Science.gov

Sample records for repair gene methylation

  1. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    PubMed Central

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction in the mean level of double-strand break repair capacity was seen in lymphocytes from smokers with a high methylation index, defined as ≥ 3 of 8 genes methylated in sputum, compared to smokers with no genes methylated. The classification accuracy for predicting risk for methylation was 88%. Single nucleotide polymorphisms within the MRE11A, CHEK2, XRCC3, DNA-Pkc, and NBN DNA repair genes were highly associated with the methylation index. A 14.5-fold increased odds for high methylation was seen for persons with ≥ 7 risk alleles of these genes. Promoter activity of the MRE11A gene that plays a critical role in recognition of DNA damage and activation of ATM was reduced in persons with the risk allele. Collectively, ours is the first population-based study to identify double-strand break DNA repair capacity and specific genes within this pathway as critical determinants for gene methylation in sputum, that is, in turn, associated with elevated risk for lung cancer. PMID:18413776

  2. A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma

    PubMed Central

    Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander

    2014-01-01

    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633

  3. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    PubMed Central

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  4. Association of genomic instability, and the methylation status of imprinted genes and mismatch-repair genes, with neural tube defects.

    PubMed

    Liu, Zhuo; Wang, Zhigang; Li, Yuanyuan; Ouyang, Shengrong; Chang, Huibo; Zhang, Ting; Zheng, Xiaoying; Wu, Jianxin

    2012-05-01

    We studied the genomic instability and methylation status of the mismatch-repair (MMR) genes hMLH1 and hMSH2, and the imprinted genes H19/IGF2, in fetuses with neural tube defects (NTDs) to explore the pathogenesis of the disease. Microsatellite instability (MSI) was observed in 23 of 50 NTD patients. Five NTD patients showed high-degree MSI (MSI-H) and 18 showed low-degree MSI (MSI-L). The frequencies of mutated microsatellite loci were 3/50 (6%) for BatT-25, 10/50 (20%) for Bat-26, 3/50 (6%) for Bat34C4, 6/50 (12%) for D2S123, 4/50 (8%) for D2S119, and 3/50 (6%) for D3S1611. The promoter regions of the hMLH1 and hMSH2 genes were unmethylated in NTD patients, as determined by methylation-specific PCR. The hMLH1 and hMSH2 promoter methylation patterns, the methylation levels of H19 DMR1, and IGF2 DMR0 were detected by bisulfite sequencing PCR, sub-cloning, and sequencing. The hMSH2 promoter sequence was unmethylated, and the hMLH1 promoter showed a specific methylation pattern at two CpG sites. The methylation levels of H19 DMR1 in the NTD and control groups are 73.3% ± 15.9 and 58.3% ± 11.2, respectively. The methylation level of the NTD group was higher than that of the control group (Student's t-test, P<0.05). There is no significant difference in IGF2 DMR0 methylation level between the two groups. All of the results presented here suggest that genomic instability, the MMR system, and hyper-methylation of the H19 DMR1 may be correlated with the occurrence of NTDs.

  5. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium.

    PubMed

    Zhou, Zhi-heng; Lei, Yi-xiong; Wang, Cai-xia

    2012-02-01

    Cadmium (Cd) and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood yet. Aberrant methylation was investigated in order to obtain insight into the DNA repair-related epigenetic mechanisms underlying CdCl(2)-induced malignant transformation of human bronchial epithelial cells (16HBE). Gene expression and DNA methylation were assessed in untreated control cells; 5th, 15th, and 35th passage of CdCl2-treated cells and tumorigenic cells (TCs) from nude mice by using high-performance liquid chromatography, real-time PCR, Western blot analysis, and methylation-specific PCR assay. During Cd-induced malignant transformation, global DNA methylation progressively increased and was associated with the overexpression of the DNA methyltransferase genes DNMT1 and DNMT3a but not DNMT3b. Expression of both the messenger RNA and proteins of the DNA repair genes (hMSH2, ERCC1, XRCC1, and hOGG1) progressively reduced and DNA damage increased with Cd-induced transformation. The promoter regions of hMSH2, ERCC1, XRCC1, and hOGG1 were heavily methylated in the 35th passage transformed cells and the TCs. The DNA demethylating agent 5-aza-2'-deoxycytidine could reverse the Cd-induced global DNA hypermethylation, DNMT hyperactivity, and the silencing of hMSH2, ERCC1, XRCC1, and hOGG1 in a time-dependent manner. The results indicate that DNMT1 and DNMT3a overexpression can result in global DNA hypermethylation and silencing of the hMSH2, ERCC1, XRCC1, and hOGG1 genes. They may partly explain the epigenetic mechanisms underlying the carcinogenesis due to Cd.

  6. Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype.

    PubMed

    Hossain, Mohammad Bakhtiar; Vahter, Marie; Concha, Gabriela; Broberg, Karin

    2012-11-01

    Arsenic is carcinogenic, possibly partly through epigenetic mechanisms. We evaluated the effects of arsenic exposure and metabolism on DNA methylation. Arsenic exposure and methylation efficiency in 202 women in the Argentinean Andes were assessed from concentrations of arsenic metabolites in urine (inorganic arsenic, methylarsonic acid [MMA], and dimethylarsinic acid [DMA]), measured by HPLC-ICPMS. Methylation of CpGs of the tumor suppressor gene p16, the DNA repair gene MLH1, and the repetitive elements LINE1 was measured by PCR pyrosequencing of blood DNA. Genotyping (N = 172) for AS3MT was performed using Sequenom™, and gene expression (N = 90) using Illumina DirectHyb HumanHT-12 v3.0. Median arsenic concentration in urine was 230 μg L(-1) (range 10.1-1251). In linear regression analysis, log(2)-transformed urinary arsenic concentrations were positively associated with methylation of p16 (β = 0.14, P = 0.0028) and MLH1 (β = 0.28, P = 0.0011), but not with LINE1. Arsenic concentrations were of borderline significance negatively correlated with expression of p16 (r(s) = -0.20; P = 0.066)), but not with MLH1. The fraction of inorganic arsenic was positively (β = 0.026; P = 0.010) and DMA was negatively (β = -0.017, P = 0.043) associated with p16 methylation with no effect of MMA. Carriers of the slow-metabolizing AS3MT haplotype were associated with more p16 methylation (P = 0.022). Arsenic exposure was correlated with increased methylation, in blood, of genes encoding enzymes that suppress carcinogenesis, and the arsenic metabolism efficiency modified the degree of epigenetic alterations.

  7. DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism

    PubMed Central

    Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Morano, Annalisa; Zuchegna, Candida; Romano, Antonella; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2016-01-01

    We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5′ and 3′ ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells. PMID:27629060

  8. DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism.

    PubMed

    Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Morano, Annalisa; Zuchegna, Candida; Romano, Antonella; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V

    2016-01-01

    We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5' and 3' ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells. PMID:27629060

  9. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis.

    PubMed

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-10-14

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  10. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis

    PubMed Central

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-01-01

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)—1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes. PMID:27754426

  11. DNA damage, homology-directed repair, and DNA methylation.

    PubMed

    Cuozzo, Concetta; Porcellini, Antonio; Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Di Pardo, Alba; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-07-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  12. DNA Damage, Homology-Directed Repair, and DNA Methylation

    PubMed Central

    Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Pardo, Alba Di; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-01-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  13. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  14. Tumor Mismatch Repair Immunohistochemistry and DNA MLH1 Methylation Testing of Patients With Endometrial Cancer Diagnosed at Age Younger Than 60 Years Optimizes Triage for Population-Level Germline Mismatch Repair Gene Mutation Testing

    PubMed Central

    Buchanan, Daniel D.; Tan, Yen Y.; Walsh, Michael D.; Clendenning, Mark; Metcalf, Alexander M.; Ferguson, Kaltin; Arnold, Sven T.; Thompson, Bryony A.; Lose, Felicity A.; Parsons, Michael T.; Walters, Rhiannon J.; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K.; Blomfield, Penelope B.; Quinn, Michael A.; Kirk, Judy A.; Stewart, Colin J.; Obermair, Andreas; Young, Joanne P.; Webb, Penelope M.; Spurdle, Amanda B.

    2014-01-01

    Purpose Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Patients and Methods Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Results Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Conclusion Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation. PMID:24323032

  15. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  16. Programmed genetic instability: a tumor-permissive mechanism for maintaining the evolvability of higher species through methylation-dependent mutation of DNA repair genes in the male germ line.

    PubMed

    Zhao, Yongzhong; Epstein, Richard J

    2008-08-01

    Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation-and hence environmental adaptation and speciation-while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages. PMID:18535014

  17. Importance of Tumour Suppressor Gene Methylation in Sinonasal Carcinomas.

    PubMed

    Chmelařová, M; Sirák, I; Mžik, M; Sieglová, K; Vošmiková, H; Dundr, P; Němejcová, K; Michálek, J; Vošmik, M; Palička, V; Laco, J

    2016-01-01

    Epigenetic changes are considered to be a frequent event during tumour development. Hypermethylation of promoter CpG islands represents an alternative mechanism for inactivation of tumour suppressor genes, DNA repair genes, cell cycle regulators and transcription factors. The aim of this study was to investigate promoter methylation of specific genes in samples of sinonasal carcinoma by comparison with normal sinonasal tissue. To search for epigenetic events we used methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) to compare the methylation status of 64 tissue samples of sinonasal carcinomas with 19 control samples. We also compared the human papilloma virus (HPV) status with DNA methylation. Using a 20% cut-off for methylation, we observed significantly higher methylation in RASSF1, CDH13, ESR1 and TP73 genes in the sinonasal cancer group compared with the control group. HPV positivity was found in 15/64 (23.4 %) of all samples in the carcinoma group and in no sample in the control group. No correlation was found between DNA methylation and HPV status. In conclusion, our study showed that there are significant differences in promoter methylation in the RASSF1, ESR 1, TP73 and CDH13 genes between sinonasal carcinoma and normal sinonasal tissue, suggesting the importance of epigenetic changes in these genes in carcinogenesis of the sinonasal area. These findings could be used as prognostic factors and may have implications for future individualised therapies based on epigenetic changes. PMID:27516190

  18. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  19. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more

    PubMed Central

    Marinus, Martin G.; Casadesus, Josep

    2010-01-01

    The Dam methylase of gamma-proteobacteria and the CcrM methylase of alpha-proteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an “orphan” methylase devoted solely to epigenetic genome modification. Formation of 6-methyladenine lowers the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and only partially understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in E. coli, Salmonella, and Yersinia at the postranscriptional level. PMID:19175412

  20. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  1. Investigating the effects of the presence of foreign DNA on DNA methylation and DNA repair events in cultured eukaryotic cells.

    PubMed

    Du Toit, J; van der Westhuizen, F H; Pretorius, P J

    2013-01-01

    Methylation of DNA in eukaryotic cells, global as well as gene-specific, is affected by endogenous and endogenous factors. In this paper, it is reported that deviations in DNA methylation and expression of genes involved in DNA repair and the cell cycle are affected in 143B cultured cells containing an expression vector. Global DNA methylation analysis with cytosine-extension assay revealed a decreased global DNA methylation in the presence of the expression vector. Less promoter-specific methylation, as measured by bisulfite-MS PCR, was observed for MGMT and p16INK4a in vector-containing cells. Comet assay investigations revealed a negative effect on the DNA repair capacity of both BER and NER in Complex III compromised cells. This was reflected in the down-regulation of hOGG1 and ERCC1 expression. The results presented in this paper support the existence of a strong relationship between impaired mitochondrial function and deviations in DNA methylation and extend this relationship to impaired DNA repair.

  2. DNA repair genes in the Megavirales pangenome.

    PubMed

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  3. Expression profiles of DNA repair-related genes in rat target organs under subchronic cadmium exposure.

    PubMed

    Lei, Y X; Lu, Q; Shao, C; He, C C; Lei, Z N; Lian, Y Y

    2015-01-01

    We aimed to evaluate the toxicity of long-term exposure to different cadmium (Cd) doses in rats and expression profiles of DNA repair-related genes. The model rats were exposed to different concentrations of CdCl2 for 3 months, and 5 DNA repair-related genes - hMSH2, MLH1, XRCC1, hOGG1, ERCC1 - were cloned in different tissues, including the liver, kidney, heart, and lung. Accumulated amounts of Cd were detected in the tissues. Gene and protein detections were conducted via fluorescence quantitative real-time polymerase chain reaction and Western blotting, respectively. Methylated sequences of the 5 DNA repair-related gene promoters were used to investigate whether the low expression levels of the genes were related to methylation of the promoter. In the Cd-exposed group, 3 DNA repair genes (i.e., XRCC1, hOGG1, and ERCC1) significantly decreased in the rat liver, kidney, heart, and lung according to the β-actin internal standard (P < 0.01). Western blotting indicated the same trend for the different tissues. Each of the DNA repair genes had special characteristics; for example, hOGG1 gene expression decreased by 75% in the kidney, and XRCC1 gene expression decreased by 5% in the liver and heart when compared to the control group (P < 0.01). A negative correlation between the DNA repair gene expression levels and the cumulative levels of Cd was also suggested by malignancy pathology. The expression levels of 3 DNA repair genes (i.e., ERCC1, XRCC1, and hOGG1) played an important role in the rat response to Cd exposure but not DNA methylated protection. PMID:25729986

  4. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Semsey, Szabolcs

    2014-12-01

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome.

  5. Methylation patterns of testis-specific genes.

    PubMed Central

    Ariel, M; McCarrey, J; Cedar, H

    1991-01-01

    The methylation patterns of genes expressed in the mouse male germ line have been examined. Int-1, Hox-2.1, and Prm-1, all of which contain 5' CpG islands, were found to be completely unmethylated at many sites in these domains, both in somatic tissues and in sperm DNA. Many other testis-specific genes have a similar structure and are probably also constitutively unmethylated. Pgk-2, a non-CpG-island gene, is similar to somatic tissue-specific genes in that it is highly methylated in nonexpressing cell types but undermethylated in pachytene spermatocytes and round spermatids, where it is actively transcribed. At later stages of spermatogenesis, however, the gene becomes remethylated and thus acquires the full modification pattern in sperm DNA. In all these cases, the sperm DNA that emerges from the testis does not contain any germ-line-specific unmethylated sites and thus carries the methylation pattern typical of that in somatic tissues. Images PMID:2006171

  6. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size

    PubMed Central

    Asselman, Jana; De Coninck, Dieter I. M.; Pfrender, Michael E.; De Schamphelaere, Karel A. C.

    2016-01-01

    The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation. PMID:27017526

  7. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair

    PubMed Central

    Lee, Bongyong; Morano, Annalisa; Porcellini, Antonio; Muller, Mark T.

    2012-01-01

    In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair. PMID:22135303

  8. Albumin extinction without methylation of its gene.

    PubMed

    Ott, M O; Sperling, L; Weiss, M C

    1984-03-01

    In earlier work we identified at the 5' end of the rat albumin gene an Msp I site whose undermethylation appears to be necessary but not sufficient for stable expression of the gene in rat hepatoma cells. Here, we ask whether the block to expression of albumin production, which occurs when rat hepatoma cells are hybridized with cells that do not produce the protein, could be the result of de novo methylation of this site. In two types of somatic hybrids, rat hepatoma-mouse L cell fibroblasts, and rat hepatoma-dedifferentiated variant rat hepatoma cells, extinction occurs and is maintained during the first 5-15 generations after fusion. During this time the Msp I site of the now inactive rat albumin gene remained unmethylated.

  9. Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate.

    PubMed

    Park, S D; Choi, K H; Hong, S W; Cleaver, J E

    1981-07-01

    Unscheduled DNA synthesis and excision of pyrimidine dimers in human cells exposed to ultraviolet let were inhibited by exposure to methyl methanesulfonate (MMS, 1-2 mM), but repair of MMS damage was not inhibited by UV light. Because the pathways for excision of pyrimidine dimers and alkylation damage have previously been shown to be different, this observation implies a direct effect of alkylation on repair enzymes. We estimate that if inhibition is due to protein alkylation, the UV repair system must present an extremely large target to alkylation and may involve a complex of protein subunits in the order of 1 million daltons such that 1 or more alkylations occur per complex at the concentrations used. These results also indicate that the method of exposing cells to 2 DNA-damaging agents to determine whether they are repaired by common or different pathways can be quite unreliable because of other effects on the repair systems themselves. PMID:7196494

  10. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  11. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    PubMed

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  12. Isolating human DNA repair genes using rodent-cell mutants

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  13. Global and gene specific DNA methylation changes during zebrafish development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  14. Incomplete methylation of the FMR gene in amniotic cells

    SciTech Connect

    Skare, J.C.; Townes, P.L.

    1994-09-01

    Fragile X mental retardation is usually caused by expansion of triplet repeats near the 5{prime} end of the FMR gene. It has been reported that expansions over 600 bp (full mutations) result in mental retardation of males. Furthermore, FMR genes with full mutations have methylation of certain CpG dinucleotides upstream of the gene, one of which is in an Eag I recognition site. Methylation of the Eag I site correlates with transcriptional inactivation. We report a pregnancy with twin males which were shown to be dizygotic by RFLP analysis. The mother possessed an expansion of 150 bp in one of her FMR genes. Amniocentesis was performed. One fetus had an FMR gene with a 600 bp expansion and the other had a heterogeneous expansion with an average of 1100 bp. The gene with a 600 bp expansion had no methylation of its Eag I site, while about half of the FMR genes with the 1100 bp expansion had methylated Eag I sites. At birth, peripheral blood DNA was examined. The extent of methylation in the newborn with the 600 bp expansion had increased to about 50%. The newborn with the 1000 bp expansion was almost completely methylated. Therefore, methylation of FMR genes progressed prenatally in both, fetuses, and the larger expansion was methylated earliest. Furthermore, it would appear that methylation analysis is of limited value in prenatal diagnosis of fragile X mental retardation.

  15. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  16. Prognostic significance of aberrant gene methylation in gastric cancer.

    PubMed

    Shi, Jing; Zhang, Guanjun; Yao, Demao; Liu, Wei; Wang, Na; Ji, Meiju; He, Nongyue; Shi, Bingyin; Hou, Peng

    2012-01-01

    Promoter methylation acts as an important alternative to genetic alterations for gene inactivation in gastric carcinogenesis. Although a number of gastric cancer-associated genes have been found to be methylated in gastric cancer, valuable methylation markers for early diagnosis and prognostic evaluation of this cancer remain largely unknown. In the present study, we used methylation-specific PCR (MSP) to analyze promoter methylation of 9 gastric cancer-associated genes, including MLF1, MGMT, p16, RASSF2, hMLH1, HAND1, HRASLS, TM, and FLNc, and their association with clinicopathological characteristics and clinical outcome in a large cohort of gastric cancers. Our data showed that all of these genes were aberrantly methylated in gastric cancer, ranging from 8% to 51%. Moreover, gene methylation was strongly associated with certain clinicopathological characteristics, such as tumor differentiation, lymph node metastasis, and cancer-related death. Of interest, methylation of MGMT, p16, RASSF2, hMLH1, HAND1, and FLNc was closely associated with poor survival in gastric cancer, particularly MGMT, p16, RASSF2 and FLNc. Thus, our findings suggested these epigenetic events may contribute to the initiation and progression of gastric cancer. Importantly, methylation of some genes were closely relevant to poor prognosis in gastric cancer, providing the strong evidences that these hypermethylated genes may be served as valuable biomarkers for prognostic evaluation in this cancer.

  17. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors

    PubMed Central

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    ABSTRACT Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development. PMID:26786290

  18. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  19. Methylated MicroRNA Genes of the Developing Murine Palate

    PubMed Central

    Seelan, Ratnam S.; Mukhopadhyay, Partha; Warner, Dennis R.; Appana, Savitri N.; Brock, Guy N.; Pisano, M. Michele; Greene, Robert M.

    2016-01-01

    Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein-encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs. PMID:25642850

  20. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.

  1. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  2. Expression of DNA methylation genes in secondary progressive multiple sclerosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Di Marco, Roberto; Touil-Boukoffa, Chafia; Chikovan, Tinatin; Signorelli, Santo; Lombardo, Giuseppe A G; Patti, Francesco; Mammana, Santa; Nicoletti, Ferdinando

    2016-01-15

    Multiple sclerosis (MS) is an immunoinflammatory disease of the central nervous system that seems to be influenced by DNA methylation. We sought to explore the expression pattern of genes involved in the control of DNA methylation in Secondary Progressive (SP) MS patients' PBMCs. We have found that SP MS is characterized by a significant upregulation of two genes belonging to the MBD family genes, MBD2 and MBD4, and by a downregulation of TDG and TET3. PMID:26711572

  3. Cigarette smoke induces methylation of the tumor suppressor gene NISCH

    PubMed Central

    Ostrow, Kimberly Laskie; Michalidi, Christina; Guerrero-Preston, Rafael; Hoque, Mohammad O.; Greenberg, Alissa; Rom, William; Sidransky, David

    2013-01-01

    We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer. PMID:23503203

  4. Methyl-accepting chemotaxis protein III and transducer gene trg.

    PubMed Central

    Hazelbauer, G L; Engström, P; Harayama, S

    1981-01-01

    A comparison of the two-dimensional gel patterns of methyl-3H- and 35S-labeled membrane proteins from trg+ and trg null mutant strains of Escherichia coli indicated that the product of trg is probably methyl-accepting chemotaxis protein III. Like the other known methyl-accepting chemotaxis proteins, the trg product is a membrane protein that migrates as more than one species in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that it too is multiple methylated. It appears likely that all chemoreceptors are linked to the tumble regulator through a single class of membrane protein transducers which are methyl-accepting proteins. Three transducers are coded for by genes tsr, tar, and, probably, trg. Another methyl-accepting protein, which is not related to any of these genes, was observed. Images PMID:7007323

  5. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions.

  6. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  7. Methylated BNIP3 gene in colorectal cancer prognosis

    PubMed Central

    SHIMIZU, SAYAKA; IIDA, SATORU; ISHIGURO, MEGUMI; UETAKE, HIROYUKI; ISHIKAWA, TOSHIAKI; TAKAGI, YOKO; KOBAYASHI, HIROTOSHI; HIGUCHI, TETSURO; ENOMOTO, MASAYUKI; MOGUSHI, KAORU; MIZUSHIMA, HIROSHI; TANAKA, HIROSHI; SUGIHARA, KENICHI

    2010-01-01

    The DNA methylation of apoptosis-related genes in various cancers contributes to the disruption of the apoptotic pathway and results in resistance to chemotherapeutic agents. Irinotecan (CPT-11) is one of the key chemotherapy drugs used to treat metastatic colorectal cancer (CRC). However, a number of metastatic CRC patients do not benefit from this drug. Thus, the identification of molecular genetic parameters associated with the response to CPT-11 is of interest. To identify apoptosis-related genes that may contribute to CPT-11 resistance, microarray analysis was conducted using colon cancer cells in which 5-aza-2′deoxycytidine (DAC) enhanced sensitivity to CPT-11. Microarray analysis identified 10 apoptosis-related genes that were up-regulated following treatment with DAC. Among the genes, Bcl-2/adenovirus E1B 19 kDa protein interacting protein 3 (BNIP3), a Bcl-2 family pro-apoptotic protein, was identified as being involved in CPT-11 resistance following methylation of its promoter. An analysis of 112 primary CRC cases revealed that approximately 58% of cases showed BNIP3 methylation, and that patients with methylation exhibited a poorer outcome compared to those without methylation. In addition, in 30 patients who received first-line CPT-11 chemotherapy, patients with methylation exhibited resistance to chemotherapy compared to patients with no methylation. The results suggest that methylation of BNIP3 is a predictive factor in the prognosis and response to CPT-11 treatment in CRC patients. PMID:22966396

  8. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. PMID:26255934

  9. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  10. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways

    PubMed Central

    2013-01-01

    Background Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis. Results In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7) and colon cancer (HCT-15) cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS) exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”. Conclusions These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways. PMID:23294620

  11. DNA methylation as a regulatory mechanism in rat gamma-crystallin gene expression.

    PubMed Central

    Peek, R; Niessen, R W; Schoenmakers, J G; Lubsen, N H

    1991-01-01

    We have investigated the methylation state of the rat gamma-crystallin genes in DNA from lens cells at different developmental stages as well as from kidney and heart cells. A clear correlation between the extent of demethylation of the promoter and 5' gene regions and the expression of these genes was observed. No change in the methylation state of the far upstream or 3' regions of the genes was seen. The demethylation of the promoter region was shown to occur during the differentiation from the lens epithelial to the lens fiber cell. The effect of cytosine methylation on gamma-crystallin promoter activity was tested by measuring gamma-crystallin promoter/chloramphenicol acetyltransferase fusion gene expression after in vitro primed repair synthesis of the promoter region in the presence of either dCTP or 5mdCTP. The hemimethylated promoter was no longer capable of promoting high CAT activity after introduction into lens-like cells. Taken together, our data suggest that DNA demethylation may be the determining step in the developmental stage-specific expression of the rat gamma-crystallin genes. Images PMID:2011513

  12. Promoter methylation of candidate genes associated with familial testicular cancer.

    PubMed

    Mirabello, Lisa; Kratz, Christian P; Savage, Sharon A; Greene, Mark H

    2012-01-01

    Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted. PMID:23050052

  13. Genomic landscape of DNA repair genes in cancer.

    PubMed

    Chae, Young Kwang; Anker, Jonathan F; Carneiro, Benedito A; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A; Platanias, Leonidas C; Giles, Francis J

    2016-04-26

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety. We created comprehensive lists of DNA repair genes and indirect caretakers. Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998). Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively. Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy.

  14. Genomic landscape of DNA repair genes in cancer

    PubMed Central

    Carneiro, Benedito A.; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A.; Platanias, Leonidas C.; Giles, Francis J.

    2016-01-01

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety.  We created comprehensive lists of DNA repair genes and indirect caretakers.  Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998).  Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively.  Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy. PMID:27004405

  15. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    PubMed

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  16. Non-functional genes repaired at the RNA level.

    PubMed

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years.

  17. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  18. H19 gene methylation status is associated with male infertility

    PubMed Central

    LI, XIAO-PING; HAO, CHAO-LIANG; WANG, QIAN; YI, XIAO-MEI; JIANG, ZHI-SHENG

    2016-01-01

    The present study investigated the H19 gene methylation status in male infertility. Between March 2013 and June 2014, semen samples were collected from 15 normal fertile males and 15 males experiencing infertility, and routine analysis and sperm morphological assessment were performed. The semen samples were subjected to density gradient centrifugation to separate the sperm fraction, and genomic DNA from the sperms was extracted and treated for bisulfite modification. Following in vitro amplification by polymerase chain reaction (PCR), the purified PCR products were cloned into pMD®18-T vectors and successful cloning was confirmed by restriction enzyme digestion. Positive clones were sequenced and the DNA methylation status was analyzed. The overall methylation rate in the normal fertile group was 100% (270/270), whereas in the infertile group the methylation rate was lower at 94.1% (525/558), revealing a statistically significant decrease in overall methylation rate in the infertile patients compared with the control group (χ2=15.12; P<0.001). The average methylation rates of CpG 1, 3 and 6 in the infertile group were statistically different from those in the normal control group (all P<0.05). The abnormal methylation of imprinted gene H19 is associated with male infertility, suggesting that H19 may serve as a biomarker for the detection of defects in human spermiogenesis. PMID:27347077

  19. Significant association between DRD3 gene body methylation and schizophrenia.

    PubMed

    Dai, Dongjun; Cheng, Jia; Zhou, Kena; Lv, Yuelong; Zhuang, Qidong; Zheng, Rongjiong; Zhang, Kai; Jiang, Danjie; Gao, Shugui; Duan, Shiwei

    2014-12-30

    The current study was the first one to reveal the contribution of DRD3 methylation to the risk of different (SCZ) subtypes. This study comprised a total of 30 paranoid (15 males and 15 females) and 29 undifferentiated (15 males and 14 females) SCZ patients and 26 age- and gender-matched controls. Our results showed a significant association of CpG2 with SCZ. A breakdown analysis by gender showed that CpG2 and CpG3 methylation were significantly higher in male patients than male controls, and that CpG5 methylation was significantly higher in female patients than female controls. A further breakdown analysis by both gender and SCZ subtype showed that CpG2 and CpG3 methylation were significantly higher in male paranoid SCZ and male undifferentiated SCZ than male controls. In contrast, CpG2 and CpG3 methylation were significantly lower in female undifferentiated SCZ than female controls. Additionally, CpG5 methylation was significantly higher in female paranoid SCZ than female controls. In conclusion, our findings supported that DRD3 gene body hypermethylation was significantly associated with the risk of SCZ. Future study is needed to clarify the mechanisms by which DRD3 gene body hypermethylation contributes to the risk of SCZ.

  20. Hodgkin Lymphoma Risk: Role of Genetic Polymorphisms and Gene-Gene Interactions in DNA repair pathways

    PubMed Central

    Monroy, Claudia M.; Cortes, Andrea C.; Lopez, Mirtha; Rourke, Elizabeth; Etzel, Carol J.; Younes, Anas; Strom, Sara S.; El-Zein, Randa

    2011-01-01

    DNA repair variants may play a potentially important role in an individual’s susceptibility to developing cancer. Numerous studies have reported the association between genetic single nucleotide polymorphisms (SNPs) in DNA repair genes and different types of hematologic cancers. However, to date, the effects of such SNPs on modulating Hodgkin Lymphoma (HL) risk have not yet been investigated. We hypothesized that gene-gene interaction between candidate genes in Direct Reversal, Nucleotide excision repair (NER), Base excision repair (BER) and Double strand break (DSB) pathways may contribute to susceptibility to HL. To test this hypothesis, we conducted a study on 200 HL cases and 220 controls to assess associations between HL risk and 21 functional SNPs in DNA repair genes. We evaluated potential gene-gene interactions and the association of multiple polymorphisms in a chromosome region using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction and classification and regression tree approaches. We observed that, in combination, allelic variants in the XPC Ala499Val, NBN Glu185Gln, XRCC3 Thr241Me, XRCC1 Arg194Trp and XRCC1 399Gln polymorphisms modify the risk for developing HL. Moreover, the cumulative genetic risk score revealed a significant trend where the risk for developing HL increases as the number of adverse alleles in BER and DSB genes increase. These findings suggest that DNA repair variants in BER and DSB pathways may play an important role in the development of HL. PMID:21374732

  1. Regulation of targeted gene repair by intrinsic cellular processes.

    PubMed

    Engstrom, Julia U; Suzuki, Takayuki; Kmiec, Eric B

    2009-02-01

    Targeted gene alteration (TGA) is a strategy for correcting single base mutations in the DNA of human cells that cause inherited disorders. TGA aims to reverse a phenotype by repairing the mutant base within the chromosome itself, avoiding the introduction of exogenous genes. The process of how to accurately repair a genetic mutation is elucidated through the use of single-stranded DNA oligonucleotides (ODNs) that can enter the cell and migrate to the nucleus. These specifically designed ODNs hybridize to the target sequence and act as a beacon for nucleotide exchange. The key to this reaction is the frequency with which the base is corrected; this will determine whether the approach becomes clinically relevant or not. Over the course of the last five years, workers have been uncovering the role played by the cells in regulating the gene repair process. In this essay, we discuss how the impact of the cell on TGA has evolved through the years and illustrate ways that inherent cellular pathways could be used to enhance TGA activity. We also describe the cost to cell metabolism and survival when certain processes are altered to achieve a higher frequency of repair.

  2. Role of PTCH1 gene methylation in gastric carcinogenesis.

    PubMed

    Zuo, Yun; Song, Yu; Zhang, Min; Xu, Zhen; Qian, Xiaolan

    2014-08-01

    The present study aimed to investigate the role of PTCH1 methylation in gastric carcinogenesis and the therapeutic effect of the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), in the treatment of gastric cancer. Total RNA was extracted from 20 gastric cancer tissues, their corresponding adjacent normal tissues and a gastric cancer AGS cell line. PTCH1 mRNA expression was detected by quantitative PCR, and the PTCH1 methylation of the promoter was examined by methylation-specific PCR. The AGS cells were treated with 5-Aza-dC; apoptosis and the cell cycle were examined by flow cytometry, and the PTCH1 methylation level was observed. PTCH1 expression was negatively correlated with promoter methylation in the gastric cancer tissues, their corresponding adjacent normal tissues and the gastric cancer AGS cell line (r=-0.591, P=0.006). 5-Aza-dC treatment caused apoptosis and the G0/G1 phase arrest of the AGS cells, and also induced the demethylation and increased expression of PTCH1. In conclusion, the study found that the hypermethylation of the PTCH1 gene promoter region is one of the main causes of low PTCH1 expression in AGS cells. Demethylation agent 5-Aza-dC can reverse the methylation status of PTCH1 and regulate the expression of PTCH1, indicating its potential role in gastric cancer treatment. PMID:25013484

  3. Bone tissue engineering and repair by gene therapy.

    PubMed

    Betz, Volker M; Betz, Oliver B; Harris, Mitchel B; Vrahas, Mark S; Evans, Christopher H

    2008-01-01

    Many clinical conditions require the stimulation of bone growth. The use of recombinant bone morphogenetic proteins does not provide a satisfying solution to these conditions due to delivery problems and high cost. Gene therapy has emerged as a very promising approach for bone repair that overcomes limitations of protein-based therapy. Several preclinical studies have shown that gene transfer technology has the ability to deliver osteogenic molecules to precise anatomical locations at therapeutic levels for sustained periods of time. Both in-vivo and ex-vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Genetic engineering of adult stem cells from various sources with osteogenic genes has led to enhanced fracture repair, spinal fusion and rapid healing of bone defects in animal models. This review describes current viral and non-viral gene therapy strategies for bone tissue engineering and repair including recent work from the author's laboratory. In addition, the article discusses the potential of gene-enhanced tissue engineering to enter widespread clinical use.

  4. uv excision-repair gene transfer in Chinese hamster ovary (CHO) cells

    SciTech Connect

    MacInnes, M.A.; Bingham, J.M.; Strniste, G.F.; Thompson, L.H.

    1983-01-01

    uvc-sensitive mutants of CHO cells provide a model system for molecular studies of DNA repair. We present our recent results which show that these mutants are competent recipients for plasmid marker gene transfer and incorporation of a putative CHO repair gene. The applicability and advantages of this system for interspecies human repair gene identification are discussed.

  5. The APOE Gene is Differentially Methylated in Alzheimer's Disease.

    PubMed

    Foraker, Jessica; Millard, Steven P; Leong, Lesley; Thomson, Zachary; Chen, Sunny; Keene, C Dirk; Bekris, Lynn M; Yu, Chang-En

    2015-01-01

    The ɛ4 allele of the human apolipoprotein E gene (APOE) is a well-proven genetic risk factor for the late onset form of Alzheimer's disease (AD). However, the biological mechanisms through which the ɛ4 allele contributes to disease pathophysiology are incompletely understood. The three common alleles of APOE, ɛ2, ɛ3 and ɛ4, are defined by two single nucleotide polymorphisms (SNPs) that reside in the coding region of exon 4, which overlaps with a well-defined CpG island (CGI). Both SNPs change not only the protein codon but also the quantity of CpG dinucleotides, primary sites for DNA methylation. Thus, we hypothesize that the presence of an ɛ4 allele changes the DNA methylation landscape of the APOE CGI and that such epigenetic alteration contributes to AD susceptibility. To explore the relationship between APOE genotype, AD risk, and DNA methylation of the APOE CGI, we applied bisulfite pyrosequencing and evaluated methylation profiles of postmortem brain from 15 AD and 10 control subjects. We observed a tissue-specific decrease in DNA methylation with AD and identified two AD-specific differentially methylated regions (DMRs), which were also associated with APOE genotype. We further demonstrated that one DMR was completely un-methylated in a sub-population of genomes, possibly due to a subset of brain cells carrying deviated APOE methylation profiles. These data suggest that the APOE CGI is differentially methylated in AD brain in a tissue- and APOE-genotype-specific manner. Such epigenetic alteration might contribute to neural cell dysfunction in AD brain. PMID:26402071

  6. Mismatch-mediated error prone repair at the immunoglobulin genes.

    PubMed

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  7. Genome-Wide Profiling of PARP1 Reveals an Interplay with Gene Regulatory Regions and DNA Methylation

    PubMed Central

    Nalabothula, Narasimharao; Al-jumaily, Taha; Eteleeb, Abdallah M.; Flight, Robert M.; Xiaorong, Shao; Moseley, Hunter; Rouchka, Eric C.; Fondufe-Mittendorf, Yvonne N.

    2015-01-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme involved in DNA repair, chromatin remodeling and gene expression. PARP1 interactions with chromatin architectural multi-protein complexes (i.e. nucleosomes) alter chromatin structure resulting in changes in gene expression. Chromatin structure impacts gene regulatory processes including transcription, splicing, DNA repair, replication and recombination. It is important to delineate whether PARP1 randomly associates with nucleosomes or is present at specific nucleosome regions throughout the cell genome. We performed genome-wide association studies in breast cancer cell lines to address these questions. Our studies show that PARP1 associates with epigenetic regulatory elements genome-wide, such as active histone marks, CTCF and DNase hypersensitive sites. Additionally, the binding of PARP1 to chromatin genome-wide is mutually exclusive with DNA methylation pattern suggesting a functional interplay between PARP1 and DNA methylation. Indeed, inhibition of PARylation results in genome-wide changes in DNA methylation patterns. Our results suggest that PARP1 controls the fidelity of gene transcription and marks actively transcribed gene regions by selectively binding to transcriptionally active chromatin. These studies provide a platform for developing our understanding of PARP1’s role in gene regulation. PMID:26305327

  8. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    PubMed

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life. PMID:23603834

  9. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    PubMed

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  10. Identification of direction in gene networks from expression and methylation

    PubMed Central

    2013-01-01

    Background Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/. PMID:24182195

  11. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids.

    PubMed

    Yang, Qiwei; Nair, Sangeeta; Laknaur, Archana; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-03-01

    Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%-80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs. These genetic anomalies suggest that low DNA damage repair capacity may be involved in UF formation. The objective of this study was to determine whether expression levels of DNA damage repair-related genes were altered, and how they were regulated in the pathogenesis of UFs. Expression levels of DNA repair-related genes RAD51 and BRCA1 were deregulated in fibroid tissues as compared to adjacent myometrial tissues. Expression levels of chromatin protein enhancer of zeste homolog 2 (EZH2) were higher in a subset of fibroids as compared to adjacent myometrial tissues by both immunohistochemistry and Western blot analysis. Treatment with an inhibitor of EZH2 markedly increased expression levels of RAD51 and BRCA1 in fibroid cells and inhibited cell proliferation paired with cell cycle arrest. Restoring the expression of RAD51 and BRCA1 by treatment with EZH2 inhibitor was dependent on reducing the enrichment of trimethylation of histone 3 lysine 27 epigenetic mark in their promoter regions. This study reveals the important role of EZH2-regulated DNA damage-repair genes via histone methylation in fibroid biology, and may provide novel therapeutic targets for the medical treatment of women with symptomatic UFs. PMID:26888970

  12. Molecular genetic and biochemical analyses of a DNA repair gene from Serratia marcescens

    SciTech Connect

    Murphy, K.E.

    1989-01-01

    In Escherichia coli, the SOS response and two 3-methyladenine DNA glycosylases (TagI and TagII) are required for repair of DNA damaged by alkylating agents such as methyl methanesulfonate (MMS). Mutations of the recA gene eliminate the SOS response. TagI and TagII are encoded by the tag and alkA genes, respectively. A gene (rpr) encoding 3-methyladenine DNA glycosylase activity was isolated from the Gram-negative bacterium Serratia marcescens. The gene, localized to a 1.5-kilobase pair SmaI-HindIII restriction fragment, was cloned into plasmid pUC18. The clone complemented E. coli tag alkA and recA mutations for MMS resistance. The rpr gene did not, however, complement recA mutations for resistance to ultraviolet light or the ability to perform homologous recombination reactions, nor did it complement E. coli ada or alkB mutations. Two proteins of molecular weights 42,000 and 16,000 were produced from the rpr locus. Analysis of deletion and insertion mutants of rpr suggested that the 42kD molecule is the active protein. The 16kD protein may either be a breakdown product of the 42kD species or may be encoded by another gene overlapping the reading frame of the rpr gene. Biochemical assays showed that the rpr gene product (Rpr) possesses 3-methyladenine DNA glycosylase activity.

  13. DNA Methyltransferase 1-associated Protein (DMAP1) Is a Co-repressor That Stimulates DNA Methylation Globally and Locally at Sites of Double Strand Break Repair*

    PubMed Central

    Lee, Gun E.; Kim, Joo Hee; Taylor, Michael; Muller, Mark T.

    2010-01-01

    Correction of double strand DNA breaks proceeds in an error-free pathway of homologous recombination (HR), which can result in gene silencing of half of the DNA molecules caused by action by DNA methyltransferase 1 (DNMT1) (Cuozzo, C., Porcellini, A., Angrisano, T., Morano, A., Lee, B., Di Pardo, A., Messina, S., Iuliano, R., Fusco, A., Santillo, M. R., Muller, M. T., Chiariotti, L., Gottesman, M. E., and Avvedimento, E. V. (2007) PLoS Genet. 3, e110). To explore the mechanism that leads to HR-induced silencing, a genetic screen was carried out based on the silencing of a GFP reporter to identify potential partners. DMAP1, a DNMT1 interacting protein, was identified as a mediator of this process. DMAP1 is a potent activator of DNMT1 methylation in vitro, suggesting that DMAP1 is a co-repressor that supports the maintenance and de novo action of DNMT1. To examine critical roles for DMAP1 in vivo, lentiviral shRNA was used to conditionally reduce cellular DMAP1 levels. The shRNA transduced cells grew poorly and eventually ceased their growth. Analysis of the tumor suppressor gene p16 methylation status revealed a clear reduction in methylated CpGs in the shRNA cells, suggesting that reactivation of a tumor suppressor gene pathway caused the slow growth phenotype. Analysis of HR, using a fluorescence-based reporter, revealed that knocking down DMAP1 also caused hypomethylation of the DNA repair products following gene conversion. DMAP1 was selectively enriched in recombinant GFP chromatin based on chromatin immunoprecipitation analysis. The picture that emerges is that DMAP1 activates DNMT1 preferentially at sites of HR repair. Because DMAP1 depleted cells display enhanced HR, we conclude that it has additional roles in genomic stability. PMID:20864525

  14. DNA methyltransferase 1-associated protein (DMAP1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair.

    PubMed

    Lee, Gun E; Kim, Joo Hee; Taylor, Michael; Muller, Mark T

    2010-11-26

    Correction of double strand DNA breaks proceeds in an error-free pathway of homologous recombination (HR), which can result in gene silencing of half of the DNA molecules caused by action by DNA methyltransferase 1 (DNMT1) (Cuozzo, C., Porcellini, A., Angrisano, T., Morano, A., Lee, B., Di Pardo, A., Messina, S., Iuliano, R., Fusco, A., Santillo, M. R., Muller, M. T., Chiariotti, L., Gottesman, M. E., and Avvedimento, E. V. (2007) PLoS Genet. 3, e110). To explore the mechanism that leads to HR-induced silencing, a genetic screen was carried out based on the silencing of a GFP reporter to identify potential partners. DMAP1, a DNMT1 interacting protein, was identified as a mediator of this process. DMAP1 is a potent activator of DNMT1 methylation in vitro, suggesting that DMAP1 is a co-repressor that supports the maintenance and de novo action of DNMT1. To examine critical roles for DMAP1 in vivo, lentiviral shRNA was used to conditionally reduce cellular DMAP1 levels. The shRNA transduced cells grew poorly and eventually ceased their growth. Analysis of the tumor suppressor gene p16 methylation status revealed a clear reduction in methylated CpGs in the shRNA cells, suggesting that reactivation of a tumor suppressor gene pathway caused the slow growth phenotype. Analysis of HR, using a fluorescence-based reporter, revealed that knocking down DMAP1 also caused hypomethylation of the DNA repair products following gene conversion. DMAP1 was selectively enriched in recombinant GFP chromatin based on chromatin immunoprecipitation analysis. The picture that emerges is that DMAP1 activates DNMT1 preferentially at sites of HR repair. Because DMAP1 depleted cells display enhanced HR, we conclude that it has additional roles in genomic stability. PMID:20864525

  15. Quantitative Methylation Analysis of the PCDHB Gene Cluster.

    PubMed

    Banelli, Barbara; Romani, Massimo

    2015-01-01

    Long Range Epigenetic Silencing (LRES) is a repressed chromatin state of large chromosomal regions caused by DNA hypermethylation and histone modifications and is commonly observed in cancer. At 5q31 a LRES region of 800 kb includes three multi-gene clusters (PCDHA@, PCDHB@, and PCDHG@, respectively). Multiple experimental evidences have led to consider the PCDHB cluster as a DNA methylation marker of aggressiveness in neuroblastoma, second most common solid tumor in childhood. Because of its potential involvement not only in neuroblastoma but also in other malignancies, an easy and fast assay to screen the DNA methylation content of the PCDHB cluster might be useful for the precise stratification of the patients into risk groups and hence for choosing the most appropriate therapeutic protocol. Accordingly, we have developed a simple and cost-effective Pyrosequencing(®) assay to evaluate the methylation level of 17 genes in the protocadherin B cluster (PCDHB@). The rationale behind this Pyrosequencing assay can in principle be applied to analyze the DNA methylation level of any gene cluster with high homologies for screening purposes. PMID:26103900

  16. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    PubMed Central

    2010-01-01

    Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR), apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR) and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001), DCR1 (P = 0.00001), DCR2 (P = 0.0000000005) and BRCA2 (P = 0.007) and hypomethylation of DR4 (P = 0.011) in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047) and DNA damage repair potential (P = 0.004) in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing tumors result in

  17. Expression of the excision repair gene, ERCC3 (excision repair cross-complementing), during mouse development.

    PubMed

    Hubank, M; Mayne, L

    1994-08-12

    Expression of the human ERCC3 (excision repair cross-complementing) gene in cells from patients with xeroderma pigmentosum (XP) group B (XP-B) corrects the defect in repair of UV light-induced DNA damage. XP-B is one of three groups of XP which exhibit the clinical symptoms of both XP and Cockayne's Syndrome (CS). CS and XP-B/CS patients develop severe neurological dysfunction during development. In order to explore the link between the defective gene and the neurological deficits in XP/CS, we have studied the expression of ERCC3 mRNA in developing mice by in situ hybridisation. ERCC3 was found to be ubiquitously expressed in cells from all regions and all developmental stages, from 9 day post-coitum embryo, to 15 day post-natal brain. In post-natal brain, regional differences in expression correlated with cell density and there was no evidence of cell specific or developmental alterations in levels of expression. These results indicate that the constitutively expressed gene does not perform a discrete developmental function. The neurological defects apparent in XP-B are likely to arise pleiotypically from the participation of ERCC3 in interactions with other elements involved in particular aspects of neurodevelopmental control. These results emphasise the developmental importance of genes whose primary functions are apparently unconnected with development. PMID:7805288

  18. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  19. A method for systematic mapping of protein lysine methylation identifies new functions for HP1β in DNA damage repair

    PubMed Central

    Liu, Huadong; Galka, Marek; Liu, Xuguang; Lin, Yu-fen; Pittock, Paula; Voss, Courtney; Dhami, Gurpreet; Li, Xing; Miyaji, Masaaki; Lajoie, Gilles; Chen, Benjamin; Li, Shawn S.-C.

    2014-01-01

    SUMMARY Lysine methylation occurs on both histone and non-histone proteins. However, our knowledge on the prevalence and function of non-histone protein methylation is poor. We describe here an approach that combines peptide array, bioinformatic and mass spectrometric analyses to systematically identify lysine methylation sites in proteins and methyllysine-mediated protein-protein interactions. We demonstrate the utility of this approach by identifying a methyllysine-driven interactome of the heterochromatin protein (HP) 1β and uncovering, simultaneously, numerous methyllysine sites on non-histone proteins. The HP1β interactome is enriched with proteins involved in DNA damage repair and RNA splicing. We showed that lysine methylation played a pivotal role in the function of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and its interaction with HP1β during DNA damage response. Moreover, by combining heavy methyl SILAC with Multiple Reaction Monitoring (MRM) mass spectrometry (MS), we showed that lysine methylation underwent widespread and large changes in response to DNA damage. Our work indicates that lysine methylation is a highly dynamic post-translational modification occurring frequently on non-histone proteins and that the approach presented herein may be extended to many methyllysine-binding modules to systematically uncover lysine methylation events in the cell. PMID:23707759

  20. Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes

    PubMed Central

    Olson, Claire E.; Roberts, Steven B.

    2014-01-01

    DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing. RNA-Seq analysis was performed to examine the relationship between DNA methylation and transcript expression. Methylation status of over 7.6 million CpG dinucleotides was described with a majority of methylated regions occurring among intragenic regions. Overall, 15% of the CpG dinucleotides were determined to be methylated and the mitochondrial genome lacked DNA methylation. Integrative analysis of DNA methylation and RNA-Seq data revealed a positive association between methylation status, both in gene bodies and putative promoter regions, and expression. This study provides a comprehensive characterization of the distribution of DNA methylation in the oyster male gamete tissue and suggests that DNA methylation is involved in gene regulatory activity. PMID:24987376

  1. Examining the Impact of Gene Variants on Histone Lysine Methylation

    PubMed Central

    Van Rechem, Capucine; Whetstine, Johnathan R.

    2015-01-01

    In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation. PMID:24859469

  2. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  3. Methyl-CpG binding domain protein acts to regulate the repair of cyclobutane pyrimidine dimers on rice DNA

    PubMed Central

    Fang, Changxun; Chen, Weisi; Li, Chengxun; Jian, Xin; Li, Yingzhe; Lin, Hongmei; Lin, Wenxiong

    2016-01-01

    UVB radiation causes cyclobutane pyrimidine dimers (CPDs) to form on the DNA of living organisms. This study found that overexpression of the silicon absorbance gene Lsi1 reduced the accumulation of CPDs in rice, which profited from the reactivation by photolyase. The transcript abundance of deoxyribodipyrimidine photolyase (Os10g0167600) was generally correlated with the silicon content of the rice, and the up-regulation of Os10g0167600 was found to be highest in the UVB-treated Lsi1-overexpressed (Lsi1-OX) rice. A trans-acting factor, methyl-CpG binding domain protein (OsMeCP), was found to interact with the cis-element of Os10g0167600. The nucleic location of OsMeCP effectively enabled the transcriptional regulation. Compared with the WT, the level of OsMeCP was lower in the Lsi1-OX rice but higher in the Lsi1-RNAi line. Rice cultured in a high silicate-concentration solution also exhibited less OsMeCP abundance. Overexpression of OsMeCP led to lower Os10g0167600 transcript levels and a higher CPD content than in the WT, but the reverse was true in the OsMeCP-RNAi line. These findings indicate that OsMeCP acts as a negative regulator of silicon, and can mediate the repression of the transcription from Os10g0167600, which inhibits the photoreactivation of the photolyase involved in the repair of CPDs. PMID:27694845

  4. DNA mismatch repair gene mutations in human cancer.

    PubMed Central

    Peltomäki, P

    1997-01-01

    A new pathogenetic mechanism leading to cancer has been delineated in the past 3 years when human homologues of DNA mismatch repair (MMR) genes have been identified and shown to be involved in various types of cancer. Germline mutations of MMR genes cause susceptibility to a hereditary form of colon cancer, hereditary nonpolyposis colon cancer (HNPCC), which represents one of the most common syndromes associated with cancer predisposition in man. Tumors from HNPCC patients are hypermutable and show length variation at short tandem repeat sequences, a phenomenon referred to as microsatellite instability or replication errors. A similar abnormality is found in a proportion of sporadic tumors of the colorectum as well as a variety of other organs; acquired mutations in MMR genes or other endogenous or exogenous causes may underlie these cases. Genetic and biochemical characterization of the functions of normal and mutated MMR genes elucidates mechanisms of cancer development and provides tools for diagnostic applications. PMID:9255561

  5. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate–Vertebrate Boundary

    PubMed Central

    Keller, Thomas E.; Han, Priscilla; Yi, Soojin V.

    2016-01-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate–vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate–vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. PMID:26715626

  6. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  7. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed Central

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-01-01

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle. Images PMID:7784171

  8. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  9. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations.

    PubMed

    Sijmons, Rolf H; Hofstra, Robert M W

    2016-02-01

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive Constitutional Mismatch Repair Deficiency syndrome. Both conditions are important to recognize clinically as their identification has direct consequences for clinical management and allows targeted preventive actions in mutation carriers. Lynch syndrome is one of the more common adult-onset hereditary tumor syndromes, with thousands of patients reported to date. Its tumor spectrum is well established and includes colorectal cancer, endometrial cancer and a range of other cancer types. However, surveillance for cancers other than colorectal cancer is still of uncertain value. Prophylactic surgery, especially for the uterus and its adnexa is an option in female mutation carriers. Chemoprevention of colorectal cancer with aspirin is actively being investigated in this syndrome and shows promising results. In contrast, the Constitutional Mismatch Repair Deficiency syndrome is rare, features a wide spectrum of childhood onset cancers, many of which are brain tumors with high mortality rates. Future studies are very much needed to improve the care for patients with this severe disorder. PMID:26746812

  10. Simulated microgravity influenced the expression of DNA damage repair genes

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  11. Gene Expression and Methylation Pattern in HRK Apoptotic Gene in Myelodysplastic Syndrome

    PubMed Central

    Zaker, Farhad; Amirizadeh, Naser; Nasiri, Nahid; Razavi, Seyed Mohsen; Teimoori-Toolabi, Ladan; Yaghmaie, Marjan; Mehrasa, Roya

    2016-01-01

    Myelodysplastic syndromes (MDSs) are a clonal bone marrow (BM) disease characterized by ineffective hematopoiesis, dysplastic maturation and progression to acute myeloid leukemia (AML). Methylation silencing of HRK has been found in several human malignancies. In this study, we explored the association of HRK methylation status with its expression, clinical parameters and MDS subtypes in MDS patients. To study the methylation status of HRK gene, we applied Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) in MDS patients, as well as healthy controls and EpiTect®PCR Control DNA. Real time RT-PCR was used for gene expression analysis. Methylation frequency in promoter region of HRK in patient samples was 20.37%. Methylation of HRK was significantly related to transcriptional downregulation (P=0.023). The difference in frequency of hypermethylated HRK gene was significant between good (10%) and poor (71.42%) cytogenetic risk groups (P= 0.001), advanced stage MDS patients (66.66%) in comparison with early stage MDS patients (2.56%) (P= 0.00), higher- risk MDS group (61.53%) and lower- risk MDS group (7.31%) (P= 0.00). HRK hypermethylation was associated with advanced- stage MDS and downregulation of HRK gene may play a role in the progression of MDS. PMID:27478805

  12. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  13. Chemotaxis in Escherichia coli: Methylation of che gene products

    PubMed Central

    Silverman, Michael; Simon, Melvin

    1977-01-01

    The products of three chemotaxis-specific genes in Escherichia coli, cheM, cheD, and cheZ, are methylated. The cheZ gene codes for the synthesis of a 24,000 molecular weight polypeptide that appears in the cytoplasm. cheM codes for the synthesis of a membrane-bound polypeptide with a molecular weight of 61,000. cheD codes for another membrane-bound polypeptide with an apparent molecular weight of 64,000. CheM- mutants show chemotaxis toward some attractants (Tar- phenotype), while CheD- mutants respond to other attractants (Tsr- phenotype). The double mutant (CheD-, CheM-) does not respond to any attractant or repellent tested. Therefore, these polypeptides play a central role in chemotaxis. They collect information from two subsets of chemoreceptors and act as the last step in the chemoreceptor pathway and the first step in the general processing of signals for transmission to the flagellar rotor. It is suggested that they may be involved in both an initial process that reflects the instantaneous state of the chemoreceptors and in an integrative, adaptive process. Two other genes, cheX and cheW, are required for the methylation of the cheD and cheM gene products. Images PMID:333434

  14. Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells

    PubMed Central

    2013-01-01

    Background The discovery of gene body methylation, which refers to DNA methylation within gene coding region, suggests an as yet unknown role of DNA methylation at actively transcribed genes. In invertebrates, gene bodies are the primary targets of DNA methylation, and only a subset of expressed genes is modified. Results Here we investigate the tissue variability of both the global levels and distribution of 5-methylcytosine (5mC) in the sea squirt Ciona intestinalis. We find that global 5mC content of early developmental embryos is high, but is strikingly reduced in body wall tissues. We chose sperm and adult muscle cells, with high and reduced levels of global 5mC respectively, for genome-wide analysis of 5mC targets. By means of CXXC-affinity purification followed by deep sequencing (CAP-seq), and genome-wide bisulfite sequencing (BS-seq), we designated body-methylated and unmethylated genes in each tissue. Surprisingly, body-methylated and unmethylated gene groups are identical in the sperm and muscle cells. Our analysis of microarray expression data shows that gene body methylation is associated with broad expression throughout development. Moreover, transgenic analysis reveals contrasting gene body methylation at an identical gene-promoter combination when integrated at different genomic sites. Conclusions We conclude that gene body methylation is not a direct regulator of tissue specific gene expression in C. intestinalis. Our findings reveal constant targeting of gene body methylation irrespective of cell type, and they emphasize a correlation between gene body methylation and ubiquitously expressed genes. Our transgenic experiments suggest that the promoter does not determine the methylation status of the associated gene body. PMID:24279449

  15. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  16. Isolation of a human DNA repair gene by selection in Chinese hamster ovary cells

    SciTech Connect

    Ding, R.C.; Eastman, A.; Bresnick, E.

    1987-05-01

    Alkylation of DNA at the O/sup 6/-position of guanine represents a potent mutagenic and carcinogenic lesion. O/sup 6/-Methylguanine DNA methyltransferase is the repair system responsible for catalyzing the transfer of the methyl group to a cysteine of the protein in a suicide reaction. The gene controlling its expression in mammalian systems is designated mex. Resistance to chloroethylnitrosourea (CNU) is also mediated by this protein; this was used to select cells into which the max gene has been introduced. DNA purified from human liver has been transfected into mex/sup -/ CHO cells by the CaPO/sub 4/ method. pSV2gpt, containing a marker gene, gpt, was cotransfected. The transformed cells were initially selected for the expression of gpt (mycophenolic acid resistance) and reselected in CNU for mex/sup +/. Several clones were resistant to both demonstrating the linkage of these genes. A cosmid library was made from a mex/sup +/gpt/sup +/ clone and grown in a gpt/sup -/ strain of E. coli. gpt/sup +/ colonies were selected and the cosmid DNA rescued. One of the tested cosmid DNA's produced CNU resistance upon introduction into CHO cells. This cosmid was subcloned, restriction endonuclease-treated and a 5.3 kb fragment showed mex activity. This fragment is being further characterized and the DNA sequenced.

  17. Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    Okada, Toshiyuki; Nakamura, Munetaka; Nishikawa, Jun; Sakai, Kouhei; Zhang, Yibo; Saito, Mari; Morishige, Akihiro; Oga, Atsunori; Sasaki, Kosuke; Suehiro, Yutaka; Hinoda, Yuji; Sakaida, Isao

    2013-10-01

    We studied the comprehensive DNA methylation status in the naturally derived gastric adenocarcinoma cell line SNU-719, which was infected with the Epstein-Barr virus (EBV) by methylated CpG island recovery on chip assay. To identify genes specifically methylated in EBV-associated gastric carcinomas (EBVaGC), we focused on seven genes, TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1, based on the results of methylated CpG island recovery on chip assay. We confirmed DNA methylation of the genes by methylation-specific PCR and bisulfite sequencing in SNU-719. The expression of the genes, except for BCL7A, was upregulated by a combination of 5-Aza-2'-deoxycytidine and trichostatin A treatment in SNU-719. After the treatment, unmethylated DNA became detectable in all seven genes by methylation-specific PCR. We verified DNA methylation of the genes in 75 primary gastric cancer tissues from 25 patients with EBVaGC and 50 EBV-negative patients who were controls. The methylation frequencies of TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1 were significantly higher in EBVaGC than in EBV-negative gastric carcinoma. We identified seven genes with promoter regions that were specifically methylated in EBVaGC. Inactivation of these genes may suppress their function as tumor suppressor genes or tumor-associated antigens and help to develop and maintain EBVaGC. PMID:23829175

  18. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  19. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation

    PubMed Central

    Kikuchi, Yasuko; Tsuji, Eiichi; Yagi, Koichi; Matsusaka, Keisuke; Tsuji, Shingo; Kurebayashi, Junichi; Ogawa, Toshihisa; Aburatani, Hiroyuki; Kaneda, Atsushi

    2013-01-01

    Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7) was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P = 0.04, Fisher's exact test). Thus, we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer. PMID:24367375

  20. Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.

    PubMed

    Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin

    2013-01-01

    Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.

  1. Immortalized neural progenitor cells for CNS gene transfer and repair.

    PubMed

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  2. CHST11 gene expression and DNA methylation in breast cancer

    PubMed Central

    HERMAN, DAMIR; LEAKEY, TATIANA I.; BEHRENS, ALICE; YAO-BORENGASSER, AIWEI; COONEY, CRAIG A.; JOUSHEGHANY, FARIBA; PHANAVANH, BOUNLEUT; SIEGEL, ERIC R.; SAFAR, A. MAZIN; KOROURIAN, SOHEILA; KIEBER-EMMONS, THOMAS; MONZAVI-KARBASSI, BEHJATOLAH

    2015-01-01

    methylation status of this gene also has potential as a prognostic biomarker. PMID:25586191

  3. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2

    PubMed Central

    Kim, Joo Yong; Kwon, Ye Jin; Kim, Sung-Il; Kim, Do Youn; Song, Jong Tae; Seo, Hak Soo

    2016-01-01

    Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation. PMID:26834755

  4. Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495.

    PubMed

    Warner, Karen L; Larkin, Michael J; Harper, David B; Murrell, J Colin; McDonald, Ian R

    2005-10-01

    Aminobacter lissarensis CC495 is an aerobic facultative methylotroph capable of growth on glucose, glycerol, pyruvate and methylamine as well as the methyl halides methyl chloride and methyl bromide. Previously, cells grown on methyl chloride have been shown to express two polypeptides with apparent molecular masses of 67 and 29 kDa. The 67 kDa protein was purified and identified as a halomethane:bisulfide/halide ion methyltransferase. This study describes a single gene cluster in A. lissarensis CC495 containing the methyl halide utilisation genes cmuB, cmuA, cmuC, orf 188, paaE and hutI. The genes correspond to the same order and have a high similarity to a gene cluster found in Aminobacter ciceronei IMB-1 and Hyphomicrobium chloromethanicum strain CM2 indicating that genes encoding methyl halide degradation are highly conserved in these strains. PMID:16102909

  5. The effects of niacin on DNA repair after N-methyl-N'-nitro-N-nitrosoguanidine treatment in normal human lymphocytes.

    PubMed

    Ogata, S; Okumura, K; Taguchi, H

    1997-12-01

    We have investigated the effects of niacin on NAD levels and on DNA repair in human lymphocytes. When lymphocytes were incubated in culture medium with various concentrations of niacin, incubation of lymphocytes with nicotinic acid at 5 microM or nicotinamide at 10 mM caused a 2-3 fold increase in NAD content. Under these conditions lymphocytes were treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Interestingly, the rejoining of DNA strand breaks was promoted by nicotinic acid but nicotinamide inhibited the rejoining.

  6. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas.

    PubMed

    Blanc, J L; Wager, M; Guilhot, J; Kusy, S; Bataille, B; Chantereau, T; Lapierre, F; Larsen, C J; Karayan-Tapon, L

    2004-07-01

    In an effort to extend the potential relationship between the methylation status of MGMT promoter and response to CENU therapy, we examined the methylation status of MGMT promoter in 44 patients with glioblastomas. Tumor specimens were obtained during surgery before adjuvant treatment, frozen and stored at -80 degrees C until for DNA extraction process. DNA methylation patterns in the CpG island of the MGMT gene were determined in every tumor by methylation specific PCR (MSP). These results were then related to overall survival and response to alkylating agents using statistical analysis. Methylation of the MGMT promoter was detected in 68% of tumors, and 96.7% of methylated tumors exhibited also an unmethylated status. There was no relationship between the methylation status of the MGMT promoter and overall survival and response to alkylating agents. Our observations do not lead us to consider promoter methylation of MGMT gene as a prognostic factor of responsiveness to alkylating agents in glioblastomas. PMID:15332332

  7. Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice.

    PubMed

    Yan, Huihuang; Kikuchi, Shinji; Neumann, Pavel; Zhang, Wenli; Wu, Yufeng; Chen, Feng; Jiang, Jiming

    2010-08-01

    We conducted genome-wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3-binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3-associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.

  8. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  9. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes.

    PubMed

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  10. Sex differential in methylation patterns of selected genes in Singapore Chinese.

    PubMed

    Sarter, Barbara; Long, Tiffany I; Tsong, Wan H; Koh, Woon-Puay; Yu, Mimi C; Laird, Peter W

    2005-08-01

    To date there have been few reports of a gender difference in methylation levels of genes. When examining the methylation levels of four autosomal genes (ESR1, MTHFR, CALCA and MGMT) in the white blood cells of a random sample of Singapore Chinese Health Study cohort participants (n = 291), we encountered an unexpected gender differential. Using MethyLight technology, we calculated a gene-specific percentage of methylated reference (PMR) value, which quantified the relative level of gene methylation for each study subject (134 males and 157 females). Two summary methylation indices were constructed by assigning gene-specific rank scores. We then used ANCOVA to compare logarithmically transformed individual PMR values and summary methylation indices by age and gender simultaneously. Adjustment was made for plasma homocysteine. For ESR1, for which a large proportion of subjects were negative for methylation, we also used polytomous regression to compare methylation across age and gender. Increasing age and the male gender independently predicted increasing PMR values for CALCA and MGMT. For the MTHFR gene, male gender was associated with higher PMR values (P = 0.002), while age was not (P = 0.75). Neither age nor gender had any statistically significant influence on the PMR values for ESR1 (P = 0.13 and 0.96, respectively). Our data suggest that gender is at least as strong a predictor of methylation level in the four genes under study as age, with males showing higher PMRs.

  11. LINE-1 and inflammatory gene methylation levels are early biomarkers of metabolic changes: association with adiposity.

    PubMed

    Carraro, Júlia Cristina Cardoso; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Chaves, Larissa Oliveira; Vidigal, Fernanda Carvalho; Bressan, Josefina; Martínez, J Alfredo

    2016-11-01

    We analyzed whether global and inflammatory genes methylation can be early predictors of metabolic changes and their associations with the diet, in a cross-sectional study (n = 40). Higher global methylation was associated to adiposity, insulin resistance, and lower quality of the diet. Methylation of IL-6, SERPINE1 and CRP genes was related to adiposity traits and macronutrients intake. SERPINE1 hypermethylation was also related to some metabolic alterations. CRP methylation was a better predictor of insulin resistance than CRP plasma concentrations. Global and inflammatory gene promoter hypermethylation can be good early biomarkers of adiposity and metabolic changes and are associated to the quality of the diet.

  12. Methylation dependent expression of the mom gene of bacteriophage Mu: deletions downstream from the methylation sites affect expression.

    PubMed Central

    Adley, C C; Bukhari, A I

    1984-01-01

    The expression of the DNA modification gene (mom) of bacteriophage Mu requires the cellular deoxyadenosine methylase (dam) and a transactivation factor from the phage. By hypothesis, the transcription of mom is activated by methylation of three GATC sequences upstream from the mom gene. We have introduced small deletions at a fourth GATC site located about 140 base pairs downstream from the primary methylation region. Some of the deletions severely affect the mom gene expression. We propose from this analysis that (1) some important elements, possibly the promoter, concerned with the expression of mom are located between nucleotides 840 and 880 from the right end of Mu and (2) the mom protein starts with the codon GTG located at position 810. We favor the hypothesis that methylation turns off transcription upstream, thereby allowing the main mom promoter to function. Images PMID:6328425

  13. Methylation patterns of immunoglobulin genes in lymphoid cells: correlation of expression and differentiation with undermethylation.

    PubMed

    Storb, U; Arp, B

    1983-11-01

    Different states of eukaryotic gene expression are often correlated with different levels of methylation of DNA sequences containing structural genes and their flanking regions. To assess the potential role of DNA methylation in the expression of immunoglobulin genes, which require complex rearrangements prior to expression, methylation patterns were examined in cell lines representing different stages of lymphocyte maturation. Methylation of the second cytosine in the sequence 5' C-C-G-G 3' was determined by using Hpa II/Msp I endonuclease digestion. Four CH genes (C mu, C delta, C gamma 2b, and C alpha), C kappa, V kappa, C lambda, and V lambda genes were analyzed. The results lead to the following conclusions: (i) transcribed immunoglobulin genes are undermethylated; (ii) the C gene allelic to an expressed C gene is always also undermethylated; and (iii) all immunoglobulin loci tend to become increasingly undermethylated as B cells mature.

  14. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  15. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  16. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  17. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  18. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon.

    PubMed

    Venney, Clare J; Johansson, Mattias L; Heath, Daniel D

    2016-09-01

    Inbreeding depression is the loss of fitness resulting from the mating of genetically related individuals. Traditionally, the study of inbreeding depression focused on genetic effects, although recent research has identified DNA methylation as also having a role in inbreeding effects. Since inbreeding depression and DNA methylation change with age and environmental stress, DNA methylation is a likely candidate for the regulation of genes associated with inbreeding depression. Here, we use a targeted, multigene approach to assess methylation at 22 growth-, metabolic-, immune- and stress-related genes. We developed PCR-based DNA methylation assays to test the effects of intense inbreeding on intragenic gene-specific methylation in inbred and outbred Chinook salmon. Inbred fish had altered methylation at three genes, CK-1, GTIIBS and hsp70, suggesting that methylation changes associated with inbreeding depression are targeted to specific genes and are not whole-genome effects. While we did not find a significant inbreeding by age interaction, we found that DNA methylation generally increases with age, although methylation decreased with age in five genes, CK-1, IFN-ɣ, HNRNPL, hsc71 and FSHb, potentially due to environmental context and sexual maturation. As expected, we found methylation patterns differed among tissue types, highlighting the need for careful selection of target tissue for methylation studies. This study provides insight into the role of epigenetic effects on ageing, environmental response and tissue function in Chinook salmon and shows that methylation is a targeted and regulated cellular process. We provide the first evidence of epigenetically based inbreeding depression in vertebrates. PMID:27480590

  19. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations.

    PubMed

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-09-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations - mutations of the genes that regulate gene expression through DNA methylation - is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia.

  20. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations

    PubMed Central

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-01-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations – mutations of the genes that regulate gene expression through DNA methylation – is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia. PMID:27247325

  1. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis.

    PubMed

    Naydenov, Mladen; Baev, Vesselin; Apostolova, Elena; Gospodinova, Nadezhda; Sablok, Gaurav; Gozmanova, Mariyana; Yahubyan, Galina

    2015-02-01

    Along with its essential role in the maintenance of genome integrity, DNA methylation takes part in regulation of genes which are important for plant development and stress response. In plants, DNA methylation process can be directed by small RNAs in process known as RNA-directed DNA methylation (RdDM) involving two plant-specific RNA polymerases - PolIV and PolV. The aim of the present study was to investigate the effect of heat stress on the expression of genes encoding key players in DNA methylation - DNA methyltransferase (MET1, CMT3, and DRM2), the largest subunits of PoIIV and PolV (NRPD1 and NRPE1 respectively) and the DNA demethylase ROS1. We also examined the high-temperature effect on two protein-coding genes - At3g50770 and At5g43260 whose promoters contain transposon insertions and are affected by DNA-methylation, as well as on the AtSN1, a SINE-like retrotransposon. To assess the involvement of PolIV and PolV in heat stress response, the promoter methylation status and transcript levels of these genes were compared between wild type and double mutant lacking NRPD1 and NRPE1. The results demonstrate coordinated up-regulation of the DRM2, NRPD1 and NRPE1 in response to high temperature and suggest that PolIV and/or PolV might be required for the induction of DRM2 expression under heat stress. The ROS1 expression was confirmed to be suppressed in the mutant lacking active PolIV and PolV that might be a consequence of abolished DNA methylation. The increased expression of At3g50770 in response to elevated temperature correlated with reduced promoter DNA methylation, while the stress response of At5g43260 did not show inverse correlation between promoter methylation and gene expression. Our results also imply that PolIV and/or PolV could regulate gene expression under stress conditions not only through RdDM but also by acting in other regulatory processes.

  2. A Study of Molecular Signals Deregulating Mismatch Repair Genes in Prostate Cancer Compared to Benign Prostatic Hyperplasia

    PubMed Central

    Basu, Sanmitra; Majumder, Subhadipa; Bhowal, Ankur; Ghosh, Alip; Naskar, Sukla; Nandy, Sumit; Mukherjee, Subhabrata; Sinha, Rajan Kumar; Basu, Keya; Karmakar, Dilip; Banerjee, Soma; Sengupta, Sanghamitra

    2015-01-01

    Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05) was observed in prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level of hMLH1 was inversely related (r = -0.59, P<0.05) with methylation quotient of its promoter which showed a significantly higher methylation density (P = 0.008, Z = -2.649) in cancer patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly elevated (66-85%, P<0.05) in tumor specimens and negatively correlated (r = -0.602 to -0.527, P<0.05) with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 & hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and hMSH6 3’UTRs respectively. Relatively higher expression of DNA methyl-transferases (DNMT1 and DNMT3b) and HIF-1α genes (34-50%, P<0.05) were also detected in tumor tissues

  3. Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males.

    PubMed

    Rotondo, John C; Selvatici, Rita; Di Domenico, Maura; Marci, Roberto; Vesce, Fortunato; Tognon, Mauro; Martini, Fernanda

    2013-09-01

    Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-nor and MTHFR-abn, were investigated for methylation status in the H19 locus using bisulfite-treated DNA PCR, followed by cloning and sequencing. The prevalence of H19 hypomethylated clones was 20% in hmMTHFR-nor and 0% in MTHFR-nor semen samples (p<0.05), and 28% in hmMTHFR-abn compared with 16% in MTHFR-abn semen samples (p>0.05). These results underscore the association between H19 methylation defects and hypermethylation of the MTHFR gene promoter in normal semen samples and suggest that aberrant methylation at H19 may occur in the normal sperm of infertile males affected by MTHFR gene dysfunction. These findings provide new insights into the mechanisms causing abnormal methylation in imprinted genes and, in turn, male infertility.

  4. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy

    SciTech Connect

    Stefanini, M.; Giliani, S. ); Vermuelen, W.; Weeda, G.; Hoeijmakers, H.J.; Mezzina, M.; Sarasin, A.; Harper, J.I.; Arlett, C.F.; Lehmann, A.R.

    1993-10-01

    The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A-G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. The authors report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development. 20 refs., 2 figs., 1 tab.

  5. Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes

    PubMed Central

    Andreis, Daniele; Bertoni, Ramona; Giardini, Roberto; Fox, Stephen B.; Broggini, Massimo; Bottini, Alberto; Zanoni, Vanessa; Bazzola, Letizia; Foroni, Chiara; Generali, Daniele; Damia, Giovanna

    2013-01-01

    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects. PMID:23825533

  6. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    PubMed Central

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  7. Methylation of miRNA genes in the response to temperature stress in Populus simonii.

    PubMed

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  8. Methylation of miRNA genes in the response to temperature stress in Populus simonii

    PubMed Central

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  9. Inflammatory and steroid receptor gene methylation in the human amnion and decidua.

    PubMed

    Mitchell, Carolyn M; Sykes, Shane D; Pan, Xin; Pringle, Kirsty G; Lumbers, Eugenie R; Hirst, Jonathan J; Zakar, Tamas

    2013-04-01

    Correct timing of parturition requires inflammatory gene activation in the gestational tissues at term and repression during pregnancy. Promoter methylation at CpG dinucleotides represses gene activity; therefore, we examined the possibility that DNA methylation is involved in the regulation of labour-associated genes in human pregnancy. Amnion and decidua were collected at 11-17 weeks of gestation and at term following elective Caesarean delivery or spontaneous labour. Methylation of the inflammatory genes PTGS2, BMP2, NAMPT and CXCL2 was analysed using the Methyl-Profiler PCR System and bisulphite sequencing. Methylation of the glucocorticoid, progesterone and oestrogen receptor genes, involved in the hormonal regulation of gestational tissue function, and the expression of the DNA methyltransferases DNMT1, -3A and -3B were also determined. Variable proportions of inflammatory and steroid receptor gene copies, to a maximum of 50.9%, were densely methylated in both tissues consistent with repression. Densely methylated copy proportions were significantly different between genes showing no relationship with varying expression during pregnancy, between tissues and in individuals. Methylated copy proportions of all genes in amnion and most genes in decidua were highly correlated in individuals. DNMT1 and -3A were expressed in both tissues with significantly higher levels in the amnion at 11-17 weeks than at term. We conclude that the unmethylated portion of gene copies is responsible for the full range of regulated expression in the amnion and decidua during normal pregnancy. Dense methylation of individually variable gene copy proportions happens in the first trimester amnion influenced by sequence context and affected strongly by individual circumstances. PMID:23393306

  10. DNA methylation of the LEP gene is associated with craving during alcohol withdrawal.

    PubMed

    Hillemacher, Thomas; Weinland, Christian; Lenz, Bernd; Kraus, Thomas; Heberlein, Annemarie; Glahn, Alexander; Muschler, Marc A N; Bleich, Stefan; Kornhuber, Johannes; Frieling, Helge

    2015-01-01

    Different studies have described evidence for an association between leptin serum levels and craving in alcohol dependent patients. As leptin expression is regulated by DNA methylation we investigated changes of DNA methylation of the LEP gene promoter region in alcohol dependent patients undergoing withdrawal. Results show that low methylation status is associated with increasing serum leptin levels and elevation of craving for alcohol in the referring patients group. These findings point towards a pathophysiological relevance of changes in DNA methylation of the LEP gene promoter region in alcohol dependence.

  11. Modulation of DNA methylation and gene expression in cultured sycamore cells treated by hypomethylating base analog.

    PubMed

    Ngernprasirtsiri, J; Akazawa, T

    1990-12-12

    The selective suppression of photosynthetic genes in both the nuclear and plastid genomes of the nonphotosynthetic white wild-type cell line of sycamore (Acer pseudoplatanus) has been found to be inversely related to the presence of a variety of methylated bases, especially 5-methylcytosine (5-MeCyt) and N6-methyladenine (N6-MeAde), localized in regions of the plastid genome containing silent genes. We used hypomethylating base analogs to manipulate the level of cytosine and adenine methylation in the white cells of sycamore, and examined the effects of changes in methylation on gene expression. Treatment with 5-azacytidine (5-AzaCyd) and N6-benzyladenine (N6-BzlAde) decreased cytosine and adenine methylation. This was accompanied by restoration of transcriptional activity in photosynthetic genes which are usually suppressed. Both 5-MeCyt and N6-MeAde suppressed nuclear gene expression, but only 5-MeCyt suppressed plastid gene expression.

  12. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening

    PubMed Central

    LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.

    2016-01-01

    Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the

  13. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  14. Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage.

    PubMed Central

    Teo, I; Sedgwick, B; Demple, B; Li, B; Lindahl, T

    1984-01-01

    The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6092060

  15. Genes and Junk in Plant Mitochondria—Repair Mechanisms and Selection

    PubMed Central

    Christensen, Alan C.

    2014-01-01

    Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements. PMID:24904012

  16. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  17. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.

  18. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    PubMed

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %. PMID:27029617

  19. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water.

    PubMed

    Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W

    2003-04-10

    Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic.

  20. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    PubMed

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  1. Pancreatic Cancer Patient Survival Correlates with DNA Methylation of Pancreas Development Genes

    PubMed Central

    Thompson, Michael J.; Rubbi, Liudmilla; Dawson, David W.; Donahue, Timothy R.; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival. PMID:26039411

  2. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.

    PubMed

    Thompson, Michael J; Rubbi, Liudmilla; Dawson, David W; Donahue, Timothy R; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.

  3. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.

    PubMed

    Steegenga, Wilma T; Boekschoten, Mark V; Lute, Carolien; Hooiveld, Guido J; de Groot, Philip J; Morris, Tiffany J; Teschendorff, Andrew E; Butcher, Lee M; Beck, Stephan; Müller, Michael

    2014-06-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.

  4. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.

    PubMed

    Steegenga, Wilma T; Boekschoten, Mark V; Lute, Carolien; Hooiveld, Guido J; de Groot, Philip J; Morris, Tiffany J; Teschendorff, Andrew E; Butcher, Lee M; Beck, Stephan; Müller, Michael

    2014-06-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression. PMID:24789080

  5. Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in oligodendroglial tumors.

    PubMed

    Kuo, Lu-Ting; Lu, Hsueh-Yi; Lee, Chien-Chang; Tsai, Jui-Chang; Lai, Hong-Shiee; Tseng, Ham-Min; Kuo, Meng-Fai; Tu, Yong-Kwang

    2016-08-01

    Aberrant methylation has been associated with transcriptional inactivation of tumor-related genes in a wide spectrum of human neoplasms. The influence of DNA methylation in oligodendroglial tumors is not fully understood. Genomic DNA was isolated from 61 oligodendroglial tumors for analysis of methylation using methylation-specific multiplex ligation-dependent probe amplification assay (MS-MLPA). We correlated methylation status with clinicopathological findings and outcome. The genes found to be most frequently methylated in oligodendroglial tumors were RASSF1A (80.3%), CASP8 (70.5%), and CDKN2A (52.5%). Kaplan-Meier survival curve analysis demonstrated longer duration of progression-free survival in patients with 19q loss, aged less than 38 years, and with a proliferative index of less than 5%. Methylation of the ESR1 promoter is significantly associated with shorter duration of overall survival and progression-free survival, and that methylation of IGSF4 and RASSF1A is significantly associated with shorter duration of progression-free survival. However, none of the methylation status of ESR1, IGSF4, and RASSF1A was of prognostic value for survival in a multivariate Cox model. A number of novel and interesting epigenetic alterations were identified in this study. The findings highlight the importance of methylation profiles in oligodendroglial tumors and their possible involvement in tumorigenesis. PMID:27367901

  6. Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer

    PubMed Central

    Luo, Xiang; Huang, Rong; Sun, Hongru; Liu, Yupeng; Bi, Haoran; Li, Jing; Yu, Hongyuan; Sun, Jiamei; Lin, Shangqun; Cui, Binbin; Zhao, Yashuang

    2016-01-01

    The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15–2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC. PMID:27453436

  7. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas.

    PubMed

    Zhou, Ruigang; Man, Yigang

    2016-04-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co‑expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=‑0.82; P=0.02). Based on the DEGs, the gene co‑expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs.

  8. The effect of acute dose charge particle radiation on expression of DNA repair genes in mice.

    PubMed

    Tariq, Muhammad Akram; Soedipe, Ayodotun; Ramesh, Govindarajan; Wu, Honglu; Zhang, Ye; Shishodia, Shishir; Gridley, Daila S; Pourmand, Nader; Jejelowo, Olufisayo

    2011-03-01

    The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the

  9. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene

    PubMed Central

    Hollywood, Jennifer A.; Lee, Ciaran M.; Scallan, Martina F.; Harrison, Patrick T.

    2016-01-01

    To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair. PMID:27557525

  10. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene.

    PubMed

    Hollywood, Jennifer A; Lee, Ciaran M; Scallan, Martina F; Harrison, Patrick T

    2016-01-01

    To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair. PMID:27557525

  11. Protein Methylation and Interaction with the Antiproliferative Gene, BTG2/TIS21/Pc3

    PubMed Central

    Kim, Sangduk

    2014-01-01

    The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2/TIS21/PC3. PMID:24532495

  12. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  13. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  14. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera

    PubMed Central

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    ABSTRACT Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  15. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality.

  16. Integration and bioinformatics analysis of DNA-methylated genes associated with drug resistance in ovarian cancer

    PubMed Central

    YAN, BINGBING; YIN, FUQIANG; WANG, QI; ZHANG, WEI; LI, LI

    2016-01-01

    The main obstacle to the successful treatment of ovarian cancer is the development of drug resistance to combined chemotherapy. Among all the factors associated with drug resistance, DNA methylation apparently plays a critical role. In this study, we performed an integrative analysis of the 26 DNA-methylated genes associated with drug resistance in ovarian cancer, and the genes were further evaluated by comprehensive bioinformatics analysis including gene/protein interaction, biological process enrichment and annotation. The results from the protein interaction analyses revealed that at least 20 of these 26 methylated genes are present in the protein interaction network, indicating that they interact with each other, have a correlation in function, and may participate as a whole in the regulation of ovarian cancer drug resistance. There is a direct interaction between the phosphatase and tensin homolog (PTEN) gene and at least half of the other genes, indicating that PTEN may possess core regulatory functions among these genes. Biological process enrichment and annotation demonstrated that most of these methylated genes were significantly associated with apoptosis, which is possibly an essential way for these genes to be involved in the regulation of multidrug resistance in ovarian cancer. In addition, a comprehensive analysis of clinical factors revealed that the methylation level of genes that are associated with the regulation of drug resistance in ovarian cancer was significantly correlated with the prognosis of ovarian cancer. Overall, this study preliminarily explains the potential correlation between the genes with DNA methylation and drug resistance in ovarian cancer. This finding has significance for our understanding of the regulation of resistant ovarian cancer by methylated genes, the treatment of ovarian cancer, and improvement of the prognosis of ovarian cancer. PMID:27347118

  17. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    PubMed

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  18. DDMGD: the database of text-mined associations between genes methylated in diseases from different species.

    PubMed

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B

    2015-01-01

    Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases.

  19. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer

    PubMed Central

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  20. The Homeobox Gene MEIS1 Is Methylated in BRAFp.V600E Mutated Colon Tumors

    PubMed Central

    Dihal, Ashwin A.; Boot, Arnoud; van Roon, Eddy H.; Schrumpf, Melanie; Fariña-Sarasqueta, Arantza; Fiocco, Marta; Zeestraten, Eliane C. M.; Kuppen, Peter J. K.; Morreau, Hans; van Wezel, Tom; Boer, Judith M.

    2013-01-01

    Development of colorectal cancer (CRC) can occur both via gene mutations in tumor suppressor genes and oncogenes, as well as via epigenetic changes, including DNA methylation. Site-specific methylation in CRC regulates expression of tumor-associated genes. Right-sided colon tumors more frequently have BRAFp.V600E mutations and have higher methylation grades when compared to left-sided malignancies. The aim of this study was to identify DNA methylation changes associated with BRAFp.V600E mutation status. We performed methylation profiling of colon tumor DNA, isolated from frozen sections enriched for epithelial cells by macro-dissection, and from paired healthy tissue. Single gene analyses comparing BRAFp.V600E with BRAF wild type revealed MEIS1 as the most significant differentially methylated gene (log2 fold change: 0.89, false discovery rate-adjusted P-value 2.8*10-9). This finding was validated by methylation-specific PCR that was concordant with the microarray data. Additionally, validation in an independent cohort (n=228) showed a significant association between BRAFp.V600E and MEIS1 methylation (OR: 13.0, 95% CI: 5.2 - 33.0, P<0.0001). MEIS1 methylation was associated with decreased MEIS1 gene expression in both patient samples and CRC cell lines. The same was true for gene expression of a truncated form of MEIS1, MEIS1D27, which misses exon 8 and has a proposed tumor suppression function. To trace the origin of MEIS1 promoter methylation, 14 colorectal tumors were flow-sorted. Four out of eight BRAFp.V600E tumor epithelial fractions (50%) showed MEIS1 promoter methylation, as well as three out of eight BRAFp.V600E stromal fractions (38%). Only one out of six BRAF wild type showed MEIS1 promoter methylation in both the epithelial tumor and stromal fractions (17%). In conclusion, BRAFp.V600E colon tumors showed significant MEIS1 promoter methylation, which was associated with decreased MEIS1 gene expression. PMID:24244575

  1. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas

    PubMed Central

    Patai, Árpád V.; Valcz, Gábor; Hollósi, Péter; Kalmár, Alexandra; Péterfia, Bálint; Patai, Árpád; Wichmann, Barnabás; Spisák, Sándor; Barták, Barbara Kinga; Leiszter, Katalin; Tóth, Kinga; Sipos, Ferenc; Kovalszky, Ilona; Péter, Zoltán; Miheller, Pál; Tulassay, Zsolt; Molnár, Béla

    2015-01-01

    Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2’ deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory. PMID:26291085

  2. MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays

    PubMed Central

    2009-01-01

    DNA methylation is a key mechanism of epigenetic regulation that is frequently altered in diseases such as cancer. To confirm the biological or clinical relevance of such changes, gene-specific DNA methylation changes need to be validated in multiple samples. We have developed the MethMarker http://methmarker.mpi-inf.mpg.de/ software to help design robust and cost-efficient DNA methylation assays for six widely used methods. Furthermore, MethMarker implements a bioinformatic workflow for transforming disease-specific differentially methylated genomic regions into robust clinical biomarkers. PMID:19804638

  3. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  4. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    PubMed

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor.

  5. Preferential Repair of DNA Double-strand Break at the Active Gene in Vivo*

    PubMed Central

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K.; Bhaumik, Sukesh R.

    2012-01-01

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3′ end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells. PMID:22910905

  6. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  7. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  8. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis

    PubMed Central

    Jain, Surbhi; Xie, Lijia; Boldbaatar, Batbold; Lin, Selena Y.; Hamilton, James P.; Meltzer, Stephen J.; Chen, Shun-Hua; Hu, Chi-Tan; Block, Timothy M.; Song, Wei; Su, Ying-Hsiu

    2015-01-01

    Aim Aberrant methylation of the promoter, P2, and the first exon, E1, regions of the tumor suppressor gene RASSF1A, have been associated with hepatocellular carcinoma (HCC), albeit with poor specificity. This study analyzed the methylation profiles of P1, P2 and E1 regions of the gene to identify the region of which methylation most specifically corresponds to HCC and to evaluate the potential of this methylated region as a biomarker in urine for HCC screening. Methods Bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays were performed to compare methylation of the 56 CpG sites in regions P1, P2 and E1 in DNA isolated from normal, hepatitic, cirrhotic, adjacent non-HCC, and HCC liver tissue and urine samples for the characterization of hypermethylation of the RASSF1A gene as a biomarker for HCC screening. Results In tissue, comparing HCC (n = 120) with cirrhosis and hepatitis together (n = 70), methylation of P1 had an area under the receiver operating characteristics curve (AUROC) of 0.90, whereas methylation of E1 and P2 had AUROC of 0.84 and 0.72, respectively. At 90% sensitivity, specificity for P1 methylation was 72.9% versus 38.6% for E1 and 27.1% for P2. Methylated P1 DNA was detected in urine in association with cirrhosis and HCC. It had a sensitivity of 81.8% for α-fetoprotein negative HCC. Conclusion Among the three regions analyzed, methylation of P1 is the most specific for HCC and holds great promise as a DNA marker in urine for screening of cirrhosis and HCC. PMID:25382672

  9. DNA methylation of angiotensin II receptor gene in nonalcoholic steatohepatitis-related liver fibrosis

    PubMed Central

    Asada, Kiyoshi; Aihara, Yosuke; Takaya, Hiroaki; Noguchi, Ryuichi; Namisaki, Tadashi; Moriya, Kei; Uejima, Masakazu; Kitade, Mitsuteru; Mashitani, Tsuyoshi; Takeda, Kosuke; Kawaratani, Hideto; Okura, Yasushi; Kaji, Kosuke; Douhara, Akitoshi; Sawada, Yasuhiko; Nishimura, Norihisa; Seki, Kenichiro; Mitoro, Akira; Yamao, Junichi; Yoshiji, Hitoshi

    2016-01-01

    AIM To clarify whether Agtr1a methylation is involved in the development of nonalcoholic steatohepatitis (NASH)-related liver fibrosis in adult rats. METHODS A choline-deficient amino acid (CDAA) diet model was employed for methylation analysis of NASH-related liver fibrosis. Agtr1a methylation levels were measured in the livers of CDAA- and control choline-sufficient amino acid (CSAA)-fed rats for 8 and 12 wk using quantitative methylation-specific PCR. Hepatic stellate cells (HSCs) were isolated by collagenase digestion of the liver, followed by centrifugation of the crude cell suspension through a density gradient. Agtr1a methylation and its gene expression were also analyzed during the activation of HSCs. RESULTS The mean levels of Agtr1a methylation in the livers of CDAA-fed rats (11.5% and 18.6% at 8 and 12 wk, respectively) tended to be higher (P = 0.06 and 0.09, respectively) than those in the livers of CSAA-fed rats (2.1% and 5.3% at 8 and 12 wk, respectively). Agtr1a was not methylated at all in quiescent HSCs, but was clearly methylated in activated HSCs (13.8%, P < 0.01). Interestingly, although Agtr1a was hypermethylated, the Agtr1a mRNA level increased up to 2.2-fold (P < 0.05) in activated HSCs compared with that in quiescent HSCs, suggesting that Agtr1a methylation did not silence its expression but instead had the potential to upregulate its expression. These findings indicate that Agtr1a methylation and its upregulation of gene expression are associated with the development of NASH-related liver fibrosis. CONCLUSION This is the first study to show that DNA methylation is potentially involved in the regulation of a renin-angiotensin system-related gene expression during liver fibrosis. PMID:27729955

  10. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma

    PubMed Central

    Yao, Jin-Guang; Huang, Xiao-Ying; Long, Xi-Dai

    2014-01-01

    Aflatoxin B1 (AFB1) is an important environmental carcinogen and can induce DNA damage and involve in the carcinogenesis of hepatocellular carcinoma (HCC). The deficiency of DNA repair capacity related to the polymorphisms of DNA repair genes might play a central role in the process of HCC tumorigenesis. However, the interaction of DNA repair gene polymorphisms and AFB1 in the risk of hepatocellular carcinoma has not been elucidated. In this study, we investigated whether six polymorphisms (including rs25487, rs861539, rs7003908, rs28383151, rs13181, and rs2228001) in DNA repair genes (XPC, XRCC4, XRCC1, XRCC4, XPD, XRCC7, and XRCC3) interacted with AFB1, and the gene-environmental interactive role in the risk of HCC using hospital-based case-control study (including 1486 HCC cases and 1996 controls). Genotypes of DNA repair genes were tested using TaqMan-PCR technique. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 2.08 for medium AFB1 exposure level and OR = 6.52 for high AFB1 exposure level]. Increasing risk of HCC was also observed in these with the mutants of DNA repair genes (risk values were from 1.57 to 5.86). Furthermore, these risk roles would be more noticeable under the conditions of two variables, and positive interactive effects were proved in the followed multiplicative interaction analysis. These results suggested that DNA repair risk genotypes might interact with AFB1 in the risk of HCC. PMID:25337275

  11. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis.

    PubMed

    Dunn, Jessilyn; Thabet, Salim; Jo, Hanjoong

    2015-07-01

    Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development. PMID:25953647

  12. Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study

    PubMed Central

    2011-01-01

    Exposure to ambient air particles matter (PM) has been associated with increased risk of lung cancer. Aberrant tumor suppressor gene promoter methylation has emerged as a promising biomarker for cancers, including lung cancer. Whether exposure to PM is associated with peripheral blood leukocyte (PBL) DNA methylation in tumor suppressor genes has not been evaluated. In 63 male healthy steel workers with well-characterized exposure to metal-rich particles nearby Brescia, Italy, we evaluated whether exposure to PM and metal components was associated with PBL DNA methylation in 4 tumor suppressor genes (i.e., APC, p16, p53 and RASSF1A). Blood samples were obtained on the 1st (baseline) and 4th day (post-exposure) of the same work week and DNA methylation was measured using pyrosequencing. A linear mixed model was used to examine the correlations of the exposure with promoter methylation levels. Mean promoter DNA methylation levels of APC or p16 were significantly higher in post-exposure samples compared to that in baseline samples (p-values = 0.005 for APC, and p-value = 0.006 for p16). By contrast, the mean levels of p53 or RASSF1A promoter methylation was decreased in post-exposure samples compared to that in baseline samples (p-value = 0.015 for p53; and p-value < 0.001 for RASSF1A). In post-exposure samples, APC methylation was positively associated with PM10 (β = 0.27, 95% CI: 0.13-0.40), and PM1 (β = 0.23, 95% CI: 0.09-0.38). In summary, ambient PM exposure was associated with PBL DNA methylation levels of tumor suppressor genes of APC, p16, p53 and RASSF1A, suggesting that such methylation alterations may reflect processes related to PM-induced lung carcinogenesis. PMID:21878113

  13. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    PubMed Central

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  14. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair.

    PubMed

    McAllister, Katherine A; Yasseen, Akeel A; McKerr, George; Downes, C S; McKelvey-Martin, Valerie J

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1(+) and TK1(-) clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1(+) compared to TK1(-) cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK(+) cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1(+) cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  15. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    PubMed

    Gohlke, Jochen; Scholz, Claus-Juergen; Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  16. DNA methylation is associated with transcription of Snail and Slug genes

    PubMed Central

    Chen, Ying; Wang, Kai; Qian, Chao-Nan; Leach, Richard

    2012-01-01

    Snail and Slug play critical roles in the epithelial to mesenchymal transition (EMT), the mesenchymal to epithelial transition (MET) and in the maintenance of mesenchymal morphology. In this research, we investigated the correlation of DNA methylation with the transcriptional level of these two genes during the EMT/MET process. First, we used several cell lines associated with EMT/MET processes of induced pluripotent stem cell generation and differentiation, trophoblast invasion, as well as cancer progression to examine the association between DNA methylation and transcription levels of these two genes. We found an inverse correlation between DNA methylation of first intron regions and transcription levels of Snail and Slug genes in these EMT/METs. To further verify the results, we treated two trophoblast cell line BeWo and HTR8/SVneo and one induced pluripotent stem cell line with 5-aza-2′-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferase, which caused increased expression of these two genes. Lastly, we cloned the promoters of both Snail and Slug into pGL3-Basic vector, after in vitro DNA methylation and transfection into IMR90 and HTR8/SVneo cells; we observed the significant reduction of their promoter activity due to DNA methylation. In summary, based on these results, DNA methylation is one of the molecular mechanisms regulating Snail and Slug genes during EMT/MET process. PMID:23261445

  17. Gene Expression and Methylation Signatures of MAN2C1 are Associated with PTSD

    PubMed Central

    Uddin, Monica; Galea, Sandro; Chang, Shun-Chiao; Aiello, Allison E.; Wildman, Derek E.; de los Santos, Regina; Koenen, Karestan C.

    2011-01-01

    As potential regulators of DNA accessibility and activity, epigenetic modifications offer a mechanism by which the environment can moderate the effects of genes. To date, however, there have been relatively few studies assessing epigenetic modifications associated with post-traumatic stress disorder (PTSD). Here we investigate PTSD-associated methylation differences in 33 genes previously shown to differ in whole blood-derived gene expression levels between those with vs. without the disorder. Drawing on DNA samples similarly obtained from whole blood in 100 individuals, 23 with and 77 without lifetime PTSD, we used methylation microarray data to assess whether these 33 candidate genes showed epigenetic signatures indicative of increased risk for, or resilience to, PTSD. Logistic regression analyses were performed to assess the main and interacting effects of candidate genes’ methylation values and number of potentially traumatic events (PTEs), adjusting for age and other covariates. Results revealed that only one candidate gene–MAN2C1–showed a significant methylation x PTE interaction, such that those with both higher MAN2C1 methylation and greater exposure to PTEs showed a marked increase in risk of lifetime PTSD (OR 4.35, 95% CI: 1.07, 17.77, p = 0.04). These results indicate that MAN2C1 methylation levels modify cumulative traumatic burden on risk of PTSD, and suggest that both gene expression and epigenetic changes at specific loci are associated with this disorder. PMID:21508515

  18. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus.

    PubMed

    Saunderson, Emily A; Spiers, Helen; Mifsud, Karen R; Gutierrez-Mecinas, Maria; Trollope, Alexandra F; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M H M

    2016-04-26

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5'-cytosine-phosphate-guanine-3') sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental stimuli in

  19. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application.

    PubMed

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  20. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application

    PubMed Central

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  1. Unmasking risk loci: DNA methylation illuminates the biology of cancer predisposition: analyzing DNA methylation of transcriptional enhancers reveals missed regulatory links between cancer risk loci and genes.

    PubMed

    Aran, Dvir; Hellman, Asaf

    2014-02-01

    Paradoxically, DNA sequence polymorphisms in cancer risk loci rarely correlate with the expression of cancer genes. Therefore, the molecular mechanism underlying an individual's susceptibility to cancer has remained largely unknown. However, recent evaluations of the correlations between DNA methylation and gene expression levels across healthy and cancerous genomes have revealed enrichment of disease-related DNA methylation variations within disease-associated risk loci. Moreover, it appears that transcriptional enhancers embedded in cancer risk loci often contain DNA methylation sites that closely define the expression of prominent cancer genes, despite the lack of significant correlations between gene expression levels and the surrounding disease-associated polymorphic sequences. We suggest that DNA methylation variations may obscure the effect of co-residing risk sequence alleles. Analysis of enhancer methylation data may help to reveal the regulatory circuits underlying predisposition to cancers and other common diseases.

  2. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  3. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis

    PubMed Central

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  4. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis.

    PubMed

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  5. A new approach to tissue repair: gene therapy.

    PubMed

    Wei, Kuanhai; Pei, Guoxian; Hu, Basheng

    2000-11-15

    The process of tissue repair involves a complex tissue response to injury in which growth factors, playing a major role in this process, trigger, control and terminate soakage of inflammatory cells, cells proliferation, secretion of matrix and scars formation by autocrine, paracrine or both. Thus, growth factors can be used to alter the microenvironment of the wounded tissues and to promote their repair. But, there are notable disadvantages in using purified recombination growth factors, 1) the source is so limited that their prices are expensive; 2) the ir half-lives are short and easy to be destroyed by wound proteases; 3) there is no perfect carrier; 4) high initial doses are required but easy to bring toxicity; 5) it is difficult to apply growth factors in deep wounded tissues again and again, their function cannot be played enough accordingly; 6) most of growth factors are the products of recombination. All above-mentioned disadvantages result in a low activity.

  6. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    PubMed Central

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  7. Polymorphisms in DNA repair genes, recreational physical activity and breast cancer risk.

    PubMed

    McCullough, Lauren E; Santella, Regina M; Cleveland, Rebecca J; Millikan, Robert C; Olshan, Andrew F; North, Kari E; Bradshaw, Patrick T; Eng, Sybil M; Terry, Mary Beth; Shen, Jing; Crew, Katherine D; Rossner, Pavel; Teitelbaum, Susan L; Neugut, Alfred I; Gammon, Marilie D

    2014-02-01

    The mechanisms driving the inverse association between recreational physical activity (RPA) and breast cancer risk are complex. While exercise is associated with increased reactive oxygen species production it may also improve damage repair systems, particularly those that operate on single-strand breaks including base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Of these repair pathways, the role of MMR in breast carcinogenesis is least investigated. Polymorphisms in MMR or other DNA repair gene variants may modify the association between RPA and breast cancer incidence. We investigated the individual and joint effects of variants in three MMR pathway genes (MSH3, MLH1 and MSH2) on breast cancer occurrence using resources from the Long Island Breast Cancer Study Project. We additionally characterized interactions between RPA and genetic polymorphisms in MMR, BER and NER pathways. We found statistically significant multiplicative interactions (p < 0.05) between MSH2 and MLH1, as well as between postmenopausal RPA and four variants in DNA repair (XPC-Ala499Val, XPF-Arg415Gln, XPG-Asp1104His and MLH1-lle219Val). Significant risk reductions were observed among highly active women with the common genotype for XPC (OR = 0.54; 95% CI, 0.36-0.81) and XPF (OR = 0.62; 95% CI, 0.44-0.87), as well as among active women who carried at least one variant allele in XPG (OR = 0.46; 95% CI, 0.29-0.77) and MLH1 (OR = 0.46; 95% CI, 0.30-0.71). Our data show that women with minor alleles in both MSH2 and MLH1 could be at increased breast cancer risk. RPA may be modified by genes in the DNA repair pathway, and merit further investigation.

  8. Polymorphisms in DNA Repair Genes, Recreational Physical Activity and Breast Cancer Risk

    PubMed Central

    McCullough, Lauren E.; Santella, Regina M.; Cleveland, Rebecca J.; Millikan, Robert C.; Olshan, Andrew F.; North, Kari E.; Bradshaw, Patrick T.; Eng, Sybil M.; Terry, Mary Beth; Shen, Jing; Crew, Katherine D.; Rossner, Pavel; Teitelbaum, Susan L.; Neugut, Alfred I.; Gammon, Marilie D.

    2013-01-01

    The mechanisms driving the inverse association between recreational physical activity (RPA) and breast cancer risk are complex. While exercise is associated with increased reactive oxygen species production it may also improve damage repair systems, particularly those that operate on single-strand breaks including base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Of these repair pathways, the role of MMR in breast carcinogenesis is least investigated. Polymorphisms in MMR or other DNA repair gene variants may modify the association between RPA and breast cancer incidence. We investigated the individual and joint effects of variants in three MMR pathway genes (MSH3, MLH1 and MSH2) on breast cancer occurrence using resources from the Long Island Breast Cancer Study Project. We additionally characterized interactions between RPA and genetic polymorphisms in MMR, BER and NER pathways. We found statistically significant multiplicative interactions (p<0.05) between MSH2 and MLH1, as well as between postmenopausal RPA and four variants in DNA repair (XPC-Ala499Val, XPF-Arg415Gln, XPG-Asp1104His and MLH1-lle219Val). Significant risk reductions were observed among highly active women with the common genotype for XPC (OR=0.54; 95% CI, 0.36–0.81) and XPF (OR=0.62; 95% CI, 0.44–0.87), as well as among active women who carried at least one variant allele in XPG (OR=0.46; 95% CI, 0.29–0.77) and MLH1 (OR=0.46; 95% CI, 0.30–0.71). Our data show that women with minor alleles in both MSH2 and MLH1 could be at increased breast cancer risk. RPA may be modified by genes in the DNA repair pathway, and merit further investigation. PMID:23852586

  9. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  10. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    PubMed

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  11. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  12. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    PubMed Central

    LaDisa, John F.; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R.; Eddinger, Thomas J.

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID’s for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA. PMID:26207811

  13. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  14. DNA Methylation Levels of Melanoma Risk Genes Are Associated with Clinical Characteristics of Melanoma Patients.

    PubMed

    de Araújo, Érica S S; Pramio, Dimitrius T; Kashiwabara, André Y; Pennacchi, Paula C; Maria-Engler, Silvya S; Achatz, Maria I; Campos, Antonio H J F M; Duprat, João P; Rosenberg, Carla; Carraro, Dirce M; Krepischi, Ana C V

    2015-01-01

    In melanoma development, oncogenic process is mediated by genetic and epigenetic mutations, and few studies have so far explored the role of DNA methylation either as predisposition factor or biomarker. We tested patient samples for germline CDKN2A methylation status and found no evidence of inactivation by promoter hypermethylation. We have also investigated the association of clinical characteristics of samples with the DNA methylation pattern of twelve genes relevant for melanomagenesis. Five genes (BAP1, MGMT, MITF, PALB2, and POT1) presented statistical association between blood DNA methylation levels and either CDKN2A-mutation status, number of lesions, or Breslow thickness. In tumors, five genes (KIT, MGMT, MITF, TERT, and TNF) exhibited methylation levels significantly different between tumor groups including acral compared to nonacral melanomas and matched primary lesions and metastases. Our data pinpoint that the methylation level of eight melanoma-associated genes could potentially represent markers for this disease both in peripheral blood and in tumor samples. PMID:26106605

  15. The Convergence of Fracture Repair and Stem Cells: Interplay of Genes, Aging, Environmental Factors and Disease

    PubMed Central

    Hadjiargyrou, Michael; O’Keefe, Regis J

    2015-01-01

    The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine. PMID:25264148

  16. Repair of UV damaged DNA, genes and proteins of yeast and human

    SciTech Connect

    Prakash, L.

    1991-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, as well as studying the human homologs of yeast excision repair and postreplication repair proteins. In addition to its single-stranded DNA-dependent A TPase and DNA helicase activities, we have found that RAD3 protein also possesses DNA-RNA helicase activity, and that like RAD3, the Schizosaccharomyces pombe RAD3 homolog, rhp3{sup +}, is an essential gene. We have overexpressed the human RAD3 homolog, ERCC2, in yeast to facilitate its purification. The RAD10 protein was purified to homogeneity and shown to bind DNA. ERCC3y, the yeast homolog of the human ERCC-3/XP-B gene, has been sequenced and shown to be essential for viability. The Drosophila and human homologs of RAD6, required for postreplication repair and UV induced mutagenesis, were shown to complement the rad6 {Delta} mutation of yeast. Since defective DNA repair and enhanced neoplasia characterize several human genetic diseases, and repair proteins are highly conserved between yeast and man, a thorough understanding of the molecular mechanisms of DNA repir in yeast should provide a better understanding of the causes of carcinogenesis.

  17. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation.

    PubMed

    Wee, Eugene J H; Ha Ngo, Thu; Trau, Matt

    2015-01-01

    The challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA. The low resource requirements of our method may enable widespread adoption of DNA methylation-based diagnostics in clinic and may be useful for small-scale research. PMID:26458746

  18. Gene-set Analysis with CGI Information for Differential DNA Methylation Profiling

    PubMed Central

    Chang, Chia-Wei; Lu, Tzu-Pin; She, Chang-Xian; Feng, Yen-Chen; Hsiao, Chuhsing Kate

    2016-01-01

    DNA methylation is a well-established epigenetic biomarker for many diseases. Studying the relationships among a group of genes and their methylations may help to unravel the etiology of diseases. Since CpG-islands (CGIs) play a crucial role in the regulation of transcription during methylation, including them in the analysis may provide further information in understanding the pathogenesis of cancers. Such CGI information, however, has usually been overlooked in existing gene-set analyses. Here we aimed to include both pathway information and CGI status to rank competing gene-sets and identify among them the genes most likely contributing to DNA methylation changes. To accomplish this, we devised a Bayesian model for matched case-control studies with parameters for CGI status and pathway associations, while incorporating intra-gene-set information. Three cancer studies with candidate pathways were analyzed to illustrate this approach. The strength of association for each candidate pathway and the influence of each gene were evaluated. Results show that, based on probabilities, the importance of pathways and genes can be determined. The findings confirm that some of these genes are cancer-related and may hold the potential to be targeted in drug development. PMID:27090937

  19. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis.

    PubMed

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N; Roessner, Veit; Sponheim, Scott R; Gollub, Randy L; Calhoun, Vince D; Ehrlich, Stefan

    2015-06-01

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia. PMID:25598502

  20. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis.

    PubMed

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N; Roessner, Veit; Sponheim, Scott R; Gollub, Randy L; Calhoun, Vince D; Ehrlich, Stefan

    2015-06-01

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia.

  1. Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island

    PubMed Central

    O'Hagan, Heather M.; Mohammad, Helai P.; Baylin, Stephen B.

    2008-01-01

    Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer. PMID:18704159

  2. Air pollution and gene-specific methylation in the Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Lepeule, Johanna; Zanobetti, Antonella; Gasparrini, Antonio; Baccarelli, Andrea A; Coull, Brent A; Tarantini, Letizia; Vokonas, Pantel S; Koutrakis, Petros; Schwartz, Joel

    2014-01-01

    The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation. PMID:24385016

  3. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    PubMed Central

    Tian, Kegui; Wang, Yuezeng; Huang, Yu; Sun, Boqiao; Li, Yuxin; Xu, Haopeng

    2008-01-01

    Background Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. Methods To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. Results The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Conclusion Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression. PMID:18992151

  4. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  5. Coordination of cell cycle, DNA repair and muscle gene expression in myoblasts exposed to genotoxic stress

    PubMed Central

    Minetti, Giulia Claudia

    2011-01-01

    Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G1- or G2-specific differentiation checkpoint. In response to genotoxins that induce G1 arrest, MyoD binds target genes but is functionally inactivated by a c-Abl-dependent phosphorylation. In contrast, DNA damage-activated G2 checkpoint relies on the inability of MyoD to bind the chromatin at the G2 phase of the cell cycle. These results indicate an intimate relationship between DNA damage-activated cell cycle checkpoints and the control of tissue-specific gene expression to allow DNA repair in myoblasts prior to the activation of the differentiation program. PMID:21685725

  6. Association of Cigarette Smoking with Aberrant Methylation of the Tumor Suppressor Gene RARβ2 in Papillary Thyroid Cancer.

    PubMed

    Kiseljak-Vassiliades, Katja; Xing, Mingzhao

    2011-01-01

    Aberrant gene methylation is often seen in thyroid cancer, a common endocrine malignancy. Tobacco smoking has been shown to be associated with aberrant gene methylation in several cancers, but its relationship with gene methylation in thyroid cancer has not been examined. In the present study, we investigated the relationship between smoking of patients and aberrant methylation of tumor suppressor genes for TIMP3, SLC5A8, death-associated protein kinase, and retinoic acid receptor β2 (RARβ2) in papillary thyroid cancer (PTC), the most common type of thyroid cancer. The promoter methylation status of these genes was analyzed using quantitative real-time methylation-specific PCR on bisulfite-treated genomic DNA isolated from tumor tissues and correlated with smoking history of the patients. Among the four genes, methylation of the RARβ2 gene was significantly associated with smoking and other three genes showed a trend of association. Specifically, among the 138 patients investigated, 13/42 (31.0%) ever smokers vs. 10/96 (10.4%) never smokers harbored methylation of the RARβ2 gene (P = 0.003). This association was highly significant also in the subset of conventional variant PTC (P = 0.005) and marginally significant in follicular variant PTC (P = 0.06). The results demonstrate that smoking-associated aberrant methylation of the RARβ2 gene is a specific molecular event that may represent an important mechanism in thyroid tumorigenesis in smokers. PMID:22649395

  7. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    PubMed Central

    Leontovich, Alexey A.; Intine, Robert V.; Sarras, Michael P.

    2016-01-01

    Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes. PMID:26981540

  8. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  9. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment.

    PubMed

    Oh, J-E; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-22

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20-80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety.

  10. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment

    PubMed Central

    Oh, J-e; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-01

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20–80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety. PMID:23340501

  11. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGESBeta

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  12. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  13. Role of Morphological Growth State and Gene Expression in Desulfovibrio africanus strain Walvis Bay Mercury Methylation

    SciTech Connect

    Moberly, James G; Miller, Carrie L; Brown, Steven D; Biswas, Abir; Brandt, Craig C; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)- reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating -proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production, but decreased when the pinched cocci (persister) form became the major morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. While no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.

  14. Structure and Mechanisms of Lysine Methylation Recognition by the Chromodomain in Gene Transcription†

    PubMed Central

    Yap, Kyoko L.; Zhou, Ming-Ming

    2011-01-01

    Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/Chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as histone methylated lysine binders, and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids. PMID:21288002

  15. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  16. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral

  17. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer

    PubMed Central

    Liu, Yanqun; Chew, Min Hoe; Tham, Chee Kian; Tang, Choong Leong; Ong, Simon YK; Zhao, Yi

    2016-01-01

    There is an increasing demand for accurate prognostication for colorectal cancer (CRC). This study sought to assess prognostic potentials of methylation targets in the serum of CRC patients. A total of 165 CRC patients were enrolled in this prospective study. Promoter methylation levels of seven genes in pre-operative sera and matched tumor tissues were evaluated by quantitative methylation-specific PCR. Kaplan-Meier test, and univariate and multivariate Cox proportional hazards regression models were used for survival analyses. After a median follow-up of 56 months, 43 patients (28.7%) experienced tumor recurrence. In univariate survival analyses, serum methylation levels of SST and MAL were significantly predictive of cancer-specific death (P<0.005 for both). The former was also a significant predictor for tumor recurrence (P=0.007). Independent prognostic effects of serum methylation levels of SST were revealed by multivariate Cox regression model (P=0.031 and P=0.003 for cancer death and recurrence, respectively). When focusing on stage II and III patients, prognostication with serum methylated SST remained significant. Methylated SST detected in all serum samples can be traced back to the matched primary tumor tissues. We believe that methylated SST detected in the pre-operative sera of CRC patients appear to be a novel promising prognostic marker and probably can be auxiliary to tumor staging system and serum carcinoembryonic antigen towards better risk stratification. PMID:27725914

  18. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy.

    PubMed

    Dadds, Mark R; Moul, Caroline; Cauchi, Avril; Dobson-Stone, Carol; Hawes, David J; Brennan, John; Ebstein, Richard E

    2014-02-01

    Child conduct problems (CPs) are a robust predictor of adult mental health; the concurrence of callous-unemotional (CU) traits confers specific risk for psychopathy. Psychopathy may be related to disturbances in the oxytocin (OXT) system. Evidence suggests that epigenetic changes in the OXT receptor gene (OXTR) are associated with lower circulating OXT and social-cognitive difficulties. We tested methylation levels of OXTR in 4- to 16-year-old males who met DSM criteria for a diagnosis of oppositional-defiant or conduct disorder and were stratified by CU traits and age. Measures were DNA methylation levels of six CpG sites in the promoter region of the OXTR gene (where a CpG site is a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence of bases along its lenth, linked together by phosphate binding), and OXT blood levels. High CU traits were associated with greater methylation of the OXTR gene for two cytosine nucleotide and guanine nucleotide phosphate linked sites and lower circulating OXT in older males. Higher methylation correlated with lower OXT levels. We conclude that greater methylation of OXTR characterizes adolescent males with high levels of CU and CPs, and this methylation is associated with lower circulating OXT and functional impairment in interpersonal empathy. The results add genetic evidence that high CU traits specify a distinct subgroup within CP children, and they suggest models of psychopathy may be informed by further identification of these epigenetic processes and their functional significance. PMID:24059811

  19. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    PubMed Central

    Podar, Mircea; Gilmour, Cynthia C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony V.; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal “dead zones,” soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations. PMID:26601305

  20. Global prevalence and distribution of genes and microorganisms involved in mercury methylation.

    PubMed

    Podar, Mircea; Gilmour, Cynthia C; Brandt, Craig C; Soren, Allyson; Brown, Steven D; Crable, Bryan R; Palumbo, Anthony V; Somenahally, Anil C; Elias, Dwayne A

    2015-10-01

    Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal "dead zones," soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations. PMID:26601305

  1. In vivo-selected mutations in methyl-directed mismatch repair suppress the virulence attenuation of Salmonella dam mutant strains following intraperitoneal, but not oral, infection of naïve mice.

    PubMed

    Heithoff, Douglas M; Badie, Golnaz; Julio, Steven M; Enioutina, Elena Y; Daynes, Raymond A; Sinsheimer, Robert L; Mahan, Michael J

    2007-07-01

    Salmonella enterica serovar Typhimurium that lacks the DNA adenine methylase (Dam) ectopically expresses multiple genes that are preferentially expressed during infection, is attenuated for virulence, and confers heightened immunity in vaccinated hosts. The safety of dam mutant Salmonella vaccines was evaluated by screening within infected mice for isolates that have an increased capacity to cause disease relative to the attenuated parental strain. Since dam mutant strains are sensitive to the DNA base analog 2-aminopurine (2-AP), we screened for 2-AP-resistant (2-AP(r)) isolates in systemic tissues of mice infected with dam mutant Salmonella. Such 2-AP(r) derivatives were isolated following intraperitoneal but not oral administration and were shown to be competent for infectivity via intraperitoneal but not oral infection of naïve mice. These 2-AP(r) derivatives were deficient in methyl-directed mismatch repair and were resistant to nitric oxide, yet they retained the bile-sensitive phenotype of the parental dam mutant strain. Additionally, introduction of a mutH null mutation into dam mutant cells suppressed the inherent defects in intraperitoneal infectivity and nitric oxide resistance, as well as overexpression of SpvB, an actin cytotoxin required for Salmonella systemic survival. These data suggest that restoration of intraperitoneal virulence of dam mutant strains is associated with deficiencies in methyl-directed mismatch repair that correlate with the production of systemically related virulence functions.

  2. Gene expression profiling of archival tongue squamous cell carcinomas provides sub-classification based on DNA repair genes.

    PubMed

    Rentoft, Matilda; Laurell, Göran; Coates, Philip John; Sjöström, Björn; Nylander, Karin

    2009-12-01

    A subgroup of patients with squamous cell carcinoma of the head and neck (SCCHN) comprise young persons under the age of 40, who have not been heavily exposed to the classical risk factors, smoking and alcohol. The number of SCCHN in young adults, particularly tongue tumours, is increasing in several parts of the world. Here we employed a novel gene expression array methodology specifically developed for analysis of degraded RNA and investigated the expression of 502 cancer-related genes in archival paraffin-embedded SCCHN of the tongue from young (< or =40) and elderly patients (> or =50). Genes detected as de-regulated in tumours compared to non-malignant controls were in concordance with results from earlier studies of fresh frozen material. No genes were detected as significantly differentially expressed between young and old patients suggesting that the overall pathobiology of SCCHN is similar in young and old. Unsupervised clustering divided tumours into three groups, irrespective of age, where several differentially expressed DNA repair genes were a prominent separation factor. High levels of DNA repair genes associated with impaired therapeutic response to radiation, suggesting that DNA repair genes play a role in clinical outcome after radiotherapy.

  3. Higher expression of somatic repair genes in long-lived ant queens than workers

    PubMed Central

    Lucas, Eric R.; Privman, Eyal; Keller, Laurent

    2016-01-01

    Understanding why organisms senesce is a fundamental question in biology. One common explanation is that senescence results from an increase in macromolecular damage with age. The tremendous variation in lifespan between genetically identical queen and worker ants, ranging over an order of magnitude, provides a unique system to study how investment into processes of somatic maintenance and macromolecular repair influence lifespan. Here we use RNAseq to compare patterns of expression of genes involved in DNA and protein repair of age-matched queens and workers. There was no difference between queens and workers in 1-day-old individuals, but the level of expression of these genes increased with age and this up-regulation was greater in queens than in workers, resulting in significantly queen-biased expression in 2-month-old individuals in both legs and brains. Overall, these differences are consistent with the hypothesis that higher longevity is associated with increased investment into somatic repair. PMID:27617474

  4. Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet.

    PubMed

    Guarrera, Simonetta; Sacerdote, Carlotta; Fiorini, Laura; Marsala, Rosa; Polidoro, Silvia; Gamberini, Sara; Saletta, Federica; Malaveille, Christian; Talaska, Glenn; Vineis, Paolo; Matullo, Giuseppe

    2007-09-01

    A diet rich in fruit and vegetables can be effective in the reduction of oxidative stress, through the antioxidant effects of phytochemicals and other mechanisms. Protection against the carcinogenic effects of chemicals may also be exerted by an enhancement of detoxification and DNA damage repair mechanisms. To investigate a putative effect of flavonoids, a class of polyphenols, on the regulation of the gene expression of DNA repair and metabolic genes, a 1-month flavonoid-rich diet was administered to thirty healthy male smokers, nine of whom underwent gene expression analysis. We postulated that tobacco smoke is a powerful source of reactive oxygen species. The expression level of twelve genes (APEX, ERCC1, ERCC2, ERCC4, MGMT, OGG1, XPA, XPC, XRCC1, XRCC3, AHR, CYP1A1) was investigated. We found a significant increase (P < 0.001) in flavonoid intake. Urinary phenolic content and anti-mutagenicity did not significantly change after diet, nor was a correlation found between flavonoid intake and urinary phenolic levels or anti-mutagenicity. Phenolic levels showed a significant positive correlation with urinary anti-mutagenicity. AHR levels were significantly reduced after the diet (P = 0.038), whereas the other genes showed a generalized up regulation, significant for XRCC3 gene (P = 0.038). Also in the context of a generalized up regulation of DNA repair genes, we found a non-significant negative correlation between flavonoid intake and the expression of all the DNA repair genes. Larger studies are needed to clarify the possible effects of flavonoids in vivo; our preliminary results could help to better plan new studies on gene expression and diet.

  5. DNA Methylation Profile and Expression of Surfactant Protein A2 gene in Lung Cancer

    PubMed Central

    Grageda, Melissa; Silveyra, Patricia; Thomas, Neal J.; DiAngelo, Susan L.; Floros, Joanna

    2014-01-01

    Knowledge of the methylation profile of genes allow for the identification of biomarkers that may guide diagnosis and effective treatment of disease. Human surfactant protein A (SP-A) plays an important role in lung homeostasis and immunity, and is encoded by two genes (SFTPA1 and SFTPA2). The goal of this study was to identify differentially methylated CpG sites in the promoter region of the SFTPA2 gene in lung cancer tissue, and to determine the correlation between the promoter’s methylation profile and gene expression. For this, we collected 28 pairs of cancerous human lung tissue and adjacent non-cancerous (NC) lung tissue: 17 adenocarcinoma (AC), 9 squamous cell carcinoma (SCC), and 2 AC with SCC features, and we evaluated DNA methylation of the SFTPA2 promoter region by bisulfite conversion. Our results identified a higher methylation ratio in one CpG site of the SFTPA2 gene in cancerous tissue vs. NC tissue (0.36 vs. 0.11, p=0.001). When assessing AC samples, we also found cancerous tissues associated with a higher methylation ratio (0.43 vs. 0.10, p=0.02). In the SCC group, although cancerous tissue showed a higher methylation ratio (0.22 vs. 0.11), this difference was not statistically significant (p=0.35). Expression of SFTPA2 mRNA and total SP-A protein was significantly lower in cancer tissue when compared to adjacent NC tissue (p<0.001), and correlated with the hypermethylated status of a SFTPA2 CpG site in AC samples. The findings of this pilot study may hold promise for future use of SFTPA2 as a biomarker for the diagnosis of lung cancer. PMID:25514367

  6. Global Methylation Patterns and Their Relationship with Gene Expression and Small RNA in Rice Lines with Different Ploidy

    PubMed Central

    Zhang, Hong-Yu; Zhao, Hui-Xia; Wu, Shao-Hua; Huang, Fang; Wu, Kai-Ting; Zeng, Xiu-Feng; Chen, Xiao-Qiong; Xu, Pei-Zhou; Wu, Xian-Jun

    2016-01-01

    Whole genome duplication (WGD) is a major force in angiosperm evolution. Whether WGD is accompanied by the evolution of epigenetic regulators remains to be explored. Here we investigate whole genome methylation, gene expression, and miRNA regulation among monoploid, diploid, and triploid rice plants isolated from a twin-seedling population. The DNA methylation patterns in the three different ploidy plants were highly similar, with DNA methylation primarily enriched in the promoters. We examined the methylation of single genes and detected around 25,500 methylated genes, of which 22,751 were methylated in all three lines. Significantly divergent DNA methylation patterns between each pair of three lines were only detected in 64 genes, though more genes were found to exhibit differential expression. Analysis of DNA methylation and expression patterns showed that higher DNA methylation levels upstream of the transcription start sites are correlated with higher levels of expression of related genes; whereas higher DNA methylation levels in gene body regions are correlated with lower levels of expression. We also carried out high-throughput sequencing of small RNA libraries and identified 36 new miRNAs. These miRNAs have different expression levels depending on the ploidy. PMID:27493648

  7. Expression of T:G mismatch-specific thymidine-DNA glycosylase and DNA methyl transferase genes during development and tumorigenesis.

    PubMed

    Niederreither, K; Harbers, M; Chambon, P; Dollé, P

    1998-09-24

    In situ hybridization was used to characterize the expression pattern of the T:G mismatch-specific thymidine-DNA glycosylase (TDG) gene, encoding a DNA repair enzyme which corrects G:T mismatches that result from the hydrolytic deamination of 5-methyl cytosines. TDG transcripts were uniformly and ubiquitously expressed from 7.5-13.5 days post-coitum, but were then markedly enriched in specific tissues of the developing fetus. At 14.5 gestational days, TDG was strongly expressed in the developing nervous system, thymus, lung, liver, kidney and intestine. At later stages, high levels of expression were detected in the thymus, brain, nasal epithelium and within proliferating regions of the intestine, skin, kidney, teeth and bone. This pattern of expression strongly correlated with those of the methyl transferase (MTase) gene, coding for the enzyme which specifically methylates CpG dinucleotides, and the p53 tumour suppressor gene. However, TDG and MTase were differentially expressed during maturation of the male and female germline. We also report that tumors occuring in mice which overexpress MMTV-v-Ha-ras or MMTV-c-myc transgenes or mice heterozygous for p53 gene disruption, all show elevated TDG and MTase expression specific to the transformed tissue. PMID:9794235

  8. Semiconservative replication, genetic repair, and many-gened genomes: Extending the quasispecies paradigm to living systems

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2005-12-01

    Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.

  9. [Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

    PubMed

    Laffita-Mesa, José Miguel; Bauer, Peter

    2014-10-21

    Epigenetics is the group of changes in the phenotype which are related with the process independently of the primary DNA sequence. These changes are intimately related with changes in the gene expression level and its profile across the body. These are mediated by histone tail modifications, DNA methylation, micro-RNAs, with chromatin remodeling remaining as the foundation of epigenetic changes. DNA methylation involves the covalent addition of methyl group to cytosine of the DNA, which is mediated by methyltransferases enzymes. DNA methylation regulates gene expression by repressing transcription, while de-methylation activates gene transcription. Several human diseases are related with the epigenetic process: cancer, Alzheimer disease, stroke, Parkinson disease, and diabetes. We present here the basis of epigenetic inheritance and show the pathogenic mechanisms relating epigenetics in human diseases, specifically with regard to neurodegeneration. We discuss current concepts aimed at understanding the contribution of epigenetics to human neurodegenerative diseases. We also discuss recent findings obtained in our and other centers regarding the ATXN2 gene that causes spinocerebellar ataxia 2 and amyotrophic lateral sclerosis. Epigenetics play a pivotal role in the pathogenesis of human diseases and in several neurodegenerative disorders, and this knowledge will illuminate the pathways in the diagnostic and therapeutic field, which ultimately will be translated into the clinic context of neurodegenerative diseases.

  10. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.

    PubMed

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  11. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors

    PubMed Central

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  12. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates.

    PubMed

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI:http://dx.doi.org/10.7554/eLife.00348.001. PMID:23467541

  13. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma

    PubMed Central

    Kim, Hee Nam; Kim, Nan Young; Yu, Li; Kim, Yeo-Kyeoung; Lee, Il-Kwon; Yang, Deok-Hwan; Lee, Je-Jung; Shin, Min-Ho; Park, Kyeong-Soo; Choi, Jin-Su; Kim, Hyeoung-Joon

    2014-01-01

    The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA = 0.80, p = 0.02; OROGG1 GG = 0.70, p = 0.008; ORBRCA1 TT = 0.71, p = 0.048; ORWRN TT = 0.68, p = 0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR = 1.25, p = 0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR = 0.74, p = 0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT = 1.50, p < 0.0001; OR3435TT = 1.43, p = 0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients. PMID:24756092

  14. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma.

    PubMed

    Kim, Hee Nam; Kim, Nan Young; Yu, Li; Kim, Yeo-Kyeoung; Lee, Il-Kwon; Yang, Deok-Hwan; Lee, Je-Jung; Shin, Min-Ho; Park, Kyeong-Soo; Choi, Jin-Su; Kim, Hyeoung-Joon

    2014-04-21

    The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

  15. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  16. Cytosine Methylation Associated with Repeat-Induced Point Mutation Causes Epigenetic Gene Silencing in Neurospora Crassa

    PubMed Central

    Irelan, J. T.; Selker, E. U.

    1997-01-01

    Repeated DNA sequences are frequently mutated during the sexual cycle in Neurospora crassa by a process named repeat-induced point mutation (RIP). RIP is often associated with methylation of cytosine residues in and around the mutated sequences. Here we demonstrate that this methylation can silence a gene located in nearby, unique sequences. A large proportion of strains that had undergone RIP of a linked duplication flanking a single-copy transgene, hph (hygromycin B phosphotransferase), showed partial silencing of hph. These strains were all heavily methylated throughout the single-copy hph sequences and the flanking sequences. Silencing was alleviated by preventing methylation, either by 5-azacytidine (5AC) treatment or by introduction of a mutation (eth-1) known to reduce intracellular levels of S-adenosylmethionine. Silenced strains exhibited spontaneous reactivation of hph at frequencies of 10(-4) to 0.5. Reactivated strains, as well as cells that were treated with 5AC, gave rise to cultures that were hypomethylated and partially hygromycin resistant, indicating that some of the original methylation was propagated by a maintenance mechanism. Gene expression levels were found to be variable within a population of clonally related cells, and this variation was correlated with epigenetically propagated differences in methylation patterns. PMID:9178002

  17. Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study.

    PubMed

    van der Knaap, Lisette J; Oldehinkel, Albertine J; Verhulst, Frank C; van Oort, Floor V A; Riese, Harriëtte

    2015-08-01

    Early life adversity and psychopathology are thought to be linked through HPA-axis deregulation. Changes in methylation levels of stress reactivity genes such as the glucocorticoid receptor gene (NR3C1) can be induced by adversity. Higher NR3C1 methylation levels have been associated with a reduced NR3C1 expression, possibly leading to impaired negative feedback regulation of the HPA-axis. In this study we tested whether methylation levels of NR3C1 were associated with HPA-axis regulation, operationalized as cortisol responses. In 361 adolescents (mean age 16.1, SD=0.6), salivary cortisol samples were collected before, during, and after a social stress task, from which response measures (cortisol activation and recovery) were calculated. Higher NR3C1 methylation levels were associated with a flattened cortisol recovery slope, indicating a delayed recovery time. Cortisol response activation was not associated with NR3C1 methylation. These results suggest that methylation of NR3C1 may impair negative feedback of the HPA-axis in adolescents.

  18. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    PubMed Central

    Eskandari-Nasab, Ebrahim; Hashemi, Mohammad; Rafighdoost, Firoozeh

    2016-01-01

    Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns. PMID:27118972

  19. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    SciTech Connect

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens.

  20. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution.

    PubMed Central

    Tijsterman, M; Tasseron-de Jong, J G; van de Putte, P; Brouwer, J

    1996-01-01

    Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined at single nucleotide resolution in the yeast Saccharomyces cerevisiae, using an improved protocol for genomic end-labelling. To obtain the sensitivity required for adduct detection in yeast, an oligonucleotide-directed enrichment step was introduced into the current methodology developed for adduct detection in Escherichia coli. With this method, heterogeneous repair of CPDs within the RPB2 locus is observed. Individual CPDs positioned in the transcribed strand are removed very efficiently with identical kinetics. This fast repair starts within 23 bases downstream of the transcription initiation site. The non-transcribed strand of the active gene exhibits slow repair without detectable repair variations between individual lesions. In contrast, CPDs positioned in the promoter region show profound repair heterogeneity. Here, CPDs at specific sites are removed very quickly, with comparable rates to CPDs positioned in the transcribed strand, while at other positions lesions are not repaired at all during the period studied. Interestingly, the fast repair in the promoter region is dependent on the RAD7 and RAD16 genes, as are the slowly repaired CPDs in this region and in the non-transcribed strand. This indicates that the global genome repair pathway is not intrinsically slow and at specific positions can be as efficient as the transcription-coupled repair pathway. PMID:8836174

  1. Molecular cloning and characterization of a Streptococcus sanguis DNase necessary for repair of DNA damage induced by UV light and methyl methanesulfonate

    SciTech Connect

    Lindler, L.E.; Macrina, F.L.

    1987-07-01

    We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.

  2. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  3. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions. PMID:27220530

  4. Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes.

    PubMed

    Rochelle, Paul A; Fallar, Daffodil; Marshall, Marilyn M; Montelone, Beth A; Upton, Steve J; Woods, Keith

    2004-01-01

    Ultraviolet light is being considered as a disinfectant by the water industry because it appears to be very effective for inactivating pathogens, including Cryptosporidium parvum. However, many organisms have mechanisms for repairing ultraviolet light-induced DNA damage, which may limit the utility of this disinfection technology. Inactivation of C. parvum was assessed by measuring infectivity in cells of the human ileocecal adenocarcinoma HCT-8 cell line, with an assay targeting a heat shock protein gene and using a reverse transcriptase polymerase chain reaction to detect infections. Oocysts of five different isolates displayed similar sensitivity to ultraviolet light. An average dosage of 7.6 mJ/cm2 resulted in 99.9% inactivation, providing the first evidence that multiple isolates of C. parvum are equally sensitive to ultraviolet disinfection. Irradiated oocysts were unable to regain pre-irradiation levels of infectivity, following exposure to a broad array of potential repair conditions, such as prolonged incubation, pre-infection excystation triggers, and post-ultraviolet holding periods. A combination of data-mining and sequencing was used to identify genes for all of the major components of a nucleotide excision repair complex in C. parvum and Cryptosporidium hominis. The average similarity between the two organisms for the various genes was 96.4% (range, 92-98%). Thus, while Cryptosporidum spp. may have the potential to repair ultraviolet light-induced damage, oocyst reactivation will not occur under the standard conditions used for storage and distribution of treated drinking water.

  5. Dopamine transporter gene susceptibility to methylation is associated with impulsivity in nonhuman primates

    PubMed Central

    Rajala, Abigail Z.; Zaitoun, Ismail; Henriques, Jeffrey B.; Converse, Alexander K.; Murali, Dhanabalan; Epstein, Miles L.

    2014-01-01

    Impulsivity, the predisposition to act without regard for negative consequences, is a characteristic of several psychiatric disorders and is thought to result in part from genetic variation in the untranslated region of the dopamine transporter (DAT) gene. As the exact link between genetic mutations and impulsivity has not been established, we used oculomotor behavior to characterize rhesus monkeys as impulsive or calm and genetic/epigenetic analysis and positron emission tomography (PET) to correlate phenotype to DAT genotype, DAT gene methylation, and DAT availability. We found three single nucleotide polymorphisms (SNPs) in the 3′-UTR of the DAT gene, one of which provided a potential site for methylation in the impulsive group. Bisulfite analysis showed that the DNA of the impulsive but not the calm subjects was methylated at one SNP. Because genetic/epigenetic modifications could lead to differences in protein expression, we measured DAT availability using [18F]2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)-nortropane ([18F]FECNT) PET and found higher DAT availability in the internal globus pallidus, an output nucleus of the basal ganglia, of the impulsive group. Higher DAT availability lowers dopamine levels, potentially altering neuronal circuits involved in the initiation of action, thus contributing to the impulsive phenotype. The association between increased methylation in the DAT gene and greater DAT availability suggests that mutations to the regulatory portion of the DAT gene lead to a susceptibility to epigenetic modification resulting in a discrete behavioral phenotype. PMID:25122707

  6. DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Gao, Shugui; Duan, Shiwei

    2015-02-01

    Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p < 1 × 10-5). Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p < 0.05). Among these peaks, 121 peaks were located in gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ (http://www.bioinfo.org/scz/scz.htm). Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ.

  7. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    PubMed

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing. PMID:24023421

  8. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    PubMed Central

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2016-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups. PMID:26647925

  9. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.

  10. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study.

    PubMed

    Boccard, Sandra G; Marand, Sandie V; Geraci, Sandra; Pycroft, Laurie; Berger, François R; Pelletier, Laurent A

    2015-10-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  11. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study

    PubMed Central

    Boccard, Sandra G.; Marand, Sandie V.; Geraci, Sandra; Pycroft, Laurie; Berger, François R.; Pelletier, Laurent A.

    2015-01-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  12. Correlating gene-specific DNA methylation changes with expression and transcriptional activity of astrocytic KCNJ10 (Kir4.1)

    PubMed Central

    Nwaobi, Sinifunanya E.; Olsen, Michelle L.

    2016-01-01

    Short abstract DNA methylation is capable of maintaining stable levels of gene expression as well as allowing for dynamic changes in gene expression in response to a variety of stimuli. We detail techniques that allow the study of gene-specific changes in DNA methylation and the effect of these changes on gene expression. Long abstract DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able

  13. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  14. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  15. Effect of cigarette smoke condensate on gene promoter methylation in human lung cells

    PubMed Central

    2014-01-01

    Background In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. Methods Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. Results Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. Conclusions Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings. PMID:25214829

  16. Transcriptional and Post-Transcriptional Regulation of Nucleotide Excision Repair Genes in Human Cells

    PubMed Central

    Lefkofsky, Hailey B.; Veloso, Artur; Ljungman, Mats

    2014-01-01

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death. PMID:26255935

  17. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans

    PubMed Central

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S.; Mittelman, David; Sharp, Andrew J.

    2016-01-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  18. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    PubMed

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  19. DNA methylation, riboswitches, and transcription factor activity: fundamental mechanisms of gene-nutrient interactions involving vitamins.

    PubMed

    Huang, Janet; Vieira, Amandio

    2006-12-01

    Nutrient-gene interactions occur with a variety of nutrients including some minerals, vitamins, polyunsaturated fatty acids and other lipids. Fundamental molecular mechanisms that underlie many of the effects of nutrients on gene expression are presented herein. Two of the mechanisms described influence gene transcription: DNA methylation and transcription factor activation. Another mechanism, riboswitching, can regulate gene expression at different levels, for example, at the mRNA translation level. The first two mechanisms are widely distributed across animal phyla. Riboswitches are documented primarily in more primitive organisms, but may prove to be of wider relevance. Riboswitches are known for several vitamins; those involving thiamine are presented here. The role of folates and retinoids in DNA methylation and transcriptional factor (nuclear retinoid receptor) activities, respectively, is presented in the context of cell proliferation and differentiation, and related physiological or pathological effects during embryogenesis and cancer.

  20. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia

    PubMed Central

    Chen, Chao; Zhang, Chunling; Cheng, Lijun; Reilly, James L; Bishop, Jeffrey R; Sweeney, John A; Chen, Hua-yun; Gershon, Elliot S; Liu, Chunyu

    2014-01-01

    Objectives Aberrant DNA methylation and gene expression have been reported in postmortem brain tissues of psychotic patients, but until now there has been no systematic evaluation of synergistic changes in methylation and expression on a genome-wide scale from brain tissue. Methods In this study, genome-wide methylation and expression analysis were performed on cerebellum samples from 39 patients with schizophrenia, 36 patients with bipolar disorder, and 43 unaffected controls, to screen for the correlation in gene expression and CpG methylation. Results Out of 71,753 CpG Gene Pairs (CGPs) tested across the genome, 204 were found to significantly correlate with gene expression after correction for multiple testing [p < 0.05, false discovery rate (FDR) q < 0.05]. The correlated CGPs were tested for disease-associated expression and methylation by comparing psychotic patients with bipolar disorder and schizophrenia to healthy controls. Four of the identified CGPs were found to significantly correlate with the differential expression and methylation of the PIK3R1, BTN3A3, NHLH1, and SLC16A7 in psychotic patients (p < 0.05, FDR q < 0.2). Additional expression and methylation datasets were used to validate the relationship between DNA methylation, gene expression, and neuropsychiatric diseases. Conclusions These results suggest that the identified differentially expressed genes with an aberrant methylation pattern can represent novel candidate factors in the etiology and pathology of neuropsychiatric disorders. PMID:25243493

  1. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11

    PubMed Central

    James, Smitha R; Cedeno, Carlos D; Sharma, Ashok; Zhang, Wa; Mohler, James L; Odunsi, Kunle; Wilson, Elizabeth M; Karpf, Adam R

    2013-01-01

    MAGEA11 is a cancer germline (CG) antigen and androgen receptor co-activator. Its expression in cancers other than prostate, and its mechanism of activation, has not been reported. In silico analyses reveal that MAGEA11 is frequently expressed in human cancers, is increased during tumor progression, and correlates with poor prognosis and survival. In prostate and epithelial ovarian cancers (EOC), MAGEA11 expression was associated with promoter and global DNA hypomethylation, and with activation of other CG genes. Pharmacological or genetic inhibition of DNA methyltransferases (DNMTs) and/or histone deacetylases (HDACs) activated MAGEA11 in a cell line specific manner. MAGEA11 promoter activity was directly repressed by DNA methylation, and partially depended on Sp1, as pharmacological or genetic targeting of Sp1 reduced MAGEA11 promoter activity and endogenous gene expression. Importantly, DNA methylation regulated nucleosome occupancy specifically at the -1 positioned nucleosome of MAGEA11. Methylation of a single Ets site near the transcriptional start site (TSS) correlated with -1 nucleosome occupancy and, by itself, strongly repressed MAGEA11 promoter activity. Thus, DNA methylation regulates nucleosome occupancy at MAGEA11, and this appears to function cooperatively with sequence-specific transcription factors to regulate gene expression. MAGEA11 regulation is highly instructive for understanding mechanisms regulating CG antigen genes in human cancer. PMID:23839233

  2. Arabidopsis RPT2a, 19S proteasome subunit, regulates gene silencing via DNA methylation.

    PubMed

    Sako, Kaori; Maki, Yuko; Kanai, Tomoyuki; Kato, Eriko; Maekawa, Shugo; Yasuda, Shigetaka; Sato, Takeo; Watahiki, Masaaki K; Yamaguchi, Junji

    2012-01-01

    The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation. PMID:22615900

  3. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 'g/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine...

  4. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana.

    PubMed

    Ju, Zheng; Wang, Lei; Cao, Dongyan; Zuo, Jinhua; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2016-09-01

    Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes. PMID:27422476

  5. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    PubMed Central

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  6. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    PubMed Central

    Aceituno, Felipe F; Moseyko, Nick; Rhee, Seung Y; Gutiérrez, Rodrigo A

    2008-01-01

    Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8) with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant capable of restraining the

  7. The barley EST DNA Replication and Repair Database (bEST-DRRD) as a tool for the identification of the genes involved in DNA replication and repair

    PubMed Central

    2012-01-01

    Background The high level of conservation of genes that regulate DNA replication and repair indicates that they may serve as a source of information on the origin and evolution of the species and makes them a reliable system for the identification of cross-species homologs. Studies that had been conducted to date shed light on the processes of DNA replication and repair in bacteria, yeast and mammals. However, there is still much to be learned about the process of DNA damage repair in plants. Description These studies, which were conducted mainly using bioinformatics tools, enabled the list of genes that participate in various pathways of DNA repair in Arabidopsis thaliana (L.) Heynh to be outlined; however, information regarding these mechanisms in crop plants is still very limited. A similar, functional approach is particularly difficult for a species whose complete genomic sequences are still unavailable. One of the solutions is to apply ESTs (Expressed Sequence Tags) as the basis for gene identification. For the construction of the barley EST DNA Replication and Repair Database (bEST-DRRD), presented here, the Arabidopsis nucleotide and protein sequences involved in DNA replication and repair were used to browse for and retrieve the deposited sequences, derived from four barley (Hordeum vulgare L.) sequence databases, including the “Barley Genome version 0.05” database (encompassing ca. 90% of barley coding sequences) and from two databases covering the complete genomes of two monocot models: Oryza sativa L. and Brachypodium distachyon L. in order to identify homologous genes. Sequences of the categorised Arabidopsis queries are used for browsing the repositories, which are located on the ViroBLAST platform. The bEST-DRRD is currently used in our project during the identification and validation of the barley genes involved in DNA repair. Conclusions The presented database provides information about the Arabidopsis genes involved in DNA replication and

  8. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  9. HOX gene methylation status analysis in patients with hereditary breast cancer.

    PubMed

    Pilato, Brunella; Pinto, Rosamaria; De Summa, Simona; Lambo, Rossana; Paradiso, Angelo; Tommasi, Stefania

    2013-01-01

    Cancer development is related not only to genetic alterations but also to aberrant epigenetic changes that could lead to heritable gene patterns critical for neoplastic initiation and progression. Knowledge of epigenetic regulation in cancer cells is useful for both the understanding of carcinogenesis and for the possibility of using epigenetic drugs. HOX genes deregulation have a crucial role in oncogenesis process and tumor suppression. In this report, the methylation of HOXA1, HOXA9, HOXA10, HOXB13, HNF1B, OTX1, TLX1 genes have been analyzed in patients with hereditary breast cancer. This is the first study analyzing BRCA mutational status of patients with respect to methylation of HOX genes. HOXA10 has been found to be methylated in all patients analyzed but never in healthy subjects. With respect to clinical pathological information, hypermethylation of all studied genes, with the exception of OTX1, was significantly associated with absence of HER2 neu expression (P<0.05). Moreover, hypermethylation of HOXB13, HOXA10 and HOXA1 was associated with a high proliferation index (Mib1≥10%, P<0.05) and hypermethylation of HOXB13 and HOXA10 also with high expression of estrogen and progesterone receptors. These preliminary data suggest a possible involvement of HOX genes in familial breast cancer as marker helpful to identify high-risk patients.

  10. SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation

    PubMed Central

    Li, Shaofang; Liu, Lin; Li, Shengben; Gao, Lei; Zhao, Yuanyuan; Kim, Yun Ju; Chen, Xuemei

    2016-01-01

    Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation. PMID:26400170

  11. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  12. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing.

    PubMed

    Rodríguez-Negrete, Edgar; Lozano-Durán, Rosa; Piedra-Aguilera, Alvaro; Cruzado, Lucia; Bejarano, Eduardo R; Castillo, Araceli G

    2013-07-01

    Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses. PMID:23614786

  13. DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins.

    PubMed

    Tsai, Pei-Chien; Van Dongen, Jenny; Tan, Qihua; Willemsen, Gonneke; Christiansen, Lene; Boomsma, Dorret I; Spector, Tim D; Valdes, Ana M; Bell, Jordana T

    2015-12-01

    Low birth weight (LBW) can have an impact on health outcomes in later life, especially in relation to pre-disposition to metabolic disease. Several studies suggest that LBW resulting from restricted intrauterine growth leaves a footprint on DNA methylation in utero, and this influence likely persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg12562232, p = 2.62 × 10(-8)), was significantly associated with birth weight discordance at a genome-wide false-discovery rate (FDR) of 0.05. We pursued replication in three additional independent datasets of birth weight discordant MZ pairs and observed the same direction of association, but the results were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent of genetic effects.

  14. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function

    SciTech Connect

    Jobert, Laure; Argentini, Manuela; Tora, Laszlo

    2009-04-15

    TAF15 (formerly TAF{sub II}68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the fusion oncoprotein created by chromosomal translocation in certain human chondrosarcomas. Post-transcriptional modifications (PTMs) of proteins are known to regulate their activity, however, nothing is known on how PTMs affect TAF15 function. Here we demonstrate that endogenous human TAF15 is methylated in vivo at its numerous RGG repeats. Furthermore, we identify protein arginine N-methyltransferase 1 (PRMT1) as a TAF15 interactor and the major PRMT responsible for its methylation. In addition, the RGG repeat-containing C-terminus of TAF15 is responsible for the shuttling between the nucleus and the cytoplasm and the methylation of RGG repeats affects the subcellular localization of TAF15. The methylation of TAF15 by PRMT1 is required for the ability of TAF15 to positively regulate the expression of the studied endogenous TAF15-target genes. Our findings demonstrate that arginine methylation of TAF15 by PRMT1 is a crucial event determining its proper localization and gene regulatory function.

  15. Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma

    PubMed Central

    Gozzi, Gaia; Chelbi, Sonia T.; Manni, Paola; Alberti, Loredana; Fonda, Sergio; Saponaro, Sara; Fabbiani, Luca; Rivasi, Francesco; Benhattar, Jean; Losi, Lorena

    2016-01-01

    TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype.

  16. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells.

    PubMed

    Kojima-Kita, Kanako; Kuramochi-Miyagawa, Satomi; Nagamori, Ippei; Ogonuki, Narumi; Ogura, Atsuo; Hasuwa, Hidetoshi; Akazawa, Takashi; Inoue, Norimitsu; Nakano, Toru

    2016-09-13

    During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs). Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF) that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon. PMID:27626653

  17. Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma

    PubMed Central

    Gozzi, Gaia; Chelbi, Sonia T.; Manni, Paola; Alberti, Loredana; Fonda, Sergio; Saponaro, Sara; Fabbiani, Luca; Rivasi, Francesco; Benhattar, Jean; Losi, Lorena

    2016-01-01

    TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype. PMID:27698863

  18. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression

    PubMed Central

    Ha, Shin-Woo; Jang, Hae Lin; Nam, Ki Tae; Beck, George R.

    2015-01-01

    Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10×100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials. PMID:26141836

  19. Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review.

    PubMed

    Turecki, Gustavo; Meaney, Michael J

    2016-01-15

    The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behavior through epigenetic mechanisms. The hypothalamus-pituitary-adrenal axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR) (Nr3c1). Since initial findings were published in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress, and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and seven human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early-life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations.

  20. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression

    PubMed Central

    Zhang, Jie; Liu, Yuan; Xia, En-Hua; Yao, Qiu-Yang; Liu, Xiang-Dong; Gao, Li-Zhi

    2015-01-01

    Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a “genome shock” response factor to help neoautopolyploids adapt to genome-dosage effects. PMID:26621743

  1. Interplay between promoter methylation and chromosomal loss in gene silencing at 3p11-p14 in cervical cancer

    PubMed Central

    Lando, Malin; Fjeldbo, Christina S; Wilting, Saskia M; Snoek, Barbara C; Aarnes, Eva-Katrine; Forsberg, Malin F; Kristensen, Gunnar B; Steenbergen, Renske DM; Lyng, Heidi

    2015-01-01

    Loss of 3p11-p14 is a frequent event in epithelial cancer and a candidate prognostic biomarker in cervical cancer. In addition to loss, promoter methylation can participate in gene silencing and promote tumor aggressiveness. We have performed a complete mapping of promoter methylation at 3p11-p14 in two independent cohorts of cervical cancer patients (n = 149, n = 121), using Illumina 450K methylation arrays. The aim was to investigate whether hyperm-ethylation was frequent and could contribute to gene silencing and disease aggressiveness either alone or combined with loss. By comparing the methylation level of individual CpG sites with corresponding data of normal cervical tissue, 26 out of 41 genes were found to be hypermethylated in both cohorts. The frequency of patients with hypermethylation of these genes was found to be higher at tumor stages of 3 and 4 than in stage 1 tumors. Seventeen of the 26 genes were transcriptionally downregulated in cancer compared to normal tissue, whereof 6 genes showed a significant correlation between methylation and expression. Integrated analysis of methylation, gene dosage, and expression of the 26 hypermethylated genes identified 3 regulation patterns encompassing 8 hypermethylated genes; a methylation driven pattern (C3orf14, GPR27, ZNF717), a gene dosage driven pattern (THOC7, PSMD6), and a combined methylation and gene dosage driven pattern (FHIT, ADAMTS9, LRIG1). In survival analysis, patients with both hypermethylation and loss of LRIG1 had a worse outcome compared to those harboring only hypermethylation or none of the events. C3orf14 emerged as a novel methylation regulated suppressor gene, for which knockdown was found to promote invasive growth in human papilloma virus (HPV)-transformed keratinocytes. In conclusion, hypermethylation at 3p11-p14 is common in cervical cancer and may exert a selection pressure during carcinogenesis alone or combined with loss. Information on both events could lead to improved

  2. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells.

    PubMed

    Christians, F C; Hanawalt, P C

    1994-04-01

    Previous studies have demonstrated transcription-coupled DNA repair in mammalian genes transcribed by RNA polymerase II but not in ribosomal RNA genes (rDNA), which are transcribed by RNA polymerase I. The removal of UV-induced cyclobutane pyrimidine dimers (CPD) from rDNA in repair-proficient human cells has been shown to be slow but detectable and apparently not coupled to transcription. We studied the induction and removal of CPD from rDNA in cultured cells from two repair-deficient human disorders. Primary xeroderma pigmentosum complementation group C (XP-C) cells, whether proliferating or nondividing, removed no CPD from either rDNA strand in 24 h post-UV, a result which supports earlier conclusions that XP-C cells lack the general, transcription-independent pathway of nucleotide excision repair. We also observed lower than normal repair of rDNA in Cockayne's syndrome (CS) cells from complementation groups A and B. In agreement with previous findings, the repair of both strands of the RNA polymerase II-transcribed dihydrofolate reductase gene was also deficient relative to that of normal cells. This strongly suggests that the defect in CS cells is not limited to a deficiency in a transcription-repair coupling factor. Rather, the defect may interfere with the ability of repair proteins to gain access to all expressed genes. PMID:7512688

  3. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring

    PubMed Central

    Vidal, A C; Murphy, S K; Murtha, A P; Schildkraut, J M; Soubry, A; Huang, Z; Neelon, S E B; Fuemmeler, B; Iversen, E; Wang, F; Kurtzberg, J; Jirtle, R L; Hoyo, C

    2013-01-01

    Objectives: Low birth weight (LBW) has been associated with common adult-onset chronic diseases, including obesity, cardiovascular disease, type II diabetes and some cancers. The etiology of LBW is multi-factorial. However, recent evidence suggests exposure to antibiotics may also increase the risk of LBW. The mechanisms underlying this association are unknown, although epigenetic mechanisms are hypothesized. In this study, we evaluated the association between maternal antibiotic use and LBW and examined the potential role of altered DNA methylation that controls growth regulatory imprinted genes in these associations. Methods: Between 2009–2011, 397 pregnant women were enrolled and followed until delivery. Prenatal antibiotic use was ascertained through maternal self-report. Imprinted genes methylation levels were measured at differentially methylated regions (DMRs) using bisulfite pyrosequencing. Generalized linear models were used to examine associations among antibiotic use, birth weight and DMR methylation fractions. Results: After adjusting for infant gender, race/ethnicity, maternal body mass index, delivery route, gestational weight gain, gestational age at delivery, folic acid intake, physical activity, maternal smoking and parity, antibiotic use during pregnancy was associated with 138 g lower birth weight compared with non-antibiotic use (β-coefficient=−132.99, s.e.=50.70, P=0.008). These associations were strongest in newborns of women who reported antibiotic use other than penicillins (β-coefficient=−135.57, s.e.=57.38, P=0.02). Methylation at five DMRs, IGF2 (P=0.05), H19 (P=0.15), PLAGL1 (P=0.01), MEG3 (P=0.006) and PEG3 (P=0.08), was associated with maternal antibiotic use; among these, only methylation at the PLAGL1 DMR was also associated with birth weight. Conclusion: We report an inverse association between in utero exposure to antibiotics and lower infant birth weight and provide the first empirical evidence supporting imprinted gene

  4. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    PubMed Central

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  5. Promoter hypermethylation and inactivation of hMLH1, a DNA mismatch repair gene, in head and neck squamous cell carcinoma.

    PubMed

    Liu, Kela; Zuo, Chunlai; Luo, Q Kevin; Suen, James Y; Hanna, Ehab; Fan, Chun-Yang

    2003-03-01

    Head and neck squamous cell carcinoma (HNSCC) is a multistage process during which adverse genetic alterations accumulate resulting in loss of cell cycle control, selective cell overgrowth, and ultimately formation of malignancy. Among various genetic alterations in HNSCC is increased microsatellite instability (MSI). hMLH1 is one of the major mismatch DNA repair genes, the inactivation of which caused increased MSI in a variety of human cancers including HNSCC. While somatic mutation is a major mechanism of the hMLH1 gene inactivation in hereditary form of human cancer, promoter hypermethylation appears to be primarily involved in the inactivation of the hMLH1 gene in sporadic form of human cancers. In the current study, we analyzed 78 cases of HNSCC for hMLH1 protein expression and promoter hypermethylation by IHC and methylation-specific PCR (MSP). Twenty-four of 78 cases (31%) of HNSCC contained markedly reduced levels of the hMLH1 protein. Based on the IHC results, 8 cases without and 8 with hMLH1 protein expression (total of 16) were further analyzed by MSP. Seven of 8 cases (88%) that were negative for the hMLH1 protein displayed promoter hypermethylation, whereas 7 of 7 cases (100%) strongly positive for the protein were free of promoter methylation. This study confirms our previous conclusion that promoter hypermethylation represents a major mechanism of the hMLH1 gene inactivation in HNSCC.

  6. Promoter methylation confers kidney-specific expression of the Klotho gene.

    PubMed

    Azuma, Masahiro; Koyama, Daisuke; Kikuchi, Jiro; Yoshizawa, Hiromichi; Thasinas, Dissayabutra; Shiizaki, Kazuhiro; Kuro-o, Makoto; Furukawa, Yusuke; Kusano, Eiji

    2012-10-01

    The aging suppressor geneKlotho is predominantly expressed in the kidney irrespective of species. Because Klotho protein is an essential component of an endocrine axis that regulates renal phosphate handling, the kidney-specific expression is biologically relevant; however, little is known about its underlying mechanisms. Here we provide in vitro and in vivo evidence indicating that promoter methylation restricts the expression of the Klotho gene in the kidney. Based on evolutionary conservation and histone methylation patterns, the region up to -1200 bp was defined as a major promoter element of the human Klotho gene. This region displayed promoter activity equally in Klotho-expressing and -nonexpressing cells in transient reporter assays, but the activity was reduced to ∼20% when the constructs were integrated into the chromatin in the latter. Both endogenous and transfected Klotho promoters were 30-40% methylated in Klotho-nonexpressing cells, but unmethylated in Klotho-expressing renal tubular cells. DNA demethylating agents increased Klotho expression 1.5- to 3.0-fold in nonexpressing cells and restored the activity of silenced reporter constructs. Finally, we demonstrated that a severe hypomorphic allele of Klotho had aberrant CpG methylation in kl/kl mice. These findings might be useful in therapeutic intervention for accelerated aging and several complications caused by Klotho down-regulation.

  7. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease.

    PubMed

    Sanchez-Mut, Jose V; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G; Fernandez, Agustin F; Astudillo, Aurora; Martin-Subero, Jose I; Balint, Balazs; Fraga, Mario F; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K; Ferrer, Isidre; Esteller, Manel

    2013-10-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer's disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5'-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer's disease. We were able to translate these findings to patients with Alzheimer's disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.

  8. DNA Repair Gene Expression and Risk of Locoregional Relapse in Breast Cancer Patients

    SciTech Connect

    Le Scodan, Romuald; Cizeron-Clairac, Geraldine

    2010-10-01

    Purpose: Radiation therapy appears to kill cells mainly by inducing DNA double-strand breaks. We investigated whether the DNA repair gene expression status might influence the risk of locoregional recurrence (LRR) in breast cancer patients. Methods and Materials: We used a quantitative reverse transcriptase PCR-based approach to measure messenger RNA levels of 20 selected DNA repair genes in tumor samples from 97 breast cancer patients enrolled in a phase III trial (Centre Rene Huguenin cohort). Normalized mRNA levels were tested for an association with LRR-free survival (LRR-FS) and overall survival (OS). The findings were validated in comparison with those of an independent cohort (Netherlands Cancer Institute (NKI) cohort). Multivariate analysis encompassing known prognostic factors was used to assess the association between DNA repair gene expression and patient outcome. Results: RAD51 was the only gene associated with LRR in both cohorts. With a median follow-up of 126 months in the CRH cohort, the 5-year LRR-FS and OS rates were 100% and 95% in the 61 patients with low RAD51 expression, compared with 70% and 69% in the 36 patients with high RAD51 expression, respectively (p < 0.001). RAD51 overexpression was associated with a higher risk of LRR (hazard ratio [HR], 12.83; 95% confidence interval [CI], 3.6-45.6) and death (HR, 4.10; 95% CI, 1.7-9.7). RAD51 overexpression was also significantly associated with shorter LRR-FS and OS in the NKI cohort. Conclusions: Overexpression of RAD51, a key component of the homologous DNA repair pathway, is associated with poor breast cancer outcome. This finding warrants prospective studies of RAD51 as a prognosticator and therapeutic target.

  9. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M.; Libertin, C.R.

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  10. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. ); Libertin, C.R. )

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  11. On the origin and evolutionary consequences of gene body DNA methylation.

    PubMed

    Bewick, Adam J; Ji, Lexiang; Niederhuth, Chad E; Willing, Eva-Maria; Hofmeister, Brigitte T; Shi, Xiuling; Wang, Li; Lu, Zefu; Rohr, Nicholas A; Hartwig, Benjamin; Kiefer, Christiane; Deal, Roger B; Schmutz, Jeremy; Grimwood, Jane; Stroud, Hume; Jacobsen, Steven E; Schneeberger, Korbinian; Zhang, Xiaoyu; Schmitz, Robert J

    2016-08-01

    In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.

  12. On the origin and evolutionary consequences of gene body DNA methylation.

    PubMed

    Bewick, Adam J; Ji, Lexiang; Niederhuth, Chad E; Willing, Eva-Maria; Hofmeister, Brigitte T; Shi, Xiuling; Wang, Li; Lu, Zefu; Rohr, Nicholas A; Hartwig, Benjamin; Kiefer, Christiane; Deal, Roger B; Schmutz, Jeremy; Grimwood, Jane; Stroud, Hume; Jacobsen, Steven E; Schneeberger, Korbinian; Zhang, Xiaoyu; Schmitz, Robert J

    2016-08-01

    In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales. PMID:27457936

  13. Remote Ischemic Conditioning Alters Methylation and Expression of Cell Cycle Genes in Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Nikkola, Elina; Laiwalla, Azim; Ko, Arthur; Alvarez, Marcus; Connolly, Mark; Ooi, Yinn Cher; Hsu, William; Bui, Alex; Pajukanta, Päivi; Gonzalez, Nestor

    2015-01-01

    Background and purpose Remote ischemic conditioning (RIC) is a phenomenon in which short periods of non-fatal ischemia in one tissue confers protection to distant tissues. Here we performed a longitudinal human pilot study in patients with aneurysmal subarachnoid hemorrhage (aSAH) undergoing RIC by limb ischemia to compare changes in DNA methylation and transcriptome profiles before and after RIC. Methods Thirteen patients underwent 4 RIC sessions over 2–12 days after rupture of an intracranial aneurysm. We analyzed whole blood transcriptomes using RNA sequencing and genome-wide DNA methylomes using reduced representation bisulfite sequencing, both before and after RIC. We tested differential expression (DE) and differential methylation (DM) using an intra-individual paired study design, and then overlapped the DE and DM results for analyses of functional categories and protein-protein interactions. Results We observed 164 DE genes and 3,493 DM CpG sites after RIC, of which 204 CpG sites overlapped with 103 genes, enriched for pathways of cell cycle (P<3.8×10−4) and inflammatory responses (P<1.4×10−4). The cell cycle pathway genes form a significant protein-protein interaction network of tightly co-expressed genes (P<0.00001). Conclusions Gene expression and DNA methylation changes in aSAH patients undergoing RIC are involved in coordinated cell cycle and inflammatory responses. PMID:26251247

  14. Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis

    PubMed Central

    Davis-Richardson, Austin G.; Russell, Jordan T.; Dias, Raquel; McKinlay, Andrew J.; Canepa, Ronald; Fagen, Jennie R.; Rusoff, Kristin T.; Drew, Jennifer C.; Kolaczkowski, Bryan; Emerich, David W.; Triplett, Eric W.

    2016-01-01

    Very little is known about the role of epigenetics in the differentiation of a bacterium from the free-living to the symbiotic state. Here genome-wide analysis of DNA methylation changes between these states is described using the model of symbiosis between soybean and its root nodule-forming, nitrogen-fixing symbiont, Bradyrhizobium diazoefficiens. PacBio resequencing of the B. diazoefficiens genome from both states revealed 43,061 sites recognized by five motifs with the potential to be methylated genome-wide. Of those sites, 3276 changed methylation states in 2921 genes or 35.5% of all genes in the genome. Over 10% of the methylation changes occurred within the symbiosis island that comprises 7.4% of the genome. The CCTTGAG motif was methylated only during symbiosis with 1361 adenosines methylated among the 1700 possible sites. Another 89 genes within the symbiotic island and 768 genes throughout the genome were found to have methylation and significant expression changes during symbiotic development. Of those, nine known symbiosis genes involved in all phases of symbiotic development including early infection events, nodule development, and nitrogenase production. These associations between methylation and expression changes in many B. diazoefficiens genes suggest an important role of the epigenome in bacterial differentiation to the symbiotic state. PMID:27148207

  15. Comparison of Gene Expression and Genome-Wide DNA Methylation Profiling between Phenotypically Normal Cloned Pigs and Conventionally Bred Controls

    PubMed Central

    Li, Shengting; Li, Jian; Lin, Lin; Nielsen, Anders Lade; Sørensen, Charlotte Brandt; Vajta, Gábor; Wang, Jun; Zhang, Xiuqing; Du, Yutao; Yang, Huanming; Bolund, Lars

    2011-01-01

    Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions. PMID:22022462

  16. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  17. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  18. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids.

    PubMed

    Xu, Yanhao; Zhong, Lan; Wu, Xiaoming; Fang, Xiaoping; Wang, Jianbo

    2009-02-01

    Allopolyploidy is an important speciation mechanism and is ubiquitous among plants. Brassica napus is a model system for studying the consequences of hybridization and polyploidization on allopolyploid genome. In this research, two sets of plant materials were used to investigate the transcriptomic and epigenetic changes in the early stages of allopolyploid formation. The first comparison was between a synthetic B. napus allotetraploid and its diploid progenitors, B. rapa (AA genome) and B. oleracea (CC genome). Using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and methylation-sensitive amplification polymorphism (MSAP) approaches, ~4.09 and 6.84% of the sequences showed changes in gene expression and DNA methylation in synthesized B. napus compared to its diploid progenitors. The proportions of C-genome-specific gene silencing and DNA methylation alterations were significantly greater than those of A-genome-specific alterations. The second comparison was between amphihaploid and amphidiploid B. napus organs grown on synthesized dimorphic plants. About 0.73% of the cDNA-AFLP fragments and 1.94% of the MSAP fragments showed changes in gene expression and DNA methylation. We sequenced 103 fragments that differed in the synthetic/parental or the amphihaploid/amphidiploid cDNA-AFLP and MSAP comparisons. Sequence analysis revealed these fragments were involved in various biological pathways. Our results provided evidence for genome-wide changes in gene expression and DNA methylation occurring immediately after hybridization and polyploidization in synthetic B. napus. Moreover, this study contributed to the elucidation of genome doubling effects on responses of transcriptome and epigenetics in B. napus.

  19. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair.

    PubMed

    Zhou, Hui; Madden, Benjamin J; Muddiman, David C; Zhang, Zhiguo

    2006-03-01

    In eukaryotic cells, chromatin is classified into euchromatin, which is active in transcription, and heterochromatin that silences transcription. Histones in these two domains contain distinct modifications. Chromatin assembly factor 1 (CAF-1) is a highly conserved protein that functions in DNA replication, DNA repair, and heterochromatin silencing. CAF-1 binds histones H3 and H4 and deposits histones onto DNA to form nucleosomes. However, modifications on H3 and H4 associated with CAF-1 are not known. Here, we have purified a complex containing CAF-1 and H3 and H4 from yeast cells and determined the modifications present on these histones using linear ion trap FT-ICR mass spectrometry. H4 that copurified with CAF-1 was a mixture of isoforms acetylated at lysines 5, 8, 12, and 16, whereas an H3 peptide methylated at lysine 79 and an H3 peptide acetylated at lysine 56 were detected. In yeast cell extracts, these two H3 modifications peaked in the late S phase with different kinetics. Moreover, the association of CAF-1 with H3 methylated at lysine 79 appeared to occur in the late S phase. Finally, cells lacking both Dot1p, the methyltransferase that methylates H3 lysine 79, and Cac1p, the large subunit of CAF-1, exhibited a dramatic loss of telomeric silencing and increased sensitivity to DNA damaging agents. Together, these data indicate that CAF-1 interacts with H3 methylated at lysine 79 during the processes of epigenetic silencing and DNA repair. PMID:16503640

  20. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome.

    PubMed

    Gabel, Harrison W; Kinde, Benyam; Stroud, Hume; Gilbert, Caitlin S; Harmin, David A; Kastan, Nathaniel R; Hemberg, Martin; Ebert, Daniel H; Greenberg, Michael E

    2015-06-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.

  1. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome.

    PubMed

    Gabel, Harrison W; Kinde, Benyam; Stroud, Hume; Gilbert, Caitlin S; Harmin, David A; Kastan, Nathaniel R; Hemberg, Martin; Ebert, Daniel H; Greenberg, Michael E

    2015-06-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  2. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    PubMed Central

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  3. Identification of Highly Methylated Genes across Various Types of B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Bethge, Nicole; Honne, Hilde; Hilden, Vera; Trøen, Gunhild; Eknæs, Mette; Liestøl, Knut; Holte, Harald; Delabie, Jan; Smeland, Erlend B.; Lind, Guro E.

    2013-01-01

    Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients. PMID:24260260

  4. A combination of transcriptome and methylation analyses reveals embryologically-relevant candidate genes in MRKH patients

    PubMed Central

    2011-01-01

    Background The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is present in at least 1 out of 4,500 female live births and is the second most common cause for primary amenorrhea. It is characterized by vaginal and uterine aplasia in an XX individual with normal secondary characteristics. It has long been considered a sporadic anomaly, but familial clustering occurs. Several candidate genes have been studied although no single factor has yet been identified. Cases of discordant monozygotic twins suggest that the involvement of epigenetic factors is more likely. Methods Differences in gene expression and methylation patterns of uterine tissue between eight MRKH patients and eight controls were identified using whole-genome microarray analyses. Results obtained by expression and methylation arrays were confirmed by qRT-PCR and pyrosequencing. Results We delineated 293 differentially expressed and 194 differentially methylated genes of which nine overlap in both groups. These nine genes are mainly embryologically relevant for the development of the female genital tract. Conclusion Our study used, for the first time, a combined whole-genome expression and methylation approach to reveal the etiology of the MRKH syndrome. The findings suggest that either deficient estrogen receptors or the ectopic expression of certain HOXA genes might lead to abnormal development of the female reproductive tract. In utero exposure to endocrine disruptors or abnormally high maternal hormone levels might cause ectopic expression or anterior transformation of HOXA genes. It is, however, also possible that different factors influence the anti-Mullerian hormone promoter activity during embryological development causing regression of the Müllerian ducts. Thus, our data stimulate new research directions to decipher the pathogenic basis of MRKH syndrome. PMID:21619687

  5. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair.

    PubMed

    Francis, M A; Bagga, P S; Athwal, R S; Rainbow, A J

    1997-10-01

    Endonuclease V (denV) from bacteriophage T4 has been examined for its ability to complement the repair defect in Cockayne syndrome (CS) cells of complementation groups A and B. CS is an autosomal recessive disorder characterized by hypersensitivity to UV light and a defect in the preferential repair of UV-induced lesions in transcriptionally active DNA by the nucleotide excision repair (NER) pathway. The denV gene was introduced into non-transformed normal and CS fibroblasts transiently via a recombinant adenovirus (Ad) vector and into SV40-transformed normal and CS cells via a retroviral vector. Expression of denV in CS-A cells resulted in partial correction of the UV-sensitive phenotype in assays of gene-specific repair and cell viability, while correction of CS-B cells by expression of denV in the same assays was minimal or non-existent. In contrast, denV expression led to enhanced host cell reactivation (HCR) of viral DNA synthesis in both CS complementation groups to near normal levels. DenV is a glycosylase which is specific for cyclobutane-pyrimidine dimers (CPDs) but does not recognize other UV-induced lesions. Previous work has indicated that CS cells can efficiently repair all non-CPD UV-induced transcription blocking lesions (S.F. Barrett et al.. Mutation Res. 255 (1991) 281-291 [1]) and that denV incised lesions are believed to be processed via the base excision repair (BER) pathway. The inability of denV to complement the NER defect in CS cells to normal levels implies an impaired ability to process denV incised lesions by the BER pathway, and suggests a role for the CS genes, particularly the CS-B gene, in BER. PMID:9372849

  6. Differential methylation of the gene encoding myo-inositol 3-phosphate synthase (Isyna1) in rat tissues

    PubMed Central

    Seelan, Ratnam S; Pisano, M Michele; Greene, Robert M; Casanova, Manuel F; Parthasarathy, Ranga N

    2011-01-01

    Aims Myo-inositol levels are frequently altered in several brain disorders. Myo-inositol 3-phosphate synthase, encoded by the Isyna1 gene, catalyzes the synthesis of myo-inositol in cells. Very little is known about the mechanisms regulating Isyna1 expression in brain and other tissues. In this study, we have examined the role of DNA methylation in regulating Isyna1 expression in rat tissues. Materials & methods Transfection analysis using in vitro methylated promoter constructs, Southern blot analysis of genomic DNA from various tissues digested with a methylation-sensitive enzyme and CpG methylation profiling of genomic DNA from different tissues were used to determine differential methylation of Isyna1 in tissues. Transfection analysis using plasmids harboring mutated CpG residues in the 5’-upstream region of Isyna1 was used to identify critical residues mediating promoter activity. Results The −700 bp to −500 bp region (region 1) of Isyna1 exhibited increased methylation in brain cortex compared with other tissues; it also exhibited sex-specific methylation differences between matched male and female brain cortices. Mutation analysis identified one CpG residue in region 1 necessary for promoter activity in neuronal cells. A tissue-specific differentially methylated region (T-DMR) was found to be localized between +450 bp and +650 bp (region 3). This DMR was comparatively highly methylated in spleen, moderately methylated in brain cortex and poorly methylated in testis, consistent with mRNA levels observed in these tissues. Conclusion Rat Isyna1 exhibits tissue-specific DNA methylation. Brain DNA was uniquely methylated in the 5’-upstream region and displayed gender specificity. A T-DMR was identified within the gene body of Isyna1. These findings suggest that Isyna1 is regulated, in part, by DNA methylation and that significant alterations in methylation patterns during development could have a major impact on inositol phosphate synthase expression in

  7. Epigenetics of human myometrium: DNA methylation of genes encoding contraction-associated proteins in term and preterm labor.

    PubMed

    Mitsuya, Kohzoh; Singh, Natasha; Sooranna, Suren R; Johnson, Mark R; Myatt, Leslie

    2014-05-01

    Preterm birth involves the interaction of societal and environmental factors potentially modulating the length of gestation via the epigenome. An established form of epigenetic regulation is DNA methylation where promoter hypermethylation is associated with gene repression. We hypothesized we would find differences in DNA methylation in the myometrium of women with preterm labor of different phenotypes versus normal term labor. Myometrial tissue was obtained at cesarean section at term with or without labor, preterm without labor, idiopathic preterm labor, and twin gestations with labor. Genomic DNA was isolated, and samples in each group were combined and analyzed on a NimbleGen 2.1M human DNA methylation array. Differences in methylation from -8 to +3 kb of transcription start sites of 22 contraction-associated genes were determined. Cytosine methylation was not present in CpG islands of any gene but was present outside of CpG islands in shores and shelves in 19 genes. No differential methylation was found across the tissue groups for six genes (PTGES3L, PTGER2, PTGER4, PTGFRN, ESR2, and GJA1). For 13 genes, differential methylation occurred in several patterns between tissue groups. We find a correlation between hypomethylation and increased mRNA expression of PTGES/mPGES-1, indicating potential functional relevance of methylation, but no such correlation for PTGS2/COX-2, suggesting other regulatory mechanisms for PTGS2 at labor. The majority of differential DNA methylation of myometrial contraction-associated genes with different labor phenotypes occurs outside of CpG islands in gene promoters, suggesting that the entirety of DNA methylation across the genome should be considered. PMID:24571989

  8. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  9. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    PubMed Central

    Leclerc, Xavier; Danos, Olivier; Scherman, Daniel; Kichler, Antoine

    2009-01-01

    Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments. PMID:19379497

  10. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair

    SciTech Connect

    Lehmann, A.R.; Walicka, M.; Griffiths, D.J.F.; Carr, A.M.

    1995-12-01

    This report describes the cloning and sequencing of the rad18 gene of Schizosaccharomyces pombe and its essential role in cell proliferation. It also describes the isolation and sequencing of its homolog from Saccharomyces cerevisiae, designated RHC18. Genetic radiation effects were explored and results indicate the gene product`s importance in a DNA repair pathway that is distinct from classical nucleotide excision repair. 57 refs., 20 figs., 1 tab.

  11. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes.

    PubMed Central

    Sia, E A; Kokoska, R J; Dominska, M; Greenwell, P; Petes, T D

    1997-01-01

    We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand. PMID:9111357

  12. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  13. Promoter Methylation of Glucocorticoid Receptor Gene Is Associated with Subclinical Atherosclerosis: a Monozygotic Twin Study

    PubMed Central

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A.; Vaccarino, Viola

    2015-01-01

    Objective Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. Methods We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Results Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P <0.0001) after adjusting for risk factors and multiple testing. Conclusion Methylation variation in NR3C1 exon 1F promoter significantly influences subclinical atherosclerosis, independent of genetic, early family environmental and other risk factors. PMID:26186654

  14. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes

    PubMed Central

    Richardson, C. D.; Ray, G. J.; Bray, N. L.; Corn, J. E.

    2016-01-01

    The Cas9 endonuclease can be targeted to genomic sequences by programming the sequence of an associated single guide RNA (sgRNA). For unknown reasons, the activity of these Cas9–sgRNA combinations varies widely at different genomic loci and in different cell types. Thus, disrupting genes in polyploid cell lines or when using poorly performing sgRNAs can require extensive downstream screening to identify homozygous clones. Here we find that non-homologous single-stranded DNA greatly stimulates Cas9-mediated gene disruption in the absence of homology-directed repair. This stimulation increases the frequency of clones with homozygous gene disruptions and rescues otherwise ineffective sgRNAs. The molecular outcome of enhanced gene disruption depends upon cellular context, stimulating deletion of genomic sequence or insertion of non-homologous DNA at the edited locus in a cell line specific manner. Non-homologous DNA appears to divert cells towards error-prone instead of error-free repair pathways, dramatically increasing the frequency of gene disruption. PMID:27530320

  15. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes.

    PubMed

    Richardson, C D; Ray, G J; Bray, N L; Corn, J E

    2016-01-01

    The Cas9 endonuclease can be targeted to genomic sequences by programming the sequence of an associated single guide RNA (sgRNA). For unknown reasons, the activity of these Cas9-sgRNA combinations varies widely at different genomic loci and in different cell types. Thus, disrupting genes in polyploid cell lines or when using poorly performing sgRNAs can require extensive downstream screening to identify homozygous clones. Here we find that non-homologous single-stranded DNA greatly stimulates Cas9-mediated gene disruption in the absence of homology-directed repair. This stimulation increases the frequency of clones with homozygous gene disruptions and rescues otherwise ineffective sgRNAs. The molecular outcome of enhanced gene disruption depends upon cellular context, stimulating deletion of genomic sequence or insertion of non-homologous DNA at the edited locus in a cell line specific manner. Non-homologous DNA appears to divert cells towards error-prone instead of error-free repair pathways, dramatically increasing the frequency of gene disruption. PMID:27530320

  16. Assessment by Southern blot analysis of UV-induced damage and repair in human immunoglobulin genes.

    PubMed

    Bianchi, M S; Bianchi, N O; de la Chapelle, A

    1990-09-01

    Irradiation of DNA with UV light induces pyrimidine dimers and (6-4) photoproducts. The presence of one of these photolesions in the restriction site of a given endonuclease inhibits DNA cleavage and induces the formation of fragments by incomplete DNA digestion which appear as additional, facultative bands in Southern hybridization autoradiograms. The number and size of these fragments show a positive correlation with the UV dose. The response to UV light of immunoglobulin light-chain constant kappa and heavy-chain constant mu genes was analyzed with 2 specific probes. Constant kappa and mu genes when irradiated as part of the chromatin of living lymphocytes showed a UV sensitivity similar to that of naked DNA. The same genes from granulocytes had 50-60 times lower UV sensitivity. When cells were allowed to repair photolesions for 24 h the facultative bands from granulocytes disappeared indicating that these cells were able to remove photolesions from constant kappa and mu genes. Facultative bands from lymphocytes showed a smaller decrease of density after 24 h repair. This suggests that lymphocytes are less efficient than granulocytes in removing UV damage from constant kappa and mu genes.

  17. Existence and expression of photoreactivation repair genes in various yeast species.

    PubMed

    Yasui, A; Eker, A P; Koken, M

    1989-01-01

    Photoreactivation repair (Phr) activities in cell extracts of 13 different yeast species were measured by the Haemophilus influenzae transformation assay. Five species including Schizosaccharomyces pombe showed no or low enzymatic activity. In contrast to the other species, chromosomal DNAs of these 5 species did not show detectable hybridization using a DNA fragment of the photolyase PHR1 gene of Saccharomyces cervisiae as a probe even at a low stringency condition. When the PHR1 gene was attached to the 5'-flanking sequence of the iso-1-cytochrome c (CYC-1) gene of S. cerevisiae and introduced into S. pombe cells, the transformants acquired a high Phr activity, indicating that the PHR1 gene alone can provide a Phr-negative species with this repair activity and the light-absorbing cofactor(s) must be present in S. pombe. Our results also demonstrated that the 5'-flanking sequence of the S. cerevisiae CYC-1 gene works in S. pombe as a regulatory element. PMID:2911265

  18. EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees

    PubMed Central

    Kucharski, R.; Foret, S.; Maleszka, R.

    2015-01-01

    The 2011 highly publicised Nature paper by Kamakura on honeybee phenotypic dimorphism, (also using Drosophila as an experimental surrogate), claims that a single protein in royal jelly, Royalactin, essentially acts as a master “on-off” switch in development via the epidermal growth factor receptor (AmEGFR), to seal the fate of queen or worker. One mechanism proposed in that study as important for the action of Royalactin is differential amegfr methylation in alternate organismal outcomes. According to the author differential methylation of amegfr was experimentally confirmed and shown in a supportive figure. Here we have conducted an extensive analysis of the honeybee egfr locus and show that this gene is never methylated. We discuss several lines of evidence casting serious doubts on the amegfr methylation result in the 2011 paper and consider possible origins of the author’s statement. In a broader context, we discuss the implication of our findings for contrasting context-dependent regulation of EGFR in three insect species, Apis mellifera, D. melanogaster and the carpenter ant, Camponotus floridanus, and argue that more adequate methylation data scrutiny measures are needed to avoid unwarranted conclusions. PMID:26358539

  19. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response

    PubMed Central

    Garg, Rohini; Narayana Chevala, VVS; Shankar, Rama; Jain, Mukesh

    2015-01-01

    DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice. PMID:26449881

  20. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis.

    PubMed

    Shell, Scarlet S; Prestwich, Erin G; Baek, Seung-Hun; Shah, Rupal R; Sassetti, Christopher M; Dedon, Peter C; Fortune, Sarah M

    2013-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N⁶-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces the expression of a number of genes. Each has a MamA site located at a conserved position relative to the sigma factor -10 binding site and transcriptional start site, suggesting that MamA modulates their expression through a shared, not locus-specific, mechanism. While strains lacking MamA grow normally in vitro, they are attenuated in hypoxic conditions, suggesting that methylation promotes survival in discrete host microenvironments. Interestingly, we demonstrate strikingly different patterns of DNA methyltransferase activity in different lineages of M. tuberculosis, which have been associated with preferences for distinct host environments and different disease courses in humans. Thus, MamA is the major functional adenine methyltransferase in M. tuberculosis strains of the Euro-American lineage while strains of the Beijing lineage harbor a point mutation that largely inactivates MamA but possess a second functional DNA methyltransferase. Our results indicate that MamA influences gene expression in M. tuberculosis and plays an important but strain-specific role in fitness during hypoxia.

  1. Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands

    PubMed Central

    Bender, Christina M.; Gonzalgo, Mark L.; Gonzales, Felicidad A.; Nguyen, Carvell T.; Robertson, Keith D.; Jones, Peter A.

    1999-01-01

    De novo methylation of CpG islands within the promoters of eukaryotic genes is often associated with their transcriptional repression, yet the methylation of CpG islands located downstream of promoters does not block transcription. We investigated the kinetics of mRNA induction, demethylation, and remethylation of the p16 promoter and second-exon CpG islands in T24 cells after 5-aza-2′-deoxycytidine (5-Aza-CdR) treatment to explore the relationship between CpG island methylation and gene transcription. The rates of remethylation of both CpG islands were associated with time but not with the rate of cell division, and remethylation of the p16 exon 2 CpG island occurred at a higher rate than that of the p16 promoter. We also examined the relationship between the remethylation of coding sequence CpG islands and gene transcription. The kinetics of remethylation of the p16 exon 2, PAX-6 exon 5, c-ABL exon 11, and MYF-3 exon 3 loci were examined following 5-Aza-CdR treatment because these genes contain exonic CpG islands which are hypermethylated in T24 cells. Remethylation occurred most rapidly in the p16, PAX-6, and c-ABL genes, shown to be transcribed prior to drug treatment. These regions also exhibited higher levels of remethylation in single-cell clones and subclones derived from 5-Aza-CdR-treated T24 cells. Our data suggest that de novo methylation is not restricted to the S phase of the cell cycle and that transcription through CpG islands does not inhibit their remethylation. PMID:10490608

  2. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium

    SciTech Connect

    Sun Hong; Zhou Xue; Chen Haobin; Li Qin; Costa, Max

    2009-06-15

    Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage have been proposed as an important mechanism that mediates chromate's carcinogenicity. Here we show that chromate exposure of human lung A549 cells increased global levels of di- and tri-methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4) but decreased the levels of tri-methylated histone H3 lysine 27 (H3K27) and di-methylated histone H3 arginine 2 (H3R2). Most interestingly, H3K9 dimethylation was enriched in the human MLH1 gene promoter following chromate exposure and this was correlated with decreased MLH1 mRNA expression. Chromate exposure increased the protein as well as mRNA levels of G9a a histone methyltransferase that specifically methylates H3K9. This Cr(VI)-induced increase in G9a may account for the global elevation of H3K9 dimethylation. Furthermore, supplementation with ascorbate, the primary reductant of Cr(VI) and also an essential cofactor for the histone demethylase activity, partially reversed the H3K9 dimethylation induced by chromate. Thus our studies suggest that Cr(VI) may target histone methyltransferases and demethylases, which in turn affect both global and gene promoter specific histone methylation, leading to the silencing of specific tumor suppressor genes such as MLH1.

  3. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    PubMed

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  4. DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients.

    PubMed

    Auta, J; Smith, R C; Dong, E; Tueting, P; Sershen, H; Boules, S; Lajtha, A; Davis, J; Guidotti, A

    2013-10-01

    The epigenetic dysregulation of the brain genome associated with the clinical manifestations of schizophrenia (SZ) includes altered DNA promoter methylation of several candidate genes. We and others have reported that two enzymes that belong to the DNA-methylation/demethylation network pathways-DNMT1 (DNA-methyltransferase) and ten-eleven translocator-1(TET1) methylcytosine deoxygenase are abnormally increased in corticolimbic structures of SZ postmortem brain. The objective of this study was to investigate whether the expression of these components of the DNA-methylation-demethylation pathways known to be altered in the brain of SZ patients are also altered in peripheral blood lymphocytes (PBL). The data show that increases in DNMT1 and TET1 and in glucocorticoid receptor (GCortR) and brain derived neurotrophic factor (BDNF) mRNAs in PBL of SZ patients are comparable to those reported in the brain of SZ patients. The finding that the expressions of DNMT1 and TET1 are increased and SZ candidate genes such as BDNF and GCortR are altered in the same direction in both the brain and PBL together with recent studies showing highly correlated patterns of DNA methylation across the brain and blood, support the hypothesis that a common epigenetic dysregulation may be operative in the brain and peripheral tissues of SZ patients.

  5. DNA-Methylation Gene Network Dysregulation in Peripheral Blood Lymphocytes of Schizophrenia Patients

    PubMed Central

    Auta, J.; Smith, R.C.; Dong, E.; Tueting, P.; Sershen, H.; Boules, S.; Lajtha, A.; Davis, J.; Guidotti, A.

    2014-01-01

    The epigenetic dysregulation of the brain genome associated with the clinical manifestations of schizophrenia (SZ) includes altered DNA promoter methylation of several candidate genes. We and others have reported that two enzymes that belong to the DNA-methylation/demethylation network pathways -- DNMT1 (DNA-methyltransferase) and ten-eleven translocator-1(TET1) methylcytosine deoxygenase are abnormally increased in corticolimbic structures of SZ postmortem brain. The objective of this study was to investigate whether the expression of these components of the DNA-methylation demethylation pathways known to be altered in the brain of SZ patients are also altered in peripheral blood lymphocytes (PBL). The data show that increases in DNMT1 and TET1 and in glucocorticoid receptor (GCortR) and brain derived neurotrophic factor (BDNF) mRNAs in PBL of SZ patients are comparable to those reported in the brain of SZ patients. The finding that the expression of DNMT1and TET1are increased and SZ candidate genes such as BDNF and GCortR are altered in the same direction in both the brain and PBL together with recent studies showing highly correlated patterns of DNA methylation across brain and blood, support the hypothesis that a common epigenetic dysregulation may be operative in the brain and peripheral tissues of SZ patients PMID:23938174

  6. Methylation status and chromatin structure of the myostatin gene promoter region in the sea perch Lateolabrax japonicus (Perciformes).

    PubMed

    Abbas, E M; Takayanagi, A; Shimizu, N; Kato, M

    2011-01-01

    Myostatin is a negative regulator of the growth and development of skeletal muscle mass. In fish, myostatin is expressed in several organs in addition to skeletal muscle. To understand the mechanisms regulating myostatin gene expression in the sea perch, Lateolabrax japonicus, we examined the methylation status of the myostatin gene promoter region in several tissues (liver, eye, kidney, brain, and heart) isolated from adult specimens. The frequency of methylated cytosines was very low in all tissues, regardless of the level of myostatin expression, suggesting that DNA methylation is not involved in the tissue-specific regulation of myostatin expression. Southern blot analysis of genomic DNA obtained from micrococcal nuclease-treated nuclei showed that chromatin digestion occurs in tissues where the myostatin gene is actively transcribed and that the myostatin gene is protected from micrococcal nuclease in tissues where myostatin is not expressed. The chromatin structure in the myostatin gene region appears to regulate its expression without DNA methylation. PMID:22183947

  7. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase.

    PubMed

    Stojic, Lovorka; Mojas, Nina; Cejka, Petr; Di Pietro, Massimiliano; Ferrari, Stefano; Marra, Giancarlo; Jiricny, Josef

    2004-06-01

    S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage. PMID:15175264

  8. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep

    PubMed Central

    Lan, Xianyong; Cretney, Evan C.; Kropp, Jenna; Khateeb, Karam; Berg, Mary A.; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E.; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues. PMID:23577020

  9. Genetic Polymorphisms in DNA Repair Genes as Modulators of Hodgkin Disease Risk

    PubMed Central

    El-Zein, Randa; Monroy, Claudia M.; Etzel, Carol J.; Cortes, Andrea C.; Xing, Yun; Collier, Amanda L.; Strom, Sara S.

    2009-01-01

    BACKGROUND Although the pathogenesis of Hodgkin disease (HD) remains unknown, the results of epidemiologic studies suggest that heritable factors are important in terms of susceptibility. Polymorphisms in DNA repair genes may contribute to individual susceptibility for development of different cancers. However, to the authors’ knowledge, few studies to date have investigated the role of such polymorphisms as risk factors for development of HD. METHODS The authors evaluated the relation between polymorphisms in 3 nucleotide excision repair pathway genes (XPD [Lys751Gln], XPC [Lys939Gln], and XPG [Asp1104His]), the base excision repair XRCC1 (Arg399Gln), and double-strand break repair XRCC3 (Thr241Met) in a population of 200 HD cases and 220 matched controls. Variants were investigated independently and in combination; odd ratios (OR) were calculated. RESULTS A positive association was found for XRCC1 gene polymorphism Arg399Gln (OR, 1.77; 95% confidence interval [95% CI], 1.16−2.71) and risk of HD. The combined analysis demonstrated that XRCC1/XRCC3 and XRCC1/XPC polymorphisms were associated with a significant increase in HD risk. XRCC1 Arg/Arg and XRCC3 Thr/Met genotypes combined were associated with an OR of 2.38 (95% CI, 1.24−4.55). The XRCC1 Arg/Gln and XRCC3 Thr/Thr, Thr/Met, and Met/Met genotypes had ORs of 1.88 (95% CI, 1.02−4.10), 1.97 (95% CI, 1.05−3.73), and 4.13 (95% CI, 1.50−11.33), respectively. XRCC1 Gln/Gln and XRCC3 Thr/Thr variant led to a significant increase in risk, with ORs of 3.00 (95% CI, 1.15−7.80). Similarly, XRCC1 Arg/Gln together with XPC Lys/Lys was found to significantly increase the risk of HD (OR, 2.14; 95% CI, 1.09−4.23). CONCLUSIONS These data suggest that genetic polymorphisms in DNA repair genes may modify the risk of HD, especially when interactions between the pathways are considered. PMID:19280628

  10. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells.

    PubMed

    Zhang, Yuxia; Maksimovic, Jovana; Naselli, Gaetano; Qian, Junyan; Chopin, Michael; Blewitt, Marnie E; Oshlack, Alicia; Harrison, Leonard C

    2013-10-17

    Regulatory T cells (Treg) prevent the emergence of autoimmune disease. Prototypic natural Treg (nTreg) can be reliably identified by demethylation at the Forkhead-box P3 (FOXP3) locus. To explore the methylation landscape of nTreg, we analyzed genome-wide methylation in human naive nTreg (rTreg) and conventional naive CD4(+) T cells (Naive). We detected 2315 differentially methylated cytosine-guanosine dinucleotides (CpGs) between these 2 cell types, many of which clustered into 127 regions of differential methylation (RDMs). Activation changed the methylation status of 466 CpGs and 18 RDMs in Naive but did not alter DNA methylation in rTreg. Gene-set testing of the 127 RDMs showed that promoter methylation and gene expression were reciprocally related. RDMs were enriched for putative FOXP3-binding motifs. Moreover, CpGs within known FOXP3-binding regions in the genome were hypomethylated. In support of the view that methylation limits access of FOXP3 to its DNA targets, we showed that increased expression of the immune suppressive receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), which delineated Treg from activated effector T cells, was associated with hypomethylation and FOXP3 binding at the TIGIT locus. Differential methylation analysis provides insight into previously undefined human Treg signature genes and their mode of regulation.

  11. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.

    PubMed

    Halder, Rashi; Hennion, Magali; Vidal, Ramon O; Shomroni, Orr; Rahman, Raza-Ur; Rajput, Ashish; Centeno, Tonatiuh Pena; van Bebber, Frauke; Capece, Vincenzo; Garcia Vizcaino, Julio C; Schuetz, Anna-Lena; Burkhardt, Susanne; Benito, Eva; Navarro Sala, Magdalena; Javan, Sanaz Bahari; Haass, Christian; Schmid, Bettina; Fischer, Andre; Bonn, Stefan

    2016-01-01

    The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring.

  12. Epigenetic genes regulated by the BRAFV600E signaling are associated with alterations in the methylation and expression of tumor suppressor genes and patient survival in melanoma.

    PubMed

    Liu, Dingxie; Liu, Xuan; Xing, Mingzhao

    2012-08-17

    We have previously reported that the BRAFV600E signaling causes genome-wide aberrations in gene methylation in melanoma cells. To explore the potential molecular mechanisms for this epigenetic effect of BRAFV600E, in this in silico study we analyzed 11 microarray datasets retrieved from NCBI GEO database and examined the relationship of the expression of the epigenetic genes (genes involved in epigenetic regulation) with BRAFV600E signaling, methylation and expression of tumor-suppressor genes (TSGs) in melanoma, and patient survival with this cancer. Among 273 epigenetic genes examined, 12 genes were down-regulated (named DD genes) and 16 were up-regulated (UU genes) by suppression of the BRAFV600E signaling using inhibitors. While the expression of 245 non-DD/UU genes overall had no correlation with the expression and methylation of a set of potential TSGs, the expression of DD genes was significantly correlated negatively with the TSG expression and positively with TSG methylation. Expression of UU genes was positively, albeit weakly, associated with the TSG expression. Overall, no correlation was found between UU gene expression and TSG methylation. Importantly, the expression of DD genes, but not UU genes, was significantly associated with decreased survival of patients with melanoma. Interestingly, the promoters of DD genes contain more binding motifs of c-fos and myc, two BRAFV600E signaling-related transcription factors, than those of UU and non-DD/UU genes. Thus, these results link epigenetic genes to methylation and suppression of tumor suppressor genes as a mechanism involved in BRAFV600E-promoted melanoma tumorigenesis and uncover a novel molecular signature that predicts a poor prognosis of melanoma.

  13. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence.

    PubMed

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H; Hatch, Maureen; Stellman, Steven D; Teitelbaum, Susan L; Richardson, David B; Millikan, Robert C; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2016-07-15

    Vehicular traffic polycyclic aromatic hydrocarbons (PAHs) have been associated with breast cancer incidence in epidemiologic studies, including our own. Because PAHs damage DNA by forming adducts and oxidative lesions, genetic polymorphisms that alter DNA repair capacity may modify associations between PAH-related exposures and breast cancer risk. Our goal was to examine the association between vehicular traffic exposure and breast cancer incidence within strata of a panel of nine biologically plausible nucleotide excision repair (NER) and base excision repair (BER) genotypes. Residential histories of 1,508 cases and 1,556 controls were assessed in the Long Island Breast Cancer Study Project between 1996 and 1997 and used to reconstruct residential traffic exposures to benzo[a]pyrene, as a proxy for traffic-related PAHs. Likelihood ratio tests from adjusted unconditional logistic regression models were used to assess multiplicative interactions. A gene-traffic interaction was evident (p = 0.04) for ERCC2 (Lys751); when comparing the upper and lower tertiles of 1995 traffic exposure estimates, the odds ratio (95% confidence interval) was 2.09 (1.13, 3.90) among women with homozygous variant alleles. Corresponding odds ratios for 1960-1990 traffic were also elevated nearly 2-3-fold for XRCC1(Arg194Trp), XRCC1(Arg399Gln) and OGG1(Ser326Cys), but formal multiplicative interaction was not evident. When DNA repair variants for ERCC2, XRCC1 and OGG1 were combined, among women with 4-6 variants, the odds ratios were 2.32 (1.22, 4.49) for 1995 traffic and 2.96 (1.06, 8.21) for 1960-1990 traffic. Our study is first to report positive associations between traffic-related PAH exposure and breast cancer incidence among women with select biologically plausible DNA repair genotypes.

  14. Disruption of imprinted gene expression and DNA methylation status in porcine parthenogenetic fetuses and placentas.

    PubMed

    Wang, Dongxu; Chen, Xianju; Song, Yuning; Lv, Qinyan; Lai, Liangxue; Li, Zhanjun

    2014-09-01

    Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.

  15. Cloning and molecular characterization of the Chinese hamster ERCC2 nucleotide excision repair gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.

    1994-10-01

    The Chinese hamster ERCC2 nucleotide excision repair gene, encoding a presumed ATP-dependent DNA helicase, was cloned from the V79 cell line, and its nucleotide sequence was determined. The {approximately}15-kb gene comprises 23 exons with a 2283-base open reading frame. The predicted 760-amino-acid protein is 98% identical to the human ERCC2/EXP (760 amino acids), 51% identical to the Saccharomyces cerevisiae RAD3 (778 amino acids), and 54% identical to the Schizosaccharomyces pombe rad15 (772 amino acids) proteins. The promoter region of the hamster ERCC2 gene contains a pyrimidine-rich stretch (42 nucleotides, 88% C+T) similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. There is no apparent TAATA box. No consensus polyadenylation sequence (AATAAA or its variants) was found with 663 bases 3{prime} of the translation termination codon. 54 refs., 2 figs., 2 tabs.

  16. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    PubMed

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  17. Double-strand gap repair in a mammalian gene targeting reaction.

    PubMed Central

    Valancius, V; Smithies, O

    1991-01-01

    To better understand the mechanism of homologous recombination in mammalian cells that facilitates gene targeting, we have analyzed the recombination reaction that inserts a plasmid into a homologous chromosomal locus in mouse embryonic stem cells. A partially deleted HPRT gene was targeted with various plasmids capable of correcting the mutation at this locus, and HPRT+ recombinants were directly selected in HAT medium. The structures of the recombinant loci were then determined by genomic Southern blot hybridizations. We demonstrate that plasmid gaps of 200, 600, and 2,500 bp are efficiently repaired during the integrative recombination reaction. Targeting plasmids that carry a double-strand break or gap in the region of DNA homologous to the target locus produce 33- to 140-fold more hypoxanthine-aminopterin-thymidine-resistant recombinants than did these same plasmids introduced in their uncut (supercoiled) forms. Our data suggest that double-strand gaps and breaks may be enlarged prior to the repair reaction since sequence heterologies carried by the incoming plasmids located close to them are often lost. These results extend the known similarities between mammalian and yeast recombination mechanisms and suggest several features of the insertional (O-type) gene targeting reaction that should be considered when one is designing mammalian gene targeting experiments. Images PMID:1875928

  18. Screening genes crucial for pediatric pilocytic astrocytoma using weighted gene coexpression network analysis combined with methylation data analysis.

    PubMed

    Zhao, H; Cai, W; Su, S; Zhi, D; Lu, J; Liu, S

    2014-10-01

    To identify novel genes associated with pediatric pilocytic astrocytoma (PA) for better understanding the molecular mechanism underlying the pediatric PA pathogenesis. Gene expression profile data of GSE50161 and GSE44971 and the methylation data of GSE44684 were downloaded from Gene Expression Omnibus. The differentially expressed genes (DEGs) between PA and normal control samples were screened using the limma package in R, and then used to construct weighted gene coexpression network (WGCN) using the WGCN analysis (WGCNA) package in R. Significant modules of DEGs were selected using the clustering analysis. Function enrichment analysis of the DEGs in significant modules were performed using the WGCNA package and clusterprofiler package in R. Correlation between methylation sites of DEGs and PA was analyzed using the CpGassoc package in R. Totally, 3479 DEGs were screened in PA samples. Thereinto, 3424 DEGs were used to construct the WGCN. Several significant modules of DEGs were selected based on the WGCN, in which the turquoise module was positively related to PA, whereas blue module was negatively related to PA. DEGs (for example, DOCK2 (dedicator of cytokinesis 2), DOCK8 and FCGR2A (Fc fragment of IgG, low affinity IIa)) in blue module were mainly involved in Fc gamma R-mediated phagocytosis pathway and natural killer cell-mediated cytotoxicity pathway. Methylations of 14 DEGs among the top 30 genes in blue module were related to PA. Our data suggest that DOCK2, DOCK8 and FCGR2A may represent potential therapeutic targets in PA that merits further investigation. PMID:25257306

  19. Screening genes crucial for pediatric pilocytic astrocytoma using weighted gene coexpression network analysis combined with methylation data analysis.

    PubMed

    Zhao, H; Cai, W; Su, S; Zhi, D; Lu, J; Liu, S

    2014-10-01

    To identify novel genes associated with pediatric pilocytic astrocytoma (PA) for better understanding the molecular mechanism underlying the pediatric PA pathogenesis. Gene expression profile data of GSE50161 and GSE44971 and the methylation data of GSE44684 were downloaded from Gene Expression Omnibus. The differentially expressed genes (DEGs) between PA and normal control samples were screened using the limma package in R, and then used to construct weighted gene coexpression network (WGCN) using the WGCN analysis (WGCNA) package in R. Significant modules of DEGs were selected using the clustering analysis. Function enrichment analysis of the DEGs in significant modules were performed using the WGCNA package and clusterprofiler package in R. Correlation between methylation sites of DEGs and PA was analyzed using the CpGassoc package in R. Totally, 3479 DEGs were screened in PA samples. Thereinto, 3424 DEGs were used to construct the WGCN. Several significant modules of DEGs were selected based on the WGCN, in which the turquoise module was positively related to PA, whereas blue module was negatively related to PA. DEGs (for example, DOCK2 (dedicator of cytokinesis 2), DOCK8 and FCGR2A (Fc fragment of IgG, low affinity IIa)) in blue module were mainly involved in Fc gamma R-mediated phagocytosis pathway and natural killer cell-mediated cytotoxicity pathway. Methylations of 14 DEGs among the top 30 genes in blue module were related to PA. Our data suggest that DOCK2, DOCK8 and FCGR2A may represent potential therapeutic targets in PA that merits further investigation.

  20. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression.

    PubMed

    Koczor, Christopher A; Fields, Earl; Jedrzejczak, Mark J; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10d, 3mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change>1.5, p<0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. PMID:26307267

  1. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  2. Dietary selenomethionine intake increases exon-specific DNA methylation of p53 gene in rat liver and colon mucosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. Our previous studies suggest that dietary selenium (Se) may alter DNA methylation, and the purpose of this study was to inv...

  3. Dietary selenium intake increases exon-specific DNA methylation of p53 gene in rat liver and colon mucosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. Our previous studies suggest that dietary selenium (Se) may alter DNA methylation, and the purpose of this study was to inv...

  4. Integrated Epigenome Profiling of Repressive Histone Modifications, DNA Methylation and Gene Expression in Normal and Malignant Urothelial Cells

    PubMed Central

    Cookson, Victoria; Chen, Wei; Catto, James

    2012-01-01

    Epigenetic regulation of gene expression is commonly altered in human cancer. We have observed alterations of DNA methylation and microRNA expression that reflect the biology of bladder cancer. This common disease arises by distinct pathways with low and high-grade differentiation. We hypothesized that epigenetic gene regulation reflects an interaction between histone and DNA modifications, and differences between normal and malignant urothelial cells represent carcinogenic events within bladder cancer. To test this we profiled two repressive histone modifications (H3K9m3 and H3K27m3) using ChIP-Seq, cytosine methylation using MeDIP and mRNA expression in normal and malignant urothelial cell lines. In genes with low expression we identified H3K27m3 and DNA methylation each in 20–30% of genes and both marks in 5% of genes. H3K9m3 was detected in 5–10% of genes but was not associated with overall expression. DNA methylation was more closely related to gene expression in malignant than normal cells. H3K27m3 was the epigenetic mark most specifically correlated to gene silencing. Our data suggest that urothelial carcinogenesis is accompanied by a loss of control of both DNA methylation and H3k27 methylation. From our observations we identified a panel of genes with cancer specific-epigenetic mediated aberrant expression including those with reported carcinogenic functions and members potentially mediating a positive epigenetic feedback loop. Pathway enrichment analysis revealed genes marked by H3K9m3 were involved with cell homeostasis, those marked by H3K27m3 mediated pro-carcinogenic processes and those marked with cytosine methylation were mixed in function. In 150 normal and malignant urothelial samples, our gene panel correctly estimated expression in 65% of its members. Hierarchical clustering revealed that this gene panel stratified samples according to the presence and phenotype of bladder cancer. PMID:22412920

  5. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy.

    PubMed

    Weeda, G; Eveno, E; Donker, I; Vermeulen, W; Chevallier-Lagente, O; Taïeb, A; Stary, A; Hoeijmakers, J H; Mezzina, M; Sarasin, A

    1997-02-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in approximately 50% of the cases, but no skin cancer is associated with TTD. Virtually all photosensitive TTD patients have a deficiency in the nucleotide excision repair (NER) of UV-induced DNA damage that is indistinguishable from that of xeroderma pigmentosum (XP) complementation group D (XP-D) patients. DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance. One photosensitive TTD case constitutes a new repair-deficient complementation group, TTD-A. Remarkably, both TTD-A and XP-D defects are associated with subunits of TFIIH, a basal transcription factor with a second function in DNA repair. Thus, mutations in TFIIH components may, on top of a repair defect, also cause transcriptional insufficiency, which may explain part of the non-XP clinical features of TTD. Besides XPD and TTDA, the XPB gene product is also part of TFIIH. To date, three patients with the remarkable conjunction of XP and CS but not TTD have been assigned to XP complementation group B (XP-B). Here we present the characterization of the NER defect in two mild TTD patients (TTD6VI and TTD4VI) and confirm the assignment to X-PB. The causative mutation was found to be a single base substitution resulting in a missense mutation (T119P) in a region of the XPB protein completely conserved in yeast, Drosophila, mouse, and man. These findings define a third TTD complementation group, extend the clinical heterogeneity associated with XP-B, stress the exclusive relationship between TTD and mutations in subunits of repair/transcription factor TFIIH, and strongly

  6. Physiological Modifications in the Production and Repair of Methyl Methane Sulfonate-Induced Breaks in the Deoxyribonucleic Acid of Escherichia coli K-12

    PubMed Central

    Scudiero, Dominic A.; Friesen, Benjamin S.; Baptist, Jeremy E.

    1973-01-01

    The medium in which Rec+ strains of Escherichia coli K-12 are grown affected their sensitivity to treatment with methyl methane sulfonate (MMS). Rec+ cells grown to the stationary phase in glucose-enriched nutrient broth (GNB) were more resistant to MMS than cells grown in nutrient broth (NB). The repair of MMS-induced breaks (or alkali-labile bonds) in the deoxyribonucleic acid (DNA) from E. coli K-12 strains AB1157, AB1886 uvrA6, and SR111 recA13 recB21 grown in GNB and NB media was examined by means of alkaline sucrose gradient centrifugation. It appeared that essentially all of the repair of breaks that occurred, as evidenced by an increase in “molecular weight,” took place within 10 min after treatment with MMS under our conditions. Cell survival was highest in cells for which the size of the DNA after the post-treatment incubation was the largest. The largest DNA after post-treatment incubation was found in Rec+ cells grown in GNB medium. The results suggest that these cells may have an enhanced capacity for repairing breaks in DNA. PMID:4349030

  7. The Preference for Error-Free or Error-Prone Postreplication Repair in Saccharomyces cerevisiae Exposed to Low-Dose Methyl Methanesulfonate Is Cell Cycle Dependent

    PubMed Central

    Huang, Dongqing; Piening, Brian D.

    2013-01-01

    Cells employ error-free or error-prone postreplication repair (PRR) processes to tolerate DNA damage. Here, we present a genome-wide screen for sensitivity to 0.001% methyl methanesulfonate (MMS). This relatively low dose is of particular interest because wild-type cells exhibit no discernible phenotypes in response to treatment, yet PRR mutants are unique among repair mutants in their exquisite sensitivity to 0.001% MMS; thus, low-dose MMS treatment provides a distinctive opportunity to study postreplication repair processes. We show that upon exposure to low-dose MMS, a PRR-defective rad18Δ mutant stalls into a lengthy G2 arrest associated with the accumulation of single-stranded DNA (ssDNA) gaps. Consistent with previous results following UV-induced damage, reactivation of Rad18, even after prolonged G2 arrest, restores viability and genome integrity. We further show that PRR pathway preference in 0.001% MMS depends on timing and context; cells preferentially employ the error-free pathway in S phase and do not require MEC1-dependent checkpoint activation for survival. However, when PRR is restricted to the G2 phase, cells utilize REV3-dependent translesion synthesis, which requires a MEC1-dependent delay and results in significant hypermutability. PMID:23382077

  8. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    SciTech Connect

    Oorschot, Bregje van; Hovingh, Suzanne E.; Moerland, Perry D.; Medema, Jan Paul; Stalpers, Lukas J.A.; Vrieling, Harry; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  9. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  10. DNA Methylation of Lipid-Related Genes Affects Blood Lipid Levels

    PubMed Central

    Pfeiffer, Liliane; Wahl, Simone; Pilling, Luke C.; Reischl, Eva; Sandling, Johanna K.; Kunze, Sonja; Holdt, Lesca M.; Kretschmer, Anja; Schramm, Katharina; Adamski, Jerzy; Klopp, Norman; Illig, Thomas; Hedman, Åsa K.; Roden, Michael; Hernandez, Dena G.; Singleton, Andrew B.; Thasler, Wolfgang E.; Grallert, Harald; Gieger, Christian; Herder, Christian; Teupser, Daniel; Meisinger, Christa; Spector, Timothy D.; Kronenberg, Florian; Prokisch, Holger; Melzer, David; Peters, Annette; Deloukas, Panos; Ferrucci, Luigi; Waldenberger, Melanie

    2016-01-01

    Background Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. Methods and Results Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=−0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06–1.25). Conclusions Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases. PMID:25583993

  11. Prostaglandin E₂ increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression.

    PubMed

    Huang, Steven K; Scruggs, Anne M; Donaghy, Jake; McEachin, Richard C; Fisher, Aaron S; Richardson, Bruce C; Peters-Golden, Marc

    2012-09-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E(2) (PGE(2)) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE(2) also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE(2). PGE(2), compared with nontreated controls, increased expression and activity (EC(50)∼10(7) M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE(2) to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE(2), compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC(50)∼3×10(7) M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE(2) increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE(2) decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE(2) biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.

  12. Oxytocin Receptor Gene Methylation: Converging Multilevel Evidence for a Role in Social Anxiety

    PubMed Central

    Ziegler, Christiane; Dannlowski, Udo; Bräuer, David; Stevens, Stephan; Laeger, Inga; Wittmann, Hannah; Kugel, Harald; Dobel, Christian; Hurlemann, René; Reif, Andreas; Lesch, Klaus-Peter; Heindel, Walter; Kirschbaum, Clemens; Arolt, Volker; Gerlach, Alexander L; Hoyer, Jürgen; Deckert, Jürgen; Zwanzger, Peter; Domschke, Katharina

    2015-01-01

    Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. This study—for the first time applying a multilevel epigenetic approach—investigates the role of OXTR gene methylation in categorical, dimensional, and intermediate neuroendocrinological/neural network phenotypes of social anxiety. A total of 110 unmedicated patients with SAD and matched 110 controls were analyzed for OXTR methylation by direct sequencing of sodium bisulfite-converted DNA extracted from whole blood. Furthermore, OXTR methylation was investigated regarding SAD-related traits (Social Phobia Scale (SPS) and Social Interaction Anxiety Scale (SIAS)), salivary cortisol response during the Trier social stress test (TSST), and amygdala responsiveness to social phobia related verbal stimuli using fMRI. Significantly decreased OXTR methylation particularly at CpG Chr3: 8 809 437 was associated with (1) the categorical phenotype of SAD (p<0.001, Cohen's d=0.535), (2) increased SPS and SIAS scores (p<0.001), (3) increased cortisol response to the TSST (p=0.02), and (4) increased amygdala responsiveness during social phobia-related word processing (right: pcorr<0.001; left: pcorr=0.005). Assuming that decreased OXTR methylation confers increased OXTR expression, the present finding may reflect a compensatory upregulation for pathologically reduced oxytocin levels or a causally relevant increased OXTR activation in SAD and related traits. OXTR methylation patterns might thus serve as peripheral surrogates of oxytocin tone and aid in establishing accessible biomarkers of SAD risk allowing for indicated preventive interventions and personalized treatment approaches targeting the oxytocin system. PMID:25563749

  13. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain.

    PubMed

    Barrachina, Marta; Ferrer, Isidre

    2009-08-01

    DNA methylation occurs predominantly at cytosines that precede guanines in dinucleotide CpG sites; it is one of the most important mechanisms for epigenetic DNA regulation during normal development and for aberrant DNA in cancer. To determine the feasibility of DNA methylation studies in the postmortem human brain, we evaluated brain samples with variable postmortem artificially increased delays up to 48 hours. DNA methylation was analyzed in selected regions of MAPT, APP, and PSEN1 in the frontal cortex and hippocampus of controls (n=26) and those with Alzheimer disease at Stages I to II (n=17); Alzheimer disease at Stages III to IV (n=15); Alzheimer disease at Stages V to VI (n=12); argyrophilic grain disease (n=10); frontotemporal lobar degeneration linked to tau mutations (n=6); frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (n=4); frontotemporal lobar degeneration with motor neuron disease (n=3); Pick disease (n=3); Parkinson disease (n=8); dementia with Lewy bodies, pure form (n=5); and dementia with Lewy bodies, common form (n=15). UCHL1 (ubiquitin carboxyl-terminal hydrolase 1 gene) was analyzed in the frontal cortex of controls and those with Parkinson disease and related synucleinopathies. DNA methylation sites were very reproducible in every case. No differences in the percentage of CpG methylation were found between control and disease samples or among the different pathological entities in any region analyzed. Because small changes in methylation of DNA promoters in vulnerable cells might have not been detected in total homogenates, however, these results should be interpreted with caution, particularly as they relate to chronic degenerative diseases in which small modifications may be sufficient to modulate disease progression.

  14. The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant UV61.

    PubMed

    Orren, D K; Dianov, G L; Bohr, V A

    1996-09-01

    The human CSB gene, mutated in Cockayne's syndrome group B (partially defective in both repair and transcription) was previously cloned by virtue of its ability to correct the moderate UV sensitivity of the CHO mutant UV61. To determine whether the defect in UV61 is the hamster equivalent of Cockayne's syndrome, the RNA polymerase II transcription and DNA repair characteristics of a repair-proficient CHO cell line (AA8), UV61 and a CSB transfectant of UV61 were compared. In each cell line, formation and removal of UV-induced cyclobutane pyrimidine dimers (CPDs) were measured in the individual strands of the actively transcribed DHFR gene and in a transcriptionally inactive region downstream of DHFR. AA8 cells efficiently remove CPDs from the transcribed strand, but not from either the non-transcribed strand or the inactive region. There was no detectable repair of CPDs in any region of the genome in UV61. Transfection of the human CSB gene into UV61 restores the normal repair pattern (CPD removal in only the transcribed strand), demonstrating that the DNA repair defect in UV61 is homologous to that in Cockayne's syndrome (complementation group B) cells. However, we observe no significant deficiency in RNA polymerase II-mediated transcription in UV61, suggesting that the CSB protein has independent roles in DNA repair and RNA transcription pathways. PMID:8811084

  15. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer. PMID:26680018

  16. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Dumitrescu, Ramona G; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.

  17. Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator

    PubMed Central

    2014-01-01

    Background The catechol-O-methyltransferase (COMT) enzyme has been widely studied due to its multiple roles in neurological functioning, estrogen biology, and methylation metabolic pathways. Numerous studies have investigated variation in the large COMT gene, with the majority focusing on single nucleotide polymorphisms (SNPs). This body of work has linked COMT genetic variation with a vast array of conditions, including several neurobehavioral disorders, pain sensitivity, and multiple human cancers. Based on COMT’s numerous biological roles and recent studies suggesting that methylation of the COMT gene impacts COMT gene expression, we comprehensively interrogated methylation in over 200 CpG dinucleotide sequences spanning the length of the COMT gene. Methods Using saliva-derived DNA from a non-clinical sample of human subjects, we tested for associations between COMT CpG methylation and factors reported to interact with COMT genetic effects, including demographic factors and alcohol use. Finally, we tested associations between COMT CpG methylation state and COMT gene expression in breast cancer cell lines. We interrogated >200 CpGs in 13 amplicons spanning the 5’ UTR to the last exon of the CpG dinucleotide-rich COMT gene in n = 48 subjects, n = 11 cell lines and 1 endogenous 18S rRNA control. Results With the exception of the CpG island in the 5’UTR and 1st exon, all other CpG islands were strongly methylated with typical dynamic ranges between 50-90%. In the saliva samples, methylation of multiple COMT loci was associated with socioeconomic status or ethnicity. We found associations between methylation at numerous loci and genotype at the functional Val 158 Met SNP (rs4680), and most of the correlations between methylation and demographic and alcohol use factors were Val 158 Met allele-specific. Methylation at several of these loci also associated with COMT gene expression in breast cancer cell lines. Conclusions We report the first comprehensive

  18. Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation.

    PubMed

    Hira, Zena M; Gillies, Duncan F

    2016-01-01

    In order to provide the most effective therapy for cancer, it is important to be able to diagnose whether a patient's cancer will respond to a proposed treatment. Methylation profiling could contain information from which such predictions could be made. Currently, hypothesis testing is used to determine whether possible biomarkers for cancer progression produce statistically significant results. However, this approach requires the identification of individual genes, or sets of genes, as candidate hypotheses, and with the increasing size of modern microarrays, this task is becoming progressively harder. Exhaustive testing of small sets of genes is computationally infeasible, and so hypothesis generation depends either on the use of established biological knowledge or on heuristic methods. As an alternative machine learning, methods can be used to identify groups of genes that are acting together within sets of cancer data and associate their behaviors with cancer progression. These methods have the advantage of being multivariate and unbiased but unfortunately also rapidly become computationally infeasible as the number of gene probes and datasets increases. To address this problem, we have investigated a way of utilizing prior knowledge to segment microarray datasets in such a way that machine learning can be used to identify candidate sets of genes for hypothesis testing. A methylation dataset is divided into subsets, where each subset contains only the probes that relate to a known gene pathway. Each of these pathway subsets is used independently for classification. The classification method is AdaBoost with decision trees as weak classifiers. Since each pathway subset contains a relatively small number of gene probes, it is possible to train and test its classification accuracy quickly and determine whether it has valuable diagnostic information. Finally, genes from successful pathway subsets can be combined to create a classifier of high accuracy. PMID:27688706

  19. Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation

    PubMed Central

    Hira, Zena M.; Gillies, Duncan F.

    2016-01-01

    In order to provide the most effective therapy for cancer, it is important to be able to diagnose whether a patient’s cancer will respond to a proposed treatment. Methylation profiling could contain information from which such predictions could be made. Currently, hypothesis testing is used to determine whether possible biomarkers for cancer progression produce statistically significant results. However, this approach requires the identification of individual genes, or sets of genes, as candidate hypotheses, and with the increasing size of modern microarrays, this task is becoming progressively harder. Exhaustive testing of small sets of genes is computationally infeasible, and so hypothesis generation depends either on the use of established biological knowledge or on heuristic methods. As an alternative machine learning, methods can be used to identify groups of genes that are acting together within sets of cancer data and associate their behaviors with cancer progression. These methods have the advantage of being multivariate and unbiased but unfortunately also rapidly become computationally infeasible as the number of gene probes and datasets increases. To address this problem, we have investigated a way of utilizing prior knowledge to segment microarray datasets in such a way that machine learning can be used to identify candidate sets of genes for hypothesis testing. A methylation dataset is divided into subsets, where each subset contains only the probes that relate to a known gene pathway. Each of these pathway subsets is used independently for classification. The classification method is AdaBoost with decision trees as weak classifiers. Since each pathway subset contains a relatively small number of gene probes, it is possible to train and test its classification accuracy quickly and determine whether it has valuable diagnostic information. Finally, genes from successful pathway subsets can be combined to create a classifier of high accuracy. PMID

  20. Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation

    PubMed Central

    Hira, Zena M.; Gillies, Duncan F.

    2016-01-01

    In order to provide the most effective therapy for cancer, it is important to be able to diagnose whether a patient’s cancer will respond to a proposed treatment. Methylation profiling could contain information from which such predictions could be made. Currently, hypothesis testing is used to determine whether possible biomarkers for cancer progression produce statistically significant results. However, this approach requires the identification of individual genes, or sets of genes, as candidate hypotheses, and with the increasing size of modern microarrays, this task is becoming progressively harder. Exhaustive testing of small sets of genes is computationally infeasible, and so hypothesis generation depends either on the use of established biological knowledge or on heuristic methods. As an alternative machine learning, methods can be used to identify groups of genes that are acting together within sets of cancer data and associate their behaviors with cancer progression. These methods have the advantage of being multivariate and unbiased but unfortunately also rapidly become computationally infeasible as the number of gene probes and datasets increases. To address this problem, we have investigated a way of utilizing prior knowledge to segment microarray datasets in such a way that machine learning can be used to identify candidate sets of genes for hypothesis testing. A methylation dataset is divided into subsets, where each subset contains only the probes that relate to a known gene pathway. Each of these pathway subsets is used independently for classification. The classification method is AdaBoost with decision trees as weak classifiers. Since each pathway subset contains a relatively small number of gene probes, it is possible to train and test its classification accuracy quickly and determine whether it has valuable diagnostic information. Finally, genes from successful pathway subsets can be combined to create a classifier of high accuracy.

  1. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.

    PubMed

    Penttinen, Petri; Greco, Dario; Muntyan, Victoria; Terefework, Zewdu; De Lajudie, Philippe; Roumiantseva, Marina; Becker, Anke; Auvinen, Petri; Lindström, Kristina

    2016-06-01

    To serve as inoculants of legumes, nitrogen-fixing rhizobium strains should be competitive and tolerant of diverse environments. We hybridized the genomes of symbiotically efficient and salt tolerant Sinorhizobium inoculant strains onto the Sinorhizobium meliloti Rm1021 microarray. The number of variable genes, that is, divergent or putatively multiplied genes, ranged from 503 to 1556 for S. meliloti AK23, S. meliloti STM 1064 and S. arboris HAMBI 1552. The numbers of divergent genes affiliated with the symbiosis plasmid pSymA and related to DNA replication, recombination and repair were significantly higher than expected. The variation was mainly in the accessory genome, implying that it was important in shaping the adaptability of the strains.

  2. The swi4+ gene of Schizosaccharomyces pombe encodes a homologue of mismatch repair enzymes.

    PubMed Central

    Fleck, O; Michael, H; Heim, L

    1992-01-01

    The swi4+ gene of Schizosaccharomyces pombe is involved in termination of copy-synthesis during mating-type switching. The gene was cloned by functional complementation of a swi4 mutant transformed with a genomic library. Determination of the nucleotide sequence revealed an open reading frame of 2979 nucleotides which is interrupted by a 68 bp long intron. The putative Swi4 protein shows homology to Duc-1 (human), Rep-3 (mouse), HexA (Streptococcus pneumoniae) and MutS (Salmonella typhimurium). The prokaryotic proteins are known as essential components involved in mismatch repair. A strain with a disrupted swi4+ gene was constructed and analysed with respect to the switching process. As in swi4 mutants duplications occur in the mating-type region of the swi4 (null) strain, reducing the efficiency of switching. Images PMID:1317550

  3. Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression

    PubMed Central

    Philibert, Robert A.; Sears, Rory A.; Powers, Linda S.; Nash, Emma; Bair, Thomas; Gerke, Alicia K.; Hassan, Ihab; Thomas, Christie P.; Gross, Thomas J.; Monick, Martha M.

    2012-01-01

    Cigarette smoking is implicated in numerous diseases, including emphysema and lung cancer. The clinical expression of lung disease in smokers is not well explained by currently defined variations in gene expression or simple differences in smoking exposure. Alveolar macrophages play a critical role in the inflammation and remodeling of the lung parenchyma in smoking-related lung disease. Significant gene expression changes in alveolar macrophages from smokers have been identified. However, the mechanism for these changes remains unknown. One potential mechanism for smoking-altered gene expression is via changes in cytosine methylation in DNA regions proximal to gene-coding sequences. In this study, alveolar macrophage DNA from heavy smokers and never smokers was isolated and methylation status at 25,000 loci determined. We found differential methylation in genes from immune-system and inflammatory pathways. Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune-system and inflammatory pathways. A significant number of genes with smoking-altered mRNA expression had inverse changes in methylation status. One gene highlighted by this data was the FLT1, and further studies found particular up-regulation of a splice variant encoding a soluble inhibitory form of the receptor. In conclusion, chronic cigarette smoke exposure altered DNA methylation in specific gene promoter regions in human alveolar macrophages. PMID:22427682

  4. Relationship between expression and methylation of obesity-related genes in children.

    PubMed

    Davé, Veronica; Yousefi, Paul; Huen, Karen; Volberg, Vitaly; Holland, Nina

    2015-05-01

    Epigenetic control of gene expression in children remains poorly understood, but new technologies can help elucidate the relationship between expression and DNA methylation. Here, we utilized the nCounter Analysis System to characterise the expression of 60 genes in 69 9-year-old children from a cohort with a high prevalence of obesity. nCounter expression levels ranged broadly (from 3 to over 10000 messenger RNA counts) and were divided into four categories: high (>2000 counts), moderate (200-1000 counts), low (100-200 counts) and marginal (<100 counts). For a subset of five genes (ADIPOR1, PPARG1, GSTM1, PON1 and ACACA) from different expression level categories, we validated nCounter data using reverse transcription-polymerase chain reaction (RT-PCR), and expanded RT-PCR analysis of ADIPOR1 to include 180 children. Expression data from the two methodologies were correlated for all five genes included in the validation experiment, with estimates ranging from r s = 0.26 (P = 0.02) to r s = 0.88 (P < 5×10(-6)). ADIPOR1 and PPARG1 nCounter expression levels were negatively correlated (r = -0.60, P < 5×10(-5)), and this relationship was stronger in overweight children (r = -0.73, P < 5×10(-5)) than in normal weight children (r = -0.42, P = 0.016). Using methylation data from the Infinium HumanMethylation450 BeadChip (n = 180), we found eight CpG sites in ADIPOR1 and PPARG where methylation level was associated with expression by RT-PCR (P < 0.05). Hypomethylation of PPARG gene body site cg10499651 was associated with increased expression as measured by both RT-PCR and nCounter (P < 0.05). We found no statistically significant relationships between either expression or methylation of ADIPOR1 and PPARG and body mass index or waist circumference. In addition to demonstrating the validity of expression data derived from nCounter, our results illustrate the use of new technologies in assessing epigenetic effects on expression in children.

  5. Relationship between expression and methylation of obesity-related genes in children

    PubMed Central

    Davé, Veronica; Yousefi, Paul; Huen, Karen; Volberg, Vitaly; Holland, Nina

    2015-01-01

    Epigenetic control of gene expression in children remains poorly understood, but new technologies can help elucidate the relationship between expression and DNA methylation. Here, we utilized the nCounter Analysis System to characterise the expression of 60 genes in 69 9-year-old children from a cohort with a high prevalence of obesity. nCounter expression levels ranged broadly (from 3 to over 10000 messenger RNA counts) and were divided into four categories: high (>2000 counts), moderate (200–1000 counts), low (100–200 counts) and marginal (<100 counts). For a subset of five genes (ADIPOR1, PPARG1, GSTM1, PON1 and ACACA) from different expression level categories, we validated nCounter data using reverse transcription-polymerase chain reaction (RT-PCR), and expanded RT-PCR analysis of ADIPOR1 to include 180 children. Expression data from the two methodologies were correlated for all five genes included in the validation experiment, with estimates ranging from r s = 0.26 (P = 0.02) to r s = 0.88 (P < 5×10−6). ADIPOR1 and PPARG1 nCounter expression levels were negatively correlated (r = −0.60, P < 5×10−5), and this relationship was stronger in overweight children (r = −0.73, P < 5×10−5) than in normal weight children (r = −0.42, P = 0.016). Using methylation data from the Infinium HumanMethylation450 BeadChip (n = 180), we found eight CpG sites in ADIPOR1 and PPARG where methylation level was associated with expression by RT-PCR (P < 0.05). Hypomethylation of PPARG gene body site cg10499651 was associated with increased expression as measured by both RT-PCR and nCounter (P < 0.05). We found no statistically significant relationships between either expression or methylation of ADIPOR1 and PPARG and body mass index or waist circumference. In addition to demonstrating the validity of expression data derived from nCounter, our results illustrate the use of new technologies in assessing epigenetic effects on expression in children. PMID:25589532

  6. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  7. Identification of Methyl Halide-Utilizing Genes in the Methyl Bromide-Utilizing Bacterial Strain IMB-1 Suggests a High Degree of Conservation of Methyl Halide-Specific Genes in Gram-Negative Bacteria

    USGS Publications Warehouse

    Woodall, C.A.; Warner, K.L.; Oremland, R.S.; Murrell, J.C.; McDonald, I.R.

    2001-01-01

    Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyl-transferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.

  8. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    SciTech Connect

    Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex; Waalkes, Michael P.

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  9. Transgenerational, dynamic methylation of stomata genes in response to low relative humidity.

    PubMed

    Tricker, Penny J; López, Carlos M Rodríguez; Gibbings, George; Hadley, Paul; Wilkinson, Mike J

    2013-03-26

    Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.

  10. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism.

    PubMed

    Mentch, Samantha J; Mehrmohamadi, Mahya; Huang, Lei; Liu, Xiaojing; Gupta, Diwakar; Mattocks, Dwight; Gómez Padilla, Paola; Ables, Gene; Bamman, Marcas M; Thalacker-Mercer, Anna E; Nichenametla, Sailendra N; Locasale, Jason W

    2015-11-01

    S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) link one-carbon metabolism to methylation status. However, it is unknown whether regulation of SAM and SAH by nutrient availability can be directly sensed to alter the kinetics of key histone methylation marks. We provide evidence that the status of methionine metabolism is sufficient to determine levels of histone methylation by modulating SAM and SAH. This dynamic interaction led to rapid changes in H3K4me3, altered gene transcription, provided feedback regulation to one-carbon metabolism, and could be fully recovered upon restoration of methionine. Modulation of methionine in diet led to changes in metabolism and histone methylation in the liver. In humans, methionine variability in fasting serum was commensurate with concentrations needed for these dynamics and could be partly explained by diet. Together these findings demonstrate that flux through methionine metabolism and the sensing of methionine availability may allow direct communication to the chromatin state in cells.

  11. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood

    PubMed Central

    Li, Yue; Xie, Changchun; Murphy, Susan K.; Skaar, David; Nye, Monica; Vidal, Adriana C.; Cecil, Kim M.; Dietrich, Kim N.; Puga, Alvaro; Jirtle, Randy L.; Hoyo, Cathrine

    2015-01-01

    Background: Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. Objectives: The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. Methods: Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. Results: Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from

  12. LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation.

    PubMed

    Iturbide, Ane; Pascual-Reguant, Laura; Fargas, Laura; Cebrià, Joan Pau; Alsina, Berta; García de Herreros, Antonio; Peiró, Sandra

    2015-06-01

    Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes.

  13. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine

    PubMed Central

    Allgayer, Julia; Kitsera, Nataliya; Bartelt, Solveig; Epe, Bernd; Khobta, Andriy

    2016-01-01

    DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral, human, and artificial promoters. We further show that the magnitude of the negative effect on the gene expression correlates with excision of the modified base by OGG1 in all promoter constructs tested. Moreover, by using expression vectors with nuclease resistant backbone modifications, we demonstrate that OGG1 does not catalyse DNA strand cleavage in vivo. Rather, cleavage of the phosphate bond 5′ to 8-oxodG (catalysed by APE1) is essential and universally required for the onset of transcriptional silencing, regardless of the promoter structure. Hence, induction of transcriptional silencing emerges as a ubiquitous mode of biological response to 8-oxoG in DNA. PMID:27220469

  14. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity

    PubMed Central

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86–58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease. PMID:26017978

  15. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    PubMed

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  16. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    PubMed

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  17. Changes in gene expression and methylation in the blood of patients with first-episode psychosis.

    PubMed

    Ota, Vanessa Kiyomi; Noto, Cristiano; Gadelha, Ary; Santoro, Marcos Leite; Spindola, Leticia Maria; Gouvea, Eduardo Sauerbronn; Stilhano, Roberta Sessa; Ortiz, Bruno Bertolucci; Silva, Patricia Natalia; Sato, João Ricardo; Han, Sang Won; Cordeiro, Quirino; Bressan, Rodrigo Affonseca; Belangero, Sintia Iole

    2014-11-01

    Schizophrenia is a severe mental health disorder with high heritability. The investigation of individuals during their first-episode psychosis (FEP), before the progression of psychotic disorders and especially before treatment with antipsychotic medications, is particularly helpful for understanding this complex disease and for the identification of potential biomarkers. In this study, we compared the expression of genes that are involved in neurotransmission and neurodevelopment of antipsychotic-naive FEP in the peripheral blood of patients (n=51) and healthy controls (n=51). In addition, we investigated the differentially expressed genes with respect to a) DNA methylation, b) the correlation between gene expression and clinical variables (PANSS), and c) gene expression changes after risperidone treatment. Expression levels of 11 genes were quantified with SYBR Green. For methylation analysis, bisulfite sequencing was performed. A significant decrease in GCH1 mRNA levels was observed in FEP patients relative to controls. Also, when we compare the FEP patients after risperidone treatment with controls, this difference remains significant, and no significant differences were observed in GCH1 mRNA levels when comparing patients before and after risperidone treatment. Additionally, although the differences were non-significant after Bonferroni correction, the expression of GCH1 seemed to be correlated with PANSS scores, and the GCH1 promoter region was more methylated in FEP than in controls, thus corroborating the results obtained at the mRNA level. Few studies have been conducted on GCH1, and future studies are needed to clarify its potential role in the progression of schizophrenia. PMID:25270546

  18. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells.

    PubMed

    Dregoesc, Diana; Rybak, Adrian P; Rainbow, Andrew J

    2007-05-01

    Ultraviolet (UV) light-induced DNA damage is repaired by nucleotide excision repair, which is divided into two sub-pathways: global genome repair (GGR) and transcription-coupled repair (TCR). While it is well established that the GGR pathway is dependent on the p53 tumour suppressor protein in human cells, both p53-dependent and p53-independent pathways have been reported for TCR. In the present work, we investigated the role of p53 in both GGR and TCR of a UVC-damaged reporter gene in human fibroblasts. We employed a non-replicating recombinant human adenovirus, AdCA17lacZ, that can efficiently infect human fibroblasts and express the beta-galactosidase (beta-gal) reporter gene under the control of the human cytomegalovirus promoter. We examined host cell reactivation (HCR) of beta-gal expression for the UVC-treated reporter construct in normal fibroblasts and in xeroderma pigmentosum (XP) and Cockayne syndrome (CS) fibroblasts deficient in GGR, TCR, or both. HCR was examined in fibroblasts that had been pre-infected with Ad5p53wt, which expresses wild-type p53, or a control adenovirus, AdCA18luc, which expresses the luciferase gene. We show that increased expression of p53 results in enhanced HCR of the UVC-damaged reporter gene in both untreated and UVC-treated cells for normal, CS-B (TCR-deficient), and XP-C (GGR-deficient), but not XP-A (TCR- and GGR-deficient) fibroblasts. These results indicate an involvement of p53 in both TCR and GGR of the UV-damaged reporter gene in human cells. PMID:17196445

  19. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer.

    PubMed

    Pehlivan, Sacide; Artac, Mehmet; Sever, Tugce; Bozcuk, Hakan; Kilincarslan, Can; Pehlivan, Mustafa

    2010-09-01

    The aim of this study was to investigate the methylation of the SFRP2, P16, DAPK1, HIC1, and MGMT genes, as well as the mutation of amino acid codons 12 and 13 of the KRAS gene in normal and tumor tissue DNA of patients diagnosed with sporadic colorectal cancer (SCRC). The methylation of gene regions and the KRAS mutations of normal (N) and tumor tissue (T) DNA obtained from 17 patients diagnosed with SCRC and 20 healthy controls were investigated using the polymerase chain reaction and reverse-hybridization methods. There was an Asp mutation in four patients, an Asp and Ser mutations in one patient in codon 12 of the KRAS gene, and an Asp mutation in codon 13 in eight patients. Overall promoter methylation (OPM) in the SFRP2 gene was observed in one N and four T, whereas partial promoter methylation (PPM) was observed in two N and five T. OPM in the P16 gene was present in one T. In the DAPK1 gene, OPM existed in seven T and five N, while PPM was present in two N. In the HIC1 gene, OPM was demonstrated in three T, while PPM was noted in two N; however, no methylation existed in N. In the MGMT gene, OPM occurred in five T and two N, and PPM was present in one T. KRAS mutations in Turkish patients with SCRC are similar to those of other population groups. Methylations in the genes, which underwent methylation analysis, were higher in T in comparison with N, and it has been suggested that significant results would be obtained by making a study with a larger population.

  20. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  1. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Yen, Ching-Yui; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2015-04-01

    Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.

  2. Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice.

    PubMed

    Nikoshkov, Andrej; Sunkari, Vivekananda; Savu, Octavian; Forsberg, Elisabete; Catrina, Sergiu-Bogdan; Brismar, Kerstin

    2011-04-01

    We have investigated promoter methylation of the Insr, Igf1 and Igf1r genes in skeletal and cardiac muscles of normal and diabetic db/db mice. No differences in Insr promoter methylation were found in the heart and skeletal muscles and no methylation was detected in the Igf1 promoter in skeletal muscle. In skeletal muscle, db/db males exhibited a 7.4-fold increase in Igf1r promoter methylation, which was accompanied by a 1.8-fold decrease in Igf1r mRNA levels, compared with controls. More than 50% of the detected methylation events were concentrated within an 18 bp sequence that includes one of the Sp1 binding sites. We conclude that the methylation level and pattern of the Igf1r promoter in skeletal muscle is related to gender and the diabetic state. PMID:21474992

  3. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation.

    PubMed

    Hadchouel, M; Farza, H; Simon, D; Tiollais, P; Pourcel, C

    Differential modifications of the genome during gametogenesis result in a functional difference between the paternal and maternal genomes at the moment of fertilization. A possible cause of this imprinting is the methylation of DNA. The insertion of foreign DNA into transgenic mice allows the tagging of regions that are differentially methylated during gametogenesis. We describe here a transgenic mouse strain in which the expression of the hepatitis B surface antigen gene is irreversibly repressed following its passage through the female germ line. This inhibition is accompanied by the methylation of all the HpaII and HhaI sites within the foreign gene, which we have shown to be integrated into a site on chromosome 13. The irreversibility reported here contrasts with what is found with other transgenic mice sequences which are reversibly methylated after passage through the male or female germ line, though in both cases methylation appears to be important in the imprinting process.

  4. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis.

    PubMed

    Yang, Hongxing; Chang, Fang; You, Chenjiang; Cui, Jie; Zhu, Genfeng; Wang, Lei; Zheng, Yu; Qi, Ji; Ma, Hong

    2015-01-01

    Flower development is a complex process requiring proper spatiotemporal expression of numerous genes. Accumulating evidence indicates that epigenetic mechanisms, including DNA methylation, play essential roles in modulating gene expression. However, few studies have examined the relationship between DNA methylation and floral gene expression on a genomic scale. Here we present detailed analyses of DNA methylomes at single-base resolution for three Arabidopsis floral periods: meristems, early flowers and late flowers. We detected 1.5 million methylcytosines, and estimated the methylation levels for 24 035 genes. We found that many cytosine sites were methylated de novo from the meristem to the early flower stage, and many sites were demethylated from early to late flowers. A comparison of the transcriptome data of the same three periods revealed that the methylation and demethylation processes were correlated with expression changes of >3000 genes, many of which are important for normal flower development. We also found different methylation patterns for three sequence contexts ((m) CG, (m) CHG and (m) CHH) and in different genic regions, potentially with different roles in gene expression.

  5. The chromosomal integration site determines the tissue-specific methylation of mouse mammary tumour virus proviral genes.

    PubMed Central

    Günzburg, W H; Groner, B

    1984-01-01

    Multiple endogenous mouse mammary tumour virus (MMTV) proviral genes are present at different chromosomal locations in inbred mouse strains. Proviral DNA methylation is location and tissue specific. The methylation patterns are stably inherited and appear to be conferred upon the viral DNA by the flanking mouse genomic DNA. In transformed cells, either mammary carcinoma cells, or cells immortalized by SV40 in vitro, the stable pattern of methylation is lost. Although hypomethylation of proviral genes, both in normal and in transformed tissue, accompanies MMTV-specific RNA expression, it is also observed in non-expressing tissues. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6329738

  6. Methylation-Associated Gene Silencing of RARB in Areca Carcinogens Induced Mouse Oral Squamous Cell Carcinoma

    PubMed Central

    Tsou, Yung-An; Fan, Shin-Ru; Tsai, Ming-Hsui; Chen, Hsiao-Ling; Chang, Nai-Wen; Cheng, Ju-Chien

    2014-01-01

    Regarding oral squamous cell carcinoma (OSCC) development, chewing areca is known to be a strong risk factor in many Asian cultures. Therefore, we established an OSCC induced mouse model by 4-nitroquinoline-1-oxide (4-NQO), or arecoline, or both treatments, respectively. These are the main two components of the areca nut that could increase the occurrence of OSCC. We examined the effects with the noncommercial MCGI (mouse CpG islands) microarray for genome-wide screening the DNA methylation aberrant in induced OSCC mice. The microarray results showed 34 hypermethylated genes in 4-NQO plus arecoline induced OSCC mice tongue tissues. The examinations also used methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing to realize the methylation pattern in collected mouse tongue tissues and human OSCC cell lines of different grades, respectively. These results showed that retinoic acid receptor β (RARB) was indicated in hypermethylation at the promoter region and the loss of expression during cancer development. According to the results of real-time PCR, it was shown that de novo DNA methyltransferases were involved in gene epigenetic alternations of OSCC. Collectively, our results showed that RARB hypermethylation was involved in the areca-associated oral carcinogenesis. PMID:25197641

  7. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer

    PubMed Central

    Salehi, Rasoul; Atapour, Norollah; Vatandoust, Nasimeh; Farahani, Najmeh; Ahangari, Fatemeh; Salehi, Ahmad Reza

    2015-01-01

    Background: To develop a non-invasive screening method for colorectal cancer, we evaluated the methylation of ALX4 gene promoter in serum samples from patients with colorectal cancer (CRC) and equal number of healthy individuals. Materials and Methods: In serum samples from 25 patients with colorectal cancer and 25 healthy control subjects, isolated serum free-floating DNA was treated with sodium bisulfite and analyzed by methylation-specific polymerase chain reaction (MSP) with primers specific for methylated or unmethylated promoter CpG island sequences of the ALX4 gene. Results: Methylation of the ALX4 gene promoter was present in the serum DNA of patients with adenoma and colorectal cancer. A sensitivity of 68% and specificity of 88% were achieved in the detection of promoter methylation in colorectal neoplasia samples. The difference in methylation status of the ALX4 promoter between the patients with colorectal neoplasia and the control group was statistically highly significant (P < 0.001). Conclusions: The results indicate that this serum free DNA test of methylation of the ALX4 gene promoter is a sensitive and specific method. Therefore in combination with other useful markers it seems ALX4 has the potential of a clinically useful test for the early detection of colorectal cancer. PMID:26918234

  8. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma.

    PubMed

    Zekri, Abdel-Rahman N; Bahnasy, Abeer A; Shoeab, Fatma Elzahraa M; Mohamed, Waleed S; El-Dahshan, Dina H; Ali, Fahmey T; Sabry, Gilane M; Dasgupta, Nairajana; Daoud, Sayed S

    2014-01-01

    We studied promoter methylation (PM) of 11 genes in Peripheral Blood Lymphocytes (PBLs) and tissues of hepatitis C virus (HCV) associated hepatocellular carcinoma (HCC) and chronic hepatitis (CH) Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT) samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O(6)MGMT was assessed by methylation-specific PCR (MSP). APC and O6-MGMT protein expression was assessed by immunohistochemistry (IHC) in the studied HCC and CH (20 samples each) as well as in a different HCC and CH set for confirmation of MSP results. PM was associated with progression from CH to HCC. Most genes showed high methylation frequency (MF) and the methylation index (MI) increased with disease progression. MF of p14, p73, RASSF1A, CDH1 and O(6)MGMT was significantly higher in HCC and their ANT. MF of APC was higher in CH. We reported high concordance between MF in HCC and their ANT, MF in PBL and CH tissues as well as between PM and protein expression of APC and O(6)MGMT. A panel of 4 genes (APC, p73, p14, O(6)MGMT) classifies the cases independently into HCC and CH with high accuracy (89.9%), sensitivity (83.9%) and specificity (94.7%). HCV infection may contribute to hepatocarcinogenesis through enhancing PM of multiple genes. PM of APC occurs early in the cascade while PM of p14, p73, RASSF1A, RARB, CDH1 and O(6)MGMT are late changes. A panel of APC, p73, p14, O6-MGMT could be used in monitoring CH patients for early detection of HCC. Also, we found that, the methylation status is not significantly affected by whether the tissue was from the liver or PBL, indicating the possibility of use PBL as indicator to genetic profile instead of liver tissue regardless the stage of disease. PMID:25685469

  9. Transplantation of human telomerase reverse transcriptase gene-transfected Schwann cells for repairing spinal cord injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Gu, Rui

    2015-01-01

    Transfection of the human telomerase reverse transcriptase (hTERT) gene has been shown to increase cell proliferation and enhance tissue repair. In the present study, hTERT was transfected into rat Schwann cells. A rat model of acute spinal cord injury was established by the modified free-falling method. Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate hTERT gene-transfected Schwann cells (1 × 1010/L; 10 μL) or Schwann cells (1 × 1010/L; 10 μL) without hTERT gene transfection. Between 1 and 4 weeks after model establishment, motor function of the lower limb improved in the hTERT-transfected group compared with the group with non-transfected Schwann cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells, and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2 decreased at the site of injury in both groups; however, the effect improved in the hTERT-transfected group compared with the Schwann cells without hTERT transfection group. Hematoxylin and eosin staining, PKH26 fluorescent labeling, and electrophysiological testing demonstrated that compared with the non-transfected group, spinal cord cavity and motor and sensory evoked potential latencies were reduced, while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the hTERT-transfected group. These findings suggest that transplantation of hTERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord. PMID:26889196

  10. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli.

    PubMed

    Stephenson, Stacy Ann-Marie; Brown, Paul D

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of

  11. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli

    PubMed Central

    Stephenson, Stacy Ann-Marie; Brown, Paul D.

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam’s vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use

  12. Methylation of the PTPRO Gene in Human Hepatocellular Carcinoma and Identification of VCP as Its Substrate

    PubMed Central

    Hsu, Shu-hao; Motiwala, Tasneem; Roy, Satavisha; Claus, Rainer; Mustafa, Mufaddal; Plass, Christoph; Freitas, Michael A.; Ghoshal, Kalpana; Jacob, Samson T.

    2014-01-01

    We have previously reported that the gene encoding protein tyrosine phosphatase receptor type-O (PTPRO) is suppressed by promoter methylation in a rat model of hepatocellular carcinoma (HCC) and it functions as tumor suppressor in leukemia and lung cancer. Here, we explored the methylation and expression of PTPRO as well as its function in human HCC. MassARRAY analysis of primary human HCC and matching liver samples (n = 24) revealed significantly higher (P = 0.004) methylation density at the promoter CGI in tumors. Combined bisulfite restriction analysis (COBRA) of another set of human HCC samples (n = 17) demonstrated that the CGI was methylated in 29% of tumors where expression of PTPRO was lower than that in corresponding matching livers. A substrate-trapping mutant of PTPRO that stabilizes the bound substrates was used to identify its novel substrate(s). VCP/p97 was found to be a PTPRO substrate by mass spectrometry of the peptides pulled down by the substrate-trapping mutant of PTPRO. Tyrosyl dephosphorylation of VCP following ectopic expression of wild-type PTPRO in H293T and HepG2 cells confirmed that it is a bona fide substrate of PTPRO. Treatment of PTPRO overexpressing HepG2 cells with Doxorubicin, a DNA damaging drug commonly used in therapy of primary HCC, sensitized these cells to this potent anticancer drug that correlated with dephosphorylation of VCP. Taken together, these results demonstrate methylation and downregulation of PTPRO in a subset of primary human HCC and establish VCP as a novel functionally important substrate of this tyrosine phosphatase that could be a potential molecular target for HCC therapy. PMID:23533167

  13. HPP1: A transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers

    PubMed Central

    Young, Joanne; Biden, Kelli G.; Simms, Lisa A.; Huggard, Phillip; Karamatic, Rozemary; Eyre, Helen J.; Sutherland, Grant R.; Herath, Nirmitha; Barker, Melissa; Anderson, Gregory J.; Fitzpatrick, David R.; Ramm, Grant A.; Jass, Jeremy R.; Leggett, Barbara A.

    2001-01-01

    Adenomas are the precursors of most colorectal cancers. Hyperplastic polyps have been linked to the subset of colorectal cancers showing DNA microsatellite instability, but little is known of their underlying genetic etiology. Using a strategy that isolates differentially methylated sequences from hyperplastic polyps and normal mucosa, we identified a 370-bp sequence containing the 5′ untranslated region and the first exon of a gene that we have called HPP1. Rapid amplification of cDNA ends was used to isolate HPP1 from normal mucosa. Using reverse transcription–PCR, HPP1 was expressed in 28 of 30 (93%) normal colonic samples but in only seven of 30 (23%) colorectal cancers (P < 0.001). The 5′ region of HPP1 included a CpG island containing 49 CpG sites, of which 96% were found to be methylated by bisulfite sequencing of DNA from colonic tumor samples. By COBRA analysis, methylation was detected in six of nine (66%) adenomas, 17 of 27 (63%) hyperplastic polyps, and 46 of 55 (84%) colorectal cancers. There was an inverse relationship between methylation level and mRNA expression in cancers (r = −0.67; P < 0.001), and 5-aza-2-deoxycytidine treatment restored HPP1 expression in two colorectal cancer cell lines. In situ hybridization of HPP1 indicated that expression occurs in epithelial and stromal elements in normal mucosa but is silenced in both cell types in early colonic neoplasia. HPP1 is predicted to encode a transmembrane protein containing follistatin and epidermal growth factor-like domains. Silencing of HPP1 by methylation may increase the probability of neoplastic transformation. PMID:11120884

  14. HISTONE DEACETYLASE6 Controls Gene Expression Patterning and DNA Methylation-Independent Euchromatic Silencing1[OPEN

    PubMed Central

    Hristova, Emilija; Fal, Kateryna; Klemme, Laurin; Windels, David; Bucher, Etienne

    2015-01-01

    To investigate the role of chromatin regulators in patterning gene expression, we employed a unique epigenetically controlled and highly tissue-specific green fluorescent protein reporter line in Arabidopsis (Arabidopsis thaliana). Using a combination of forward and reverse genetic approaches on this line, we show here that distinct epigenetic regulators are involved in silencing the transgene in different tissues. The forward genetic screen led to the identification of a novel HISTONE DEACETYLASE6 (HDA6) mutant allele (epigenetic control1, hda6-8). This allele differs from the previously reported alleles, as it did not affect DNA methylation and only had a very modest effect on the release of transposable elements and other heterochromatic transcripts. Overall, our data shows that HDA6 has at least two clearly separable activities in different genomic regions. In addition, we present an unexpected role for HDA6 in the control of DNA methylation at CG dinucleotides. PMID:25918117

  15. Gene reactivation: a tool for the isolation of mammalian DNA methylation mutants.

    PubMed

    Gounari, F; Banks, G R; Khazaie, K; Jeggo, P A; Holliday, R

    1987-11-01

    We report the isolation and characterization of a mammalian strain (tsm) that has a temperature-sensitive mutation in DNA methylation. The isolation procedure was based on the observation that treatment of a CHO TK- MT- cell line with demethylating agents introduces up to 46% demethylation, resulting in phenotypic reversion and transcriptional activation of the thymidine kinase (TK) and metallothionein (MT) genes at frequencies ranging from 1% to 59%. Seven thousand individual colonies from an EMS-mutagenized CHO TK- MT- population were screened for spontaneous reversion to TK+ phenotype after treatment at 39 degrees C. Successful isolates were subsequently examined for MT+ reversion. A single clone (tsm) was obtained that showed temperature-dependent reactivation of both TK and MT genes at frequencies of 7.2 X 10(-4) and 6 X 10(-4), respectively. The tsm cells were viable at 39 degrees C and showed no increased mutation frequency. Reactivation correlated with transcriptional activation of the respective genes, whereas backreversion to the TK- phenotype was associated with transcriptional inactivation. TK- backrevertants were reactivable again with demethylating agents. Although demethylation in tsm cells was not detectable by HPLC, Southern blot analysis revealed that reactivants, irrespective of their mode of generation, showed specific demethylation of both TK and MT genes. Also, after about 150 cell generations after treatment, reactivants from both temperature-induced tsm and cells exposed to demethylating agents gained 60% and 23%, respectively, in 5-methylcytosine (5mC). It is proposed that the phenotype of tsm cells is due to a mutation involved in the regulation of DNA methylation. The further characterization of this and other mammalian mutants should help to clarify the physiological role of DNA methylation, as well as its regulation.

  16. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis

    PubMed Central

    Shell, Scarlet S.; Prestwich, Erin G.; Baek, Seung-Hun; Shah, Rupal R.; Sassetti, Christopher M.; Dedon, Peter C.; Fortune, Sarah M.

    2013-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N6-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces the expression of a number of genes. Each has a MamA site located at a conserved position relative to the sigma factor −10 binding site and transcriptional start site, suggesting that MamA modulates their expression through a shared, not locus-specific, mechanism. While strains lacking MamA grow normally in vitro, they are attenuated in hypoxic conditions, suggesting that methylation promotes survival in discrete host microenvironments. Interestingly, we demonstrate strikingly different patterns of DNA methyltransferase activity in different lineages of M. tuberculosis, which have been associated with preferences for distinct host environments and different disease courses in humans. Thus, MamA is the major functional adenine methyltransferase in M. tuberculosis strains of the Euro-American lineage while strains of the Beijing lineage harbor a point mutation that largely inactivates MamA but possess a second functional DNA methyltransferase. Our results indicate that MamA influences gene expression in M. tuberculosis and plays an important but strain-specific role in fitness during hypoxia. PMID:23853579

  17. Filtrating colorectal cancer associated genes by integrated analyses of global DNA methylation and hydroxymethylation in cancer and normal tissue

    PubMed Central

    Li, Ming; Gao, Fei; Xia, Yudong; Tang, Yi; Zhao, Wei; Jin, Congcong; Luo, Huijuan; Wang, Junwen; Li, Qingshu; Wang, Yalan

    2016-01-01

    Recently, 5-hydroxymethylcytosine patterning across the tumor genome was considered as a hallmark of cancer development and progression. However, locus-specific difference of hydroxymethylation between colorectal cancer and normal tissue is unknown. In this study, we performed a newly developed method, HMST-seq, to profile 726 aberrant methylated loci and 689 aberrant hydroxymethylated loci synchronously in genome wide of colorectal cancers, majority of which presented higher methylation or lower hydroxymethylationin than in normal group. Besides, abnormal hydroxymethylated modification was more frequently occur at proximal regions close to TSSs and TSSs regions than abnormal methylation. Subsequently, we screened four genes (ALOX15, GHRHR, TFPI2 and TKTL1) with aberrant methylation and aberrant hydroxymethylation at some genome position by functional enrichment analysis as candidate genes associated with colorectal cancer. Our results may allow us to select differentially epigenetically modified target genes implicated in colorectal cancer tumorigenesis. PMID:27546520

  18. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product.

    PubMed

    Sunesen, Morten; Stevnsner, Tinna; Brosh, Robert M; Dianov, Grigory L; Bohr, Vilhelm A

    2002-05-16

    Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo. PMID:12032859

  19. Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region.

    PubMed

    Kominato, Y; Hata, Y; Takizawa, H; Tsuchiya, T; Tsukada, J; Yamamoto, F

    1999-12-24

    We have investigated the regulatory role of DNA methylation in the expression of the human histo-blood group ABO genes. The ABO gene promoter region contains a CpG island whose methylation status correlates well with gene expression in the cell lines tested. The CpG island was found hypomethylated in some cell lines that expressed ABO genes, whereas the other cell lines that did not express ABO genes were hypermethylated. Whereas constitutive transcriptional activity of the ABO gene promoter was demonstrated in both expressor and nonexpressor cell lines by transient transfection of reporter constructs containing the ABO gene promoter sequence, HhaI methylase-catalyzed in vitro methylation of the promoter region prior to DNA transfection suppressed the promoter activity when introduced into the expressor gastric cancer cell line KATOIII cells. On the other hand, in the nonexpressor gastric cancer cell line MKN28 cells, treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation of the ABO gene promoter and appearance of A-transferase messages, as well as A-antigens synthesized by A-transferase. Taken together, these studies suggest that DNA methylation of the ABO gene promoter may play an important role in the regulation of ABO gene expression. PMID:10601288

  20. PAQR3 gene expression and its methylation level in colorectal cancer tissues

    PubMed Central

    Li, Ri-Heng; Zhang, Ai-Min; Li, Shuang; Li, Tian-Yang; Wang, Lian-Jing; Zhang, Hao-Ran; Shi, Jian-Wei; Liu, Xiao-Rui; Chen, Yuan; Chen, Ya-Chao; Wei, Teng-Yao; Gao, Ying; Li, Wei; Tang, Hong-Ying; Tang, Mei-Yu

    2016-01-01

    The aim of the present study was to investigate the PAQR3 gene expression and its methylation level in colorectal cancer tissues, as well as the association with colorectal cancer clinical data. In total, 54 cases of colorectal cancer tissue samples and normal adjacent tissue samples were collected between June, 2013 and July, 2014. RT-PCR and western blot analysis were used to detect the mRNA and protein levels of PAQR3 in colorectal samples, respectively. MSP was used to detect the methylation level of PAQR3 gene in colorectal samples, which was compared with colorectal data. The results showed that a decreased expression level of PAQR3 mRNA in colorectal cancer tissues and the expression reduction rate was 57.4% (31/54). Similarly, the expression level of PAQR3 protein was reduced in cancer tissues, and the reduction rate was 46.3% (25/54), while the protein expression reduction rate in cancer adjacent tissue was 5.6% (3/54), and the difference was statistically significant (P<0.05). Furthermore, the methylation rates of PAQR3 in cancer tissues and cancer adjacent tissues were 33.3% (18/54) and 5.6% (3/54), respectively. In addition, PAQR3 mRNA and protein levels in colorectal cancer tissues were associated with the differentiation degree, lymphatic metastasis and tumor infiltration depth. The methylation level of PAQR3 was associated with age, differentiated degree, lymphatic metastasis and tumor infiltration depth. In conclusion, the expression of PAQR3 mRNA and protein in colorectal cancer was reduced and methylation of PAQR3 occurred. Although the PAQR3 mRNA and protein levels were not associated with gender, age or the location of tumor, there was an association with differentiation degree, lymphatic metastasis and tumor infiltration depth. In addition, the methylation level of PAQR3 was not correlated with gender or tumor location, but was correlated with age, differentiation degree, lymphatic metastasis and tumor infiltration depth. PMID:27588124

  1. [Methylation of FHIT gene promoter region in DNA from plasma of patients with myelodysplastic syndromes and demethylating effect of decitabine].

    PubMed

    Deng, Yin-Fen; Zhang, Lei; Zhang, Xiu-Qun; Hu, Ming-Qiu; Dai, Dan; Zhang, Xue-Zhong; Xu, Yan-Li

    2012-10-01

    This study was aimed to detect the methylation status of FHIT gene promoter region in the DNA from plasma of patients with myelodysplastic syndrome (MDS), and to investigate the demethylating effect of decitabine. Methylation-specific PCR method was used to detect the methylation status of FHIT gene promoter region in the DNA from plasma of 4 patients with MDS before and after treatment with decitabine plus semis CAG therapy (among them, 1 case of newly diagnosed MDS, 3 cases progressed into acute leukemia). The results indicated that 3 cases were found to have an increased methylation in the promoter region. After treatment with decitabine plus semis CAG, increased methylation was reversed in 2 cases. In 4 cases, 2 cases displayed clinical response. It is concluded that FHIT gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the FHIT gene hypermethylation of plasma from MDS patients. Detecting the methylation status of FHIT gene in DNA from plasma may play a role in MDS auxiliary diagnosis or prognosis.

  2. The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae.

    PubMed Central

    Reynolds, P R; Biggar, S; Prakash, L; Prakash, S

    1992-01-01

    The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions. Images PMID:1534406

  3. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    PubMed

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells. PMID:24371806

  4. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    PubMed

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  5. Global Indiscriminate Methylation in Cell-Specific Gene Promoters following Reprogramming into Human Induced Pluripotent Stem Cells

    PubMed Central

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Summary Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells. PMID:24371806

  6. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy.

    PubMed

    Zahid, Sarwar; Brownell, Isaac

    2008-04-01

    Patients with xeroderma pigmentosum (XP) have defective DNA repair and are at a high risk for cutaneous malignancies. Standard treatments for XP are limited in scope and effectiveness. Understanding the molecular etiology of XP has led to the development of novel therapeutic approaches, including enzyme and gene therapies. One new topical treatment utilizing bacteriophage T4 endonuclease 5 (T4N5) in a liposomal lotion is currently in clinical trials and has received a Fast Track designation from the FDA. Gene therapy for XP, while making leaps in preclinical studies, has been slower to develop due to tactical hurdles, but seems to have much potential for future treatment. If these treatments prove effective in lowering the risk of cancer in patients with XP, they may also be found useful in reducing skin cancers in other at-risk patient populations.

  7. p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair

    PubMed Central

    Gurdziel, Katherine; Bell, George W.; Jacks, Tyler; Flores, Elsa R.

    2009-01-01

    The p53 family activates many of the same genes in response to DNA damage. Because p63 and p73 have structural differences from p53 and play distinct biological functions in development and metastasis, it is likely that they activate a unique transcriptional network. Therefore, we performed a genome-wide analysis using cells lacking the p53 family members after treatment with DNA damage. We identified over 100 genes involved in multiple pathways that were uniquely regulated by p63 or p73, and not p53. Further validation indicated that BRCA2, Rad51, and mre11 are direct transcriptional targets of p63 and p73. Additionally, cells deficient for p63 and p73 are impaired in DNA repair and p63+/−;p73+/− mice develop mammary tumors suggesting a novel mechanism whereby p63 and p73 suppress tumorigenesis. PMID:19816568

  8. RAD6/sup +/ gene of Saccharomyces cerevisiae codes for two mutationally separable deoxyribonucleic acid repair functions

    SciTech Connect

    Tuite, M.F.; Cox, B.S.

    1981-02-01

    The response of two mutant alleles of the RAD6/sup +/ gene of Saccharomyces cerevisiae to the ochre translational suppressor SUQ5 was determined. Both the ultraviolet sensitivity phenotype and the deficiency in ultraviolet-induced mutagenesis phenotype of the rad6-1 allelle were suppressed in a (psi/sup +/) background. For the rad6-3 allelle, only the ultraviolet-sensitivity phenotype was suppressible in a (psi/sup +/) background. An SUQ5 rad6-3 (psi/sup +/) strain that was examined showed the normal rad6-3 deficiency in ultraviolet-induced mutagenesis. The authors propose that the RAD6/sup +/ gene is divided into two cistrons, RAD6A and RAD6B. RAD6A codes for an activity responsible for the error-prone repair of ultraviolet-induced lesions in deoxyribonucleic acid but is not involved in a cell's resistance to the lethal effects of ultraviolet light. RAD6B codes for an activity essential for error-free repair of potentially lethal mutagenic damage.

  9. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.).

    PubMed

    Ou, Xiufang; Long, Likun; Zhang, Yunhong; Xue, Yiqun; Liu, Jingchun; Lin, Xiuyun; Liu, Bao

    2009-03-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  10. Tissue repair genes: the TiRe database and its implication for skin wound healing

    PubMed Central

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org. PMID:27049721

  11. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    PubMed

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  12. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  13. Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract.

    PubMed

    Keil, Kimberly P; Altmann, Helene M; Mehta, Vatsal; Abler, Lisa L; Elton, Erik A; Vezina, Chad M

    2013-12-01

    The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltransferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.

  14. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  15. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  16. The study of the relation of DNA repair pathway genes SNPs and the sensitivity to radiotherapy and chemotherapy of NSCLC

    PubMed Central

    Wang, Chunbo; Nie, Huan; Li, Yiqun; Liu, Guiyou; Wang, Xu; Xing, Shijie; Zhang, Liping; Chen, Xin; Chen, Yue; Li, Yu

    2016-01-01

    To analyze the relation between SNPs in DNA repair pathway-related genes and sensitivity of tumor radio-chemotherapy, 26 SNPs in 20 DNA repair genes were genotyped on 176 patients of NSCLC undertaking radio-chemotherapy treatment. In squamous cell carcinoma (SCC), as the rs2228000, rs2228001 (XPC), rs2273953 (TP73), rs2279744 (MDM2), rs2299939 (PTEN) and rs8178085, rs12334811 (DNA-PKcs) affected the sensitivity to chemotherapy, so did the rs8178085, rs12334811 to radiotherapy. Moreover rs344781, rs2273953 and rs12334811 were related with the survival time of SCC. In general, the “good” genotype GG (rs12334811) showed greater efficacy of radio-chemotherapy and MSF (24 months) on SCC. In adenocarcinoma, as the rs2699887 (PIK3), rs12334811 (DNA-PKcs) influenced the sensitivity to chemotherapy, so did the rs2299939, rs2735343 (PTEN) to radiotherapy. And rs402710, rs80270, rs2279744 and rs2909430 impacted the survival time of the adenocarcinoma patients. Both GG (rs2279744) and AG (rs2909430) showed a shorter survival time (MFS = 6). Additionally, some SNPs such as rs2228000, rs2228001 and rs344781 were found to regulate the expression of DNA repair pathway genes through eQTLs dataset analysis. These results indicate that SNPs in DNA repair pathway genes might regulate the expression and affect the DNA damage repair, and thereby impact the efficacy of radio-chemotherapy and the survival time of NSCLC. PMID:27246533

  17. Study of gene-specific DNA repair in the comet assay with padlock probes and rolling circle amplification.

    PubMed

    Henriksson, Sara; Shaposhnikov, Sergey; Nilsson, Mats; Collins, Andrew

    2011-04-25

    We used padlock probes to study the rate of gene specific repair of three genes, OGG1 (8-oxoguanine-DNA glycosylase-1), XPD (xeroderma pigmentosum group D), and HPRT (hypoxanthine-guanine phosphoribosyltransferase) in human lymphocytes, in relation to the repair rate of Alu repeats and total genomic DNA. Padlock probes offer highly specific detection of short target sequences by combining detection by ligation and signal amplification. In this approach only genes in sequences containing strand breaks, which become single-stranded in the tail, are available for hybridisation. Thus the total number of signals from the padlock probes per comet gives a direct measure of the amount of damage (strand-breaks) present and allows the repair process to be monitored. This method could provide insights on the organisation of genomic DNA in the comet tail. Alu repeat containing DNA was repaired rapidly in comparison with total genomic DNA, and the studied genes were generally repaired more rapidly than the Alu repeats.

  18. Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis.

    PubMed

    Fang, Jing Yuan; Xiao, Shu Dong

    2003-01-01

    DNA methylation is the main epigenetic modification after replication in humans. DNA (cytosine-5)-methyltransferase (DNMT) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to C5 of cytosine within CpG dinucleotide sequences in the genomic DNA of higher eukaryotes. There is considerable evidence that aberrant DNA methylation plays an integral role in carcinogenesis. Folic acid or folate is crucial for normal DNA synthesis and can regulate DNA methylation, and through this, it affects cellular SAM levels. Folate deficiency results in DNA hypomethylation. Epidemiological studies have indicated that folic acid protects against gastrointestinal (GI) cancers. Methylene-tetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are the enzymes involved in folate metabolism and are thought to influence DNA methylation. MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level. Two common MTHFR polymorphisms, 677CT (or 677TT) and A1298C, and an MS polymorphism, A-->G at 2756, have been identified. Most studies support an inverse association between folate status and the rate of colorectal adenomas and carcinomas. During human GI carcinogenesis, MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level, as well as aberrant methylation.

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    PubMed Central

    2011-01-01

    Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue. PMID:21668942

  20. Gene Expression and DNA Methylation Status of Glutathione S-Transferase Mu1 and Mu5 in Urothelial Carcinoma

    PubMed Central

    Wang, Shou-Chieh; Huang, Chin-Chin; Shen, Cheng-Huang; Lin, Lei-Chen; Zhao, Pei-Wen; Chen, Shih-Ying; Deng, Yu-Chiao; Liu, Yi-Wen

    2016-01-01

    Bladder cancer is highly recurrent after therapy, which has an enormous impact on the health and financial condition of the patient. It is worth developing diagnostic tools for bladder cancer. In our previous study, we found that the bladder carcinogen BBN increased urothelial global DNA CpG methylation and decreased GSTM1 protein expression in mice. Here, the correlation of BBN-decreased GSTM1 and GSTM gene CpG methylation status was analyzed in mice bladders. BBN treatment decreased the protein and mRNA expression of GSTM1, and the CpG methylation ratio of GSTM1 gene promoter was slightly increased in mice bladders. Unlike mouse GSTM1, the human GSTM1 gene tends to be deleted in bladder cancers. Among 7 human bladder cancer cell lines, GSTM1 gene is really null in 6 cell lines except one, T24 cells. The CpG methylation level of GSTM1 was 9.9% and 5-aza-dC did not significantly increase GSTM1 protein and mRNA expression in T24 cells; however, the GSTM5 gene was CpG hypermethylated (65.4%) and 5-aza-dC also did not affect the methylation ratio and mRNA expression. However, in other cell lines without GSTM1, 5-aza-dC increased GSTM5 expression and decreased its CpG DNA methylation ratio from 84.6% to 61.5% in 5637, and from 97.4% to 75% in J82 cells. In summary, two biomarkers of bladder tumor were provided. One is the GSTM1 gene which is down-regulated in mice bladder carcinogenesis and is usually deleted in human urothelial carcinoma, while the other is the GSTM5 gene, which is inactivated by DNA CpG methylation. PMID:27404495

  1. Dietary Flavanols Modulate the Transcription of Genes Associated with Cardiovascular Pathology without Changes in Their DNA Methylation State

    PubMed Central

    Boby, Céline; Leroux, Christine; Declerck, Ken; Szarc vel Szic, Katarzyna; Heyninck, Karen; Laukens, Kris; Bizet, Martin; Defrance, Matthieu; Dedeurwaerder, Sarah; Calonne, Emilie; Fuks, Francois; Haegeman, Guy; Haenen, Guido R. M. M.; Bast, Aalt; Weseler, Antje R.

    2014-01-01

    Background In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. Methodology/Principal Findings Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. Conclusion Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans. PMID:24763279

  2. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  3. Cockayne syndrome exhibits dysregulation of p21 and other gene products that may be independent of transcription-coupled repair.

    PubMed

    Cleaver, J E; Hefner, E; Laposa, R R; Karentz, D; Marti, T

    2007-04-14

    Cockayne syndrome (CS) is a progressive childhood neurodegenerative disorder associated with a DNA repair defect caused by mutations in either of two genes, CSA and CSB. These genes are involved in nucleotide excision repair (NER) of DNA damage from ultraviolet (UV) light, other bulky chemical adducts and reactive oxygen in transcriptionally active genes (transcription-coupled repair, TCR). For a long period it has been assumed that the symptoms of CS patients are all due to reduced TCR of endogenous DNA damage in the brain, together with unexplained unique sensitivity of specific neural cells in the cerebellum. Not all the symptoms of CS patients are however easily related to repair deficiencies, so we hypothesize that there are additional pathways relevant to the disease, particularly those that are downstream consequences of a common defect in the E3 ubiquitin ligase associated with the CSA and CSB gene products. We have found that the CSB defect results in altered expression of anti-angiogenic and cell cycle genes and proteins at the level of both gene expression and protein lifetime. We find an over-abundance of p21 due to reduced protein turnover, possibly due to the loss of activity of the CSA/CSB E3 ubiquitylation pathway. Increased levels of p21 can result in growth inhibition, reduced repair from the p21-PCNA interaction, and increased generation of reactive oxygen. Consistent with increased reactive oxygen levels we find that CS-A and -B cells grown under ambient oxygen show increased DNA breakage, as compared with xeroderma pigmentosum cells. Thus the complex symptoms of CS may be due to multiple, independent downstream targets of the E3 ubiquitylation system that results in increased DNA damage, reduced transcription coupled