Science.gov

Sample records for repair enzyme endonuclease

  1. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    SciTech Connect

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-04-05

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO/sub 4/-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.

  2. Encapsulation of the UV-DNA repair enzyme T4 endonuclease V in liposomes and delivery to human cells

    SciTech Connect

    Ceccoli, J.; Rosales, N.; Tsimis, J.; Yarosh, D.B. )

    1989-08-01

    T4 endonuclease V, a pyrimidine-dimer-specific DNA repair enzyme, was encapsulated in liposomes under mild conditions. The encapsulated enzyme was active, and when applied to ultraviolet (UV)-irradiated human cells in culture, the liposomes increased incision of UV-irradiated cellular DNA, enhanced DNA repair replication, and enhanced survival of UV-irradiated cells. This method is a first step in a new approach for topical application of DNA repair enzymes to human skin to prevent skin cancer.

  3. Crystal structure of T4 endonuclease V: An excision repair enzyme for a pyrimidine dimer

    SciTech Connect

    Morikawa, K.; Ariyoshi, M.; Vassylyev, D.

    1994-12-31

    Ultraviolet (UV) light induces the formation of pyrimidine dimers, which are the most prevalent DNA lesion. In bacteriophage T4-infected Escherichia coli, T4 endonuclease V (T4 endV), encoded by the denV gene of bacteriophage T4, is responsible for the first step of the excision repair pathway. Although T4 endV is a very small protein, consisting of 138 amino acids, it catalyzes two distinct reactions, at least in vitro: the cleavage of the glycosyl bond of the 5{prime}-pyrimidine of the cis-syn cyclobutane pyrimidine dimer (pyrimidine dimer glycosylase) and the incision of the phosphodiester bond at the resulting abasic site, producing an {alpha},{beta}-unsaturated aldehyde and a 5{prime}-terminal phosphomonoester. This enzyme is also known to cleave the 3{prime}-phosphodiester bond at an abasic site by {beta}-elimination. It has been also suggested from the salt concentration dependence of the catalytic activity in vitro that the excision-repair involves two distinct steps, in terms of the interaction between the enzyme and DNA. Prior to making specific interaction with a pyrimidine dimer, T4 endV can be nonspecifically bound to DNA duplexes by electrostatic forces and slides on them. Once the enzyme has been specifically bound to a pyrimidine dimer, the glycosylation occurs at the 5{prime}-glycosyl bond in the dimer. It still remains obscure whether or not the same enzyme subsequently acts on the scission of the phosphodiester bond. In this report, we describe the three-dimensional (3D) structure of the T4 endV determined at atomic resolution by x-ray crystallography, and discuss the functional implications of the enzyme. The examination of structural features, including atomic resolution crystal structures of three different mutants, allows the identification of residues that participate in the substrate binding and the catalytic reaction of glycosylase.

  4. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  5. The Vsr endonuclease of Escherichia coli: an efficient DNA repair enzyme and a potent mutagen.

    PubMed Central

    Macintyre, G; Doiron, K M; Cupples, C G

    1997-01-01

    The Vsr endonuclease of Escherichia coli initiates the repair of T/G mismatches caused by deamination of 5-methylcytosine to thymine. In this paper, we examine the capacity of Vsr to prevent CG-to-TA mutations in cells with increased transcription of the cytosine methylase gene (dcm). We find that sufficient Vsr is produced by a single chromosomal copy of vsr to prevent mutagenesis. We also investigate the cause of the transition and frameshift mutations in cells overproducing Vsr. Neither the absence of the dcm methylase nor its overproduction affects Vsr-stimulated mutagenesis. However, addition of mutS, mutL, or mutH on multicopy plasmids has a significant effect: mutL or mutH decreases the number of mutations, while mutS stimulates mutagenesis. The mut-containing plasmids have the same effect in cells treated with 2-aminopurine and in cells made defective in DNA proofreading, two experimental situations known to cause transition and frameshift mutations by saturating mismatch repair. PMID:9324251

  6. The Vsr endonuclease of Escherichia coli: an efficient DNA repair enzyme and a potent mutagen.

    PubMed

    Macintyre, G; Doiron, K M; Cupples, C G

    1997-10-01

    The Vsr endonuclease of Escherichia coli initiates the repair of T/G mismatches caused by deamination of 5-methylcytosine to thymine. In this paper, we examine the capacity of Vsr to prevent CG-to-TA mutations in cells with increased transcription of the cytosine methylase gene (dcm). We find that sufficient Vsr is produced by a single chromosomal copy of vsr to prevent mutagenesis. We also investigate the cause of the transition and frameshift mutations in cells overproducing Vsr. Neither the absence of the dcm methylase nor its overproduction affects Vsr-stimulated mutagenesis. However, addition of mutS, mutL, or mutH on multicopy plasmids has a significant effect: mutL or mutH decreases the number of mutations, while mutS stimulates mutagenesis. The mut-containing plasmids have the same effect in cells treated with 2-aminopurine and in cells made defective in DNA proofreading, two experimental situations known to cause transition and frameshift mutations by saturating mismatch repair.

  7. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.

    PubMed Central

    Thayer, M M; Ahern, H; Xing, D; Cunningham, R P; Tainer, J A

    1995-01-01

    The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins. Images PMID:7664751

  8. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes.

    PubMed

    Demple, B; Herman, T; Chen, D S

    1991-12-15

    Abasic (AP) sites are common, potentially mutagenic DNA damages that are attacked by AP endonucleases. The biological roles of these enzymes in metazoans have not been tested. We have cloned the human cDNA (APE) that encodes the main nuclear AP endonuclease. The predicted Ape protein, which contains likely nuclear transport signals, is a member of a family of DNA repair enzymes that includes two bacterial AP endonucleases (ExoA protein of Streptococcus pneumoniae and exonuclease III of Escherichia coli) and Rrp1 protein of Drosophila melanogaster. Purified Ape protein lacks the 3'-exonuclease activity against undamaged DNA that is found in the bacterial and Drosophila enzymes, but the lack of obvious amino acid changes to account for this difference suggests that the various enzyme functions evolved by fine tuning a conserved active site. Expression of the active human enzyme in AP endonuclease-deficient E. coli conferred significant resistance to killing by the DNA-alkylating agent methyl methanesulfonate. The APE cDNA provides a molecular tool for analyzing the role of this central enzyme in maintaining genetic stability in humans.

  9. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes.

    PubMed Central

    Demple, B; Herman, T; Chen, D S

    1991-01-01

    Abasic (AP) sites are common, potentially mutagenic DNA damages that are attacked by AP endonucleases. The biological roles of these enzymes in metazoans have not been tested. We have cloned the human cDNA (APE) that encodes the main nuclear AP endonuclease. The predicted Ape protein, which contains likely nuclear transport signals, is a member of a family of DNA repair enzymes that includes two bacterial AP endonucleases (ExoA protein of Streptococcus pneumoniae and exonuclease III of Escherichia coli) and Rrp1 protein of Drosophila melanogaster. Purified Ape protein lacks the 3'-exonuclease activity against undamaged DNA that is found in the bacterial and Drosophila enzymes, but the lack of obvious amino acid changes to account for this difference suggests that the various enzyme functions evolved by fine tuning a conserved active site. Expression of the active human enzyme in AP endonuclease-deficient E. coli conferred significant resistance to killing by the DNA-alkylating agent methyl methanesulfonate. The APE cDNA provides a molecular tool for analyzing the role of this central enzyme in maintaining genetic stability in humans. Images PMID:1722334

  10. Endonucleases involved in repair and recombination of DNA

    SciTech Connect

    Linn, S.M.

    1988-01-01

    When our DOE support began as a contract in 1970, from the AEC, it was our intent to begin to understand how several enzymes which we had detected in E. coli might be involved in DNA recombination and repair. These studies led to our characterization of the recBC DNase (exonuclease 5) as well as endonucleases 3 and 5. As research supported by that contract progressed, we expanded our interests to include mammalian enzymes involved in base excision repair, most notably AP endonucleases, DNA glycosylases and DNA purine insertase. A logical next step involved the inclusion of DNA polymerases into our studies of repair. Current progress includes research on: isolation of xeroderma pigmentosum correction factors; isolation of ultraviolet (UV) endonucleases; mitochondrial repair enzymes; alkylation damage repair; comparisons of repair in normal diploid, transformed, and non-mitotic cells; and repair reactions by DNA polymerases.

  11. EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF THE PLASMODIUM FALCIPARUM DNA REPAIR ENZYME, FLAP ENDONUCLEASE-1 (PfFEN-1)

    PubMed Central

    Casta, Louis J.; Buguliskis, Jeffery S.; Matsumoto, Yoshihiro; Taraschi, Theodore F.

    2009-01-01

    Flap Endonuclease-1 (FEN-1) is a structure-specific endonuclease that is critical for the resolution of single-stranded DNA flap intermediates that form during long patch DNA Base Excision Repair (BER). This investigation reports that Plasmodium species encode FEN-1 homologs. Protein sequence analysis revealed the N and I domains of Plasmodium falciparum (PfFEN-1) and Plasmodium yoelii (PyFEN-1) to be homologous to FEN-1 from other species. However, each possessed an extended C domain which had limited homology to apicomplexan FEN-1s and no homology to eukaryotic FEN-1s. A conserved Proliferating Cell Nuclear Antigen (PCNA) binding site was identified at an internal location rather than the extreme C-terminal location typically seen in FEN-1 from other organisms. The endonuclease and exonuclease activities of PfFEN-1 and PyFEN-1 were investigated using recombinant protein produced in Escherichia coli. Pf and PyFEN-1 possessed DNA structure-specific flap endonuclease and 5′→3′ exonuclease activities, similar to FEN-1’s from other species. Endonuclease activity was stimulated by Mg+2 or Mn+2 and inhibited by monovalent ions (>20.0 mM). A PfFEN-1 C-terminal truncation mutant lacking the terminal 250 amino acids (PfFEN-1ΔC) had endonuclease activity that was ~130-fold greater (kcat= 1.2x10−1) than full-length PfFEN-1 (kcat= 9.1x10−4) or ~240-fold greater than PyFEN-1 (kcat= 4.9x10−4) in vitro. PfFEN-1 generated a nicked DNA substrate that was ligated by recombinant Pf DNA Ligase I (PfLigI) using an in vitro DNA repair assay. Plasmodium FEN-1s have enzymatic activities similar to other species but contain extended C-termini and a more internally located PCNA binding site. PMID:17928073

  12. Lys98 Substitution in Human AP Endonuclease 1 Affects the Kinetic Mechanism of Enzyme Action in Base Excision and Nucleotide Incision Repair Pathways

    PubMed Central

    Timofeyeva, Nadezhda A.; Koval, Vladimir V.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Fedorova, Olga S.

    2011-01-01

    Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme in the base excision repair (BER) and nucleotide incision repair (NIR) pathways. We recently analyzed the conformational dynamics and kinetic mechanism of wild-type (wt) protein, in a stopped-flow fluorescence study. In this study, we investigated the mutant enzyme APE1K98A using the same approach. Lys98 was known to hydrogen bond to the carboxyl group of Asp70, a residue implicated in binding the divalent metal ion. Our data suggested that the conformational selection and induced fit occur during the enzyme action. We expanded upon the evidence that APE1 can pre-exist in two conformations. The isomerization of an enzyme-product complex in the BER process and the additional isomerization stage of enzyme-substrate complex in the NIR process were established for APE1K98A. These stages had not been registered for the wtAPE1. We found that the K98A substitution resulted in a 12-fold reduction of catalytic constant of 5′-phosphodiester bond hydrolysis in (3-hydroxytetrahydrofuran-2-yl)methyl phosphate (F, tetrahydrofuran) containing substrate, and in 200-fold reduction in 5,6-dihydrouridine (DHU) containing substrate. Thus, the K98A substitution influenced NIR more than BER. We demonstrated that the K98A mutation influenced the formation of primary unspecific enzyme-substrate complex in a complicated manner, depending on the Mg2+ concentration and pH. This mutation obstructed the induced fit of enzyme in the complex with undamaged DNA and F-containing DNA and appreciably decreased the stability of primary complex upon interaction of enzyme with DNA, containing the natural apurinic/apyrimidinic (AP) site. Furthermore, it significantly delayed the activation of the less active form of enzyme during NIR and slowed down the conformational conversion of the complex of enzyme with the cleavage product of DHU-substrate. Our data revealed that APE1 uses the same active site to catalyze the cleavage of DHU- and

  13. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity.

    PubMed Central

    Barzilay, G; Walker, L J; Robson, C N; Hickson, I D

    1995-01-01

    HAP1 protein, the major apurinic/apyrimidinic (AP) endonuclease in human cells, is a member of a homologous family of multifunctional DNA repair enzymes including the Escherichia coli exonuclease III and Drosophila Rrp1 proteins. The most extensively characterised member of this family, exonuclease III, exhibits both DNA- and RNA-specific nuclease activities. Here, we show that the RNase H activity characteristic of exonuclease III has been conserved in the human homologue, although the products resulting from RNA cleavage are dissimilar. To identify residues important for enzymatic activity, five mutant HAP1 proteins containing single amino acid substitutions were purified and analysed in vitro. The substitutions were made at sites of conserved amino acids and targeted either acidic or histidine residues because of their known participation in the active sites of hydrolytic nucleases. One of the mutant proteins (replacement of Asp-219 by alanine) showed a markedly reduced enzymatic activity, consistent with a greatly diminished capacity to bind DNA and RNA. In contrast, replacement of Asp-90, Asp-308 or Glu-96 by alanine led to a reduction in enzymatic activity without significantly compromising nucleic acid binding. Replacement of His-255 by alanine led to only a very small reduction in enzymatic activity. Our data are consistent with the presence of a single catalytic active site for the DNA- and RNA-specific nuclease activities of the HAP1 protein. Images PMID:7784208

  14. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease

    PubMed Central

    Tsutakawa, Susan E.; Morikawa, Kosuke

    2001-01-01

    Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resembles these endonucleases in overall topology but also how Vsr diverges in terms of the detailed catalytic mechanism. A histidine and two metal–water clusters catalyze the phosphodiester cleavage. The mode of DNA damage recognition is also unique to Vsr. All other structurally characterized DNA damage-binding enzymes employ a nucleotide flipping mechanism for substrate recognition and for catalysis. Vsr, on the other hand, recognizes the TG mismatch as a wobble base pair and penetrates the DNA with three aromatic residues on one side of the mismatch. Thus, Vsr endonuclease provides important counterpoints in our understanding of endonucleolytic mechanisms and of damaged DNA recognition. PMID:11557809

  15. DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis.

    PubMed

    Shaikh, Arif Y; Martin, Lee J

    2002-01-01

    Motor neurons degenerate in amyotrophic lateral sclerosis (ALS). The mechanisms for this neuronal cell death are not known, although apoptosis has been implicated. Oxidative damage to DNA and activation of p53 has been identified directly in motor neurons in cases of ALS. We evaluated whether motor neuron degeneration in ALS is associated with changes in the levels and function of the multifunctional protein apurinic/apyrimidinic endonuclease (APE/Ref-1). APE/Ref-1 functions as an enzyme in the DNA base-excision repair pathway and as a redox-regulation protein for transcription factors. The protein level and localization of APE/Ref-1 are changed in ALS. Immunoblotting showed that APE/Ref-1 protein levels are increased in selectively vulnerable central nervous system (CNS) regions in individuals with ALS compared to age-matched controls. Plasmid DNA repair assay demonstrated that APE from individuals with ALS is competent in repairing apurinic (AP) sites. DNA repair function in nuclear fractions is increased significantly in ALS motor cortex and spinal cord. Immunocytochemistry and single-cell densitometry revealed that APE/Ref-1 is expressed at lower levels in control motor neurons than in ALS motor neurons, which are decreased in number by 42% in motor cortex. APE/Ref-1 is increased in the nucleus of remaining upper motor neurons in ALS, which show a 38% loss of nuclear area. APE-Ref-1 is also upregulated in astrocytes in spinal cord white matter pathways in familial ALS. We conclude that mechanisms for DNA repair are activated in ALS, supporting the possibility that DNA damage is an upstream mechanism for motor neuron degeneration in this disease.

  16. Type I restriction endonucleases are true catalytic enzymes.

    PubMed

    Bianco, Piero R; Xu, Cuiling; Chi, Min

    2009-06-01

    Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.

  17. Regulation of endonuclease activity in human nucleotide excision repair

    PubMed Central

    Fagbemi, Adebanke F.; Orelli, Barbara; Schärer, Orlando D.

    2011-01-01

    Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5′ and 3′ to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures. PMID:21592868

  18. Repair of 4,5',8-trimethylpsoralen monoadducts and cross-links by the Escherichia coli UvrABC endonuclease

    SciTech Connect

    Jones, B.K.; Yeung, A.T. )

    1988-11-01

    Using an oligonucleotide model substrate, the authors observed two unusual mechanisms of UvrABC endonuclease in the repair of 4,5',8-trimethylpsoralen monaddducts and cross-links. (i) UvrABC endonuclease usually incises a psoralen monadduct only on the damaged strand. However, for one of the monadducts they studied, incision on the complementary undamaged strand was also observed at a very low frequency, as though the adduct were on the thymine across from the damaged strand. Although the details of the erroneous incision are not yet know, such erroneous incision is potentially mutagenic. (ii) In cross-link repair, they observed that the UvrABC endonuclease incises the cross-linked DNA on either the furan side strand or the pyrone side strand. The incisions are not equally efficient. These data suggest that the structure of a psoralen cross-link, as seen by a repair enzyme, varies with the DNA sequence.

  19. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.

    PubMed Central

    Warner, H R; Demple, B F; Deutsch, W A; Kane, C M; Linn, S

    1980-01-01

    The characteristics of the nicks (single-strand breaks) introduced into damaged DNA by Escherichia coli endonucleases III, IV, and VI and by phage T4 UV endonuclease have been investigated with E. coli DNA polymerase I (DNA nucleotidyltransferase). Nicks introduced into depurinated DNA by endonuclease IV or VI provide good primer termini for the polymerase, whereas nicks introduced into depurinated DNA by endonuclease III or into irradiated DNA by T4 UV endonuclease do not. This result suggests that endonuclease IV nicks depurinated DNA on the 5' side of the apurinic site, as does endonuclease VI, whereas endonuclease III has a different incision mechanism. T4 UV endonuclease also possesses apurinic endonuclease activity that generates nicks in depurinated DNA with low priming activity for the polymerase. The priming activity of DNA nicked with endonuclease III or T4 UV endonuclease can be enhanced by an additional incubation with endonuclease VI and, to a lesser extent, by incubation with endonuclease IV. These results indicate that endonuclease III and T4 UV endonuclease (acting upon depurinated and irradiated DNA, respectively) generate nicks containing apurinic/apyrimidinic sites at their 3' termini and that such sites are not rapidly excised by the 3' leads to 5' activity of DNA polymerase I. However, endonuclease IV or VI apparently can remove such terminal apurinic/apyrimidinic sites as well as cleave on the 5' side of the unnicked sites. These results suggest roles for endonucleases III, IV, and VI in the repair of apurinic/apyrimidinic sites as well as pyrimidine dimer sites in DNA. Our results with T4 UV endonuclease suggest that the incision of irradiated DNA by T4 UV endonuclease involves both cleavage of the glycosylic bond at the 5' half of the pyrimidine dimer and cleavage of the phosphodiester bond originally linking the two nucleotides of the dimer. They also imply that the glycosylic bond is cleaved before the phosphodiester bond. PMID:6254032

  20. Human repair endonuclease incises DNA at cytosine photoproducts

    SciTech Connect

    Gallagher, P.E.; Weiss, R.B.; Brent, T.P.; Duker, N.J.

    1987-05-01

    The nature of DNA damage by uvB and uvC irradiation was investigated using a defined sequence of human DNA. A UV-irradiated, 3'-end-labeled, 92 base pair sequence from the human alphoid segment was incubated with a purified human lymphoblast endonuclease that incises DNA at non-dimer photoproducts. Analysis by polyacrylamide gel electrophoresis identified all sites of endonucleolytic incision as cytosines. These were found in regions of the DNA sequence lacking adjacent pyrimidines and therefore are neither cyclobutane pyrimidine dimers nor 6-4'-pyrimidines. Incision at cytosine photoproducts was not detected at loci corresponding to alkali-labile sites in either control or irradiated substrates. This demonstrates that the bands detected after the enzymic reactions were not the result of DNA strand breaks, base loss sites or ring-opened cytosines. The optimal wavelengths for formation of cytosine photoproducts are 270-295 nm, similar to those associated with maximal tumor yields in animal ultraviolet carcinogenesis studies. Irradiation by monochromatic 254 nm light resulted in reduced cytosine photoproduct formation. This human UV endonuclease has an apparently identical substrate specificity to E. coli endonuclease III. Both the human and bacterial enzymes incise cytosine moieties in UV irradiated DNA and modified thymines in oxidized DNA.

  1. A Flap Endonuclease (TcFEN1) Is Involved in Trypanosoma cruzi Cell Proliferation, DNA Repair, and Parasite Survival.

    PubMed

    Ponce, Ivan; Aldunate, Carmen; Valenzuela, Lucia; Sepúlveda, Sofia; Garrido, Gilda; Kemmerling, Ulrike; Cabrera, Gonzalo; Galanti, Norbel

    2017-07-01

    FLAP endonucleases (FEN) are involved both in DNA replication and repair by processing DNA intermediaries presenting a nucleotide flap using its phosphodiesterase activity. In spite of these important functions in DNA metabolism, this enzyme was not yet studied in Trypanosomatids. Trypanosoma cruzi, the ethiological agent of Chagas disease, presents two dividing cellular forms (epimastigote and amastigote) and one non-proliferative, infective form (trypomastigote). The parasite survives DNA damage produced by reactive species generated in its hosts. The activity of a T. cruzi FLAP endonuclease (TcFEN1) was determined in the three cellular forms of the parasite using a DNA substrate generated by annealing three different oligonucleotides to form a double-stranded DNA with a 5' flap in the middle. This activity showed optimal pH and temperature similar to other known FENs. The substrate cut by the flap endonuclease activity could be ligated by the parasite generating a repaired DNA product. A DNA flap endonuclease coding sequence found in the T. cruzi genome (TcFEN1) was cloned, inserted in parasite expression vectors and transfected to epimastigotes. The purified native recombinant protein showed DNA flap endonuclease activity. This endonuclease was found located in the parasite nucleus of transfected epimastigotes and its over-expression increased both parasite proliferation and survival to H2 O2 . The presence of a flap endonuclease activity in T. cruzi and its nuclear location are indicative of the participation of this enzyme in DNA processing of flap fragments during DNA replication and repair in this parasite of ancient evolutive origin. J. Cell. Biochem. 118: 1722-1732, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. I. T4 endonuclease V-initiated excision repair

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1988-09-05

    The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme scans DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.

  3. High Frequency Targeted Mutagenesis Using Engineered Endonucleases and DNA-End Processing Enzymes

    PubMed Central

    Delacôte, Fabien; Perez, Christophe; Guyot, Valérie; Duhamel, Marianne; Rochon, Christelle; Ollivier, Nathalie; Macmaster, Rachel; Silva, George H.; Pâques, Frédéric; Daboussi, Fayza; Duchateau, Philippe

    2013-01-01

    Targeting DNA double-strand breaks is a powerful strategy for gene inactivation applications. Without the use of a repair plasmid, targeted mutagenesis can be achieved through Non-Homologous End joining (NHEJ) pathways. However, many of the DNA breaks produced by engineered nucleases may be subject to precise re-ligation without loss of genetic information and thus are likely to be unproductive. In this study, we combined engineered endonucleases and DNA-end processing enzymes to increase the efficiency of targeted mutagenesis, providing a robust and efficient method to (i) greatly improve targeted mutagenesis frequency up to 30-fold, and; (ii) control the nature of mutagenic events using meganucleases in conjunction with DNA-end processing enzymes in human primary cells. PMID:23359797

  4. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  5. Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions

    PubMed Central

    Erdeniz, Naz; Nguyen, Megan; Deschênes, Suzanne M.; Liskay, R. Michael

    2008-01-01

    Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to Sn1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLα is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions. PMID:17567544

  6. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    SciTech Connect

    Nakabeppu, Y.; Sekiguchi, M.

    1981-05-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4.

  7. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  8. Physical and functional interactions between Escherichia coli MutL and the Vsr repair endonuclease.

    PubMed

    Heinze, Roger J; Giron-Monzon, Luis; Solovyova, Alexandra; Elliot, Sarah L; Geisler, Sven; Cupples, Claire G; Connolly, Bernard A; Friedhoff, Peter

    2009-07-01

    DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS-MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.

  9. Physical and functional interactions between Escherichia coli MutL and the Vsr repair endonuclease

    PubMed Central

    Heinze, Roger J.; Giron-Monzon, Luis; Solovyova, Alexandra; Elliot, Sarah L.; Geisler, Sven; Cupples, Claire G.; Connolly, Bernard A.; Friedhoff, Peter

    2009-01-01

    DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS–MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH. PMID:19474347

  10. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1.

    PubMed

    Córdoba-Cañero, Dolores; Roldán-Arjona, Teresa; Ariza, Rafael R

    2011-11-01

    Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.

  11. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus

    PubMed Central

    Shiraishi, Miyako; Ishino, Sonoko; Yamagami, Takeshi; Egashira, Yuriko; Kiyonari, Shinichi; Ishino, Yoshizumi

    2015-01-01

    DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3′ from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5′ from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea. PMID:25694513

  12. Base excision repair apurinic/apyrimidinic endonucleases in apicomplexan parasite Toxoplasma gondii

    PubMed Central

    Onyango, David O.; Naguleswaran, Arunasalam; Delaplane, Sarah; Reed, April; Kelley, Mark R.; Georgiadis, Millie M.; Sullivan, William J.

    2011-01-01

    DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that Toxoplasma gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis. PMID:21353648

  13. Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity

    PubMed Central

    Roychoudhury, Shrabasti; Nath, Somsubhra; Song, Heyu; Hegde, Muralidhar L.; Bellot, Larry J.; Mantha, Anil K.; Sengupta, Shiladitya; Ray, Sutapa; Natarajan, Amarnath

    2016-01-01

    ABSTRACT Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity. PMID:27994014

  14. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA.

    PubMed

    Morikawa, K; Shirakawa, M

    2000-08-30

    Genetic information is frequently disturbed by introduction of modified or mismatch bases into duplex DNA, and hence all organisms contain DNA repair systems to restore normal genetic information by removing such damaged bases or nucleotides and replacing them by correct ones. The understanding of this repair mechanism is a central subject in cell biology. This review focuses on the three-dimensional structural views of damaged DNA recognition by three proteins. The first protein is T4 endonuclease V (T4 endo V), which catalyzes the first reaction step of the excision repair pathway to remove pyrimidine-dimers (PD) produced within duplex DNA by UV irradiation. The crystal structure of this enzyme complexed with DNA containing a thymidine-dimer provided the first direct view of DNA lesion recognition by a repair enzyme, indicating that the DNA kink coupled with base flipping-out is important for damaged DNA recognition. The second is very short patch repair (Vsr) endonuclease, which recognizes a TG mismatch within the five base pair consensus sequence. The crystal structure of this enzyme in complex with duplex DNA containing a TG mismatch revealed a novel mismatch base pair recognition scheme, where three aromatic residues intercalate from the major groove into the DNA to strikingly deform the base pair stacking but the base flipping-out does not occur. The third is human nucleotide excision repair (NER) factor XPA, which is a major component of a large protein complex. This protein has been shown to bind preferentially to UV- or chemical carcinogen-damaged DNA. The solution structure of the XPA central domain, essential for the interaction of damaged DNA, was determined by NMR. This domain was found to be divided mainly into a (Cys)4-type zinc-finger motif subdomain for replication protein A (RPA) recognition and the carboxyl terminal subdomain responsible for DNA binding.

  15. Collaborative effects of Photobacterium CuZn superoxide dismutase (SODs) and human AP endonuclease in DNA repair and SOD-deficient Escherichia coli under oxidative stress.

    PubMed

    Kim, Young Gon

    2004-01-15

    The defenses against free radical damage include specialized repair enzymes that correct oxidative damage in DNA and detoxification systems such as superoxide dismutases (SODs). These defenses may be coordinated genetically as global responses. We hypothesized that the expression of SOD and DNA repair genes would inhibit DNA damage under oxidative stress. Therefore, protection of Escherichia coli mutants deficient in SOD and DNA repair genes (sod-, xth-, and nfo-) was demonstrated by transforming the mutant strain with a plasmid pYK9 that encoded Photobacterium leiognathi CuZnSOD and human AP endonuclease. The results show that survival rates were increased in sod+ xth- nfo+ cells compared with sod- xth- ape-, sod- xth- ape-, and sod+ xth- ape- cells under oxidative stress generated with 0.1 mM paraquat or 3 mM H2O2. The data suggest that, at the least, SOD and DNA repair enzymes may collaborate on protection and repair of damaged DNA. Additionally, both enzymes are required for protection against free radicals.

  16. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    DOE PAGES

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; ...

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays manymore » progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less

  17. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    SciTech Connect

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid; Niedernhofer, Laura J.

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  18. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    PubMed Central

    Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid

    2014-01-01

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. PMID:25299392

  19. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans.

    PubMed

    Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin

    2015-08-01

    While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.

  20. Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I.

    PubMed

    Sinha, Dhiraj; Shamayeva, Katsiaryna; Ramasubramani, Vyas; Řeha, David; Bialevich, Vitali; Khabiri, Morteza; Guzanová, Alena; Milbar, Niv; Weiserová, Marie; Csefalvay, Eva; Carey, Jannette; Ettrich, Rüdiger

    2014-07-01

    Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.

  1. Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates

    PubMed Central

    Bellendir, Stephanie P.; Rognstad, Danielle J.; Morris, Lydia P.; Zapotoczny, Grzegorz; Walton, William G.; Redinbo, Matthew R.; Ramsden, Dale A.

    2017-01-01

    Abstract Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants. In vitro, DmGen, like HsGEN1, efficiently cleaves HJs, 5΄ flaps, splayed arms, and replication fork structures. We find that the cleavage rates for 5΄ flaps are significantly higher than those for HJs for both DmGen and HsGEN1, even in vast excess of enzyme over substrate. Kinetic studies suggest that the difference in cleavage rates results from a slow, rate-limiting conformational change prior to HJ cleavage: formation of a productive dimer on the HJ. Despite the stark difference in vivo that Drosophila uses Gen over Mus81 and humans use MUS81 over GEN1, we find the in vitro activities of DmGen and HsGEN1 to be strikingly similar. These findings suggest that simpler branched structures may be more important substrates for Gen orthologs in vivo, and highlight the utility of using the Drosophila model system to further understand these enzymes. PMID:28369583

  2. Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates.

    PubMed

    Bellendir, Stephanie P; Rognstad, Danielle J; Morris, Lydia P; Zapotoczny, Grzegorz; Walton, William G; Redinbo, Matthew R; Ramsden, Dale A; Sekelsky, Jeff; Erie, Dorothy A

    2017-05-19

    Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants. In vitro, DmGen, like HsGEN1, efficiently cleaves HJs, 5΄ flaps, splayed arms, and replication fork structures. We find that the cleavage rates for 5΄ flaps are significantly higher than those for HJs for both DmGen and HsGEN1, even in vast excess of enzyme over substrate. Kinetic studies suggest that the difference in cleavage rates results from a slow, rate-limiting conformational change prior to HJ cleavage: formation of a productive dimer on the HJ. Despite the stark difference in vivo that Drosophila uses Gen over Mus81 and humans use MUS81 over GEN1, we find the in vitro activities of DmGen and HsGEN1 to be strikingly similar. These findings suggest that simpler branched structures may be more important substrates for Gen orthologs in vivo, and highlight the utility of using the Drosophila model system to further understand these enzymes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Molecular dynamics of the salt dependence of a cold-adapted enzyme: endonuclease I.

    PubMed

    Benrezkallah, D; Dauchez, M; Krallafa, A M

    2015-01-01

    The effects of salt on the stability of globular proteins have been known for a long time. In the present investigations, we shall focus on the effect of the salt ions upon the structure and the activity of the endonuclease I enzyme. In the present work, we shall focus on the relationship between ion position and the structural features of the Vibrio salmonicida (VsEndA) enzyme. We will concentrate on major questions such as: how can salt ions affect the molecular structure? What is the activity of the enzyme and which specific regions are directly involved? For that purpose, we will study the behaviour of the VsEndA over different salt concentrations using molecular dynamics (MD) simulations. We report the results of MD simulations of the endonuclease I enzyme at five different salt concentrations. Analysis of trajectories in terms of the root mean square fluctuation (RMSF), radial distribution function, contact numbers and hydrogen bonding lifetimes, indicate distinct differences when changing the concentration of NaCl. Results are found to be in good agreement with experimental data, where we have noted an optimum salt concentration for activity equal to 425 mM. Under this salt concentration, the VsEndA exhibits two more flexible loop regions, compared to the other salt concentrations. When analysing the RMSF of these two specific regions, three residues were selected for their higher mobility. We find a correlation between the structural properties studied here such as the radial distribution function, the contact numbers and the hydrogen bonding lifetimes, and the structural flexibility of only two polar residues. Finally, in the light of the present work, the molecular basis of the salt adaptation of VsEndA enzyme has been explored by mean of explicit solvent and salt treatment. Our results reveal that modulation of the sodium/chloride ions interaction with some specific loop regions of the protein is the strategy followed by this type of psychrophilic enzyme

  4. The Escherichia coli mismatch repair protein MutL recruits the Vsr and MutH endonucleases in response to DNA damage.

    PubMed

    Polosina, Yaroslava Y; Mui, Justin; Pitsikas, Photini; Cupples, Claire G

    2009-06-01

    The activities of the Vsr and MutH endonucleases of Escherichia coli are stimulated by MutL. The interaction of MutL with each enzyme is enhanced in vivo by 2-aminopurine treatment and by inactivation of the mutY gene. We hypothesize that MutL recruits the endonucleases to sites of DNA damage.

  5. The Escherichia coli Mismatch Repair Protein MutL Recruits the Vsr and MutH Endonucleases in Response to DNA Damage▿

    PubMed Central

    Polosina, Yaroslava Y.; Mui, Justin; Pitsikas, Photini; Cupples, Claire G.

    2009-01-01

    The activities of the Vsr and MutH endonucleases of Escherichia coli are stimulated by MutL. The interaction of MutL with each enzyme is enhanced in vivo by 2-aminopurine treatment and by inactivation of the mutY gene. We hypothesize that MutL recruits the endonucleases to sites of DNA damage. PMID:19376855

  6. Role of Deubiquitinating Enzymes in DNA Repair

    PubMed Central

    2015-01-01

    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. PMID:26644404

  7. Coordination of Steps in Single-nucleotide Base Excision Repair Mediated by Apurinic/Apyrimidinic Endonuclease 1 and DNA Polymerase β*

    PubMed Central

    Liu, Yuan; Prasad, Rajendra; Beard, William A.; Kedar, Padmini S.; Hou, Esther W.; Shock, David D.; Wilson, Samuel H.

    2008-01-01

    The individual steps in single-nucleotide base excision repair (SN-BER) are coordinated to enable efficient repair without accumulation of cytotoxic DNA intermediates. The DNA transactions and various proteins involved in SN-BER of abasic sites are well known in mammalian systems. Yet, despite a wealth of information on SN-BER, the mechanism of step-by-step coordination is poorly understood. In this study we conducted experiments toward understanding step-by-step coordination during BER by comparing DNA binding specificities of two major human SN-BER enzymes, apurinic/aprymidinic endonuclease 1 (APE) and DNA polymerase β (Pol β). It is known that these enzymes do not form a stable complex in solution. For each enzyme, we found that DNA binding specificity appeared sufficient to explain the sequential processing of BER intermediates. In addition, however, we identified at higher enzyme concentrations a ternary complex of APE·Pol β·DNA that formed specifically at BER intermediates containing a 5′-deoxyribose phosphate group. Formation of this ternary complex was associated with slightly stronger Pol β gap-filling and much stronger 5′-deoxyribose phosphate lyase activities than was observed with the Pol β·DNA binary complex. These results indicate that step-by-step coordination in SN-BER can rely on DNA binding specificity inherent in APE and Pol β, although coordination also may be facilitated by APE·Pol β·DNA ternary complex formation with appropriate enzyme expression levels or enzyme recruitment to sites of repair. PMID:17355977

  8. Topical liposomal DNA-repair enzymes in polymorphic light eruption.

    PubMed

    Hofer, Angelika; Legat, Franz J; Gruber-Wackernagel, Alexandra; Quehenberger, Franz; Wolf, Peter

    2011-07-01

    Polymorphic light eruption (PLE) is a very frequent photodermatosis in Europe whose pathogenesis may involve resistance to UV-induced immune suppression and simultaneous immune reactions against skin photoneoantigens. We performed a randomized, double-blind, placebo-controlled intra-individual half-body trial to investigate the protective effect of an after-sun (AS) lotion containing DNA-repair enzymes (photolyase from Anacystis nidulans and Micrococcus luteus extract with endonuclease activity). Fourteen PLE patients were exposed to suberythemal doses of solar-simulated UV radiation on 4 consecutive days at 4 symmetrically located PLE-prone test fields per patient. The test fields were treated with (i) active AS lotion or (ii) a placebo lotion immediately after each UV exposure, or (iii) an SPF30 sunscreen before UV exposure or left untreated. All test fields were exposed to photoactivating blue light 1 h after each UV exposure. As shown by a newly established specific PLE test score (AA + SI + 0.4P [range, 0-12], where AA is affected area score [range, 0-4], SI is skin infiltration score [range, 0-4], and P is pruritus score on a visual analogue scale [range, 0-10]), PLE symptoms were significantly fewer on test sites treated with active AS lotion than on untreated (P = 0.00049) or placebo-treated test sites (P = 0.024). At 144 h after first UV exposure (the time point of maximal PLE symptoms), the mean test scores for untreated, active AS lotion-treated, and placebo-treated test fields were 4.39, 1.73 (61% reduction; 95% confidence interval (CI), 36% to 85%), and 3.20 (27% reduction; 95% CI, 3% to 51%), respectively. Pretreatment with SPF30 sunscreen completely prevented PLE symptoms in all patients. The present results indicate that DNA damage may trigger PLE and that the application of topical liposomes containing DNA repair enzymes to increase DNA repair may effectively prevent PLE.

  9. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    SciTech Connect

    Smith, P.J.

    1986-03-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells.

  10. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1.

    PubMed

    Guerreiro, Patrícia S; Estácio, Sílvia G; Antunes, Fernando; Fernandes, Ana S; Pinheiro, Pedro F; Costa, João G; Castro, Matilde; Miranda, Joana P; Guedes, Rita C; Oliveira, Nuno G

    2016-12-01

    The DNA repair activity of human apurinic/apyrimidinic endonuclease 1 (APE1) has been recognized as a promising target for the development of small-molecule inhibitors to be used in combination with anticancer agents. In an attempt to identify novel inhibitors of APE1, we present a structure-based virtual screening (SBVS) study based on molecular docking analysis of the compounds of NCI database using the GOLD 5.1.0 (Genetic Optimization for Ligand Docking) suite of programs. Compounds selected in this screening were tested with a fluorescence-based APE1 endonuclease activity assay. Two compounds (37 and 41) were able to inhibit the multifunctional enzyme APE1 in the micromolar range, while compound 22 showed inhibitory effects at nanomolar concentrations. These results were confirmed by a plasmid DNA nicking assay. In addition, the potential APE1 inhibitors did not affect the cell viability of non-tumor MCF10A cells. Overall, compounds 22, 37, and 41 appear to be important scaffolds for the design of novel APE1 inhibitors and this study highlights the relevance of in silico-based approaches as valuable tools in drug discovery. © 2016 John Wiley & Sons A/S.

  11. Activation of GLP-1 Receptor Enhances Neuronal Base Excision Repair via PI3K-AKT-Induced Expression of Apurinic/Apyrimidinic Endonuclease 1

    PubMed Central

    Yang, Jenq-Lin; Chen, Wei-Yu; Chen, Yin-Ping; Kuo, Chao-Ying; Chen, Shang-Der

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that increases cellular glucose up-take to decrease blood sugar. Recent studies, however, suggest that the function of GLP-1 is not only to decrease blood sugar, but also acts as a neurotrophic factor that plays a role in neuronal survival, neurite outgrowth, and protects synaptic plasticity and memory formation from effects of β-amyloid. Oxidative DNA damage occurs during normal neuron-activity and in many neurological diseases. Our study describes how GLP-1 affected the ability of neurons to ameliorate oxidative DNA damage. We show that activation of GLP-1 receptor (GLP-1R) protect cortical neurons from menadione induced oxidative DNA damage via a signaling pathway involving enhanced DNA repair. GLP-1 stimulates DNA repair by activating the cyclic AMP response element binding protein (CREB) which, consequently, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair (BER) pathway. In this study, APE1 expression was down-regulated as a consequence phosphatidylinositol-3 kinase (PI3K) suppression by the inhibitor LY294002, but not by the suppression of MEK activity. Ischemic stroke is typically caused by overwhelming oxidative-stress in brain cells. Administration of exentin-4, an analogue of GLP-1, efficiently enhanced DNA repair in brain cells of ischemic stroke rats. Our study suggests that a new function of GLP-1 is to elevate DNA repair by inducing the expression of the DNA repair protein APE1. PMID:27698937

  12. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).

  13. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  14. The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair

    PubMed Central

    Storici, Francesca; Henneke, Ghislaine; Ferrari, Elena; Gordenin, Dmitry A.; Hübscher, Ulrich; Resnick, Michael A.

    2002-01-01

    The conserved, structure-specific flap endonuclease FEN1 cleaves 5′ DNA flaps that arise during replication or repair. To address in vivo mechanisms of flap cleavage, we developed a screen for human FEN1 mutants that are toxic when expressed in yeast. Two targets were revealed: the flexible loop domain and the catalytic site. Toxic mutants caused G2 arrest and cell death and were unable to repair methyl methanesulfonate lesions. All the mutant proteins retained flap binding. Unlike the catalytic site mutants, which lacked cleavage of any 5′ flaps, the loop mutants exhibited partial ability to cut 5′ flaps when an adjacent single nucleotide 3′ flap was present. We suggest that the flexible loop is important for efficient cleavage through positioning the 5′ flap and the catalytic site. PMID:12411510

  15. Repair of hydrolytic DNA deamination damage in thermophilic bacteria: cloning and characterization of a Vsr endonuclease homolog from Bacillus stearothermophilus

    PubMed Central

    Laging, Martin; Lindner, Eric; Fritz, Hans-Joachim; Kramer, Wilfried

    2003-01-01

    Hydrolytic deamination of 5-methyl cytosine in double stranded DNA results in formation of a T/G mismatch that—if left unrepaired—leads to a C→T transition mutation in half of the progeny. In addition to several mismatch-specific glycosylases that have been found in both pro- and eukaryotes to channel this lesion into base excision repair by removing the T from the mismatch, Vsr endonuclease from Escherichia coli has been described which initiates repair by an endonucleolytic strand incision 5′ to the mismatched T. We have isolated a gene coding for a homolog of E.coli Vsr endonuclease from the thermophilic bacterium Bacillus stearothermophilus H3 (Vsr.Bst) using a method that allows PCR amplification with degenerated primers of gene segments which code for only one highly conserved amino acid region. Vsr.Bst was produced heterologously in E.coli and purified to apparent homogeneity. Vsr.Bst specifically incises heteroduplex DNA with a preference for T/G mismatches. The selectivity of Vsr.Bst for the sequence context of the T/G mismatch appears less pronounced than for Vsr.Eco. PMID:12655008

  16. Repair of hydrolytic DNA deamination damage in thermophilic bacteria: cloning and characterization of a Vsr endonuclease homolog from Bacillus stearothermophilus.

    PubMed

    Laging, Martin; Lindner, Eric; Fritz, Hans-Joachim; Kramer, Wilfried

    2003-04-01

    Hydrolytic deamination of 5-methyl cytosine in double stranded DNA results in formation of a T/G mismatch that-if left unrepaired-leads to a C-->T transition mutation in half of the progeny. In addition to several mismatch-specific glycosylases that have been found in both pro- and eukaryotes to channel this lesion into base excision repair by removing the T from the mismatch, Vsr endonuclease from Escherichia coli has been described which initiates repair by an endonucleolytic strand incision 5' to the mismatched T. We have isolated a gene coding for a homolog of E.coli Vsr endonuclease from the thermophilic bacterium Bacillus stearothermophilus H3 (Vsr.Bst) using a method that allows PCR amplification with degenerated primers of gene segments which code for only one highly conserved amino acid region. Vsr.Bst was produced heterologously in E.coli and purified to apparent homogeneity. Vsr.Bst specifically incises heteroduplex DNA with a preference for T/G mismatches. The selectivity of Vsr.Bst for the sequence context of the T/G mismatch appears less pronounced than for Vsr.Eco.

  17. I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomyces.

    PubMed

    Siegl, Theresa; Petzke, Lutz; Welle, Elisabeth; Luzhetskyy, Andriy

    2010-07-01

    Actinomycetes are Gram-positive bacteria with a complex life cycle. They produce many pharmaceutically relevant secondary metabolites, including antibiotics and anticancer drugs. However, there is a limited number of biotechnological applications available as opposed to genetic model organisms like Bacillus subtilis or Escherichia coli. We report here a system for the functional expression of a synthetic gene encoding the I-SceI homing endonuclease in several streptomycetes. Using the synthetic sce(a) gene, we were able to create controlled genomic DNA double-strand breaks. A mutagenesis system, based on the homing endonuclease I-SceI, has been developed to construct targeted, non-polar, unmarked gene mutations in Streptomyces sp. Tü6071. In addition, we have shown that homologous recombination is a major pathway in streptomycetes to repair an I-SceI-generated DNA double-strand break. This novel I-SceI-based tool will be useful in fundamental studies on the repair mechanism of DNA double-strand breaks and for a variety of biotechnological applications.

  18. Recruitment of the Nucleotide Excision Repair Endonuclease XPG to Sites of UV-Induced DNA Damage Depends on Functional TFIIH▿

    PubMed Central

    Zotter, Angelika; Luijsterburg, Martijn S.; Warmerdam, Daniël O.; Ibrahim, Shehu; Nigg, Alex; van Cappellen, Wiggert A.; Hoeijmakers, Jan H. J.; van Driel, Roel; Vermeulen, Wim; Houtsmuller, Adriaan B.

    2006-01-01

    The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3′ side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5′ incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process. PMID:17000769

  19. A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase β

    PubMed Central

    Pei, De-Sheng; Yang, Xiao-Jie; Liu, Wei; Guikema, Jeroen E. J.; Schrader, Carol E.; Strauss, Phyllis R.

    2011-01-01

    DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/− mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes. PMID:21172930

  20. Site-directed mutagenesis of the T4 endonuclease V gene: Mutations which enhance enzyme specific activity at low salt concentrations

    SciTech Connect

    Lloyd, R.S.; Augustine, M.L. )

    1989-01-01

    Previous structure/function analyses of the DNA repair enzyme, T4 endonuclease V, have suggested that the extreme carboxyl portion of the enzyme is associated with pyrimidine dimer-specific binding. Within the final 11 amino acids there are 5 aromatic, 2 basic, and no acidic residues and it has been proposed that these residues stack with and electrostatically interact with the kinked DNA at the site of a pyrimidine dimer. The role of the tyrosine residue at position 129 has been investigated by oligonucleotide site-directed mutagenesis in which the codon for Tyr-129 has been altered to reflect conservative changes of Trp and Phe and more dramatic changes of Ser, a stop codon, deletion of the codon or introduction of a frameshift. Both changes to the aromatic amino acids resulted in proteins which accumulated well in E. coli and not only significantly enhanced the UV survival of repair-deficient cells but also complemented a defective denV gene within UV-irradiated T4 phage. Partially purified preparations of the Tyr-129----Trp and Tyr-129----Phe mutants were assayed for their ability to processively incise UV-irradiated plasmid DNA (a nicking reaction carried out at low 25 mM salt concentrations). The mutant enzymes Tyr-129----Phe and Tyr-129----Trp displayed a 1000% and 500% enhanced specific nicking activity, respectively. These reactions were also shown to be completely processive. Assays performed at higher (100 mM) salt concentrations reduced the specific activities of the mutant enzymes approximately to that of wild type for the Tyr-129----Phe mutant and to 20% that of wild type for the Tyr-129----Trp mutant.

  1. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-07

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  2. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.

    PubMed

    Alseth, I; Eide, L; Pirovano, M; Rognes, T; Seeberg, E; Bjørås, M

    1999-05-01

    Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2 produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.

  3. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  4. DNA repair by articular chondrocytes. IV. Measurement of Micrococcus luteus endonuclease-sensitive sites by alkaline elution in rabbit articular chondrocytes.

    PubMed

    Lipman, J M; Setlow, R B

    1987-09-30

    The ability of resting and dividing rabbit articular chondrocytes to repair low doses of ultraviolet (UV) damage was measured through removal of UV endonuclease-sensitive sites (ESS, pyrimidines dimers) as measured by alkaline elution. The repair of damage was significantly (P less than 0.001) greater in dividing than non-dividing cells. An age-related decrease in repair capability was found in resting chondrocytes, but not in their dividing counterpart. These results support earlier findings of unscheduled DNA synthesis by the same cells. (Mech. Ageing Dev., 32: 39-55, 1985).

  5. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    PubMed Central

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Laughton, Charles A.; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2013-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant (V-C8(Rev1)). b) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested synthetic lethality (SL) in CH ovary cells expressing a dominant–negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. Synthetic lethality was also demonstrated in CH cells expressing a dominant–negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising synthetic lethality target in cancer. PMID:22377908

  6. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  7. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    SciTech Connect

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-10-05

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5{prime}-phosphodiester bond at an AP site to generate a free 3{prime}-hydroxyl group and a 5{prime}-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.

  8. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

    SciTech Connect

    Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.; Perry, J. Jefferson P.; Finger, L. David; Ng, Cliff; Tsai, Miaw-Sheue; Yannone, Steven M.; Tainer, John A.; Campisi, Judith; Cooper, Priscilla K.

    2011-04-20

    XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.

  9. Characterization of Vsr endonucleases from Neisseria meningitidis.

    PubMed

    Bażlekowa, Milena; Adamczyk-Popławska, Monika; Kwiatek, Agnieszka

    2017-07-01

    DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C5-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C5-methyltransferases. We report on the mutagenic potential of the meningococcal C5-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.

  10. Thermo-switchable activity of the restriction endonuclease SsoII achieved by site-directed enzyme modification.

    PubMed

    Abrosimova, Liudmila A; Monakhova, Mayya V; Migur, Anzhela Yu; Wolfgang, Wende; Pingoud, Alfred; Kubareva, Elena A; Oretskaya, Tatiana S

    2013-12-01

    In this work, the possibility of constructing a thermo-switchable enzyme according to the "molecular gate" strategy is demonstrated. The approach is based on the covalent attachment of oligodeoxyribonucleotides to cysteine residues of an enzyme adjacent to its active center to form a temporal barrier for enzyme-substrate complex formation. The activity of the modified enzyme that had been studied here-the restriction endonuclease SsoII (R.SsoII)-was diminished by a factor of 180 at 25 °С that almost abolished the enzymatic activity when compared with the unmodified enzyme. However, heating of the modified enzyme to 45 °С resulted in a 30-fold increase of activity. The activity of unmodified R.SsoII also increased on heating from 25 to 45 °; however, the difference did not exceed a factor of 3-4. The changes in enzymatic activity observed were shown to be reversible for both the unmodified and the modified R.SsoII. Variation of the length and the sequence of the attached oligodeoxyribonucleotides might allow greater modulation of the activity of DNA-protein conjugates. © 2013 International Union of Biochemistry and Molecular Biology.

  11. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  12. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila.

    PubMed Central

    Bellaiche, Y; Mogila, V; Perrimon, N

    1999-01-01

    As a step toward the development of a homologous recombination system in Drosophila, we have developed a methodology to target double-strand breaks (DSBs) to a specific position in the Drosophila genome. This method uses the mitochondrial endonuclease I-SceI that recognizes and cuts an 18-bp restriction site. We find that >6% of the progeny derived from males that carry a marker gene bordered by two I-SceI sites and that express I-SceI in their germ line lose the marker gene. Southern blot analysis and sequencing of the regions surrounding the I-SceI sites revealed that in the majority of the cases, the introduction of DSBs at the I-SceI sites resulted in the complete deletion of the marker gene; the other events were associated with partial deletion of the marker gene. We discuss a number of applications for this novel technique, in particular its use to study DSB repair mechanisms. PMID:10388822

  13. Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force.

    PubMed

    Gemmen, Gregory J; Millin, Rachel; Smith, Douglas E

    2006-08-01

    DNA looping occurs in many important protein-DNA interactions, including those regulating replication, transcription, and recombination. Recent theoretical studies predict that tension of only a few piconewtons acting on DNA would almost completely inhibit DNA looping. Here, we study restriction endonucleases that require interaction at two separated sites for efficient cleavage. Using optical tweezers we measured the dependence of cleavage activity on DNA tension with 15 known or suspected two-site enzymes (BfiI, BpmI, BsgI, BspMI, Cfr9I, Cfr10I, Eco57I, EcoRII, FokI, HpaII, MboII, NarI, SacII, Sau3AI, and SgrAI) and six one-site enzymes (BamHI, EcoRI, EcoRV, HaeIII, HindIII, and DNaseI). All of the one-site enzymes were virtually unaffected by 5 pN of tension, whereas all of the two-site enzymes were completely inhibited. These enzymes thus constitute a remarkable example of a tension sensing "molecular switch." A detailed study of one enzyme, Sau3AI, indicated that the activity decreased exponentially with tension and the decrease was approximately 10-fold at 0.7 pN. At higher forces (approximately 20-40 pN) cleavage by the one-site enzymes EcoRV and HaeIII was partly inhibited and cleavage by HindIII was enhanced, whereas BamHI, EcoRI, and DNaseI were largely unaffected. These findings correlate with structural data showing that EcoRV bends DNA sharply, whereas BamHI, EcoRI, and DNaseI do not. Thus, DNA-directed enzyme activity involving either DNA looping or bending can be modulated by tension, a mechanism that could facilitate mechanosensory transduction in vivo.

  14. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis.

    PubMed

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F

    2011-08-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.

  15. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis

    PubMed Central

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S.; Yannone, Steven M.; Povirk, Lawrence F.

    2011-01-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5′- and 3′-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells. PMID:21531702

  16. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  17. Photoaffinity Labeling of Mouse Fibroblast Enzymes by a Base Excision Repair Intermediate: New Evidence on the Role of PARP-1 in DNA Repair

    SciTech Connect

    Lavrik, Olga I.; Prasad, Rajendra; Sobol, Robert W.; Horton, Julie K.; Ackerman, Eric J. ); Wilson, Samuel H.

    2001-07-06

    To examine mammalian base excision repair (BER) enzymes interacting with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast (MEF) crude extract. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by AP endonuclease creating a nick with 3' hydroxyl and 5' reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was introduced at the 3' hydroxyl group. With near UV-light exposure (312nm) of the extract-probe mixture, only six proteins were strongly labeled, including poly (ADP-ribose) polymerase (PARP-1) and the well-known BER participants flap endonuclease (FEN-1), DNA polymerase b (b-pol), and AP endonuclease (APE). The amount of probe crosslinked to PARP-1 was greater than that crosslinked to the other proteins. The specificity of PARP-1 labeling was examined by competition experiments involving various oligonucleotide competitors; competition of labeling by the probe was much greater for the BER intermediates tested than for normal double-stranded DNA. The specificity of PARP-1 labeling also was examined using DNA probes with alternate structures; PARP-1 labeling was stronger with a DNA oligomer representing a BER intermediate than with a molecule representing a nick in double-stranded DNA. These results identifying interaction of PARP-1 with a BER intermediate are discussed in light of PARP-1's role in mammalian BER.

  18. Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination

    PubMed Central

    Kikuchi, Koji; Narita, Takeo; Thanh Van, Pham; Iijima, Junko; Hirota, Kouji; Keka, Islam Shamima; Mohiuddin; Okawa, Katsuya; Hori, Tetsuya; Fukagawa, Tatsuo; Essers, Jeroen; Kanaar, Roland; Whitby, Matthew C.; Sugasawa, Kaoru; Taniguchi, Yoshihito; Kitagawa, Katsumi; Takeda, Shunichi

    2013-01-01

    DNA double-strand breaks (DSBs) occur frequently during replication in sister chromatids, and are dramatically increased when cells are exposed to chemotherapeutic agents including camptothecin. Such DSBs are efficiently repaired specifically by homologous recombination (HR) with the intact sister chromatid. HR hence plays pivotal roles in cellular proliferation and cellular tolerance to camptothecin. Mammalian cells carry several structure-specific endonucleases, such as Xpf-Ercc1 and Mus81-Eme1, in which Xpf and Mus81 are the essential subunits for enzymatic activity. Here we show the functional overlap between Xpf and Mus81 by conditionally inactivating Xpf in the chicken DT40 cell line, which has no Mus81 ortholog. Although mammalian cells deficient in either Xpf or Mus81 are viable, Xpf inactivation in DT40 cells was lethal, resulting in a marked increase in the number of spontaneous chromosome breaks. Similarly, inactivation of both Xpf and Mus81 in human HeLa cells and murine embryonic stem cells caused numerous spontaneous chromosome breaks. Furthermore, the phenotype of Xpf-deficient DT40 cells was reversed by ectopic expression of human Mus81-Eme1 or human Xpf-Ercc1 heterodimers. These observations indicate the functional overlap of Xpf-Ercc1 and Mus81-Eme1 in the maintenance of genomic DNA. Both Mus81-Eme1 and Xpf-Ercc1 contribute to the completion of HR as evidenced by the following data that the expression of Mus81-Eme1 or Xpf-Ercc1 diminished the number of camptothecin-induced chromosome breaks in Xpf-deficient DT40 cells, and preventing early steps in HR by deleting XRCC3 suppressed the inviability of Xpf-deficient DT40 cells. In summary, Xpf and Mus81 have a substantially overlapping function in completion of HR. PMID:23576554

  19. Homing endonucleases: from basics to therapeutic applications.

    PubMed

    Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo

    2010-03-01

    Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

  20. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    PubMed

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.

  1. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    PubMed Central

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5′-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. PMID:27001046

  2. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes.

    PubMed

    Wu, Yiping; Zhang, Bintian; Guo, Liang-Hong

    2013-07-16

    Exogenous chemicals may produce DNA methylation that is potentially toxic to living systems. Methylated DNA bases are difficult to detect with biosensors because the methyl group is small and chemically inert. In this report, a label-free photoelectrochemical sensor was developed for the selective detection of chemically methylated bases in DNA films. The sensor employed two DNA repair enzymes, human alkyladenine DNA glycosylase and human apurinic/apyrimidinic endonuclease, to convert DNA methylation sites in DNA films on indium tin oxide electrodes into strand breaks. A DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was then used as the photoelectrochemical signal indicator to detect the DNA strand breaks. Its photocurrent signal was found to correlate inversely with the amount of 3-methyladenines (metAde) produced with a methylating agent, methylmethane sulfonate (MMS). The sensor detected the methylated bases produced with as low as 1 mM MMS, at which concentration the amount of metAde on the sensor surface was estimated to be 0.5 pg, or 1 metAde in 1.6 × 10(5) normal bases. Other DNA base modification products, such as 5-methylcytosine and DNA adducts with ethyl and styrene groups did not attenuate the photocurrent, demonstrating good selectivity of the sensor. This strategy can be utilized to develop sensors for the detection of other modified DNA bases with specific DNA repair enzymes.

  3. Oxidative stress alters base excision repair pathway and increases apoptotic response in Apurinic/apyrimidinic endonuclease 1/Redox factor-1 haploinsufficient mice

    PubMed Central

    Unnikrishnan, Archana; Raffoul, Julian J.; Patel, Hiral V.; Prychitko, Thomas M.; Anyangwe, Njwen; Meira, Lisiane B.; Friedberg, Errol C.; Cabelof, Diane C.; Heydari, Ahmad R.

    2009-01-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is the redox regulator of multiple stress-inducible transcription factors, such as NF-κB, and the major 5’-endonuclease in base excision repair (BER). We utilized mice containing heterozygous gene-targeted deletion of APE1/Ref-1 (Apex+/-) to determine the impact of APE1/Ref-1 haploinsufficiency on the processing of oxidative DNA damage induced by 2-nitropropane (2-NP) in the liver tissue of mice. APE1/Ref-1 haploinsufficiency results in a significant decline in NF-κB DNA binding activity in response to oxidative stress in liver. In addition, loss of APE1/Ref-1 increases the apoptotic response to oxidative stress where a significant increase in GADD45g expression, p53 protein stability and caspase activity are observed. Oxidative stress displays a differential impact on monofunctional (UDG) and bifunctional (OGG1) DNA glycosylase initiated BER in liver of Apex+/- mice. APE1/Ref-1 haploinsufficiency results in a significant decline in the repair of oxidized bases (e.g., 8-OHdG), while removal of uracil is increased in liver nuclear extracts of mice using an in vitro BER assay. Apex+/- mice exposed to 2-NP displayed a significant decline in 3’-OH-containing single-strand breaks and an increase in aldehydic lesions in their liver DNA suggesting an accumulation of repair intermediates of failed bifunctional DNA glycosylase initiated BER. PMID:19268524

  4. Role of exonuclease III and endonuclease IV in repair of pyrimidine dimers initiated by bacteriophage T4 pyrimidine dimer-DNA glycosylase

    SciTech Connect

    Saporito, S.M.; Gedenk, M.; Cunningham, R.P.

    1989-05-01

    The role of exonuclease III and endonuclease IV in the repair of pyrimidine dimers in bacteriophage T4-infected Escherichia coli was examined. UV-irradiated T4 showed reduced survival when plated on an xth nfo double mutant but showed wild-type survival on either single mutant. T4 denV phage were equally sensitive when plated on wild-type E. coli or an xth nfo double mutant, suggesting that these endonucleases function in the same repair pathway as T4 pyrimidine dimer-DNA glycosylase. A uvrA mutant of E. coli in which the repair of pyrimidine dimers was dependent on the T4 denV gene carried on a plasmid was constructed. Neither an xth nor an nfo derivative of this strain was more sensitive than the parental strain to UV irradiation. We were unable to construct a uvrA xth nfo triple mutant. In addition, T4, which turns off the host UvrABC excision nuclease, showed reduced plating efficiency on an xth nfo double mutant.

  5. Enhancement of DNA repair using topical T4 endonuclease V does not inhibit melanoma formation in Cdk4(R24C/R24C)/Tyr-Nras(Q61K) mice following neonatal UVR.

    PubMed

    Hacker, Elke; Muller, H Konrad; Hayward, Nicholas; Fahey, Paul; Walker, Graeme

    2010-02-01

    To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4(R24C/R24C)/Nras(Q61K) mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.

  6. Arabidopsis ZDP DNA 3'-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases.

    PubMed

    Córdoba-Cañero, Dolores; Roldán-Arjona, Teresa; Ariza, Rafael R

    2014-09-01

    Oxidation of guanine in DNA generates 7,8-dihydro-8-oxoguanine (8-oxoG), an ubiquitous lesion with mutagenic properties. 8-oxoG is primarily removed by DNA glycosylases distributed in two families, typified by bacterial Fpg proteins and eukaryotic Ogg1 proteins. Interestingly, plants possess both Fpg and Ogg1 homologs but their relative contributions to 8-oxoG repair remain uncertain. In this work we used Arabidopsis cell-free extracts to monitor 8-oxoG repair in wild-type and mutant plants. We found that both FPG and OGG1 catalyze excision of 8-oxoG in Arabidopsis cell extracts by a DNA glycosylase/lyase mechanism, and generate repair intermediates with blocked 3'-termini. An increase in oxidative damage is detected in both nuclear and mitochondrial DNA from double fpg ogg1 mutants, but not in single mutants, which suggests that a single deficiency in one of these DNA glycosylases may be compensated by the other. We also found that the DNA 3'-phosphatase ZDP (zinc finger DNA 3'-phosphoesterase) and the AP(apurinic/apyirmidinic) endonuclease ARP(apurinic endonuclease redox protein) are required in the 8-oxoG repair pathway to process the 3'-blocking ends generated by FPG and OGG1. Furthermore, deficiencies in ZDP and/or ARP decrease germination ability after seed deteriorating conditions. Altogether, our results suggest that Arabidopsis cells use both FPG and OGG1 to repair 8-oxoG in a pathway that requires ZDP and ARP in downstream steps.

  7. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  8. UV radiation effects on a DNA repair enzyme: conversion of a [4Fe-4S](2+) cluster into a [2Fe-2S] (2+).

    PubMed

    Folgosa, Filipe; Camacho, Inês; Penas, Daniela; Guilherme, Márcia; Fróis, João; Ribeiro, Paulo A; Tavares, Pedro; Pereira, Alice S

    2015-03-01

    Organisms are often exposed to different types of ionizing radiation that, directly or not, will promote damage to DNA molecules and/or other cellular structures. Because of that, organisms developed a wide range of response mechanisms to deal with these threats. Endonuclease III is one of the enzymes responsible to detect and repair oxidized pyrimidine base lesions. However, the effect of radiation on the structure/function of these enzymes is not clear yet. Here, we demonstrate the effect of UV-C radiation on E. coli endonuclease III through several techniques, namely UV-visible, fluorescence and Mössbauer spectroscopies, as well as SDS-PAGE and electrophoretic mobility shift assay. We demonstrate that irradiation with a UV-C source has dramatic consequences on the absorption, fluorescence, structure and functionality of the protein, affecting its [4Fe-4S] cluster and its DNA-binding ability, which results in its inactivation. An UV-C radiation-induced conversion of the [4Fe-4S](2+) into a [2Fe-2S](2+) was observed for the first time and proven by Mössbauer and UV-visible analysis. This work also shows that the DNA-binding capability of endonuclease III is highly dependent of the nuclearity of the endogenous iron-sulfur cluster. Thus, from our point of view, in a cellular context, these results strengthen the argument that cellular sensitivity to radiation can also be due to loss of radiation-induced damage repair ability.

  9. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease

    SciTech Connect

    Kelley, M.R. ); Venugopal, S.; Harless, J.; Deutsch, W.A. . Dept. of Biochemistry)

    1989-03-01

    The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinicapyrimidine (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrymalide gel electrophoresis of Drosophilia extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-klb mRNA also hybridized to the AP3 cDNA, but species was restricted to the early stages of development.

  10. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family

    PubMed Central

    Dassa, Bareket; London, Nir; Stoddard, Barry L.; Schueler-Furman, Ora; Pietrokovski, Shmuel

    2009-01-01

    Inteins are genetic elements, inserted in-frame into protein-coding genes, whose products catalyze their removal from the protein precursor via a protein-splicing reaction. Intein domains can be split into two fragments and still ligate their flanks by a trans-protein-splicing reaction. A bioinformatic analysis of environmental metagenomic data revealed 26 different loci with a novel genomic arrangement. In each locus, a conserved enzyme coding region is broken in two by a split intein, with a free-standing endonuclease gene inserted in between. Eight types of DNA synthesis and repair enzymes have this ‘fractured’ organization. The new types of naturally split-inteins were analyzed in comparison to known split-inteins. Some loci include apparent gene control elements brought in with the endonuclease gene. A newly predicted homing endonuclease family, related to very-short patch repair (Vsr) endonucleases, was found in half of the loci. These putative homing endonucleases also appear in group-I introns, and as stand-alone inserts in the absence of surrounding intervening sequences. The new fractured genes organization appears to be present mainly in phage, shows how endonucleases can integrate into inteins, and may represent a missing link in the evolution of gene breaking in general, and in the creation of split-inteins in particular. PMID:19264795

  11. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family.

    PubMed

    Dassa, Bareket; London, Nir; Stoddard, Barry L; Schueler-Furman, Ora; Pietrokovski, Shmuel

    2009-05-01

    Inteins are genetic elements, inserted in-frame into protein-coding genes, whose products catalyze their removal from the protein precursor via a protein-splicing reaction. Intein domains can be split into two fragments and still ligate their flanks by a trans-protein-splicing reaction. A bioinformatic analysis of environmental metagenomic data revealed 26 different loci with a novel genomic arrangement. In each locus, a conserved enzyme coding region is broken in two by a split intein, with a free-standing endonuclease gene inserted in between. Eight types of DNA synthesis and repair enzymes have this 'fractured' organization. The new types of naturally split-inteins were analyzed in comparison to known split-inteins. Some loci include apparent gene control elements brought in with the endonuclease gene. A newly predicted homing endonuclease family, related to very-short patch repair (Vsr) endonucleases, was found in half of the loci. These putative homing endonucleases also appear in group-I introns, and as stand-alone inserts in the absence of surrounding intervening sequences. The new fractured genes organization appears to be present mainly in phage, shows how endonucleases can integrate into inteins, and may represent a missing link in the evolution of gene breaking in general, and in the creation of split-inteins in particular.

  12. A cell-free system for DNA repair synthesis using purified enzymes from the Novikoff hepatoma

    SciTech Connect

    Small, P.K.

    1988-01-01

    Novikoff DNA polymerase-{beta} and Novikoff DNase V have been used in a cell-free DNA excision repair system for UV-irradiated substrates to determine their DNA repair capabilities. The repair system was shown to depend upon UV-irradiated DNA, incision by phage T4 UV-endonuclease, excision by DNase V and synthesis by DNA polymerase-{beta}; ligation was not included. Highly purified calf thymus DNA was UV-irradiated at 500-750 J/m{sup 2} and incised by T4 UV-endonuclease. The repair system was used to follow the purification of DNase V and DNA polymerase-{beta}. For increased specificity, the parameters of UV-irradiation, incision, excision and synthesis were confirmed on highly supercoiled, covalently closed, phage PM2 DNA. Optimal DNA and Mg{sup 2+} concentrations were determined for the repair assay, which was shown to be linear with respect to time. Excision of the 3{prime}-apyrimidinic site and the 5{prime}-pyrimidine dimer by bidirectional DNase V, presumed to occur from the above experiments, was studied more thoroughly using lightly UV-irradiated ({sup 3}H)poly(dT)poly (dA), labeled in both the base and the sugar, and incised with T4 UV-endonuclease.

  13. Endonuclease IV and exonuclease III are involved in the repair and mutagenesis of DNA lesions induced by UVB in Escherichia coli.

    PubMed

    Souza, L L; Eduardo, I R; Pádula, M; Leitão, A C

    2006-03-01

    Exonuclease III (Exo III) and endonuclease IV (Endo IV) play a critical role in the base excision repair (BER) of Escherichia coli. Both are endowed with AP endonucleolytic activity, cleaving the 5' phosphodiester bond adjacent to spontaneous or induced abasic sites in DNA. Although mutants defective in Exo III (xthA) are usually hypersensitive to oxidative agents such as hydrogen peroxide, near-UV-light and X-rays, mutants defective in Endo IV (nfo) are not as sensitive as the xthA strain. To further investigate the roles of these AP endonucleases in DNA repair, we evaluated the sensitivity and mutagenesis of xthA and nfo strains after UVB and compared with UVC light. Our results revealed that xthA but not nfo strain was hypersensitive to UVB. The use of Fe(+2) ion chelator (dipyridyl), prior to irradiation, completely protected the xthA mutant against UVB lethal lesions, suggesting the generation of toxic oxidative lesions mediated by transition metal reactions. The nfo strain displayed increased UVB-induced mutagenesis, which was significantly suppressed by pre-treatment with dipyridyl. Although xthA strain did not display increased mutagenesis after UVC and UVB treatments, this phenotype was not related to xthA mutation, but rather to an unknown secondary mutation specifying an antimutator phenotype. After UVB irradiation, the base substitution spectra of nfo strain revealed a bias towards AT-->GC transitions and GC-->CG transversions, which were also suppressed by previous treatment with the iron chelator. Overall, on the basis of the differential sensitivities and mutational spectra displayed after UVC and UVB treatments, we propose a role for Endo IV and Exo III to counteract DNA damage induced by the oxidative counterpart of UVB in E.coli.

  14. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.

    PubMed

    Yang, Diane; Scavuzzo, Marissa A; Chmielowiec, Jolanta; Sharp, Robert; Bajic, Aleksandar; Borowiak, Malgorzata

    2016-02-18

    Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.

  15. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    PubMed Central

    Zylicz-Stachula, Agnieszka; Bujnicki, Janusz M; Skowron, Piotr M

    2009-01-01

    Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit

  16. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity

    PubMed Central

    Massaad, Michel J.; Zhou, Jia; Tsuchimoto, Daisuke; Chou, Janet; Jabara, Haifa; Janssen, Erin; Glauzy, Salomé; Olson, Brennan G.; Morbach, Henner; Ohsumi, Toshiro K.; Schmitz, Klaus; Kane, Jennifer; Torisu, Kumiko; Chouery, Eliane; Megarbane, Andre; Kang, Peter B.; Al-Idrissi, Eman; Aldhekri, Hasan; Meffre, Eric; Mizui, Masayuki; Manis, John P.; Al-Herz, Waleed; Wallace, Susan S.; Geha, Raif S.

    2016-01-01

    Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3–/– mice. Although Neil3–/– mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3–/– mice, splenic T and B cells as well as germinal center B cells from Peyer’s patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity. PMID:27760045

  17. Endonuclease IV of Escherichia coli is induced by paraquat

    SciTech Connect

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  18. Degenerate sequence recognition by the monomeric restriction enzyme: single mutation converts BcnI into a strand-specific nicking endonuclease

    PubMed Central

    Kostiuk, Georgij; Sasnauskas, Giedrius; Tamulaitiene, Giedre; Siksnys, Virginijus

    2011-01-01

    Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4–8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5′-CC↓CGG-3′/3′-GGG↓CC-5′ target site (‘↓’ designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5′-CCCGG-3′ or the 5′-CCGGG-3′ strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases. PMID:21227928

  19. Identification, characterisation and molecular modelling of two AP endonucleases from base excision repair pathway in sugarcane provide insights on the early evolution of green plants.

    PubMed

    Maira, N; Torres, T M; de Oliveira, A L; de Medeiros, S R B; Agnez-Lima, L F; Lima, J P M S; Scortecci, K C

    2014-05-01

    Unlike bacteria and mammals, plant DNA repair pathways are not well characterised, especially in monocots. The understanding of these processes in the plant cell is of major importance, since they may be directly involved in plant acclimation and adaptation to stressful environments. Hence, two sugarcane ESTs were identified as homologues of AP endonuclease from the base-excision repair pathway: ScARP1 and ScARP3. In order to understand their probable function and evolutionary origin, structural and phylogenetic studies were performed using bioinformatics approaches. The two predicted proteins present a considerable amino acid sequence similarity, and molecular modelling procedures indicate that both are functional, since the main structural motifs remain conserved. However, inspection of the sort signal regions on the full-length cDNAs indicated that these proteins have a distinct organelle target. Furthermore, variances in their promoter cis-element motifs were also found. Although the mRNA expression pattern was similar, there were significant differences in their expression levels. Taken together, these data raise the hypothesis that the ScARP is an example of a probable gene duplication event that occurred before monocotyledon/dicotyledon segregation, followed by a sub-functionalisation event in the Poaceae, leading to new intracellular targeting and different expression levels. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. T4 endonuclease V: review and application to dermatology.

    PubMed

    Cafardi, Jennifer A; Elmets, Craig A

    2008-06-01

    T4 endonuclease V was originally isolated from Escherichia coli infected with T4 bacteriophage. It has been shown to repair ultraviolet (UV)-induced cyclobutane pyrimidine dimers in DNA, which, when unrepaired, contribute to mutations that result in actinic keratoses and non-melanoma skin cancers (NMSC). This is a particular concern in patients with genetic defects in their DNA repair systems, especially those with xeroderma pigmentosum (XP). When packaged in liposomes and applied topically, T4 endonuclease V can traverse the stratum corneum and become incorporated within the cytoplasm and nucleus of epidermal keratinocytes and Langerhans cells. To review all major studies evaluating the efficacy of T4 endonuclease V in animals and humans, the toxicity and safety profile of the topical medication and its potential clinical uses. A literature search was performed through PubMed/Medline, using the keywords 'T4N5', 'T4 endonuclease V' and 'dimericine'. Papers found in the bibliographies of those identified in the initial search and deemed relevant were also included. This enzyme increases the repair of UV-damaged DNA and produces other beneficial effects on UV-damaged cells. In clinical trials in XP patients, topical application of liposome-encapsulated T4 endonuclease V reduced the incidence of basal cell carcinomas by 30% and of actinic keratoses by > 68%. Adverse effects were minimal, and there was no evidence of allergic or irritant contact dermatitis. Although the photoprotective effect of T4N5 has been investigated only in XP patients, the possibility exists that it may benefit others likely to develop premalignant keratoses and NMSC, such as organ transplant recipients receiving immunosuppressive therapy and individuals who have had numerous psoralen plus UVA photochemotherapy treatments. It may be also be effective for normal individuals.

  1. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker.

    PubMed

    Havran, Ludek; Vacek, Jan; Cahová, Katerina; Fojta, Miroslav

    2008-07-01

    This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.

  2. PspGI, a type II restriction endonuclease from the extreme thermophile Pyrococcus sp.: structural and functional studies to investigate an evolutionary relationship with several mesophilic restriction enzymes.

    PubMed

    Pingoud, Vera; Conzelmann, Charlotte; Kinzebach, Steffen; Sudina, Anna; Metelev, Valeri; Kubareva, Elena; Bujnicki, Janusz M; Lurz, Rudi; Lüder, Gerhild; Xu, Shuang-Yong; Pingoud, Alfred

    2003-06-20

    We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.

  3. Specificity changes in the evolution of type II restriction endonucleases: a biochemical and bioinformatic analysis of restriction enzymes that recognize unrelated sequences.

    PubMed

    Pingoud, Vera; Sudina, Anna; Geyer, Hildegard; Bujnicki, Janusz M; Lurz, Rudi; Lüder, Gerhild; Morgan, Richard; Kubareva, Elena; Pingoud, Alfred

    2005-02-11

    How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which recognize similar DNA sequences (as indicated, where the downward arrows denote cleavage position), share limited sequence similarity over an interrupted stretch of approximately 70 amino acid residues with MboI, a Type II restriction endonuclease from Moraxella bovis (Pingoud, V., Conzelmann, C., Kinzebach, S., Sudina, A., Metelev, V., Kubareva, E., Bujnicki, J. M., Lurz, R., Luder, G., Xu, S. Y., and Pingoud, A. (2003) J. Mol. Biol. 329, 913-929). Nevertheless, MboI has a dissimilar DNA specificity (downward arrow GATC) compared with these enzymes. In this study, we characterize MboI in detail to determine whether it utilizes a mechanism of DNA recognition similar to SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. Mutational analyses and photocross-linking experiments demonstrate that MboI exploits the stretch of approximately 70 amino acids for DNA recognition and cleavage. It is therefore likely that MboI shares a common evolutionary origin with SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. This is the first example of a relatively close evolutionary link between Type II restriction enzymes of widely different specificities.

  4. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life.

    PubMed

    Kim, H S; Park, Y W; Kasai, H; Nishimura, S; Park, C W; Choi, K H; Chung, M H

    1996-06-12

    The induction of 8-hydroxyguanine (oh8Gua) endonuclease, a DNA repair enzyme for an oxidatively modified guanine, oh8Gua was studied in various growth conditions in Escherichia coli (AB1157). Anaerobically grown E. coli were found to have a very low activity of this enzyme while aerobically grown cells showed activity about 20 times that of the anaerobic level. Under the same condition, superoxide dismutase (SOD) showed about 6-fold increase in activity. A shift in growth conditions from anaerobic to aerobic resulted in rapid induction of this enzyme, and this induction was blocked (but not completely) by chloramphenicol. It is indicated that molecular oxygen is an effective stimulator to the induction of this enzyme and its induction depends partly on protein synthesis. Superoxide-producing compounds such as paraquat and menadione also increased the activity of endonuclease as well as SOD, but H2O2 showed no effect. Thus, superoxides are also implied as a stimulator. In contrast, hyperoxia induced only SOD not the endonuclease. This induction of the endonuclease by hyperoxia was only observed in a SOD-deficient strain (QC774). The aerobic activity of the endonuclease in QC774 was the same as that of wild types (AB1157, GC4468). It is implied that the responsiveness of oh8Gua endonuclease to superoxides is less sensitive than that of SOD. The endonuclease was also induced by a temperature shift from 30 to 43 degrees C and treatment with nalidixic acid. Among the stimuli used, molecular oxygen seems to be most effective for its induction. The inducible nature of this enzyme will serve as an important mechanism for the protection of oxidative DNA damage in the aerobic environment.

  5. Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase.

    PubMed

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Novel subtype of type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium.

    PubMed

    Sapranauskas, R; Sasnauskas, G; Lagunavicius, A; Vilkaitis, G; Lubys, A; Siksnys, V

    2000-10-06

    The type IIs restriction enzyme BfiI recognizes the non-palindromic nucleotide sequence 5'-ACTGGG-3' and cleaves complementary DNA strands 5/4 nucleotides downstream of the recognition sequence. The genes coding for the BfiI restriction-modification (R-M) system were cloned/sequenced and biochemical characterization of BfiI restriction enzyme was performed. The BfiI R-M system contained three proteins: two N4-methylcytosine methyltransferases and a restriction enzyme. Sequencing of bisulfite-treated methylated DNA indicated that each methyltransferase modifies cytosines on opposite strands of the recognition sequence. The N-terminal part of the BfiI restriction enzyme amino acid sequence revealed intriguing similarities to an EDTA-resistant nuclease of Salmonella typhimurium. Biochemical analyses demonstrated that BfiI, like the nuclease of S. typhimurium, cleaves DNA in the absence of Mg(2+) ions and hydrolyzes an artificial substrate bis(p-nitrophenyl) phosphate. However, unlike the nonspecific S. typhimurium nuclease, BfiI restriction enzyme cleaves DNA specifically. We propose that the DNA-binding specificity of BfiI stems from the C-terminal part of the protein. The catalytic N-terminal subdomain of BfiI radically differs from that of type II restriction enzymes and is presumably similar to the EDTA-resistant nonspecific nuclease of S. typhimurium; therefore, BfiI did not require metal ions for catalysis. We suggest that BfiI represents a novel subclass of type IIs restriction enzymes that differs from the archetypal FokI endonuclease by the fold of its cleavage domain, the domain location, and reaction mechanism.

  7. Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130

    SciTech Connect

    Recinos, A. III; Lloyd, R.S.

    1988-03-22

    The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.

  8. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once

    PubMed Central

    Lafrance-Vanasse, Julien

    2014-01-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by Watson-Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases

  9. A second DNA methyltransferase repair enzyme in Escherichia coli.

    PubMed Central

    Rebeck, G W; Coons, S; Carroll, P; Samson, L

    1988-01-01

    The Escherichia coli ada-alkB operon encodes a 39-kDa protein (Ada) that is a DNA-repair methyltransferase and a 27-kDa protein (AlkB) of unknown function. By DNA blot hybridization analysis we show that the alkylation-sensitive E. coli mutant BS23 [Sedgwick, B. & Lindahl, T. (1982) J. Mol. Biol. 154, 169-175] is a deletion mutant lacking the entire ada-alkB operon. Despite the absence of the ada gene and its product, the cells contain detectable levels of a DNA-repair methyltransferase activity. We conclude that the methyltransferase in BS23 cells is the product of a gene other than ada. A similar activity was detected in extracts of an ada-10::Tn10 insertion mutant of E. coli AB1157. This DNA methyltransferase has a molecular mass of about 19 kDa and transfers the methyl groups from O6-methylguanine and O4-methylthymine in DNA, but not those from methyl phosphotriester lesions. This enzyme was not induced by low doses of alkylating agent and is expressed at low levels in ada+ and a number of ada- E. coli strains. Images PMID:3283737

  10. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  11. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  12. Cloning and Characterization of a Wheat Homologue of Apurinic/Apyrimidinic Endonuclease Ape1L

    PubMed Central

    Grin, Inga R.; Zharkov, Dmitry O.; Ishenko, Alexander A.; Tudek, Barbara; Bissenbaev, Amangeldy K.; Saparbaev, Murat

    2014-01-01

    Background Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. Methodology/Principal Findings We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3′-repair phosphodiesterase, 3′-phosphatase and 3′→5′ exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg2+ and Ca2+ (5–10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn2+, Co2+ and Fe2+ cations (0.1–1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6–7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20°C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3′-blocking sugar-phosphate and 3′-phosphate groups with good efficiency (kcat/KM = 630 and 485 μM−1·min−1, respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. Conclusions/Significance Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors. PMID:24667595

  13. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    PubMed

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  14. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia.

    PubMed

    Dietrich, Alicia K; Humphreys, Gwendolyn I; Nardulli, Ann M

    2013-11-01

    While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.

  15. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    PubMed Central

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  16. Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I: Identification of Structure Formed upon DNA Binding

    PubMed Central

    2016-01-01

    The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7–10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2–12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography. PMID:27387136

  17. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  18. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections.

    PubMed

    Maciejewski, Sonia; Nguyen, Joseph H C; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W; Semler, Bert L

    2015-12-29

    Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem

  19. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes.

    PubMed

    Hafez, Mohamed; Guha, Tuhin Kumar; Shen, Chen; Sethuraman, Jyothi; Hausner, Georg

    2014-01-01

    Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.

  20. Neutralizing mutations of carboxylates that bind metal 2 in T5 flap endonuclease result in an enzyme that still requires two metal ions.

    PubMed

    Tomlinson, Christopher G; Syson, Karl; Sengerová, Blanka; Atack, John M; Sayers, Jon R; Swanson, Linda; Tainer, John A; Williams, Nicholas H; Grasby, Jane A

    2011-09-02

    Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a "two-metal ion mechanism" where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg(2+) ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg(2+) tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca(2+)]. At pH 9.3 (maximal rate conditions), Ca(2+) substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca(2+) and ultimately dependent on 1/[Ca(2+)](2). By varying the concentration of viable metal cofactor, Ca(2+) ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible.

  1. Neutralizing Mutations of Carboxylates That Bind Metal 2 in T5 Flap Endonuclease Result in an Enzyme That Still Requires Two Metal Ions*

    PubMed Central

    Tomlinson, Christopher G.; Syson, Karl; Sengerová, Blanka; Atack, John M.; Sayers, Jon R.; Swanson, Linda; Tainer, John A.; Williams, Nicholas H.; Grasby, Jane A.

    2011-01-01

    Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a “two-metal ion mechanism” where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg2+ ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg2+ tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca2+]. At pH 9.3 (maximal rate conditions), Ca2+ substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca2+ and ultimately dependent on 1/[Ca2+]2. By varying the concentration of viable metal cofactor, Ca2+ ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible. PMID:21734257

  2. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea

    PubMed Central

    Heider, Margaret R.; Burkhart, Brett W.; Santangelo, Thomas J.; Gardner, Andrew F.

    2017-01-01

    Incorporation of ribonucleotides during DNA replication has severe consequences for genome stability. Although eukaryotes possess a number of redundancies for initiating and completing repair of misincorporated ribonucleotides, archaea such as Thermococcus rely only upon RNaseH2 to initiate the pathway. Because Thermococcus DNA polymerases incorporate as many as 1,000 ribonucleotides per genome, RNaseH2 must be efficient at recognizing and nicking at embedded ribonucleotides to ensure genome integrity. Here, we show that ribonucleotides are incorporated by the hyperthermophilic archaeon Thermococcus kodakarensis both in vitro and in vivo and a robust ribonucleotide excision repair pathway is critical to keeping incorporation levels low in wild-type cells. Using pre-steady-state and steady-state kinetics experiments, we also show that archaeal RNaseH2 rapidly cleaves at embedded ribonucleotides (200-450 s−1), but exhibits an ∼1,000-fold slower turnover rate (0.06–0.17 s−1), suggesting a potential role for RNaseH2 in protecting or marking nicked sites for further processing. We found that following RNaseH2 cleavage, the combined activities of polymerase B (PolB), flap endonuclease (Fen1), and DNA ligase are required to complete ribonucleotide processing. PolB formed a ribonucleotide-containing flap by strand displacement synthesis that was cleaved by Fen1, and DNA ligase sealed the nick for complete repair. Our study reveals conservation of the overall mechanism of ribonucleotide excision repair across domains of life. The lack of redundancies in ribonucleotide repair in archaea perhaps suggests a more ancestral form of ribonucleotide excision repair compared with the eukaryotic pathway. PMID:28373277

  3. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    SciTech Connect

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. 3d.; Lloyd, R.S. )

    1991-06-05

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.

  4. Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family

    PubMed Central

    Taylor, Gregory K.; Heiter, Daniel F.; Pietrokovski, Shmuel; Stoddard, Barry L.

    2011-01-01

    Novel family of putative homing endonuclease genes was recently discovered during analyses of metagenomic and genomic sequence data. One such protein is encoded within a group I intron that resides in the recA gene of the Bacillus thuringiensis 0305ϕ8–36 bacteriophage. Named I-Bth0305I, the endonuclease cleaves a DNA target in the uninterrupted recA gene at a position immediately adjacent to the intron insertion site. The enzyme displays a multidomain, homodimeric architecture and footprints a DNA region of ∼60 bp. Its highest specificity corresponds to a 14-bp pseudopalindromic sequence that is directly centered across the DNA cleavage site. Unlike many homing endonucleases, the specificity profile of the enzyme is evenly distributed across much of its target site, such that few single base pair substitutions cause a significant decrease in cleavage activity. A crystal structure of its C-terminal domain confirms a nuclease fold that is homologous to very short patch repair (Vsr) endonucleases. The domain architecture and DNA recognition profile displayed by I-Bth0305I, which is the prototype of a homing lineage that we term the ‘EDxHD’ family, are distinct from previously characterized homing endonucleases. PMID:21890897

  5. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant.

    PubMed

    Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-05

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage.

    PubMed

    Li, Qi; Huang, Yue; Liu, Xichun; Gan, Jianhua; Chen, Hao; Yang, Cai-Guang

    2016-05-20

    The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.

  7. Human Apurinic/Apyrimidinic Endonuclease 1

    PubMed Central

    Li, Mengxia

    2014-01-01

    Abstract Significance: Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. Recent Advances: APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3′–5′ exonuclease, 3′-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. Critical Issues: APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1+/− mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. Future Directions: Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations. Antioxid. Redox Signal. 20, 678–707

  8. Both DNA global deformation and repair enzyme contacts mediate flipping of thymine dimer damage

    NASA Astrophysics Data System (ADS)

    Knips, Alexander; Zacharias, Martin

    2017-01-01

    The photo-induced cis-syn-cyclobutane pyrimidine (CPD) dimer is a frequent DNA lesion. In bacteria photolyases efficiently repair dimers employing a light-driven reaction after flipping out the CPD damage to the active site. How the repair enzyme identifies a damaged site and how the damage is flipped out without external energy is still unclear. Employing molecular dynamics free energy calculations, the CPD flipping process was systematically compared to flipping undamaged nucleotides in various DNA global states and bound to photolyase enzyme. The global DNA deformation alone (without protein) significantly reduces the flipping penalty and induces a partially looped out state of the damage but not undamaged nucleotides. Bound enzyme further lowers the penalty for CPD damage flipping with a lower free energy of the flipped nucleotides in the active site compared to intra-helical state (not for undamaged DNA). Both the reduced penalty and partial looping by global DNA deformation contribute to a significantly shorter mean first passage time for CPD flipping compared to regular nucleotides which increases the repair likelihood upon short time encounter between repair enzyme and DNA.

  9. Both DNA global deformation and repair enzyme contacts mediate flipping of thymine dimer damage

    PubMed Central

    Knips, Alexander; Zacharias, Martin

    2017-01-01

    The photo-induced cis-syn-cyclobutane pyrimidine (CPD) dimer is a frequent DNA lesion. In bacteria photolyases efficiently repair dimers employing a light-driven reaction after flipping out the CPD damage to the active site. How the repair enzyme identifies a damaged site and how the damage is flipped out without external energy is still unclear. Employing molecular dynamics free energy calculations, the CPD flipping process was systematically compared to flipping undamaged nucleotides in various DNA global states and bound to photolyase enzyme. The global DNA deformation alone (without protein) significantly reduces the flipping penalty and induces a partially looped out state of the damage but not undamaged nucleotides. Bound enzyme further lowers the penalty for CPD damage flipping with a lower free energy of the flipped nucleotides in the active site compared to intra-helical state (not for undamaged DNA). Both the reduced penalty and partial looping by global DNA deformation contribute to a significantly shorter mean first passage time for CPD flipping compared to regular nucleotides which increases the repair likelihood upon short time encounter between repair enzyme and DNA. PMID:28128222

  10. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  11. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    Oxidative stress occurs in cells when the equilibrium between prooxidant and antioxidant species is broken in favor of the prooxidant state. It is due to reactive oxygen species (ROS) generated either by the cellular metabolism such as phagocytosis, mitochondrial respiration, xenobiotic detoxification, or by exogenous factors such as ionizing radiation or chemical compounds performing red-ox reactions. Some ROS are extremely reactive and interact with all the macromolecules including lipids, nucleic acids and proteins. Cells have numerous defence systems to counteract the deleterious effects of ROS. Proteins and small molecules specifically eliminate ROS when they are formed. There are three species of superoxyde dismutases which transform the superoxyde anion O2- in hydrogen peroxyde H2O2 which in turn will be destroyed by peroxysomal catalase or by various peroxydases. There are numerous small molecules in the cell such as glutathion, alpha-tocopherol, vitamines A and C, melanine, etc. which are antioxydant molecules. ROS escaping destruction generate various lesions in DNA such as base modifications, degradation products of deoxyribose, chain breaks. These various lesions have been characterized and it is possible to quantitate them in the DNA of cells which have been irradiated or treated by free radical generating systems. The biological properties of the bases modified by ROS have been established. For example C8-hydroxyguanine (8-oxoG) is promutagenic since, if present in DNA during replication, it leads to incorporation of dAMP residues, leading to transversion mutation (GC-->TA). Purines whose imidazole ring is opened (Fapy residues) are stops for the DNA polymerase during DNA replication and are therefore potentially lethal lesions for the cell. Oxidized pyrimidines have comparable coding properties. Efficient DNA repair mechanisms remove these oxidized bases. In Escherichia coli cells, endonuclease III (NTH protein) and endonuclease VIII (NEI protein

  12. Accelerated search kinetics mediated by redox reactions of DNA repair enzymes.

    PubMed

    Fok, Pak-Wing; Chou, Tom

    2009-05-20

    A charge transport (CT) mechanism has been proposed in several articles to explain the localization of base excision repair (BER) enzymes to lesions on DNA. The CT mechanism relies on redox reactions of iron-sulfur cofactors that modify the enzyme's binding affinity. These redox reactions are mediated by the DNA strand and involve the exchange of electrons between BER enzymes along DNA. We propose a mathematical model that incorporates enzyme binding/unbinding, electron transport, and enzyme diffusion along DNA. Analysis of our model within a range of parameter values suggests that the redox reactions can increase desorption of BER enzymes not already bound to lesions, allowing the enzymes to be recycled--thus accelerating the overall search process. This acceleration mechanism is most effective when enzyme copy numbers and enzyme diffusivity along the DNA are small. Under such conditions, we find that CT BER enzymes find their targets more quickly than simple passive enzymes that simply attach to the DNA without desorbing.

  13. Site-directed mutagenesis of the T4 endonuclease V gene: The role of arginine-3 in the target search

    SciTech Connect

    Dowd, D.R.; Lloyd, R.S. )

    1989-10-31

    Endonuclease V, a pyrimidine dimer specific endonuclease in T4 bacteriophage, is able to scan DNA, recognize pyrimidine dimer photoproducts produced by exposure to ultraviolet light, and effectively incise DNA through a two-step mechanism at the damaged bases. The interaction of endonuclease V with nontarget DNA is thought to occur via electrostatic interactions between basic amino acids and the acidic phosphate DNA backbone. Arginine-3 was chosen as a potential candidate for involvement in this protein-nontarget DNA interaction and was extensively mutated to assess its role. The mutations include changes to Asp, Glu, Leu, and Lys and deleting it from the enzyme. Deletion of Arg-3 resulted in an enzyme that retained marginal levels of AP specificity, but no other detectable activity. Charge reversal to Glu-3 and Asp-3 results in proteins that exhibit AP-specific nicking and low levels of dimer-specific nicking. These enzymes are incapable of affecting cellular survival of repair-deficient Escherichia coli after irradiation. Mutations of Arg-3 to Lys-3 or Leu-3 also are unable to complement repair-deficient E. coli. However, these two proteins do exhibit a substantial level of in vitro dimer- and AP-specific nicking. The mechanism by which the Leu-3 and Lys-3 mutant enzymes locate pyrimidine dimers within a population of heavily irradiated plasmid DNA molecules appears to be significantly different from that for the wild-type enzyme. The wild-type endonuclease V processively incises all dimers on an individual plasmid prior to dissociation from that plasmid and subsequent reassociation with other plasmids, yet neither of these mutants exhibits any of the characteristics of this processive nicking activity.

  14. DNA binding and cleavage selectivity of the Escherichia coli DNA G:T-mismatch endonuclease (vsr protein).

    PubMed

    Gonzalez-Nicieza, R; Turner, D P; Connolly, B A

    2001-07-13

    The Escherichia coli vsr endonuclease recognises T:G base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The gene encoding the vsr endonuclease is next to the gene specifying the E. coli dcm DNA-methyltransferase; an enzyme that adds CH3 groups to the first dC within its target sequence CC[A/T]GG, giving C5MeC[A/T]GG. Deamination of the d5MeC results in CT[A/T]GG in which the first T is mis-paired with dG and it is believed that the endonuclease preferentially recognises T:G mismatches within the dcm recognition site. Here, the preference of the vsr endonuclease for bases surrounding the T:G mismatch has been evaluated. Determination of specificity constant (kst/KD; kst = rate constant for single turnover, KD = equilibrium dissociation constant) confirms vsr's preference for a T:G mismatch within a dcm sequence i.e. CT[A/T]GG (the underlined T being mis-paired with dG) is the best substrate. However, the enzyme is capable of binding and hydrolysing sequences that differ from the dcm target site by a single base-pair (dcm star sites). Individual alteration of any of the four bases surrounding the mismatched T gives a substrate, albeit with reduced binding affinity and slowed turnover rates. The vsr endonuclease has a much lower selectivity for the dcm sequence than type II restriction endonucleases have for their target sites. The results are discussed in the light of the known crystal structure of the vsr protein and its possible physiological role. Copyright 2001 Academic Press.

  15. Type II restriction endonucleases: structure and mechanism.

    PubMed

    Pingoud, A; Fuxreiter, M; Pingoud, V; Wende, W

    2005-03-01

    Type II restriction endonucleases are components of restriction modification systems that protect bacteria and archaea against invading foreign DNA. Most are homodimeric or tetrameric enzymes that cleave DNA at defined sites of 4-8 bp in length and require Mg2+ ions for catalysis. They differ in the details of the recognition process and the mode of cleavage, indicators that these enzymes are more diverse than originally thought. Still, most of them have a similar structural core and seem to share a common mechanism of DNA cleavage, suggesting that they evolved from a common ancestor. Only a few restriction endonucleases discovered thus far do not belong to the PD...D/ExK family of enzymes, but rather have active sites typical of other endonuclease families. The present review deals with new developments in the field of Type II restriction endonucleases. One of the more interesting aspects is the increasing awareness of the diversity of Type II restriction enzymes. Nevertheless, structural studies summarized herein deal with the more common subtypes. A major emphasis of this review will be on target site location and the mechanism of catalysis, two problems currently being addressed in the literature.

  16. Role of ATP in UV-induced DNA excision repair in human cells

    SciTech Connect

    Dresler, S.L.

    1986-05-01

    In permeable human fibroblasts, UV-induced DNA excision repair is dependent on ATP, with a K/sub m/ of approximately 1 mM. Omission of ATP from the reaction mix completely inhibits damage-specific incision of DNA, but has little effect on repair patch synthesis proceeding from previously incised sites. UV-induced excision repair in permeable xeroderma pigmentosum (XP) cells complemented with T4 UV endonuclease is also totally dependent on ATP. Because the T4 enzyme is not ATP-dependent, ATP must be required for an endogenous activity other than the incision of damaged DNA. Alkaline elution reveals that, in the absence of ATP, T4 UV endonuclease does incise the DNA of permeable UV-irradiated XP cells, but that the incision rate is stimulated approximately 2-fold by the addition of ATP. This 2-fold stimulation of incision can not, however, be responsible for the absolute ATP dependence of excision repair in UV endonuclease-complemented XP cells. Apparently, although T4 UV endonuclease can incise damaged nuclear DNA in the absence of ATP, the incised sites must also be altered in an ATP-dependent reaction before subsequent steps of the repair process can proceed. This conclusion, coupled with the fact that ATP stimulates incision of damaged nuclear DNA by T4 UV endonuclease and is absolutely required for incision of damaged nuclear DNA by the endogenous human UV endonuclease, suggests that an important function of the early ATP-dependent step in UV-induced excision repair is to make damaged sites in DNA accessible to repair enzymes.

  17. The Human Homolog of Escherichia coli Endonuclease V Is a Nucleolar Protein with Affinity for Branched DNA Structures

    PubMed Central

    Laerdahl, Jon K.; Gran Neurauter, Christine; Heggelund, Julie E.; Thorgaard, Eirik; Strøm-Andersen, Pernille; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2012-01-01

    Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription. PMID:23139746

  18. DNA repair enzymes: an important role in skin cancer prevention and reversal of photodamage--a review of the literature.

    PubMed

    Kabir, Yasmeen; Seidel, Rachel; Mcknight, Braden; Moy, Ronald

    2015-03-01

    The incidence of skin cancer continues to increase annually despite preventative measures. Non-melanoma skin cancer affects more than 1,000,000 people in the United States every year.1 The current preventative measures, such as sunscreens and topical antioxidants, have not shown to be effective in blocking the effects of UV radiation based on these statistics. The level of antioxidants contained in the majority of skin creams is not sufficient to majorly impact free radical damage. Sunscreens absorb only a portion of UV radiation and often are not photostable. In this review article, we present the novel use of exogenous DNA repair enzymes and describe their role in combating photocarcinogenesis and photoaging. Topical application of these enzymes serves to supplement intrinsic DNA repair mechanisms. The direct repair of DNA damage by endogenous repair enzymes lessens rates of mutagenesis and strengthens the immune response to tumor cells. However, these innate mechanisms are not 100% efficient. The use of exogenous DNA repair enzymes presents a novel way to supplement intrinsic mechanisms and improve their efficacy. Several DNA repair enzymes critical to the prevention of cutaneous malignancies have been isolated and added to topical preparations designed for skin cancer prevention. These DNA repair enzymes maximize the rate of DNA repair and provide a more efficient response to carcinogenesis.

  19. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    PubMed Central

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  20. The SalGI restriction endonuclease. Purification and properties

    PubMed Central

    Maxwell, Anthony; Halford, Stephen E.

    1982-01-01

    The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898

  1. Neisseria gonorrhoeae FA1090 Carries Genes Encoding Two Classes of Vsr Endonucleases

    PubMed Central

    Kwiatek, Agnieszka; Łuczkiewicz, Maciej; Bandyra, Katarzyna; Stein, Daniel C.; Piekarowicz, Andrzej

    2010-01-01

    A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished. PMID:20511499

  2. Neisseria gonorrhoeae FA1090 carries genes encoding two classes of Vsr endonucleases.

    PubMed

    Kwiatek, Agnieszka; Luczkiewicz, Maciej; Bandyra, Katarzyna; Stein, Daniel C; Piekarowicz, Andrzej

    2010-08-01

    A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished.

  3. Characterisation of the oxysterol metabolising enzyme pathway in mismatch repair proficient and deficient colorectal cancer

    PubMed Central

    Swan, Rebecca; Alnabulsi, Abdo; Cash, Beatriz; Alnabulsi, Ayham; Murray, Graeme I.

    2016-01-01

    Oxysterols are oxidised derivatives of cholesterol, formed by the enzymatic activity of several cytochrome P450 enzymes and tumour-derived oxysterols have been implicated in tumour growth and survival. The aim of this study was to profile the expression of oxysterol metabolising enzymes in primary colorectal cancer and assess the association between expression and prognosis. Immunohistochemistry was performed on a colorectal cancer tissue microarray containing 650 primary colorectal cancers using monoclonal antibodies to CYP2R1, CYP7B1, CYP8B1, CYP27A1, CYP39A1, CYP46A1 and CYP51A1, which we have developed. Unsupervised hierarchical cluster analysis was used to examine the overall relationship of oxysterol metabolising enzyme expression with outcome and based on this identify an oxysterol metabolising enzyme signature associated with prognosis. Cluster analysis of the whole patient cohort identified a good prognosis group (mean survival=146 months 95% CI 127-165 months) that had a significantly better survival (δ2=12.984, p<0.001, HR=1.983, 95% CI 1.341-2.799) than the poor prognosis group (mean survival=107 months, 95% CI 98-123 months). For the mismatch repair proficient cohort, the good prognosis group had a significantly better survival (δ2=8.985, p=0.003, HR=1.845, 95% CI 1.227-2.774) than the poor prognosis group. Multi-variate analysis showed that cluster group was independently prognostically significant in both the whole patient cohort (p=0.02, HR=1.554, 95% CI 1.072-2.252) and the mismatch repair proficient group (p=0.04, HR=1.530, 95% CI 1.014-2.310). Individual oxysterol metabolising enzymes are overexpressed in colorectal cancer and an oxysterol metabolising enzyme expression profile associated with prognosis has been identified in the whole patient cohort and in mismatch repair proficient colorectal cancers. PMID:27341022

  4. Ca2+, Mg2+-dependent endonuclease and ADP-ribosylation.

    PubMed

    Yoshihara, K; Tanaka, Y; Kamiya, T

    1983-01-01

    The molecular mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease by ADP-ribosylation was studied by using purified bull seminal plasma Ca2+, Mg2+-dependent endonuclease, endonuclease-stimulating proteins, and poly-(ADP-ribose) polymerase. The activity of an essentially homogeneous preparation of the endonuclease was markedly suppressed by its preincubation with NAD+, poly-(ADP-ribose) polymerase, DNA, and Mg2+. These four components of the incubation mixture were all essential for the suppression of the activity. Analyses of the initial and the chased reaction product by Sephadex G-100 column chromatography and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that Ca2+, Mg2+-dependent endonuclease was ADP-ribosylated during the incubation and its activity was markedly inhibited by the elongation of the ADP-ribose polymer covalently attached to the endonuclease. When the suppressed enzymes were mildly treated with an alkaline pH of 10.0, the activity was restored almost to the level of the unmodified control sample. These facts indicate that the linkage between the enzyme and poly(ADP-ribose) is hydrolyzed at this pH, and that the liberated polymer itself does not appreciably affect the endonuclease activity. These results also suggest that an electric repulsion between negative charges on DNA and poly(ADP-ribose) attached to Ca2+, Mg2+-dependent endonuclease is the basis for the observed suppression of the enzyme by ADP-ribosylation. Though histone H2B and H1 are shown to be as good endonuclease-stimulators (1) as they are good acceptors of ADP-ribose in poly(ADP-ribose) polymerase reaction (2), ADP-ribosylation of these two proteins did not affect their endonuclease-stimulating ability appreciably, at least under the conditions used.

  5. The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease.

    PubMed

    Hennecke, F; Kolmar, H; Bründl, K; Fritz, H J

    1991-10-24

    In Escherichia coli K-12, the Dcm methyltransferase catalyses methylation of the inner cytosine residue in the sequence CCA/TGG. Hydrolytic deamination of 5-methylcytosine bases in DNA leads to thymine residues, and hence to T/G mismatches, pre-mutagenic DNA lesions consisting of two natural DNA constituents and thus devoid of an obvious marker of the damaged DNA strand. These mismatches are corrected by the VSP repair pathway, which is characterized by very short patches of DNA repair synthesis. It depends on genes vsr and polA and is strongly stimulated by mutL and mutS. The vsr gene product (Vsr; Mr 18,000) was purified and characterized as a DNA mismatch endonuclease, a unique and hitherto unknown type of enzyme. Vsr endonuclease nicks double-stranded DNA within the sequence CTA/TGN or NTA/TGG next to the underlined thymidine residue, which is mismatched to 2'-deoxyguanosine. The incision is mismatch-dependent and strand-specific. These results illustrate how Vsr endonuclease initiates VSP mismatch repair.

  6. Mechanism of action of Micrococcus luteus. gamma. -endonuclease

    SciTech Connect

    Jorgensen, T.J.; Kow, Y.W.; Wallace, S.S.; Henner, W.D.

    1987-10-06

    Micrococcus luteus extracts contain ..gamma..-endonuclease, a Mg/sup 2 +/-independent endonuclease that cleaves ..gamma..-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. ..gamma..-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO/sub 4/-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. ..gamma..-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of ..gamma..-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.

  7. RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks

    PubMed Central

    Dillingham, Mark S.; Kowalczykowski, Stephen C.

    2008-01-01

    Summary: The RecBCD enzyme of Escherichia coli is a helicase-nuclease that initiates the repair of double-stranded DNA breaks by homologous recombination. It also degrades linear double-stranded DNA, protecting the bacteria from phages and extraneous chromosomal DNA. The RecBCD enzyme is, however, regulated by a cis-acting DNA sequence known as Chi (crossover hotspot instigator) that activates its recombination-promoting functions. Interaction with Chi causes an attenuation of the RecBCD enzyme's vigorous nuclease activity, switches the polarity of the attenuated nuclease activity to the 5′ strand, changes the operation of its motor subunits, and instructs the enzyme to begin loading the RecA protein onto the resultant Chi-containing single-stranded DNA. This enzyme is a prototypical example of a molecular machine: the protein architecture incorporates several autonomous functional domains that interact with each other to produce a complex, sequence-regulated, DNA-processing machine. In this review, we discuss the biochemical mechanism of the RecBCD enzyme with particular emphasis on new developments relating to the enzyme's structure and DNA translocation mechanism. PMID:19052323

  8. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  9. Restriction endonucleases: classification, properties, and applications.

    PubMed

    Williams, Raymond J

    2003-03-01

    Restriction endonucleases have become a fundamental tool of molecular biology with many commercial vendors and extensive product lines. While a significant amount has been learned about restriction enzyme diversity, genomic organization, and mechanism, these continue to be active areas of research and assist in classification efforts. More recently, one focus has been their exquisite specificity for the proper recognition sequence and the lack of homology among enzymes recognizing the same DNA sequence. Some questions also remain regarding in vivo function. Site-directed mutagenesis and fusion proteins based on known endonucleases show promise for custom-designed cleavage. An understanding of the enzymes and their properties can improve their productive application by maintaining critical digest parameters and enhancing or avoiding alternative activities.

  10. Biomaterial-Mediated Delivery of Degradative Enzymes to Improve Meniscus Integration and Repair

    PubMed Central

    Qu, Feini; Lin, Jung-Ming G.; Esterhai, John L.; Fisher, Matthew B.; Mauck, Robert L.

    2013-01-01

    Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity present physical and biologic barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation, and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (p≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach of targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:23376132

  11. Tear lipocalin is the major endonuclease in tears.

    PubMed

    Yusifov, Taleh N; Abduragimov, Adil R; Narsinh, Kiran; Gasymov, Oktay K; Glasgow, Ben J

    2008-01-29

    Human endonucleases are integral to apoptosis in which unwanted or potentially harmful cells are eliminated. The rapid turnover of ocular surface epithelium and microbial colonization of the eyelids are continual sources of DNA in tears. Here, we determine the principal sources of endonuclease activity in tears. Endonucleases in human tears were identified after Sephadex G100 gel filtration. DNA hydrolyzing activity was measured by the conversion pUC19 plasmid DNA to its circular form in agarose gels. Fractions with endonuclease activity were further isolated using a combination ConA-Sepharose DNA, oligo (dT) cellulose, and anion exchange chromatographies. The molecular weights of the DNA hydrolyzing proteins were estimated in zymograms and by calibration of size exclusion chromatography. DNase activities were characterized for activity at a variety of pH and ion concentrations as well as in the presence of inhibitors including NiCl(2), ZnCl(2), G-actin, and aurintricarboxylic acid (ATA). To determine the mode of hydrolysis, the cleaved ends of the DNA digested by tear DNases were analyzed by 3' and 5' end labeling using either terminal deoxynucleotidyl transferase or polynucleotide kinase with or without pretreatment with alkaline phosphatase. Tear lipocalin (TL) accounts for over 75% of the DNA catalytic activity in tears while a second endonuclease, approximately 34 kDa, is responsible for less than 24% of the activity. Both are Mg(2+) dependent enzyme endonucleases that are enhanced by Ca(2+), active at physiologic pH, inhibited by aurintricarboxylic acid, and catalyze hydrolysis of DNA to produce 3'-OH/5'P ends. However, the two enzymes can be distinguished by the inhibitory effect of NiCl(2) and the sizes of the cleaved DNA fragments. Two magnesium dependent extracellular endonucleases were identified in tears that are different from other major human extracellular nucleases. TL is the principal endonuclease in human tear fluid. Tear endonucleases have unique

  12. The EcoR V restriction endonuclease.

    PubMed

    Luke, P A; McCallum, S A; Halford, S E

    1987-01-01

    Type II restriction endonucleases have attracted attention for two main reasons: firstly, their many applications in the dissection of DNA and in the construction of novel DNA molecules; secondly, as systems for studying the interactions of proteins with specific DNA sequences. With respect to the latter, the EcoR I restriction endonuclease has been examined in greater depth than any other type II enzyme [1-3]. However, the EcoR I enzyme has a major disadvantage as a system for studying DNA-protein interactions: the protein has a remarkably low solubility. The solutions in which EcoR I shows maximal activity, and also affinity for its recognition site, are saturated at less than 0.5 microM of this protein [4]. Consequently, many techniques that have been developed to study protein-ligand interactions but which require high concentrations of the protein in solution, such as NMR spectroscopy, cannot be used on EcoR I. But this drawback does not apply to all type II restriction enzymes. A different enzyme, the EcoR V restriction endonuclease [5-7], has special advantages as a system for studying DNA-protein interactions. In particular, this is the only type II restriction enzyme (apart from EcoR I [3]) for which crystals of the protein have been reported [7].

  13. T4 endonuclease V: Perspectives on catalysis

    SciTech Connect

    Latham, K.A. |; Lloyd, R.S.

    1994-12-31

    Bacteriophage T4 displays enhanced ultraviolet light (UV) resistance over other T-even bacteriophages. This enhanced resistance was initially ascribed to the v gene, now known as denV. The product of the denV gene, endonuclease V, has been shown to be responsible for initiating the removal of pyrimidine dimers from DNA. Initial characterization of purified endonuclease V revealed that the enzyme produces single-strand breaks in DNA at the site of UV-induced pyrimidine dimers, yet shows no activity towards unirradiated or heat-denatured DNA. The enzyme seems almost completely specific for cis-syn cyclobutane pyrimidine dimers, although recently it has been demonstrated to react with trans-syn dimers at approximately 1/100th the rate of the cis-syn dimer. DenV has been cloned and sequenced, allowing for expression of endonuclease V within Escherichia coli. The gene encodes a 138-amino acid protein with a predicted molecular mass of 16 kDa. Extensive biochemical and genetic studies have shown endonuclease V to possess four distinct activities: (1) a salt-dependent scanning or looping mechanism allowing for nontarget double-stranded DNA interactions; (2) a pyrimidine dimer-specific binding activity; (3) a pyrimidine dimer-specific DNA glycosylase activity; and (4) an apurinic/apyrimidinic (AP) lyase activity.

  14. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair.

    PubMed

    Lai, Yanhao; Jiang, Zhongliang; Zhou, Jing; Osemota, Emmanuel; Liu, Yuan

    2016-07-01

    Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3'-5' exonuclease activity efficiently removed the mismatched T, thereby preventing pol β extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3'-5' exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA.

    PubMed

    Chen, Fangyi; Tang, Qi; Bian, Ke; Humulock, Zachary T; Yang, Xuedong; Jost, Marco; Drennan, Catherine L; Essigmann, John M; Li, Deyu

    2016-04-18

    The AlkB protein is a repair enzyme that uses an α-ketoglutarate/Fe(II)-dependent mechanism to repair alkyl DNA adducts. AlkB has been reported to repair highly susceptible substrates, such as 1-methyladenine and 3-methylcytosine, more efficiently in ss-DNA than in ds-DNA. Here, we tested the repair of weaker AlkB substrates 1-methylguanine and 3-methylthymine and found that AlkB prefers to repair them in ds-DNA. We also discovered that AlkB and its human homologues, ABH2 and ABH3, are able to repair the aforementioned adducts when the adduct is present in a mismatched base pair. These observations demonstrate the strong adaptability of AlkB toward repairing various adducts in different environments.

  16. Distinct catalytic activity and in vivo roles of the ExoIII and EndoIV AP endonucleases from Sulfolobus islandicus.

    PubMed

    Yan, Zhou; Huang, Qihong; Ni, Jinfeng; Shen, Yulong

    2016-09-01

    AP endonuclease cleaves the phosphodiester bond 5'- to the AP (apurinic or apyrimidinic) sites and is one of the major enzymes involved in base excision repair. So far, the properties of several archaeal AP endonuclease homologues have been characterized in vitro, but little is known about their functions in vivo. Herein, we report on the biochemical and genetic analysis of two AP endonucleases, SisExoIII and SisEndoIV, from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. Both SisExoIII and SisEndoIV exhibit AP endonuclease activity, but neither of them has 3'-5' exonuclease activity. SisExoIII and SisEndoIV have similar K M values on the substrate containing an AP site, but the latter cleaves the AP substrate at a dramatically higher catalytic rate than the former. Unlike other AP endonucleases identified in archaea, SisExoIII and SisEndoIV do not exhibit any cleavage activity on DNA having oxidative damage (8-oxo-dG) or uracil. Genetic analysis revealed that neither gene is essential for cell viability, and the growth of ∆SiRe_2666 (endoIV), ∆SiRe_0100 (exoIII), and ∆SiRe_0100∆SiRe_2666 is not affected under normal growth conditions. However, ∆SiRe_2666 exhibits higher sensitivity to the alkylating agent methyl methanesulfonate (MMS) than ∆SiRe_0100. Over-expression of SiRe_0100 can partially complement the sensitivity of ∆SiRe_2666 to MMS, suggesting a backup role of SisExoIII in AP site processing in vivo. Intriguingly, over-expression of SisEndoIV renders the strain more sensitive to MMS than the control. Taken together, we conclude that SisEndoIV, but not SisExoIII, is the main AP endonuclease that participates directly in base excision repair in S. islandicus.

  17. Chronic hypobaric hypoxia diminishes the expression of base excision repair OGG1 enzymes in spermatozoa.

    PubMed

    Farias, J G; Zepeda, A; Castillo, R; Figueroa, E; Ademoyero, O T; Pulgar, V M

    2017-07-31

    Hypobaric hypoxia induces DNA damage in rat testicular cells, the production of defective spermatozoids and decreased sperm count, associated with an increase in oxidative stress. 8-Oxoguanine glycosylase (OGG1) enzymes are main members of the base excision repair (BER) system, a DNA repair mechanism. We determined the expression levels of mitochondrial and nuclear OGG1 isoforms in spermatozoa collected from cauda epididymis in rats exposed to chronic hypobaric hypoxia (CHH) for 5, 15 and 30 days. CHH attenuates OGG1 expression in a time-dependent fashion, with a greater reduction in the mitochondrial isoform OGG1-2a (p < .05). Attenuation of the BER system may contribute to DNA damage under hypoxia exposure. © 2017 Blackwell Verlag GmbH.

  18. Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus

    PubMed Central

    Machius, Mischa; Henry, Lisa; Palnitkar, Maya; Deisenhofer, Johann

    1999-01-01

    Nucleotide excision repair (NER) is the most important DNA-repair mechanism in living organisms. In prokaryotes, three enzymes forming the UvrABC system initiate NER of a variety of structurally different DNA lesions. UvrB, the central component of this system, is responsible for the ultimate DNA damage recognition and participates in the incision of the damaged DNA strand. The crystal structure of Thermus thermophilus UvrB reveals a core that is structurally similar to core regions found in helicases, where they constitute molecular motors. Additional domains implicated in binding to DNA and various components of the NER system are attached to this central core. The architecture and distribution of DNA binding sites suggest a possible model for the DNA damage recognition process. PMID:10518516

  19. Overproduction of the EcoR V endonuclease and methylase.

    PubMed

    Bougueleret, L; Tenchini, M L; Botterman, J; Zabeau, M

    1985-06-11

    Strains overproducing the EcoR V endonuclease and methylase have been obtained by inserting each of the two genes in expression vectors containing the lambda PL promoter. The methylase is overproduced to a level reaching 5-10% of the total cellular proteins, which represents a 50-100 fold increase. A 30 fold overproduction of endonuclease was achieved by randomly positioning the EndRV gene downstream of the lambda PL promoter. The situation in the endonuclease overproducing clone resembles that encountered in maxi-cells. The strains described here allowed a quick purification of both enzymes in sufficient amounts for crystallisation attempts.

  20. Crystal Structure of the Human Hsmar1-Derived Transposase Domain in the DNA Repair Enzyme Metnase

    SciTech Connect

    Goodwin, Kristie D.; He, Hongzhen; Imasaki, Tsuyoshi; Lee, Suk-Hee; Georgiadis, Millie M.

    2010-08-12

    Although the human genome is littered with sequences derived from the Hsmar1 transposon, the only intact Hsmar1 transposase gene exists within a chimeric SET-transposase fusion protein referred to as Metnase or SETMAR. Metnase retains many of the transposase activities including terminal inverted repeat (TIR) specific DNA-binding activity, DNA cleavage activity, albeit uncoupled from TIR-specific binding, and the ability to form a synaptic complex. However, Metnase has evolved as a DNA repair protein that is specifically involved in nonhomologous end joining. Here, we present two crystal structures of the transposase catalytic domain of Metnase revealing a dimeric enzyme with unusual active site plasticity that may be involved in modulating metal binding. We show through characterization of a dimerization mutant, F460K, that the dimeric form of the enzyme is required for its DNA cleavage, DNA-binding, and nonhomologous end joining activities. Of significance is the conservation of F460 along with residues that we propose may be involved in the modulation of metal binding in both the predicted ancestral Hsmar1 transposase sequence as well as in the modern enzyme. The Metnase transposase has been remarkably conserved through evolution; however, there is a clustering of substitutions located in alpha helices 4 and 5 within the putative DNA-binding site, consistent with loss of transposition specific DNA cleavage activity and acquisition of DNA repair specific cleavage activity.

  1. Monitoring DNA recombination initiated by HO endonuclease.

    PubMed

    Sugawara, Neal; Haber, James E

    2012-01-01

    DNA double-strand breaks (DSBs) have proven to be very potent initiators of recombination in yeast and other organisms. A single, site-specific DSB initiates homologous DNA repair events such as gene conversion, break-induced replication, and single-strand annealing, as well as nonhomologous end joining, microhomology-mediated end joining, and new telomere addition. When repair is either delayed or prevented, a single DSB can trigger checkpoint-mediated cell cycle arrest. In budding yeast, expressing the HO endonuclease under the control of a galactose-inducible promoter has been instrumental in the study of these processes by providing us a way to synchronously induce a DSB at a unique site in vivo. We describe how the HO endonuclease has been used to study the recombination events in mating-type (MAT) switching. Southern blots provide an overview of the process by allowing one to examine the formation of the DSB, DNA degradation at the break, and formation of the product. Denaturing gels and slot blots as well as PCR have provided important tools to follow the progression of resection in wild-type and mutant cells. PCR has also been important in allowing us to follow the kinetics of certain recombination intermediates such as the initiation of repair DNA synthesis or the removal of nonhomologous Y sequences during MAT switching. Finally chromatin immunoprecipitation has been used to follow the recruitment of key proteins to the DSB and in subsequent steps in DSB repair.

  2. Trans-complementation by human apurinic endonuclease (Ape) of hypersensitivity to DNA damage and spontaneous mutator phenotype in apn1-yeast.

    PubMed Central

    Wilson, D M; Bennett, R A; Marquis, J C; Ansari, P; Demple, B

    1995-01-01

    Abasic (AP) sites in DNA are potentially lethal and mutagenic. 'Class II' AP endonucleases initiate the repair of these and other DNA lesions. In yeast, the predominant enzyme of this type is Apn1, and its elimination sensitizes the cells to killing by simple alkylating agents or oxidants, and raises the rate of spontaneous mutation. We investigated the ability of the major human class II AP endonuclease, Ape, which is structurally unrelated to Apn1, to replace the yeast enzyme in vivo. Confocal immunomicroscopy studies indicate that approximately 25% of the Ape expressed in yeast is present in the nucleus. High-level Ape expression corresponding to approximately 7000 molecules per nucleus, equal to the normal Apn1 copy number, restored resistance to methyl methanesulfonate to near wild-type levels in Apn1-deficient (apn1-) yeast. Ape expression in apn1- yeast provided little protection against H2O2 challenges, consistent with the weak 3'-repair diesterase activity of the human enzyme. Ape expression at approximately 2000 molecules per nucleus reduced the spontaneous mutation rate of apn1- yeast to that seen for wild-type cells. Because Ape has a powerful AP endonuclease but weak 3'-diesterase activity, these findings indicate that endogenously generated AP sites can drive spontaneous mutagenesis. Images PMID:8559661

  3. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  4. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    PubMed

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step.

  5. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells.

    PubMed

    Hodges, N J; Chipman, J K

    2002-01-01

    Hexavalent chromium is a genotoxic human pulmonary carcinogen that elevates DNA oxidation, apparently through the generation of reactive DNA-damaging intermediates including Cr(V), Cr(IV) and reactive oxygen species. We tested the hypothesis that elevation of DNA oxidation may also be through inhibition of the expression of the repair glycosylase for 8-oxo deoxyguanine (hOGG1) in cultured A549 human lung epithelial cells. Treatment with sodium dichromate (0-100 microM, 16 h) resulted in a concentration-dependent decrease in the levels of OGG1 mRNA as measured by both RT-PCR and RNase protection assay. Sodium dichromate at 25 microM and above gave a marked reduction of OGG1 mRNA expression which was not seen at 1 microM and below. No effect on the expression of the apurinic endonuclease hAPE or the house-keeping gene GAPDH was observed at any of the concentrations of sodium dichromate investigated. Treatment of cells with the pro-oxidant H(2)O(2) (0-200 microM) for 16 h had no detectable effect on the levels of OGG1 mRNA or protein expression suggesting that the effect of sodium dichromate is not mediated by H(2)O(2). Western blotting demonstrated that sodium dichromate (100 microM; 16 h and >25 microM; 28 h) markedly reduced levels of OGG1 protein in nuclear cell extracts. Additionally, treatment of cells with sodium dichromate (>25 microM, 28 h) resulted in a concentration-dependent decrease in the ability of nuclear extracts to nick a synthetic oligonucleotide containing 8-oxo deoxyguanine (8-oxo dG). We conclude that the elevation of 8-oxo dG levels observed in A549 cells treated with sodium dichromate may be, at least in part, due to a reduced capacity to repair endogenous and hexavalent chromium-induced 8-oxo dG.

  6. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes

    PubMed Central

    Guilliam, Thomas A.; Keen, Benjamin A.; Brissett, Nigel C.; Doherty, Aidan J.

    2015-01-01

    Until relatively recently, DNA primases were viewed simply as a class of proteins that synthesize short RNA primers requisite for the initiation of DNA replication. However, recent studies have shown that this perception of the limited activities associated with these diverse enzymes can no longer be justified. Numerous examples can now be cited demonstrating how the term ‘DNA primase’ only describes a very narrow subset of these nucleotidyltransferases, with the vast majority fulfilling multifunctional roles from DNA replication to damage tolerance and repair. This article focuses on the archaeo-eukaryotic primase (AEP) superfamily, drawing on recently characterized examples from all domains of life to highlight the functionally diverse pathways in which these enzymes are employed. The broad origins, functionalities and enzymatic capabilities of AEPs emphasizes their previous functional misannotation and supports the necessity for a reclassification of these enzymes under a category called primase-polymerases within the wider functional grouping of polymerases. Importantly, the repositioning of AEPs in this way better recognizes their broader roles in DNA metabolism and encourages the discovery of additional functions for these enzymes, aside from those highlighted here. PMID:26109351

  7. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes.

    PubMed

    Guilliam, Thomas A; Keen, Benjamin A; Brissett, Nigel C; Doherty, Aidan J

    2015-08-18

    Until relatively recently, DNA primases were viewed simply as a class of proteins that synthesize short RNA primers requisite for the initiation of DNA replication. However, recent studies have shown that this perception of the limited activities associated with these diverse enzymes can no longer be justified. Numerous examples can now be cited demonstrating how the term 'DNA primase' only describes a very narrow subset of these nucleotidyltransferases, with the vast majority fulfilling multifunctional roles from DNA replication to damage tolerance and repair. This article focuses on the archaeo-eukaryotic primase (AEP) superfamily, drawing on recently characterized examples from all domains of life to highlight the functionally diverse pathways in which these enzymes are employed. The broad origins, functionalities and enzymatic capabilities of AEPs emphasizes their previous functional misannotation and supports the necessity for a reclassification of these enzymes under a category called primase-polymerases within the wider functional grouping of polymerases. Importantly, the repositioning of AEPs in this way better recognizes their broader roles in DNA metabolism and encourages the discovery of additional functions for these enzymes, aside from those highlighted here.

  8. Mechanisms of endonuclease-mediated mRNA decay

    PubMed Central

    Schoenberg, Daniel R.

    2012-01-01

    Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in any detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity, and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease functions is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes. PMID:21957046

  9. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    PubMed

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.

  10. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure.

    PubMed

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z; Boor, Paul J; Khan, M Firoze

    2013-03-15

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to the controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than the controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of

  11. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2013-01-01

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA

  12. ENDONUCLEASE II OF E. coli, I. ISOLATION AND PURIFICATION*

    PubMed Central

    Friedberg, Errol C.; Goldthwait, David A.

    1969-01-01

    The isolation and purification of a new endonuclease of E. coli is described. This enzyme degrades alkylated DNA as assayed by a technique that requires double-strand scission. The enzyme also makes a limited number of single-strand breaks in native nonalkylated DNA. PMID:4895219

  13. Oxygen-induced changes in mitochondrial DNA and DNA repair enzymes in aging rat lens.

    PubMed

    Zhang, Yi; Ouyang, Shan; Zhang, Lan; Tang, Xianling; Song, Zhen; Liu, Ping

    2010-01-01

    The treatment of patients with hyperbaric oxygen (HBO), vitrectomy and loss of vitreous gel during aging is associated with a high risk of subsequent development of nuclear cataract. Many studies proved that oxidation is the key reason of nuclear cataract. Reactive oxygen species (ROS) are formed in mitochondria as a by-product of normal metabolism and as a consequence of exposure to environmental compounds. Therefore, mitochondrial DNA (mtDNA) is at particularly high risk of ROS-induced damage. Oxidative damage to mtDNA has been implicated as a causative factor in a wide variety of degenerative diseases and aging. However, the effect of mtDNA damage to the lens has not been studied. The goals of the study were to identify if there was increased mtDNA damage in lens when the eye were exposed to hyperoxic or hypoxic conditions and also to evaluate the changes in gene expression of mtDNA base excision repair (mtBER) enzymes. Our data have shown that the damage of mtDNA, the expression of mtBER enzymes and the level of 8-OHdG in lens increased after inspired hyperoxia, which is likely associated with oxidative stress. However, there was no effect to mtDNA and mtBER enzymes in lens after inspired hypoxia. Nuclear cataract appeared rapidly at 14 month old rats in hyperoxia group, and lens kept transparency in other groups.

  14. Structural insights into recognition and repair of UV-DNA damage by Spore Photoproduct Lyase, a radical SAM enzyme

    PubMed Central

    Benjdia, Alhosna; Heil, Korbinian; Barends, Thomas R. M.; Carell, Thomas; Schlichting, Ilme

    2012-01-01

    Bacterial spores possess an enormous resistance to ultraviolet (UV) radiation. This is largely due to a unique DNA repair enzyme, Spore Photoproduct Lyase (SP lyase) that repairs a specific UV-induced DNA lesion, the spore photoproduct (SP), through an unprecedented radical-based mechanism. Unlike DNA photolyases, SP lyase belongs to the emerging superfamily of radical S-adenosyl-l-methionine (SAM) enzymes and uses a [4Fe–4S]1+ cluster and SAM to initiate the repair reaction. We report here the first crystal structure of this enigmatic enzyme in complex with its [4Fe–4S] cluster and its SAM cofactor, in the absence and presence of a DNA lesion, the dinucleoside SP. The high resolution structures provide fundamental insights into the active site, the DNA lesion recognition and binding which involve a β-hairpin structure. We show that SAM and a conserved cysteine residue are perfectly positioned in the active site for hydrogen atom abstraction from the dihydrothymine residue of the lesion and donation to the α-thyminyl radical moiety, respectively. Based on structural and biochemical characterizations of mutant proteins, we substantiate the role of this cysteine in the enzymatic mechanism. Our structure reveals how SP lyase combines specific features of radical SAM and DNA repair enzymes to enable a complex radical-based repair reaction to take place. PMID:22761404

  15. Amino acid Asp181 of 5’-flap endonuclease 1 is a useful target for chemotherapeutic development

    PubMed Central

    Panda, Harekrushna; Jaiswal, Aruna S.; Corsino, Patrick E.; Armas, Melissa L.; Law, Brian K.; Narayan, Satya

    2009-01-01

    DNA alkylation-induced damage is one of the most efficacious anti-cancer therapeutic strategies. Increased DNA alkylation and decreased DNA repair capacity in cancer cells is responsible for the effectiveness of DNA-alkylating therapies. 5’-Flap endonuclease 1 (Fen1) is an important enzyme involved in base excision repair (BER), specifically in long-patch (LP)-BER. Using the site-directed mutagenesis approach, we have identified an important role for amino acid Asp181 of Fen1 in its endonuclease activity. The Asp181 is thought be involved in Mg2+ binding in the active site. Using structure-based molecular docking of Fen1 targeted to its metal-binding pocket M2 (Mg2+ site), we have identified a potent small molecular weight inhibitor (SMI; NSC-281680) that efficiently blocks the LP-BER. In this study, we have demonstrated that the interaction of this SMI with Fen1 blocked its endonuclease activity, thereby blocking the LP-BER and enhancing the cytotoxic effect of DNA-alkylating agent, Temozolomide (TMZ) in mismatch repair (MMR)-deficient and MMR-proficient colon cancer cells. The results further suggest that blockade of LP-BER by NSC-281680 may bypass other drug resistance mechanisms such as mismatch repair (MMR) defects. Therefore, our findings provide groundwork for the development of highly specific and safer structure-based small molecular inhibitors targeting the BER pathway, which can be used along with existing chemotherapeutic agents, like TMZ, as combination therapy for the treatment of colorectal cancer. PMID:19769410

  16. Gene editing using ssODNs with engineered endonucleases.

    PubMed

    Chen, Fuqiang; Pruett-Miller, Shondra M; Davis, Gregory D

    2015-01-01

    Gene editing using engineered endonucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nucleases, requires the creation of a targeted, chromosomal DNA double-stranded break (DSB). In mammalian cells, these DSBs are typically repaired by one of the two major DNA repair pathways: nonhomologous end joining (NHEJ) or homology-directed repair (HDR). NHEJ is an error-prone repair process that can result in a wide range of end-joining events that leads to somewhat random mutations at the site of DSB. HDR is a precise repair pathway that can utilize either an endogenous or exogenous piece of homologous DNA as a template or "donor" for repair. Traditional gene editing via HDR has relied on the co-delivery of a targeted, engineered endonuclease and a circular plasmid donor construct. More recently, it has been shown that single-stranded oligodeoxynucleotides (ssODNs) can also serve as DNA donors and thus obviate the more laborious and time-consuming plasmid vector construction process. Here we describe the use of ssODNs for making defined genome modifications in combination with engineered endonucleases.

  17. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin

    PubMed Central

    Stege, Helger; Roza, Len; Vink, Arie A.; Grewe, Markus; Ruzicka, Thomas; Grether-Beck, Susanne; Krutmann, Jean

    2000-01-01

    Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection. PMID:10660687

  18. Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity

    PubMed Central

    Prasad, Rajendra; Poltoratsky, Vladimir; Hou, Esther W.; Wilson, Samuel H.

    2016-01-01

    Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity. PMID:27683219

  19. Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy P; Johnson, Luke A; Stockmeier, Craig A; Crawford, Jessica D; Chandley, Michelle J; Hernandez, Liza J; Burgess, Katherine C; Brown, Russell W; Ordway, Gregory A

    2017-05-01

    Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD.

  20. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme

    SciTech Connect

    Qi, Yan; Spong, Marie C.; Nam, Kwangho; Banerjee, Anirban; Jiralerspong, Sao; Karplus, Martin; Verdine, Gregory L.; Harvard-Med; Harvard

    2010-01-12

    How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein-DNA interfaces in the matched complexes differ by only two atoms - those that distinguish oxoG from G - their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.

  1. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.

    PubMed

    Certo, Michael T; Morgan, Richard A

    2016-03-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.

  2. Purification and characterization of the x-ray endonuclease of Escherichia coli

    SciTech Connect

    Katcher, H.L.

    1984-01-01

    This work concerns the purification and characterization of the x-ray endonuclease of E. coli. The x-ray endonuclease was purified by chromatography on DNA-agarose, Sephadex gel filtration, hydroxylapatite chromatography, and phosphocellulose chromatography. Parallel assays on modified DNA and oligonucleotide substances established that the x-ray endonuclease was active on DNA contain in apurinic and apyrimidinic sites, thymine glycol and urea residues, and undefined lesions produced by UV and X radiation. Characterization of the x-ray endonuclease by gel filtration gave a molecular weight of about 25,000 dalton while SDS-polyacrylamide gel electrophoresis of the most purified preparations showed a single band corresponding to a molecular weight of about 13,000 daltons. Analysis of DNA substrates following x-ray endonuclease treatment showed that the x-ray endonuclease nicked at the 3{prime} side of a base lesion to yield 3{prime}OH and 5{prime}PO termini. Analysis of the acid/alcohol soluble products of the digestion of specifically modified synthetic poly dT:dA by the x-ray endonuclease showed this enzyme to have DNA glycosylase activities that released both thymine glycol and urea residues from DNA. Inhibitor studies showed the thymine-glycol endonuclease activity was inhibited by NEM while the AP endonuclease was not. NEM was also shown to inhibit endonuclease activity on UV-irradiated DNA, X-irradiated DNA, and urea-containing DNA.

  3. The Fidelity Index provides a systematic quantitation of star activity of DNA restriction endonucleases

    PubMed Central

    Wei, Hua; Therrien, Caitlin; Blanchard, Aine; Guan, Shengxi; Zhu, Zhenyu

    2008-01-01

    Restriction endonucleases are the basic tools of molecular biology. Many restriction endonucleases show relaxed sequence recognition, called star activity, as an inherent property under various digestion conditions including the optimal ones. To quantify this property we propose the concept of the Fidelity Index (FI), which is defined as the ratio of the maximum enzyme amount showing no star activity to the minimum amount needed for complete digestion at the cognate recognition site for any particular restriction endonuclease. Fidelity indices for a large number of restriction endonucleases are reported here. The effects of reaction vessel, reaction volume, incubation mode, substrate differences, reaction time, reaction temperature and additional glycerol, DMSO, ethanol and Mn2+ on the FI are also investigated. The FI provides a practical guideline for the use of restriction endonucleases and defines a fundamental property by which restriction endonucleases can be characterized. PMID:18413342

  4. Assessing PreCR™ repair enzymes for restoration of STR profiles from artificially degraded DNA for human identification.

    PubMed

    Robertson, James M; Dineen, Shauna M; Scott, Kristina A; Lucyshyn, Jonathan; Saeed, Maria; Murphy, Devonie L; Schweighardt, Andrew J; Meiklejohn, Kelly A

    2014-09-01

    Forensic scientists have used several approaches to obtain short tandem repeat (STR) profiles from compromised DNA samples, including supplementing the polymerase chain reaction (PCR) with enhancers and using procedures yielding reduced-length amplicons. For degraded DNA, the peak intensities of the alleles separated by electrophoresis generally decrease as the length of the allele increases. When the intensities of the alleles decrease below an established threshold, they are described as drop-outs, thus contributing to a partial STR profile. This work assesses the use of repair enzymes to improve the STR profiles from artificially degraded DNA. The commercial PreCR™ repair kit of DNA repair enzymes was tested on both purified DNA and native DNA in body fluids exposed to oxidizing agents, hydrolytic conditions, ultraviolet (UV) and ionizing radiation, and desiccation. The strategy was to restrict the level of DNA damage to that which yields partial STR profiles in order to test for allele restoration as opposed to simple allele enhancement. Two protocols were investigated for allele restoration: a sequential protocol using the manufacturer's repair procedure and a modified protocol reportedly designed for optimal STR analysis of forensic samples. Allele restoration was obtained with both protocols, but the peak height appeared to be higher for the modified protocol (determined by Mann-Kendall Trend Test). The success of the approach using the PreCR™ repair enzymes was sporadic; it led to allele restoration as well as allele drop-out. Additionally, allele restoration with the PreCR™ enzymes was compared with restoration by alternative, but commonly implemented approaches using Restorase™, PCRBoost™, bovine serum albumin (BSA) and the Minifiler™ STR system. The alternative methods were also successful in improving the STR profile, but their success also depended on the quality of the template encountered. Our results indicate the PreCR™ repair kit may

  5. Endonuclease from Micrococcus luteus Which Has Activity Toward Ultraviolet-Irradiated Deoxyribonucleic Acid: Its Action on Transforming Deoxyribonucleic Acid

    PubMed Central

    Setlow, R. B.; Setlow, Jane K.; Carrier, W. L.

    1970-01-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  6. Excision repair of pyrimidine dimers from simian virus 40 minichromosomes in vitro

    SciTech Connect

    Evans, D.H.; Linn, S.

    1984-08-25

    The ability of DNA repair enzymes to carry out excision repair of pyrimidine dimers in SV40 minichromosomes irradiated with UV light was examined. Half of the dimers were substrate for the DNA glycosylase activity of phage T4 UV endonuclease immediately after irradiation, but this limit decreased to 27% after 2 h at 0/sup 0/C. The apyrimidinic (AP) endonuclease activity of the enzyme did not incise all of the AP sites created by glycosylase, although all AP sites were substrate for HeLa AP endonuclease II. After incision by the T4 enzyme, excision was mediated by HeLa DNase V (acting with an exonuclease present in the chromatin preparation). Under physiological salt conditions, excision did not proceed beyond the damaged nucleotides in DNA or chromatin. With chromatin, 70% of the accessible dimers were removed, but at a rate slower than for DNA. Finally, HeLa DNA polymerase ..beta.. was able to fill the short gaps created after dimer excision, and these patches were sealed by T4 DNA ligase. Overall, roughly 30% of the sites incised by the endonuclease were ultimately sealed by the ligase. The resistance of some sites was due to interference with the ligase by the chromatin structure, as only 30-40% of the nicks created in chromatin by pancreatic DNase could be sealed by T4 or HeLa DNA ligases. The overall excision repair process did not disrupt the chromatin structure, since the repair label was recovered in Form I DNA present in 75 S condensed minichromosomes. Although other factors might affect the rate, it appears that the enzymes utilized could carry out excision repair of chromatin to a limit near that observed in mammalian cells in vivo.

  7. The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress.

    PubMed

    Vasko, Michael R; Guo, Chunlu; Kelley, Mark R

    2005-03-02

    Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reducing Ape1 expression in primary cultures of hippocampal and sensory neurons on several endpoints of neurotoxicity induced by H2O2. Ape1 is highly expressed in hippocampal and sensory neurons grown in culture as indicated by immunohistochemistry, immunoblotting and activity. Exposing hippocampal or sensory neuronal cultures to 25 or 50 nM small interfering RNA to Ape1 (Ape1siRNA), respectively, for 48 h, causes a reduction in immunoreactive Ape1 by approximately 65 and 54%, and an equivalent loss in endonuclease activity. The reduced expression of Ape1 is maintained for up to 5 days after the siRNA in the medium is removed, whereas exposing cultures to scrambled sequence siRNA (SCsiRNA) has no effect of Ape1 protein levels. The reduction in Ape1 significantly reduces cell viability in cultures 24 h after a 1-h exposure to 25-300 microM H2O2, compared to SCsiRNA treated controls. In cells treated with SCsiRNA, exposure to 300 microM H2O2 reduced cell viability by 40 and 30% in hippocampal and sensory neuronal cultures, respectively, whereas cultures treated with Ape1siRNA lost 93 and 80% of cells after the peroxide. Reduced Ape1 levels also increase caspase-3 activity in the cells, 2-3-fold, 60min after a 1-h exposure to 100 microM H2O2 in the cultures. Exposing neuronal cultures with reduced expression of Ape1 to 65 microM H2O2 (hippocampal) or 300 microM H2O2 (sensory) for 1h results in a 3-fold and 1.5-fold increase in the phosphorylation of histone H2A.X compared to cells exposed to SCsiRNA. Overexpressing wild-type Ape1 in hippocampal and sensory cells using adenoviral expression constructs results in significant increase in cell viability after

  8. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  9. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  10. Structural Characterization of the Catalytic Subunit of a Novel RNA Splicing Endonuclease

    SciTech Connect

    Calvin, Kate; Hall, Michelle D.; Xu, Fangmin; Xue, Song; Li, Hong

    2010-07-13

    The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S. solfataricus endonuclease at 3.1 {angstrom} resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.

  11. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.

    PubMed

    Kovall, R A; Matthews, B W

    1998-07-07

    lambda-exonuclease participates in DNA recombination and repair. It binds a free end of double-stranded DNA and degrades one strand in the 5' to 3' direction. The primary sequence does not appear to be related to any other protein, but the crystal structure shows part of lambda-exonuclease to be similar to the type II restriction endonucleases PvuII and EcoRV. There is also a weaker correspondence with EcoRI, BamHI, and Cfr10I. The structure comparisons not only suggest that these enzymes all share a similar catalytic mechanism and a common structural ancestor but also provide strong evidence that the toroidal structure of lambda-exonuclease encircles its DNA substrate during hydrolysis.

  12. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception.

  13. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme.

    PubMed Central

    Bouhamdan, M; Benichou, S; Rey, F; Navarro, J M; Agostini, I; Spire, B; Camonis, J; Slupphaug, G; Vigne, R; Benarous, R; Sire, J

    1996-01-01

    The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr. PMID:8551605

  14. High resolution mapping of modified DNA nucleobases using excision repair enzymes

    PubMed Central

    Bryan, D. Suzi; Ransom, Monica; Adane, Biniam; York, Kerri

    2014-01-01

    The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes. PMID:25015380

  15. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  16. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes.

    PubMed

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-07

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.

  17. Molecular Recognition of DNA Damage Sites by Apurinic/Apyrimidinic Endonucleases

    SciTech Connect

    Braun, W. A.

    2005-07-28

    The DNA repair/redox factor AP endonuclease 1 (APE1) is a multifunctional protein which is known to to be essential for DNA repair activity in human cells. Structural/functional analyses of the APE activity is thus been an important research field to assess cellular defense mechanisms against ionizing radiation.

  18. Gene specific damage and repair after treatment of cells with UV and chemotherapeutical agents

    SciTech Connect

    Bohr, V.A. )

    1991-01-01

    The authors have previously demonstrated preferential DNA repair of active genes in mammalian cells. The methodology involves the use of a specific endonuclease or other more direct approaches to create nicks at sites of damage followed by quantitative Southern analysis and probing for specific genes. Initially, they used pyrimidine dimer specific endonuclease to detect pyrimidine dimers after UV irradiation. They now also use the bacterial enzyme ABC excinuclease to examine the DNA damage and repair of a number of adducts other than pyrimidine dimers in specific genes. They can detect gene specific alkylation damage by creating nicks via depurination and alkaline hydrolysis. In our assay for preferential repair, they compare the efficiency of repair in the DHFR gene to that in the 3{prime} flanking, non-coding region to the gene. In CHO cells, UV induced pyrimidine dimers are efficiently repaired from the active DHFR gene, but not from the inactive region. They have demonstrated that the 6-4 photoproducts are also preferentially repaired and that they are removed faster from the regions studied than pyrimidine dimers. Using similar approaches, they find that DNA adducts and crosslinks caused by cisplatinum are preferentially repaired in the active gene compared to the inactive regions and to the inactive c-fos oncogene. Also, nitrogen mustard and methylnitrosurea damage is preferentially repaired whereas dimethylsulphate damage is not. NAAAF adducts do not appear to be preferentially repaired in this system. 32 refs.

  19. Identification of a new restriction endonuclease R.NciII, from Neisseria cinerea.

    PubMed

    Piekarowicz, A

    1994-01-01

    Site-specific restriction endonuclease R. Nci II has been purified from Neisseria cinerea strain 32615. The enzyme recognizes the sequence 5' GATC 3' and its activity is inhibited by the presence of methylated adenine residue within the recognition sequence.

  20. The intricate interplay between MSI and polymorphisms of DNA repair enzymes in gastric cancer H.pylori associated.

    PubMed

    Silva-Fernandes, Isabelle Joyce de Lima; Oliveira, Emanuele Silva de; Santos, Juliana Carvalho; Ribeiro, Marcelo Lima; Ferrasi, Adriana Camargo; Pardini, Maria Inês de Moura Campos; Burbano, Rommel Mário Rodriguez; Rabenhorst, Silvia Helena Barem

    2017-07-01

    Gastric cancer is the fourth most common type of cancer worldwide. Helicobacter pylori is a well-established risk factor and may cause injuries to genomic integrity through an inefficient DNA repair. This study aimed to examine the influence of polymorphisms in DNA repair enzymes using markers for microsatellite instability (MSI). Polymorphisms of DNA repair enzymes were detected by PCR-RFLP and MSI, by high resolution melt (HRM) analysis. Helicobacter pylori detection and genotyping were accomplished by PCR. MSI was observed in 47.5% of the cases and it was associated with the ERCC1 polymorphic allele, whereas MSI-H was associated with the XRCC3 heterozygous genotype. MSI was more frequent in intestinal gastric cancer (IGC), where it was associated with ERCC1 or RAD51 polymorphic alleles. Also, MSI-H was associated with the XRCC3 heterozygous. In diffuse gastric cancer (DGC), almost all of MGMT polymorphic genotype carriers showed MSI. Helicobacter pylori was positive in 94% of the cases and the most virulent strains were associated with MSI, mainly MSI-H. When the subtypes were considered, these associations were found only in the IGC and associated with more virulent strains. Among the cases with microsatellite instability, IGC showed a correlation between the XPD wild-type and the ERCC1 polymorphic allele, and all of them were infected by the most virulent strains. On the other hand, in DGC, the XPD polymorphic allele was correlated with the XRCC3 wild-type with no prevalence of H.pylori virulence. Our data demonstrated that polymorphisms in repair enzymes can interfere with the efficiency of the repair process, but it differs depending on the histological subtype and H.pylori involvement. Besides nucleotide excision repair, base excision repair and mismatch repair pathway, the homologous recombination are also involved. © The Author 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For

  1. Uracil-DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes

    PubMed Central

    Schormann, N; Ricciardi, R; Chattopadhyay, D

    2014-01-01

    Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented. PMID:25252105

  2. Chlorella virus pyrimidine dimer glycosylase and Escherichia coli endonucleases IV and V have incision activity on 2,2,4-triamino-5(2H)-oxazolone.

    PubMed

    Kino, Katsuhito; Suzuki, Masayo; Morikawa, Masayuki; Kobayashi, Takanobu; Iwai, Shigenori; Miyazawa, Hiroshi

    2015-01-01

    2,2,4-Triamino-5(2H)-oxazolone (Oz) in a DNA strand is an oxidation product of guanine and 8-oxo-7, 8-dihydroguanine, and such a lesion can cause G-to-C transversions. Previously, Fpg/Nei and Nth were shown to have incision activity on Oz. We investigated the activities of chlorella virus pyrimidine dimer glycosylase (cvPDG) and Escherichia coli endonucleases IV (Nfo) and V (Nfi) on Oz. Although the three enzymes have different repair mechanisms from Fpg/Nei and Nth, they still had incision activity on Oz. Given the incision activities of cvPDG, Nfo and Nfi on Oz in addition to Fpg/Nei and Nth, Oz is DNA damage that can be repaired by diverse enzymes.

  3. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III.

    PubMed

    Khanam, Taran; Shukla, Ankita; Rai, Niyati; Ramachandran, Ravishankar

    2015-05-01

    The Mycobacterium tuberculosis AP-endonuclease/3'-5' exodeoxyribonuclease (MtbXthA) is an important player in DNA base excision repair (BER). We demonstrate that the enzyme has robust apurinic/apyrimidinic (AP) endonuclease activity, 3'-5' exonuclease, phosphatase, and phosphodiesterase activities. The enzyme functions as an AP-endonuclease at high ionic environments, while the 3'-5'-exonuclease activity is predominant at low ionic environments. Our molecular modelling and mutational experiments show that E57 and D251 are critical for catalysis. Although nicked DNA and gapped DNA are fair substrates of MtbXthA, the gap-size did not affect the excision activity and furthermore, a substrate with a recessed 3'-end is preferred. To understand the determinants of abasic-site recognition, we examined the possible roles of (i) the base opposite the abasic site, (ii) the abasic ribose ring itself, (iii) local distortions in the AP-site, and (iv) conserved residues located near the active site. Our experiments demonstrate that the first three determinants do not play a role in MtbXthA, and in fact the enzyme exhibits robust endonucleolytic activity against single-stranded AP DNA also. Regarding the fourth determinant, it is known that the catalytic-site of AP endonucleases is surrounded by conserved aromatic residues and intriguingly, the exact residues that are directly involved in abasic site recognition vary with the individual proteins. We therefore, used a combination of mutational analysis, kinetic assays, and structure-based modelling, to identify that Y237, supported by Y137, mediates the formation of the MtbXthA-AP-DNA complex and AP-site incision.

  4. Current advances in DNA repair: regulation of enzymes and pathways involved in maintaining genomic stability.

    PubMed

    Neher, Tracy M; Turchi, John J

    2011-06-15

    Novel discoveries in the DNA repair field have lead to continuous and rapid advancement of our understanding of not only DNA repair but also DNA replication and recombination. Research in the field transcends numerous areas of biology, biochemistry, physiology, and medicine, making significant connections across these broad areas of study. From early studies conducted in bacterial systems to current analyses in eukaryotic systems and human disease, the innovative research into the mechanisms of repair machines and the consequences of ineffective DNA repair has impacted a wide scientific community. This Forum contains a select mix of primary research articles in addition to a number of timely reviews covering a subset of DNA repair pathways where recent advances and novel discoveries are improving our understanding of DNA repair, its regulation, and implications to human disease.

  5. Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA Repair Enzyme

    PubMed Central

    Fu, Qiong; Chow, Julia; Bernstein, Kara A.; Makharashvili, Nodar; Arora, Sucheta; Lee, Chia-Fang; Person, Maria D.; Rothstein, Rodney

    2014-01-01

    In the DNA damage response, many repair and signaling molecules mobilize rapidly at the sites of DNA double-strand breaks. This network of immediate responses is regulated at the level of posttranslational modifications that control the activation of DNA processing enzymes, protein kinases, and scaffold proteins to coordinate DNA repair and checkpoint signaling. Here we investigated the DNA damage-induced oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DNA double-strand break repair. Sae2 is a target of multiple phosphorylation events, which we identified and characterized in vivo in the budding yeast Saccharomyces cerevisiae. Both cell cycle-dependent and DNA damage-dependent phosphorylation sites in Sae2 are important for the survival of DNA damage, and the cell cycle-regulated modifications are required to prime the damage-dependent events. We found that Sae2 exists in the form of inactive oligomers that are transiently released into smaller active units by this series of phosphorylations. DNA damage also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring that active Sae2 is present only transiently in cells. Overall, this analysis provides evidence for a novel type of protein regulation where the activity of an enzyme is controlled dynamically by posttranslational modifications that regulate its solubility and oligomeric state. PMID:24344201

  6. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  7. Purification of Rad1 protein from Saccharomyces cerevisiae and further characterization of the Rad1/Rad10 endonuclease complex.

    PubMed

    Tomkinson, A E; Bardwell, A J; Tappe, N; Ramos, W; Friedberg, E C

    1994-05-03

    The yeast recombination and repair proteins Rad1 and Rad10 associate with a 1:1 stoichiometry to form a stable complex with a relative molecular mass of 190 kDa. This complex, which has previously been shown to degrade single-stranded DNA endonucleolytically, also cleaves supercoiled duplex DNA molecules. In this reaction, supercoiled (form I) molecules are rapidly converted to nicked, relaxed (form II) molecules, presumably as a result of nicking at transient single-stranded regions in the supercoiled DNA. At high enzyme concentrations, there is a slow conversion of the form II molecules to linear (form III) molecules. The Rad1/Rad10 endonuclease does not preferentially cleave UV-irradiated DNA and has no detectable exonuclease activity. The nuclease activity of the Rad1/Rad10 complex is consistent with the predicted roles of the RAD1 and RAD10 genes of Saccharomyces cerevisiae in both the incision events of nucleotide excision repair and the removal of nonhomologous 3' single strands during intrachromosomal recombination between repeated sequences. In these pathways, the specificity and reactivity of the Rad1/Rad10 endonuclease will probably be modulated by further protein-protein interactions.

  8. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells.

    PubMed

    Das, Deepika Sharma; Das, Abhishek; Ray, Arghya; Song, Yan; Samur, Mehmet Kemal; Munshi, Nikhil C; Chauhan, Dharminder; Anderson, Kenneth C

    2017-08-01

    Purpose: The ubiquitin proteasome pathway is a validated therapeutic target in multiple myeloma. Deubiquitylating enzyme USP1 participates in DNA damage response and cellular differentiation pathways. To date, the role of USP1 in multiple myeloma biology is not defined. In the present study, we investigated the functional significance of USP1 in multiple myeloma using genetic and biochemical approaches.Experimental Design: To investigate the role of USP1 in myeloma, we utilized USP1 inhibitor SJB3-019A (SJB) for studies in myeloma cell lines and patient multiple myeloma cells.Results: USP1-siRNA knockdown decreases multiple myeloma cell viability. USP1 inhibitor SJB selectively blocks USP1 enzymatic activity without blocking other DUBs. SJB also decreases the viability of multiple myeloma cell lines and patient tumor cells, inhibits bone marrow plasmacytoid dendritic cell-induced multiple myeloma cell growth, and overcomes bortezomib resistance. SJB triggers apoptosis in multiple myeloma cells via activation of caspase-3, caspase-8, and caspase-9. Moreover, SJB degrades USP1 and downstream inhibitor of DNA-binding proteins as well as inhibits DNA repair via blockade of Fanconi anemia pathway and homologous recombination. SJB also downregulates multiple myeloma stem cell renewal/survival-associated proteins Notch-1, Notch-2, SOX-4, and SOX-2. Moreover, SJB induced generation of more mature and differentiated plasma cells. Combination of SJB and HDACi ACY-1215, bortezomib, lenalidomide, or pomalidomide triggers synergistic cytotoxicity.Conclusions: Our preclinical studies provide the framework for clinical evaluation of USP1 inhibitors, alone or in combination, as a potential novel multiple myeloma therapy. Clin Cancer Res; 23(15); 4280-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. Redox Regulation of DNA Repair: Implications for Human Health and Cancer Therapeutic Development

    PubMed Central

    Luo, Meihua; He, Hongzhen; Kelley, Mark R.

    2010-01-01

    Abstract Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair. Antioxid. Redox Signal. 12, 1247–1269. PMID:19764832

  10. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1

    PubMed Central

    Miroshnikova, A. D.; Kuznetsova, A. A.; Kuznetsov, N. A.; Fedorova, O. S.

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5’-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1’ hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of “crystalline” water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5’-phosphate-2’-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step. PMID:27099790

  11. Distinct facilitated diffusion mechanisms by E. coli Type II restriction endonucleases.

    PubMed

    Pollak, Adam J; Chin, Aaron T; Reich, Norbert O

    2014-11-18

    The passive search by proteins for particular DNA sequences involving nonspecific DNA is essential for gene regulation, DNA repair, phage defense, and diverse epigenetic processes. Distinct mechanisms contribute to these searches, and it remains unresolved as to which mechanism or blend of mechanisms best suits a particular protein and, more importantly, its biological role. To address this, we compare the translocation properties of two well-studied bacterial restriction endonucleases (ENases), EcoRI and EcoRV. These dimeric, magnesium-dependent enzymes hydrolyze related sites (EcoRI ENase, 5'-GAATTC-3'; EcoRV ENase, 5'-GATATC-3'), leaving overhangs and blunt DNA segments, respectively. Here, we demonstrate that the extensive sliding by EcoRI ENase, involving sliding up to ∼600 bp prior to dissociating from the DNA, contrasts with a larger reliance on hopping mechanism(s) by EcoRV ENase. The mechanism displayed by EcoRI ENase results in a highly thorough search of DNA, whereas the EcoRV ENase mechanism results in an extended, yet less rigorous, interrogation of DNA sequence space. We describe how these mechanistic distinctions are complemented by other aspects of these endonucleases, such as the 10-fold higher in vivo concentrations of EcoRI ENase compared to that of EcoRV ENase. Further, we hypothesize that the highly diverse enzyme arsenal that bacteria employ against foreign DNA involves seemingly similar enzymes that rely on distinct but complementary search mechanisms. Our comparative approach reveals how different proteins utilize distinct site-locating strategies.

  12. Human AP Endonuclease I Stimulates Multiple-Turnover Base Excision by Alkyladenine DNA Glycosylase†

    PubMed Central

    Baldwin, Michael R.; O’Brien, Patrick J.

    2009-01-01

    Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of damaged purine bases from DNA, including hypoxanthine that is formed by the oxidative deamination of adenine. We used steady state, pre-steady state, and single-turnover kinetic assays to show that the multiple-turnover excision of hypoxanthine in vitro is limited by release of the abasic DNA product. This suggests the possibility that the product release step is regulated in vivo by interactions with other base excision repair (BER) proteins. Such coordination of BER activities would protect the abasic DNA repair intermediate and ensure its correct processing. AP endonuclease 1 (APE1) is the predominant enzyme for processing abasic DNA sites in human cells. Therefore, we have investigated the functional effects of added APE1 on the base excision activity of AAG. We find that APE1 stimulates the multiple-turnover excision of hypoxanthine by AAG, but has no effect on single-turnover excision. Since the amino terminus of AAG has been implicated in other protein-protein interactions we also characterize the deletion mutant lacking the first 79 amino acids. We find that APE1 fully stimulates the multiple-turnover glycosylase activity of this mutant, demonstrating that the amino terminus of AAG is not strictly required for this functional interaction. These results are consistent with a model whereby APE1 displaces AAG from the abasic site, thereby coordinating the first two steps of the base excision repair pathway. PMID:19449863

  13. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease

    PubMed Central

    Georg, Jens; Schomacher, Lars; Chong, James P. J.; Majerník, Alan I.; Raabe, Monika; Urlaub, Henning; Müller, Sabine; Ciirdaeva, Elena; Kramer, Wilfried; Fritz, Hans-Joachim

    2006-01-01

    The genome of Methanothermobacter thermautotrophicus, as a hitherto unique case, is apparently devoid of genes coding for general uracil DNA glycosylases, the universal mediators of base excision repair following hydrolytic deamination of DNA cytosine residues. We have now identified protein Mth212, a member of the ExoIII family of nucleases, as a possible initiator of DNA uracil repair in this organism. This enzyme, in addition to bearing all the enzymological hallmarks of an ExoIII homologue, is a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5′-side of a 2′-d-uridine residue, irrespective of the nature of the opposing nucleotide. This type of activity has not been described before; it is absent from the ExoIII homologues of Escherichia coli, Homo sapiens and Methanosarcina mazei, all of which are equipped with uracil DNA repair glycosylases. The U-endo activity of Mth212 is served by the same catalytic center as its AP-endo activity. PMID:17012282

  14. Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically

    PubMed Central

    Kaus-Drobek, Magdalena; Czapinska, Honorata; Sokołowska, Monika; Tamulaitis, Gintautas; Szczepanowski, Roman H.; Urbanke, Claus; Bochtler, Matthias

    2007-01-01

    Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, ‘/’ designates the cleavage site) and generates products with single nucleotide 5′-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 Å resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break. PMID:17344322

  15. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes.

    PubMed

    Ward, Thomas A; McHugh, Peter J; Durant, Stephen T

    2017-01-01

    Flap endonuclease 1 (FEN1) is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI) as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T) microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.

  16. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer.

    PubMed

    Emanuele, Enzo; Spencer, James M; Braun, Martin

    2014-03-01

    The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.

  17. Dietary folate suppresses DMH-induced colon carcinogenesis in a rat model and affects DMH-induced expression of four DNA repair enzymes.

    PubMed

    Sadik, Nermin A H; Shaker, Olfat G

    2012-01-01

    This study investigated the potential role of folate in the dimethylhydrazine (DMH) colon cancer model in male Wistar rats. For induction of colon cancer, group 1 rats were injected subcutaneously with 30 mg DMH/kg body weight weekly for 30 wk. Group 2 received DMH vehicle. Group 3 rats received DMH as in Group 1 but their diet was supplemented with 8 mg folate/kg diet. Group 4 was fed diet supplemented with 8 mg folate/kg diet. Upregulation of DNA damage repair genes Apurinic/apyrimidinic endonuclease 1, X-ray repair complementing defective repair in Chinese hamster cells 5, 8-oxoguanine-DNA glycosylase, and proliferating cell nuclear antigen, associated with a reduction of folic acid level was observed in colons of DMH group. Reductions of these gene upregulations and a significant increase of colonic folic acid level occurred in the DMH group supplemented with folic acid and this group also had significant inhibition of tumor incidence, normal survival rate and histologically nearly normal colonic architecture. It can be concluded that folate supplementation exerts a potent protective effect on rat colon carcinogenesis via significant modulation of DNA repair, providing a mechanism by which it plays a role in the etiology of human cancer.

  18. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein.

    PubMed

    Senejani, Alireza G; Gogarten, J Peter

    2007-02-16

    Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn(2+) and not Mg(2+) metal cations for activity.

  19. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein

    PubMed Central

    Senejani, Alireza G.; Gogarten, J. Peter

    2007-01-01

    Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity. PMID:17389927

  20. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.

    PubMed

    Zhang, Xing-Hai; Weissbach, Herbert

    2008-08-01

    The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.

  1. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG.

    PubMed

    Leipold, M D; Muller, J G; Burrows, C J; David, S S

    2000-12-05

    An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.

  2. Construction of a Full-Atomic Mechanistic Model of Human Apurinic/Apyrimidinic Endonuclease APE1 for Virtual Screening of Novel Inhibitors.

    PubMed

    Khaliullin, I G; Nilov, D K; Shapovalova, I V; Svedas, V K

    2012-04-01

    A full-atomic molecular model of human apurinic/apyrimidinic endonuclease APE1, an important enzyme in the DNA repair system, has been constructed. The research consisted of hybrid quantum mechanics/molecular mechanics modeling of the enzyme-substrate interactions, as well as calculations of the ionization states of the amino acid residues of the active site of the enzyme. The choice of the APE1 mechanism with an Asp210 residue as a proton acceptor was validated by means of a generalization of modeling and experimental data. Interactions were revealed in the active site that are of greatest significance for binding the substrate and potential APE1 inhibitors (potential co-drugs of interest in the chemo- and radiotherapy of oncological diseases).

  3. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy.

    PubMed

    De Silva Feelixge, Harshana S; Stone, Daniel; Pietz, Harlan L; Roychoudhury, Pavitra; Greninger, Alex L; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2016-02-01

    Incurable chronic viral infections are a major cause of morbidity and mortality worldwide. One potential approach to cure persistent viral infections is via the use of targeted endonucleases. Nevertheless, a potential concern for endonuclease-based antiviral therapies is the emergence of treatment resistance. Here we detect for the first time an endonuclease-resistant infectious virus that is found with high frequency after antiviral endonuclease therapy. While testing the activity of HIV pol-specific zinc finger nucleases (ZFNs) alone or in combination with three prime repair exonuclease 2 (Trex2), we identified a treatment-resistant and infectious mutant virus that was derived from a ZFN-mediated disruption of reverse transcriptase (RT). Although gene disruption of HIV protease, RT and integrase could inhibit viral replication, a chance single amino acid insertion within the thumb domain of RT produced a virus that could actively replicate. The endonuclease-resistant virus could replicate in primary CD4(+) T cells, but remained susceptible to treatment with antiretroviral RT inhibitors. When secondary ZFN-derived mutations were introduced into the mutant virus's RT or integrase domains, replication could be abolished. Our observations suggest that caution should be exercised during endonuclease-based antiviral therapies; however, combination endonuclease therapies may prevent the emergence of resistance.

  4. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease

    PubMed Central

    2012-01-01

    Background A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed. Results We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site. Conclusion These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes. PMID:23148662

  5. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks.

    PubMed

    Komori, Kayoko; Hidaka, Masumi; Horiuchi, Takashi; Fujikane, Ryosuke; Shinagawa, Hideo; Ishino, Yoshizumi

    2004-12-17

    Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.

  6. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  7. Peculiarities of the interaction of the restriction endonuclease BspD6I with DNA containing its recognition site.

    PubMed

    Abrosimova, Liudmila A; Kubareva, Elena A; Migur, Anzhela Yu; Gavshina, Aleksandra V; Ryazanova, Aleksandra Yu; Norkin, Maxim V; Perevyazova, Tatiana A; Wende, Wolfgang; Hianik, Tibor; Zheleznaya, Liudmila A; Oretskaya, Tatiana S

    2016-09-01

    Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.BspD6I) from Bacillus species strain D6, which consists of the large subunit - nicking endonuclease BspD6I (Nt.BspD6I), and the small subunit (ss.BspD6I). Nt.BspD6I can function independently. Similar enzymes are now widely used in numerous biotechnological applications. The aim of this study was to investigate the fundamental properties of two subunits of R.BspD6I and their interdependence in the course of R.BspD6I activity. The binding and hydrolysis of DNA duplexes by R.BspD6I are primary analyzed by gel electrophoresis. To elucidate the difference between Nt.BspD6I interaction with the substrate and product of hydrolysis, the thickness shear mode acoustic method is used. The thermodynamic and kinetic parameters of the Nt.BspD6I interaction with DNA are determined. For the first time we demonstrated that Nt.BspD6I bends the DNA during complex formation. Nt.BspD6I is able to form complexes with the product nicked in the top strand and ss.BspD6I cleaves the bottom strand of the DNA consecutively. Furthermore, the influence of dA methylation in the R.BspD6I recognition site on ss.BspD6I activity is analyzed. The obtained results provide evidence that Nt.BspD6I coordinates the activity of R.BspD6I by strictly coupling of the bottom strand cleavage by ss.BspD6I to the top strand cleavage. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative DNA damage and repair induced by misonidazole, CB 1954 and RSU 1069.

    PubMed

    Dale, L D; Widdick, D A; Edwards, D I; Biol, G I

    1989-04-01

    We have studied the ability of CB 1954, misonidazole, and RSU 1069 to induce biologically relevant DNA damage in single- and double-stranded phi X174 DNA under oxic, anoxic, and anoxic reductive conditions using a double transfection technique. In addition, the ability of the three drugs to induce the SOS repair response in E. coli under the same conditions was measured. Whereas the relative order of DNA damage was RSU 1069 greater than CB 1954 greater than misonidazole the order in inducing SOS repair was RSU 1069 greater than misonidazole greater than CB 1954. Drug-induced damage by RSU 1069 involves enhanced damage by endonuclease III suggesting drug-induced pyrimidine damage. There appears to be no correlation between drug-induced damage and the degree of SOS repair induction. Thus it appears that enzymes other than, or in addition to, those of the SOS repair system are involved in the repair of DNA damage induced by these drugs.

  9. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  10. Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes.

    PubMed

    Amundsen, Susan K; Spicer, Timothy; Karabulut, Ahmet C; Londoño, Luz Marina; Eberhart, Christina; Fernandez Vega, Virneliz; Bannister, Thomas D; Hodder, Peter; Smith, Gerald R

    2012-05-18

    The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.

  11. Small-molecule Inhibitors of Bacterial AddAB and RecBCD Helicase-nuclease DNA Repair Enzymes

    PubMed Central

    Amundsen, Susan K.; Spicer, Timothy; Karabulut, Ahmet C.; Londoño, Luz Marina; Eberhardt, Christina; Vega, Virneliz Fernandez; Bannister, Thomas D.; Hodder, Peter; Smith, Gerald R.

    2012-01-01

    The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1 – 50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1 – 50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals. PMID:22443934

  12. Structure of the C-Terminal Half of UvrC Reveals an RNase H Endonuclease Domain with an Argonaute-like Catalytic Triad

    SciTech Connect

    Karakas,E.; Truglio, J.; Croteau, D.; Rhau, B.; Wang, L.; Van Houten, B.; Kisker, C.

    2007-01-01

    Removal and repair of DNA damage by the nucleotide excision repair pathway requires two sequential incision reactions, which are achieved by the endonuclease UvrC in eubacteria. Here, we describe the crystal structure of the C-terminal half of UvrC, which contains the catalytic domain responsible for 5' incision and a helix-hairpin-helix-domain that is implicated in DNA binding. Surprisingly, the 5' catalytic domain shares structural homology with RNase H despite the lack of sequence homology and contains an uncommon DDH triad. The structure also reveals two highly conserved patches on the surface of the protein, which are not related to the active site. Mutations of residues in one of these patches led to the inability of the enzyme to bind DNA and severely compromised both incision reactions. Based on our results, we suggest a model of how UvrC forms a productive protein-DNA complex to excise the damage from DNA.

  13. Disruption of a Mitochondrial MutS DNA Repair Enzyme Homolog Confers Drug Resistance in the Parasite Toxoplasma gondii

    PubMed Central

    Garrison, Erin M.; Arrizabalaga, Gustavo

    2009-01-01

    SUMMARY MutS homologs (MSHs) are critical components of the eukaryotic mismatch repair machinery. In addition to repairing mismatched DNA, mismatch repair enzymes are known in higher eukaryotes to directly signal cell cycle arrest and apoptosis in response to DNA damaging agents. Accordingly, mammalian cells lacking certain MSHs are resistant to chemotherapeutic drugs. Interestingly, we have discovered that the disruption of TgMSH-1, an MSH in the pathogenic parasite, T. gondii, confers drug resistance. Through a genetic selection for T. gondii mutants resistant to the antiparasitic drug monensin, we have isolated a strain that is resistant not only to monensin but also to salinomycin and the alkylating agent, methylnitrosourea. We have shown that this phenotype is due to the disruption of TgMSH-1 as the multi-drug resistance phenotype is complemented by a wild-type copy of TgMSH-1 and is recapitulated by a directed disruption of this gene in a wild-type strain. We have also shown that, unlike previously described MSHs involved in signaling, TgMSH-1 localizes to the parasite mitochondrion. These results provide the first example of a mitochondrial MutS Homolog that is involved in drug sensitivity and implicate the induction of mitochondrial stress as a mode of action of the widely used drug, monensin. PMID:19291232

  14. How RecBCD Enzyme and Chi Promote DNA Break Repair and Recombination: a Molecular Biologist's View

    PubMed Central

    2012-01-01

    Summary: The repair of DNA double-strand breaks (DSBs) is essential for cell viability and important for homologous genetic recombination. In enteric bacteria such as Escherichia coli, the major pathway of DSB repair requires the RecBCD enzyme, a complex helicase-nuclease regulated by a simple unique DNA sequence called Chi. How Chi regulates RecBCD has been extensively studied by both genetics and biochemistry, and two contrasting mechanisms to generate a recombinogenic single-stranded DNA tail have been proposed: the nicking of one DNA strand at Chi versus the switching of degradation from one strand to the other at Chi. Which of these reactions occurs in cells has remained unproven because of the inability to detect intracellular DNA intermediates in bacterial recombination and DNA break repair. Here, I discuss evidence from a combination of genetics and biochemistry indicating that nicking at Chi is the intracellular (in vivo) reaction. This example illustrates the need for both types of analysis (i.e., molecular biology) to uncover the mechanism and control of complex processes in living cells. PMID:22688812

  15. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients.

  16. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance

    PubMed Central

    Li, Xue; Sipple, Jared; Pang, Qishen

    2012-01-01

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress–induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside. PMID:22427203

  17. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance.

    PubMed

    Li, Xue; Sipple, Jared; Pang, Qishen; Du, Wei

    2012-05-03

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide-induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress-induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.

  18. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells

    SciTech Connect

    Kantor, G.J.; Elking, C.F.

    1988-02-15

    The patterns (domain oriented versus a random location) and amounts of DNA excision repair, determined by standard density gradient techniques and sedimentation properties of partially repaired and UV-endonuclease-digested DNA in alkaline sucrose gradients, are reported for UV (254 nm)-irradiated nondividing xeroderma pigmentosum complementation group C or A (XP-C, XP-A) and normal cells. Repair synthesis in relatively UV-resistant XP-C (XP4RO) cells is domain oriented and limited (10% of normal values) while it is randomly located and not as limited in more sensitive XP-A (XP8LO) cells. Thus, greater UV resistance is associated with a very limited but domain-oriented pattern of repair. In XP-C cells, both total and domain-oriented repair syntheses, while limited, increase with UV dose and plateau at about 15-20 J/m2, as observed for normal cells. We suggest that repair in XP-C is limited at the lower UV doses (less than 15-20 J/m2) by substrate levels in specific chromatin domains and not by availability of essential enzymes for domain-oriented repair. In contrast, the XP-A strain XP8LO exhibits normal repair activities for doses up to 5 J/m2 and limited repair at higher doses, indicating that repair occurs through normal pathways that are limited by reduced availability of an essential enzyme.

  19. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  20. Staphylococcus aureus Sepsis and Mitochondrial Accrual of the 8-Oxoguanine DNA Glycosylase DNA Repair Enzyme in Mice

    PubMed Central

    Bartz, Raquel R.; Suliman, Hagir B.; Fu, Ping; Welty-Wolf, Karen; Carraway, Martha Sue; MacGarvey, Nancy Chou; Withers, Crystal M.; Sweeney, Timothy E.; Piantadosi, Claude A.

    2011-01-01

    Rationale: Damage to mitochondrial DNA (mtDNA) by the production of reactive oxygen species during inflammatory states, such as sepsis, is repaired by poorly understood mechanisms. Objectives: To test the hypothesis that the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), contributes to mtDNA repair in sepsis. Methods: Using a well-characterized mouse model of Staphylococcus aureus sepsis, we analyzed molecular markers for mitochondrial biogenesis and OGG1 translocation into liver mitochondria as well as OGG1 mRNA expression at 0, 24, 48, and 72 hours after infection. The effects of OGG1 RNA silencing on mtDNA content were determined in control, tumor necrosis factor-α, and peptidoglycan-exposed rat hepatoma cells. Based on in situ analysis of the OGG1 promoter region, chromatin immunoprecipitation assays were performed for nuclear respiratory factor (NRF)-1 and NRF-2α GA-binding protein (GABP) binding to the promoter of OGG1. Measurements and Main Results: Mice infected with 107 cfu S. aureus intraperitoneally demonstrated hepatic oxidative mtDNA damage and significantly lower hepatic mtDNA content as well as increased mitochondrial OGG1 protein and enzyme activity compared with control mice. The infection also caused increases in hepatic OGG1 transcript levels and NRF-1 and NRF-2α transcript and protein levels. A bioinformatics analysis of the Ogg1 gene locus identified several promoter sites containing NRF-1 and NRF-2α DNA binding motifs, and chromatin immunoprecipitation assays confirmed in situ binding of both transcription factors to the Ogg1 promoter within 24 hours of infection. Conclusions: These studies identify OGG1 as an early mitochondrial response protein during sepsis under regulation by the NRF-1 and NRF-2α transcription factors that regulate mitochondrial biogenesis. PMID:20732986

  1. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding

    SciTech Connect

    Naidu, M.; Naidu, M.; Agarwal, R.; Pena, L.A.; Cunha, L.; Mezei, M.; Shen, M.; Wilson, D.M.; Liu, Y.; Sanchez, Z.; Chaudhary, P.; Wilson, S.H.; Waring, M.J.

    2011-09-15

    Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC{sub 50} values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 {mu}M and 80 nM, respectively. The K{sub D} values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e

  2. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts

    SciTech Connect

    Roza, L.; Vermeulen, W.; Bergen Henegouwen, J.B.; Eker, A.P.; Jaspers, N.G.; Lohman, P.H.; Hoeijmakers, J.H. )

    1990-03-15

    UV-induced thymine dimers (10 J/m2 of UV-C) were assayed in normal human and xeroderma pigmentosum (XP) fibroblasts with a monoclonal antibody against these dimers and quantitative fluorescence microscopy. In repair-proficient cells dimer-specific immunofluorescence gradually decreased with time, reaching about 25% of the initial fluorescence after 27 h. Rapid disappearance of dimers was observed in cells which had been microinjected with yeast photoreactivating enzyme prior to UV irradiation. This photoreactivation (PHR) was light dependent and (virtually) complete within 15 min of PHR illumination. In general, PHR of dimers strongly reduces UV-induced unscheduled DNA synthesis (UDS). However, when PHR was applied immediately after UV irradiation, UDS remained unchanged initially; the decrease set in only after 30 min. When PHR was performed 2 h after UV exposure, UDS dropped without delay. An explanation for this difference is preferential removal of some type(s) of nondimer lesions, which is responsible for the PHR-resistant UDS immediately following UV irradiation. After the rapid removal of these photoproducts, the bulk of UDS is due to dimer repair. From the rapid effect of dimer removal by PHR on UDS it can be deduced that the excision of dimers up to the repair synthesis step takes considerably less than 30 min. Also in XP fibroblasts of various complementation groups the effect of PHR was investigated. The immunochemical dimer assay showed rapid PHR-dependent removal comparable to that in normal cells. However, the decrease of (residual) UDS due to PHR was absent (in XP-D) or much delayed (in XP-A and -E) compared to normal cells. This supports the idea that in these XP cells preferential repair of nondimer lesions does occur, but at a much lower rate.

  3. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  4. Arsenic is cytotoxic at micromolar concentration, but does not inhibit purified human DNA repair enzymes at less than millimolar concentrations

    SciTech Connect

    Su, Lin; Hu, Yu; Dunlop, B.

    1997-10-01

    Arsenic is a well-known human carcinogen, but not a mutagen. However it can act as a co-mutagen with UV and alkylating agents, and has been shown to inhibit DNA repair. The activities of several purified human enzymes involved in DNA repair have been tested in the presence of inorganic arsenite [As(III)] and arsenate [As(V)]. We have not found that both As(III) and As(V) stimulated the activity of DNA polymerase {beta} (pol {beta}), O{sup 6}methylguanine DNA methyltransferase (MGMT), and DNA ligase III. The activity of pol {beta} was increased up to 3.5-fold in the presence of 50 mM As (III), and 2-fold in the presence of 20 mM As(V). Inhibition of enzyme activity was only observed with concentrations of As(III) and As(V) higher than 100 mM. Terminal deoxynucleotidal transferase (TdT), an enzyme with homology to pol {beta}, is also stimulated 3-fold by 50 mM As(III). Unlike pol {beta} and TdT, MGMT was preferentially activated by millimolar As(V), rather than As(III). Similar concentrations of inorganic phosphate also increased the activity of MGMT. The activity of DNA ligase I was inhibited by 1 to 5 mM As(III). However, both DNA ligase I and DNA ligase III were significantly activated by As(V). In contrast to these results, human keratinocyte cells exhibit significant cytotoxicity when exposed to 10 {mu}M As(III) and 200 {mu}M AS(V). Cell survival was decreased by over 50% at these concentrations, as measured by neutral red uptake, LDH release, and MTT uptake. Interestingly, both As(III) and As(V) produced increased cell proliferation at submicromolar concentrations. These results suggest that arsenic compounds do not exert their toxic effects by direct inhibition of DNA repair enzymes, but by other mechanisms.

  5. Homing endonucleases from mobile group I introns: discovery to genome engineering

    PubMed Central

    2014-01-01

    Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity. PMID:24589358

  6. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  7. [Changes in DNA repair enzymes in rat ventroposterior nucleus of the thalamus after cerebral cortex infarction].

    PubMed

    He, Mei-Xia; Zeng, Jin-Sheng; Hua, Hai-Ying; Xing, Shi-Hui; Ba, Yun-Peng

    2010-10-01

    To investigate the damage within the ventroposterior nucleus (VPN) of the thalamus after focal cortical infarction and its mechanism, and explore the effect of ebselen on the oxidative damage after cerebral cortex infarction in hypertensive rats. Middle cerebral artery occlusion (MCAO) was induced in stroke-prone renovascular hypertensive rats (RHRSP), and the rats were divided into four groups by table of random number: sham operation group, model group, vehicle group and ebselen group, each group consisted of 8 rats. In animals subjected to sham surgery the middle cerebral artery was exposed only. Ebselen (5 ml/kg) or vehicle (a mixed solvent consisting of 0.5% carboxymethyl cellulose and 0.02% Tween 20, 5 ml/kg) was given by gastric gavage starting 24 hours after cerebral cortical infarction. Two weeks after the MCAO, the rats were sacrificed, and VPN from each group was sectioned and stained with hematoxylin-eosin (HE), and apurinic/apyrimidinic endonuclease (APE) and Escherichia coli MutY DNA glycosylase (MYH) were determined by immunohistochemistry. HE staining showed that ebselen ameliorated the VPN damage induced by ischemia. Immunohistochemical imaging analysis revealed a distinct nuclear staining of APE and nuclear and cytoplasm distribution of MYH in the entire region of the VPN. Compared with sham operation group, the number of APE and MYH positive cells decreased in model group and vehicle group (APE: 57.0±14.7, 49.4±12.5 vs. 101.0±13.6, MYH: 15.0±4.7, 10.4±2.5 vs. 56.0±13.2, all P<0.05). Compared with model group and vehicle group, the number of APE and MYH positive cells increased significantly in ebselen group (APE: 72.2±7.6 vs. 57.0±14.7, 49.4±12.5, MYH: 32.2±7.6 vs. 15.0±4.7, 10.4±2.5, all P<0.05); the difference of the number of APE and MYH positive cells between model group and vehicle group showed no statistical significance. After 2 weeks of MCAO, there is a marked decrease of APE and MYH in VPN; ebselen can obviously increase the

  8. Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III.

    PubMed

    Moe, Elin; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2015-02-21

    Surface enhanced vibrational spectro-electrochemistry of endonuclease III provides direct evidence that the [4Fe-4S] cluster is responsible for the enzyme redox activity, and that this process is not exclusively DNA-mediated, as currently proposed. We report the first surface enhanced resonance Raman spectrum of a [4Fe-4S](2+) cluster containing enzyme.

  9. Modulation of action of wheat seedling endonucleases WEN1 and WEN2 by histones.

    PubMed

    Fedoreyeva, L I; Smirnova, T A; Kolomijtseva, G Ya; Vanyushin, B F

    2013-05-01

    Wheat core histones and various subfractions of histone H1 modulate differently the action of endonucleases WEN1 and WEN2 from wheat seedlings. The character of this modulation depends on the nature of the histone and the methylation status of the substrate DNA. The modulation of enzyme action occurs at different stages of processive DNA hydrolysis and is accompanied by changes in the site specificity of the enzyme action. It seems that endonuclease WEN1 prefers to bind with protein-free DNA stretches in histone H1-DNA complex. The endonuclease WEN1 does not compete with histone H1/6 for DNA binding sites, but it does compete with histone H1/1, probably for binding with methylated sites of DNA. Unlike histone H1, the core histone H2b binds with endonuclease WEN1 and significantly increases its action. This is associated with changes in the site specificity of the enzyme action that is manifested by a significant increase in the amount of low molecular weight oligonucleotides and mononucleotides produced as a result of hydrolysis of DNA fragments with 120-140-bp length. The WEN2 endonuclease binds with histone-DNA complexes only through histones. The action of WEN2 is increased or decreased depending on the nature of the histone. Histone H1/1 stimulated the exonuclease activity of WEN2. It is supposed that endonucleases WEN1 and WEN2, in addition to the catalytic domain, should have a regulatory domain that is involved in binding of histones. As histone H1 is mainly located in the linker chromatin areas, it is suggested that WEN2 should attack DNA just in the chromatin linker zones. As differentiated from WEN2, DNA hydrolysis with endonuclease WEN1 is increased in the presence of core histones and, in particular, of H2b. Endonuclease WEN1 initially attacks different DNA sites in chromatin than WEN2. Endonuclease WEN2 activity can be increased or diminished depending on presence of histone H1 subfractions. It seems that just different fractions of the histone H1 are

  10. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3' RNA phosphatase and 3' exoribonuclease activities.

    PubMed

    Chohan, Manbir; Mackedenski, Sebastian; Li, Wai-Ming; Lee, Chow H

    2015-01-30

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant mammalian enzyme in DNA base excision repair pathway that cleaves the DNA backbone immediately 5' to abasic sites. In addition to its abasic endonuclease activity, APE1 has 3' phosphatase and 3'-5' exonuclease activities against DNA. We recently identified APE1 as an endoribonuclease that preferentially cleaves at UA, UG, and CA sites in single-stranded regions of RNAs and can regulate c-myc mRNA level and half-life in cells. APE1 can also endonucleolytically cleave abasic single-stranded RNA. Here, we show for the first time that the human APE1 has 3' RNA phosphatase and 3' exoribonuclease activities. Using three distinct RNA substrates, we show that APE1, but not RNase A, can remove the phosphoryl group from the 3' end of RNA decay products. Studies using various site-directed APE1 mutant proteins (H309N, H309S, D283N, N68A, D210N, Y171F, D308A, F266A, and D70A) suggest that the 3' RNA phosphatase activity shares the same active center as its other known nuclease activities. A number of APE1 variants previously identified in the human population, including the most common D148E variant, have greater than 80% reduction in the 3' RNA phosphatase activity. APE1 can remove a ribonucleotide from the 3' overhang of RNA decay product, but its 3'-5' exoribonuclease activity against unstructured poly(A), poly(C), and poly(U) RNAs is relatively weak. This study further underscores the significance of understanding the role of APE1 in RNA metabolism in vivo.

  11. Three structure-selective endonucleases are essential in the absence of BLM helicase in Drosophila.

    PubMed

    Andersen, Sabrina L; Kuo, H Kenny; Savukoski, Daniel; Brodsky, Michael H; Sekelsky, Jeff

    2011-10-01

    DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81-EME1/Mms4, GEN1/Yen1, and SLX4-SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81-Mms4 or Slx4-Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81-Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81-MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.

  12. Processive nicking activity of T4 endonuclease V on UV-irradiated chromatin

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1986-05-01

    T4 endonuclease V initiates the excision repair of pyrimidine dimers in UV-irradiated T4 infected E. coli cells. The pyrimidine dimer specific nicking activity of T4 endonuclease V functions by a processive scanning on UV-irradiated DNA. Previously it has been demonstrated that introduction of endonuclease V into repair-deficient human cells causes a restoration of UV survival in these cells. This demonstrates that endonuclease V is competent to incise mammalian DNA at the site of pyrimidine dimers. In order to assess the ability of endonuclease V to act processively on DNA associated as chromatin, minichromosomes were prepared for use as a substrate. Form I DNA was reconstituted with H3, H4 +/- H1 histones by sequential dialysis steps from 2.0 M NaCl to 50 mM NaCl. Time course reactions were performed with minichromosomes containing 10 and 25 dimers per molecule. In each case the rate of disappearance of form I DNA which was associated as chromatin was decreased relative to that of naked form I DNA. Concurrent with that observation, the rate and extent of appearance of form III DNA was increased with the DNA in minichromosomes relative to naked DNA. This is diagnostic of an enhancement of processivity. The inclusion of H1 in the minichromosomes resulted in a slight additional increase in processivity relative to minichromosomes consisting only of H3 and H4.

  13. Word-processor macro for restriction endonuclease analysis.

    PubMed

    Cabrera León, N

    1999-12-01

    This paper describes a Microsoft Word 97 macro designed for restriction endonuclease analysis. Selected DNA fragments in the active Word document can be analyzed through a dynamic dialog box that formats the enzyme restriction lists for further analysis. The results can be obtained in a new Word document with the name of the enzymes, number of cuts and positions. This macro has several advantages: the results can be printed in a format suitable for record keeping, no additional programs are required and it is simple to use.

  14. A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus.

    PubMed

    Shiraishi, Miyako; Ishino, Sonoko; Cann, Isaac; Ishino, Yoshizumi

    2017-05-01

    DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.

  15. Loss of expression of DNA repair enzyme MGMT in oral leukoplakia and early oral squamous cell carcinoma. A prognostic tool?

    PubMed

    Rodríguez, María J; Acha, Amelia; Ruesga, María T; Rodríguez, Carlos; Rivera, José M; Aguirre, José M

    2007-01-08

    MGMT is a specific DNA repair enzyme that removes alkylating lesions and therefore plays an important role in maintaining normal cell physiology and genomic stability. Loss of expression of MGMT is associated with increased carcinogenic risk and sensitivity to methylating agents in different types of tumours. The expression of MGMT was immunohistochemically assessed in 12 normal oral mucosa, 38 oral leukoplakias and 33 early oral squamous cell carcinomas. The results were correlated with clinicopathological data. We found a significant loss of MGMT protein expression from leukoplakia when compared with early squamous cell carcinoma. We also observed a statistically significant relationship between smoking and the loss of MGMT protein expression. Loss of MGMT expression could be considered an early event in oral carcinogenesis with possible prognostic implications.

  16. Lesion Recognition and Cleavage by Endonuclease V

    PubMed Central

    Lin, Jun; Gao, Honghai; Schallhorn, Kathryn A.; Harris, Rebecca M.; Cao, Weiguo; Ke, Pu Chun

    2008-01-01

    Endonuclease V (endo V) recognizes and cleaves deoxyinosine in deaminated DNA. These enzymatic activities are precursors of DNA repair and are fueled by metal ions such as Ca2+ and Mg2+, with the former being associated with protein binding and the latter with DNA cleavage. Using the technique of fluorescence resonance energy transfer (FRET) we determined the single-molecule kinetics of endo V in a catalytic cycle using a substrate of deoxyinosine-containing single-stranded DNA (ssDNA). The ssDNA was labeled with TAMRA, a fluorescence donor, while the endo V was labeled with Cy5, a fluorescence acceptor. The time lapses of FRET, resulting from the sequential association, recognition, and dissociation of the deoxyinosine by the endo V, were determined at 5.9 s, 14.5 s, and 9.1 s, respectively, in the presence of Mg2+. In contrast, the process of deoxyinosine recognition appeared little affected by the metal type. The prolonged association and dissociation events in the presence of the Ca2+-Mg2+ combination, as compared to that of Mg2+ alone, support the hypothesis that endo V has two metal binding sites to regulate its enzymatic activities. PMID:17521169

  17. Using Shifts in Amino Acid Frequency and Substitution Rate to Identify Latent Structural Characters in Base-Excision Repair Enzymes

    PubMed Central

    Barrantes-Reynolds, Ramiro; Wallace, Susan S.; Bond, Jeffrey P.

    2011-01-01

    Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution. PMID:21998646

  18. Mitochondrial base excision repair assays

    PubMed Central

    Maynard, Scott; de Souza-Pinto, Nadja C.; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLγ in mitochondria), and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques, as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability. PMID:20188838

  19. A novel exocytoplasmic endonuclease from Streptomyces antibioticus.

    PubMed Central

    Cal, S; Aparicio, J F; de los Reyes-Gavilan, C G; Nicieza, R G; Sanchez, J

    1995-01-01

    A new exocytoplasmic, nutritionally controlled endodeoxyribonuclease (EC 3.1.21.-) was purified to homogeneity from Streptomyces antibioticus. The enzyme showed an apparent molecular mass of 29 kDa (being active in the monomeric form) and a pI of approximately 7.8. The nuclease hydrolysed endonucleolytically double-stranded circular and linear DNA. The enzyme makes nicks in one strand of the DNA in G-rich regions, leaving either 5' or 3' short, single-stranded overhangs with 3'-hydroxy and 5'-phosphate termini. Breaks in the DNA occur when two nicks in opposite strands are close together. The enzyme had an optimum pH of 7.5 and an absolute requirement for bivalent cations and > or = 100 mM NaCl in the reaction buffer. Activity was greatly diminished in the presence of phosphate, Hg2+ or iodoacetate and was stimulated by dimethyl sulphoxide. Single-stranded DNA was a much poorer substrate than double-stranded DNA. The nuclease hydrolyses sequences of three or preferably more (dG).(dC) tracts in the DNA. The initial specificity shifts to other sequences (including sequences shorter than those initially hydrolysed) during the course of the reaction, giving the changing pattern of bands observed in agarose gels. 5-Methylcytosine-hemimethylated DNA is not hydrolysed by the nuclease. The properties of this novel enzyme suggest a relationship with class II restriction endonucleases and also with some eukaryotic nucleases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7864833

  20. Expression of the DNA repair enzyme, N-methylpurine-DNA glycosylase (MPG) in astrocytic tumors.

    PubMed

    Kim, Nam Keun; Ahn, Jung Yong; Song, Jihwan; Kim, Jin Kyeoung; Han, Jin Hee; An, Hee Jung; Chung, Hyung Min; Joo, Jin Yang; Choi, Joong Uhn; Lee, Kyu Sung; Roy, Rabindra; Oh, Doyeun

    2003-01-01

    DNA is continuously damaged due to exposure to alkylating compounds or oxygen free radicals generated during normal cellular metabolism as well as to environmental mutagens. Several studies have shown that N-methylpurine-DNA-glycosylase (MPG) mRNA levels were lower in adult brain than in other tissues. Terminally differentiated and nonproliferating cells have a lower DNA repair capacity than proliferating cells from various organs, embryo, ovary and testis. If the DNA repair are not efficient, the damaged DNA may lead to tumorigenesis or cell death. This study was designed to investigate the association of tumorigenesis with MPG in astrocytic tumors. MPG mRNA expression and localization in astrocytic tumors and tumor-adjacent brain tissues was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and RNA in situ hybridization. The expression and intracellular localization of MPG protein was determined by immunohistochemistry. MPG mRNA expression in RT-PCR was slightly higher in astrocytic tumor tissues than in brain tissues adjacent to tumor and in astrocytic tumor tissues, regardless of the tumor grades. MPG protein localization in immunohistochemical study was detected only in the nucleus of all tumor tissues. Interestingly, in brain tissues adjacent to tumor, immunohistochemical staining for MPG was not observed either in the nucleus or the cytoplasm. However, we could not detect MPG protein in the brain tissues adjacent to the tumor although MPG mRNA was detected in the tissues. These results suggest an MPG's role in human astrocytic tumors and raise the possibility that the altered MPG expression and intracellular localization could be associated with astrocytic tumorigenesis.

  1. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification*

    PubMed Central

    Molina, Rafael; Redondo, Pilar; López-Méndez, Blanca; Villate, Maider; Merino, Nekane; Blanco, Francisco J.; Valton, Julien; Grizot, Silvestre; Duchateau, Phillipe; Prieto, Jesús; Montoya, Guillermo

    2015-01-01

    Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates. PMID:26363068

  2. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases

    PubMed Central

    Fonfara, Ines; Curth, Ute; Pingoud, Alfred; Wende, Wolfgang

    2012-01-01

    Zinc-finger nucleases and TALE nucleases are produced by combining a specific DNA-binding module and a non-specific DNA-cleavage module, resulting in nucleases able to cleave DNA at a unique sequence. Here a new approach for creating highly specific nucleases was pursued by fusing a catalytically inactive variant of the homing endonuclease I-SceI, as DNA binding-module, to the type IIP restriction enzyme PvuII, as cleavage module. The fusion enzymes were designed to recognize a composite site comprising the recognition site of PvuII flanked by the recognition site of I-SceI. In order to reduce activity on PvuII sites lacking the flanking I-SceI sites, the enzymes were optimized so that the binding of I-SceI to its sites positions PvuII for cleavage of the composite site. This was achieved by optimization of the linker and by introducing amino acid substitutions in PvuII which decrease its activity or disturb its dimer interface. The most specific variant showed a more than 1000-fold preference for the addressed composite site over an unaddressed PvuII site. These results indicate that using a specific restriction enzyme, such as PvuII, as cleavage module, offers an alternative to the otherwise often used catalytic domain of FokI, which by itself does not contribute to the specificity of the engineered nuclease. PMID:21965534

  3. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease

    SciTech Connect

    Mitchell, Michelle; Xue, Song; Erdman, Rachel; Randau, Lennart; Söll, Dieter; Li, Hong

    2009-10-27

    The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified ({alpha}{beta}){sub 2} family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 {angstrom} containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 {angstrom}. The functional enzyme resembles previously known {alpha}{sub 2} and {alpha}{sub 4} endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.

  4. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity.

    PubMed

    Morgan, Richard D; Luyten, Yvette A

    2009-08-01

    The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.

  5. Three metal ions participate in the reaction catalyzed by T5 flap endonuclease.

    PubMed

    Syson, Karl; Tomlinson, Christopher; Chapados, Brian R; Sayers, Jon R; Tainer, John A; Williams, Nicholas H; Grasby, Jane A

    2008-10-17

    Protein nucleases and RNA enzymes depend on divalent metal ions to catalyze the rapid hydrolysis of phosphate diester linkages of nucleic acids during DNA replication, DNA repair, RNA processing, and RNA degradation. These enzymes are widely proposed to catalyze phosphate diester hydrolysis using a "two-metal-ion mechanism." Yet, analyses of flap endonuclease (FEN) family members, which occur in all domains of life and act in DNA replication and repair, exemplify controversies regarding the classical two-metal-ion mechanism for phosphate diester hydrolysis. Whereas substrate-free structures of FENs identify two active site metal ions, their typical separation of > 4 A appears incompatible with this mechanism. To clarify the roles played by FEN metal ions, we report here a detailed evaluation of the magnesium ion response of T5FEN. Kinetic investigations reveal that overall the T5FEN-catalyzed reaction requires at least three magnesium ions, implying that an additional metal ion is bound. The presence of at least two ions bound with differing affinity is required to catalyze phosphate diester hydrolysis. Analysis of the inhibition of reactions by calcium ions is consistent with a requirement for two viable cofactors (Mg2+ or Mn2+). The apparent substrate association constant is maximized by binding two magnesium ions. This may reflect a metal-dependent unpairing of duplex substrate required to position the scissile phosphate in contact with metal ion(s). The combined results suggest that T5FEN primarily uses a two-metal-ion mechanism for chemical catalysis, but that its overall metallobiochemistry is more complex and requires three ions.

  6. Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII

    PubMed Central

    Poleszak, Katarzyna; Kaminska, Katarzyna H.; Dunin-Horkawicz, Stanislaw; Lupas, Andrei; Skowronek, Krzysztof J.; Bujnicki, Janusz M.

    2012-01-01

    Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII. PMID:22718974

  7. DNA-PK autophosphorylation facilitates Artemis endonuclease activity.

    PubMed

    Goodarzi, Aaron A; Yu, Yaping; Riballo, Enriqueta; Douglas, Pauline; Walker, Sarah A; Ye, Ruiqiong; Härer, Christine; Marchetti, Caterina; Morrice, Nick; Jeggo, Penny A; Lees-Miller, Susan P

    2006-08-23

    The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) autophosphorylation at the T2609-T2647 cluster, in the presence of Ku and target DNA, is required for Artemis-mediated endonuclease activity. Moreover, autophosphorylated DNA-PKcs stably associates with Ku-bound DNA with large single-stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA-PK that enhance Artemis cleavage at single-strand to double-strand DNA junctions. These findings demonstrate that DNA-PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.

  8. Purification and characterization of exonuclease-free Artemis: Implications for DNA-PK – dependent processing of DNA termini in NHEJ catalyzed DSB repair

    PubMed Central

    Pawelczak, Katherine S.; Turchi, John J.

    2010-01-01

    Artemis is a member of the β–CASP family of nucleases in the metallo-β-lactamase superfamily of hydrolases. Artemis has been demonstrated to be involved in V(D)J-recombination and in the NHEJ-catalyzed repair of DNA DSBs. In vitro, both DNA-PK independent 5’ to 3’ exonuclease activity and DNA-PK dependent endonuclease activity have been attributed to Artemis, though mutational analysis of the Artemis active site only disrupts endonuclease activity. This suggests that either the enzyme contains two different active sites, or the exonuclease activity is not intrinsic to the Artemis polypeptide. To distinguish between these possibilities, we sought to determine if it was possible to biochemically separate Artemis endonuclease activity from exonuclease activity. Recombinant [His]6–Artemis was expressed in a Baculovirus insect-cell expression system and isolated using a three-column purification methodology. Exonuclease and endonuclease activity, the ability to be phosphorylated by DNA-PK, and Artemis antibody reactivity was monitored throughout the purification and to characterize final pools of protein preparation. Results demonstrated the co-elution of exonuclease and endonuclease activity on a Ni-Agarose affinity column but separation of the two enzymatic activities upon fractionation on a hydroxyapatite column. An exonuclease free fraction of Artemis was obtained that retained DNA-PK dependent endonuclease activity, was phosphorylated by DNA-PK and reacted with an Artemis specific antibody. These data demonstrate that the exonuclease activity thought to be intrinsic to Artemis can be biochemically separated from the Artemis endonuclease. PMID:20347402

  9. Purification and characterization of exonuclease-free Artemis: Implications for DNA-PK-dependent processing of DNA termini in NHEJ-catalyzed DSB repair.

    PubMed

    Pawelczak, Katherine S; Turchi, John J

    2010-06-04

    Artemis is a member of the beta-CASP family of nucleases in the metallo-beta-lactamase superfamily of hydrolases. Artemis has been demonstrated to be involved in V(D)J-recombination and in the NHEJ-catalyzed repair of DNA DSBs. In vitro, both DNA-PK independent 5'-3' exonuclease activities and DNA-PK dependent endonuclease activity have been attributed to Artemis, though mutational analysis of the Artemis active site only disrupts endonuclease activity. This suggests that either the enzyme contains two different active sites, or the exonuclease activity is not intrinsic to the Artemis polypeptide. To distinguish between these possibilities, we sought to determine if it was possible to biochemically separate Artemis endonuclease activity from exonuclease activity. Recombinant [His](6)-Artemis was expressed in a Baculovirus insect-cell expression system and isolated using a three-column purification methodology. Exonuclease and endonuclease activities, the ability to be phosphorylated by DNA-PK, and Artemis antibody reactivity was monitored throughout the purification and to characterize final pools of protein preparation. Results demonstrated the co-elution of exonuclease and endonuclease activities on a Ni-agarose affinity column but separation of the two enzymatic activities upon fractionation on a hydroxyapatite column. An exonuclease-free fraction of Artemis was obtained that retained DNA-PK dependent endonuclease activity, was phosphorylated by DNA-PK and reacted with an Artemis specific antibody. These data demonstrate that the exonuclease activity thought to be intrinsic to Artemis can be biochemically separated from the Artemis endonuclease. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Lack of the DNA repair enzyme OGG1 sensitizes dopamine neurons to manganese toxicity during development.

    PubMed

    Cardozo-Pelaez, Fernando; Cox, David P; Bolin, Celeste

    2005-01-01

    Onset of Parkinson's disease (PD) and Parkinson-like syndromes has been associated with exposure to diverse environmental stimuli. Epidemiological studies have demonstrated that exposure to elevated levels of manganese produces neuropathological changes localized to the basal ganglia, including neuronal loss and depletions in striatal dopamine content. However, understanding the mechanisms associated with manganese neurotoxicity has been hampered by the lack of a good rodent model. Elevated levels of 8-hydroxy-2'-deoxyguanosine (oxo8dG) have been found in brain areas affected in PD. Whether increased DNA damage is responsible for neuronal degeneration or is a mere epiphenomena of neuronal loss remains to be elucidated. Thus, by using mice deficient in the ability to remove oxo8dG we aimed to determine if dysregulation of DNA repair coupled to manganese exposure would be detrimental to dopaminergic neurons. Wild-type and OGG1 knockout mice were exposed to manganese from conception to postnatal day 30; in both groups, exposure to manganese led to alterations in the neurochemistry of the nigrostriatal system. After exposure, dopamine levels were elevated in the caudate of wild-type mice. Dopamine was reduced in the caudate of OGG1 knockout mice, a loss that was paralleled by an increase in the dopamine index of turnover. In addition, the reduction of dopamine in caudate putamen correlated with the accumulation of oxo8dG in midbrain. We conclude that OGG1 function is essential in maintaining neuronal stability during development and identify DNA damage as a common pathway in neuronal loss after a toxicological challenge.

  11. Recognition sequences of restriction endonucleases and methylases--a review.

    PubMed

    Kessler, C; Neumaier, P S; Wolf, W

    1985-01-01

    The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.

  12. Heterogeneity and function of mammalian MSRs: enzymes for repair, protection and regulation.

    PubMed

    Hansel, Alfred; Heinemann, Stefan H; Hoshi, Toshinori

    2005-01-17

    Methionine sulfoxide, the physiologically relevant oxidation product of methionine, is enzymatically reduced by peptide methionine sulfoxide reductases (MSRs). Two distinct classes of these enzymes, MSRA and MSRB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Mammals typically possess only one gene encoding MSRA, but at least three genes encoding MSRBs. These MSRs show distinct tissue- and subcellular expression patterns and may play specific functional roles. Susceptibility of some ion channels to reversible methionine oxidation suggests that MSRs have a regulatory role in cellular excitability. Some--if not all--MSRs protect cells and organisms against a variety of oxidative stress episodes, including those by hypoxia and reperfusion, and play a modulatory role in lifespan determination. More MSR-dependent physiological phenomena await to be discovered.

  13. DENV gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities

    SciTech Connect

    McMillan, S.; Edenberg, H.J.; Radany, E.H.; Friedberg, R.C.; Friedberg, E.C.

    1981-10-01

    Recent studies have shown that purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phase T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV/sup +/ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.

  14. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair.

    PubMed

    Lizano, Esther; Scheibe, Marion; Rammelt, Christiane; Betat, Heike; Mörl, Mario

    2008-05-01

    Representing one of the most fascinating RNA polymerases, the CCA-adding enzyme (tRNA nucleotidyltransferase) is responsible for synthesis and repair of the 3'-terminal CCA sequence in tRNA transcripts. As a consequence of this important function, this enzyme is found in all organisms analyzed so far. Here, it is shown that the closely related enzymes of Homo sapiens and Escherichia coli differ substantially in their substrate preferences for the incorporation of CTP and ATP. While both enzymes require helical structures (mimicking the upper part of tRNAs) for C addition, the data indicate that the E. coli enzyme--in contrast to the human version--is quite promiscuous concerning the incorporation of ATP, where any RNA ending with two C residues is accepted. This feature is consistent with the primary function of the E. coli protein as a repair enzyme. Furthermore, even if the amino acid motif that interacts with the incoming nucleotides in the NTP binding pocket of these enzymes is destroyed and does no longer discriminate between individual bases, both nucleotidyltransferases have a back-up mechanism that ensures CCA addition with considerable accuracy and efficiency in order to guarantee functional protein synthesis and, consequently, the survival of the cell.

  15. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    SciTech Connect

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture.

  16. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification

    PubMed Central

    Stoddard, Barry L.

    2011-01-01

    Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 basepairs). They exhibit a wide range of fidelity at individual nucleotide positions, in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation or correction of DNA sequences. Over the past 15 years the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications. PMID:21220111

  17. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes

    NASA Astrophysics Data System (ADS)

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; de Luca, Laura; Sechi, Mario; Kumar, Gyanendra; White, Stephen W.; Stevaert, Annelies; Naesens, Lieve

    2016-08-01

    Influenza virus PA endonuclease has recently emerged as an attractive target for the development of novel antiviral therapeutics. This is an enzyme with divalent metal ion(s) (Mg2+ or Mn2+) in its catalytic site: chelation of these metal cofactors is an attractive strategy to inhibit enzymatic activity. Here we report the activity of a series of N-acylhydrazones in an enzymatic assay with PA-Nter endonuclease, as well as in cell-based influenza vRNP reconstitution and virus yield assays. Several N-acylhydrazones were found to have promising anti-influenza activity in the low micromolar concentration range and good selectivity. Computational docking studies are carried on to investigate the key features that determine inhibition of the endonuclease enzyme by N-acylhydrazones. Moreover, we here describe the crystal structure of PA-Nter in complex with one of the most active inhibitors, revealing its interactions within the protein’s active site.

  18. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes

    PubMed Central

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; De Luca, Laura; Sechi, Mario; Kumar, Gyanendra; White, Stephen W.; Stevaert, Annelies; Naesens, Lieve

    2016-01-01

    Influenza virus PA endonuclease has recently emerged as an attractive target for the development of novel antiviral therapeutics. This is an enzyme with divalent metal ion(s) (Mg2+ or Mn2+) in its catalytic site: chelation of these metal cofactors is an attractive strategy to inhibit enzymatic activity. Here we report the activity of a series of N-acylhydrazones in an enzymatic assay with PA-Nter endonuclease, as well as in cell-based influenza vRNP reconstitution and virus yield assays. Several N-acylhydrazones were found to have promising anti-influenza activity in the low micromolar concentration range and good selectivity. Computational docking studies are carried on to investigate the key features that determine inhibition of the endonuclease enzyme by N-acylhydrazones. Moreover, we here describe the crystal structure of PA-Nter in complex with one of the most active inhibitors, revealing its interactions within the protein’s active site. PMID:27510745

  19. Molecular Cloning and 3D Structure Modeling of APEX1, DNA Base Excision Repair Enzyme from the Camel, Camelus dromedarius

    PubMed Central

    Ataya, Farid Shokry; Fouad, Dalia; Malik, Ajamaluddin; Saeed, Hesham Mahmoud

    2012-01-01

    The domesticated one-humped camel, Camelus dromedarius, is one of the most important animals in the Arabian Desert. It is exposed most of its life to both intrinsic and extrinsic genotoxic factors that are known to cause gross DNA alterations in many organisms. Ionic radiation and sunlight are known producers of Reactive Oxygen Species (ROS), one of the causes for DNA lesions. The damaged DNA is repaired by many enzymes, among of them Base Excision Repair enzymes, producing the highly mutagenic apurinic/apyrimidinicsites (AP sites). Therefore, recognition of AP sites is fundamental to cell/organism survival. In the present work, the full coding sequence of a putative cAPEX1 gene was amplified for the first time from C. dromedarius by RT-PCR and cloned (NCBI accession number are HM209828 and ADJ96599 for nucleotides and amino acids, respectively). cDNA sequencing was deduced to be 1041 nucleotides, of which 954 nucleotides encode a protein of 318 amino acids, similar to the coding region of the APEX1 gene and the protein from many other species. The calculated molecular weight and isoelectric point of cAPEX1 using Bioinformatics tools was 35.5 kDa and 8.11, respectively. The relative expressions of cAPEX1 in camel kidney, spleen, lung and testis were examined using qPCR and compared with that of the liver using a 18S ribosomal subunit as endogenous control. The highest level of cAPEX1 transcript was found in the testis; 325% higher than the liver, followed by spleen (87%), kidney (20%) and lung (5%), respectively. The cAPEX1 is 94%–97% similar to their mammalian counterparts. Phylogenetic analysis revealed that cAPEX1 is grouped together with that of S. scrofa. The predicted 3D structure of cAPEX1 has similar folds and topology with the human (hAPEX1). The root-mean-square deviation (rmsd) between cAPEX1 and hAPEX1 was 0.582 and the Q-score was 0.939. PMID:22942721

  20. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  1. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    SciTech Connect

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  2. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice.

    PubMed

    Kim, E; Lowenson, J D; MacLaren, D C; Clarke, S; Young, S G

    1997-06-10

    L-Asparaginyl and L-aspartyl residues in proteins are subject to spontaneous degradation reactions that generate isomerized and racemized aspartyl derivatives. Proteins containing L-isoaspartyl and D-aspartyl residues can have altered structures and diminished biological activity. These residues are recognized by a highly conserved cytosolic enzyme, the protein L-isoaspartate(D-aspartate) O-methyltransferase (EC 2.1.1.77). The enzymatic methyl esterification of these abnormal residues in vitro can lead to their conversion (i.e., repair) to normal L-aspartyl residues and should therefore prevent the accumulation of potentially dysfunctional proteins in vivo as cells and tissues age. Particularly high levels of the repair methyltransferase are present in the brain, although enyzme activity is present in all vertebrate tissues. To define the physiological relevance of this protein-repair pathway and to determine whether deficient protein repair would cause central nervous system dysfunction, we used gene targeting in mouse embryonic stem cells to generate protein L-isoaspartate(D-aspartate) O-methyltransferase-deficient mice. Analyses of tissues from methyltransferase knockout mice revealed a striking accumulation of protein substrates for this enzyme in the cytosolic fraction of brain, heart, liver, and erythrocytes. The knockout mice showed significant growth retardation and succumbed to fatal seizures at an average of 42 days after birth. These results suggest that the ability of mice to repair L-isoaspartyl- and D-aspartyl-containing proteins is essential for normal growth and for normal central nervous system function.

  3. Conserved Endonuclease Function of Hantavirus L Polymerase.

    PubMed

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U; Kunz, Stefan; Engler, Olivier

    2016-05-02

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.

  4. Conserved Endonuclease Function of Hantavirus L Polymerase

    PubMed Central

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U.; Kunz, Stefan; Engler, Olivier

    2016-01-01

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic “capping activity”. Hantaviruses therefore employ a “cap snatching” strategy acquiring short 5′ RNA sequences bearing 5′cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure–function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses. PMID:27144576

  5. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay

    PubMed Central

    Farkash, Evan A.; Kao, Gary D.; Horman, Shane R.; Prak, Eline T. Luning

    2006-01-01

    Long Interspersed Elements (LINE-1s, L1s) are the most active mobile elements in the human genome and account for a significant fraction of its mass. The propagation of L1 in the human genome requires disruption and repair of DNA at the site of integration. As Barbara McClintock first hypothesized, genotoxic stress may contribute to the mobilization of transposable elements, and conversely, element mobility may contribute to genotoxic stress. We tested the ability of genotoxic agents to increase L1 retrotransposition in a cultured cell assay. We observed that cells exposed to gamma radiation exhibited increased levels of L1 retrotransposition. The L1 retrotransposition frequency was proportional to the number of phosphorylated H2AX foci, an indicator of genotoxic stress. To explore the role of the L1 endonuclease in this context, endonuclease-deficient tagged L1 constructs were produced and tested for their activity in irradiated cells. The activity of the endonuclease-deficient L1 was very low in irradiated cells, suggesting that most L1 insertions in irradiated cells still use the L1 endonuclease. Consistent with this interpretation, DNA sequences that flank L1 insertions in irradiated cells harbored target site duplications. These results suggest that increased L1 retrotransposition in irradiated cells is endonuclease dependent. The mobilization of L1 in irradiated cells potentially contributes to genomic instability and could be a driving force for secondary mutations in patients undergoing radiation therapy. PMID:16507671

  6. The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA loading, homologous recombination, and DNA repair.

    PubMed

    Amundsen, S K; Taylor, A F; Smith, G R

    2000-06-20

    The RecBCD enzyme is required for homologous recombination and DNA repair in Escherichia coli. The structure and function of RecBCD enzyme is altered on its interaction with the recombination hotspot Chi (5'-GCTGGTGG-3'). It has been hypothesized that the RecD subunit plays a role in Chi-dependent regulation of enzyme activity [Thaler, D. S., Sampson, E., Siddiqi, I., Rosenberg, S. M., Stahl, F. W. & Stahl, M. (1988) in Mechanisms and Consequences of DNA Damage Processing, eds. Friedberg, E. & Hanawalt, P. (Liss, New York), pp. 413-422; Churchill, J. J., Anderson, D. G. & Kowalczykowski, S. C. (1999) Genes Dev. 13, 901-911]. We tested the hypothesis that the RecD subunit inhibits recombination by deleting recD from the nuclease- and recombination-deficient mutant recB(D1080A)CD. We report here that the resulting strain, recB(D1080A)C, was proficient for recombination and DNA repair. Recombination proficiency was accompanied by a change in enzyme activity: RecB(D1080A)C enzyme loaded RecA protein onto DNA during DNA unwinding whereas RecB(D1080A)CD enzyme did not. Together, these genetic and biochemical results demonstrate that RecA loading by RecBCD enzyme is required for recombination in E. coli cells and suggest that RecD interferes with the enzyme domain required for its loading. A nuclease-dependent signal appears to be required for a change in RecD that allows RecA loading. Because RecA loading is not observed with wild-type RecBCD enzyme until it acts at a Chi site, our observations support the view that RecD inhibits recombination until the enzyme acts at Chi.

  7. The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA loading, homologous recombination, and DNA repair

    PubMed Central

    Amundsen, Susan K.; Taylor, Andrew F.; Smith, Gerald R.

    2000-01-01

    The RecBCD enzyme is required for homologous recombination and DNA repair in Escherichia coli. The structure and function of RecBCD enzyme is altered on its interaction with the recombination hotspot Chi (5′-GCTGGTGG-3′). It has been hypothesized that the RecD subunit plays a role in Chi-dependent regulation of enzyme activity [Thaler, D. S., Sampson, E., Siddiqi, I., Rosenberg, S. M., Stahl, F. W. & Stahl, M. (1988) in Mechanisms and Consequences of DNA Damage Processing, eds. Friedberg, E. & Hanawalt, P. (Liss, New York), pp. 413–422; Churchill, J. J., Anderson, D. G. & Kowalczykowski, S. C. (1999) Genes Dev. 13, 901–911]. We tested the hypothesis that the RecD subunit inhibits recombination by deleting recD from the nuclease- and recombination-deficient mutant recBD1080ACD. We report here that the resulting strain, recBD1080AC, was proficient for recombination and DNA repair. Recombination proficiency was accompanied by a change in enzyme activity: RecBD1080AC enzyme loaded RecA protein onto DNA during DNA unwinding whereas RecBD1080ACD enzyme did not. Together, these genetic and biochemical results demonstrate that RecA loading by RecBCD enzyme is required for recombination in E. coli cells and suggest that RecD interferes with the enzyme domain required for its loading. A nuclease-dependent signal appears to be required for a change in RecD that allows RecA loading. Because RecA loading is not observed with wild-type RecBCD enzyme until it acts at a Chi site, our observations support the view that RecD inhibits recombination until the enzyme acts at Chi. PMID:10840065

  8. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kim, Il-Chan; Yim, Joung Han; Lee, Su-Jae; Lee, Jae-Seong

    2014-10-01

    To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis

    PubMed Central

    Lee, Jiyoon; Jang, Hosung; Shin, Hosub; Choi, Woo Lee; Mok, Young Geun; Huh, Jin Hoe

    2014-01-01

    DNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3′-phosphor-α, β-unsaturated aldehyde and 3′-phosphate by successive β- and δ-eliminations, respectively. The kinetic studies revealed that these 3′-blocking lesions persist for a significant amount of time and at least two different enzyme activities are required to immediately process them. We demonstrate that Arabidopsis AP endonucleases APE1L, APE2 and ARP have distinct functions to process such harmful lesions to allow nucleotide extension. DME expression is toxic to E. coli due to excessive 5mC excision, but expression of APE1L or ARP significantly reduces DME-induced cytotoxicity. Finally, we propose a model of base excision repair and DNA demethylation pathway unique to plants. PMID:25228464

  10. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis.

    PubMed

    Lee, Jiyoon; Jang, Hosung; Shin, Hosub; Choi, Woo Lee; Mok, Young Geun; Huh, Jin Hoe

    2014-10-01

    DNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3'-phosphor-α, β-unsaturated aldehyde and 3'-phosphate by successive β- and δ-eliminations, respectively. The kinetic studies revealed that these 3'-blocking lesions persist for a significant amount of time and at least two different enzyme activities are required to immediately process them. We demonstrate that Arabidopsis AP endonucleases APE1L, APE2 and ARP have distinct functions to process such harmful lesions to allow nucleotide extension. DME expression is toxic to E. coli due to excessive 5mC excision, but expression of APE1L or ARP significantly reduces DME-induced cytotoxicity. Finally, we propose a model of base excision repair and DNA demethylation pathway unique to plants. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  12. Structures and Activities of Archaeal Members of the LigD 3-Phosphoesterase DNA Repair Enzyme Superfamily

    SciTech Connect

    P Smith; P Nair; U Das; H Zhu; S Shuman

    2011-12-31

    LigD 3'-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3'-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis-a-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs - Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids) - and we report their atomic structures at 1.1 and 2.1 {angstrom}, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded {beta} barrel and a 3{sub 10} helix. Their active sites are located in a crescent-shaped groove on the barrel's outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.

  13. Structures and activities of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily.

    PubMed

    Smith, Paul; Nair, Pravin A; Das, Ushati; Zhu, Hui; Shuman, Stewart

    2011-04-01

    LigD 3'-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3'-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis-à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs--Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)--and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 3(10) helix. Their active sites are located in a crescent-shaped groove on the barrel's outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.

  14. Direct observation of DNA threading in flap endonuclease complexes

    PubMed Central

    AlMalki, Faizah A; Flemming, Claudia S; Zhang, Jing; Feng, Min; Sedelnikova, Svetlana E; Ceska, Tom; Rafferty, John B; Sayers, Jon R; Artymiuk, Peter J

    2016-01-01

    Maintenance of genome integrity requires that branched nucleic acid molecules are accurately processed to produce double-helical DNA. Flap endonucleases are essential enzymes that trim such branched molecules generated by Okazaki fragment synthesis during replication. Here, we report crystal structures of bacteriophage T5 flap endonuclease in complexes with intact DNA substrates, and products, at resolutions of 1.9–2.2 Å. They reveal single-stranded DNA threading through a hole in the enzyme enclosed by an inverted V-shaped helical arch straddling the active site. Residues lining the hole induce an unusual barb-like conformation in the DNA substrate juxtaposing the scissile phosphate and essential catalytic metal ions. A series of complexes and biochemical analyses show how the substrate’s single-stranded branch approaches, threads through, and finally emerges on the far side of the enzyme. Our studies suggest that substrate recognition involves an unusual “fly-casting, thread, bend and barb” mechanism. PMID:27273516

  15. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold*

    PubMed Central

    Molina, Rafael; Marcaida, María José; Redondo, Pilar; Marenchino, Marco; Duchateau, Phillippe; D'Abramo, Marco; Montoya, Guillermo; Prieto, Jesús

    2015-01-01

    Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machinery. The break can be repaired by homologous recombination, an error-free mechanism, or by non-homologous end joining, a process susceptible to introducing errors in the repaired sequence. The type of DNA cleavage might alter the balance between these two alternatives. The use of “nickases” producing a specific single strand break instead of a double strand break could be an approach to reduce the toxicity associated with non-homologous end joining by promoting the use of homologous recombination to repair the cleavage of a single DNA break. Taking advantage of the sequential DNA cleavage mechanism of I-DmoI LAGLIDADG homing endonuclease, we have developed a new variant that is able to cut preferentially the coding DNA strand, generating a nicked DNA target. Our structural and biochemical analysis shows that by decoupling the action of the catalytic residues acting on each strand we can inhibit one of them while keeping the other functional. PMID:26045557

  16. Investigation of the Role of the Histidine-Aspartate Pair in the Human Exonuclease III-like Abasic Endonuclease, Ape1

    SciTech Connect

    Lowry, David F. ); Hoyt, David W. ); Khazi, Fayaz A.; Bagu, John R. ); Lindsey, Andrea G.; Wilson, David M.

    2003-05-30

    Hydrogen bonded histidine-aspartate (His-Asp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pKa values and hydrogen-bonding patterns within the catalytic pocket. However, the role of the His-Asp pair in metal-assisted catalysis is less clear. Here, we apply liquid state NMR to investigate the role of a critical histidine of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active site His-Asp pair. The studies within suggest that the Ape1 His- Asp pair functions as neither a general base catalyst nor a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.

  17. Human Rad54 protein stimulates human Mus81–Eme1 endonuclease

    PubMed Central

    Mazina, Olga M.; Mazin, Alexander V.

    2008-01-01

    Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81–Eme1. Genetic data indicate that Mus81–Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81–Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81–Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81–Eme1 endonuclease activity. Stimulation of Mus81–Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81–Eme1, suggesting that the Rad54 and Mus81–Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair. PMID:19017809

  18. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments

    PubMed Central

    Tengs, Torstein; LaFramboise, Thomas; Den, Robert B.; Hayes, David N.; Zhang, Jianhua; DebRoy, Saikat; Gentleman, Robert C.; O'Neill, Keith; Birren, Bruce; Meyerson, Matthew

    2004-01-01

    We have developed a method for genomic representation using Type IIB restriction endonucleases. Representation by concatenation of restriction digests, or RECORD, is an approach to sample the fragments generated by cleavage with these enzymes. Here, we show that the RECORD libraries may be used for digital karyotyping and for pathogen identification by computational subtraction. PMID:15329383

  19. Homing endonuclease I-TevIII: dimerization as a means to a double-strand break

    PubMed Central

    Robbins, Justin B.; Stapleton, Michelle; Stanger, Matthew J.; Smith, Dorie; Dansereau, John T.; Derbyshire, Victoria; Belfort, Marlene

    2007-01-01

    Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is not. Phage RB3 is a close relative of T4 and has a lengthier nrdB intron. Here, we describe I-TevIII, the H–N–H endonuclease encoded by the RB3 nrdB intron. In contrast to previous reports, we demonstrate that this intron is mobile, and that this mobility is dependent on I-TevIII, which generates 2-nt 3′ extensions. The enzyme has a distinct catalytic domain, which contains the H–N–H motif, and DNA-binding domain, which contains two zinc fingers required for interaction with the DNA substrate. Most importantly, I-TevIII, unlike the H–N–H endonucleases described so far, makes a double-strand break on the DNA homing site by acting as a dimer. Through deletion analysis, the dimerization interface was mapped to the DNA-binding domain. The unusual propensity of I-TevIII to dimerize to achieve cleavage of both DNA strands underscores the versatility of the H–N–H enzyme family. PMID:17289754

  20. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease

    PubMed Central

    Zhang, Likui; Xu, Dandan; Huang, Yanchao; Zhu, Xinyuan; Rui, Mianwen; Wan, Ting; Zheng, Xin; Shen, Yulong; Chen, Xiangdong; Ma, Kesen; Gong, Yong

    2017-01-01

    HNH endonucleases in bacteriophages play a variety of roles in the phage lifecycle as key components of phage DNA packaging machines. The deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2) encodes an HNH endonuclease (GVE2 HNHE). Here, the crystal structure of GVE2 HNHE is reported. This is the first structural study of a thermostable HNH endonuclease from a thermophilic bacteriophage. Structural comparison reveals that GVE2 HNHE possesses a typical ββα-metal fold and Zn-finger motif similar to those of HNH endonucleases from other bacteriophages, apart from containing an extra α-helix, suggesting conservation of these enzymes among bacteriophages. Biochemical analysis suggests that the alanine substitutions of the conserved residues (H93, N109 and H118) in the HNH motif of GVE2 HNHE abolished 94%, 60% and 83% of nicking activity, respectively. Compared to the wild type enzyme, the H93A mutant displayed almost the same conformation while the N108A and H118A mutants had different conformations. In addition, the wild type enzyme was more thermostable than the mutants. In the presence of Mn2+ or Zn2+, the wild type enzyme displayed distinct DNA nicking patterns. However, high Mn2+ concentrations were needed for the N109A and H118A mutants to nick DNA while Zn2+ inactivated their nicking activity. PMID:28211904

  1. Characterization of the endoribonuclease active site of human apurinic/apyrimidinic endonuclease 1.

    PubMed

    Kim, Wan-Cheol; Berquist, Brian R; Chohan, Manbir; Uy, Christopher; Wilson, David M; Lee, Chow H

    2011-09-02

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg(2+), while ssDNA AP site cleavage required Mg(2+) (optimally at 0.5-2.0 mM). We also found that a 2'-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3'-PO(4)(2-) group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo. Copyright

  2. Down-regulation of apurinic/apyrimidinic endonuclease 1 (APE1) in spinal motor neurones under oxidative stress.

    PubMed

    Chu, Tak-Ho; Guo, Anchen; Wu, Wutian

    2014-06-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is an intermediate enzyme in base excision repair which is important for removing damaged nucleotides under normal and pathological conditions. Accumulation of damaged bases causes genome instability and jeopardizes cell survival. Our study is to examine APE1 regulation under oxidative stress in spinal motor neurones which are vulnerable to oxidative insult. We challenged the motor neurone-like cell line NSC-34 with hydrogen peroxide and delineated APE1 function by applying various inhibitors. We also examined the expression of APE1 in spinal motor neurones after spinal root avulsion in adult rats. We showed that hydrogen peroxide induced APE1 down-regulation and cell death in a differentiated motor neurone-like cell line. Inhibiting the two functional domains of APE1, namely, DNA repair and redox domains potentiated hydrogen peroxide induced cell death. We further showed that p53 phosphorylation early after hydrogen peroxide treatment might contribute to the down-regulation of APE1. Our in vivo results similarly showed that APE1 was down-regulated after root avulsion injury in spinal motor neurones. Delay of motor neurone death suggested that APE1 might not cause immediate cell death but render motor neurones vulnerable to further oxidative insults. We conclude that spinal motor neurones down-regulate APE1 upon oxidative stress. This property renders motor neurones susceptible to continuous challenge of oxidative stress in pathological conditions. © 2013 British Neuropathological Society.

  3. Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores.

    PubMed

    Moeller, Ralf; Setlow, Peter; Pedraza-Reyes, Mario; Okayasu, Ryuichi; Reitz, Günther; Nicholson, Wayne L

    2011-06-01

    The roles of DNA repair by apurinic/apyrimidinic (AP) endonucleases alone, and together with DNA protection by α/β-type small acid-soluble spore proteins (SASP), in Bacillus subtilis spore resistance to different types of radiation have been studied. Spores lacking both AP endonucleases (Nfo and ExoA) and major SASP were significantly more sensitive to 254-nm UV-C, environmental UV (>280 nm), X-ray exposure, and high-energy charged (HZE)-particle bombardment and had elevated mutation frequencies compared to those of wild-type spores and spores lacking only one or both AP endonucleases or major SASP. These findings further implicate AP endonucleases and α/β-type SASP in repair and protection, respectively, of spore DNA against effects of UV and ionizing radiation.

  4. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins

    PubMed Central

    Hrecka, Kasia; Hao, Caili; Shun, Ming-Chieh; Kaur, Sarabpreet; Swanson, Selene K.; Florens, Laurence; Washburn, Michael P.; Skowronski, Jacek

    2016-01-01

    HIV replication in nondividing host cells occurs in the presence of high concentrations of noncanonical dUTP, apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) cytidine deaminases, and SAMHD1 (a cell cycle-regulated dNTP triphosphohydrolase) dNTPase, which maintains low concentrations of canonical dNTPs in these cells. These conditions favor the introduction of marks of DNA damage into viral cDNA, and thereby prime it for processing by DNA repair enzymes. Accessory protein Vpr, found in all primate lentiviruses, and its HIV-2/simian immunodeficiency virus (SIV) SIVsm paralogue Vpx, hijack the CRL4DCAF1 E3 ubiquitin ligase to alleviate some of these conditions, but the extent of their interactions with DNA repair proteins has not been thoroughly characterized. Here, we identify HLTF, a postreplication DNA repair helicase, as a common target of HIV-1/SIVcpz Vpr proteins. We show that HIV-1 Vpr reprograms CRL4DCAF1 E3 to direct HLTF for proteasome-dependent degradation independent from previously reported Vpr interactions with base excision repair enzyme uracil DNA glycosylase (UNG2) and crossover junction endonuclease MUS81, which Vpr also directs for degradation via CRL4DCAF1 E3. Thus, separate functions of HIV-1 Vpr usurp CRL4DCAF1 E3 to remove key enzymes in three DNA repair pathways. In contrast, we find that HIV-2 Vpr is unable to efficiently program HLTF or UNG2 for degradation. Our findings reveal complex interactions between HIV-1 and the DNA repair machinery, suggesting that DNA repair plays important roles in the HIV-1 life cycle. The divergent interactions of HIV-1 and HIV-2 with DNA repair enzymes and SAMHD1 imply that these viruses use different strategies to guard their genomes and facilitate their replication in the host. PMID:27335459

  5. Ntg2 of Saccharomyces cerevisiae repairs the oxidation products of 8-hydroxyguanine.

    PubMed

    Kim, J E; You, H J; Choi, J Y; Doetsch, P W; Kim, J S; Chung, M H

    2001-08-03

    In Escherichia coli, endonuclease III (endo III) repairs the oxidation products of 8-OHGua. However, the corresponding repair enzymes in eukaryotes have not been identified. Here we report that 8-hydroxyguanine (8-OHGua) is highly sensitive to further oxidation. We also show that Ntg2, a functional homolog of endo III in Saccharomyces cerevisiae, is capable of nicking the irradiated duplex DNA containing 8-OHGua. Moreover, Ntg2 formed a stable complex with the DNA upon incubation with NaBH(4). In contrast, Ntg1, another functional homolog of endo III, showed no such activities. These findings indicate that Ntg2 is, at least in part, responsible for repairing the oxidation products of 8-OHGua in eukaryotic cells.

  6. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  7. Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase.

    PubMed

    Havali-Shahriari, Zahra; Weinfeld, Michael; Glover, J N Mark

    2017-03-28

    Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.

  8. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server

    PubMed Central

    Taylor, Gregory K.; Petrucci, Lucas H.; Lambert, Abigail R.; Baxter, Sarah K.; Jarjour, Jordan; Stoddard, Barry L.

    2012-01-01

    LAGLIDADG homing endonucleases (LHEs) are DNA cleaving enzymes, also termed ‘meganucleases’ that are employed as gene-targeting reagents. This use of LHEs requires that their DNA specificity be altered to match sequences in genomic targets. The choice of the most appropriate LHE to target a particular gene is facilitated by the growing number of such enzymes with well-characterized activities and structures. ‘LAHEDES’ (The LAGLIDADG Homing Endonuclease Database and Engineering Server) provides both an online archive of LHEs with validated DNA cleavage specificities and DNA-binding interactions, as well as a tool for the identification of DNA sequences that might be targeted by various LHEs. Searches can be performed using four separate scoring algorithms and user-defined choices of LHE scaffolds. The webserver subsequently provides information regarding clusters of amino acids that should be interrogated during engineering and selection experiments. The webserver is fully open access and can be found at http://homingendonuclease.net. PMID:22570419

  9. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects.

  10. Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII

    PubMed Central

    Wilson, Gavin W.; Edgell, David R.

    2009-01-01

    Homing endonucleases are site-specific DNA endonucleases that typically function as mobile genetic elements by introducing a double-strand break (DSB) in genomes that lack the endonuclease, resulting in a unidirectional gene conversion event that mobilizes the homing endonuclease gene and flanking DNA. Here, we characterize phage T4-encoded mobE, a predicted free-standing HNH family homing endonuclease. We show that mobE is promoterless and dependent on upstream transcription for expression, and that an internal intrinsic terminator regulates mobE transcript levels. Crucially, in vivo mapping experiments revealed a MobE-dependent, strand-specific nick in the non-coding strand of the nrdB gene of phage T2. An internal deletion of the predicted HNH catalytic motif of MobE abolishes nicking, and reduces high-frequency inheritance of mobE. Sequence polymorphisms of progeny phage that inherit mobE are consistent with DSB repair pathways. Significantly, we found that mobility of the neighboring I-TevIII, a defunct homing endonuclease encoded within a group I intron interrupting the nrdB gene of phage T4, was dependent on an intact mobE gene. Thus, our data indicate that the stagnant nrdB intron and I-TevIII are mobilized in trans as a consequence of a MobE-dependent gene conversion event, facilitating persistence of genetic elements that have no inherent means of promoting their own mobility. PMID:19773422

  11. Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII.

    PubMed

    Wilson, Gavin W; Edgell, David R

    2009-11-01

    Homing endonucleases are site-specific DNA endonucleases that typically function as mobile genetic elements by introducing a double-strand break (DSB) in genomes that lack the endonuclease, resulting in a unidirectional gene conversion event that mobilizes the homing endonuclease gene and flanking DNA. Here, we characterize phage T4-encoded mobE, a predicted free-standing HNH family homing endonuclease. We show that mobE is promoterless and dependent on upstream transcription for expression, and that an internal intrinsic terminator regulates mobE transcript levels. Crucially, in vivo mapping experiments revealed a MobE-dependent, strand-specific nick in the non-coding strand of the nrdB gene of phage T2. An internal deletion of the predicted HNH catalytic motif of MobE abolishes nicking, and reduces high-frequency inheritance of mobE. Sequence polymorphisms of progeny phage that inherit mobE are consistent with DSB repair pathways. Significantly, we found that mobility of the neighboring I-TevIII, a defunct homing endonuclease encoded within a group I intron interrupting the nrdB gene of phage T4, was dependent on an intact mobE gene. Thus, our data indicate that the stagnant nrdB intron and I-TevIII are mobilized in trans as a consequence of a MobE-dependent gene conversion event, facilitating persistence of genetic elements that have no inherent means of promoting their own mobility.

  12. Comparison of avian Chlamydia psittaci isolates by restriction endonuclease analysis and serovar-specific monoclonal antibodies.

    PubMed Central

    Andersen, A A

    1991-01-01

    Avian Chlamydia psittaci isolates were examined by restriction endonuclease analysis and serovar-specific monoclonal antibodies and compared with ovine abortion and polyarthritis isolates. The avian isolates were divided into four serovars (turkey, psittacine, pigeon, and duck) based on their reactivity to the monoclonal antibodies. The DNA digest patterns were similar across the four avian serovars; most bands were identical when the isolates were tested with PstI, BamHI, and EcoRI restriction endonuclease enzymes. The turkey group restriction endonuclease analysis patterns were distinguished from those of the other avian strains by three to four band differences with all enzymes. The duck and pigeon isolates showed only minor DNA pattern differences when compared with the psittacine isolates. Four psittacine isolates from various locations in Texas had an extra band with the EcoRI restriction enzyme, suggesting that they were from a common source; however, they were indistinguishable from the other psittacine isolates when examined with the monoclonal antibodies. The avian isolates were distinctly different from either abortion or polyarthritis isolates by both restriction endonuclease analysis and monoclonal antibody analysis. The data demonstrate that the avian isolates form a distinct group or separate biovar with at least four serovars. Images PMID:1848867

  13. Identification of Egyptian Fasciola species by PCR and restriction endonucleases digestion of the nuclear small subunit ribosomal RNA gene.

    PubMed

    El-Gozamy, Bothina R; Shoukry, Nahla M

    2009-08-01

    Fascioliasis is one of the familiar zoonotic health problems of worldwide distribution including Egypt. In this study, a simple and rapid polymerase chain reaction/restriction fragment length polymorphisms (PCR/RFLPs) assay, using the common restriction endonucleases Aval, EcoRI, Eael, Sac11 and Avail was applied to differentiate between both Fasciola gigantica and F. hepatica. The five restriction endonucleases were used to differentiate between the two species of Fasciola based on -1950 bp long sequence of the 18S nuclear small subunit ribosomal RNA gene. Aval and EcoRI restriction endonucleases failed to differentiate between the two Fasciola species when each restriction enzyme gave the same restriction patterns in both of them. However, F. gigantica and F. hepatica were well-differentiated when their small subunit ribosomal DNA were digested with Eael and Sac 11 restriction endonucleases.

  14. Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition.

    PubMed

    Huang, Yong; Zhao, Shulin; Shi, Ming; Chen, Jia; Chen, Zhen-Feng; Liang, Hong

    2011-12-01

    DNA cleavage by endonucleases plays an important role in many biological events such as DNA replication, recombination, and repair and is used as a powerful tool in medicinal chemistry. However, conventional methods for assaying endonuclease activity and inhibition by gel electrophoresis and chromatography techniques are time-consuming, laborious, not sensitive, or costly. Herein, we combine the high specificity of DNA cleavage reactions with the benefits of quantum dots (QDs) and ultrahigh quenching abilities of inter- and intramolecular quenchers to develop highly sensitive and specific nanoprobes for multiplexed detection of endonucleases. The nanoprobe was prepared by conjugating two sets of DNA substrates carrying quenchers onto the surface of aminated QDs through direct assembly and DNA hybridization. With this new design, the background fluorescence was significantly suppressed by introducing inter- and intramolecular quenchers. When these nanoprobes are exposed to the targeted endonucleases, specific DNA cleavages occur and pieces of DNA fragments are released from the QD surface along with the quenchers, resulting in fluorescence recovery. The endonuclease activity was quantified by monitoring the change in the fluorescence intensity. The detection was accomplished with a single excitation light. Multiplexed detection was demonstrated by simultaneously assaying EcoRI and BamHI (as model analytes) using two different emissions of QDs. The limits of detection were 4.0 × 10(-4) U/mL for EcoRI and 8.0 × 10(-4) U/mL for BamHI, which were at least 100 times more sensitive than traditional gel electrophoresis and chromatography assays. Moreover, the potential application of the proposed method for screening endonuclease inhibitors has also been demonstrated. The assay protocol presented here proved to be simple, sensitive, effective, and easy to carry out.

  15. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation.

    PubMed

    Jagannathan, Indu; Pepenella, Sharon; Hayes, Jeffrey J

    2011-05-20

    We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.

  16. Structure of the Endonuclease Domain of MutL: Unlicensed to Cut

    SciTech Connect

    Pillon, M.; Lorenowicz, J; Uckelmann, M; Klocko, A; Chung, Y; Modrich, P; Walker, G; Simmons, L; Friedhoff, P; Guarne, A

    2010-01-01

    DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn{sup 2+}-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.

  17. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.

    PubMed

    Rolseth, Veslemøy; Rundén-Pran, Elise; Neurauter, Christine Gran; Yndestad, Arne; Luna, Luisa; Aukrust, Pål; Ottersen, Ole Petter; Bjørås, Magnar

    2008-06-01

    The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.

  18. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge–helix–bulge motifs of joined tRNA halves

    PubMed Central

    Randau, Lennart; Calvin, Kate; Hall, Michelle; Yuan, Jing; Podar, Mircea; Li, Hong; Söll, Dieter

    2005-01-01

    Among the tRNA population of the archaeal parasite Nanoarchaeum equitans are five species assembled from separate 5′ and 3′ tRNA halves and four species derived from tRNA precursors containing introns. In both groups an intervening sequence element must be removed during tRNA maturation. A bulge–helix–bulge (BHB) motif is the hallmark structure required by the archaeal splicing endonuclease for recognition and excision of all introns. BHB motifs are recognizable at the joining sites of all five noncontinuous tRNA species, although deviations from the canonical BHB motif are clearly present in at least two of them. Here, we show that the N. equitans splicing endonuclease cleaves tRNA precursors containing normal introns, as well as all five noncontinuous precursor tRNAs, at the predicted splice sites, indicating the enzyme's dual role in the removal of tRNA introns and processing of tRNA halves to be joined in trans. The cleavage activity on a set of synthetic canonical and noncanonical BHB constructs showed that the N. equitans splicing endonuclease accepts a broader range of substrates than the homodimeric Archaeoglobus fulgidus enzyme. In contrast to the A. fulgidus endonuclease, the N. equitans splicing enzyme possesses two different subunits. This heteromeric endonuclease type, found in N. equitans, in all Crenarchaeota, and in Methanopyrus kandleri, is able to act on the noncanonical tRNA introns present only in these organisms, which suggests coevolution of enzyme and substrate. PMID:16330750

  19. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    PubMed

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER.

  20. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1

    PubMed Central

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H2O2) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H2O2 treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H2O2 treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems. PMID:24151624

  1. 7,8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1.

    PubMed

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Kim, Suhkmann; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H₂O₂) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H₂O₂ treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H₂O₂ treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems.

  2. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease.

    PubMed

    Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M; Roy, Rabindra

    2015-03-01

    Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50=2.6μM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavonoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease

    PubMed Central

    Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M.; Roy, Rabindra

    2015-01-01

    Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50 = 2.6 µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavanoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. PMID:25650313

  4. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas.

    PubMed

    Paz, Maria F; Yaya-Tur, Ricard; Rojas-Marcos, Iñigo; Reynes, Gaspar; Pollan, Marina; Aguirre-Cruz, Lucinda; García-Lopez, Jose Luis; Piquer, Jose; Safont, María-Jose; Balaña, Carmen; Sanchez-Cespedes, Montserrat; García-Villanueva, Mercedes; Arribas, Leoncio; Esteller, Manel

    2004-08-01

    The DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) inhibits the killing of tumor cells by alkylating agents, and its loss in cancer cells is associated with hypermethylation of the MGMT CpG island. Thus, methylation of MGMT has been correlated with the clinical response to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in primary gliomas. Here, we investigate whether the presence of MGMT methylation in gliomas is also a good predictor of response to another emergent alkylating agent, temozolomide. Using a methylation-specific PCR approach, we assessed the methylation status of the CpG island of MGMT in 92 glioma patients who received temozolomide as first-line chemotherapy or as treatment for relapses. Methylation of the MGMT promoter positively correlated with the clinical response in the glioma patients receiving temozolomide as first-line chemotherapy (n = 40). Eight of 12 patients with MGMT-methylated tumors (66.7%) had a partial or complete response, compared with 7 of 28 patients with unmethylated tumors (25.0%; P = 0.030). We also found a positive association between MGMT methylation and clinical response in those patients receiving BCNU (n = 35, P = 0.041) or procarbazine/1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (n = 17, P = 0.043) as first-line chemotherapy. Overall, if we analyze the clinical response of all of the first-line chemotherapy treatments with temozolomide, BCNU, and procarbazine/1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea as a group in relation to the MGMT methylation status, MGMT hypermethylation was strongly associated with the presence of partial or complete clinical response (P < 0.001). Finally, the MGMT methylation status determined in the initial glioma tumor did not correlate with the clinical response to temozolomide when this drug was administered as treatment for relapses (P = 0.729). MGMT methylation predicts the clinical response of primary gliomas to first-line chemotherapy with the alkylating agent

  5. Recognition and repair of chemically heterogeneous structures at DNA ends

    PubMed Central

    Andres, Sara N.; Schellenberg, Matthew J.; Wallace, Bret D.; Tumbale, Percy; Williams, R. Scott

    2014-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not “clean”. Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  6. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    SciTech Connect

    Yarosh, D.B.; Setlow, R.B.

    1981-03-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity.

  7. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    SciTech Connect

    Gordon, L.K.; Haseltine, W.A.

    1980-12-25

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.

  8. Recognition and cleavage of DNA by type-II restriction endonucleases.

    PubMed

    Pingoud, A; Jeltsch, A

    1997-05-15

    Restriction endonucleases are enzymes which recognize short DNA sequences and cleave the DNA in both strands. Depending on the enzymological properties different types are distinguished. Type II restriction endonucleases are homodimers which recognize short palindromic sequences 4-8 bp in length and, in the presence of Mg2+, cleave the DNA within or next to the recognition site. They are capable of non-specific binding to DNA and make use of linear diffusion to locate their target site. Binding and recognition of the specific site involves contacts to the bases of the recognition sequence and the phosphodiester backbone over approximately 10-12 bp. In general, recognition is highly redundant which explains the extreme specificity of these enzymes. Specific binding is accompanied by conformational changes over both the protein and the DNA. This mutual induced fit leads to the activation of the catalytic centers. The precise mechanism of cleavage has not yet been established for any restriction endonuclease. Currently two models are discussed: the substrate-assisted catalysis mechanism and the two-metal-ion mechanism. Structural similarities identified between EcoRI, EcoRV, BamHI, PvuII and Cfr10I suggest that many type II restriction endonucleases are not only functionally but also evolutionarily related.

  9. Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage.

    PubMed Central

    Teo, I; Sedgwick, B; Demple, B; Li, B; Lindahl, T

    1984-01-01

    The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6092060

  10. DNA repair of a single UV photoproduct in a designed nucleosome

    SciTech Connect

    Kosmoskil, Joseph V.; Ackerman, Eric J. ); Smerdon, Michael J.

    2001-08-28

    Eukaryotic DNA repair enzymes must interact with the architectural hierarchy of chromatin. The challenge of finding damaged DNA complexed with histone proteins in nucleosomes is complicated by the need to maintain local chromatin structures involved in regulating other DNA processing events. The heterogeneity of lesions induced by DNA-damaging agents has led us to design homogeneously damaged substrates to directly compare repair of naked DNA with that of nucleosomes. Here we report that nucleotide excision repair in Xenopus nuclear extracts can effectively repair a single UV radiation photoproduct located 5 bases from the dyad center of a positioned nucleosome, although the nucleosome is repaired at about half the rate at which the naked DNA fragment is. Extract repair within the nucleosome is > 50-fold more rapid than either enzymatic photoreversal or endonuclease cleavage of the lesion in vitro. Furthermore, nucleosome formation occurs (after repair) only on damaged naked DNA ( 165-bp fragments) during a 1-h incubation in these extracts, even in the presence of a large excess of undamaged DNA. This is an example of selective nucleosome assembly by Xenopus nuclear extracts on a short linear DNA fragment containing a DNA lesion.

  11. DNA base excision repair of uracil residues in reconstituted nucleosome core particles

    PubMed Central

    Nilsen, Hilde; Lindahl, Tomas; Verreault, Alain

    2002-01-01

    The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase β and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase β on nucleosome cores. PMID:12411511

  12. Role of the reactive cysteine residue in restriction endonuclease Cfr9I.

    PubMed

    Siksnys, V; Pleckaityte, M

    1992-11-20

    Chemical modification studies were performed to elucidate the role of Cys-residues in the catalysis/binding of restriction endonuclease Cfr9I. Incubation of restriction endonuclease Cfr9I with N-ethylmaleimide (NEM), iodoacetate, 5,5'-dithiobis (2-nitrobenzoic acid) at pH 7.5 led to a complete loss of the catalytic activity. However, no enzyme inactivation was detectable after modification of the enzyme with iodoacetamide and methyl methanethiosulfonate. Complete protection of the enzyme against inactivation by NEM was observed in the presence of substrate implying that Cys-residues may be located at or in the vicinity of the active site of enzyme. Direct substrate-binding studies of native and modified restriction endonuclease Cfr9I using a gel-mobility shift assay indicated that the modification of the enzyme by NEM was hindered by substrate binding. A single Cys-residue was modified during the titration of the enzyme with DTNB with concomitant loss of the catalytic activity. The pH-dependence of inactivation of Cfr9I by NEM revealed the modification of the residue with the pKa value of 8.9 +/- 0.2. The dependence of the reaction rate of substrate hydrolysis by Cfr9I versus pH revealed two essential residues with pKa values of 6.3 +/- 0.15 and 8.7 +/- 0.15, respectively. The evidence presented suggests that the restriction endonuclease Cfr9I contains a reactive sulfhydryl residue which is non-essential for catalysis, but is located at or near the substrate binding site.

  13. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-09-08

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  14. Substrate Generation for Endonucleases of CRISPR/Cas Systems

    PubMed Central

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of

  15. Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue

    PubMed Central

    Ribeiro, Luciana Andrea; Turba, Maria Elena; Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

    2006-01-01

    Background The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed. Results Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were observed in swine CL during different luteal phases and at pregnancy. Immediately after ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. Conclusion Our findings, obtained from a precisely controlled in vivo model of CL development and regression, allow us to determine relationships among VEGF, MMPs and endonucleases during angiogenesis and angioregression. Thus, CL provides a very interesting model for studying factors involved in vascular remodelling. PMID:17137503

  16. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference

    PubMed Central

    Roy, Alexander C.; Wilson, Geoffrey G.; Edgell, David R.

    2016-01-01

    Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites. PMID:27387281

  17. An extraordinary retrotransposon family encoding dual endonucleases

    PubMed Central

    Kojima, Kenji K.; Fujiwara, Haruhiko

    2005-01-01

    Retrotransposons commonly encode a reverse transcriptase (RT), but other functional domains are variable. The acquisition of new domains is the dominant evolutionary force that brings structural variety to retrotransposons. Non-long-terminal-repeat (non-LTR) retrotransposons are classified into two groups by their structure. Early branched non-LTR retrotransposons encode a restriction-like endonuclease (RLE), and recently branched non-LTR retrotransposons encode an apurinic/apyrimidinic endonuclease-like endonuclease (APE). In this study, we report a novel non-LTR retrotransposon family Dualen, identified from the Chlamydomonas reinhardtii genome. Dualen encodes two endonucleases, RLE and APE, with RT, ribonuclease H, and cysteine protease. Phylogenetic analyses of the RT domains revealed that Dualen is positioned at the midpoint between the early-branched and the recently branched groups. In the APE tree, Dualen was branched earlier than the I group and the Jockey group. The ribonuclease H domains among the Dualen family and other non-LTR retrotransposons are monophyletic. Phylogenies of three domains revealed the monophyly of the Dualen family members. The domain structure and the phylogeny of each domain imply that Dualen is a retrotransposon conserving the domain structure just after the acquisition of APE. From these observations, we discuss the evolution of domain structure of non-LTR retrotransposons. PMID:16077010

  18. Two unique restriction endonucleases from Neisseria lactamica.

    PubMed

    Qiang, B Q; Schildkraut, I

    1986-03-11

    Two new site-specific endonucleases, N1a III and N1a IV, have been isolated from Neisseria lactamica. N1a III recognizes the sequence, CATG, and cleaves 3' of the sequence to produce a four base 3' extension. N1a IV recognizes the sequence, GGNNCC, and cleaves between the two N's to produce blunt ended fragments.

  19. Shade avoidance 6 encodes an Arabidopsis flap endonuclease required for maintenance of genome integrity and development

    PubMed Central

    Zhang, Yijuan; Wen, Chunhong; Liu, Songbai; Zheng, Li; Shen, Binghui; Tao, Yi

    2016-01-01

    Flap endonuclease-1 (FEN1) belongs to the Rad2 family of structure-specific nucleases. It is required for several DNA metabolic pathways, including DNA replication and DNA damage repair. Here, we have identified a shade avoidance mutant, sav6, which reduces the mRNA splicing efficiency of SAV6. We have demonstrated that SAV6 is an FEN1 homologue that shows double-flap endonuclease and gap-dependent endonuclease activity, but lacks exonuclease activity. sav6 mutants are hypersensitive to DNA damage induced by ultraviolet (UV)-C radiation and reagents that induce double-stranded DNA breaks, but exhibit normal responses to chemicals that block DNA replication. Signalling components that respond to DNA damage are constitutively activated in sav6 mutants. These data indicate that SAV6 is required for DNA damage repair and the maintenance of genome integrity. Mutant sav6 plants also show reduced root apical meristem (RAM) size and defective quiescent centre (QC) development. The expression of SMR7, a cell cycle regulatory gene, and ERF115 and PSK5, regulators of QC division, is increased in sav6 mutants. Their constitutive induction is likely due to the elevated DNA damage responses in sav6 and may lead to defects in the development of the RAM and QC. Therefore, SAV6 assures proper root development through maintenance of genome integrity. PMID:26721386

  20. Shade avoidance 6 encodes an Arabidopsis flap endonuclease required for maintenance of genome integrity and development.

    PubMed

    Zhang, Yijuan; Wen, Chunhong; Liu, Songbai; Zheng, Li; Shen, Binghui; Tao, Yi

    2016-02-18

    Flap endonuclease-1 (FEN1) belongs to the Rad2 family of structure-specific nucleases. It is required for several DNA metabolic pathways, including DNA replication and DNA damage repair. Here, we have identified a shade avoidance mutant, sav6, which reduces the mRNA splicing efficiency of SAV6. We have demonstrated that SAV6 is an FEN1 homologue that shows double-flap endonuclease and gap-dependent endonuclease activity, but lacks exonuclease activity. sav6 mutants are hypersensitive to DNA damage induced by ultraviolet (UV)-C radiation and reagents that induce double-stranded DNA breaks, but exhibit normal responses to chemicals that block DNA replication. Signalling components that respond to DNA damage are constitutively activated in sav6 mutants. These data indicate that SAV6 is required for DNA damage repair and the maintenance of genome integrity. Mutant sav6 plants also show reduced root apical meristem (RAM) size and defective quiescent centre (QC) development. The expression of SMR7, a cell cycle regulatory gene, and ERF115 and PSK5, regulators of QC division, is increased in sav6 mutants. Their constitutive induction is likely due to the elevated DNA damage responses in sav6 and may lead to defects in the development of the RAM and QC. Therefore, SAV6 assures proper root development through maintenance of genome integrity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair.

    PubMed

    Kwon, S-J; Park, J-H; Park, E-J; Lee, S-A; Lee, H-S; Kang, S W; Kwon, J

    2015-01-15

    ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.

  2. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    PubMed Central

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  3. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    PubMed

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    PubMed

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-08

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    PubMed Central

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  6. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.

    PubMed

    Wang, Hongyan; Wang, Xiang; Chen, Guangnan; Zhang, Xiangming; Tang, Xiaobing; Park, Dongkyoo; Cucinotta, Francis A; Yu, David S; Deng, Xingming; Dynan, William S; Doetsch, Paul W; Wang, Ya

    2014-10-31

    High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Quantitative determination of effective nibbling activities contaminating restriction endonuclease preparations.

    PubMed

    Hashimoto-Gotoh, T

    1995-10-10

    A simple and sensitive procedure with which to detect residual exonucleolytic nibbling activities contaminating restriction endonuclease preparations is described. The procedure uses the kyosei-plasmid, pKF4, which confers kanamycin resistance and enforces streptomycin sensitivity encoded by the trp promoter/operator-driven rpsL+amber(PO(trp)-rpsL+4(am)) gene onto Escherichia coli streptomycin-resistant, amber-suppressive, trp repressor-negative strains such as TH5. When TH5 cells transformed by pKF4 were selected on agar medium containing kanamycin plus streptomycin, the efficiency of transformation plating was substantially lower than that on agar containing kanamycin alone. However, when pKF4 DNA was digested by restriction enzymes that cut once per molecule within PO(trp)-rpsL+4(am) and relegated, the plating efficiency increased depending on the degree of contamination of exonucleolytic nibbling activities in the enzyme preparations, due to deletion mutation at the ligand junction. Plating efficiency was converted to "effective nibbling activity" corresponding to Bal31 nuclease-equivalent units. Using this procedure, effective nibbling activities were detected in 17 of 34 commercial samples of restriction enzymes tested. The method is simple and more sensitive than the procedures used by the commercial suppliers and it is applicable to the quality control testing of more than 100 restriction enzymes.

  8. Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity.

    PubMed

    Correa, Elisa M E; De Tullio, Luisina; Vélez, Pablo S; Martina, Mariana A; Argaraña, Carlos E; Barra, José L

    2013-12-01

    The hallmark of the mismatch repair system in bacterial and eukaryotic organisms devoid of MutH is the presence of a MutL homologue with endonuclease activity. The aim of this study was to analyse whether different DNA structures affect Pseudomonas aeruginosa MutL (PaMutL) endonuclease activity and to determine if a specific nucleotide sequence is required for this activity. Our results showed that PaMutL was able to nick covalently closed circular plasmids but not linear DNA at high ionic strengths, while the activity on linear DNA was only found below 60 mM salt. In addition, single strand DNA, ss/ds DNA boundaries and negatively supercoiling degree were not required for PaMutL nicking activity. Finally, the analysis of the incision sites revealed that PaMutL, as well as Bacillus thuringiensis MutL homologue, did not show DNA sequence specificity.

  9. Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer

    PubMed Central

    Lin, Jason L. J.; Wu, Chyuan-Chuan; Yang, Wei-Zen; Yuan, Hanna S.

    2016-01-01

    Endonuclease G (EndoG) is an evolutionarily conserved mitochondrial protein in eukaryotes that digests nucleus chromosomal DNA during apoptosis and paternal mitochondrial DNA during embryogenesis. Under oxidative stress, homodimeric EndoG becomes oxidized and converts to monomers with diminished nuclease activity. However, it remains unclear why EndoG has to function as a homodimer in DNA degradation. Here, we report the crystal structure of the Caenorhabditis elegans EndoG homologue, CPS-6, in complex with single-stranded DNA at a resolution of 2.3 Å. Two separate DNA strands are bound at the ββα-metal motifs in the homodimer with their nucleobases pointing away from the enzyme, explaining why CPS-6 degrades DNA without sequence specificity. Two obligatory monomeric CPS-6 mutants (P207E and K131D/F132N) were constructed, and they degrade DNA with diminished activity due to poorer DNA-binding affinity as compared to wild-type CPS-6. Moreover, the P207E mutant exhibits predominantly 3′-to-5′ exonuclease activity, indicating a possible endonuclease to exonuclease activity change. Thus, the dimer conformation of CPS-6 is essential for maintaining its optimal DNA-binding and endonuclease activity. Compared to other non-specific endonucleases, which are usually monomeric enzymes, EndoG is a unique dimeric endonuclease, whose activity hence can be modulated by oxidation to induce conformational changes. PMID:27738134

  10. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease

    NASA Astrophysics Data System (ADS)

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-04-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV.

  11. Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability

    PubMed Central

    Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.; Neil, Alexander J.; Shaw, Steven J.; Algasaier, Sana I.; Kim, Jane C.; Finger, L. David; Jardine, Emma; Gotham, Victoria J.B.; Sarker, Altaf H.; Her, Mai Z.; Rashid, Fahad; Hamdan, Samir M.; Mirkin, Sergei M.; Grasby, Jane A.; Tainer, John A.

    2017-01-01

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. PMID:28653660

  12. In vitro and in vivo activities of T4 endonuclease V mutants altered in the C-terminal aromatic region

    SciTech Connect

    Ishida, M.; Kanamori, Y.; Hori, N.; Inaoka, T.; Ohtsuka, E. )

    1990-04-24

    Genes encoding mutants of the thymine photodimer repair enzyme from bacteriophage T4 (T4 endonuclease V) having an amino acid substitution (T127M, W128A, W128S, Y129A, K130L, Y131A, Y132A) were constructed by use of a previously obtained synthetic gene and expressed in Escherichia coli under the control of the E. coli tryptophan promoter. An in vitro assay of partially fractionated mutant proteins for glycosylase activity was performed with chemically synthesized substrates containing a thymine photodimer. T127M and K130L showed almost the same activity as the wild-type protein. Although W128S, Y131A, and Y132A were slightly active, W128A and Y129A lost activity. The results indicated that the aromatic amino acids around position 130 may be important for the glycosylase activity. Mutant T127M was purified, and the Km value was found to be of the same order as that of the wild type (10(-8) M). In vivo activities for all mutants were characterized with UV-sensitive E. coli. The results showed that substitution of Thr-127 with Met or Lys-130 with Leu did not have an effect on the survival of the bacteria but substitution of aromatic amino acids (128-132) had various effects on survival.

  13. Relaxed circular SV40 DNA as cleavage intermediate of two restriction endonucleases.

    PubMed Central

    Ruben, G; Spielman, P; Tu, C D; Jay, E; Siegel, B; Wu, R

    1977-01-01

    We have determined the mode of cleavage of superhelical SV40 DNA (Form I) by restriction endonucleases EcoRI and HpaII at 37 degrees C. By analysis with agarose gel electrophoresis and direct examination with dark field electron microscopy, we found that a large amount of the single-nicked circular DNA (Form II) was produced before the linear SV40 DNA (Form III) appeared. Thus, both restriction enzymes cleave only one strand of the superhelical DNA first. The second cleavage on the complementary strand occurred after a lag period. The first order rate constant for the second cleavage by EcoRI endonuclease was determined and a kinetic reaction scheme for both enzymes is proposed. Images PMID:197493

  14. Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2.

    PubMed

    Antushevich, Hanna; Krawczynska, Agata; Kapica, Malgorzata; Herman, Andrzej Przemyslaw; Zabielski, Romuald

    2014-01-01

    Apelin is a regulatory peptide, identified as an endogenous ligand of the Apelin receptor (APJ). Both the apelin and the APJ were detected in brain, lung, heart, mammary gland, kidney, placenta, adipose tissues and the gastrointestinal tract. Apelin is considered an important regulatory gut peptide with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behaviour. The aim of the present study was to assess the effect of the apelin on mitosis, apoptosis and the expression of DNA repair enzyme (OGG 1/2), and APJ receptor in intestinal cell lines: rat crypt (IEC-6) and human enterocyte model (Caco-2). The cell cultures were incubated with the apelin-12 (10-8 M) for 4, 6, 12, 24 and 48 h and the apoptosis (caspase 3), mitosis (Ki-67) and DNA repair enzyme (OGG1/2) markers were studied by Real-Time qRT-PCR and immunofluorescent methods. The results of Real-Time qRT-PCR and immunocytochemical analysis showed that the levels of mRNAs were inversely related to the expression level of corresponding proteins. Immunofluorescent studies revealed inhibitory effect of apelin-12 on apoptosis, mitosis and the expression of OGG1/2 in the intestinal crypt cell line IEC-6. However, in the enterocyte model Caco-2 cells apelin stimulated apoptosis and mitosis, and reduced OGG1/2 expression. These findings suggest that apelin may be involved in the control of epithelial cell turnover in the gastrointestinal tract.

  15. The endonuclease domain of MutL interacts with the β sliding clamp

    PubMed Central

    Pillon, Monica C.; Miller, Jeffrey H.; Guarné, Alba

    2010-01-01

    Mismatch repair corrects errors that have escaped polymerase proofreading enhancing replication fidelity by at least two orders of magnitude. The β and PCNA sliding clamps increase the polymerase processivity during DNA replication and are important at several stages of mismatch repair. Both MutS and MutL, the two proteins that initiate the mismatch repair response, interact with β. Binding of MutS to β is important to recruit MutS and MutL to foci. Moreover, the endonuclease activity of human and yeast MutLα is stimulated by PCNA. However, the concrete functions of the processivity clamp in the repair steps preceding DNA resynthesis remain obscure. Here, we demonstrate that the C-terminal domain of MutL encompasses a bona fide β-binding motif that mediates a weak, yet specific, interaction between the two proteins. Mutation of this conserved motif correlates with defects in mismatch repair, demonstrating that the direct interaction with β is important for MutL function. The interaction between the C-terminal domain of MutL and β is conserved in both B. subtilis and E. coli, but the repair defects associated with mutation of this β-binding motif are more severe in the former, suggesting that this interaction may have a more prominent role in methyl-independent than methyl-directed mismatch repair systems. Together with previously published data, our work strongly suggests that β may stimulate the endonuclease activity of MutL through its direct interaction with the C-terminal domain of MutL. PMID:21050827

  16. T7 Endonuclease I Mediates Error Correction in Artificial Gene Synthesis.

    PubMed

    Sequeira, Ana Filipa; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-09-01

    Efficacy of de novo gene synthesis largely depends on the quality of overlapping oligonucleotides used as template for PCR assembly. The error rate associated with current gene synthesis protocols limits the efficient and accurate production of synthetic genes, both in the small and large scales. Here, we analysed the ability of different endonuclease enzymes, which specifically recognize and cleave DNA mismatches resulting from incorrect impairments between DNA strands, to remove mutations accumulated in synthetic genes. The gfp gene, which encodes the green fluorescent protein, was artificially synthesized using an integrated protocol including an enzymatic mismatch cleavage step (EMC) following gene assembly. Functional and sequence analysis of resulting artificial genes revealed that number of deletions, insertions and substitutions was strongly reduced when T7 endonuclease I was used for mutation removal. This method diminished mutation frequency by eightfold relative to gene synthesis not incorporating an error correction step. Overall, EMC using T7 endonuclease I improved the population of error-free synthetic genes, resulting in an error frequency of 0.43 errors per 1 kb. Taken together, data presented here reveal that incorporation of a mutation-removal step including T7 endonuclease I can effectively improve the fidelity of artificial gene synthesis.

  17. A thermostable, sequence-specific restriction endonuclease from Bacillus stearothermophilus: BstPI.

    PubMed Central

    Pugatsch, T; Weber, H

    1979-01-01

    A restriction endonuclease, BstPI, was purified from a strain of B. stearothermophilus, and its cleavage specificity was determined. The enzyme cleaves at palindromic sites of the general structure: (Formula: see text) where N.N' can be any base pair. It produces phosphorylated 5'-termini which are single stranded over a length of 5 nucleotides. Ends generated by cleavage with BstPI can be rejoined by DNA ligase. Images PMID:503858

  18. All Three Subunits of RecBCD Enzyme Are Essential for DNA Repair and Low-Temperature Growth in the Antarctic Pseudomonas syringae Lz4W

    PubMed Central

    Pavankumar, Theetha L.; Sinha, Anurag K.; Ray, Malay K.

    2010-01-01

    Background The recD mutants of the Antarctic Pseudomonas syringae Lz4W are sensitive to DNA-damaging agents and fail to grow at 4°C. Generally, RecD associates with two other proteins (RecB and RecC) to produce RecBCD enzyme, which is involved in homologous recombination and DNA repair in many bacteria, including Escherichia coli. However, RecD is not essential for DNA repair, nor does its deletion cause any growth defects in E. coli. Hence, the assessment of the P. syringae RecBCD pathway was imperative. Methodology/Principal Findings Mutational analysis and genetic complementation studies were used to establish that the individual null-mutations of all three genes, recC, recB, and recD, or the deletion of whole recCBD operon of P. syringae, lead to growth inhibition at low temperature, and sensitivity to UV and mitomycin C. Viability of the mutant cells dropped drastically at 4°C, and the mutants accumulated linear chromosomal DNA and shorter DNA fragments in higher amounts compared to 22°C. Additional genetic data using the mutant RecBCD enzymes that were inactivated either in the ATPase active site of RecB (RecBK29Q) or RecD (RecDK229Q), or in the nuclease center of RecB (RecBD1118A and RecBΔnuc) suggested that, while the nuclease activity of RecB is not so critical in vivo, the ATP-dependent functions of both RecB and RecD are essential. Surprisingly, E. coli recBCD or recBC alone on plasmid could complement the defects of the ΔrecCBD strain of P. syringae. Conclusions/Significance All three subunits of the RecBCDPs enzyme are essential for DNA repair and growth of P. syringae at low temperatures (4°C). The RecD requirement is only a function of the RecBCD complex in the bacterium. The RecBCD pathway protects the Antarctic bacterium from cold-induced DNA damages, and is critically dependent on the helicase activities of both RecB and RecD subunits, but not on the nuclease of RecBCDPs enzyme. PMID:20195537

  19. Diallyl sulfide induces the expression of nucleotide excision repair enzymes in the breast of female ACI rats.

    PubMed

    Green, Mario; Newell, Oneil; Aboyade-Cole, Ayoola; Darling-Reed, Selina; Thomas, Ronald D

    2007-01-10

    Diethylstilbestrol (DES) causes DNA adducts resulting in breast cancer, whereas diallyl sulfide (DAS) inhibits cancer formation. We hypothesize that DAS induces the expression of nucleotide excision repair genes. To test this hypothesis, female ACI rats were treated for 4 days with corn oil, DES, DAS, and DAS/DES (50mg/kg). The expression of P53, Gadd45a, PCNA, and DNA polymerase delta was analyzed by real-time PCR. DES decreased the expression of P53, Gadd45a and PCNA. DAS and DAS/DES increased the expression of all four genes. These results suggest that DAS enhances the ability of breast tissue to repair DNA damage thus preventing cancer.

  20. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii.

    PubMed

    Sears, Alice; Peakman, Luke J; Wilson, Geoffrey G; Szczelkun, Mark D

    2005-01-01

    A new Type III restriction endonuclease designated PstII has been purified from Providencia stuartii. PstII recognizes the hexanucleotide sequence 5'-CTGATG(N)(25-26/27-28)-3'. Endonuclease activity requires a substrate with two copies of the recognition site in head-to-head repeat and is dependent on a low level of ATP hydrolysis ( approximately 40 ATP/site/min). Cleavage occurs at just one of the two sites and results in a staggered cut 25-26 nt downstream of the top strand sequence to generate a two base 5'-protruding end. Methylation of the site occurs on one strand only at the first adenine of 5'-CATCAG-3'. Therefore, PstII has characteristic Type III restriction enzyme activity as exemplified by EcoPI or EcoP15I. Moreover, sequence asymmetry of the PstII recognition site in the T7 genome acts as an historical imprint of Type III restriction activity in vivo. In contrast to other Type I and III enzymes, PstII has a more relaxed nucleotide specificity and can cut DNA with GTP and CTP (but not UTP). We also demonstrate that PstII and EcoP15I cannot interact and cleave a DNA substrate suggesting that Type III enzymes must make specific protein-protein contacts to activate endonuclease activity.

  1. Repair of DNA-containing pyrimidine dimers

    SciTech Connect

    Grossman, L.; Caron, P.R.; Mazur, S.J.; Oh, E.Y.

    1988-08-01

    Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.21 references.

  2. An exocytoplasmic endonuclease with restriction function in Streptomyces antibioticus.

    PubMed Central

    de los Reyes-Gavilan, C G; Aparicio, J F; Barbes, C; Hardisson, C; Sanchez, J

    1988-01-01

    Streptomyces antibioticus produces a strong endo-DNase which is located between the cytoplasmic membrane and the cell wall. All DNA substrates assayed, including the chromosomal DNA of this species and several bacteriophage DNAs, were completely degraded in vitro by the enzyme. The rate of synthesis of the nuclease depended on the growth medium. In NBG medium, in which the enzyme is not produced, the size of lytic plaques of several actinophages was larger than that in GYM or GAE medium, in which synthesis of the nuclease takes place late in growth. In addition, one of the phages assayed, phi A6, showed a diminution of its efficiency of plating in GYM medium with respect to that in NBG medium; another phage, phi A9, grew in NBG medium but not in the other two media. It is postulated that the presence of the host nuclease, together with the capability of the particular phage to absorb on S. antibioticus of different growth phases, determines the efficiency of growth and the plaque size of the phages on productive media. This hypothesis was confirmed when the growth of phi A6 and phi A9 in a mutant of S. antibioticus lacking the endonuclease activity was analyzed. It is concluded that the enzyme can assume, under some circumstances, a role in in vivo restriction. Images PMID:2830237

  3. Recognition of GT mismatches by Vsr mismatch endonuclease

    PubMed Central

    Fox, Keith R.; Allinson, Sarah L.; Sahagun-Krause, Heidi; Brown, Tom

    2000-01-01

    The Vsr mismatch endonuclease recognises the sequence CTWGG (W = A or T) in which the underlined thymine is paired with guanine and nicks the DNA backbone on the 5′-side of the mispaired thymine. By using base analogues of G and T we have explored the functional groups on the mismatch pair which are recognised by the enzyme. Removal of the thymine 5-methyl group causes a 60% reduction in activity, while removing the 2-amino group of guanine reduces cleavage by 90%. Placing 2-aminopurine or nebularine opposite T generates mismatches which are cut at a much lower rate (0.1%). When either base is removed, generating a pseudoabasic site (1′,2′-dideoxyribose), the enzyme still produces site-specific cleavage, but at only 1% of the original rate. Although TT and CT mismatches at this position are cleaved at a low rate (~1%), mismatches with other bases (such as GA and AC) and Watson–Crick base pairs are not cleaved by the enzyme. There is also no cleavage when the mismatched T is replaced with difluorotoluene. PMID:10871403

  4. Recognition of GT mismatches by Vsr mismatch endonuclease.

    PubMed

    Fox, K R; Allinson, S L; Sahagun-Krause, H; Brown, T

    2000-07-01

    The Vsr mismatch endonuclease recognises the sequence CTWGG (W = A or T) in which the underlined thymine is paired with guanine and nicks the DNA backbone on the 5'-side of the mispaired thymine. By using base analogues of G and T we have explored the functional groups on the mismatch pair which are recognised by the enzyme. Removal of the thymine 5-methyl group causes a 60% reduction in activity, while removing the 2-amino group of guanine reduces cleavage by 90%. Placing 2-amino-purine or nebularine opposite T generates mis-matches which are cut at a much lower rate (0.1%). When either base is removed, generating a pseudoabasic site (1', 2'-dideoxyribose), the enzyme still produces site-specific cleavage, but at only 1% of the original rate. Although TT and CT mismatches at this position are cleaved at a low rate (approximately 1%), mismatches with other bases (such as GA and AC) and Watson-Crick base pairs are not cleaved by the enzyme. There is also no cleavage when the mismatched T is replaced with difluorotoluene.

  5. Structure and function of type II restriction endonucleases.

    PubMed

    Pingoud, A; Jeltsch, A

    2001-09-15

    More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of

  6. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  7. The amino acidic substitution of cysteine 167 by serine (C167S) in BstVI restriction endonuclease of Bacillus stearothermophilus V affects its conformation and thermostability.

    PubMed

    Loyola, C; Saavedra, C; Gómez, I; Vásquez, C

    1999-03-01

    The restriction endonuclease BstVI from Bacillus stearothermophilus V contains three cysteine residues at positions 134, 167 and 180. Titration of Cys residues with DTNB showed that none of them are involved in disulphide bond formation. Cysteine triplets 134 and 167 were modified by recombinant PCR to introduce a serine residue in each case. The mutated genes were cloned into pGEM-T vector and transformed into E. coli JM109. Even though pGEM-T is not designed for expression, the mutant proteins were efficiently expressed in E. coli. The endonuclease carrying the mutation C134S was purified to homogeneity but appeared to be very unstable. In contrast, the C167S mutant enzyme was stable when pure and was studied biochemically. This mutant enzyme was as stable and resistant to protein-denaturing agents as the wild type enzyme. The activity of both enzymes was not affected by preincubations of 2 h at 80 degrees C. A short preincubation at 95 degrees C caused a complete inactivation of the mutant enzyme while the wild type endonuclease retained 30% of its activity. Moreover, the C167S BstVI was more susceptible to be hydrolyzed by proteinase K and trypsine compared to the wild type endonuclease. These results show that the substitution Cys --> Ser at position 167 affects the configuration and thermostability of BstVI restriction endonuclease.

  8. Photoreactivation of Escherichia coli after Low- or Medium-Pressure UV Disinfection Determined by an Endonuclease Sensitive Site Assay

    PubMed Central

    Oguma, Kumiko; Katayama, Hiroyuki; Ohgaki, Shinichiro

    2002-01-01

    Photoreactivation of Escherichia coli after inactivation by a low-pressure (LP) UV lamp (254 nm), by a medium-pressure (MP) UV lamp (220 to 580 nm), or by a filtered medium-pressure (MPF) UV lamp (300 to 580 nm) was investigated. An endonuclease sensitive site (ESS) assay was used to determine the number of UV-induced pyrimidine dimers in the genomic DNA of E. coli, while a conventional cultivation assay was used to investigate the colony-forming ability (CFA) of E. coli. In photoreactivation experiments, more than 80% of the pyrimidine dimers induced by LP or MPF UV irradiation were repaired, while almost no repair of dimers was observed after MP UV exposure. The CFA ratios of E. coli recovered so that they were equivalent to 0.9-, 2.3-, and 1.7-log inactivation after 3-log inactivation by LP, MP, and MPF UV irradiation, respectively. Photorepair treatment of DNA in vitro suggested that among the MP UV emissions, wavelengths of 220 to 300 nm reduced the subsequent photorepair of ESS, possibly by causing a disorder in endogenous photolyase, an enzyme specific for photoreactivation. On the other hand, the MP UV irradiation at wavelengths between 300 and 580 nm was observed to play an important role in reducing the subsequent recovery of CFA by inducing damage other than damage to pyrimidine dimers. Therefore, it was found that inactivating light at a broad range of wavelengths effectively reduced subsequent photoreactivation, which could be an advantage that MP UV irradiation has over conventional LP UV irradiation. PMID:12450825

  9. Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair

    PubMed Central

    Sengupta, Shiladitya; Mantha, Anil K.; Song, Heyu; Roychoudhury, Shrabasti; Nath, Somsubhra; Ray, Sutapa; Bhakat, Kishor K.

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation. PMID:27655688

  10. An AP Endonuclease 1–DNA Polymerase β Complex: Theoretical Prediction of Interacting Surfaces

    PubMed Central

    Abyzov, Alexej; Uzun, Alper; Strauss, Phyllis R.; Ilyin, Valentin A.

    2008-01-01

    Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5′ to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-β). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-β, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-β based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-β located downstream of APEX1 (3′ to the damaged site) and three with pol-β located upstream of APEX1 (5′ to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (∼−10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-β at the 3′-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-β in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-β in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3′ side. The method described here can be used for analysis in any DNA-metabolizing pathway

  11. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    PubMed Central

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  12. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    SciTech Connect

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-10-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4{sub 2}, with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement.

  13. Affinity partitioning of restriction endonucleases. Application to the purification of EcoR I and EcoR V.

    PubMed

    Vlatakis, G; Bouriotis, V

    1991-02-01

    Partitioning of restriction endonucleases between two liquid aqueous phases can be strongly influenced by group-specific ligands included in the two-phase system. Three restriction endonucleases, namely EcoR I, EcoR V and BamH I, were partitioned within an aqueous dextran-polyethylene glycol (PEG) system. The enzymes could be extracted into the upper PEG phase by using either triazine dyes or herring DNA as affinity ligands. The influence of the endogenous bacterial nucleic acids, concentration of polymerbound dye and concentration of sodium chloride on the system were examined. A partial purification of EcoR I (up to 52-fold) and EcoR V (up to 37-fold) was achieved using a combination of affinity partitioning and ion-exchange chromatography, providing an extremely fast and economical method for the isolation of restriction endonucleases free from contaminating nuclease activities.

  14. Levels of the Vsr Endonuclease Do Not Regulate Stationary-Phase Reversion of a Lac− Frameshift Allele in Escherichia coli

    PubMed Central

    Foster, Patricia L.; Rosche, William A.

    1998-01-01

    Vsr endonuclease, which initiates very short patch repair, has been hypothesized to regulate mutation in stationary-phase cells. Overexpression of Vsr does dramatically increase the stationary-phase reversion of a Lac− frameshift allele, but the absence of Vsr has no effect. Thus, at least in this case, Vsr has no regulatory role in stationary-phase mutation, and the effects of Vsr overproduction are likely to be artifactual. PMID:9537396

  15. Levels of the Vsr endonuclease do not regulate stationary-phase reversion of a Lac- frameshift allele in Escherichia coli.

    PubMed

    Foster, P L; Rosche, W A

    1998-04-01

    Vsr endonuclease, which initiates very short patch repair, has been hypothesized to regulate mutation in stationary-phase cells. Overexpression of Vsr does dramatically increase the stationary-phase reversion of a Lac- frameshift allele, but the absence of Vsr has no effect. Thus, at least in this case, Vsr has no regulatory role in stationary-phase mutation, and the effects of Vsr overproduction are likely to be artifactual.

  16. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites.

    PubMed

    Chevalier, B S; Monnat, R J; Stoddard, B L

    2001-04-01

    Homing endonucleases, like restriction enzymes, cleave double-stranded DNA at specific target sites. The cleavage mechanism(s) utilized by LAGLIDADG endonucleases have been difficult to elucidate; their active sites are divergent, and only one low resolution cocrystal structure has been determined. Here we report two high resolution structures of the dimeric I-CreI homing endonuclease bound to DNA: a substrate complex with calcium and a product complex with magnesium. The bound metals in both complexes are verified by manganese anomalous difference maps. The active sites are positioned close together to facilitate cleavage across the DNA minor groove; each contains one metal ion bound between a conserved aspartate (Asp 20) and a single scissile phosphate. A third metal ion bridges the two active sites. This divalent cation is bound between aspartate residues from the active site of each subunit and is in simultaneous contact with the scissile phosphates of both DNA strands. A metal-bound water molecule acts as the nucleophile and is part of an extensive network of ordered water molecules that are positioned by enzyme side chains. These structures illustrate a unique variant of a two-metal endonuclease mechanism is employed by the highly divergent LAGLIDADG enzyme family.

  17. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses

    PubMed Central

    Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael

    2014-01-01

    Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl–DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase–DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr–DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2’s having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence. PMID:25201958

  18. DNA Repair Enzyme Uracil DNA Glycosylase Is Specifically Incorporated into Human Immunodeficiency Virus Type 1 Viral Particles through a Vpr-Independent Mechanism

    PubMed Central

    Willetts, Karen E.; Rey, Françoise; Agostini, Isabelle; Navarro, Jean-Marc; Baudat, Yves; Vigne, Robert; Sire, Joséphine

    1999-01-01

    The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr. Our results, with highly purified viruses, show that UDG is efficiently incorporated either into wild-type virions or into Vpr-deficient HIV-1 virions, indicating that Vpr is not involved in UDG packaging. Using an in vitro protein-protein binding assay, we reveal a direct interaction between the precursor form of UDG and the viral integrase (IN). Finally, we demonstrate that IN-defective viruses fail to incorporate UDG, indicating that IN is required for packaging of UDG into virions. PMID:9882380

  19. Processing of abasic site damaged lesions by APE1 enzyme on DNA adsorbed over normal and organomodified clay.

    PubMed

    Kumari, Bhavini; Banerjee, Shib Shankar; Singh, Vandana; Das, Prolay; Bhowmick, Anil K

    2014-10-01

    The efficiency of the apurinic/apyrimidinic endonuclease (APE1) DNA repair enzyme in the processing of abasic site DNA damage lesions at precise location in DNA oligomer duplexes that are adsorbed on clay surfaces was evaluated. Three different forms of clay namely montmorillonite, quaternary ammonium salt modified montmorillonite and its boiled counterpart i.e. partially devoid of organic moiety were used for a comparative study of adsorption, desorption and DNA repair efficiency on their surfaces. The interaction between the DNA and the clay was analysed by X-ray diffraction, Atomic force microscopy, UV-Vis spectroscopy and Infrared spectroscopy. The abasic site cleavage efficiency of APE1 enzyme was quantitatively evaluated by polyacrylamide gel electrophoresis. Apart from the difference in the DNA adsorption or desorption capacity of the various forms of clay, substantial variation in the repair efficiency of abasic sites initiated by the APE1 enzyme on the clay surfaces was observed. The incision efficiency of APE1 enzyme at abasic sites was found to be greatly diminished, when the DNA was adsorbed over organomodified montmorillonite. The reduced repair activity indicates an important role of the pendant surfactant groups on the clay surfaces in directing APE1 mediated cleavage of abasic site DNA damage lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mitotane sensitizes adrenocortical cancer cells to ionizing radiations by involvement of the cyclin B1/CDK complex in G2 arrest and mismatch repair enzymes modulation.

    PubMed

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Misiti, Silvia; Raza, Giorgio; De Paula, Ugo; Marchese, Rodolfo; Brunetti, Ercole; Toscano, Vincenzo; Stigliano, Antonio

    2010-08-01

    Mitotane inhibits steroid synthesis by an action on steroidogenic enzymes, as 11beta-hydroxylase and cholesterol side chain cleavage. It also has a cytotoxic effect on the adrenocortical cells and represents a primary drug used in the adrenocortical carcinoma (ACC). H295R and SW13 cell lines were treated with mitotane 10(-5) M and ionizing radiations (IR) in combination therapy, inducing an irreversible inhibition of cell growth in both adrenocortical cancer cells. As shown in a previous report, mitotane/IR combination treatment induced a cell accumulation in the G2 phase. Here, we report the radiosensitizing properties of mitotane in two different ACC cell lines. The drug reveals the effectiveness to enhance the cytotoxic effects of IR by attenuating DNA repair and interfering on the activation of mitosis promoting factor (MPF), mainly regulated by the degradation of cyclin B1 in the mitotic process. These events may explain the inappropriate activation of cdc2, implicated in G2/M phase arrest and probably induced by the mitotane and IR in the combined treatment. Indeed, treatment with purvalanol, a cdc2-inhibitor prevents cell cycle arrest, triggering the G2/M transition. The observation that mitotane and IR in combination treatment amplifies the activation level of cyclin B/cdc2 complexes contributing to cell cycle arrest, suggests that the MPF could function as a master signal for controlling the temporal order of different mitotic events. Moreover, we report that mitotane interferes in modulation of mismatch repair (MMR) enzymes, revealing radiosensitizing drug ability.

  1. How driving endonuclease genes can be used to combat pests and disease vectors.

    PubMed

    Godfray, H Charles J; North, Ace; Burt, Austin

    2017-09-11

    Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum.

  2. UV endonuclease of Micrococcus luteus, a cyclobutane pyrimidine dimer–DNA glycosylase/abasic lyase: Cloning and characterization of the gene

    PubMed Central

    Shiota, Susumu; Nakayama, Hiroaki

    1997-01-01

    The gene of Micrococcus luteus UV endonuclease (cyclobutane pyrimidine dimer–DNA glycosylase/abasic lyase) was cloned and characterized. The cloned gene, whose product had a predicted molecular mass of 17,120 Da, was found to be capable of complementing the Escherichia coli uvrA6 mutation in vivo with respect to resistance to acetone-mediated molecular photosensitization, a treatment producing exclusively cyclobutane pyrimidine dimers in DNA. It also generated a nicking activity specific for photosensitization-treated DNA by in vitro transcription/translation. When expressed in E. coli cells, the gene produced a protein structurally identical with UV endonuclease and possessing an activity consistent with cyclobutane pyrimidine dimer–DNA glycosylase/abasic lyase with respect to the effect of inhibitors and the site of the DNA backbone scission. Furthermore, the UV endonuclease-deficient mutant DB7 was shown to regain the enzyme through transformation with the cloned gene. The deduced amino acid sequence of the gene product was at best 27% identical with that of endonuclease V of phage T4, an enzyme strikingly similar to UV endonuclease in molecular and catalytic properties. Despite this marginal overall similarity in amino acid sequence, four of the seven amino acid residues reported to be functionally important in the T4 enzyme were found to be conserved in the M. luteus enzyme. We propose that the gene be called uveA. PMID:9012829

  3. Differential Interaction Kinetics of a Bipolar Structure-Specific Endonuclease with DNA Flaps Revealed by Single-Molecule Imaging

    PubMed Central

    Rezgui, Rachid; Lestini, Roxane; Kühn, Joëlle; Fave, Xenia; McLeod, Lauren; Myllykallio, Hannu; Alexandrou, Antigoni; Bouzigues, Cedric

    2014-01-01

    As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases. PMID:25412080

  4. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging.

    PubMed

    Rezgui, Rachid; Lestini, Roxane; Kühn, Joëlle; Fave, Xenia; McLeod, Lauren; Myllykallio, Hannu; Alexandrou, Antigoni; Bouzigues, Cedric

    2014-01-01

    As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.

  5. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I(NT).

    PubMed

    Taylor, James E; Swiderska, Anna; Artero, Jean-Baptiste; Callow, Philip; Kneale, Geoff

    2012-01-01

    Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.

  6. Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein.

    PubMed

    Fernández-García, Yaiza; Reguera, Juan; Busch, Carola; Witte, Gregor; Sánchez-Ramos, Oliberto; Betzel, Christian; Cusack, Stephen; Günther, Stephan; Reindl, Sophia

    2016-06-01

    Andes virus (ANDV) is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1-200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure-function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.

  7. Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein

    PubMed Central

    Fernández-García, Yaiza; Reguera, Juan; Busch, Carola; Witte, Gregor; Sánchez-Ramos, Oliberto; Betzel, Christian; Cusack, Stephen; Günther, Stephan; Reindl, Sophia

    2016-01-01

    Andes virus (ANDV) is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1–200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure–function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening. PMID:27300328

  8. A second site specific endonuclease from Thermus thermophilus 111, Tth111II.

    PubMed Central

    Shinomiya, T; Kobayashi, M; Sato, S

    1980-01-01

    A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows. Images PMID:6255411

  9. Germline excision of transgenes in Aedes aegypti by homing endonucleases

    PubMed Central

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1–4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20–40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector. PMID:23549343

  10. The long N-terminus of the C. elegans DNA repair enzyme APN-1 targets the protein to the nucleus of a heterologous system.

    PubMed

    Wang, Zhiqiang; Yang, Xiaoming; Mazouzi, Abdelghani; Ramotar, Dindial

    2014-12-15

    We previously isolated from a Caenorhabditis elegans cDNA library, designed for two-hybrid screening, a gene encoding the DNA repair enzyme APN-1 using cross-specie complementation analysis of the Saccharomyces cerevisiae apn1∆ apn2∆ tpp1∆ triple mutant deficient in the ability to repair several types of DNA lesions including apurinic/apyrimidinic (AP) sites. We subsequently purified the APN-1 from this yeast mutant and demonstrated that it possesses four distinct DNA repair activities. However, following the re-annotation of the C. elegans genome we discovered that the functionally active APN-1 encoded by the cDNA from the library might lack 108 amino acid residues from the N-terminus. We therefore synthesized the entire C. elegans apn-1 gene encoding the putative full-length APN-1 and created several N-terminal deletion mutants lacking either 63, 83 or 118 amino acid residues. The full-length APN-1, APN-1 (1-63Δ) and APN-1 (1-83Δ), but not APN-1 (1-118Δ) were stably expressed in the yeast triple mutant and cleaved the AP site substrate. However, only the full-length APN-1 rescued the yeast mutant from the genotoxicity caused by methyl methane sulfonate, a DNA damaging agent that creates AP sites in the genome. The full-length APN-1 was localized to the yeast nucleus, while APN-1 (1-63Δ) and APN-1 (1-83Δ) retained a cytoplasmic distribution. Our data suggest that the N-terminal region has no direct role in the DNA repair functions of APN-1 other than to target the protein to the nucleus and possibly to maintain its stability. Thus, the truncated APN-1, previously isolated from the two-hybrid library, ability to complement the yeast triple mutant depends on the engineered SV40 nuclear localization signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair.

    PubMed

    Yu, Lijian; Volkert, Michael R

    2013-01-01

    Non homologous end joining (NHEJ) is an important process that repairs double strand DNA breaks (DSBs) in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s) that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.

  12. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  13. Selective microbial genomic DNA isolation using restriction endonucleases.

    PubMed

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  14. Hypomorphic PCNA mutation underlies a human DNA repair disorder

    PubMed Central

    Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.

    2014-01-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150

  15. Site specific endonucleases for human genome mapping. Final report, April 1, 1992--March 31, 1994

    SciTech Connect

    Knoche, K.; Selman, S.; Hung, L.

    1994-06-01

    Current large scale genome mapping methodology suffers from a lack of tools for generating specific DNA fragments in the megabase size range. While technology such as pulsed field gel electrophoresis can resolve DNA fragments greater than 10 megabases in size, current methods for cleaving mammalian DNA using bacterial restriction enzymes are incapable of producing such fragments. Though several multidimensional approaches are underway to overcome this limitation, there currently is no single step procedure to generate specific DNA fragments in the 2-100 megabase size range. In order to overcome these limitations, we proposed to develop a family of site-specific endonucleases capable of generating DNA fragments in the 2-100 megabase size range in a single step. Additionally, we proposed to accomplish this by relaxing the specificity of a very-rare cutting intron-encoded endonucleases, I-Ppo I, and potentially using the process as a model for development of other enzymes. Our research has uncovered a great deal of information about intron-encoded endonucleases. We have found that I-Ppo I has a remarkable ability to tolerate degeneracy within its recognition sequence, and we have shown that the recognition sequence is larger than 15 base pairs. These findings suggest that a detailed study of the mechanism by which intron-encoded endonucleases recognize their target sequences should provide new sights into DNA-protein interactions; this had led to a continuation of the study of I-Ppo I in Dr. Raines` laboratory and we expect a more detailed understanding of the mechanism of I-Ppo I action to result.

  16. USP45 deubiquitylase controls ERCC1–XPF endonuclease-mediated DNA damage responses

    PubMed Central

    Perez-Oliva, Ana B; Lachaud, Christophe; Szyniarowski, Piotr; Muñoz, Ivan; Macartney, Thomas; Hickson, Ian; Rouse, John; Alessi, Dario R

    2015-01-01

    Reversible protein ubiquitylation plays important roles in various processes including DNA repair. Here, we identify the deubiquitylase USP45 as a critical DNA repair regulator. USP45 associates with ERCC1, a subunit of the DNA repair endonuclease XPF–ERCC1, via a short acidic motif outside of the USP45 catalytic domain. Wild-type USP45, but not a USP45 mutant defective in ERCC1 binding, efficiently deubiquitylates ERCC1 in vitro, and the levels of ubiquitylated ERCC1 are markedly enhanced in USP45 knockout cells. Cells lacking USP45 are hypersensitive specifically to UV irradiation and DNA interstrand cross-links, similar to cells lacking ERCC1. Furthermore, the repair of UV-induced DNA damage is markedly reduced in USP45-deficient cells. ERCC1 translocation to DNA damage-induced subnuclear foci is markedly impaired in USP45 knockout cells, possibly accounting for defective DNA repair. Finally, USP45 localises to sites of DNA damage in a manner dependent on its deubiquitylase activity, but independent of its ability to bind ERCC1–XPF. Together, these results establish USP45 as a new regulator of XPF–ERCC1 crucial for efficient DNA repair. PMID:25538220

  17. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities.

    PubMed

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-02-17

    DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes' activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL(-1) and 50 μg mL(-1) of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities.

  18. Endonuclease active site plasticity allows DNA cleavage with diverse alkaline Earth and transition metal ions.

    PubMed

    Vasu, Kommireddy; Saravanan, Matheshwaran; Nagaraja, Valakunja

    2011-09-16

    A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R.KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.

  19. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    PubMed

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  20. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells

    PubMed Central

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. PMID:25541197

  1. Measuring oxidative damage to DNA and its repair with the comet assay.

    PubMed

    Collins, Andrew R

    2014-02-01

    Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Homing endonucleases: from genetic anomalies to programmable genomic clippers.

    PubMed

    Belfort, Marlene; Bonocora, Richard P

    2014-01-01

    Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.

  3. Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases. PMID:24510256

  4. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1986-07-25

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed.

  5. The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille

    PubMed Central

    Landthaler, Markus; Shub, David A.

    2003-01-01

    Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families. PMID:12799434

  6. The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille.

    PubMed

    Landthaler, Markus; Shub, David A

    2003-06-15

    Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular betabetaalphaalphabeta fold, suggestive of module shuffling between different homing endonuclease families.

  7. Diagnostic correlation between the expression of the DNA repair enzyme N-methylpurine DNA glycosylase and esophageal adenocarcinoma onset: a retrospective pilot study.

    PubMed

    Zaïr, Z M; Johnson, G E; Griffiths, A P; Jenkins, G J

    2013-08-01

    EAC in its early stages, when it can potentially be cured, is rarely symptomatic and is associated with high mortality rates because in part of late-stage diagnosis. Given that DNA repair is an important contributory factor of early-stage malignancy, our study focused on the expression of the base excision repair enzyme N-methylpurine DNA glycosylase (MPG) in EAC disease onset. MPG messenger RNA (mRNA) expression levels were determined using quantitative reverse transcriptase polymerase chain reaction from a maximum of 72 patient samples. Immunohistochemistry was further utilized for the detection of MPG protein, and semiquantitative analysis performed using an H-score approach was carried out on a total of 130 archival tissue samples of different esophageal pathologies. Nuclear localized MPG protein was detected in all nonmalignant tissues derived from the enterohepatic system, with H-score values of 3.9-5.5 ± 0.4-1.0. In cancerous tissues derived from the enterohepatic system, a 9.5-fold increase in the level of MPG mRNA expression was specifically observed in the malignant regions located within the esophagus region. Further analysis revealed a 9- and 14-fold increase in MPG mRNA expression in EAC tumor, node, metastasis stages II and III, respectively, suggesting MPG expression to correlate with EAC disease progression. Immunohistochemistry analysis further showed a sevenfold significant increase in MPG protein expression in EAC tissues. Intriguingly, there was a fivefold significant decrease in nuclear localized MPG protein expression in tissues derived from Barrett's esophagus and low-grade dysplasia. Such findings highlight a complex regulatory pattern governing DNA glycosylase base excision repair initiation, as normal tissue undergoes Barrett's metaplasia and later dedifferentiates to EAC. Indeed, disease-stage-specific alterations in the expression of MPG may highlight a potential role for MPG in determining EAC onset and thus potentially be of clinical

  8. Reactions of BglI and other type II restriction endonucleases with discontinuous recognition sites.

    PubMed

    Gormley, N A; Bath, A J; Halford, S E

    2000-03-10

    Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.

  9. Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease

    PubMed Central

    Sapienza, Paul J.; Rosenberg, John M.; Jen-Jacobson, Linda

    2008-01-01

    SUMMARY Promiscuous mutant EcoRI endonucleases bind to the canonical site GAATTC more tightly than does the wild-type endonuclease, yet cleave variant (EcoRI*) sites more rapidly than does wild-type. The crystal structure of the A138T promiscuous mutant homodimer in complex with a GAATTC site is nearly identical to that of the wild-type complex, except that the Thr138 side chains make novel packing interactions with bases in the 5′-flanking regions outside the recognition hexanucleotide, while excluding two bound water molecules seen in the wild-type complex. Molecular dynamics simulations confirm exclusion of these waters. The structure and simulations suggest multiple possible reasons why binding of A138T protein to the GAATTC site has ΔS° more favorable and ΔH° less favorable than for wild-type endonuclease binding. The novel interactions of Thr138 with flanking bases may permit A138T, unlike wild-type enzyme, to form complexes with EcoRI* sites that structurally resemble the specific wild-type complex with GAATTC. PMID:17997963

  10. Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI.

    PubMed

    Horton, John R; Nugent, Rebecca L; Li, Andrew; Mabuchi, Megumu Yamada; Fomenkov, Alexey; Cohen-Karni, Devora; Griggs, Rose M; Zhang, Xing; Wilson, Geoffrey G; Zheng, Yu; Xu, Shuang-yong; Cheng, Xiaodong

    2014-03-07

    The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3' to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5' to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity.

  11. Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases

    PubMed Central

    Lucas, Patrick; Otis, Christian; Mercier, Jean-Patrick; Turmel, Monique; Lemieux, Claude

    2001-01-01

    Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity. PMID:11160929

  12. Restriction endonuclease AgeI is a monomer which dimerizes to cleave DNA.

    PubMed

    Tamulaitiene, Giedre; Jovaisaite, Virginija; Tamulaitis, Gintautas; Songailiene, Inga; Manakova, Elena; Zaremba, Mindaugas; Grazulis, Saulius; Xu, Shuang-Yong; Siksnys, Virginijus

    2017-04-07

    Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases.

    PubMed Central

    Brenneman, M; Gimble, F S; Wilson, J H

    1996-01-01

    In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through gene targeting. Homologous intrachromosomal recombination between the repeated regions of the gene can reconstruct a functioning, wild-type gene. Treatment of these cells with the restriction endonuclease Xba I, which has a recognition site within the repeated region of HPRT homology, increased the frequency or homologous recombination bv more than 10-fold. Recombination frequency was similarly increased by treatment with the rare-cutting yeast endonuclease PI-Sce I when a cleavage site was placed within the repeated region of HPRT. In contrast, four restriction enzymes that cut at positions either outside of the repeated regions or between them produced no change in recombination frequency. The results suggest that homologous recombination between intrachromosomal repeats can be specifically initiated by a double-strand break occurring within regions of homology, consistent with the predictions of a model. PMID:8622983

  14. Induction of Chromosomal Translocations in Mouse and Human Cells Using Site-Specific Endonucleases

    PubMed Central

    Weinstock, David M.; Brunet, Erika; Jasin, Maria

    2012-01-01

    Reciprocal chromosomal translocations are early and essential events in the malignant transformation of several tumor types, yet the precise mechanisms that mediate translocation formation are poorly understood. We review here the development of approaches to induce and recover translocations between two targeted DNA double-strand breaks (DSBs) in mammalian chromosomes. Using mouse cells, we find that nonhomologous end-joining readily mediates translocation formation between two DSBs generated by site-specific endonucleases. Translocations occur much less frequently, however, than intrachromosomal repair of a single DSB. Translocation junctions obtained with this approach have similar end modifications to translocation junctions found in human tumors, including deletions, insertions, and repair at short stretches of homology. These modifications are more extensive than repair junctions at a single DSB, suggesting that different factors may be involved in translocation formation and repair of a single DSB. Finally, we describe a novel approach to induce translocations in human cells. Translocation model systems provide an opportunity to study the involvement of mammalian DNA repair and signaling factors in the etiology of chromosomal rearrangements. PMID:18647997

  15. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis

    PubMed Central

    Goubely, Chantal

    2016-01-01

    Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity. PMID:26704385

  16. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis.

    PubMed

    Olivier, Margaux; Da Ines, Olivier; Amiard, Simon; Serra, Heïdi; Goubely, Chantal; White, Charles I; Gallego, Maria E

    2016-01-01

    Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.

  17. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease

    SciTech Connect

    Hamilton, R.W.; Lloyd, R.S. )

    1989-10-15

    Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or sliding mechanism on non-target DNA as opposed to a distributive or random hit mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.

  18. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  19. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  20. Type II restriction endonucleases--a historical perspective and more.

    PubMed

    Pingoud, Alfred; Wilson, Geoffrey G; Wende, Wolfgang

    2014-07-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.

  1. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  2. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  3. Ultraviolet-B-induced inactivation of human OGG1, the repair enzyme for removal of 8-oxoguanine in DNA.

    PubMed

    van der Kemp, P Auffret; Blais, J C; Bazin, M; Boiteux, S; Santus, R

    2002-12-01

    The OGG1 proteins are DNA N-glycosylases-apurinic-apyrimidinic lyases that are responsible for the removal of 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA. The human enzyme (hOGG1) is a monomer of 345 amino acids containing 10 buried tryptophan (Trp) residues that are very sensitive to UVB irradiation. The photolysis quantum yield of these Trp residues is about 0.3 and 0.1 in argon- and air-saturated solutions, respectively. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry shows that several cleavage sites are identical under aerobic and anaerobic photolysis of Trp residues; one of them includes the active site. Western blots and polyacrylamide gel electrophoresis indicate that fragments of high molecular size are also formed. In addition to common photochemical paths with argon-saturated solutions, specific reactions occur in air-saturated solutions of hOGG1. The photolysis rate is inhibited by more than 50% on binding of hOGG1 to a 34mer oligonucleotide containing a single 8-oxoG-C base pair. Binding to the oligonucleotide with 8-oxoG-C induced a 20% quenching of the hOGG1 fluorescence, suggesting interaction of nucleic acid bases with the Trp residue(s) responsible for the photolysis. Using 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) and 8-oxoG as substrates, it is shown that protein photolysis induces photoinactivation of the DNA N-glycosylase activities. The excision of 8-oxoG is more affected than that of Me-FapyG at the same dose of UVB irradiation under both air and argon conditions. Besides the role of Trp residues, the possible involvement of Cys 253 in the photoinactivation process of hOGG1 is discussed.

  4. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases

    PubMed Central

    Carnes, Jason; McDermott, Suzanne; Anupama, Atashi; Oliver, Brian G.; Sather, D. Noah

    2017-01-01

    Abstract RNA editing is an essential post-transcriptional process that creates functional mitochondrial mRNAs in Kinetoplastids. Multiprotein editosomes catalyze pre-mRNA cleavage, uridine (U) insertion or deletion, and ligation as specified by guide RNAs. Three functionally and compositionally distinct editosomes differ by the mutually exclusive presence of the KREN1, KREN2 or KREN3 endonuclease and their associated partner proteins. Because endonuclease cleavage is a likely point of regulation for RNA editing, we elucidated endonuclease specificity in vivo. We used a mutant gamma ATP synthase allele (MGA) to circumvent the normal essentiality of the editing endonucleases, and created cell lines in which both alleles of one, two or all three of the endonucleases were deleted. Cells lacking multiple endonucleases had altered editosome sedimentation on glycerol gradients and substantial defects in overall editing. Deep sequencing analysis of RNAs from such cells revealed clear discrimination by editosomes between sites of deletion versus insertion editing and preferential but overlapping specificity for sites of insertion editing. Thus, endonuclease specificities in vivo are distinct but with some functional overlap. The overlapping specificities likely accommodate the more numerous sites of insertion versus deletion editing as editosomes collaborate to accurately edit thousands of distinct editing sites in vivo. PMID:28334821

  5. Meningocele repair

    MedlinePlus

    ... Myelodysplasia repair; Spinal dysraphism repair; Meningomyelocele repair; Neural tube defect repair; Spina bifida repair ... If your child has hydrocephalus, a shunt (plastic tube) will be put in the child's brain to ...

  6. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  7. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    PubMed

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.

  8. Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention.

    PubMed

    Berardesca, Enzo; Bertona, Marco; Altabas, Karmela; Altabas, Velimir; Emanuele, Enzo

    2012-02-01

    The exposure of human skin to ultraviolet radiation (UVR) results in the formation of DNA photolesions that give rise to photoaging, mutations, cell death and the onset of carcinogenic events. Photolyase (EC 4.1.99.3) is a DNA repair enzyme that reverses damage caused by exposure to UVR. We sought to investigate whether addition of photolyase enhances the protection provided by a traditional sunscreen (SS), by reducing the in vivo formation of cyclobutane-type pyrimidine dimers (CPDs) and UVR-induced apoptosis in human skin. Ten volunteers (Fitzpatrick skin type II) were exposed to solar-simulated (ss) UVR at a three times minimal erythema dose for 4 consecutive days. Thirty minutes prior to each exposure, the test materials [vehicle, SS (sun protection factor 50) alone, and SS plus photolyase from Anacystis nidulans] were applied topically to three different sites. One additional site was left untreated and one received ssUVR only. Biopsy specimens were taken 72 h after the last irradiation. The amount of CPDs and the extent of apoptosis were measured by ELISA. Photolyase plus SS was superior to SS alone in reducing both the formation of CPDs and apoptotic cell death (both P<0.001). In conclusion, the addition of photolyase to a traditional SS contributes significantly to the prevention of UVR-induced DNA damage and apoptosis when applied topically to human skin.

  9. High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle.

    PubMed

    Acs, Zoltan; Bori, Zoltan; Takeda, Masaki; Osvath, Peter; Berkes, Istvan; Taylor, Albert W; Yang, Hu; Radak, Zsolt

    2014-06-01

    We hypothesized that high altitude exposure and physical activity associated with the attack to Mt Everest could alter mRNA levels of DNA repair and metabolic enzymes and cause oxidative stress-related challenges in human skeletal muscle. Therefore, we have tested eight male mountaineers (25-40 years old) before and after five weeks of exposure to high altitude, which included attacks to peaks above 8000m. Data gained from biopsy samples from vastus lateralis revealed increased mRNA levels of both cytosolic and mitochondrial superoxide dismutase. On the other hand 8-oxoguanine DNA glycosylase (OGG1) mRNA levels tended to decrease while Ku70 mRNA levels and SIRT6 decreased with altitude exposure. The levels of SIRT1 and SIRT3 mRNA did not change significantly. However, SIRT4 mRNA level increased significantly, which could indicate decreases in fatty acid metabolism, since SIRT4 is one of the important regulators of this process. Within the limitations of this human study, data suggest that combined effects of high altitude exposure and physical activity climbing to Mt. Everest, could jeopardize the integrity of the particular chromosome. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair

    PubMed Central

    Nakanishi, Shima; Prasad, Rajendra; Wilson, Samuel H.; Smerdon, Michael

    2007-01-01

    Chromatin in eukaryotic cells is folded into higher order structures of folded nucleosome filaments, and DNA damage occurs at all levels of this structural hierarchy. However, little is known about the impact of higher order folding on DNA repair enzymes. We examined the catalytic activities of purified human base excision repair (BER) enzymes on uracil-containing oligonucleosome arrays, which are folded primarily into 30 nm structures when incubated in repair reaction buffers. The catalytic activities of uracil DNA glycosylase (UDG) and apyrimidinic/apurinic endonuclease (APE) digest G:U mismatches to completion in the folded oligonucleosomes without requiring significant disruption. In contrast, DNA polymerase β (Pol β) synthesis is inhibited in a major fraction (∼80%) of the oligonucleosome array, suggesting that single strand nicks in linker DNA are far more accessible to Pol β in highly folded oligonucleosomes. Importantly, this barrier in folded oligonucleosomes is removed by purified chromatin remodeling complexes. Both ISW1 and ISW2 from yeast significantly enhance Pol β accessibility to the refractory nicked sites in oligonucleosomes. These results indicate that the initial steps of BER (UDG and APE) act efficiently on highly folded oligonucleosome arrays, and chromatin remodeling may be required for the latter steps of BER in intact chromatin. PMID:17576692

  11. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  12. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I.

    PubMed

    He, Hongzhen; Chen, Qiujia; Georgiadis, Millie M

    2014-10-21

    Apurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg²⁺-dependent reaction in which the phosphodiester backbone is cleaved 5' of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg²⁺, Mn²⁺, and apo-APE1 determined at 1.4, 2.2, and 1.65 Å, respectively, representing two of the highest resolution structures yet reported for APE1. In our structures, a single well-ordered Mn²⁺ ion was observed coordinated by D70 and E96; the Mg²⁺ site exhibited disorder modeled as two closely positioned sites coordinated by D70 and E96 or E96 alone. Direct metal binding analysis of wild-type, D70A, and E96A APE1, as assessed by differential scanning fluorimetry, indicated a role for D70 and E96 in binding of Mg²⁺ or Mn²⁺ to APE1. Consistent with the disorder exhibited by Mg²⁺ bound to the active site, two different conformations of E96 were observed coordinated to Mg²⁺. A third conformation for E96 in the apo structure is similar to that observed in the APE1-DNA-Mg²⁺ complex structure. Thus, binding of Mg²⁺ in three different positions within the active site of APE1 in these crystal structures corresponds directly with three different conformations of E96. Taken together, our results are consistent with the initial capture of metal by D70 and E96 and repositioning of Mg²⁺ facilitated by the structural plasticity of E96 in the active site.

  13. Trimming of damaged 3' overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases.

    PubMed

    Mohapatra, Susovan; Yannone, Steven M; Lee, Suk-Hee; Hromas, Robert A; Akopiants, Konstantin; Menon, Vijay; Ramsden, Dale A; Povirk, Lawrence F

    2013-06-01

    Both Metnase and Artemis possess endonuclease activities that trim 3' overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3' overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4-5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3'-phosphoglycolates (PGs), and in some cases the presence of 3'-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3' overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3'-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Trimming of damaged 3′ overhangs of DNA double-strand breaks by the Metnase and Artemis endonucleases

    PubMed Central

    Mohapatra, Susovan; Yannone, Steven M.; Lee, Suk-Hee; Hromas, Robert A.; Akopiants, Konstantin; Menon, Vijay; Ramsden, Dale A.; Povirk, Lawrence F.

    2013-01-01

    Both Metnase and Artemis possess endonuclease activities that trim 3′ overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3′ overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4–5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3′-phosphoglycolates (PGs), and in some cases the presence of 3′-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3′ overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3′-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins. PMID:23602515

  15. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants.

    PubMed Central

    Jiang, D; Hatahet, Z; Blaisdell, J O; Melamede, R J; Wallace, S S

    1997-01-01

    Escherichia coli possesses two DNA glycosylase/apurinic lyase activities with overlapping substrate specificities, endonuclease III and endonuclease VIII, that recognize and remove oxidized pyrimidines from DNA. Endonuclease III is encoded by the nth gene. Endonuclease VIII has now been purified to apparent homogeneity, and the gene, nei, has been cloned by using reverse genetics. The gene nei is located at 16 min on the E. coli chromosome and encodes a 263-amino-acid protein which shows significant homology in the N-terminal and C-terminal regions to five bacterial Fpg proteins. A nei partial deletion replacement mutant was constructed, and deletion of nei was confirmed by genomic PCR, activity analysis, and Western blot analysis. nth nei double mutants were hypersensitive to ionizing radiation and hydrogen peroxide but not as sensitive as mutants devoid of base excision repair (xth nfo). Single nth mutants exhibited wild-type sensitivity to X rays, while nei mutants were consistently slightly more sensitive than the wild type. Double mutants lacking both endonucleases III and VIII exhibited a strong spontaneous mutator phenotype (about 20-fold) as determined by a rifampin forward mutation assay. In contrast to nth mutants, which showed a weak mutator phenotype, nei single mutants behaved as the wild type. PMID:9171429

  16. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors.

    PubMed Central

    Evans, E; Moggs, J G; Hwang, J R; Egly, J M; Wood, R D

    1997-01-01

    During nucleotide excision repair in human cells, a damaged DNA strand is cleaved by two endonucleases, XPG on the 3' side of the lesion and ERCC1-XPF on the 5' side. These structure-specific enzymes act at junctions between duplex and single-stranded DNA. ATP-dependent formation of an open DNA structure of approximately 25 nt around the adduct precedes this dual incision. We investigated the mechanism of open complex formation and find that mutations in XPB or XPD, the DNA helicase subunits of the transcription and repair factor TFIIH, can completely prevent opening and dual incision in cell-free extracts. A deficiency in XPC protein also prevents opening. The absence of RPA, XPA or XPG activities leads to an intermediate level of strand separation. In contrast, XPF or ERCC1-defective extracts open normally and generate a 3' incision, but fail to form the 5' incision. This same repair defect was observed in extracts from human xeroderma pigmentosum cells with an alteration in the C-terminal domain of XPB, suggesting that XPB has an additional role in facilitating 5' incision by ERCC1-XPF nuclease. These data support a mechanism in which TFIIH-associated helicase activity and XPC protein catalyze initial formation of the key open intermediate, with full extension to the cleavage sites promoted by the other core nucleotide excision repair factors. Opening is followed by dual incision, with the 3' cleavage made first. PMID:9351836

  17. Investigation of the role of the histidine-aspartate pair in the human exonuclease III-like abasic endonuclease, Ape1

    SciTech Connect

    Lowry, David F.; Hoyt, David W.; Khazi, Fayaz A.; Bagu, John R.; Lindsey, Andrea G.; Wilson Iii, David M.

    2003-05-30

    Hydrogen bonded histidineaspartate (HisAsp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pKa values and hydrogen bonding patterns within the catalytic pocket. However, the role of the HisAsp pair in metal-assisted catalysis is less clear. Here, we apply liquid-state NMR to investigate the role of a critical histidine residue of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active-site HisAsp pair. The results of these studies suggest that the Ape1 HisAsp pair does not function as either a general base catalyst or a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.

  18. Little or No Repair of Cyclobutyl Pyrimidine Dimers Is Observed in the Organellar Genomes of the Young Arabidopsis Seedling.

    PubMed Central

    Chen, J. J.; Jiang, C. Z.; Britt, A. B.

    1996-01-01

    A Southern-blot-based, site-specific assay for ultraviolet (UV)-induced cyclobutyl pyrimidine dimers (CPDs), employing the CPD-specific enzyme T4 endonuclease V, was used to follow the repair of this lesion in particular DNA sequences in 5- to 6-d-old Arabidopsis thaliana seedlings. CPDs, measured as enzyme-sensitive sites, in nuclear sequences were removed rapidly in the light but were repaired slowly, if at all, in the dark. This result was identical to that obtained in prior analyses of CPDs in total cellular DNA. Assay of representative chloroplast and mitochondrial sequences in the same DNA preparations revealed that, in contrast to nuclear sequences, enzyme-sensitive sites are inefficiently eliminated in both the presence and absence of visible light. These observations suggest that Arabidopsis seedlings possess little or no capacity for the repair of CPDs in the organellar genomes. Given the fact that the UV dose employed only marginally affected the growth of the seedlings, we suggest that Arabidopsis seedlings must possess very efficient mechanism(s) for the tolerance of UV-induced DNA damage. PMID:12226273

  19. Pyrimidine dimer dependent cleavage of single-stranded DNA by T4 UV endonuclease

    SciTech Connect

    Sauerbier, W.

    1986-11-26

    T4 UV endonuclease cleaves double- and single-stranded DNA with equal specificity for photo-pyrimidine dimers. Thus, the enzyme can be used for mapping and quantifying pyrimidine dimers in single-stranded DNA as well as in double-stranded DNA. Mapping of pyrimidine dimers shows that rates of UV-dimerization are not only affected by 5', 3' adjacent bases, but also by position within pyrimidine tracts. Di-pyrimidines at 3' ends of tracts are more photoreactive than those at 5' ends.

  20. Endonucleases: new tools to edit the mouse genome.

    PubMed

    Wijshake, Tobias; Baker, Darren J; van de Sluis, Bart

    2014-10-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it is time-consuming and quite laborious. Over the last decade a number of new genome editing technologies have been developed, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas). These systems are characterized by a designed DNA binding protein or RNA sequence fused or co-expressed with a non-specific endonuclease, respectively. The engineered DNA binding protein or RNA sequence guides the nuclease to a specific target sequence in the genome to induce a double strand break. The subsequent activation of the DNA repair machinery then enables the introduction of gene modifications at the target site, such as gene disruption, correction or insertion. Nuclease-mediated genome editing has numerous advantages over conventional gene targeting, including increased efficiency in gene editing, reduced generation time of mutant mice, and the ability to mutagenize multiple genes simultaneously. Although nuclease-driven modifications in the genome are a powerful tool to generate mutant mice, there are concerns about off-target cleavage, especially when using the CRISPR/Cas system. Here, we describe the basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models. This article is part of a Special Issue entitled: From Genome to Function.

  1. Structural basis for recruitment of human flap endonuclease 1 to PCNA

    PubMed Central

    Sakurai, Shigeru; Kitano, Ken; Yamaguchi, Hiroto; Hamada, Keisuke; Okada, Kengo; Fukuda, Kotaro; Uchida, Makiyo; Ohtsuka, Eiko; Morioka, Hiroshi; Hakoshima, Toshio

    2005-01-01

    Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1–PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two β-strands connected by a short helix, the βA–αA–βB motif, participating in β–β and hydrophobic interactions with PCNA. These interactions are similar to those previously observed for the p21CIP1/WAF1 peptide. However, this structure involving the full-length enzyme has revealed additional interfaces that are involved in the core domain. The interactions at the interfaces maintain the enzyme in an inactive ‘locked-down' orientation and might be utilized in rapid DNA-tracking by preserving the central hole of PCNA for sliding along the DNA. A hinge region present between the core domain and the C-terminal tail of FEN1 would play a role in switching the FEN1 orientation from an inactive to an active orientation. PMID:15616578

  2. Quantum Entanglement in the Genome? The Role of Quantum Effects in Catalytic Synchronization of Type II Restriction Endonucleases

    NASA Astrophysics Data System (ADS)

    Kurian, P.

    Several living systems have been examined for their exhibition of macroscopic quantum effects, showcasing biology's apparent optimization of structure and function for quantum behavior. Prevalent in lower organisms with analogues in eukaryotes, type II restriction endonucleases are the largest class of restriction enzymes. Orthodox type II endonucleases recognize four-to-eight base pair sequences of palindromic DNA, cut both strands symmetrically, and act without an external metabolite such as ATP. While it is known that these enzymes induce strand breaks by nucleophilic attack on opposing phosphodiester bonds of the DNA helix, what remains unclear is the mechanism by which cutting occurs in concert at the catalytic centers. Previous studies indicate the primacy of intimate DNA contacts made by the specifically bound enzyme in coordinating the two synchronized cuts. We propose that collective electronic behavior in the DNA helix generates coherent oscillations---quantized through boundary conditions imposed by the endonuclease---that provide the energy required to break two phosphodiester bonds. Such quanta may be preserved in the presence of thermal noise and electromagnetic interference through the specific complex's exclusion of water and ions surrounding the helix, with the enzyme serving as a decoherence shield. Clamping energy imparted by the decoherence shield is comparable with zero-point modes of the dipole-dipole oscillations in the DNA recognition sequence. The palindromic mirror symmetry of this sequence should conserve parity during the process. Experimental data corroborate that symmetric bond-breaking ceases when the symmetry of the endonuclease complex is violated, or when environmental parameters are perturbed far from biological optima. Persistent correlation between states in DNA sequence across spatial separations of any length---a characteristic signature of quantum entanglement---may be explained by such a physical mechanism.

  3. Three new restriction endonucleases MaeI, MaeII and MaeIII from Methanococcus aeolicus.

    PubMed Central

    Schmid, K; Thomm, M; Laminet, A; Laue, F G; Kessler, C; Stetter, K O; Schmitt, R

    1984-01-01

    Three type II restriction endonucleases, MaeI, MaeII and MaeIII, with novel site specificities have been isolated and purified from the archaebacterium Methanococcus aeolicus PL-15/H. The recognition sequences of these enzymes are (formula: see text) with the sites of cleavage as indicated by the arrows. The sequences were confirmed by restriction and computer analyses on sequenced DNA's of plasmid pBR322, bacteriophages lambda and phi X174 and virus SV40. Images PMID:6324124

  4. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.

  5. Use of a postlabelling assay to examine the removal of radiation-induced DNA lesions by purified enzymes and human cell extracts.

    PubMed

    Weinfeld, M; Lee, J; Ruiqi, G; Karimi-Busheri, F; Chen, D; Allalunis-Turner, J

    1997-08-01

    We have used a 32P-postlabelling assay to examine the activity of purified Esherichia coli endonuclease IV, human apurinic/apyrimidinic endonuclease I and human cell-free extracts towards irradiated DNA. The assay can detect thymine glycols, 3'-phosphoglycolate groups and at least one other major lesion that has yet to be fully characterized. It was observed that endonuclease IV removed the phosphoglycolates and the uncharacterized lesion(s) suggesting that the latter are abasic sites with modified deoxyribose residues. The purified human enzyme acted only on the phosphoglycolate residues. Cell-free extract, prepared from A549 lung carcinoma cells by sonication or treatment with toluene, efficiently removed the phosphoglycolate and unknown lesions, but was less reactive towards thymine glycols. The extract was completely inactivated by heating at 60 degrees C for 10 min. Removal of the unknown product and phosphoglycolate did not require magnesium, but 1 mM EDTA did inhibit release of the latter. The cell-free extract exhibited substantially more activity towards native than heat-denatured DNA. A comparison of extracts prepared from 4 cell lines displaying a range of radiosensitivities, including an ataxia telangiectasia cell line, showed that all contained similar levels of repair activity towards the detectable lesions.

  6. A new specific DNA endonuclease activity in yeast mitochondria.

    PubMed

    Sargueil, B; Delahodde, A; Hatat, D; Tian, G L; Lazowska, J; Jacq, C

    1991-02-01

    Two group I intron-encoded proteins from the yeast mitochondrial genome have already been shown to have a specific DNA endonuclease activity. This activity mediates intron insertion by cleaving the DNA sequence corresponding to the splice junction of an intronless strain. We have discovered in mitochondrial extracts from the yeast strain 777-3A a new DNA endonuclease activity which cleaves the fused exon A3-exon A4 junction sequence of the CO XI gene.

  7. Endogenous DNA Damage and Repair Enzymes: -A short summary of the scientific achievements of Tomas Lindahl, Nobel Laureate in Chemistry 2015.

    PubMed

    Klungland, Arne; Yang, Yun-Gui

    2016-06-01

    Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  8. HAG3, a Histone Acetyltransferase, Affects UV-B Responses by Negatively Regulating the Expression of DNA Repair Enzymes and Sunscreen Content in Arabidopsis thaliana.

    PubMed

    Fina, Julieta P; Casati, Paula

    2015-07-01

    Histone acetylation is regulated by histone acetyltransferases and deacetylases. In Arabidopsis, there are 12 histone acetyltransferases and 18 deacetylases. Histone acetyltransferases are organized in four families: the GNAT/HAG, the MYST, the p300/CBP and the TAFII250 families. Previously, we demonstrated that Arabidopsis mutants in the two members of the MYST acetyltransferase family show increased DNA damage after UV-B irradiation. To investigate further the role of other histone acetyltransferases in UV-B responses, a putative role for enzymes of the GNAT family, HAG1, HAG2 and HAG3, was analyzed. HAG transcripts are not UV-B regulated; however, hag3 RNA interference (RNAi) transgenic plants show a lower inhibition of leaf and root growth by UV-B, higher levels of UV-B-absorbing compounds and less UV-B-induced DNA damage than Wassilewskija (Ws) plants, while hag1 RNAi transgenic plants and hag2 mutants do not show significant differences from wild-type plants. Transcripts for UV-B-regulated genes are highly expressed under control conditions in the absence of UV-B in hag3 RNAi transgenic plants, suggesting that the higher UV-B tolerance may be due to increased levels of proteins that participate in UV-B responses. Together, our data provide evidence that HAG3, directly or indirectly, participates in UV-B-induced DNA damage repair and signaling. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Gene amplification and expression of the DNA repair enzyme, N-methylpurine-DNA glycosylase (MPG) in HPV-infected cervical neoplasias.

    PubMed

    Sohn, T J; Kim, N K; An, H J; Ko, J J; Hahn, T R; Oh, D; Lee, S G; Roy, R; Cha, K Y; Oh, Y K

    2001-01-01

    Lethal and mutagenic damages of DNA is caused by a variety of agents including viruses. It is known that HPV is one of the major causes of cervical carcinogenesis and that cells eliminate DNA lesions with DNA repair enzymes. However, the role of N-methylpurine-DNA glycosylase (MPG) is not known in the development of cervical cancer. Multiplex polymerase chain reaction (PCR) was used for the detection and typing of HPV in the biopsy. Gene amplification of MPG was measured by a PCR-based assay. The mRNA levels of MPG were determined by reverse transcription-PCR using hypoxanthine-guanine phosphoribosyl transferase as the reference gene. An immunohistochemical technique was used to examine the distribution of MPG in the tissues. Of 68 Korean cervical neoplasia patients, 86.8% showed HPV infection. High-risk HPV 16/18 were the most prevalent but positive only in 47.3% of the invasive cancer patients. Gene amplification of MPG was significantly increased in high-risk HPV-infected tissues as compared to low-risk HPV-infected and normal tissues (p < 0.05). The mRNA levels of MPG were higher in HPV-infected invasive carcinoma than normal cervical tissues. Immunohistochemical staining revealed that the intracellular expression and distribution (localization) of MPG altered in the cervical neoplasia. Interestingly, MPG expression in CIN III and invasive carcinoma (IC) was much higher than normal and CIN I. Granular positivity of MPG was notable in the perinuclear regions of the cytoplasm in HPV-infected invasive cancer. This is the first report on MPG expression in cervical neoplasia. Our results indicate that the gene amplification and expression of MPG were increased in high-risk HPV-infected