ r of the QCD coupling α s ( μ r ) is the Higgs mass and then to vary this choice overmore » the range 1 / 2 m H < μ r < 2 m H in order to estimate the theory uncertainty. However, this error estimate is only sensitive to the nonconformal β terms in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where a pQCD series has large higher-order contributions, as is the case for Higgs boson hadroproduction. Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the renormalization scheme being used, in contradiction to basic RG principles. In contrast, after applying the PMC, we obtain next-to-next-to-leading-order RG resummed pQCD predictions for Higgs boson hadroproduction which are renormalization-scheme independent and have minimal sensitivity to the choice of the initial renormalization scale. Taking m H = 125 GeV , the PMC predictions for the p p → H X Higgs inclusive hadroproduction cross sections for various LHC center-of-mass energies are σ Incl | 7 TeV = 21.2 1 + 1.36 - 1.32 pb , σ Incl | 8 TeV = 27.3 7 + 1.65 - 1.59 pb , and σ Incl | 13 TeV = 65.7 2 + 3.46 - 3.0 pb . We also predict the fiducial cross section σ fid ( p p → H → γ γ ) : σ fid | 7 TeV = 30.1 + 2.3 - 2.2 fb , σ fid | 8 TeV = 38.3 + 2.9 - 2.8 fb , and σ fid | 13 TeV = 85.8 + 5.7 - 5.3 fb . The error limits in these predictions include the small residual high-order renormalization-scale dependence plus the uncertainty from the factorization scale. The PMC predictions show better agreement with the ATLAS measurements than the LHC Higgs Cross Section Working Group predictions which are based on conventional renormalization-scale setting.« less
Apker Award Recipient: Renormalization-Group Study of Helium Mixtures Immersed in a Porous Medium
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna
1998-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in aerogel are studied by renormalization-group theory. Firstly, the theory is applied to jungle-gym (non-random) aerogel.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 55, 3798 (1997).) This calculation is conducted via the coupled renormalization-group mappings of interactions near and away from aerogel. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfludity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. Secondly, the theory is applied to true aerogel, which has quenched disorder at both atomic and geometric levels.(A. Lopatnikova and A.N. Berker, Phys. Rev. B 56, 11865 (1997).) This calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of quenched probability distributions of random interactions. Random-bond effects on superfluidity onset and random-field effects on superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general prediction and experiments. Based on these studies, the experimentally observed(S.B. Kim, J. Ma, and M.H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993); N. Mulders and M.H.W. Chan, Phys. Rev. Lett. 75, 3705 (1995).) distinctive characteristics of ^3He-^4He mixtures in aerogel are related to the aerogel properties of connectivity, tenuousness, and atomic and geometric randomness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
NASA Astrophysics Data System (ADS)
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
NASA Astrophysics Data System (ADS)
Kounnas, Costas
The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References
Fourier transform for fermionic systems and the spectral tensor network.
Ferris, Andrew J
2014-07-04
Leveraging the decomposability of the fast Fourier transform, I propose a new class of tensor network that is efficiently contractible and able to represent many-body systems with local entanglement that is greater than the area law. Translationally invariant systems of free fermions in arbitrary dimensions as well as 1D systems solved by the Jordan-Wigner transformation are shown to be exactly represented in this class. Further, it is proposed that these tensor networks be used as generic structures to variationally describe more complicated systems, such as interacting fermions. This class shares some similarities with the Evenbly-Vidal branching multiscale entanglement renormalization ansatz, but with some important differences and greatly reduced computational demands.
Scale relativity: from quantum mechanics to chaotic dynamics.
NASA Astrophysics Data System (ADS)
Nottale, L.
Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.
NASA Astrophysics Data System (ADS)
Gan, Wen-Cong; Shu, Fu-Wen
Quantum many-body problem with exponentially large degrees of freedom can be reduced to a tractable computational form by neural network method [G. Carleo and M. Troyer, Science 355 (2017) 602, arXiv:1606.02318.] The power of deep neural network (DNN) based on deep learning is clarified by mapping it to renormalization group (RG), which may shed lights on holographic principle by identifying a sequence of RG transformations to the AdS geometry. In this paper, we show that any network which reflects RG process has intrinsic hyperbolic geometry, and discuss the structure of entanglement encoded in the graph of DNN. We find the entanglement structure of DNN is of Ryu-Takayanagi form. Based on these facts, we argue that the emergence of holographic gravitational theory is related to deep learning process of the quantum-field theory.
NASA Astrophysics Data System (ADS)
de Albuquerque, Douglas F.; Fittipaldi, I. P.
1994-05-01
A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.
Bern, Zvi; Cheung, Clifford; Chi, Huan -Hang; ...
2015-11-17
Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R 3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual inmore » D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly—the coefficient of the Gauss-Bonnet operator—changes under p-form duality transformations. In addition, we concur and also find that the leading R 3 divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.« less
Bern, Zvi; Cheung, Clifford; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh
2015-11-20
Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R^{3} counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly-the coefficient of the Gauss-Bonnet operator-changes under p-form duality transformations. We concur and also find that the leading R^{3} divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, G.A.
1982-01-01
A calculation of nonsinglet longitudinal coefficient function of deep-inelastic scattering through order-g/sup 4/ is presented, using the operator-product expansion and the renormalization group. Both ultraviolet and infrared divergences are regulated with dimensional regularization. The renormalization scheme dependence of the result is discussed along with its phenomenological application in the determination of R = sigma/sub L//sigma/sub T/.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
NASA Astrophysics Data System (ADS)
Teodorovich, E. V.
2018-03-01
In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
NASA Astrophysics Data System (ADS)
Morris, Titus; Bogner, Scott
2015-10-01
The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully not only to several closed shell finite nuclei, but has recently been used to produce effective shell model interactions that are competitive with phenomenological interactions in the SD shell. A recent alternative method for solving of the IM-SRG equations, called the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna; Nihat Berker, A.
1997-02-01
Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.
NASA Astrophysics Data System (ADS)
Schmitteckert, Peter
2018-04-01
We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.
Importance of proper renormalization scale-setting for QCD testing at colliders
Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.
2015-12-22
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. Furthermore, these results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.« less
Nonlinear Gyro-Landau-Fluid Equations
NASA Astrophysics Data System (ADS)
Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.
1996-11-01
We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).
On the soft supersymmetry-breaking parameters in gauge-mediated models
NASA Astrophysics Data System (ADS)
Wagner, C. E. M.
1998-09-01
Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavor changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate tan β regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymmetry-breaking parameters is obtained for arbitrary boundary conditions of the scalar and gaugino mass parameters at high energies.
Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.
2017-06-01
We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.
Renormalization group method based on the ionization energy theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006
2011-03-15
Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less
E-cigarette marketing and older smokers: road to renormalization.
Cataldo, Janine K; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-05-01
To describe older smokers' perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking.
Anomalous dimension in a two-species reaction-diffusion system
NASA Astrophysics Data System (ADS)
Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.
2018-01-01
We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \
Ground-state properties of anyons in a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Tang, Guixin; Eggert, Sebastian; Pelster, Axel
2015-12-01
Using the Anyon-Hubbard Hamiltonian, we analyze the ground-state properties of anyons in a one-dimensional lattice. To this end we map the hopping dynamics of correlated anyons to an occupation-dependent hopping Bose-Hubbard model using the fractional Jordan-Wigner transformation. In particular, we calculate the quasi-momentum distribution of anyons, which interpolates between Bose-Einstein and Fermi-Dirac statistics. Analytically, we apply a modified Gutzwiller mean-field approach, which goes beyond a classical one by including the influence of the fractional phase of anyons within the many-body wavefunction. Numerically, we use the density-matrix renormalization group by relying on the ansatz of matrix product states. As a result it turns out that the anyonic quasi-momentum distribution reveals both a peak-shift and an asymmetry which mainly originates from the nonlocal string property. In addition, we determine the corresponding quasi-momentum distribution of the Jordan-Wigner transformed bosons, where, in contrast to the hard-core case, we also observe an asymmetry for the soft-core case, which strongly depends on the particle number density.
Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic
2014-03-14
We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.
Renormalization Group Studies and Monte Carlo Simulation for Quantum Spin Systems.
NASA Astrophysics Data System (ADS)
Pan, Ching-Yan
We have discussed the extended application of various real space renormalization group methods to the quantum spin systems. At finite temperature, we extended both the reliability and range of application of the decimation renormalization group method (DRG) for calculating the thermal and magnetic properties of low-dimensional quantum spin chains, in which we have proposed general models of the three-state Potts model and the general Heisenberg model. Some interesting finite-temperature behavior of the models has been obtained. We also proposed a general formula for the critical properties of the n-dimensional q-state Potts model by using a modified migdal-Kadanoff approach which is in very good agreement with all available results for general q and d. For high-spin systems, we have investigated the famous Haldane's prediction by using a modified block renormalization group approach in spin -1over2, spin-1 and spin-3 over2 cases. Our result supports Haldane's prediction and a novel property of the spin-1 Heisenberg antiferromagnet has been predicted. A modified quantum monte Carlo simulation approach has been developed in this study which we use to treat quantum interacting problems (we only work on quantum spin systems in this study) without the "negative sign problem". We also obtain with the Monte Carlo approach the numerical derivative directly. Furthermore, using this approach we have obtained the energy spectrum and the thermodynamic properties of the antiferromagnetic q-state Potts model, and have studied the q-color problem with the result which supports Mattis' recent conjecture of entropy for the n -dimensional q-state Potts antiferromagnet. We also find a general solution for the q-color problem in d dimensions.
Renormalization of Supersymmetric QCD on the Lattice
NASA Astrophysics Data System (ADS)
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
F4 symmetric ϕ3 theory at four loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.
2017-03-01
The renormalization group functions for six dimensional scalar ϕ3 theory with an F4 symmetry are provided at four loops in the modified minimal subtraction (MS ¯ ) scheme. Aside from the anomalous dimension of ϕ and the β -function this includes the mass operator and a ϕ2-type operator. The anomalous dimension of the latter is computed explicitly at four loops for the 26 and 324 representations of F4. The ɛ expansion of all the related critical exponents are determined to O (ɛ4). For instance the value for Δϕ agrees with recent conformal bootstrap estimates in 5 and 5.95 dimensions. The renormalization group functions are also provided at four loops for the group E6.
Variational optimization algorithms for uniform matrix product states
NASA Astrophysics Data System (ADS)
Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.
2018-01-01
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
NASA Astrophysics Data System (ADS)
Morris, Titus; Bogner, Scott
2016-09-01
The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully to the ground state of closed shell finite nuclei. Recent work has extended its ability to target excited states of these closed shell systems via equation of motion methods, and also complete spectra of the whole SD shell via effective shell model interactions. A recent alternative method for solving of the IM-SRG equations, based on the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.
Multicritical points for spin-glass models on hierarchical lattices.
Ohzeki, Masayuki; Nishimori, Hidetoshi; Berker, A Nihat
2008-06-01
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry, and the replica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a different point of view coming from the renormalization group and succeeds in deriving very consistent answers with many numerical data.
Renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, Leslie M.
1989-01-01
The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.
NASA Astrophysics Data System (ADS)
Khellat, M. R.; Mirjalili, A.
2017-03-01
We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.
NASA Astrophysics Data System (ADS)
Lopatnikova, Anna; Berker, A. Nihat
1997-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatnikova, A.; Berker, A.N.
1997-02-01
Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}
Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.
NASA Technical Reports Server (NTRS)
Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.
1995-01-01
This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat
2016-06-01
The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.
NASA Astrophysics Data System (ADS)
Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.
2017-12-01
The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.
Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling
NASA Astrophysics Data System (ADS)
Li, Zhidan; Han, Qiang
2018-04-01
The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.
Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures
Al-Hassanieh, K. A.; Rincón, Julián; Alvarez, G.; ...
2015-02-09
Here we used the time-dependent density-matrix renormalization group (tDMRG) to study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflectionmore » at metal- superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.« less
Li, Simeng; Li, Nianbei
2018-03-28
For one-dimensional (1d) nonlinear atomic lattices, the models with on-site nonlinearities such as the Frenkel-Kontorova (FK) and ϕ 4 lattices have normal energy transport while the models with inter-site nonlinearities such as the Fermi-Pasta-Ulam-β (FPU-β) lattice exhibit anomalous energy transport. The 1d Discrete Nonlinear Schrödinger (DNLS) equations with on-site nonlinearities has been previously studied and normal energy transport has also been found. Here, we investigate the energy transport of 1d FPU-like DNLS equations with inter-site nonlinearities. Extended from the FPU-β lattice, the renormalized vibration theory is developed for the FPU-like DNLS models and the predicted renormalized vibrations are verified by direct numerical simulations same as the FPU-β lattice. However, the energy diffusion processes are explored and normal energy transport is observed for the 1d FPU-like DNLS models, which is different from their atomic lattice counterpart of FPU-β lattice. The reason might be that, unlike nonlinear atomic lattices where models with on-site nonlinearities have one less conserved quantities than the models with inter-site nonlinearities, the DNLS models with on-site or inter-site nonlinearities have the same number of conserved quantities as the result of gauge transformation.
E-cigarette Marketing and Older Smokers: Road to Renormalization
Cataldo, Janine K.; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-01-01
Objectives To describe older smokers’ perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Methods Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Results Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. Conclusions To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking. PMID:25741681
Renormalization of Einstein gravity through a derivative-dependent field redefinition
NASA Astrophysics Data System (ADS)
Slovick, Brian
2018-01-01
This work explores an alternative solution to the problem of renormalizability in Einstein gravity. In the proposed approach, Einstein gravity is transformed into the renormalizable theory of four-derivative gravity by applying a local field redefinition containing an infinite number of higher derivatives. It is also shown that the current-current amplitude is invariant with the field redefinition, and thus the unitarity of Einstein gravity is preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbahn, Martin; Jaeger, Sebastian; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH
2010-12-01
We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scalemore » dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.« less
Chiral algebras in Landau-Ginzburg models
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
Functional renormalization group approach to the Yang-Lee edge singularity
An, X.; Mesterházy, D.; Stephanov, M. A.
2016-07-08
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Functional renormalization group approach to the Yang-Lee edge singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, X.; Mesterházy, D.; Stephanov, M. A.
Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less
Finite-size scaling study of the two-dimensional Blume-Capel model
NASA Astrophysics Data System (ADS)
Beale, Paul D.
1986-02-01
The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.
Scaling properties of the two-dimensional randomly stirred Navier-Stokes equation.
Mazzino, Andrea; Muratore-Ginanneschi, Paolo; Musacchio, Stefano
2007-10-05
We inquire into the scaling properties of the 2D Navier-Stokes equation sustained by a force field with Gaussian statistics, white noise in time, and with a power-law correlation in momentum space of degree 2 - 2 epsilon. This is at variance with the setting usually assumed to derive Kraichnan's classical theory. We contrast accurate numerical experiments with the different predictions provided for the small epsilon regime by Kraichnan's double cascade theory and by renormalization group analysis. We give clear evidence that for all epsilon, Kraichnan's theory is consistent with the observed phenomenology. Our results call for a revision in the renormalization group analysis of (2D) fully developed turbulence.
NASA Astrophysics Data System (ADS)
Wang, Wan-Sheng; Xiang, Yuan-Yuan; Wang, Qiang-Hua; Wang, Fa; Yang, Fan; Lee, Dung-Hai
2012-01-01
We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2-y2+idxy Cooper pairing becomes the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point) the graphene is either a Chern insulator or a topoligical superconductor.
Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion
NASA Astrophysics Data System (ADS)
Moon, Sung Pil
2018-06-01
We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.
On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models
NASA Technical Reports Server (NTRS)
Smith, L. M.; Reynolds, W. C.
1992-01-01
An independent, comprehensive, critical review of the 'renormalization group' (RNG) theory of turbulence developed by Yakhot and Orszag (1986) is provided. Their basic theory for the Navier-Stokes equations is confirmed, and approximations in the scale removal procedure are discussed. The YO derivations of the velocity-derivative skewness and the transport equation for the energy dissipation rate are examined. An algebraic error in the derivation of the skewness is corrected. The corrected RNG skewness value of -0.59 is in agreement with experiments at moderate Reynolds numbers. Several problems are identified in the derivation of the energy dissipation rate equations which suggest that the derivation should be reformulated.
Development of renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, L. M.
1990-01-01
The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.
Loop Variables in String Theory
NASA Astrophysics Data System (ADS)
Sathiapalan, B.
The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.
Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays
NASA Technical Reports Server (NTRS)
Chiu, H. H.
1989-01-01
The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.
Quantum multicriticality in disordered Weyl semimetals
NASA Astrophysics Data System (ADS)
Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2018-01-01
In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-03-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.
2001-03-15
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowskimore » space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.« less
Antonov, N V; Gulitskiy, N M; Kostenko, M M; Malyshev, A V
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E∝k^{1-y} and the dispersion law ω∝k^{2-η}. The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
Exact renormalization group in Batalin-Vilkovisky theory
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2018-03-01
In this paper, inspired by the Costello's seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T [1]ℝ. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski's form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree -1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.
Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group
NASA Astrophysics Data System (ADS)
de Sousa, J. Ricardo; Fittipaldi, I. P.
1994-05-01
A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.
NASA Astrophysics Data System (ADS)
Rodrigues, Davi C.; Mauro, Sebastião; de Almeida, Álefe O. F.
2016-10-01
General relativity extensions based on renormalization group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post-Newtonian limits of a realization called renormalization group extended general relativity (RGGR). Special attention is given to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter ν¯⊙, and this parameter is such that for ν¯⊙=0 one fully recovers GR in the Solar System. Previously this parameter was constrained to be |ν¯ ⊙|≲10-21 , without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the parametrized post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on ν¯⊙, either considering or not the external potential effect. With the external potential effect the new bound reads |ν¯ ⊙|≲10-16 . We discuss the possible consequences of this bound on the dark matter abundance in galaxies.
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
NASA Astrophysics Data System (ADS)
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Monotonic entropy growth for a nonlinear model of random exchanges.
Apenko, S M
2013-02-01
We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific "coarse graining" of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.
Ab initio description of p-shell hypernuclei.
Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert
2014-11-07
We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions.
FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.
2016-09-01
We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
Monotonic entropy growth for a nonlinear model of random exchanges
NASA Astrophysics Data System (ADS)
Apenko, S. M.
2013-02-01
We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific “coarse graining” of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.
Weyl consistency conditions in non-relativistic quantum field theory
Pal, Sridip; Grinstein, Benjamín
2016-12-05
Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2 + 1 dimensions with anisotropic scaling exponent z = 2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. Here, we comment on possible candidates for a C-theorem in higher dimensions.
Exact renormalization group equation for the Lifshitz critical point
NASA Astrophysics Data System (ADS)
Bervillier, C.
2004-10-01
An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.
Renormalization of Extended QCD2
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Yamamura, Ryo
2015-10-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.
Quantization of the nonlinear sigma model revisited
NASA Astrophysics Data System (ADS)
Nguyen, Timothy
2016-08-01
We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.
How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?
NASA Astrophysics Data System (ADS)
Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.
2017-07-01
We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.
Power counting and Wilsonian renormalization in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
A shape dynamical approach to holographic renormalization
NASA Astrophysics Data System (ADS)
Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.
Yan, Xin-Zhong
2011-07-01
The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.
Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi
2016-01-01
The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363
Mass deformations of 5d SCFTs via holography
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Kaidi, Justin; Raj, Himanshu
2018-02-01
Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.
Baryon chiral perturbation theory extended beyond the low-energy region.
Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang
We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
Canonical Drude Weight for Non-integrable Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Mastropietro, Vieri; Porta, Marcello
2018-03-01
The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelov, A. A.; Suslov, I. M.
2008-06-15
New estimates of the critical exponents have been obtained from the field-theoretical renormalization group using a new method for summing divergent series. The results almost coincide with the central values obtained by Le Guillou and Zinn-Justin (the so-called standard values), but have lower uncertainty. It has been shown that usual field-theoretical estimates implicitly imply the smoothness of the coefficient functions. The last assumption is open for discussion in view of the existence of the oscillating contribution to the coefficient functions. The appropriate interpretation of the last contribution is necessary both for the estimation of the systematic errors of the standardmore » values and for a further increase in accuracy.« less
Renormalization Group Theory, the Epsilon Expansion and Ken Wilson as I knew Him
NASA Astrophysics Data System (ADS)
Fisher, Michael E.
The tasks posed for renormalization group theory (RGT) within statistical physics by critical phenomena theory in the 1960's are set out briefly in contradistinction to quantum field theory (QFT), which was the origin for Ken Wilson's concerns. Kadanoff's 1966 block spin scaling picture and its difficulties are presented;Wilson's early vision of flows is described from the author's perspective. How Wilson's subsequent breakthrough ideas, published in 1971, led to the epsilon expansion and the resulting clarity is related. Concluding sections complete the general picture of flows in a space of Hamiltonians, universality and scaling. The article represents a 40% condensation (but with added items) of an earlier account: Rev. Mod. Phys. 70, 653-681 (1998).
Renormalization Group Tutorial
NASA Technical Reports Server (NTRS)
Bell, Thomas L.
2004-01-01
Complex physical systems sometimes have statistical behavior characterized by power- law dependence on the parameters of the system and spatial variability with no particular characteristic scale as the parameters approach critical values. The renormalization group (RG) approach was developed in the fields of statistical mechanics and quantum field theory to derive quantitative predictions of such behavior in cases where conventional methods of analysis fail. Techniques based on these ideas have since been extended to treat problems in many different fields, and in particular, the behavior of turbulent fluids. This lecture will describe a relatively simple but nontrivial example of the RG approach applied to the diffusion of photons out of a stellar medium when the photons have wavelengths near that of an emission line of atoms in the medium.
Non-local geometry inside Lifshitz horizon
NASA Astrophysics Data System (ADS)
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
NASA Astrophysics Data System (ADS)
Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš
2016-12-01
Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system-bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.
Testing the renormalisation group theory of cooperative transitions at the lambda point of helium
NASA Technical Reports Server (NTRS)
Lipa, J. A.; Li, Q.; Chui, T. C. P.; Marek, D.
1988-01-01
The status of high resolution tests of the renormalization group theory of cooperative phase transitions performed near the lambda point of helium is described. The prospects for performing improved tests in space are discussed.
NASA Astrophysics Data System (ADS)
Atalay, Bora; Berker, A. Nihat
2018-05-01
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .
Turbulent mixing of a critical fluid: The non-perturbative renormalization
NASA Astrophysics Data System (ADS)
Hnatič, M.; Kalagov, G.; Nalimov, M.
2018-01-01
Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya
2011-12-01
We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.
Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group
NASA Astrophysics Data System (ADS)
Dutta, Ayan; Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.
2018-04-01
While the plausibility of formation of limit cycle has been a well studied topic in context of the Poincare-Bendixson theorem, studies on estimates in regard to the possible size and shape of the limit cycle seem to be scanty in the literature. In this paper we present a pedagogical study of some aspects of the size of this limit cycle using perturbative renormalization group by doing detailed and explicit calculations upto second order for the Selkov model for glycolytic oscillations. This famous model is well known to lead to a limit cycle for certain ranges of values of the parameters involved in the problem. Within the tenets of the approximations made, reasonable agreement with the numerical plots can be achieved.
Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf
2006-07-05
We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.
Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations
NASA Astrophysics Data System (ADS)
O'Malley, Robert E., Jr.; Williams, David B.
2006-06-01
Results by physicists on renormalization group techniques have recently sparked interest in the singular perturbations community of applied mathematicians. The survey paper, [Phys. Rev. E 54(1) (1996) 376-394], by Chen et al. demonstrated that many problems which applied mathematicians solve using disparate methods can be solved using a single approach. Analysis of that renormalization group method by Mudavanhu and O'Malley [Stud. Appl. Math. 107(1) (2001) 63-79; SIAM J. Appl. Math. 63(2) (2002) 373-397], among others, indicates that the technique can be streamlined. This paper carries that analysis several steps further to present an amplitude equation technique which is both well adapted for use with a computer algebra system and easy to relate to the classical methods of averaging and multiple scales.
Symmetry-conserving purification of quantum states within the density matrix renormalization group
Nocera, Alberto; Alvarez, Gonzalo
2016-01-28
The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less
Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Diep, H. T.
2010-03-01
For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.
Multiloop functional renormalization group for general models
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-02-01
We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.
Supersymmetric QCD on the lattice: An exploratory study
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-08-01
We perform a pilot study of the perturbative renormalization of a supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider supersymmetric N =1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naïve discretization. The gauge group that we consider is S U (Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α , are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (Zψ), gluon (Zu), gluino (Zλ), squark (ZA ±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Flux Renormalization in Constant Power Burnup Calculations
Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...
2016-06-15
To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less
Non-Perturbative Renormalization of the Lattice Heavy Quark Classical Velocity
NASA Astrophysics Data System (ADS)
Mandula, Jeffrey E.; Ogilvie, Michael C.
1997-02-01
We discuss the renormalization of the lattice formulation of the Heavy Quark Effective Theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration.
Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows
NASA Astrophysics Data System (ADS)
Diab, Kenan S.
In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.
Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P
2013-07-01
We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N~10) we find that F(N)(x) is nonmonotonic in the quantum critical regime (|x|~1) with a maximum near x=0. The large-N approach-if properly interpreted-is a good approximation both in the renormalized classical (x~-1) and quantum disordered (x>/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
A bulk localized state and new holographic renormalization group flow in 3D spin-3 gravity
NASA Astrophysics Data System (ADS)
Nakayama, Ryuichi; Suzuki, Tomotaka
2018-04-01
We construct a localized state of a scalar field in 3D spin-3 gravity. 3D spin-3 gravity is thought to be holographically dual to W3-extended CFT on a boundary at infinity. It is known that while W3 algebra is a nonlinear algebra, in the limit of large central charge c a linear finite-dimensional subalgebra generated by Wn (n = 0,±1,±2) and Ln (n = 0,±1) is singled out. The localized state is constructed in terms of these generators. To write down an equation of motion for a scalar field which is satisfied by this localized state, it is necessary to introduce new variables for an internal space α±, β±, γ, in addition to ordinary coordinates x± and y. The higher-dimensional space, which combines the bulk space-time with the “internal space,” which is an analog of superspace in supersymmetric theory, is introduced. The “physical bulk space-time” is a 3D hypersurface with constant α±, β± and γ embedded in this space. We will work in Poincaré coordinates of AdS space and consider W-quasi-primary operators Φh(x+) with a conformal weight h in the boundary and study two and three point functions of W-quasi-primary operators transformed as eix+L‑1heβ+W‑1hΦh(0)e‑β+W‑1he‑ix+L‑1h. Here, Lnh and Wnh are sl(3,R) generators in the hyperbolic basis for Poincaré coordinates. It is shown that in the β+ →∞ limit, the conformal weight changes to a new value h‧ = h/2. This may be regarded as a Renormalization Group (RG) flow. It is argued that this RG flow will be triggered by terms ΔS ∝ β+W ‑1h + β‑W¯ ‑1h added to the action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
Jurgenson, E. D.; Maris, P.; Furnstahl, R. J.; ...
2013-05-13
The similarity renormalization group (SRG) is used to soften interactions for ab initio nuclear structure calculations by decoupling low- and high-energy Hamiltonian matrix elements. The substantial contribution of both initial and SRG-induced three-nucleon forces requires their consistent evolution in a three-particle basis space before applying them to larger nuclei. While, in principle, the evolved Hamiltonians are unitarily equivalent, in practice the need for basis truncation introduces deviations, which must be monitored. Here we present benchmark no-core full configuration calculations with SRG-evolved interactions in p-shell nuclei over a wide range of softening. As a result, these calculations are used to assessmore » convergence properties, extrapolation techniques, and the dependence of energies, including four-body contributions, on the SRG resolution scale.« less
Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizalde, Emilio; Odintsov, Sergei D.; Pozdeeva, Ekaterina O.
2016-02-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflationmore » scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.« less
Fermi-edge singularity and the functional renormalization group
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-05-01
We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.
Renormalization group analysis of anisotropic diffusion in turbulent shear flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Barton, J. Michael
1991-01-01
The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.
Renormalization group analysis of the Reynolds stress transport equation
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Barton, J. M.
1992-01-01
The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately.
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
NASA Astrophysics Data System (ADS)
de Sousa, J. Ricardo; de Albuquerque, Douglas F.
1997-02-01
By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.
Renormalization Group for nonlinear oscillators in the absence of linear restoring force
NASA Astrophysics Data System (ADS)
Sarkar, A.; Bhattacharjee, J. K.
2010-09-01
Perturbative Renormalization Group (RG) has been very useful in probing periodic orbits in two-dimensional dynamical systems (Sarkar A., Bhattacharjee J. K., Chakraborty S. and Banerjee D., arXiv:1005.2858v1 (2010)). The method relies on finding a linear center, around which perturbation analysis is done. However it is not obvious as to how systems devoid of any linear terms may be approached using this method. We propose here how RG can be done even in the absence of linear terms. We successfully apply the method to extract correct results for a variant of the second-order Riccati equation. In this variant the periodic orbit disappears as a parameter is varied. Our RG captures this disappearance correctly. We have also applied the technique successfully on the force-free Van der Pol-Duffing oscillator.
Renormalization group methods for the Reynolds stress transport equations
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1992-01-01
The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.
Computation of parton distributions from the quasi-PDF approach at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Bacchio, Simone; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Scapellato, Aurora; Steffens, Fernanda
2018-03-01
We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum |p→| = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI' scheme, following the non-perturbative renormalization prescription recently developed by our group.
On the effective field theory of intersecting D3-branes
NASA Astrophysics Data System (ADS)
Abbaspur, Reza
2018-05-01
We study the effective field theory of two intersecting D3-branes with one common dimension along the lines recently proposed in ref. [1]. We introduce a systematic way of deriving the classical effective action to arbitrary orders in perturbation theory. Using a proper renormalization prescription to handle logarithmic divergencies arising at all orders in the perturbation series, we recover the first order renormalization group equation of ref. [1] plus an infinite set of higher order equations. We show the consistency of the higher order equations with the first order one and hence interpret the first order result as an exact RG flow equation in the classical theory.
Effects of renormalizing the chiral SU(2) quark-meson model
NASA Astrophysics Data System (ADS)
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
NASA Astrophysics Data System (ADS)
Chiariello, Andrea M.; Bianco, Simona; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario
2017-11-01
Technologies such as Hi-C and GAM have revealed that chromosomes are not randomly folded into the nucleus of cells, but are composed by a sequence of contact domains (TADs), each typically 0.5 Mb long. However, the larger scale organization of the genome remains still not well understood. To investigate the scaling behaviour of chromosome folding, here we apply an approach à la Kadanoff, inspired by the Renormalization Group theory, to Hi-C interaction data, across different cell types and chromosomes. We find that the genome is characterized by complex scaling features, where the average size of contact domains exhibits a power-law behaviour with the rescaling level. That is compatible with the existence of contact domains extending across length scales up to chromosomal sizes. The scaling exponent is statistically indistinguishable among the different murine cell types analysed. These results point toward a scenario of a universal higher-order spatial architecture of the genome, which could reflect fundamental, organizational principles.
Renormalized Hamiltonian for a peptide chain: Digitalizing the protein folding problem
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Colubri, Andrés
2000-05-01
A renormalized Hamiltonian for a flexible peptide chain is derived to generate the long-time limit dynamics compatible with a coarsening of torsional conformation space. The renormalization procedure is tailored taking into account the coarse graining imposed by the backbone torsional constraints due to the local steric hindrance and the local backbone-side-group interactions. Thus, the torsional degrees of freedom for each residue are resolved modulo basins of attraction in its so-called Ramachandran map. This Ramachandran renormalization (RR) procedure is implemented so that the chain is energetically driven to form contact patterns as their respective collective topological constraints are fulfilled within the coarse description. In this way, the torsional dynamics are digitalized and become codified as an evolving pattern in a binary matrix. Each accepted Monte Carlo step in a canonical ensemble simulation is correlated with the real mean first passage time it takes to reach the destination coarse topological state. This real-time correlation enables us to test the RR dynamics by comparison with experimentally probed kinetic bottlenecks along the dominant folding pathway. Such intermediates are scarcely populated at any given time, but they determine the kinetic funnel leading to the active structure. This landscape region is reached through kinetically controlled steps needed to overcome the conformational entropy of the random coil. The results are specialized for the bovine pancreatic trypsin inhibitor, corroborating the validity of our method.
Sæbø, Gunnar; Scheffels, Janne
2017-11-01
The rationale for 'denormalization' of smoking in tobacco policies has been challenged by the emergence of e-cigarettes and the need to regulate e-cigarette use and promotion. Our aim is to assess the research status on e-cigarettes' contribution to 'renormalization' of smoking and to clarify how renormalization of smoking can be appraised at the conceptual and empirical level. Combining conceptual analysis and narrative review, the paper brings out three dimensions of denormalization/renormalization of smoking ('unacceptability/acceptability'; 'invisibility/visibility'; 'phasing out behaviour/maintaining behaviour') and an inherent duality of the e-cigarette as a smoking-like device and a smoking alternative. These analytical dimensions are applied qualitatively to consider the literature identified by searching the Web of Science database for 'e-cigarettes AND renormalization' (and variants thereof). Theoretically, normative changes in smoking acceptability, increased visibility of e-cigarettes and use, and observations of actual use (prevalence, dual use, gateway) can all be applied to illustrate processes of renormalization. However, only acceptability measures and user measures can be said to be empirical tests of renormalization effects. Visibility measures are only based on logical assumptions of a possible renormalization; they are not in themselves indicative of any "real" renormalization effects and can just as well be understood as possible consequences of normalization of e-cigarettes. Just as a downward trend in smoking prevalence is the litmus test of whether denormalization policy works, stagnating or rising smoking prevalence should be the main empirical indicator of renormalization. Copyright © 2017 Elsevier B.V. All rights reserved.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
NASA Astrophysics Data System (ADS)
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
Analysis of coined quantum walks with renormalization
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.
NASA Astrophysics Data System (ADS)
Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu
2018-03-01
We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.
Nonlinear relativistic plasma resonance: Renormalization group approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metelskii, I. I., E-mail: metelski@lebedev.ru; Kovalev, V. F., E-mail: vfkvvfkv@gmail.com; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy ofmore » the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.« less
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
Non-Fermi-liquid superconductivity: Eliashberg approach versus the renormalization group
Wang, Huajia; Raghu, Srinivas; Torroba, Gonzalo
2017-04-15
Here, we address the problem of superconductivity for non-Fermi liquids using two commonly adopted, yet apparently distinct, methods: (1) the renormalization group (RG) and (2) Eliashberg theory. The extent to which both methods yield consistent solutions for the low-energy behavior of quantum metals has remained unclear. We show that the perturbative RG beta function for the 4-Fermi coupling can be explicitly derived from the linearized Eliashberg equations, under the assumption that quantum corrections are approximately local across energy scales. We apply our analysis to the test case of phonon-mediated superconductivity and show the consistency of both the Eliashberg and RGmore » treatments. We next study superconductivity near a class of quantum critical points and find a transition between superconductivity and a “naked” metallic quantum critical point with finite, critical BCS couplings. We speculate on the applications of our theory to the phenomenology of unconventional metals.« less
Ground states of linear rotor chains via the density matrix renormalization group
NASA Astrophysics Data System (ADS)
Iouchtchenko, Dmitri; Roy, Pierre-Nicholas
2018-04-01
In recent years, experimental techniques have enabled the creation of ultracold optical lattices of molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low temperature has a transition between ordered and disordered phases. We use the density matrix renormalization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two methods and present some first steps toward rotational spectra of such molecular assemblies using DMRG. The present work showcases the power of DMRG in this new context of interacting molecular rotors and opens the door to the study of fundamental questions regarding criticality in systems with continuous degrees of freedom.
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
NASA Astrophysics Data System (ADS)
Khedri, A.; Meden, V.; Costi, T. A.
2017-11-01
We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.
None, None
2016-11-21
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
NASA Astrophysics Data System (ADS)
Tsuchiizu, Masahisa; Kawaguchi, Kouki; Yamakawa, Youichi; Kontani, Hiroshi
2018-04-01
Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in an unbiased way by applying the functional-renormalization-group method to the d -p Hubbard model. Without assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform (q =0 ) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order triggers another nematic p -orbital density wave along the axial (Cu-Cu) direction at Qa≈(π /2 ,0 ) . It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at q =Qa is triggered by the uniform order. The predicted multistage nematic transitions are caused by Aslamazov-Larkin-type fluctuation-exchange processes.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Tau hadronic spectral function moments: perturbative expansion and αs extractions
NASA Astrophysics Data System (ADS)
Boito, D.
2016-04-01
In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.
τ hadronic spectral function moments in a nonpower QCD perturbation theory
NASA Astrophysics Data System (ADS)
Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.
2016-04-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
NASA Astrophysics Data System (ADS)
Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.
2013-06-01
We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.
Renormalization group equation analysis of a pseudoscalar portal dark matter model
NASA Astrophysics Data System (ADS)
Ghorbani, Karim
2017-10-01
We investigate the vacuum stability and perturbativity of a pseudoscalar portal dark matter (DM) model with a Dirac DM candidate, through the renormalization group equation analysis at one-loop order. The model has a particular feature which can evade the direct detection upper bounds measured by XENON100 and even that from planned experiment XENON1T. We first find the viable regions in the parameter space which will give rise to correct DM relic density and comply with the constraints from Higgs physics. We show that for a given mass of the pseudoscalar, the mixing angle plays no significant role in the running of the couplings. Then we study the running of the couplings for various pseudoscalar masses at mixing angle θ =6^\\circ , and find the scale of validity in terms of the dark coupling, {λ }d. Depending on our choice of the cutoff scale, the resulting viable parameter space will be determined.
Staggered Orbital Currents in the Half-Filled Two-Leg Ladder
NASA Astrophysics Data System (ADS)
Fjaerestad, J. O.; Marston, Brad; Sudbo, A.
2002-03-01
We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.
Mutual information, neural networks and the renormalization group
NASA Astrophysics Data System (ADS)
Koch-Janusz, Maciej; Ringel, Zohar
2018-06-01
Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
Nishiyama, Yoshihiro
2002-12-01
It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed extensive ab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such as normal displacement and tilt angle, we found a clear tendency toward softening.
Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui
2005-11-03
Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.
A holographic model for the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Lippert, Matthew; Meyer, René; Taliotis, Anastasios
2015-01-01
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
Kurashige, Yuki; Yanai, Takeshi
2011-09-07
We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less
Electric Dipole Moment Results from lattice QCD
NASA Astrophysics Data System (ADS)
Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy
2018-03-01
We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.
Renormalization group invariant of lepton Yukawa couplings
NASA Astrophysics Data System (ADS)
Tsuyuki, Takanao
2015-04-01
By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.
NASA Astrophysics Data System (ADS)
Rück, Marlon; Reuther, Johannes
2018-04-01
We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.
Renormalization of the Lattice Heavy Quark Classical Velocity
NASA Astrophysics Data System (ADS)
Mandula, Jeffrey E.; Ogilvie, Michael C.
1996-03-01
In the lattice formulation of the Heavy Quark Effective Theory (LHQET), the "classical velocity" v becomes renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. The renormalization is finite and depends on the form of the decretization of the reduced heavy quark Dirac equation. For the Forward Time — Centered Space discretization, the renormalization is computed both perturbatively, to one loop, and non-perturbatively using two ensembles of lattices, one at β = 5.7 and the other at β = 6.1 The estimates agree, and indicate that for small classical velocities, ν→ is reduced by about 25-30%.
Renormalization of entanglement entropy from topological terms
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We propose a renormalization scheme for entanglement entropy of three-dimensional CFTs with a four-dimensional asymptotically AdS gravity dual in the context of the gauge/gravity correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. We provide an explicit prescription for the renormalized entanglement entropy, which is derived via the replica trick. This is achieved by considering a Euclidean gravitational action renormalized by the addition of the Chern form at the spacetime boundary, evaluated in the conically-singular replica manifold. We show that the addition of this boundary term cancels the divergent part of the entanglement entropy, recovering the results obtained by Taylor and Woodhead. We comment on how this prescription for renormalizing the entanglement entropy is in line with the general program of topological renormalization in asymptotically AdS gravity.
mr: A C++ library for the matching and running of the Standard Model parameters
NASA Astrophysics Data System (ADS)
Kniehl, Bernd A.; Pikelner, Andrey F.; Veretin, Oleg L.
2016-09-01
We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the MS bar renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library. Catalogue identifier: AFAI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 517613 No. of bytes in distributed program, including test data, etc.: 2358729 Distribution format: tar.gz Programming language: C++. Computer: IBM PC. Operating system: Linux, Mac OS X. RAM: 1 GB Classification: 11.1. External routines: TSIL [1], OdeInt [2], boost [3] Nature of problem: The running parameters of the Standard Model renormalized in the MS bar scheme at some high renormalization scale, which is chosen by the user, are evaluated in perturbation theory as precisely as possible in two steps. First, the initial conditions at the electroweak energy scale are evaluated from the Fermi constant GF and the pole masses of the W, Z, and Higgs bosons and the bottom and top quarks including the full two-loop threshold corrections. Second, the evolution to the high energy scale is performed by numerically solving the renormalization group evolution equations through three loops. Pure QCD corrections to the matching and running are included through four loops. Solution method: Numerical integration of analytic expressions Additional comments: Available for download from URL: http://apik.github.io/mr/. The MathLink interface is tested to work with Mathematica 7-9 and, with an additional flag, also with Mathematica 10 under Linux and with Mathematica 10 under Mac OS X. Running time: less than 1 second References: [1] S. P. Martin and D. G. Robertson, Comput. Phys. Commun. 174 (2006) 133-151 [hep-ph/0501132]. [2] K. Ahnert and M. Mulansky, AIP Conf. Proc. 1389 (2011) 1586-1589 [arxiv:1110.3397 [cs.MS
A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Chiu, Jui-Yu; Jain, Ambar; Neill, Duff; Rothstein, Ira Z.
2012-05-01
Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the relevant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. Such observables include: transverse momentum distributions at p T much less then the high energy scattering scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form factor. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a "rapidity renormalization group". That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any sce- nario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form fac- tor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are universal. We present details of the factorization and re- summation of the jet broadening cross section including a renormalization in p ⊥ space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.
NASA Astrophysics Data System (ADS)
Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang
2018-05-01
The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.
Aspects of Galileon non-renormalization
Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; ...
2016-11-18
We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P ( X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. Furthermore, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.
Composite operator and condensate in the S U (N ) Yang-Mills theory with U (N -1 ) stability group
NASA Astrophysics Data System (ADS)
Warschinke, Matthias; Matsudo, Ryutaro; Nishino, Shogo; Shinohara, Toru; Kondo, Kei-Ichi
2018-02-01
Recently, some reformulations of the Yang-Mills theory inspired by the Cho-Faddeev-Niemi decomposition have been developed in order to understand confinement from the viewpoint of the dual superconductivity. In this paper we focus on the reformulated S U (N ) Yang-Mills theory in the minimal option with U (N -1 ) stability group. Despite existing numerical simulations on the lattice we perform the perturbative analysis to one-loop level as a first step towards the nonperturbative analytical treatment. First, we give the Feynman rules and calculate all renormalization factors to obtain the standard renormalization group functions to one-loop level in light of the renormalizability of this theory. Then we introduce a mixed gluon-ghost composite operator of mass dimension 2 and show the Bechi-Rouet-Stora-Tyutin invariance and the multiplicative renormalizability. Armed with these results, we argue the existence of the mixed gluon-ghost condensate by means of the so-called local composite operator formalism, which leads to various interesting implications for confinement as shown in preceding works.
Nonperturbative Renormalization Group Approach to Polymerized Membranes
NASA Astrophysics Data System (ADS)
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, H., E-mail: hermann.krebs@rub.de; Epelbaum, E., E-mail: evgeny.epelbaum@rub.de; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93016
We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of themore » continuity equation.« less
Type 0 open string amplitudes and the tensionless limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco
2014-12-01
The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.
The generalized scheme-independent Crewther relation in QCD
NASA Astrophysics Data System (ADS)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.
Fractional Stochastic Field Theory
NASA Astrophysics Data System (ADS)
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
On the robustness of the primordial power spectrum in renormalized Higgs inflation
NASA Astrophysics Data System (ADS)
Bezrukov, Fedor; Pauly, Martin; Rubio, Javier
2018-02-01
We study the cosmological consequences of higher-dimensional operators respecting the asymptotic symmetries of the tree-level Higgs inflation action. The main contribution of these operators to the renormalization group enhanced potential is localized in a compact field range, whose upper limit is close to the end of inflation. The spectrum of primordial fluctuations in the so-called universal regime turns out to be almost insensitive to radiative corrections and in excellent agreement with the present cosmological data. However, higher-dimensional operators can play an important role in critical Higgs inflation scenarios containing a quasi-inflection point along the inflationary trajectory. The interplay of radiative corrections with this quasi-inflection point may translate into a sizable modification of the inflationary observables.
NASA Astrophysics Data System (ADS)
Garcia-Adeva, Angel J.; Huber, David L.
2001-07-01
In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.
Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization
NASA Astrophysics Data System (ADS)
More, Sushant N.
New insights into the inter-nucleon interactions, developments in many-body technology, and the surge in computational capabilities has led to phenomenal progress in low-energy nuclear physics in the past few years. Nonetheless, many calculations still lack a robust uncertainty quantification which is essential for making reliable predictions. In this work we investigate two distinct sources of uncertainty and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. It has been demonstrated recently that errors introduced from basis truncation can be taken into account by focusing on the infrared and ultraviolet cutoffs induced by a truncated basis. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition in coordinate space. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive infrared extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum and to other localized bases. We exploit the duality of the harmonic oscillator to account for the errors introduced by a finite ultraviolet cutoff. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the renormalization scale and scheme, and has not been well understood. But it is potentially critical for interpreting experiments and for extracting process-independent nuclear properties. We use a class of unitary transformations called the similarity renormalization group (SRG) transformations to systematically study the scale dependence of factorization for the simplest knockout process of deuteron electrodisintegration. We find that the extent of scale dependence depends strongly on kinematics, but in a systematic way. We find a relatively weak scale dependence at the quasi-free kinematics that gets progressively stronger as one moves away from the quasi-free region. Based on examination of the relevant overlap matrix elements, we are able to qualitatively explain and even predict the nature of scale dependence based on the kinematics under consideration.
Wenger, Elisabeth; Kühn, Simone; Verrel, Julius; Mårtensson, Johan; Bodammer, Nils Christian; Lindenberger, Ulman; Lövdén, Martin
2017-05-01
Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Normal state of metallic hydrogen sulfide
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.
2017-02-01
A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.
Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W
Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.
Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin
We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.
Scale-invariant feature extraction of neural network and renormalization group flow
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Shiba, Shotaro; Yokoo, Sumito
2018-05-01
Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from T =0 to T =6 generates a flow along which the temperature approaches the critical value Tc=2.2 7 . This behavior is the opposite of the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards Tc and how the RBM learns to extract features of spin configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu
2016-05-28
We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less
Ghost-gluon vertex in the presence of the Gribov horizon
NASA Astrophysics Data System (ADS)
Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.
2018-02-01
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.
NASA Astrophysics Data System (ADS)
Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter
2014-06-01
In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.
Asymptotically free theory with scale invariant thermodynamics
NASA Astrophysics Data System (ADS)
Ferrari, Gabriel N.; Kneur, Jean-Loïc; Pinto, Marcus Benghi; Ramos, Rudnei O.
2017-12-01
A recently developed variational resummation technique, incorporating renormalization group properties consistently, has been shown to solve the scale dependence problem that plagues the evaluation of thermodynamical quantities, e.g., within the framework of approximations such as in the hard-thermal-loop resummed perturbation theory. This method is used in the present work to evaluate thermodynamical quantities within the two-dimensional nonlinear sigma model, which, apart from providing a technically simpler testing ground, shares some common features with Yang-Mills theories, like asymptotic freedom, trace anomaly and the nonperturbative generation of a mass gap. The present application confirms that nonperturbative results can be readily generated solely by considering the lowest-order (quasiparticle) contribution to the thermodynamic effective potential, when this quantity is required to be renormalization group invariant. We also show that when the next-to-leading correction from the method is accounted for, the results indicate convergence, apart from optimally preserving, within the approximations here considered, the sought-after scale invariance.
NASA Astrophysics Data System (ADS)
Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.
2017-08-01
We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.
NASA Astrophysics Data System (ADS)
Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.
2018-03-01
The Wilsonian renormalization group approach to the Lippmann-Schwinger equation with a multitude of cutoff parameters is introduced. A system of integro-differential equations for the cutoff-dependent potential is obtained. As an illustration, a perturbative solution of these equations with two cutoff parameters for a simple case of an S-wave low-energy potential in the form of a Taylor series in momenta is obtained. The relevance of the obtained results for the effective field theory approach to nucleon-nucleon scattering is discussed. Supported in part by BMBF under Grant No. 05P2015 - NUSTAR R&D), DFG and NSFC through Funds Provided to the Sino- German CRC 110 “Symmetries and the Emergence of Structure in QCD”, National Natural Science Foundation of China under Grant No. 11621131001, DFG Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (grant FR/417/6-100/14) and the CAS President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025
Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach
NASA Astrophysics Data System (ADS)
Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico
2018-01-01
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
The signed permutation group on Feynman graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purkart, Julian, E-mail: purkart@physik.hu-berlin.de
2016-08-15
The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization schememore » and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.« less
A state interaction spin-orbit coupling density matrix renormalization group method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less
NASA Astrophysics Data System (ADS)
Siegel, J.; Siegel, Edward Carl-Ludwig
2011-03-01
Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!
Functional renormalization group and bosonization as a solver for 2D fermionic Hubbard models
NASA Astrophysics Data System (ADS)
Schuetz, Florian; Marston, Brad
2007-03-01
The functional renormalization group (fRG) provides an unbiased framework to analyze competing instabilities in two-dimensional electron systems and has been used extensively over the past decade [1]. In order to obtain an equally unbiased tool to interprete the flow, we investigate the combination of a many-patch, one-loop calculation with higher dimensional bosonization [2] of the resulting low-energy action. Subsequently a semi-classical approximation [3] can be used to describe the resulting phases. The spinless Hubbard model on a square lattice with nearest neighbor repulsion is investigated as a test case. [1] M. Salmhofer and C. Honerkamp, Prog. Theor. Phys. 105, 1 (2001). [2] A. Houghton, H.-J. Kwon, J. B. Marston, Adv.Phys. 49, 141 (2000); P. Kopietz, Bosonization of interacting fermions in arbitrary dimensions, (Springer, Berlin, 1997). [3] H.-H. Lin, L. Balents, M. P. A. Fisher, Phys. Rev. B 56, 6569 6593 (1997); J. O. Fjaerestad, J. B. Marston, U. Schollwoeck, Ann. Phys. (N.Y.) 321, 894 (2006).
Renormalization group approach to symmetry protected topological phases
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei
2018-04-01
A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.
Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model
NASA Technical Reports Server (NTRS)
Yakhot, A.; Staroselsky, I.; Orszag, S. A.
1994-01-01
Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.
Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory
NASA Astrophysics Data System (ADS)
Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Renormalization group scale-setting from the action—a road to modified gravity theories
NASA Astrophysics Data System (ADS)
Domazet, Silvije; Štefančić, Hrvoje
2012-12-01
The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
NASA Astrophysics Data System (ADS)
José, Jorge V.
2017-03-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson’s RG for lattice gauge theories. Although Migdal’s RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN’s results gave a theoretical formulation foundation and justification for BKT’s sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested successfully against experimental results on superfluid helium films. The success of the BKT theory also gave one of the first quantitative proofs of the validity of the RG theory.
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
NASA Astrophysics Data System (ADS)
José, Jorge V.
2013-06-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson's RG for lattice gauge theories. Although Migdal's RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN's results gave a theoretical formulation foundation and justification for BKT's sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested successfully against experimental results on superfluid helium films. The success of the BKT theory also gave one of the first quantitative proofs of the validity of the RG theory...
On the interface between perturbative and nonperturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2016-04-04
The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less
Theory of strong turbulence by renormalization
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1981-01-01
The hydrodynamical equations of turbulent motions are inhomogeneous and nonlinear in their inertia and force terms and will generate a hierarchy. A kinetic method was developed to transform the hydrodynamic equations into a master equation governing the velocity distribution, as a function of the time, the position and the velocity as an independent variable. The master equation presents the advantage of being homogeneous and having fewer nonlinear terms and is therefore simpler for the investigation of closure. After the closure by means of a cascade scaling procedure, the kinetic equation is derived and possesses a memory which represents the nonMarkovian character of turbulence. The kinetic equation is transformed back to the hydrodynamical form to yield an energy balance in the cascade form. Normal and anomalous transports are analyzed. The theory is described for incompressible, compressible and plasma turbulence. Applications of the method to problems relating to sound generation and the propagation of light in a nonfrozen turbulence are considered.
Trace anomaly and invariance under transformation of units
NASA Astrophysics Data System (ADS)
Namavarian, Nadereh
2017-05-01
Paying attention to conformal invariance as the invariance under local transformations of units of measure, we take a conformal-invariant quantum field as a quantum matter theory in which one has the freedom to choose the values of units of mass, length, and time arbitrarily at each point. To be able to have this view, it is necessary that the background on which the quantum field is based be conformal invariant as well. Consequently, defining the unambiguous expectation value of the energy-momentum tensor of such a quantum field through the Wald renormalizing prescription necessitates breaking down the conformal symmetry of the background. Then, noticing the field equations suitable for describing the backreaction effect, we show that the existence of the "trace anomaly," known for indicating the brokenness of conformal symmetry in quantum field theory, can also indicate the above "gravitational" conformal symmetry brokenness.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej
2018-04-01
An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.
Topological terms, AdS2 n gravity, and renormalized entanglement entropy of holographic CFTs
NASA Astrophysics Data System (ADS)
Anastasiou, Giorgos; Araya, Ignacio J.; Olea, Rodrigo
2018-05-01
We extend our topological renormalization scheme for entanglement entropy to holographic CFTs of arbitrary odd dimensions in the context of the AdS /CFT correspondence. The procedure consists in adding the Chern form as a boundary term to the area functional of the Ryu-Takayanagi minimal surface. The renormalized entanglement entropy thus obtained can be rewritten in terms of the Euler characteristic and the AdS curvature of the minimal surface. This prescription considers the use of the replica trick to express the renormalized entanglement entropy in terms of the renormalized gravitational action evaluated on the conically singular replica manifold extended to the bulk. This renormalized action is obtained in turn by adding the Chern form as the counterterm at the boundary of the 2 n -dimensional asymptotically AdS bulk manifold. We explicitly show that, up to next-to-leading order in the holographic radial coordinate, the addition of this boundary term cancels the divergent part of the entanglement entropy. We discuss possible applications of the method for studying CFT parameters like central charges.
Classical closure theory and Lam's interpretation of epsilon-RNG
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.
NASA Astrophysics Data System (ADS)
Seradjeh, Babak Hosseyni
In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of the QED3 theory to spin response in the superconductor, relevant for neutron scattering measurements. We show that the theory explains the observed spin gap numerically and the evolution of the response in energy and momenta qualitatively. We study the issue of resonance in these measurements by developing a formalism for exciton bound states. Keywords. High-temperature superconductivity; Antiferromagnetism; Spinons; Spin response; Three-dimensional quantum electrodynamics; Chiral symmetry breaking; Confinement; Duality transformation; renormalization group; Variational methods;
Solar System and stellar tests of a quantum-corrected gravity
NASA Astrophysics Data System (ADS)
Zhao, Shan-Shan; Xie, Yi
2015-09-01
The renormalization group running of the gravitational constant has a universal form and represents a possible extension of general relativity. These renormalization group effects on general relativity will cause the running of the gravitational constant, and there exists a scale of renormalization α ν , which depends on the mass of an astronomical system and needs to be determined by observations. We test renormalization group effects on general relativity and obtain the upper bounds of α ν in the low-mass scales: the Solar System and five systems of binary pulsars. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain new upper bounds on α ν in the Solar System when the Lense-Thirring effect due to the Sun's angular momentum and the uncertainty of the Sun's quadrupole moment are properly taken into account. These two factors were absent in the previous work. We find that INPOP10a yields the upper bound as α ν =(0.3 ±2.8 )×10-20 while EPM2011 gives α ν =(-2.5 ±8.3 )×10-21. Both of them are tighter than the previous result by 4 orders of magnitude. Furthermore, based on the observational data sets of five systems of binary pulsars: PSR J 0737 -3039 , PSR B 1534 +12 , PSR J 1756 -2251 , PSR B 1913 +16 , and PSR B 2127 +11 C , the upper bound is found as α ν =(-2.6 ±5.1 )×10-17. From the bounds of this work at a low-mass scale and the ones at the mass scale of galaxies, we might catch an updated glimpse of the mass dependence of α ν , and it is found that our improvement of the upper bounds in the Solar System can significantly change the possible pattern of the relation between log |α ν | and log m from a linear one to a power law, where m is the mass of an astronomical system. This suggests that |α ν | needs to be suppressed more rapidly with the decrease of the mass of low-mass systems. It also predicts that |α ν | might have an upper limit in high-mass astrophysical systems, which can be tested in the future.
Renormalization of the inflationary perturbations revisited
NASA Astrophysics Data System (ADS)
Markkanen, Tommi
2018-05-01
In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.
Target space pseudoduality in supersymmetric sigma models on symmetric spaces
NASA Astrophysics Data System (ADS)
Sarisaman, Mustafa
We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain the similar results with the classical case in orthonormal coframe method. In case of super WZW sigma models pseudoduality equations result in three different pseudoduality conditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality transformations on symmetric spaces using two different methods again. These two methods yield similar results to the classical cases with the exception that commuting bracket relations in classical case turns out to be anticommuting ones because of the appearance of grassmann numbers. It is understood that constraint relations in case of non-mixing pseudoduality are the remnants of mixing pseudoduality. Once mixing terms are included in the pseudoduality the constraint relations disappear.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
Temperature and frequency dependent mean free paths of renormalized phonons in nonlinear lattices
NASA Astrophysics Data System (ADS)
Li, Nianbei; Liu, Junjie; Wu, Changqin; Li, Baowen
2018-02-01
Unraveling general properties of renormalized phonons are of fundamental relevance to the heat transport in the regime of strong nonlinearity. In this work, we directly study the temperature and frequency dependent mean free path (MFP) of renormalized phonons with the newly developed numerical tuning fork method. The typical 1D nonlinear lattices such as Fermi-Pasta-Ulam β lattice and {φ }4 lattice are investigated in detail. Interestingly, it is found that the MFPs are inversely proportional to the frequencies of renormalized phonons rather than the square of phonon frequencies predicted by existing phonon scattering theory.
Entanglement entropy in a boundary impurity model.
Levine, G C
2004-12-31
Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.
The metric on field space, functional renormalization, and metric–torsion quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less
Gutzwiller renormalization group
Lanatà, Nicola; Yao, Yong -Xin; Deng, Xiaoyu; ...
2016-01-06
We develop a variational scheme called the “Gutzwiller renormalization group” (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method exploits the low-entanglement property of the ground state of local Hamiltonians in combination with the framework of the Gutzwiller wave function and indicates that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. Furthermore, we perform benchmark calculations of the single-band AIM that validate our theory and suggest that the GRG mightmore » enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.« less
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
NASA Astrophysics Data System (ADS)
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
NASA Astrophysics Data System (ADS)
Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.
2012-02-01
Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)
NASA Astrophysics Data System (ADS)
Luo, H. G.; Xiang, T.; Wang, X. Q.
2003-07-01
A Comment on the Letter by
EDITORIAL: Focus on Quantum Information and Many-Body Theory
NASA Astrophysics Data System (ADS)
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovič Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel
Parity-violating hybridization in heavy Weyl semimetals
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Coleman, Piers
2018-04-01
We introduce a simple model to describe the formation of heavy Weyl semimetals in noncentrosymmetric heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a temperature-dependent reconfiguration of the Fermi arcs and the Weyl cyclotron orbits which connect them via the chiral bulk states. Our theory predicts a strong temperature-dependent transformation in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.
Global anomalies and effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golkar, Siavash; Sethi, Savdeep
2016-05-17
Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less
Bubble statistics in aged wet foams and the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Tzyipin, D. V.; Samorodina, T. V.
2018-04-01
Results of the experimental study of changes in the bubble size statistics during aging of wet foams are discussed. It is proposed that the evolution of the bubble radii distributions can be described in terms of the one dimensional Fokker- Planck equation. The empirical distributions of the bubble radii exhibit a self-similarity of their shapes and can be transformed to a time-independent form using the radius renormalization. Analysis of obtained data allows us to suggest that the drift term of the Fokker-Planck equation dominates in comparison with the diffusion term in the case of aging of isolated quasi-stable wet foams.
Asymptotically Free Gauge Theories. I
DOE R&D Accomplishments Database
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Bose gases near resonance: Renormalized interactions in a condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less
Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, M.; Vranjes, J.; Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205
2015-11-15
A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kineticmore » derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.« less
NASA Astrophysics Data System (ADS)
Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.
2018-02-01
The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...
2017-05-10
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
The generalized scheme-independent Crewther relation in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
Higgs boson self-coupling from two-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less
NASA Astrophysics Data System (ADS)
Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin
2016-01-01
In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-01
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.
Bahr, Benjamin; Steinhaus, Sebastian
2016-09-30
Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.
Charged polymers in high dimensions
NASA Technical Reports Server (NTRS)
Kantor, Yacov
1990-01-01
A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.
Spin-adapted matrix product states and operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.
Recursive renormalization group theory based subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE
1991-01-01
Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less
Renormalization-group flow of the effective action of cosmological large-scale structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically,more » the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input values at the UV scale. This allows for a self-contained computation of matter and velocity power spectra for which the sensitivity to UV modes is under control.« less
NASA Astrophysics Data System (ADS)
Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio
2017-10-01
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto; ...
2017-10-09
Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less
Density matrix renormalization group study of Y-junction spin systems
NASA Astrophysics Data System (ADS)
Guo, Haihui
Junction systems are important to understand both from the fundamental and the practical point of view, as they are essential components in existing and future electronic and spintronic devices. With the continuous advance of technology, device size will eventual reach the atomic scale. Some of the most interesting and useful junction systems will be strongly correlated. We chose the Density Matrix Renormalization Group method to study two types of Y-junction systems, the Y and YDelta junctions, on strongly correlated spin chains. With new ideas coming from the quantum information field, we have made a very efficient. Y-junction DMRG algorithm, which improves the overall CUB cost from O(m6) to O(m4), where m is the number of states kept per block. We studied the ground state properties, the correlation length, and investigated the degeneracy problem on the Y and YDelta junctions. For the excited states, we researched the existence of magnon bound states for various conditions, and have shown that the bound state exists when the central coupling constant is small.
Self-diffusion in a system of interacting Langevin particles
NASA Astrophysics Data System (ADS)
Dean, D. S.; Lefèvre, A.
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
Will-Nordtvedt PPN formalism applied to renormalization group extensions of general relativity
NASA Astrophysics Data System (ADS)
Toniato, Júnior D.; Rodrigues, Davi C.; de Almeida, Álefe O. F.; Bertini, Nicolas
2017-09-01
We apply the full Will-Nordtvedt version of the parametrized post-Newtonian (PPN) formalism to a class of general relativity extensions that are based on nontrivial renormalization group (RG) effects at large scales. We focus on a class of models in which the gravitational coupling constant G is correlated with the Newtonian potential. A previous PPN analysis considered a specific realization of the RG effects, and only within the Eddington-Robertson-Schiff version of the PPN formalism, which is a less complete and robust PPN formulation. Here we find stronger, more precise bounds, and with less assumptions. We also consider the external potential effect (EPE), which is an effect that is intrinsic to this framework and depends on the system environment (it has some qualitative similarities to the screening mechanisms of modified gravity theories). We find a single particular RG realization that is not affected by the EPE. Some physical systems have been pointed out as candidates for measuring the possible RG effects in gravity at large scales; for any of them the Solar System bounds need to be considered.
Renormalization group evolution of the universal theories EFT
Wells, James D.; Zhang, Zhengkang
2016-06-21
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less
NASA Astrophysics Data System (ADS)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Unifying time evolution and optimization with matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank
2016-10-01
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.
Backward renormalization-group inference of cortical dipole sources and neural connectivity efficacy
NASA Astrophysics Data System (ADS)
Amaral, Selene da Rocha; Baccalá, Luiz A.; Barbosa, Leonardo S.; Caticha, Nestor
2017-06-01
Proper neural connectivity inference has become essential for understanding cognitive processes associated with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalogram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data. We use a method based on maximum entropy and the renormalization group to infer the position of the sources, whose success hinges on transmitting information from low- to high-resolution representations of the cortex. The performance of this method compares favorably to other available source inference algorithms, which are ranked here in terms of their performance with respect to directed connectivity inference by using artificially generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow of information as long as the equivalent dipole sources are correctly found.
Renormalization group evolution of the universal theories EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, James D.; Zhang, Zhengkang
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
NASA Astrophysics Data System (ADS)
Galley, Chad R.; Rothstein, Ira Z.
2017-05-01
We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.; Oganesyan, Vadim; Refael, Gil; Tian, Binbin
Many-body localization is a dynamical phase of matter that is characterized by the absence of thermalization. One of the key characteristics of many-body localized systems is the emergence of a large (possibly maximal) number of local integrals of motion (local quantum numbers) and corresponding conserved quantities. We formulate a robust algorithm for identifying these conserved quantities, based on Wegner's flow equations - a form of the renormalization group that works by disentangling the degrees of freedom of the system as opposed to integrating them out. We test our algorithm by explicit numerical comparison with more engineering based algorithms - Jacobi rotations and bi-partite matching. We find that the Wegner flow algorithm indeed produces the more local conserved quantities and is therefore more optimal. A preliminary analysis of the conserved quantities produced by the Wegner flow algorithm reveals the existence of at least two different localization lengthscales. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.
2014-03-31
A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less
Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions.
Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2018-03-01
The fractal dimension of domain walls produced by changing the boundary conditions from periodic to antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization group results for the fractal dimension are in good agreement with essentially exact numerical results, but the small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our numerical results are consistent with this expectation.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Excited state TBA and renormalized TCSA in the scaling Potts model
NASA Astrophysics Data System (ADS)
Lencsés, M.; Takács, G.
2014-09-01
We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.
Noncommutative Jackiw-Pi model: One-loop renormalization
NASA Astrophysics Data System (ADS)
Bufalo, R.; Ghasemkhani, M.; Alipour, M.
2018-06-01
In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.
NASA Astrophysics Data System (ADS)
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy barrier in thermal activation to obtain our final result for the temperature-dependent critical pressure, which is significantly below the results if only parameter renormalization or only thermal activation is considered.
Renormalization in Coulomb-gauge QCD within the Lagrangian formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niegawa, A.
2006-08-15
We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies
NASA Astrophysics Data System (ADS)
Mestel, B. D.; Osbaldestin, A. H.
2004-10-01
We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.
Fermionic influence on inflationary fluctuations
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2016-04-01
Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
Watching the brain recalibrate: Neural correlates of renormalization during face adaptation.
Kloth, Nadine; Rhodes, Gillian; Schweinberger, Stefan R
2017-07-15
The face perception system flexibly adjusts its neural responses to current face exposure, inducing aftereffects in the perception of subsequent faces. For instance, adaptation to expanded faces makes undistorted faces appear compressed, and adaptation to compressed faces makes undistorted faces appear expanded. Such distortion aftereffects have been proposed to result from renormalization, in which the visual system constantly updates a prototype according to the adaptors' characteristics and evaluates subsequent faces relative to that. However, although consequences of adaptation are easily observed in behavioral aftereffects, it has proven difficult to observe renormalization during adaptation itself. Here we directly measured brain responses during adaptation to establish a neural correlate of renormalization. Given that the face-evoked occipito-temporal P2 event-related brain potential has been found to increase with face prototypicality, we reasoned that the adaptor-elicited P2 could serve as an electrophysiological indicator for renormalization. Participants adapted to sequences of four distorted (compressed or expanded) or undistorted faces, followed by a slightly distorted test face, which they had to classify as undistorted or distorted. We analysed ERPs evoked by each of the adaptors and found that P2 (but not N170) amplitudes evoked by consecutive adaptor faces exhibited an electrophysiological pattern of renormalization during adaptation to distorted faces: P2 amplitudes evoked by both compressed and expanded adaptors significantly increased towards asymptotic levels as adaptation proceeded. P2 amplitudes were smallest for the first adaptor, significantly larger for the second, and yet larger for the third adaptor. We conclude that the sensitivity of the occipito-temporal P2 to the perceived deviation of a face from the norm makes this component an excellent tool to study adaptation-induced renormalization. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi; Ueda, Kazuo
2011-08-01
Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu--Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu--Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.
Chemical-potential flow equations for graphene with Coulomb interactions
NASA Astrophysics Data System (ADS)
Fräßdorf, Christian; Mosig, Johannes E. M.
2018-06-01
We calculate the chemical potential dependence of the renormalized Fermi velocity and static dielectric function for Dirac quasiparticles in graphene nonperturbatively at finite temperature. By reinterpreting the chemical potential as a flow parameter in the spirit of the functional renormalization group (fRG) we obtain a set of flow equations, which describe the change of these functions upon varying the chemical potential. In contrast to the fRG the initial condition of the flow is nontrivial and has to be calculated separately. Our results are consistent with a charge carrier-independent Fermi velocity v (k ) for small densities n ≲k2/π , supporting the comparison of the zero-density fRG calculation of Bauer et al. [Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409], with the experiment of Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].
NASA Astrophysics Data System (ADS)
Varjas, Daniel; Zaletel, Michael; Moore, Joel
2014-03-01
We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.
NASA Astrophysics Data System (ADS)
Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.
2013-10-01
We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.
NASA Astrophysics Data System (ADS)
Joya, Wajid; Khan, Salman; Khalid Khan, M.; Alam, Sher
2017-05-01
The behavior of bipartite quantum discord (BQD) and tripartite quantum discord (TQD) in the Heisenberg XXZ spins chain is investigated with the increasing size of the system using the approach of the quantum renormalization group method. Analytical relations for both BQD and TQD are obtained and the results are checked through numerical optimization. In the thermodynamics limit, both types of discord exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated discord and zero discord. The first derivative of both discords becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Qualitatively identical, the amount of saturated BQD strongly depends on the relative positions of spins inside a block. TQD can be a better candidate than BQD both for analyzing QPT and implementing quantum information tasks. The scaling behavior in the vicinity of the critical point is discussed.
Extended investigation of the twelve-flavor β-function
NASA Astrophysics Data System (ADS)
Fodor, Zoltán; Holland, Kieran; Kuti, Julius; Nógrádi, Dániel; Wong, Chik Him
2018-04-01
We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6] which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor number are discussed in this context.
NASA Astrophysics Data System (ADS)
Garattini, Remo
2013-09-01
The one loop effective action in a Schwarzschild background is here used to compute the Zero Point Energy (ZPE) which is compared to the same one generated by an existing gravastar. We find that only when we set up a difference between ZPE in these different background we can have an indication on which configuration is favored. Such a ZPE difference represents the Casimir energy. Such an energy, being negative, can be considered as a part of the Dark Energy necessary for the topology change. It is also shown that the expression of the ZPE is equivalent to the one computed by means of a variational approach. To handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure to remove the infinities together with a renormalization group equation is introduced. We find that the final configuration is dependent on the ratio between the radius of the wormhole augmented by the "brick wall" and the radius of the gravastar.
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
Renormalized Energy Concentration in Random Matrices
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Serfaty, Sylvia
2013-05-01
We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.
The μ- τ reflection symmetry of Dirac neutrinos and its breaking effect via quantum corrections
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhang, Di; Zhu, Jing-yu
2017-11-01
Given the Dirac neutrino mass term, we explore the constraint conditions which allow the corresponding mass matrix to be invariant under the μ- τ reflection transformation, leading us to the phenomenologically favored predictions θ 23 = π/4 and δ = 3 π/2 in the standard parametrization of the 3 × 3 lepton flavor mixing matrix. If such a flavor symmetry is realized at a superhigh energy scale Λ μτ , we investigate how it is spontaneously broken via the one-loop renormalization-group equations (RGEs) running from Λ μτ down to the Fermi scale ΛF. Such quantum corrections to the neutrino masses and flavor mixing parameters are derived, and an analytical link is established between the Jarlskog invariants of CP violation at Λ μτ and ΛF. Some numerical examples are also presented in both the minimal supersymmetric standard model and the type-II two-Higgs-doublet model, to illustrate how the octant of θ 23, the quadrant of δ and the neutrino mass ordering are correlated with one another as a result of the RGE-induced μ-τ reflection symmetry breaking effects.
Properties of infrared extrapolations in a harmonic oscillator basis
Coon, Sidney A.; Kruse, Michael K. G.
2016-02-22
Here, the success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful,more » not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r 2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.« less
Quantum corrections to non-Abelian SUSY theories on orbifolds
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Hillenbach, Mark
2006-07-01
We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.
Renormalization and radiative corrections to masses in a general Yukawa model
NASA Astrophysics Data System (ADS)
Fox, M.; Grimus, W.; Löschner, M.
2018-01-01
We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.
Cosmological constant problem and renormalized vacuum energy density in curved background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derivemore » this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.« less
An Exponential Regulator for Rapidity Divergences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ye; Neill, Duff; Zhu, Hua Xing
2016-04-01
Finding an efficient and compelling regularization of soft and collinear degrees of freedom at the same invariant mass scale, but separated in rapidity is a persistent problem in high-energy factorization. In the course of a calculation, one encounters divergences unregulated by dimensional regularization, often called rapidity divergences. Once regulated, a general framework exists for their renormalization, the rapidity renormalization group (RRG), leading to fully resummed calculations of transverse momentum (to the jet axis) sensitive quantities. We examine how this regularization can be implemented via a multi-differential factorization of the soft-collinear phase-space, leading to an (in principle) alternative non-perturbative regularization ofmore » rapidity divergences. As an example, we examine the fully-differential factorization of a color singlet's momentum spectrum in a hadron-hadron collision at threshold. We show how this factorization acts as a mother theory to both traditional threshold and transverse momentum resummation, recovering the classical results for both resummations. Examining the refactorization of the transverse momentum beam functions in the threshold region, we show that one can directly calculate the rapidity renormalized function, while shedding light on the structure of joint resummation. Finally, we show how using modern bootstrap techniques, the transverse momentum spectrum is determined by an expansion about the threshold factorization, leading to a viable higher loop scheme for calculating the relevant anomalous dimensions for the transverse momentum spectrum.« less
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
Johnston, S.; Lee, W. S.; Chen, Y.; ...
2010-01-01
We presenmore » t a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of Cu O 2 layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.« less
Towards Cohomology of Renormalization: Bigrading the Combinatorial Hopf Algebra of Rooted Trees
NASA Astrophysics Data System (ADS)
Broadhurst, D. J.; Kreimer, D.
The renormalization of quantum field theory twists the antipode of a noncocommutative Hopf algebra of rooted trees, decorated by an infinite set of primitive divergences. The Hopf algebra of undecorated rooted trees, ℌR, generated by a single primitive divergence, solves a universal problem in Hochschild cohomology. It has two nontrivial closed Hopf subalgebras: the cocommutative subalgebra ℌladder of pure ladder diagrams and the Connes-Moscovici noncocommutative subalgebra ℌCM of noncommutative geometry. These three Hopf algebras admit a bigrading by n, the number of nodes, and an index k that specifies the degree of primitivity. In each case, we use iterations of the relevant coproduct to compute the dimensions of subspaces with modest values of n and k and infer a simple generating procedure for the remainder. The results for ℌladder are familiar from the theory of partitions, while those for ℌCM involve novel transforms of partitions. Most beautiful is the bigrading of ℌR, the largest of the three. Thanks to Sloane's superseeker, we discovered that it saturates all possible inequalities. We prove this by using the universal Hochschild-closed one-cocycle B+, which plugs one set of divergences into another, and by generalizing the concept of natural growth beyond that entailed by the Connes-Moscovici case. We emphasize the yet greater challenge of handling the infinite set of decorations of realistic quantum field theory.
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling
NASA Astrophysics Data System (ADS)
Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun
2018-05-01
Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.
Off-shell renormalization in Higgs effective field theories
NASA Astrophysics Data System (ADS)
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
NASA Astrophysics Data System (ADS)
Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois
2014-08-01
The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.
Gauge-independent renormalization of the N2HDM
NASA Astrophysics Data System (ADS)
Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui
2017-12-01
The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.
Low-temperature behavior of the quark-meson model
NASA Astrophysics Data System (ADS)
Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen
2018-02-01
We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Davi C., E-mail: davirodrigues.ufes@gmail.com
The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374more » (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)« less
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan; Agarwal, Umang; Tandon, Kunj; Koelman, J. M. Vianney A.
2017-09-01
Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a technique based on mode-elimination renormalization group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.
Anatomy of the magnetic catalysis by renormalization-group method
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho
2017-12-01
We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.
Extending the range of real time density matrix renormalization group simulations
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Karrasch, C.
2016-03-01
We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.
NASA Astrophysics Data System (ADS)
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
NASA Astrophysics Data System (ADS)
Zhou, Wei-Xing; Sornette, Didier
2003-12-01
We propose a straightforward extension of our previously proposed log-periodic power-law model of the “anti-bubble” regime of the USA stock market since the summer of 2000, in terms of the renormalization group framework to model critical points. Using a previous work by Gluzman and Sornette (Phys. Rev. E 65 (2003) 036142) on the classification of the class of Weierstrass-like functions, we show that the five crashes that occurred since August 2000 can be accurately modeled by this approach, in a fully consistent way with no additional parameters. Our theory suggests an overall consistent organization of the investors forming a collective network which interact to form the pessimistic bearish “anti-bubble” regime with intermittent acceleration of the positive feedbacks of pessimistic sentiment leading to these crashes. We develop retrospective predictions, that confirm the existence of significant arbitrage opportunities for a trader using our model. Finally, we offer a prediction for the unknown future of the US S&P500 index extending over 2003 and 2004, that refines the previous prediction of Sornette and Zhou (Quant. Finance 2 (2002) 468).
Transverse momentum dependent fragmenting jet functions with applications to quarkonium production
Bain, Reggie; Makris, Yiannis; Mehen, Thomas
2016-11-23
We introduce the transverse momentum dependent fragmenting jet function (TMDFJF), which appears in factorization theorems for cross sections for jets with an identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction, and transverse momentum, p ⊥, relative to the jet axis. In the framework of Soft-Collinear Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross section and the TMD fragmentation function defined in the literature. The TMDFJFs are factorized into distinct collinear and soft-collinear modes by matching onto SCET +. As TMD calculations contain rapidity divergences, both the renormalization group (RG) and rapiditymore » renormalization group (RRG) must be used to provide resummed calculations with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation functions. We find that when the J/ψ carries a significant fraction of the jet energy, the p T and z distributions differ for different NRQCD production mechanisms. Another observable with discriminating power is the average angle that the J/ψ makes with the jet axis.« less
NASA Astrophysics Data System (ADS)
Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi
2016-09-01
In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.
Hyperscaling breakdown and Ising spin glasses: The Binder cumulant
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Campbell, I. A.
2018-02-01
Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Renormalization-group equations of neutrino masses and flavor mixing parameters in matter
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling
2018-05-01
We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.
2016-09-01
We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.
Renormalization constants for 2-twist operators in twisted mass QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrou, C.; Computation-based Science and Technology Research Center, The Cyprus Institute, 15 Kypranoros Str., 1645 Nicosia; Constantinou, M.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of thesemore » operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.« less
Consistent parameter fixing in the quark-meson model with vacuum fluctuations
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael
2016-08-01
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Time-dependent spectral renormalization method
NASA Astrophysics Data System (ADS)
Cole, Justin T.; Musslimani, Ziad H.
2017-11-01
The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.
First Renormalized Parton Distribution Functions from Lattice QCD
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; LP3 Collaboration
2017-09-01
We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.
Novel formulations of CKM matrix renormalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2009-12-17
We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
Effects of long-range interactions on curvature energies of viral shells
NASA Astrophysics Data System (ADS)
Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf
2016-05-01
We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.
One-loop renormalization of a gravity-scalar system
NASA Astrophysics Data System (ADS)
Park, I. Y.
2017-05-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.
NLO renormalization in the Hamiltonian truncation
NASA Astrophysics Data System (ADS)
Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.
2017-09-01
Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.
Renormalization of position space amplitudes in a massless QFT
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
NASA Astrophysics Data System (ADS)
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
Constructive tensorial group field theory I: The {U(1)} -{T^4_3} model
NASA Astrophysics Data System (ADS)
Lahoche, Vincent
2018-05-01
The loop vertex expansion (LVE) is a constructive technique using canonical combinatorial tools. It works well for quantum field theories without renormalization, which is the case of the field theory studied in this paper. Tensorial group field theories (TGFTs) are a new class of field theories proposed to quantize gravity. This paper is devoted to a very simple TGFT for rank three tensors with U(1) group and quartic interactions, hence nicknamed -. It has no ultraviolet divergence, and we show, with the LVE, that it is Borel summable in its coupling constant.
Renormalization of the Brazilian chiral nucleon-nucleon potential
NASA Astrophysics Data System (ADS)
Da Rocha, Carlos A.; Timóteo, Varese S.
2013-03-01
In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.
The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications
Ambroso, Michael; Ovrut, Burt A.
2011-04-10
The matter spectrum of the MSSM, including three right-handed neutrino supermultiplets and one pair of Higgs-Higgs conjugate superfields, can be obtained by compactifying the E₈ x E₈ heterotic string and M-theory on Calabi-Yau manifolds with specific SU(4) vector bundles. These theories have the standard model gauge group augmented by an additional gauged U(1) B-L. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed neutrino. In previous papers, we presented the results of a quasi-analytic renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken withmore » an appropriate B-L/electroweak hierarchy. In this paper, we extend these results by 1) enlarging the initial parameter space and 2) explicitly calculating all renormalization group equations numerically. The regions of the initial parameter space leading to realistic vacua are presented and the B-L/electroweak hierarchy computed over these regimes. At representative points, the mass spectrum for all particles and Higgs fields is calculated and shown to be consistent with present experimental bounds. Some fundamental phenomenological signatures of a non-zero right-handed neutrino expectation value are discussed, particularly the cosmology and proton lifetime arising from induced lepton and baryon number violating interactions.« less
Long-time correlation for the chaotic orbit in the two-wave Hamiltonian
NASA Astrophysics Data System (ADS)
Hatori, Tadatsugu; Irie, Haruyuki
1987-03-01
The time correlation function of velocity is found to decay with the power law for the orbit governed by a Hamiltonian, H=v sup 2/2 - Mcosx - Pcos (k(x-t)). The renormalization group technique can predict the power of decay for the correlation function defined by the ensemble average. The power spectrum becomes the 1/f-type for a special case.
Surprises in low-dimensional correlated systems
NASA Astrophysics Data System (ADS)
Lin, Hsiu-Hau
In this thesis, correlation effects in low-dimensional systems were studied. In particular, we focus on two systems: a point-contact in the quantum-Hall regime under the influence of ac drive and quasi-one-dimensional ladder materials with generic interactions in weak coupling. Powerful techniques, including renormalization group, quantum field theory, operator product expansions, bosonization,...etc., were employed to extract surprising physics out of these strongly fluctuating systems. We first study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling nu-1 an odd integer. In a semi-classical limit, the tunneling current exhibits mode-locking, which corresponds to plateaus in the I-V curve at integer multiples of I = ef , with f the ac drive frequency. However, the full quantum model exhibits rounded plateaus centered around the quantized current values due to quantum fluctuations. The locations of these plateaus can serve as an indirect hint of fractional charges. Switching attentions to quasi-one-dimensional coupled-chain systems, we present a systematic weak-coupling renormalization group (RG) technique and find that generally broad regions of the phase space of the ladder materials are unstable to pairing, usually with approximate d-wave symmetry. The dimensional crossovers from 1D to 2D were also discussed. Carbon nanotubes as possible candidates that display such unconventional pairing and interesting physics in weak coupling were discussed. Quite surprisingly, a hidden symmetry was found in the weakly-coupled two-leg ladder. A perturbative renormalization group analysis reveals that at half-filling the model scales onto an exactly soluble SO(8) symmetric Gross-Neveu model. Integrability of the Gross-Neveu model is employed to extract the exact energies, degeneracies and quantum numbers of all the low energy excited states, which fall into degenerate SO(8) multiplets. For generic physical interactions, there are four robust phases which have different SO(8) symmetries but share a common SO(5) symmetry. The effects of marginal chiral interactions were discussed at the end. Finally, we summarize our main results and discuss related open questions for future study.
Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.
Renormalization scheme dependence of high-order perturbative QCD predictions
NASA Astrophysics Data System (ADS)
Ma, Yang; Wu, Xing-Gang
2018-02-01
Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.
On the divergences of inflationary superhorizon perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, K; Nurmi, S; Podolsky, D
2008-04-15
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less
One-loop calculations in Supersymmetric Lattice QCD
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-03-01
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
Percolation in random-Sierpiński carpets: A real space renormalization group approach
NASA Astrophysics Data System (ADS)
Perreau, Michel; Peiro, Joaquina; Berthier, Serge
1996-11-01
The site percolation transition in random Sierpiński carpets is investigated by real space renormalization. The fixed point is not unique like in regular translationally invariant lattices, but depends on the number k of segmentation steps of the generation process of the fractal. It is shown that, for each scale invariance ratio n, the sequence of fixed points pn,k is increasing with k, and converges when k-->∞ toward a limit pn strictly less than 1. Moreover, in such scale invariant structures, the percolation threshold does not depend only on the scale invariance ratio n, but also on the scale. The sequence pn,k and pn are calculated for n=4, 8, 16, 32, and 64, and for k=1 to k=11, and k=∞. The corresponding thermal exponent sequence νn,k is calculated for n=8 and 16, and for k=1 to k=5, and k=∞. Suggestions are made for an experimental test in physical self-similar structures.
Revisiting the decoupling effects in the running of the Cosmological Constant
NASA Astrophysics Data System (ADS)
Antipin, Oleg; Melić, Blaženka
2017-09-01
We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.
Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.
Andreev, Oleg
2009-05-29
We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.
Constructive tensorial group field theory II: the {U(1)-T^4_4} model
NASA Astrophysics Data System (ADS)
Lahoche, Vincent
2018-05-01
In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.
General solution of the Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that themore » general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.« less
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which providesmore » a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations, stochasticity criteria for quasilinear theory, formal aspects of resonance-broadening theory, Novikov's theorem, the treatment of weak inhomogeneity, the derivation of the Vlasov weak-turbulence wave kinetic equation from a fully renormalized description, some features of a code for solving the direct-interaction approximation and related Markovian closures, the details of the solution of the EDQNM closure for a solvable three-wave model, and the notation used in the article.« less
Nonlinear evolution of baryon acoustic oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman
2008-01-15
We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less
Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212
NASA Astrophysics Data System (ADS)
Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro
2018-05-01
We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.
Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Sirlin, Alberto
2006-12-01
We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less
Sign Reversal of Coulom Interaction Between Two Quasiparticles in Momentum Space
NASA Astrophysics Data System (ADS)
Fan, J. D.; Malozovsky, Yuriy M.
2013-06-01
The main misconception regarding the interaction between quasiparticles stems from the assertion that the interaction energy between two quasiparticles is exactly identical to that of the renormalized interaction between two particles due to interparticle interaction in the Fermi system. If the main concept regarding the definition of quasiparticle as a weakly excited state of the Fermi system with conservation of charge and spin is paramount (except for the charge and spin separation models), the concept of the interaction between quasiparticles is very different from the assumption in the common sense. In this paper, we will prove a general theorem that the interaction between two quasiparticles is very much different from the renormalized interaction between two particles. The major difference lies in two places: the interaction between two quasiparticles is just negative to the renormalized interaction between two particles, and the interaction energy between the two particles is proportional to the product of two Fermi liquid renormalization factors. The result shed light on the reinterpretation of Cooper's pairing without invoking electron-photon interaction.
Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears
NASA Astrophysics Data System (ADS)
Panagopoulos, Haralambos; Spanoudes, Gregoris
2018-03-01
In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].
NASA Astrophysics Data System (ADS)
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
Equivalence of different definitions of the surface tension
NASA Astrophysics Data System (ADS)
Jug, Giancarlo; Jasnow, David
1985-02-01
Recently Brézin and Feng and independently Pant reported renormalization-group calculations of a universal amplitude ratio involving the surface tension, σ, defined as the free-energy difference produced by appropriate boundary conditions. Here we comment on an equivalent result obtained, within the same one-loop framework, using an alternative definition of σ involving the free-energy increment due to a macroscopic distortion of a flat interface.
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Antonov, N V; Kostenko, M M
2014-12-01
The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V
2017-01-20
We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.
Gukov, Sergei
2016-01-05
Here, interpreting renormalization group flows as solitons interpolating between different fixed points, we ask various questions that are normally asked in soliton physics but not in renormalization theory. Can one count RG flows? Are there different "topological sectors" for RG flows? What is the moduli space of an RG flow, and how does it compare to familiar moduli spaces of (supersymmetric) dowain walls? Analyzing these questions in a wide variety of contexts -- from counting RG walls to AdS/CFT correspondence -- will not only provide favorable answers, but will also lead us to a unified general framework that is powerfulmore » enough to account for peculiar RG flows and predict new physical phenomena. Namely, using Bott's version of Morse theory we relate the topology of conformal manifolds to certain properties of RG flows that can be used as precise diagnostics and "topological obstructions" for the strong form of the C-theorem in any dimension. Moreover, this framework suggests a precise mechanism for how the violation of the strong C-theorem happens and predicts "phase transitions" along the RG flow when the topological obstruction is non-trivial. Along the way, we also find new conformal manifolds in well-known 4d CFT's and point out connections with the superconformal index and classifying spaces of global symmetry groups.« less
Horizontal visibility graphs generated by type-I intermittency
NASA Astrophysics Data System (ADS)
Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto
2013-05-01
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.
NASA Astrophysics Data System (ADS)
Matsuno, Genki; Kobayashi, Akito
2018-05-01
We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.